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1 Introduction

One of the important features that characterizes string theories is duality [1]. T-duality,
that distinguishes string theory from theories based on point particles, is the most distinc-
tive feature to understand stringy nature of spacetime.

T-duality among spacetime geometries is studied in various contexts. For example,
the famous Buscher rule of T-duality [2, 3] is derived in the two-dimensional string sigma
model as a target space transformation. In supersymmetric theories, a duality symmetry
between chiral and twisted chiral multiplets of two-dimensional N = (2, 2) sigma models is
interpreted as T-duality [4–6]. In general, an N = (2, 2) theory only with chiral multiplets
requires that the target space geometry is Kähler [7, 8]. In particular, the presence of
the twisted chiral multiplets requires that the target space is the bi-hermitian geometry
admitting two independent complex structures (J+, J−) that commute with each other
and are compatible with the target space metric [9, 10]. A pair of noncommuting complex
structures in N = (2, 2) models with semi-chiral multiplets is also studied [11]. It is shown
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in the sigma model language that Kähler and bi-hermitian geometries are T-dual with
each other [12–15]. Similarly, N = (4, 4) supersymmetry requires that the target space
is generically a bi-hypercomplex geometry which admits three sets of complex structures
(Ja,+, Ja,−) (with a = 1, 2, 3) satisfying Ja,+Jb,− = Jb,−Ja,+.

On the other hand, geometric realization of T-duality symmetry is developed in the
context of generalized geometry [16, 17]. The generalized tangent bundle TM over a
D-dimensional spacetime manifold M is defined by the formal sum of the tangent and
the cotangent bundles TM = TM ⊕ T ∗M . The spacetime geometry M is encoded by
2D-dimensional generalized structures on TM in the O(D,D) covariant fashion. For ex-
ample, the Kähler structure on spacetime M is realized as the generalized Kähler structure
(JJ ,Jω) on TM , via so-called the Gualtieri map [17]. It is also shown that the bi-hermitian
structure onM is realized by the generalized Kähler structure (J+,J−). The physical origin
of this correspondence is studied in supersymmetric sigma models [18–23]. This also holds
for the hyperkähler and the bi-hypercomplex cases. They are realized as the generalized
hyperkähler structures on TM .

Generalized geometry is closely related to doubled formalism [24–26]. The idea of T-
duality symmetric geometries is further sophisticated in the study of double field theory
(DFT) [27]. DFT is developed on the basis of the doubled formalism in which the spacetime
metric gµν , the NSNS B-field and the dilaton φ are organized into the 2D×2D generalized
metricHMN and the generalized dilaton d. They are defined in the 2D-dimensional doubled
space M where T-duality symmetry is manifestly and geometrically realized. T-duality
symmetries of geometric quantities are implemented as global O(D,D) transformations in
the doubled space. For example, the Buscher rule of gµν , Bµν and φ is reproduced by an
O(D,D) rotation of the generalized metric HMN and the generalized dilaton d. The general
T-duality transformation law of Kähler, hyperkähler, bi-hermitian and bi-hypercomplex
structures of spacetime geometries are also discussed in the doubled formalism [28]. The
geometry of the doubled space M is implemented by the Born structures [29–34]. The
Born geometry is endowed with the doubled foliations, the O(D,D) structure, the natural
inner product by the O(D,D) invariant metric ηMN , the generalized metric HMN and a
unique connection. Furthermore, it is shown that the tangent bundle of the doubled space
TM is identified with the generalized tangent bundle TM through a natural isomorphism.

The purpose of this paper is to study the T-duality nature of the spacetime structures
of Kähler, hyperkähler, bi-hermitian and bi-hypercomplex geometries by embedding them
into extensions of the generalized (hyper)Kähler structures and the Born structures. We call
these doubled structures in general. In particular, we study compatibility of the doubled
structures with the Born geometry on which DFT is naturally defined. We will show that
the Born geometry is compatible with the generalized (hyper)kähler structures by encoding
the complex structures of spacetime into doubled structures in an appropriate way. Along
the way, we will encounter interesting connections between the doubled structures and
certain algebras of hypercomplex numbers. We will analyze the algebras that the doubled
structures obey. With these results, in the latter half of this paper, we study the T-duality
covariant expression of the worldsheet instantons. The existence of the generalized complex
structures in the doubled space leads us to the notion of doubled worldsheet instantons.
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We study the doubled worldsheet instantons in the Born sigma model which is a sigma
model whose target space is the 2D-dimensional Born geometry [35]. This provides us a
T-duality covariant way of string worldsheet theory.

The organization of this paper is as follows. In the next section, we introduce the Born
geometry on which DFT is defined. The relation between generalized geometry and doubled
geometry is discussed. In section 3, we study the compatibility of the Born and the general-
ized Kähler structures. We study algebras of hypercomplex numbers that these structures
obey. We show that Kähler, hyperkähler, bi-hermitian and bi-hypercomplex structures of
spacetime are embedded into doubled structures together with the Born geometry. In sec-
tion 4, we study the T-duality covariant expression of the worldsheet instanton equations
in the Born sigma model. We discuss T-duality property of the worldsheet instantons.
Section 5 is devoted to conclusion and discussions. Appendix A and B are glossaries of
mathematics on hypercomplex numbers and Clifford algebras.

2 Double field theory and Born geometry

In this section, we clarify the relations among double field theory, the Born geometry and
generalized geometry.

2.1 Double field theory

We start by introducing double field theory (DFT) [27]. DFT is a formulation of super-
gravities for which T-duality is manifestly realized. The fundamental fields of DFT are
the generalised metric HMN and the generalized dilaton d. They are defined in the 2D-
dimensional doubled space M. The doubled coordinate XM , (M = 1, . . . , 2D) on M is
decomposed as XM = (Xµ, X̃µ), (µ = 1, . . . , D) where Xµ and X̃µ are the Kaluza-Klein
(KK) and the winding coordinates respectively. The action of DFT is given by

SDFT =
∫

d2DXR(H, d), (2.1)

where R(H, d) is the generalized Ricci scalar defined by

R(H, d) = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+ 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂MHKL∂KHNL. (2.2)

Here the derivative means ∂M = ∂
∂XM . The indices are raised and lowered by the O(D,D)

invariant metric ηMN and its inverse ηMN . The action (2.1) is manifestly invariant un-
der the global O(D,D) transformation and is invariant under the O(D,D) covariantized
diffeomorphism and the B-field gauge transformation. The T-duality transformations of
the spacetime fields are implemented by the O(D,D) rotation of the generalized metric
HMN (X) and the generalized dilaton d(X). To see this, it is useful to employ the standard
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parameterization of the DFT quantities

HMN =
(

gµν −gµρBρν
Bµρg

ρν gµν −BµρgρσBσν

)
, e−2d =

√
−ge−2φ,

ηMN =
(

0 δµν
δµ
ν 0

)
, ηMN =

(
0 δµ

ν

δµν 0

)
, (2.3)

where gµν and Bµν are D ×D symmetric and anti-symmetric matrices respectively, while
φ is a real function on M. The generalized metric HMN is an O(D,D) element and d is
invariant under the O(D,D) rotation. All the quantities involving the gauge parameters
in DFT are subject to the constraints

∂M∂
M∗ = 0, ∂M ∗ ∂M∗ = 0, (2.4)

where ∗ are any quantities in DFT. The first equation in (2.4) is the level-matching con-
dition of closed strings while the second one is specific to DFT. This is called the strong
constraint.

The physical spacetime M is defined by a D-dimensional slice in the doubled space
M. This is defined by a solution to the constraints (2.4). For example, when all the
components in HMN , d and gauge parameters depend only on Xµ, the constraints (2.4)
are trivially satisfied. In this case, a slice X̃µ = const., parameterized by Xµ, is chosen
as the D-dimensional physical spacetime. The components gµν(X), Bµν(X) and φ(X) are
identified with the spacetime metric, the NSNS B-field and the dilaton, respectively. Then,
the action (2.1) reduces to that of the NSNS sector of type II supergravities

S =
∫

dDX
√
−ge−2φ

[
R+ 4(∂φ)2 − 1

12(H(3))2
]
, (2.5)

where R is the Ricci scalar defined by the spacetime metric gµν and H(3) = dB is the
field strength of the B-field. In this sense, DFT is a T-duality covariant formulation of
supergravity.

We next move to a more sophisticated treatment of the doubled spaceM and discuss
its geometric structures.

2.2 Born geometry

The structures of the doubled spaceM in the previous subsection are furnished in the Born
manifold [29–33]. Before introducing the Born manifold, we start from an almost para-
complex manifold. Given a 2D-dimensional differential manifold M, an endomorphism
K : TM → TM that satisfies K2 = 12D and whose ±1-eigenbundle has the same rank
is called an almost para-complex structure. Then the pair (M,K) gives an almost para-
complex manifold. Since K is a real analogue of the almost complex structure J2 = −1,
we call this kind endomorphism the almost real structure. We also call endomorphisms
on TM the doubled structures in general. Due to the property K2 = 12D, we have two
eigenbundles (distributions) L and L̃ in TM associated with two eigenvalues K = ±1.
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dωK 6= 0 dωK = 0
NK 6= 0 almost para-hermitian almost para-Kähler
NK = 0 para-hermitian para-Kähler

Table 1. The classification of almost para-hermitian manifolds (M,K).

They are defined by the projection operators P = 1
2(12D + K), P̃ = 1

2(12D − K) as L =
P (TM), L̃ = P̃ (TM). Then the tangent space of the almost para-complex manifoldM is
decomposed as TM = L⊕ L̃.

We then introduce the notion of integrability of doubled structures. For a distribution
D ⊂ TM and vector fields X,Y ∈ Γ(D), when the Lie bracket J·, ·K evaluated on X and Y
becomes again a vector field in D, namely JX,Y K ∈ Γ(D), then D is called involutive. By
the Frobenius theorem, a distribution D is integrable if and only if it is involutive. With
this definition, we consider the projected Lie brackets,

NP (X,Y ) = P̃ JP (X), P (Y )K, NP̃ (X,Y ) = P JP̃ (X), P̃ (Y )K. (2.6)

Apparently NP = 0 implies the involutivity and hence the integrability of L. The same is
true for NP̃ = 0 and the integrability of L̃. The Nijenhuis tensor of the endomorphism K
is defined by

NK(X,Y ) = NP (X,Y ) +NP̃ (X,Y ), (2.7)

where X,Y ∈ Γ(TM). Since NK = 0 means that K is integrable, it is obvious that the
integrabilities of L and L̃ imply that of K. An almost para-complex manifold (M,K) is
said to be a para-complex manifold when K is integrable. On the other hand, when only
L(L̃) is integrable, (M,K) is an L(L̃)-para-complex manifold.

We next introduce a metric in the almost para-complex manifold (M,K). A neutral
metric η of signature (D,D) is defined by a map η : TM× TM→ R. When this satisfies
η(K·,K·) = −η(·, ·), it is called a para-hermitian metric. The triple (M,K, η) is called
an almost para-hermitian manifold. Although, the para-hermitian metric ηMN is not nec-
essarily flat, we always take it to be flat in this paper. In this case, the metric ηMN is
identified with the O(D,D) invariant metric in DFT. By the neutral metric ηMN and KMN ,
we define the fundamental two-form (ωK)MN = ηMLKLN which is not closed in general.
When ωK is non-degenerate, it defines an almost symplectic structure on M. Then the
para-hermitian structure defines an almost symplectic manifold (M, ωK). When dωK = 0,
then ωK is a symplectic structure on M by which the non-degenerate Poisson structure
{·, ·}P = ω−1

K (d·, d·) is induced. In this caseM is an almost para-Kähler manifold. When
K is integrable, (M, ωK) is a para-Kähler manifold. This is also known as a bi-Lagrangian
manifold. The almost para-hermitian manifolds are classified by the integrability of K and
the closedness of ωK. See table 1.

The last quantity we introduce is the metric HMN of signature (2D, 0). Let (M,K, η)
be a para-hermitian manifold. We define H as a Riemannian metric of signature (2D, 0)
that satisfies

η−1H = H−1η, ω−1
K H = −H−1ωK. (2.8)
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Then (η, ωK,H) is called the Born structure and the quadruple (M, η, ωK,H) is the Born
manifold. In DFT language, HMN is identified with the generalized metric. The condi-
tion (2.8) is rewritten as

(η−1H)2 = 12D, (H−1ωK)2 = −12D. (2.9)

This means that the quantity J = η−1H defines an almost real structure J 2 = 12D on
TM and the compatibility condition becomes

η(J ·,J ·) = η(·, ·). (2.10)

The pair (η,J ) is called the chiral structure on M. On the other hand, the quantity
I = H−1ωK defines an almost complex structure I2 = −12D on TM and the condition
becomes

H(I·, I·) = H(·, ·). (2.11)

The pair (H, I) is called an almost hermitian structure on M. The equations (2.8) are
compatibility conditions on η, H and ωK. Since K = η−1ωK satisfies K2 = 12D, the
condition becomes

ωK(K·,K·) = −ωK(·, ·). (2.12)

In summary, a 2D-dimensional Born manifoldM is equipped with the neutral metric
η of signature (D,D), the fundamental two-form ωK and the Riemannian metric H of
signature (2D, 0). The pair (ωK,K) is the para-hermitian structure, (η,J ) is the chiral
structure, (H, I) is the almost hermitian structure onM. The triple (η, ωK,H) is the Born
structure which defines I = H−1ωK = −ω−1

K H, J = η−1H = H−1η, K = η−1ωK = ω−1
K η.

The doubled structure (I,J ,K) is called an almost para-quaternionic structure onM and
satisfies

−I2 = J 2 = K2 = 12D, IJK = −12D,

{I,J } = {J ,K} = {K, I} = 0. (2.13)

Here {·, ·} is the anti-commutator of the doubled structures. The consistency conditions
for Born structure are summarized as follows;

H(IX, IY ) = H(X,Y ), H(JX,J Y ) = H(X,Y ), H(KX,KY ) = H(X,Y ),
η(IX, IY ) = −η(X,Y ), η(JX,J Y ) = η(X,Y ), η(KX,KY ) = −η(X,Y ),

ωK(IX, IY ) = ωK(X,Y ), ωK(JX,JX) = −ωK(X,Y ), ωK(KX,KY ) = −ωK(X,Y ),
X, Y ∈ Γ(TM). (2.14)

Altogether we call these structures the Born geometry.

– 6 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
9

2.3 Born geometry and generalized geometry

The para-hermitian structure (ωK,K) of a Born manifold defines the eigenbundles L and L̃.
By the Frobenius theorem, the involutive bundle L defines a foliation structure inM that
allows L = TF . The physical spacetime in DFT is identified with a leaf of the foliation.
When we write the basis of L as ∂µ = ∂

∂Xµ , then the local coordinate of the base leaves
F is Xµ. The same is true for L̃. Since L̃ is integrable in the para-hermitian manifold,
there is a foliation structure that defines leaves whose coordinate is X̃µ, and the basis of
L̃ is given by ∂̃µ = ∂

∂X̃µ
. The pair (F , F̃) defines a doubled foliation in M and we find

the natural coordinate system XM = (Xµ, X̃µ) inM. This is identified with the KK and
the winding coordinates. The D-dimensional physical spacetime M in a 2D-dimensional
Born manifoldM is a leaf in F or F̃ . A physical field Φ onM is given by an (anti)para-
holomorphic quantity d̃Φ = 0 (dΦ = 0) defined by K [36]. This is a trivial solution to the
constraints (2.4).

We now examine the relation between the doubled space and the generalized tangent
bundle on a D-dimensional physical space M . The generalized tangent bundle of M is the
formal sum of the tangent and the cotangent bundles TM = TM ⊕ T ∗M . Since we have
the neutral metric η in M, there is a map TM = L ⊕ L̃ → L∗ ⊕ L̃∗. This induces the
following isomorphisms;

φ+ : L̃→ L∗, φ− : L→ L̃∗. (2.15)

Then L̃ is identified with the dual vector space L∗ of L. This defines natural isomor-
phisms [29, 30, 32, 33];

Φ+ : TM→ L⊕ L∗, Φ− : TM→ L̃⊕ L̃∗. (2.16)

The distribution L = TF is the tangent bundle of the leaves F and L∗ is its dual T ∗F .
Therefore TM is identified with the generalized tangent bundle TF ⊕ T ∗F over F , or
T F̃ ⊕ T ∗F̃ over F̃ . In the following, we choose M ⊂ F without loss of generality and
identify doubled structures on TM with generalized structures on TM through the natural
isomorphism (2.16). In this case, doubled vectors and generalized vectors are identified as
follows;

V = VM∂M = V µ∂µ + Ṽµ∂̃
µ ⇐⇒ V = V µ∂µ + ṼµdXµ. (2.17)

For later convenience, we introduce a particular representation of the Born structure;

HMN =
(
gµν −BµρgρσBσν Bµρgρν

−gµρBρν gµν

)
, ηMN =

(
0 δµν
δµ
ν 0

)
,

(ωK)MN =
(

2Bµν −δµν
δν
µ 0

)
. (2.18)
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Note that when we impose the constraints (2.4) in DFT, gµν and B are the spacetime
metric and the B-field on a leaf in F . The other structures are parameterized as

IMN = HML(ωK)LN =
(

gµρBρν −gµν

gµν +Bµρg
ρσBσν −Bµρgρν

)
,

JMN = ηMLHLN =
(

−gµρBρν gµν

gµν −BµρgρσBσν Bµρgρν

)
,

KMN = ηML(ωK)LN =
(
δµν 0

2Bµν −δµν

)
. (2.19)

With this parameterization, we find that I, J and K anti-commute with each other and
they indeed satisfy

IMLILN = −δMN , JMLJ LN = δMN , KMLKLN = δMN . (2.20)

We call the equations (2.18), (2.19) the standard representation.
We note that the neutral metric η defines a natural inner product on the doubled or

generalized vectors U and V ;

〈U, V 〉 = ηMNVMUN = vµũµ + ṽµu
µ, (2.21)

where we have used the expansions U = uµ∂µ + ũµ∂̃
µ and V = vµ∂µ + ṽµ∂̃

µ.

3 Born structure and generalized complex structures

In this section, we study the compatibility conditions for the Born structure on M and
the Kähler structure on M . The Kähler structure on spacetime M is embedded into the
generalized Kähler structure on TM via the Gualtieri map. This is identified with a doubled
structure on TM via the natural isomorphism. We analyze algebras that govern the Born
geometry and the generalized Kähler structures. We also examine how they are combined
into the doubled spaceM.

3.1 Embedding Kähler structures

It is widely known that an (almost) complex structure J in spacetime M is embedded
into a generalized almost complex structure J on TM [17]. A generalized almost complex
structure is an endomorphism J : TM → TM that preserves the inner product 〈J ·,J ·〉 =
〈·, ·〉 and squares to minus identity J 2 = −12D. Since J 2 = −12D, the generalized almost
complex structure defines ±i-eigenbundles on the complexified generalized tangent bundle;

l± =
{
V ∈ TM ⊗ C : J V = ±iV

}
. (3.1)

The eigenbundles l± have the complex rank D and are maximally isotropic and l+ ∩ l− =
0. The integrability of the generalized almost complex structures are defined through
the Courant involutivity of the eigenbundles [17]. When this is the case, J becomes a

– 8 –
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generalized complex structure. A generalized Kähler structure is defined by a pair of two
commuting generalized complex structures (J1,J2) whose product G = J1J2 defines a
positive-definite metric on TM .

With these definitions, we exhibit an explicit example of the generalized Kähler struc-
ture. Given a complex structure J in a Kähler manifold M , we have generalized complex
structures of the form;

JJ =
(
J 0
0 −J∗

)
, Jω =

(
0 −ω−1

ω 0

)
, (3.2)

where J∗ is the adjoint of J and ω = −gJ is the Kähler two-form associated with the com-
plex structure J . It is shown that JJ and Jω are Courant involutive when J is integrable
and dω = 0 which holds for any Kähler manifold M . We find that JJ and Jω commute
with each other and their product

G = JJJω =
(

0 −Jω−1

−J∗ω 0

)
=
(

0 g−1

g 0

)
(3.3)

becomes a positive-definite metric on TM .1 Then the pair (JJ ,Jω) defines a generalized
Kähler structure.

We examine the compatibility of the generalized Kähler structure (JJ ,Jω) and the
Born structure on M. Since the physical spacetime M ⊂ F admits the metric gµν and
the Kähler structure, namely, an integrable complex structure J and a symplectic form
ω = −gJ , they satisfy J2 = −1 and ωJ = −J∗ω on TF = L. We also assume B = 0
for the time being. In the standard representation, the building blocks of the doubled
structure I, J and K in the Born manifold are given by

I =
(

0 −g−1

g 0

)
, J =

(
0 g−1

g 0

)
, K =

(
1 0
0 −1

)
. (3.4)

They obey the algebra of the almost para-quaternionic structure (2.13). In other words,
this is the algebra of the split-quaternions involving two real and one imaginary units (see
appendix A). On the other hand, the generalized Kähler structure (JJ ,Jω,G) obeys the
algebra

−J 2
J = −J 2

ω = G2 = 12D, JJJωG = 12D,

[JJ ,Jω] = [Jω,G] = [G,JJ ] = 0. (3.5)

Here [·, ·] is the commutator of the doubled structures. This is the algebra of the bi-complex
numbers C2 (see appendix A). We examine algebraic structures that incorporate the split-
quaternions and the bi-complex numbers as subalgebras. By the explicit calculation, it is
obvious that the almost product structure G in the generalized Kähler structure gives the
chiral structure in the Born structure, G = J . Hereafter we denote J instead of G. The

1Unless otherwise stated, we consider the Euclidean metric gµν in the following.
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products of the generalized Kähler structure (JJ ,Jω) and the doubled structure (I,J ,K)
introduce the additional structures on TM;

JJI = IJJ =
(

0 −Jg−1

−J∗g 0

)
=
(

0 −ω−1

−ω 0

)
= P,

JJK = KJJ =
(
J 0
0 J∗

)
= Q,

JωI = −IJω =
(
−ω−1g 0

0 −ωg−1

)
=
(
−J 0
0 −J∗

)
= −Q,

JωK = −KJω =
(

0 ω−1

ω 0

)
= −P . (3.6)

This means that the algebra is not closed by (JJ ,Jω, I,J ,K). The newly appeared struc-
tures P and Q satisfy

P2 = 12D, Q2 = −12D. (3.7)

They play as real and complex structures on TM. By evaluating all the products involving
P and Q, we find

JJP = PJJ = −I, JωP = −PJω = K, IP = PI = −JJ ,
JP = −PJ = Q, KP = −PK = Jω, QP = −PQ = J ,
JJQ = QJJ = −K, JωQ = −QJω = I, IQ = −QI = −Jω,
JQ = −QJ = P, KQ = QK = JJ . (3.8)

Here we have used the relation ω = −gJ in the evaluation of the products. From (3.8), we
find that no additional structures appear. Then the algebra is closed by the basis

(12D,JJ ,Jω, I,J ,K,P,Q). (3.9)

In this algebra, we have four complex and four real structures on TM;

J 2
J = J 2

ω = I2 = Q2 = −12D,

12
2D = J 2 = K2 = P2 = 12D. (3.10)

The basis (12D,JJ ,Jω, I,J ,K,P,Q) defines an eight-dimensional algebra whose product
table is given in table 2. We find that this is the algebra of the bi-quaternions. It is known
that algebras of some hypercomplex numbers are isomorphic to Clifford algebras. Indeed,
the bi-quaternion algebras are equivalent to the Clifford algebras Cl3,0(R), Cl2,1(R) and
Cl1,2(R) (see appendix B).

As we show in appendix A, there are commutative and anti-commutative bases which
form subalgebras in the bi-quaternion algebra. The subalgebras include bi-complex num-
bers C2, split-quaternions SpH and quaternions H. We find all the subalgebras of the
bi-quaternion algebra;
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12D J K P JJ Jω I Q
12D 12D J K P JJ Jω I Q
J J 12D I Q −Jω −JJ K P
K −K −I 12D Jω Q P −J JJ
P P −Q −Jω 12D −I −K −JJ −J
JJ JJ −Jω Q −I −12D J P −K
Jω Jω −JJ −P K J −12D −Q I
I I −K J −JJ P Q −12D −Jω
Q Q −P −JJ J −K −I Jω −12D

Table 2. The product table including the Born and the generalized complex structures. Left ×
right products are shown.

(1) C2: (12D,JJ ,Jω,J ), J 2
J = J 2

ω = −12D, J 2 = 12D; commutative,
(2) C2: (12D,JJ , I,P), J 2

J = I2 = −12D, P2 = 12D; commutative,
(3) C2: (12D,JJ ,K,Q), J 2

J = Q2 = −12D, K2 = 12D; commutative,
(4) SpH: (12D, I,J ,K), I2 = −12D, J 2 = K2 = 12D; anti-commutative,
(5) SpH: (12D,J ,P,Q), Q2 = −12D, J 2 = P2 = 12D; anti-commutative,
(6) SpH: (12D,Jω,K,P), J 2

ω = −12D, K2 = P2 = 12D; anti-commutative,
(7) H: (12D,Jω, I,Q), J 2

ω = Q2 = I2 = −12D; anti-commutative.

Note that the algebra of split-quaternions (4), (5) and (6), defining the Born structure, is
isomorphic to Clifford algebras SpH ' Cl2,0(R) ' Cl1,1(R). The quaternions (7) defines
a hypercomplex structure on the doubled spaceM whose realization in Clifford algebra is
Cl0,2(R). The bi-complex numbers (1), (2) and (3), in Clifford language Cl1(C), define the
generalize Kähler structures.

We then examine the compatibility conditions of the structures (JJ ,Jω, I,J ,K,P,Q)
and the metrics η, H onM. The building blocks of the Born structures I, J and K satisfy

η(I·, I·) = −η(·, ·), η(J ·,J ·) = η(·, ·), η(K·,K·) = −η(·, ·). (3.11)

Since η defines the natural inner product on TM' TM , the generalized Kähler structure
(JJ ,Jω) satisfies

η(JJ ·,JJ ·) = η(·, ·), η(Jω·,Jω·) = η(·, ·). (3.12)

Note that this together with J = JJJω implies the second condition in (3.11). Further-
more, since P = KJω and Q = −JωI, we have

η(P·,P·) = η(KJω·,KJω·) = −η(Jω·,Jω·) = −η(·, ·),
η(Q·,Q·) = η(JωI·,JωI·) = η(I·, I·) = −η(·, ·). (3.13)

This means that η is anti-hermitian with respect to P and Q.
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We have the compatibility conditions for the Born structures;

H(I·, I·) = H(·, ·), H(J ·,J ·) = H(·, ·), H(K·,K·) = H(·, ·). (3.14)

The metric of the Kähler spacetime M satisfies the hermitian condition g(J ·, J ·) = g(·, ·).
This implies the following properties;

H(JJ ·,JJ ·) = H(·, ·), H(Jω·,Jω·) = H(·, ·). (3.15)

Then, the compatibility conditions for P and Q on the generalized metric H is found to be

H(P·,P·) = H(KJω·,KJω·) = H(·, ·),
H(Q·,Q·) = H(JωI·,JωI·) = H(·, ·). (3.16)

We here comment on the effects of the B-field on the above structures. Until now,
we have not cared about the B-field. For a given (almost) real or complex structure A
on TM, the B-field is introduced by an O(D,D) transformation on TM, known as the
B-transformation

AB = eBAe−B, eB =
(

1 0
B 1

)
. (3.17)

Indeed, the equation (3.4) becomes the standard representation (2.19) by the B-transfor-
mation. The same is true for the representation (3.6). Since the B-transformation is a
similarity transformation, the algebra closes even in the presence of the B-field.

In summary, the Kähler structure (J, ω) of spacetime M is embedded into the dou-
bled structures on TM satisfying the algebra of bi-quaternions. The compatibility of the
generalized Kähler and the Born structures requires the bi-quaternion algebra that encom-
passes four real and four complex structures (12D,JJ ,Jω, I,J ,K,P,Q). The algebra has
substructures given by bi-complex numbers, split-quaternions and quaternions.

3.2 Embedding bi-hermitian structures

We next consider embeddings of the bi-hermitian structure (J±, ω±) of spacetimeM . Note
that the metric gµν is hermitian with respect to J±, and ω± = −gJ± are the fundamen-
tal two-forms. The bi-hermitian structures are embedded into the generalized complex
structures J± as [17];

J± = 1
2
(
JJ+ ± JJ− + Jω+ ∓ Jω−

)
, (3.18)

where the matrices of JJ± and Jω± are given by (3.2). We find that J+ and J− commute
with each other and they give the chiral structure J = J+J−. The triples (JJ± ,Jω± ,J )
form the algebras of two bi-complex numbers sharing the common real (chiral) structure
J . Since the algebra of the bi-quaternions does not support such subalgebras, we need
to enlarge the algebra to incorporate the bi-hermitian structure (J±, ω±) into the Born
geometry.
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We find that an algebra that allows subalgebras of two bi-complex numbers sharing one
real structure J is the bi-quaternions over the field C. This is a 16-dimensional algebra and
schematically written as C⊗C⊗H, which is isomorphic to the Clifford algebra Cl3(C). This
algebra contains 8 real and 8 imaginary units and the bi-complex numbers are subalgebras
generated by the bases (see appendix A);

(e0i1̂, ei11̂, eii1̂), (e01î, eiîi, eii1̂), (i = 1, 2, 3). (3.19)

Here eµ, (1, i) and (1̂, î) are bases of H, C and C, respectively. The bases (3.19) share the
real unit eii1̂. For example, if we assign

J = e1i1̂, JJ+ = e0i1̂, Jω+ = e111̂, JJ− = e01î, Jω− = −e1îi, (3.20)

we find that they obey the algebras of two bi-complex numbers. The Born structure
(I,J ,K) is represented by a split-quaternion subalgebra of C ⊗ C ⊗ H. This is given by
the basis

(e1i1̂, e2i1̂, e311̂). (3.21)

Therefore we employ the following assignment;

I = e311̂, J = e1i1̂, K = e2i1̂. (3.22)

We have five imaginary units JJ± ,Jω± , I. The other three imaginary units P ′,Q′,R′ are
represented as

P ′ = e211̂, Q′ = e2îi, R′ = e3îi. (3.23)

Since we have relations

e211̂ = (e311̂)(e111̂), e2îi = (e311̂)(e1îi), e3îi = (e311̂)(e01î)(e0i1̂), (3.24)

P ′,Q′,R′ are obtained as (without the B-field)

P ′ = IJω+ =
(

0 −g−1

g 0

)(
0 −ω−1

+
ω+ 0

)
= −

(
J+ 0
0 J∗+

)
,

Q′ = −IJω− =
(

0 −g−1

g 0

)(
0 −ω−1

−
ω− 0

)
=
(
J− 0
0 J∗−

)
,

R′ = IJJ−JJ+ =
(

0 −g−1

g 0

)(
J− 0
0 −J∗−

)(
J+ 0
0 −J∗+

)
=
(

0 −g−1J∗−J
∗
+

gJ−J+ 0

)
. (3.25)

We easily confirm that P ′2 = Q′2 = −12D and

R′2 =
(
−g−1J∗−J

∗
+gJ−J+ 0

0 −gJ−J+g
−1J∗−J

∗
+

)
=
(
−J−J+J−J+ 0

0 −gJ−J+J−J+g
−1

)
= −12D.

(3.26)
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Here we have used the relations of the bi-hermitian structure J∗± = −gJ±g−1 and the fact
that J+ and J− commute with each other.

Similarly, the additional real units (S ′, T ′,U ′,V ′,W ′) other than (12D,J ,K) are found
to be

S ′ = e3i1̂ = IJJ+ = −
(

0 ω−1
+

ω+ 0

)
, T ′ = e11î = Jω+JJ− =

(
0 ω−1

+ J∗−
ω+J− 0

)
,

U ′ = e21î = P ′JJ− =
(
−J+J− 0

0 J∗+J
∗
−

)
, V ′ = e31î = IJJ− = −

(
0 ω−1

−
ω− 0

)
,

W ′ = e0îi = JJ+JJ− =
(
J+J− 0

0 J∗+J
∗
−

)
. (3.27)

Note that the subalgebra by (12D,JJ± ,Jω± ,J , T ′,W ′) involving the generalized Kähler
structure (JJ± ,Jω±) forms the algebra of the tri-complex numbers C3 elucidated in [28].

3.3 Embedding hyperkähler and bi-hypercomplex structures

The hyperkähler structure (Ja, ωa) (a = 1, 2, 3) on M is embedded into the generalized
hyperkähler structure on TM;

JJa =
(
Ja 0
0 −J∗a

)
, Jωa =

(
0 −ω−1

a

ωa 0

)
. (3.28)

For later convenience, we denote JJa = Ja,+ and Jωa = Ja,−. These structures satisfy the
algebra

Ja,±Jb,± = −δab12D + εabcJc,+, Ja,±Jb,∓ = δabJ + εabcJc,−. (3.29)

Here εabc is the Levi-Civita symbol and J is the chiral structure

J =
(

0 g−1

g 0

)
, (3.30)

satisfying J 2 = 12D. In fact, the algebra (3.29) is the definition of the generalized hy-
perkähler structure [37] and it is the algebra of the split-bi-quaternions or Cl0,3(R) in
disguise [28]. An algebra that incorporates the split-bi-quaternions and the algebra of the
Born structure (split-quaternions) is split-tetra-quaternions. This is a hypercomplex num-
ber generating a 16-dimensional algebra and isomorphic to Cl4,0(R), Cl1,3(R) and Cl0,4(R).
The split-tetra-quaternions contain the bases of 10 imaginary and 6 real units. They are
represented by (see appendix A and B)

1e0e0, 1e0ea, 1e1e0, 1e1ea,
ie2e2, ie2ea, ie3e0, ie3ea, (a = 1, 2, 3), (3.31)

where eµ and eµ are two commuting quaternions and (1, i) is the basis of C. Hereafter we
omit the “1” in the products.
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We find that the triples (Ja,+,Ja,−,J ) (a = 1, 2, 3) form three independent bi-complex
numbers sharing the common real structure J = Ja,+Ja,− (a : no sum). Since the bi-
complex numbers are realized as subalgebras of split-tetra-quaternions as

(ie2e0, e0ea, ie2ea), (ie3e0, e0ea, ie3ea), (a = 1, 2, 3), (3.32)

we make an assignment;2

J = ie2e0, Ja,+ = e0ea, Ja,− = −ie2ea, (a = 1, 2, 3). (3.33)

The Born structure (I,J ,K) ofM obeys the algebra of split-quaternions. Since the split-
quaternion that contains J is represented by the basis

(e1e0, ie2e0, ie3e0), (3.34)

we find the assignment

I = e1e0, J = ie2e0, K = −ie3e0. (3.35)

The other three imaginary units are given by

ie3ea, (a = 1, 2, 3) (3.36)

which are decomposed like ie3ea = (e11)(ie2ea). Then by assigning the remaining three
complex structures P ′′, Q′′ and R′′ as

P ′′ = ie3e1, Q′′ = ie3e2, R′′ = ie3e3, (3.37)

we find

P ′′ = −IJ1,−, Q′′ = −IJ2,−, R′′ = −IJ3,−. (3.38)

Indeed, the direct calculations reveal that they are expressed by

P ′′ =
(
J1 0
0 J∗1

)
, Q′′ =

(
J2 0
0 J∗2

)
, R′′ =

(
J3 0
0 J∗3

)
, (3.39)

satisfying the desired properties P ′′2 = Q′′2 = R′′2 = −12D. Similarly, we find that the
remaining real structures S ′′, T ′′,U ′′,V ′′ are given by

S ′′ = e1e1 = IJ1,+, T ′′ = e1e2 = IJ2,+, U ′′ = e1e3 = IJ3,+, V ′′ = e0e0 = 12D.

(3.40)

We finally consider the embedding of the bi-hypercomplex structure (Ja,±, ωa,±) on M
into the doubled structures ofM. The bi-hypercomplex structure (Ia,±, ωa,±) is embedded
into the generalized hyperkähler structure

Ja,± = 1
2
(
JJa,+ ± JJa,− + Jωa,+ ∓ Jωa,−

)
. (3.41)

2The set (J = ie3e0, Ja,+ = e0ea, Ja,− = −ie3ea) is an alternative assignment.
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Note that the Kähler case corresponds to Ja,+ = Ja,− = Ja and hence Ja,+ = JJa , Ja,− =
Jωa . The generalized hyperkähler structure (Ja,+,Ja,−) forms the algebra of the split-bi-
quaternions. This contains 6 imaginary units (Ja,±)2 = −12D (a: no sum). Furthermore,
this contains 6 generalized Kähler structures (JJa,± ,Jωa,± ,J ) that share the common real
structure J . Each forms the algebra of the bi-complex numbers. Then we need 6 bi-
complex subalgebras to incorporate these structures. This is not possible by the split-
tetra-quaternions and we therefore enlarge this algebra. An appropriate algebra is the
split-tetra-quaternions over H (see appendix A). This is a 64-dimensional algebra on M.
Indeed, if we assign the bases

J = ie2e0ê0, JJa,+ = e0eaê0, Jωa,+ = −ie2eaê0, JJa,− = e0e0êa, Jωa,− = −ie2e0êa,
(3.42)

then we find that the triples(
JJa,+ ,Jωa,+ ,J

)
,
(
JJa,− ,Jωa,− ,J

)
(3.43)

obey the algebra of bi-complex numbers. In this basis, Ja,± are represented by

Ja,+ = 1
2
[
e0(eaê0 + e0êa)− ie2(eaê0 − e0êa)

]
,

Ja,− = 1
2
[
e0(eaê0 − e0êa)− ie2(eaê0 + e0êa)

]
. (3.44)

Using these expressions, we compute

Ja,+Jb,+ =− δabe0e0ê0 + εabc
1
2
[
e0(ecê0 + e0êc)− ie2(ecê0 − e0êc)

]
=− δab12D + εabcJc,+,

Ja,−Jb,− =− δabe0e0ê0 + εabc
1
2
[
e0(ecê0 + e0êc)− ie2(ecê0 − e0êc)

]
=− δab12D + εabcJc,+,

Ja,±Jb,∓ = δabie2e0ê0 + εabc
1
2
[
e0(ecê0 − e0êc)− ie2(ecê0 + e0êc)

]
= δabJ + εabcJc,−. (3.45)

Here we have used the fact that eµ, eµ, êµ are commuting quaternions and denoted e0e0ê0 =
12D. Then we confirm the algebra of the split-bi-quaternions for the generalized hyperkäh-
ler structure.

In summary, the hyperkähler structure (Ja, ωa) on M is embedded into the doubled
structure on M that obey the 16-dimensional algebra of the split-tetra-quaternions. The
bi-hypercomplex structure (Ja,±, ωa,±) is embedded into the doubled structure that obeys
the 64-dimensional algebra of the split-tetra-quaternions over H. The algebras of doubled
structures on TM' TM ⊕ T ∗M are summarized in table 3.
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Structures on TM' TM⊕T ∗M Algebras of hypercomplex numbers Structures on TM
Generalized Kähler bi-complex numbers (4) Kähler (J, ω)
Generalized Kähler bi-complex numbers over C (8) bi-hermitian (J±, ω±)
Generalized hyperkähler split-bi-quaternions (8) hyperkähler (Ja, ωa)
Generalized hyperkähler split-bi-quaternions over H (32) bi-hypercomplex (Ja,±, ωa,±)
Born split-quaternions (4)
Born + generalized Kähler bi-quaternions (8) Kähler (J, ω)
Born + generalized Kähler bi-quaternions over C (16) bi-hermitian (J±, ω±)
Born + generalized hyperkähler split-tetra-quaternions (16) hyperkähler (Ja, ωa)
Born + generalized hyperkähler split-tetra-quaternions over H (64) bi-hypercomplex (Ja,±, ωa,±)

Table 3. The structures on TM' TM ⊕ T ∗M and their algebras and dimensions.

4 Worldsheet instantons in Born sigma models

We have established the T-duality covariant embeddings of complex structures of space-
time. One of the notions that has deep connections with the spacetime complex structures
is the worldsheet instantons [38–40]. In [28], we studied the T-duality relation between the
instantons in Kähler and bi-hermitian geometries. Due to the fact that there are complex
structures J and J± in the Kähler and the bi-hermitian geometries respectively, we find
a one-to-two correspondence between the instantons in each geometry. We here elucidate
this relation within the T-duality covariant formulation.

In this section, we study the worldsheet instantons in a T-duality covariant doubled
formalism. The doubled formalism of string sigma models that makes T-duality be man-
ifest has been studied in various viewpoints [41–45]. Among other things, more direct
connections to DFT and the doubled space appear in the Born sigma model [35].3 In the
following, we show that the worldsheet instanton equations respecting T-duality symmetry
are obtained in the Born sigma model by utilizing the doubled structures discussed in the
previous sections.

4.1 Born sigma models

The Born sigma model is a sigma model whose target space is the Born manifoldM. This
is closely related to the doubled sigma model of a string introduced in [43, 44]. The action
of the Born sigma model in the Minkowski signature is given by

S = 1
4

∫
Σ

[
HMNdXM ∧ ∗dXN − ΩMNdXM ∧ dXN

]
. (4.1)

Here Σ is the two-dimensional worldsheet, XM = (Xµ, X̃µ) is the local coordinate of the
Born manifold M, ∗ is the Hodge star operator in Σ, HMN is the generalized metric in
the Born manifoldM and ΩMN = −ΩNM is an anti-symmetric constant matrix. We have
neglected the Fradkin-Tseytlin term that involves the dilaton [35] which is not relevant in

3See [46, 47] for generalizations to branes and exceptional geometries.
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our discussion. The action (4.1) is invariant under the O(D,D) rotation

dXM → OMNdXN , HMN → (Ot)MPHPQOQN , ΩMN → (Ot)MPΩPQOQN ,
O ∈ O(D,D). (4.2)

In the following, we use the standard parameterization of the generalized metric (2.3).
The second term in the action (4.1) is topological but plays an important role in the
instanton equations. Following [43, 44], we employ the expression of the topological term
ΩMNdXM ∧ dXN = −2dXµ ∧ dX̃µ.

Using the standard parameterization, the term involving HMN in the action (4.1) is
expanded as

1
4

∫
Σ
HMNdXM ∧ ∗dXN

= 1
4

∫
Σ

d2σ
√
−hhαβ

[
(gµν −BµρgρσBσν) ∂αXµ∂βX

ν − gµρBρν∂αX̃µ∂βX
ν

+Bµρg
ρν∂αX

µ∂βX̃ν + gµν∂αX̃µ∂βX̃ν

]
, (4.3)

where hαβ , (α, β = 0, 1) is the metric of the two-dimensional worldsheet Σ and the topo-
logical term is

−1
4

∫
Σ

d2σ
√
−h εαβΩMN∂αXM∂βXN = 1

2

∫
Σ

d2σ εαβ
[
∂αX

µ∂βX̃µ

]
. (4.4)

Here εαβ and εαβ are the totally anti-symmetric tensor and the Levi-Civita symbol in Σ,
respectively.

Since the Born sigma model (4.1) contains double degrees of freedom, we impose
constraints on the quantities. The physical (non-doubled) sigma model is obtained by
imposing the DFT constraints (2.4) on the background fields gµν , Bµν , φ and also by
introducing the self-duality condition;

dXM = ηMPHPQ ∗ dXQ. (4.5)

This is rewritten by the chiral structure J = η−1H inM as

dXM = JMN ∗ dXN . (4.6)

Therefore (4.6) is just the chirality condition. By using the representation (2.19) for the
chiral structure J , the condition (4.6) is expanded and dX̃µ is solved as

dX̃µ = gµν ∗ dXν +BµνdXν . (4.7)

Then we can remove the winding degrees of freedom dX̃µ from the action. Note that we
have solved the DFT constrains (2.4) by making all the background fields depend only on
Xµ. Plugging (4.7) back into the action (4.1), we find the HMN part vanishes. On the
other hand, the topological term becomes

−1
4ΩMNdXM ∧ dXN = 1

2dXµ ∧
[
gµρ ∗ dXρ +BµρdXρ

]
= 1

2gµνdXµ ∧ ∗dXν + 1
2BµνdXµ ∧ dXν . (4.8)

This precisely reproduces the action of the ordinary string sigma model.
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4.2 Instantons in Born sigma models

We then consider the instantons in the Born sigma model. In the following, spacetime
and the worldsheet have the Euclidean signature and ∗2 = −1. We first consider the term
that depends on HMN in the action (4.1). Since the metric HMN is positive-definite in the
Euclidean space, we have the Bogomol’nyi bound of the action;

SE = 1
8

∫
Σ

d2σ
√
h
[
hαβHMN

(
∂αXM ±AMP εαγ∂

γXP
) (
∂βXN ±ANQεβδ∂δXQ

)
± 2(ωA)MNε

αβ∂αXM∂βXN
]

≥ ± 1
4

∫
Σ

d2σ
√
h(ωA)MNε

αβ∂αXM∂βXN , (4.9)

where A is a doubled structure satisfying A2 = −12D in the Born manifoldM and ωA =
HA is the fundamental two-form associated with A. The bound is saturated when the
map X : Σ→M satisfies

∂αXM ±AMNεαβ∂
βXN = 0, (4.10)

or equivalently,

dXM ±AMN ∗ dXN = 0. (4.11)

We call these the doubled instanton equations. By the chirality condition (4.6)4 and the
doubled instanton equations, we have

dXM = ∓AMN ∗ dXN = ∓iAMNJ NPdXP = ((∓iAJ )2)MNdXN . (4.12)

This means that we need (AJ )2 = −12D to have non-trivial solutions for instantons,
otherwise XI = 0. Since A2 = −12D and J 2 = 12D, we obtain (AJ )2 = −12D if A
commutes with J (i.e., [A,J ] = 0). On the other hand, if A anti-commutes with J (i.e.,
{A,J } = 0), then we find (AJ )2 = 12D. Therefore only A that commutes with the chiral
structure J is allowed for the doubled instantons.

In the following, we consider Σ = S2 and the image of the map X is a two-cycle C2

in M. Then the map X : Σ →M is classified by the homotopy class π2(S2). The action
bound is given by

SE =
∣∣∣∣14
∫

Σ
(ωA)MNdXM ∧ dXN

∣∣∣∣+ i

4

∫
Σ

ΩMNdXM ∧ dXN = 1
4

∣∣∣∣∫
C2
ωA

∣∣∣∣+ i

4

∫
C2

Ω. (4.13)

Here we have restored the topological term
∫

Ω. We assume that the two-cycle C2 lie in
the physical spacetime M .

Note that the topological term is written in the T-duality covariant form;

ΩMNdXM ∧ dXN = ΩMN

(
∓AMP ∗ dXP

)
∧ dXN

= ∓ iΩMPAPQJ QN dXM ∧ dXN . (4.14)
4Note that we should replace ∗ → −i∗ in (4.6) for the Euclidean space.
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In the following, we first study the doubled instanton equations for the Kähler geom-
etry and then move to the bi-hermitian geometry. For simplicity we start by the Kähler
geometry with trivial B-field B = 0. There is a doubled structure (JJ ,Jω, I,Q) in the
doubled space whose squares are −12D. As we have shown, I and Q anti-commute with
the chiral structure J and they give trivial solutions to the equations (4.11). On the other
hand we have [JJ ,J ] = [Jω,J ] = 0 and the doubled instantons defined by JJ ,Jω provide
meaningful solutions. We clarify them explicitly.

A = Jω case. In the case of A = Jω, the doubled instanton equations are

dXM ± (Jω)MN ∗ dXN = 0, (4.15)

which in components are written as

∂αX
µ ± (−(ω−1)µν)εαβ∂βX̃ν = 0,

∂αX̃µ ∓ ωµνεαβ∂βXν = 0. (4.16)

Here ω = −gJ is the Kähler form in M . By the chirality condition (4.6), we solve the
winding coordinate as ∂αX̃µ = −iεαβgµν∂βXν . Plugging this into the first line in (4.16),
we obtain

Jµν∂αX
ν = ∓i∂αXµ. (4.17)

In general, the almost complex structure J of the spacetime manifold M decomposes the
complexified tangent space TMC = TM ⊗ C into TM± such as

TMC = TM+ ⊕ TM−. (4.18)

Here TM± are eigenbundles of the complex structure JX± = ±iX± and X+, X− are
(anti)holomorphic vectors. When J is integrable, the Lie bracket of the (anti)holomorphic
vectors become the (anti)holomorphic vectors. Therefore the doubled instanton equations
by Jω restrict dXµ to (anti)holomorphic vectors by J .

The fundamental two-form ωJω becomes

ωJω = HJω =
(
g 0
0 g−1

)(
0 −ω−1

ω 0

)
=
(

0 −gω−1

g−1ω 0

)
. (4.19)

Then the term |
∫
C2 ωJω | in the action bound (4.13) becomes trivial;

(ωJω)MNdXM ∧ dXN = (gµρωρν + ωµρg
νρ)dXµ ∧ dX̃ν = 0. (4.20)

Here we have used the relation gω−1 + ωg−1 = −gJ−1g−1 − gJg−1 = 0. The non-trivial
action bound comes from the topological term Ω and it is nothing but the (Euclideanized)
string sigma model action;

SE = 1
2

∫
gµνdXµ ∧ ∗dXν + i

2

∫
BµνdXµ ∧ dXν . (4.21)
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A = JJ case. When A = JJ , the doubled instanton equations become

dXM ± (JJ)MN ∗ dXN = 0. (4.22)

In components, these are given by

∂αX
µ ± Jµνεαβ∂βXν = 0,

∂αX̃µ ∓ J∗µνεαβ∂βX̃ν = 0. (4.23)

The first equation reproduces the ordinary worldsheet instanton equations [38]. The second
equation provides us the T-dual of the first equation. We find that the chirality condition
∂αX̃µ = −iεαβgµν∂βXν applying to the second equation gives the first one. In this case,
the fundamental two-form ωJJ is evaluated as

ωJJ = HJJ =
(
gJ 0
0 −g−1J∗

)
=
(
−ω 0
0 ω−1

)
. (4.24)

Therefore we have
1
4

∫
C2
ωJI = 1

4

∫
C2

[
ωµνdXµ ∧ dXν − (ω−1)µνdX̃µ ∧ dX̃ν

]
. (4.25)

By using the chirality condition and eliminating X̃µ sector, we have

(ω−1)µνdX̃µ ∧ dX̃ν = ωµνεαβ∂
αXµ∂βXν . (4.26)

Here we have used the relations ω = −gJ and ω−1 = −J−1g−1 = Jg−1. Then, we find the
action bound coming from the H part is

1
4

∫
C2
ωJJ = 0. (4.27)

This is anticipated because the chirality condition makes the HMN part be trivial. On the
other hand, the topological term in the action is evaluated as

i

4

∫
Ω = − i

2

∫
dXµ ∧

(
− i ∗ gµνdXν

)
= − 1

2

∫
dXµ ∧

(
± gµνJνρdXρ)

= ± 1
2

∫
C2
ωµνdXµ ∧ dXν . (4.28)

This reproduces the action bound of the ordinary worldsheet instantons.
For later convenience, we here introduce the B-field by the B-transformation. For a

doubled structure A, the action bound is found to be

SE ≥ ±
1
4

∫
Σ

d2σ
√
h(ωAB )MNε

αβ∂αXM∂βXN , (4.29)

where the doubled structure A is replaced by AB = eBAe−B and ωAB is the fundamental
two-form associated with AB. The general doubled instanton equations are then given by

dXM ± (AB)MN ∗ dXN = 0. (4.30)
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For the generalized complex structure A = Jω, we have

J Bω =
(

(ω−1B)µν −(ω−1)µν
ωµν + (Bω−1B)µν −(Bω−1)µν

)
. (4.31)

The doubled instanton equations in components become

dXµ ±
{

(ω−1B)µν ∗ dXν − (ω−1)µν ∗ dX̃ν

}
= 0,

dX̃µ ±
{
ωµ ∗ dXν + (Bω−1B)µν ∗ dXν − (Bω−1)µν ∗ dX̃ν

}
= 0. (4.32)

Using the chiral structure

J B =
(
−g−1B −g−1

g +Bg−1B −Bg−1.

)
, (4.33)

the chirality condition is solved by

dX̃µ = −igµν ∗ dXν +BµνdXν . (4.34)

By substituting this into the first line in (4.32), we find the condition (4.17) obtained in
the case of the trivial B-field. In the second line, we have

−igµν ∗ (dXν ∓ iJνρdXρ) +Bµν (dXν ∓ iJνρdXρ) = 0. (4.35)

This again implies the condition (4.17). Therefore dXµ is a (anti)holomorphic vector even
in the presence of the B-field. The action bound is similarly obtained.

For the case A = JJ , we have

J BJ = eBJJe−B =
(

J 0
BJ + J∗B −J∗

)
. (4.36)

The doubled instanton equations are then

dXM ± (J BJ )MN ∗ dXN = 0. (4.37)

In components, we have

dXµ ± Jµν ∗ dXν = 0,
dX̃µ ± (BJ + J∗B)µν ∗ dXν ∓ (J∗)µν ∗ dX̃ν = 0. (4.38)

The first line gives the worldsheet instanton equation. Under the chirality condition, the
second line in (4.38) becomes

0 = (dXµ ± Jµν ∗ dXν) + (g−1B)µν ∗ (dXν ± Jνρ ∗ dXρ) . (4.39)

Therefore (4.38) consistently reproduces the instanton equation dXµ±Jµν ∗dXν = 0 even
in the presence of the B-field. In this case, the action bound is given by

SE = ±1
2

∫
ωµνdXµ ∧ dXν + i

2

∫
BµνdXµ ∧ dXν . (4.40)

Then the topological θ-term for the instanton bound is precisely obtained by the B-field.
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Bi-hermitian geometry. We next consider the bi-hermitian geometry characterized by
(J+, J−). It is known that Kähler and bi-hermitian geometries are T-dual with each other.
This becomes apparent when these structures are embedded into generalized Kähler struc-
tures in the doubled space [28]. Indeed, the doubled instanton equations in the bi-hermitian
geometry are obtained by the T-duality transformation of (4.22). The bi-hermitian struc-
ture (J+, J−) on spacetime M is expressed by the generalized complex structures as

J B± = 1
2

(
1 0
B 1

)(
J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(J∗+ ± J∗−)

)(
1 0
−B 1

)

= 1
2
(
J BJ+ ± J

B
J− + J Bω+ ∓ J

B
ω−

)
. (4.41)

The doubled instanton equations are given by

dXM ± (J B+ )MN ∗ dXN = 0,
dXM ± (J B− )MN ∗ dXN = 0. (4.42)

In the following, we focus on J B+ without loss of generality. The equations (4.42) are
decomposed as

1
2
(
dXM ± (J BJ+)MN ∗ dXN

)
+ 1

2
(
dXM ± (J BJ−)MN ∗ dXN

)
+1

2
(
dXM ± (J Bω+)MN ∗ dXN

)
− 1

2
(
dXM ± (J Bω−)MN ∗ dXN

)
= 0. (4.43)

Then the equations (4.42) are linear combinations of the doubled instanton equations de-
fined by J BJ±

and J Bω± . As we have clarified, under the chirality condition, we have the
following equations from the doubled instanton equations;

dXµ ± (J+)µν ∗ dXν = 0,
dXµ ± (J−)µν ∗ dXν = 0,

(J+)µνdXν = ∓idXµ,

(J−)µνdXν = ∓idXµ. (4.44)

This means that the solutions are restricted to the (anti)holomorphic vectors defined by
J± and they are also instantons with respect to J±. This is possible since the bi-hermitian
structure satisfies [J+, J−] = 0 and the common eigenvectors of J± are allowed. This also
implies J±∗ have common eigenvectors (instantons). The action bound in this case is

SE = 1
2

∫
gµνdXµ ∧ ∗dXν + i

2

∫
BµνdXµ ∧ dXν

= ± 1
2

∫
(ω+)µνdXµ ∧ dXν + i

2

∫
BµνdXµ ∧ dXν

= ± 1
2

∫
(ω−)µνdXµ ∧ dXν + i

2

∫
BµνdXµ ∧ dXν . (4.45)

This is nothing but the bound for the ordinary worldsheet instantons defined by J±.
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5 Conclusion and discussions

In this paper, we studied doubled structures that encode Kähler, hyperkähler, bi-hermitian
and bi-hypercomplex geometries.

The spacetime metric gµν and the NSNS B-field are organized into the generalized
metric HMN and the natural O(D,D) structures of DFT are implemented by the Born
structure on the doubled space M. Due to the natural isomorphism emerged from the
Born structure, the tangent bundle of the doubled space M and the generalized tangent
bundle TM over the physical spacetime M is identified. On the other hand, the Kähler
structure on the physical spacetime M is embedded into the generalized Kähler structure
(JJ ,Jω) on TM. We analyzed compatibility of the doubled and the Born structures in the
doubled space. We found that the algebraic structures require the extra doubled structures
P and Q in the Born geometry. Altogether we showed that they form the algebra of the
bi-quaternions. The Born and the generalized complex structures appear as subalgebras of
split-quaternions and the bi-complex numbers, respectively. Utilizing this fact, we extended
the discussion to the bi-hermitian case. We found that the desired algebra that encodes
the bi-hermitian structure on spacetime is the algebra of bi-quaternions over C. This is
a 16-dimensional algebra that contains appropriate subalgebras. By using the basis of
the algebra, we write down all the real and imaginary units in their explicit forms. For
the hyperkähler structure on spacetime, it is represented by the generalized hyperkähler
structure on TM. This satisfies the algebra of split-bi-quaternions. This together with the
Born structure leads us to the algebra of split-tetra-quaternions. We exhibited the explicit
representations of the doubled structures that form this algebra. We further extended the
results to the bi-hypercomplex case. We found that the structure is realized as the algebra
of the split-tetra-quaternions over H in the doubled space. These results provide us deep
connections among the algebras of the hypercomplex numbers, the complex structures of
spacetime, the doubled structures and T-duality. We also showed that some of the algebras
of the hypercomplex numbers also expressed by Clifford algebras.

In the latter part of this paper, we studied the doubled worldsheet instantons in the
Born sigma model. The Born sigma model is a sigma model whose target space is the Born
geometry. The model keeps manifest T-duality and is governed by the generalized metric
HMN and the topological term. The ordinary string sigma model is reproduced by the
DFT constraints and the chirality condition defined by J . We derived the Bogomol’nyi
equations defined by the doubled complex structures on TM. We clarify that appropriate
doubled complex structures reproduced the ordinary worldsheet instanton equations. We
then discussed the T-duality transformation of the worldsheet instantons. We in particular
focused on the T-duality between Kähler and bi-hermitian geometries. The one-to-two
correspondence of the worldsheet instantons discussed in [28] is naturally interpreted in
the Born sigma model. We showed that the instantons in the bi-hermitian geometries
are represented by a linear combination of individual instantons defined by the structures
(J±, ω±). The analysis can be extended to the hyperkähler and bi-hypercomplex cases.
The Bogomol’nyi equations in the Born sigma models are interpreted as the T-duality
covariant realization of the worldsheet instanton equations.
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As we discussed, the doubled space plays an important role in revealing the T-duality
among geometric structures. It has been discussed that solutions to supergravities that are
related by T-duality transformations are given by a solution to DFT. This means that the
spacetime geometries of various supergravity solutions are described by doubled geometry
in a T-duality unified manner. For example, the H-monopole (smeared NS5-brane) and the
KK-monopole (KK5-brane) in type II string theories are unified into an O(D,D) covariant
solution to DFT [48]. The worldsheet instanton effects in the H-monopole geometry, the
KK-monopole geometry and their relations to T-duality are studied in various perspec-
tives [49–52]. Among other things, the instantons break the isometry of the H-monopole
geometry and recover that of the NS5-brane which is a genuine solution in string theory.
Things get more interesting when we consider this phenomenon in the T-dual side. It
has been shown that instantons in the KK-monopole geometry breaks the isometry not
along the KK direction, but of the winding space [51, 52]. The modified geometry is char-
acterized not only by the physical coordinate xµ but also by the winding coordinate x̃µ.
These fact mean that instantons reveal the more stringy nature of spacetime. It would
be interesting to study this winding geometry in the context of the Born sigma model.
The notion of T-duality covariant instantons helps us to understand geometries that are
not fully captured in supergravities. They are known as non-geometries. An example of
this kind of non-geometry is the T-fold [43, 44] whose explicit realization includes exotic
branes in string theories [53, 54]. The exotic 52

2-brane in type II string theories is a typical
example studied intensively. Indeed, the exotic 52

2-brane obtained by the T-duality trans-
formation of the hyperkähler (Taub-NUT) geometry is realized by a solution to DFT in a
specific frame [55]. It has been shown that the 52

2-brane geometry is expected to admit the
bi-hypercomplex structures [28] and the worldsheet instantons in the 52

2-brane geometry
is studied [56–58]. It would be interesting to study the instantons and bi-hypercomplex
structures in the doubled setup. We will come back to these issues in future researches.
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A Mathematics on hypercomplex numbers

In this appendix, we provide a brief introduction of hypercomplex numbers. The materials
here are the minimum definitions and properties required to understand the main text.
Readers who need mathematically rigorous definitions would consult literature.

A.1 Basic elements

Binarions. Binarions are the two-dimensional (non)associative unital algebras over the
field R. Binarions are classified as the followings depending on the bases of the algebras.
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i j k

i −1 k −j
j −k −1 i

k j −i −1

i j k

i −1 k −j
j −k 1 −i
k j i 1

Table 4. The product tables of the bases of quaternions (left) and split-quaternions (right). For
quaternions i2 = j2 = k2 = ijk = −1 and they anti-commute. For split-quaternions i2 = −1, j2 =
k2 = ijk = 1 and they anti-commute. The split-quaternions are obtained by replacing j → ij, k →
ik in the quaternions. Here i is an auxiliary imaginary unit i2 = −1.

(1) Complex numbers are generated by the basis (1, i); i2 = −1.
(2) Split-complex numbers are generated by the basis (1, j); j2 = 1.
(3) Dual numbers are generated by the basis (1, ε); ε2 = 0.

Note that the complex numbers define the field C but the split-complex and dual numbers
do not. This is because they have non-trivial zero divisors. Since we never treat the dual
numbers in this paper, we do not care about the “dual”-hypercomplex numbers.

Quaternions. We next introduce four dimensional (non)associative unital algebras over
the field R. There are two options.

(1) Quaternions are defined by a normed (associative) division algebra over
the field R. This is defined by the basis (1, i, j, k) given in the product
table 4 (left).

(2) Split-quaternions are defined by the basis (1, i, j, k) given in the product
table 4 (right).

The quaternions define a field H but the split-quaternions do not.

A.2 Unital division algebras over fields C and H

Some hypercomplex numbers over the field R are defined as unital division algebras over
the fields C and H. The relevant examples are the followings;

(1) C over C — bi-complex numbers,
(2) SpC over C — split-bi-complex numbers,
(3) C over H — bi-quaternions,
(4) SpC over H — split-bi-quaternions,
(5) H over H — tetra-quaternions,
(6) SpH over H — split-tetra-quaternions.

Here SpC and SpH stand for split-complex numbers and split-quaternions, respectively.
They are schematically represented by tensor products of the fields. For example, the bi-
complex numbers C2 are identified with C⊗C. The algebra H over C and SpH over C are
isomorphic to bi-quaternions and split-bi-quaternions, respectively.
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i j k

i −1 k −j
j k −1 −i
k −j −i 1

Table 5. The product table for the bi-complex numbers. The bases of the bi-complex numbers
i2 = j2 − 1, k2 = 1, ijk = 1 all commute.

Bi-complex numbers. The bi-complex numbers are defined by complex numbers over
the field C. For x, y ∈ C, a bi-complex number X is represented by

X = x1 + yi, (A.1)

where 12 = 1, i2 = −1 are bases of the complex numbers. Since the coefficients x, y are
expanded by the basis of the complex numbers (1, i) with real coefficients, the basis of the
bi-complex numbers is given by

e0 = 11, e1 = 1i, e2 = i1, e3 = ii. (A.2)

All the quantities 1, i,1, i commute with each other. Then, we have the algebra

e2
0 = e0, e2

1 = −e0, e2
2 = −e0, e2

3 = e0,

e1e2 = e3, e2e3 = −e1, e3e1 = −e2, e1e2e3 = e0. (A.3)

We have two real units e0, e3 and two imaginary units e1, e2. The algebra defines the
product table of the basis table 5. The bi-complex numbers are also known as tessarine.

Similarly, we can consider bi-complex numbers over C. This is known as the tri-
complex numbers by Segre [59]. The basis of the tri-complex numbers is (111̂, ii1̂, 1îi, i1î,
1i1̂, i11̂, 11î, iîi) where (1̂, î) is the additional basis of the complex numbers.

Split-bi-complex numbers. The split-bi-complex numbers are split-complex numbers
over the field C. The basis of the split-bi-complex numbers is

e0 = 11, e1 = i1, e2 = 1j, e3 = ij, (A.4)

where (1, i) and (1, j) are the bases of the complex and the split-complex numbers. They
satisfy

e2
0 = e0, e2

1 = −e0, e2
2 = e0, e2

3 = −e0,

e1e2 = e3, e2e3 = e1, e3e1 = −e2, e1e2e3 = −e0. (A.5)

We find that if we redefine

e′0 = e0, e′1 = e1, e′2 = −e3, e′3 = e2, (A.6)

the algebra becomes that of the bi-complex numbers. Therefore the bi-complex and split-
bi-complex numbers are isomorphic with each other.
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Bi-quaternions. The bi-quaternions over the field R are defined as quaternions over the
field C, or equivalently, complex numbers over the field H. The basis is given by

e01, e11, e21, e31, e0i, e1i, e2i, e3i, (A.7)

where eµ (µ = 0, 1, 2, 3) and (1, i) are bases of the quaternions and the complex numbers.
The bi-quaternion algebra is associative, non-commutative and normed. By using the
quaternion algebra (e0, e1, e2, e3), we have the relations

(ei1)(ej1) = −δij(e01) + εijk(ek1),
(eii)(eji) = +δij(e01)− εijk(ek1),
(ei1)(eji) = −δij(e0i) + εijk(eki),
(eii)(ej1) = −δij(e0i) + εijk(eki), (A.8)

When we define ai = ei1, bi = eii, c = e0i, 1 = e01, they satisfy

aiaj = −δij1 + εijkak,

bibj = δij1− εijkak,
aibj = −δijc+ εijkbk,

biaj = −δijc+ εijkbk,

a2
i = c2 = −1, b2i = 12 = +1, (i = 1, 2, 3). (A.9)

This is the algebra that the bi-quaternions satisfy. The algebra involves the following
subalgebras;

(1) (e0i, e11, e1i), (e0i, e21, e2i), (e0i, e31, e3i): bi-complex numbers,
(2) (e11, e2i, e3i), (e1i, e21, e3i), (e1i, e2i, e31): split-quaternions,
(3) (e11, e21, e31): quaternions.

Bi-quaternions over the field C. Bi-quaternions over the field C are defined by the
basis

e011̂, ei11̂, e0i1̂, eii1̂, e01î, ei1î, e0îi, eiîi, (A.10)

where (1̂, î) is the additional basis of complex numbers. This defines a 16-dimensional alge-
bra involving 8 real and 8 imaginary units. The algebra contains the bi-complex numbers
as subalgebras;

(e0i1̂, ei11̂, eii1̂), (e01î, eiîi, eii1̂). (A.11)

Split-bi-quaternions. The split-bi-quaternions are split-complex numbers over the field
H. The basis is

e01, e11, e21, e31, e0j, e1j, e2j, e3j, (A.12)
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where eµ (µ = 0, 1, 2, 3) and (1, j) are bases of the quaternions and the split-complex num-
bers. The basis of the split-bi-quaternions satisfies

(e01)2 = e01, (ei1)2 = −e01, (e0j)2 = e01, (eij)2 = −e01,
(e11)(e21)(e31)(e0j)(e1j)(e2j)(e3j) = e01. (A.13)

Since we have

(ei1)(ej1) = −δij(e01) + εijk(ek1),
(ei j)(ej j) = −δij(e01) + εijk(ek1),
(ei1)(ej j) = −δij(e0j) + εijk(ek j),
(ei j)(ej1) = −δij(e0j) + εijk(ek j), (A.14)

if we define

Ji,+ = ei1, Ji,− = eij, G = −e0j, 12d = e01, (A.15)

they satisfy J 2
i,+ = −12d, J 2

i,− = −12d, G2 = 12d and

Ji,+Jj,+ = −δij12d + εijkJk,+, Ji,−Jj,− = −δij12d + εijkJk,+,
Ji,+Jj,− = δijG + εijkJk,−, Ji,−Jj,+ = δijG + εijkJk,−. (A.16)

This is the algebra of the generalized hyperkähler structure (3.29).
The subalgebras of the split-bi-quaternions are the followings;

(1) (e0j, e11, e1j), (e0j, e21, e2j), (e0j, e31, e3j): bi-complex numbers,
(2) (e11, e2j, e3j), (e1j, e21, e3j), (e1j, e2j, e31), (e11, e21, e31): quaternions.

Split-bi-quaternions over H. Split-bi-quaternions over H are defined by the basis;

e01ê0, e01êi, ei1ê0, ei1êj ,
e0jê0, e0jêi, eijê0, eijêj . (A.17)

Here eµ and êµ are the bases of two commuting quaternions and (1, j) is the basis of split-
complex numbers. The basis (A.17) defines a 32-dimensional algebra involving 20 real and
12 imaginary units. The subalgebra involves six bi-complex numbers that share one real
unit. They are easily constructed as

(e0jê0, ea1ê0, eajê0), (e0jê0, e01êa, e0jêa), (a = 1, 2, 3). (A.18)

Here the common real unit is e0jê0.

Tetra-quaternions. The tetra-quaternions are quaternions over the field H [60]. The
basis is given by

eµeν , (µ, ν = 0, 1, 2, 3). (A.19)

There are 6 imaginary units e0ei, eie0 (i = 1, 2, 3) and 10 real units e0e0, eiej . In the follow-
ing, we denote e0 = 1, e0 = 1, 1eµ = eµ. The algebra contains the following subalgebras;
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(1) (ei1, e1, eie1), (ei1, e2, eie2), (ei1, e3, eie3), (i = 1, 2, 3): bi-complex numbers,

(2) (e1, e2, e3), (e11, e21, e31): quaternions,

(3) (e1, eie2, eie3), (eie1, e2, eie3), (eie1, eie2, e3), (e11, e2ei, e3ei),
(e1ei, e21, e3ei), (e1ei, e2ei, e31), (i = 1, 2, 3): split-quaternions,

(4) (eµ, eieµ), (i = 1, 2, 3): bi-quaternions.

Note that the tetra-quaternion algebra contains two commuting quaternions. This reflects
the property of the bi-hypercomplex structures.

Split-tetra-quaternions. The split-tetra-quaternions are split-quaternions over the field
H. The basis is as follows;

e0e0, e0ei, e1e0, e1ei,
ie2e0, ie2ei, ie3e0, ie3ei. (A.20)

They satisfy

(e0e0)2 = e0e0, (e0ei)2 = −e0e0, (e1e0)2 = −e0e0, (e1ei)2 = e0e0,

(ie2e0)2 = e0e0, (ie2ei)2 = −e0e0, (ie3e0)2 = e0e0, (ie3ei)2 = −e0e0, (A.21)

and involve 6 real and 10 imaginary units. The subalgebras are the followings;

(1) (e11, e1, e1e1), (ie21, e1, ie2e1), (ie31, e1, ie3e1), (e11, e2, e1e2), (ie21, e2, ie2e2),
(ie31, e2, ie3e2), (e11, e3, e1e3), (ie21, e3, ie2e3), (ie31, e3, ie3e3): bi-complex
numbers,

(2) (e1, e2, e3), (e1, ie2e2, ie2e3), (e1, ie3e2, ie3e3), (ie2e1, e2, ie2e3), (ie3e1, e2, ie3e3),
(ie2e1, ie2e2, e3), (ie3e1, ie3e2, e3), (e11, ie2ei, ie3ei), (i = 1, 2, 3): quaternions,

(3) (e1, e1e2, e1e3), (e1e1, e2, e1e3), (e1e1, e1e2, e3), (e11, ie21, ie31), (e11, e2ei, e3ei),
(e1ei, ie21, ie3ei), (e1ei, ie2ei, ie31), (i = 1, 2, 3) : split-quaternions,

(4) (eµ, e1eµ): bi-quaternions,

(5) (eµ, ie2eµ): split-bi-quaternions,

(6) (eµ, ie3eµ): split-bi-quaternions.

Here we have denoted e0eµ as eµ. The split-tetra-quaternions contain split-bi-quaternions
as subalgebras. This contains algebras of the generalized hyperkähler structures and the
Born structures.

Split-tetra-quaternions over the field H. The basis of split-tetra-quaternions over
the field H is

e0e0ê0, e0eiê0, e1e0ê0, e1eiê0, ie2e0ê0, ie2eiê0, ie3e0ê0, ie3eiê0,

e0e0êi, e0eiêj , e1e0êi, e1eiêj , ie2e0êi, ie2eiêj , ie3e0êi, ie3eiêj . (A.22)
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Here eµ, eµ and êµ are quaternions that commute with each other. The basis defines a
64-dimensional algebra involving 36 real and 28 imaginary units. The algebra contains
split-tetra-quaternions as a subalgebra and 6 bi-complex numbers that share one real unit
ie2e0ê0;

(ie2e0ê0, e0eiê0, ie2eiê0), (ie2e0ê0, e0e0êi, ie2e0êi), (i = 1, 2, 3). (A.23)

B Clifford algebra and hypercomplex numbers

Some hypercomplex numbers are related to Clifford algebras. In this appendix, we present
the explicit relations among them. We first define quantities

e2
1 = e2

2 = · · · = e2
p = 1,

e2
p+1 = · · · = e2

n = −1,
eiej + ejei = 0, (i 6= j). (B.1)

A Clifford algebra Clp,q(R) is defined by the basis 1, ei, ei∧ej , ei∧ej ∧ek, · · · . Here 1 is the
unit of the multiplication of the field R. In the following, we use ei ∧ ej = 1

2(eiej − ejei) =
eiej . An element X in Clp,q(R) is expanded as

X = x1 + xiei + 1
2!x

ijeiej + 1
3!x

ijkeiejek + · · ·+ 1
n!x

1,...,ne1 · · · en, (B.2)

where x, xi, xij , . . . ∈ R are coefficients. The dimension of the algebra is

dim(Clp,q(R)) = 1 + nC1 + nC2 + · · ·+ nCn = 2n. (B.3)

The algebra involves 2n−1 imaginary and real units and Clp,q(R) are in general non-
commutative unital associative division algebras.

1-dim. The 20 = 1-dimensional algebra is Cl0,0(R) only. This is generated by {1} and
identified with R, Cl0,0(R) ' R.

2-dim. The 21 = 2-dimensional algebras are Cl1,0(R) and Cl0,1(R). The algebra Cl1,0(R)
is generated by 1 and e2

1 = 1 and they commute. Then this is isomorphic to the split-
complex numbers Cl1,0(R) ' SpC. The algebra Cl0,1(R) is generated by 1 and e2

1 = −1 and
they commute. It is obvious that this is equivalent to the complex numbers Cl0,1(R) ' C.

4-dim. The 22 = 4-dimensional algebras are Cl2,0(R), Cl1,1(R) and Cl0,2(R). The algebra
Cl2,0(R) is generated by 1, e1, e2 and e3 = e1e2. Since e1 and e2 anti-commute {e1, e2} = 0,
we have

{e1, e2} = {e2, e3} = {e3, e1} = 0,
e2

1 = e2
2 = 1, e2

3 = −1,
e1e2 = e3, e2e3 = −e1, e3e1 = −e2. (B.4)

This is equivalent to the algebra of the split-quaternions Cl2,0(R) ' SpH.

– 31 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
9

The algebra Cl1,1(R) is generated by 1, e1, e2 and e3 = e1e2. They satisfy

{e1, e2} = {e2, e3} = {e3, e1} = 0,
e2

1 = 1, e2
2 = −1, e2

3 = 1,
e1e2 = e3, e2e3 = e1, e3e1 = −e2. (B.5)

This is again equivalent to the split-quaternions Cl1,1(R) ' SpH.
The algebra Cl0,2(R) is generated by 1, e1, e2, and e3 = e1e2. They satisfy

{e1, e2} = {e2, e3} = {e3, e1} = 0,
e2

1 = e2
2 = e2

3 = −1,
e1e2 = e3, e2e3 = e1, e3e1 = e2. (B.6)

This is nothing but the algebra of quaternions Cl0,2(R) ' H.

8-dim. The 23 = 8-dimensional algebras are Cl3,0(R), Cl2,1(R), Cl1,2(R) and Cl0,3(R).
The algebra Cl3,0(R) is generated by 1, e1, e2, e3 satisfying e2

1 = e2
2 = e2

3 = 1 and

e4 = e1e2, e5 = e2e3, e6 = e3e1, e7 = e1e2e3. (B.7)

Since {ei, ej} = 0, (i, j = 1, 2, 3), we have

e2
4 = e2

5 = e2
6 = e2

7 = −1. (B.8)

We also have

{e4, e5} = e1e2e2e3 + e2e3e1e2 = e1e3 + e3e1 = 0,
{e5, e6} = e2e3e3e1 + e3e1e2e3 = e2e1 + e1e2 = 0,
{e6, e4} = e3e1e1e2 + e1e2e3e1 = e3e2 + e2e3 = 0,

e4e5 = e1e2e2e3 = e1e3 = −e6,

e5e6 = e2e3e3e1 = e2e1 = −e4,

e6e4 = e3e1e1e2 = e3e2 = −e5. (B.9)

This is the algebra of the bi-quaternions Cl3,0(R) ' C⊗H.
The algebra of Cl2,1(R) is generated by 1, e1, e2, e3 satisfying e2

1 = e2
2 = −1, e2

3 = 1
and (B.7). Since {ei, ej} = 0, (i, j = 1, 2, 3), we have

e2
4 = e2

7 = −1, e2
5 = e2

6 = 1. (B.10)

We find that Cl2,1(R) is again isomorphic to the bi-quaternions Cl2,1(R) ' C ⊗ H. Note
that (e1, e2, e4) defines the quaternion subalgebra;

{e1, e2} = {e2, e4} = {e4, e1} = 0,
e1e2 = e4, e2e4 = e1, e4e1 = e2. (B.11)
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The algebra Cl1,2(R) is generated by 1, e1, e2, e3 satisfying e2
1 = 1, e2

2 = e2
3 = −1

and (B.7). Since {ei, ej} = 0, (i, j = 1, 2, 3), we have

e2
4 = e2

6 = 1, e2
5 = e2

7 = −1. (B.12)

We find that Cl1,2(R) is isomorphic to bi-quaternions; Cl1,2(R) ' C ⊗ H. Note that
(e2, e3, e5) forms the quaternion subalgebra.

The algebra Cl0,3(R) is generated by 1, e1, e2, e3 satisfying e2
1 = e2

2 = e2
3 = −1

and (B.7). Since {ei, ej} = 0, (i, j = 1, 2, 3) we have

e2
1 = e2

2 = e2
3 = −1, e2

4 = e2
5 = e2

6 = −1, e2
7 = 1. (B.13)

The basis e4, e5, e6 all anti-commute. This is the split-bi-quaternions Cl0,3(R) ' SpC⊗H.

16-dim. The 24 = 16-dimensional algebras are Cl4,0(R), Cl3,1(R), Cl2,2(R), Cl1,3(R) and
Cl0,4(R).

The algebra Cl4,0(R) is generated by 1, e1, e2, e3, e4 satisfying e2
1 = e2

2 = e2
3 = e2

4 = 1
and

e5 = e1e2, e6 = e1e3, e7 = e1e4, e8 = e2e3, e9 = e2e4, e10 = e3e4,

e11 = e1e2e3, e12 = e1e2e4, e13 = e1e3e4, e14 = e2e3e4, e15 = e1e2e3e4. (B.14)

Since {ei, ej} = 0, (i, j = 1, 2, 3, 4), we have

12 = e2
1 = e2

2 = e2
3 = e2

4 = e2
15 = 1,

e2
5 = · · · = e2

14 = −1. (B.15)

The algebra Cl4,0(R) contains 10 imaginary and 6 real units and isomorphic to the split-
tetra-quaternions Cl4,0(R) ' SpH⊗H. Indeed, we can extract 10 quaternions as subalge-
bras;

(e5, e6, e8), (e5, e7, e9), (e5, e13, e14), (e6, e7, e10), (e6, e12, e14),
(e7, e11, e14), (e8, e9, e10), (e8, e12, e13), (e9, e11, e13), (e10, e11, e12). (B.16)

This is equivalent to the algebra (A.20).
The algebra Cl3,1(R) is generated by 1, e1, e2, e3, e4 satisfying e2

1 = e2
2 = e2

3 = 1,
e2

4 = −1 and (B.14). They satisfy

12 = e2
1 = e2

2 = e2
3 = e2

7 = e2
9 = e2

10 = e2
12 = e2

13 = e2
14 = 1,

e2
4 = e2

5 = e2
6 = e2

8 = e2
11 = e2

15 = −1. (B.17)

This contains 6 imaginary and 10 real units. This is isomorphic to the tetra-quaternions
Cl3,1(R) ' H⊗H.

The algebra Cl2,2(R) is generated by 1, e1, e2, e3, e4, satisfying e2
1 = e2

2 = 1, e2
3 = e2

4 =
−1 and (B.14). They define 6 imaginary and 10 real units;

12 = e2
1 = e2

2 = e2
6 = e2

7 = e2
8 = e2

9 = e2
11 = e2

12 = e2
15 = 1,

e2
3 = e2

4 = e2
5 = e2

10 = e2
13 = e2

14 = −1. (B.18)

The algebra is isomorphic to the tetra-quaternions Cl2,2(R) ' H⊗H.
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The algebra Cl1,3(R) is generated by 1, e1, e2, e3 satisfying e2
1 = 1, e2

2 = e2
3 = e2

4 = −1
and (B.14). They define 10 imaginary and 6 real units;

12 = e2
1 = e2

5 = e2
6 = e2

7 = e2
14 = 1,

e2
2 = e2

3 = e2
4 = e2

8 = e2
9 = e2

10 = e2
11 = e2

12 = e2
13 = e2

15 = −1. (B.19)

The algebra is isomorphic to the split-tetra-quaternions Cl1,3(R) ' SpH⊗H.
Finally, the algebra Cl0,4(R) is generated by 1, e1, e2, e3, e4 satisfying e2

1 = e2
2 = e2

3 =
e2

4 = −1 and (B.14). They define 10 imaginary and 6 real units;

12 = e2
11 = e2

12 = e2
13 = e2

14 = e2
15 = 1,

e2
1 = e2

2 = e2
3 = e2

4 = e2
5 = e2

6 = e2
7 = e2

8 = e2
9 = e2

10 = −1. (B.20)

The algebra is isomorphic to the split-tetra-quaternions Cl0,4(R) ' SpH⊗H.

32-dim. The 25 = 32-dimensional algebras are Cl5,0(R), Cl4,1(R), Cl3,2(R), Cl2,3(R),
Cl1,4(R) and Cl0,5(R). For example, Cl5,0(R) is generated by the basis

+1 : 1, e1, e2, e3, e4, e5,

−1 : e1e2, e1e3, e1e4, e1e5, e2e3, e2e4, e2e5, e3e4, e3e5, e4e5,

−1 : e1e2e3, e1e2e4, e1e2e5, e1e3e4, e1e3e5, e1e4e5, e2e3e4, e2e3e5, e2e4e5, e3e4e5,

+1 : e1e2e3e4, e1e2e3e5, e1e2e4e5, e1e3e4e5, e2e3e4e5,

+1 : e1e2e3e4e5. (B.21)

Here +1 and −1 stand for the real and imaginary units. Therefore Cl5,0(R) involves 12
real and 20 imaginary units. We show only the numbers of real and imaginary units of the
other Clifford algebras;

• Cl5,0(R): 12 real and 20 imaginary,
• Cl4,1(R): 16 real and 16 imaginary,
• Cl3,2(R): 20 real and 12 imaginary,
• Cl2,3(R): 16 real and 16 imaginary,
• Cl1,4(R): 12 real and 20 imaginary,
• Cl0,5(R): 16 real and 16 imaginary.

We find that Cl3,2(R) is isomorphic to the split-bi-quaternions over H which has 20 real
and 12 imaginary units Cl3,2(R) ' SpC⊗H⊗H.

64-dim. The 26 = 64-dimensional algebra contains Cl6,0(R), Cl5,1(R), Cl4,2(R), Cl3,3(R),
Cl2,4(R), Cl1,5(R) and Cl0,6(R). We can show that the split-tetra-quaternions over H,
SpH⊗H⊗H is involved in Clp,q(R).

Clifford algebra over C. As is clear from the construction, the Clifford algebra over the
field R always has an anti-commutative basis when the dimension is greater than or equal
to four. Therefore, the four-dimensional algebra of the bi-complex numbers, that consists
of commuting basis, cannot be written in Clifford algebras. This is not the case when the
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dim Clifford algebras hypercomplex numbers
1 Cl0,0(R) R real numbers
2 Cl1,0(R) SpC split-complex numbers
2 Cl0,1(R) C complex numbers
4 Cl2,0(R) SpH split-quaternions
4 Cl1,1(R) SpH split-quaternions
4 Cl0,2(R) H quaternions
8 Cl3,0(R) C⊗H bi-quaternions
8 Cl2,1(R) C⊗H bi-quaternions
8 Cl1,2(R) C⊗H bi-quaternions
8 Cl0,3(R) SpC⊗H split-bi-quaternions
16 Cl4,0(R) SpH⊗H split-tetra-quaternions
16 Cl3,1(R) H⊗H tetra-quaternions
16 Cl2,2(R) H⊗H tetra-quaternions
16 Cl1,3(R) SpH⊗H split-tetra-quaternions
16 Cl0,4(R) SpH⊗H split-tetra-quaternions
2 Cl0(C) C complex numbers
4 Cl1(C) C⊗ C bi-complex numbers
8 Cl2(C) C⊗H bi-quaternions
16 Cl3(C) C⊗ C⊗H bi-quaternions over C

Table 6. Clifford algebra and hypercomplex numbers.

field defining Clifford algebras is changed from R to C. For example, Cl0(C) is a complex
vector space generated by 1. This is identified with C. The complex 2-dimensional (hence
the real 4-dimensional) algebra Cl1(C) is generated by 1 and e1 satisfying e2

1 = 1, i.e.,

Z = z11 + z2e1, z1, z2 ∈ C. (B.22)

In terms of the real basis, this is generated by

1, i, e1, ie1. (B.23)

Note that they all commute and define two real and two imaginary units;

12 = e2
1 = 1, i2 = (ie1)2 = −1. (B.24)

It is obvious that this is equivalent to the algebra of the bi-complex numbers, Cl1(C) '
C ⊗ C. In the same way, we have isomorphisms Cl2(C) ' C⊗H, Cl3(C) ' C⊗C⊗H,
and so on.

We note that not all the hypercomplex numbers are isomorphic to Clifford algebras.
For example, the tri-complex numbers by Segre C3 = C ⊗ C ⊗ C is not obtained in this
way. A summary of the algebras is found in table 6.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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