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1 Introduction

The discovery of the Higgs boson at the CERN LHC in 2012 [1, 2] can be considered,
beyond doubts, one of the greatest achievements of the high-energy physics program of the
21st century. This long anticipated particle crowns the Standard Model as a solid theory of
reality and the study of its properties has the potential to help elucidate the mechanism of
Electroweak (EW) symmetry breaking and to shed light on possible new physics scenarios
beyond the Standard Model.

Since the Higgs discovery, the LHC has demonstrated not only to be a discovery machine,
but also an impressive precision physics laboratory. In fact, in the past decade astonishing
experimental results have been obtained by the LHC collaborations, which have made it
possible to rediscover the Standard Model of particle physics and to perform cutting edge
precision measurements, in some cases way beyond the original expectations. As the result
of these impressive performances, the theoretical particle physics community has taken over
the challenge of pushing theoretical predictions to similar degrees of precision. In particular,
while the exact experimental precision achievable depends on the process considered, it has
been shown that reaching the goal of the ∼ O(1%) level accuracy at the LHC for various
important observables is within reach [3]. This will be possible not only because of the large
statistics that will be accumulated at the LHC and its high luminosity upgrade (HL-LHC),
but also thanks to refined techniques for the determination of interaction luminosity [4, 5]
and for jet reconstruction [6, 7]. Among the observables that are most promising, a special
role is played by the Higgs transverse momentum (p⊥) distribution. The Higgs p⊥ is
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particularly interesting since a precision comparison of the measured distribution with
similarly precise theoretical predictions could allow us, among other things, to obtain
precious indirect information on the Higgs couplings and therefore on the details of the
Spontaneous Symmetry Breaking (SSB) mechanism, see for example ref. [8].

The theoretical determination of the Higgs p⊥ distribution at the LHC at the percent
precision level involves the calculations of the production of a Higgs boson in addition
to QCD radiation in hadron-hadron scattering pp → H + X, which can be mediated at
the elementary level by different types of interactions. As it is well known, due to the
very high gluon luminosity, the main channel of production for the Higgs boson at the
LHC is gluon fusion, in particular in those configurations where the Higgs boson couples
to gluons through a loop of top quarks. This interaction process has been computed to
Next-to-Next-to-Leading-Order (NNLO) in pure QCD retaining full dependence on the
top-quark mass [9–13], while it is known up to N3LO in QCD in the limit of infinite
top-quark mass [14, 15]. This so-called Higgs Effective Field Theory (HEFT) has proven
to be surprisingly reliable to describe higher-order QCD contributions. In fact, in this
approximation, the N3LO amounts to around 5% of the total cross section with a scale
uncertainty of ∼ 2% [16]. At this impressive level of precision, a proper treatment of
sub-leading production modes and uncertainties becomes mandatory. Together with the
absence of N3LO parton distribution functions, the two other main sources of theoretical
uncertainty are the impact of finite quark-mass effects and the NLO QCD corrections to the
electroweak (EW) production modes [16], which usually go under the name of QCD-EW
corrections and are the main focus of this paper.

As is the case in pure QCD, also QCD-EW corrections can affect different production
channels. The most important one at the LHC is once again the gluon fusion channel.
QCD-EW corrections to this production channel contribute in two different configurations:
the first class of diagrams involves the effect of EW corrections to the standard ggH coupling
through a massive top loop. This contribution has been shown to be extremely small already
at LO, contributing to less than 1% to the total cross-section [17]. The second class of
diagrams involves instead a loop of light quarks which connects the gluons to a pair of EW
bosons, which then fuse to generate the Higgs. This production channel increases the total
cross section at LO by around 5% with respect to the pure QCD corrections [12, 18–25]
and, since NLO QCD corrections to Higgs production in gluon fusion can be as large as
the LO contribution, a full account of these higher order corrections is essential to keep
the theory uncertainty under control at the percent level. NLO QCD-EW effects in this
channel have been estimated first in the unphysical limit mH � mV with V = W,Z in
ref. [26], then by treating the real emissions in the soft-gluon approximation in refs. [27, 28]
and more recently with full dependence on the Higgs and the vector boson masses and on
the external QCD radiation in refs. [29–32].

In addition to the gluon-initiated diagrams, mixed QCD-EW corrections to pp→ H+X
also receive contributions from diagrams that involve a pair of quarks. There are in particular
three relevant partonic channels, qg → Hq, qg → Hq, and qq → Hg, which at LO proceed
through a loop of virtual electroweak vector bosons. Their impact both at Tevatron and at
the LHC was estimated for the first time in [33] for a Higgs mass of mH = 120 GeV. There it
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was shown that, as expected, their relative weight at the LHC is smaller than at the Tevatron,
due to the much larger gluon luminosity, but it is still sizable: in particular, the LO diagrams
are responsible for a −3% shift in the p⊥ distribution for values 100 GeV ≤ p⊥ ≤ 300 GeV.
With the goal of pushing theoretical uncertainties in Higgs distributions at the percent
level, it is therefore important to consider also NLO corrections to this channel, first of
all to obtain a reliable estimate of their uncertainty, and also to account for their possible
non-trivial effects on the shape of the distributions.

One-loop mixed QCD-EW contributions containing light quarks as external states have
been thoroughly investigated in [34], therefore the last missing building blocks are the relevant
two-loop amplitudes. In this paper, we focus on their analytic calculation, liming ourselves
to those contributions which involve only massless virtual quarks, similarly to what was done
in [30]. Together with the phenomenological motivation, this calculation is interesting also
from a formal point of view. Indeed, despite some similarities with the purely gluonic case
described in [30], the quark induced channels are substantially more complicated for at least
two reasons. First of all, they involve new classes of integrals that were entirely absent in the
gluon induced ones. Moreover, at variance with the gluonic channel, these amplitudes have
a non-trivial infrared structure and, for this reason, their finite remainders require a larger
number of weight four functions. From a purely mathematical viewpoint, this calculation is
particularly interesting due to the presence of a large number of square roots in the symbol
of the relevant two-loop master integrals. In fact, while all integrals turn out to be linearly
reducible [35, 36] and can therefore be expressed in terms of hyperlogarithms by direct
integration over their Feynman-Schwinger parameter representation algorithmically [37], the
presence of a large number of square roots renders the application of standard algorithms
to handle and simplify the resulting expressions highly non-trivial.

The paper is organized as follows. In section 2 we discuss the structure of the amplitude,
and in particular the treatment of vector and axial EW couplings; we then describe how to
relate the helicity amplitudes to the two form factors composing the amplitude, and how to
extract said form factors; at last, we give our convention for the integral families and integra-
tion measure. In section 3 we discuss the computational framework we used, first to evaluate
the master integrals, and secondly to reduce the expressions to a minimal set of algebraic
prefactors times a set of polylogarithmic functions. In section 4 we discuss the UV renormal-
ization of the amplitude and the structure of IR divergences, extracting the finite remainder
for the virtual corrections. We review our results and draw our conclusions in section 5.

We provide the list of master integrals for the LO and virtual NLO amplitude in
appendix A. The analytic expressions of the finite remainders, as well as of the master
integrals, are provided in the supplementary material attached to this paper.

2 The scattering amplitude

Our goal is to compute the two-loop mixed QCD-EW corrections to the three partonic
scattering processes qg → Hq, qg → Hq, and qq → Hg. To do so, we start by considering
the decay of a Higgs boson to a quark-antiquark pair and a gluon

H(p4)→ q(p1) + q(p2) + g(p3), (2.1)
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q(p1)

(a)

q(p1)

(b)

q(p1)

(c)

Figure 1. Representative diagrams for the process H → qqg. The internal wavy lines represent
massive vector bosons. All momenta are taken to be incoming.

where the Higgs boson couples to the quarks through a pair of massive vector bosons V ,
where V is either equal to W± or Z, see figure 1.

The scattering amplitude for this process, M, depends on the three Mandelstam
variables

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p2 + p3)2 , with s+ t+ u = m2
h , (2.2)

and on the mass of the vector boson that mediates the interaction between the Higgs boson
and the massless quarks, denoted as mV . Throughout, mh indicates the Higgs boson mass.
The dependence of the scattering amplitude on the SU(3) color structure is given by the
Gell-Mann matrices T c3

i1i2
, where c3 is the color index associated with the gluon, and i1 (i2)

is the color index of the quark (antiquark)

Ms1s2λ3(p1,p2,p3) =
[
α3/2mW

2 sin3 θW

]
T c3
i1i2

As1s2λ3(p1,p2,p3)

=
[
α3/2mW

2 sin3 θW

]
T c3
i1i2

ε∗µλ3
(p3)us1(p1)Aµ(s, t, u,m2

V )vs2(p2). (2.3)

In eq. (2.3) we have collected out the overall electroweak coupling and we also made explicit
the dependence on the spin of the quarks (s1, s2) and on the polarization vector of the gluon
ελ3 which satisfies ελ3 · p3 = 0. In addition, Ward Identities require that the amplitude
Aµ(s, t, u,m2

V ) must satisfies the transversality condition

p3 · A(s, t, u,m2
V ) = 0 . (2.4)

We write the coupling of the vector boson V with the light quarks as gvV + γ5g
a
V , where [38]

gvW = −i e

sin θW
1

2
√

2
, gaW = +i e

sin θW
1

2
√

2
,

gvZf = −i e

sin θW cos θW

[
Tf
2 −Qf sin2 θW

]
, gaZf = −i e

sin θW cos θW

[
Tf
2

]
.

(2.5)

Qf and Tf are the electric charge and the eigenvalue of the third generator of SU(2)L, both
associated to the fermion f interacting with V , e is the absolute value of the electric charge
of the electron, and θW is the weak mixing angle. In what follows we also define e =

√
4πα

for the electroweak coupling and gS =
√

4παS for the strong coupling.
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It is useful to separate the amplitude into different contributions, depending on how the
electroweak bosons are coupled to the rest of the diagram; clearly, depending on the number
of loops we are interested in, different contributions can play a role. If we limit ourselves to
consider Feynman diagrams up to order O(α3/2α

3/2
S ), there are only two possible non-zero

classes of diagrams that can contribute, which we call open and closed. In particular, we write

Aµ(p1,p2,p3) = Aopen
µ (p1,p2,p3) +Aclosed

µ (p1,p2,p3) (2.6)

where Aopen
µ receives contribution from those diagrams where the two vector bosons are

both attached to the external fermion line, see figure 1(c), while Aclosed
µ encompasses the

diagrams where both vector bosons couple to a closed fermion loop, see figure 1(b).
Let us start by considering Aopen

µ . Feynman diagrams of this type start contributing at
one-loop order. The EW bosons couple to the fermion line both through vector and axial
terms (depending on the chirality of the external quarks) but it is possible to bypass the
explicit manipulation of terms containing γ5 by considering polarized external states: by
anticommuting γ5 until it touches the spinor uL/R(p1), such a matrix coming from the EW
vertices is absorbed into the left- or right-chirality projectors PL = 1−γ5

2 and PR = 1+γ5
2 ,

respectively. The resulting expressions for the helicity amplitudes do not contain γ5 anymore
and can be computed assuming that the electroweak bosons only couple through a vector
current to the fermion line, with an overall coupling coefficient determined by type and
chirality of the quark q(p1). Specifically, for uL(p1) = u(p1)PL we obtain

Aopen
L,µ =

( 2
cos4 θW

Q2
q sin4 θW

)
PL
[
τ1,µF

open
1,mZ + τ2,µF

open
2,mZ

]
, (2.7)

where, as in eq. (2.5), Qq is the electric charge of the quark q(p1), and we define

Fi,mX = Fi(s, t, u,m2
h,m

2
V = m2

X) , (2.8)

and

τ1µ = /p3p2µ − p2 · p3γµ , τ2,µ = /p3p1µ − p1 · p3γµ . (2.9)

For uR(p1) = u(p1)PR we get

Aopen
R,µ =

{
PR
[
τ1,µF

open
1,mW + τ2,µF

open
2,mW

]
+ 2

cos4 θW

(
Tq −Qq sin2 θW

)2
PR
[
τ1,µF

open
1,mZ + τ2,µF

open
2,mZ

]}
.

(2.10)

The different form of the couplings between eq. (2.7) and eq. (2.10) is due to the fact that
Aopen
L,µ receives contributions from the Z boson only, whileAopen

R,µ is sensitive to theW boson as
well. We assume the Cabibbo-Kobayashi-Maskawa mixing matrix to be the identity matrix.1

Starting at two loops, one can draw diagrams where either one or both EW bosons
couple to an internal light-quark loop, see figures 1(a) and 1(b), respectively. For those
diagrams where a single EW boson attaches to the fermion loop, it is possible to show that

1This approximation is justified because the off-diagonal entries are strongly suppressed.
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both the vector and the axial contribution vanish at the level of the amplitude: the axial part
cancels out adding together degenerate isospin doublets, while the vector contribution must
add up to zero due to Furry’s theorem. In case of both the EW vector bosons attached to
the same light-quark loop, two contributions are possible: one proportional to (gvV )2 + (gaV )2

and independent from γ5, and one proportional to gvV gaV γ5. This last contribution vanishes
identically when summing over degenerate isospin doublets. This clearly does not apply
to the third quark doublet. In diagrams containing W± bosons we avoid the issue by
not allowing top and bottom quarks circulating in the internal loop, while we consider all
but the top quark in loops coupled with Z bosons, since we expect that the missing axial
contributions will be suppressed.

We collect the contribution of the diagrams containing a closed quark loop to the
amplitude Aµ under the label Aclosed

µ . As explained above, up to their contribution to the
overall coupling factor, the amplitude contains no axial terms and it can be decomposed
in form factors following the same procedure as for the amplitude H → qqg in pure QCD,
see [39]. It reads

Aclosed
µ = 1

2

{
4
[
τ1,µF

closed
1,mW + τ2,µF

closed
2,mW

]
+ 2

cos4 θW

(5
4 −

7
3 sin2 θW + 22

9 sin4 θW

) [
τ1,µF

closed
1,mZ + τ2,µF

closed
2,mZ

]}
,

(2.11)

where the factor of 4 in the first line comes from diagrams containing the W boson (summed
over the first two generations of quarks), while the term in round brackets in the second
line stems from diagrams featuring the Z boson (summing on all quarks except the top).
We stress also that, since the contribution Aclosed

µ only starts at the two-loop order, we have
collected out one more factor of α1/2

S , compared to Aopen
µ .

The form factors F open
j,mV

and F closed
j,mV

that contribute to eqs. (2.7), (2.10), and (2.11)
admit an expansion in the strong coupling constant

F open
j,mV

= √αS
[
F

open,(1)
j,mV

+
(
αS
2π

)
F

open,(2)
j,mV

+O
(
α2
S

)]
,

F closed
j,mV

= √αS
[(
αS
2π

)
F

closed,(2)
j,mV

+O
(
α2
S

)]
,

(2.12)

where F class,(l)
j,mV

is the l-loop contribution of the corresponding class of diagrams and, as
always, mV can be either mZ or mW . Finally, while F open,(1)

j,mV
and F closed,(2)

j,mV
have a trivial

color structure, F open,(2)
j,mV

can be decomposed as

F
open,(2)
j,mV

= NcF
Nc
j,mV

+ 1
Nc
F

1/Nc
j,mV

, (2.13)

where Nc is the number of colors.

2.1 Helicity amplitudes

When dealing with scattering amplitudes containing massless external states, helicity
amplitudes are often the simplest physical objects to compute. We fix the helicities of
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the external quark-antiquark pair and of the external gluons by use of the spinor-helicity
formalism

PRu(p) = uR(p) = vR(p) = |p〉 , PLu(p) = uL(p) = vL(p) = |p] ,
u(p)PL = uL(p) = vL(p) = [p| , u(p)PR = uR(p) = vR(p) = 〈p| ,

ε∗µ+ (p3) = + 〈qγ
µ3]√

2〈q3〉
, ε∗µ− (p3) = − [qγµ3〉√

2[q3]
,

(2.14)

where q is a generic light-like vector that represents the gauge freedom associated to the
external gluon. As in eq. (2.3), we indicate the helicity amplitudes as As1s2λ3 , where
s1, s2 are the spins of the quarks while λ3 is the polarisation of the gluon. There are two
independent helicity amplitudes, which we choose to be ARL+ and ALR+, while all other
helicity configurations can be obtained from these two by parity and charge conjugation
transformations, as exemplified below.

In the same way as we did for the full amplitude Aµ, we divide the helicity amplitude
for H → qqg into two separately gauge-invariant contributions

As1s2λ3 = Aopen
s1s2λ3

+Aclosed
s1s2λ3 . (2.15)

By explicitly fixing the helicities of the external particles and keeping track of the electroweak
couplings we find for the two different contributions

Aopen
RL+ =

[
F open

1,mW + 2
cos4 θW

(
Tq −Qq sin2 θW

)2
F open

1,mZ

]
s√
2

[23]2
[12] , (2.16)

Aopen
LR+ =

[ 2
cos4 θW

Q2
q sin4 θWF

open
2,mZ

]
s√
2

[13]2
[12] , (2.17)

and

Aclosed
RL+ = 1

2

[
4F closed

1,mW + 2
cos4 θW

(5
4 −

7
3 sin2 θW + 22

9 sin4 θW

)
F closed

1,mZ

]
s√
2

[23]2
[12] , (2.18)

Aclosed
LR+ = 1

2

[
4F closed

2,mW + 2
cos4 θW

(5
4 −

7
3 sin2 θW + 22

9 sin4 θW

)
F closed

2,mZ

]
s√
2

[13]2
[12] . (2.19)

We stress that for Aopen
s1s2λ3

special care has to be taken to derive these formulas, taking into
account the parity violating coupling of the EW bosons to the external quark line.

The remaining non-zero helicity amplitudes can be obtained by parity and charge
conjugation transformations. For the closed contributions we get

Aclosed
RL− (s, t, u,m2

V ) =
(
Aclosed
LR+ (s, t, u,m2

V )
)∗

, (2.20)

Aclosed
LR− (s, t, u,m2

V ) =
(
Aclosed
RL+ (s, t, u,m2

V )
)∗

, (2.21)

where complex conjugation here is intended to act only on the spinor products: [ij]∗ = 〈ji〉
and 〈ij〉∗ = [ji].
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The open contributions require a bit more care to be obtained, and explicitly read

Aopen
RL− =

[
F open

2,mW + 2
cos4 θW

(
Tq −Qq sin2 θW

)2
F open

2,mZ

]
s√
2
〈13〉2
〈12〉 , (2.22)

Aopen
LR− =

[ 2
cos4 θW

Q2
q sin4 θWF

open
1,mZ

]
s√
2
〈23〉2
〈12〉 . (2.23)

It is important to notice that, from their very definition in eqs. (2.10) and (2.11), the
two form factors F closed

1 and F closed
2 are not independent, and instead are mapped into each

other by exchanging p1 and p2, namely

F closed
1 (s, t, u,m2

V ) = F closed
2 (s, u, t,m2

V ) , (2.24)

implying that

Aclosed
RL+ (s, t, u,m2

V ) = Aclosed
LR+ (s, u, t,m2

V ) ,
Aclosed
RL− (s, t, u,m2

V ) = Aclosed
LR− (s, u, t,m2

V ) .
(2.25)

Similarly, we observe that

F open
1 (s, t, u,m2

V ) = F open
2 (s, u, t,m2

V ) , (2.26)

while an identity analogous to eq. (2.25) does not hold in this case due to the dependence
of the EW coupling on the helicity of the external particles.

We checked our expressions for the helicity amplitudes at LO against the computer
code OpenLoops [40], finding excellent agreement.

2.2 Form factor evaluation

Here we focus on the calculation of the two-loop corrections to the form factors described
above, namely to F class

j,mV
with V = W±, Z, and for the two classes of open and closed

diagrams. At the two-loop order, the form factors for a given type of EW boson V receive
contribution from 45 different two-loop Feynman diagrams, see figure 1. We generate them
with the program qgraf [41]. The form factors F class

j can then be extracted by applying
the projectors Pj to the Feynman diagrams that contribute to Aclass

s1s2λ3
, eq. (2.3), such as

F class
j =

∑
s1,s2,λ3

Aclass
s1s2λ3(p1,p2,p3)Pj,λ3s2s1 , (2.27)

where

P1,λ3s2s1 = ενλ3(p3) 1
2(D − 3)st

[
D − 2
t

T †1,νs2s1 −
D − 4
u

T †2,νs2s1

]
, (2.28)

P2,λ3s2s1 = ενλ3(p3) 1
2(D − 3)su

[
D − 2
u

T †2,νs2s1 −
D − 4
t

T †1,νs2s1

]
, (2.29)

with Ti,µs1s2 = us1(p1)τi,µvs2(p2) and τi,µ as defined in eq. (2.9).
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Denominator Integral family PL Integral family NA Integral family NB

D1 k2
1 k2

1 k2
1

D2 k2
2 −m2

V (k1 − k2)2 (k1 − k2)2

D3 (k1 − k2)2 (k1 − p1)2 (k1 − p1)2

D4 (k1 − p1)2 (k2 + p3)2 −m2
V (k2 + p3)2 −m2

V

D5 (k1 − p1 − p2)2 (k1 − p1 − p2)2 (k1 − p1 − p2)2

D6 (k1 − p1 − p2 − p3)2 (k2 − p1 − p2)2 −m2
V (k2 − p1 − p2)2 −m2

V

D7 (k2 − p1 − p2 − p3)2 −m2
V (k1 − k2 − p3)2 (k1 − k2 − p3)2

D8 (k2 − p1)2 (k2 − p1)2 −m2
V (k2 − p1)2

D9 (k2 − p1 − p2)2 (k1 − p1 − p3)2 (k1 − p1 − p3)2

Table 1. Definition of the planar (PL) and non-planar (NA and NB) integral families. The
loop momenta are denoted by k1 and k2, while mV indicates the mass of the vector boson. The
prescription +iε is understood for each propagator and not written explicitly.

We use FORM [42, 43] to apply the projectors on the individual Feynman diagrams, carry
out the Dirac algebra and express the form factors as linear combinations of scalar two-loop
Feynman integrals. To describe all the integrals appearing in the amplitude we use three
different integral families: one for planar integrals and two for non-planar integrals. We
define such families as follows:

Itop(a1, a2, . . . , a8, a9) =
∫

Ddk1 D
dk2

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5 Da6

6 Da7
7 Da8

8 Da9
9
, (2.30)

where top ∈ {PL,NA,NB} labels the families and the denominators D1, . . . , D9 are given
in table 1. We use dimensional regularization with d = 4− 2ε, and our convention for the
integration measure for each loop is

Ddk = ddk
iπd/2Γ(1 + ε)

. (2.31)

With the definitions given in table 1, the top sectors of each integral family appearing
in the amplitude are depicted in figure 2. All the other diagrams contributing to the process
can be obtained by permuting the external legs or by pinching the internal propagators.

We reduce the set of scalar integrals appearing in the amplitude to a basis of master
integrals ([44–46]) by first using Reduze2 [47, 48] to map the Feynman diagrams to the
relevant integral families and then performing the reduction to master integrals with
KIRA [49]. We find that the independent helicity amplitudes can be written in terms of
69 master integrals (modulus permutations of the external legs), see appendix A for the
full list. The master integrals obtained from the top sectors T2 and T6 have already been
addressed in [30], while the remaining ones are new. We choose candidates for these new
master integrals following the same prescriptions as for the gg → Hg case (for a detailed
description, see [30]).

– 9 –
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p1

p2 p3

p4

(a) T1:
INB(1, 1, 1, 1, 0, 1, 1, 1, 0)

p1

p2 p3

p4

(b) T2:
INA(1, 1, 1, 1, 1, 1, 1, 0, 0)

p1

p2 p3

p4

(c) T3:
IPL(0, 1, 1, 1, 1, 0, 1, 1, 1)

p1

p2 p3

p4

(d) T4:
IPL(1, 1, 1, 1, 0, 0, 1, 1, 1)

p1

p2 p3

p4

(e) T5:
IPL(0, 1, 1, 1, 1, 1, 1, 1, 0)

p1

p2 p3

p4

(f) T6:
IPL(1, 1, 1, 1, 1, 1, 1, 0, 0)

Figure 2. The six top sectors appearing in the amplitude. Straight (wavy) lines denote massless
(massive) propagators. The dashed line indicates the Higgs boson. All momenta are taken to
be incoming.

3 Computational details

The computation of the amplitude is in principle straightforward: by following the approach
discussed in [30] for the gg → Hg amplitude, we compute the master integrals by direct
integration over their Feynman-Schwinger parametrisation and we insert their expressions
into the amplitude and collect common terms. However, in this case the size and complexity
of both the expressions of the master integrals and the expressions of the form factors,
together with the presence of UV and IR poles in ε, makes the computation highly non-trivial.

3.1 Evaluation of the master integrals

We write the integrals of each integral family in (2.30) as integrals over Feynman-Schwinger
parameters xi depending on the denominators Di from table 1. In particular, the integrals
are defined in terms of two polynomials U and F which are associated to each contributing
top sector of the integral families considered [50].

Let us start considering the integrals associated to the top-sector T3. In this case, the
two polynomials read

U = x3(x2 + x4 + x5 + x7 + x8 + x9) + (x4 + x5)(x2 + x7 + x8 + x9) (3.1)
F = m2

V (x2 + x7)U −m2
hx2x7(x3 + x4 + x5) ,

− sx2(x3x5 + x3x9 + x4x9 + x5x9)− ux7(x3x4 + x3x8 + x4x8 + x5x8) . (3.2)
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Applying the polynomial reduction algorithm [35, 36] as implemented in HyperInt [37],
these polynomials are found to be linearly reducible. This means in particular that, for a
suitable order of the Schwinger parameters xi, the successive integrals over each xi can be
performed using HyperInt. For this particular case, it is easy to verify that we can integrate
in the order x4, x5, x3, x8, x9, x2.2 In turn, this means that all integrals associated to these
two polynomials can then be expressed as linear combinations ∑k RkGk of hyperlogarithms
Gk, which are iterated integrals

G (σ1, . . . , σn; z) =

(log z)n/n! if σ1 = · · · = σn = 0 and∫ z
0

dt
t−σ1

G (σ2, . . . , σn; t) otherwise.
(3.3)

These functions are often called generalised harmonic polylogarithms or multiple polyloga-
rithms in the physics literature, see for example refs. [51–54]. Their arguments σi, z and
coefficients Rk are algebraic functions of the variables s, t, u,m2

V (recall that m2
h = s+ t+ u

is not independent). More precisely, the polynomial reduction shows that σi, z, Rk are
rational functions in s, t, u,m2

V , r with the square root

r = m2
h

√
1− 4m2

V /m
2
h . (3.4)

This root arises in the last integration (over x2). The analysis of the planar top sector T6 is
very similar and discussed in detail in [30]. The conclusions are the same as for T3.

The planar top sectors T4 and T5 are more complicated and introduce an additional
square root in the final integration. This additional root is

rust =
√
s2u2 + 2su(t− s)m2

V + (s+ t)2m4
V for T4,

rsut =
√
s2u2 + 2su(t− u)m2

V + (t+ u)2m4
V for T5.

(3.5)

The Symanzik polynomials of the topology T4 are

U = x3(x1 + x2 + x4 + x7 + x8 + x9) + (x1 + x4)(x2 + x7 + x8 + x9) (3.6)
F = m2

V (x2 + x7)U −m2
hx7(x1x2 + x1x3 + x2x3 + x2x4) ,

− sx9(x1x2 + x1x3 + x2x3 + x2x4)− ux7(x1x8 + x3x4 + x3x8 + x4x8) . (3.7)

These are linearly reducible and we can integrate e.g. in the order x1, x4, x3, x8, x9, x2
(setting x7 = 1). The last integration over x2 requires taking the roots r and rust, therefore
any integral of the topology T4 can be written with prefactors Rk and arguments of the
hyperlogarithms Gk being rational functions of s, t, u,m2

V , r, and rust.
The analysis of top sector T5 is very similar. The conclusion is that all its integrals can be

written in such a way that Rk and the arguments of Gk are rational in s, t, u,m2
V , r, and rsut.

The non-planar topology T2 was already discussed in [30]. It produces prefactors Rk
and arguments in the hyperlogarithms Gk that are rational functions of s, t, u,m2

V and four
roots r, rt, ru, rtu. We defined r above, and the additional roots are

rt =
√
r2 − 4m2

V su/t , ru =
√
r2 − 4m2

V st/u , rtu =
√

1− 4m2
V /(t+ u) . (3.8)

2The last variable, x7, is not integrated over, but set to x7 = 1.
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top sector r rt ru rtu rust rsut rstu ruts

T1 • • • •
T2 • • • •
T3 •
T4 • •
T5 • •
T6 •

Table 2. The entries in this table indicate that a root appears in the prefactors or hyperlogarithm
arguments of some Feynman integral of the sector.

Finally, also the non-planar topology T1 turns out to be linearly reducible. The
Symanzik polynomials are

U = (x1 + x3)(x2 + x7) + (x1 + x2 + x3 + x7)(x4 + x6 + x8) , (3.9)
F = m2

V (x4 + x6)U −m2
hx6(x1x4 + x1x7 + x2x4 + x3x4 + x4x7)− sx1x2x6

− ux3x6x7 − t(x1x8(x4 + x7) + x2x4(x3 + x8) + x4x8(x3 + x7)) , (3.10)

and x1, x3, x2, x7, x8, x4 is a linearly reducible integration order (setting x6 = 1). The last
integration (over x4) introduces two additional square roots

rstu =
√
s2t2 + 2st(u− t)m2

V + (t+ u)2m4
V , (3.11)

ruts =
√
u2t2 + 2ut(s− t)m2

V + (s+ t)2m4
V , (3.12)

and, as a consequence, the integrals from topology T1 will be expressed such that the prefac-
tors Rk and arguments of the hyperlogarithms Gk are rational functions of s, t, u,m2

V , r, rt,
rstu, ruts.

To summarize: all six top sectors are linearly reducible and hence the ε-expansion of all
corresponding Feynman integrals can in principle be computed by integration over Schwinger
parameters using hyperlogarithms. The resulting expressions are linear combinations of
hyperlogarithms, with arguments and prefactors that are rational functions of s, t, u,m2

V

and a number of square roots as indicated in table 2.
Since master integrals with external legs crossed are also required in the computation

of the form factors, additional roots appear, all obtained from permuting s, t, and u in
the definitions above. In particular, our results presented in the next section involve, in
addition to the above, also the root

rtus =
√
t2u2 + 2tu(s− u)m2

V + (s+ u)2m4
V . (3.13)

3.2 Construction of the form factors

The analytic expressions of the master integrals expanded in ε ∼ 0 are inserted in the
amplitude, obtaining results up to the finite part in ε. We find that the form factors F closed

j

are finite in ε, as expected. In fact, due to the presence of a closed quark loop coupled
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to the electroweak bosons, they are proportional to an electroweak coupling factor that is
not present at LO. On the contrary, the form factors F open

j contains UV and IR poles, up
to order 1/ε2 (see section 4 for a discussion on the poles and the extraction of the finite
remainder for the amplitude).

The expressions involved in the amplitude are rather large, of the order of hundreds of
megabytes, therefore special care must be invested in simplifying these expressions. Since
the structure of the poles can be reconstructed starting form LO results thanks to the
universal structure of IR singularities, we will focus here on polishing the necessary LO
terms, namely the coefficient of ε0, ε1, and ε2, and only the ε-finite part of the NLO ones.

First of all, we rescale all dimensionful variables in the form factors by m2
V , so to obtain

F class
j,ε0 (s, t, u,m2

h,m
2
V ) =

(
m2
V

)−2
F̃ class
j (T, U, ω) , (3.14)

where s = m2
h − t− u, T = t/m2

V , U = u/m2
V , ω = m2

h/m
2
V , and the overall m2

V factor is
obtained by dimensional analysis.

In order to produce manageable expressions we scan each form factor and write it as a
sum of algebraic prefactors (expressions containing ratios of polynomials possibly containing
square roots) multiplied by transcendental expressions (containing hyperlogarithms, ζ-
functions, and π)

F̃j(T, U, ω) =
∑
k

Rjk(T, U, ω)Hjk(T, U, ω) , (3.15)

where we dropped the class index for shortness. We find that the simplest part of the
amplitude is the LO one (F̃ open,(1)

ε0 , F̃ open,(1)
ε1 , F̃ open,(1)

ε2 ), followed by F̃ closed
j , F̃Ncj , and finally

F̃
1/Nc
j as the most complex object of all.

We start by working on the rational prefactors Rjk. We apply the functions contained in
the Mathematica [55] package MultivariateApart [56] together with their implementation
in the computer language Singular [57] to each of the rational prefactors separately, in
order to write them as linear combinations of rational expressions Mh without spurious
denominators (we name such expressions rational monomials from now on)

Rjk(T, U, ω) =
∑
h

ajkhMh(T, U, ω) . (3.16)

Once the rational prefactors have been decomposed, we follow the ideas described [58]
and look for linear relations among them using the rational monomials Mj as independent
variables. We stress that in this way we are not guaranteed to find all relations among
the rational functions, since we are not requesting the partial fraction decomposition to be
unique across all rational prefactors. Nevertheless, we find that this procedure is already
enough to reduce by about one half the number of independent rational prefactors, see
table 3 for a comparison of the size of the form factors at different stages of simplification.
Importantly, it has the advantage of not requiring the expensive computation of a Gröbner
basis across the full set of denominators that appear in the problem.
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As a second step, we look for linear relations among all the rational monomials Mh

appearing in each individual rescaled form factor F̃ in order to find a basis of (linearly
independent) elements Mh for the rational prefactors, obtaining the decomposition

Rjk(T, U, ω) =
∑
h

ajkhMh(T, U, ω) . (3.17)

As final step, we search again for relations among different Rjk expressed in terms of
Mh, obtaining a basis of rational prefactors. All manipulations are fully analytical and
we explicitly check that no more relations arise before moving to a subsequent step in the
simplification procedure.

Clearly, we could have in principle omitted the step leading to eq. (3.16). As already
stated above, the main reason for this preliminary reduction is that the majority of relations
among the Rjk are already found without working in the basis Mh, reducing the number
of different Mh to analyze. This is a useful advantage, since the search for linear relations
among the Mh is extremely time consuming.

After having simplified the rational prefactors, we move to the combinations of transcen-
dental functions that multiply them. We inspect each term in the sum to check whether it is
zero or not. We do it numerically (for different points in the Euclidean or Minkowski region)
using the Mathematica [55] package PolyLogTools [59], and then discard null terms. We
then again use these null relations to express hyperlogarithms of higher weight in terms of
simpler functions, and we substitute them into the non-zero terms of the amplitude.
Remark. Since we did not use a basis of master integrals with uniform transcendental weight,
our initial expressions for the form factors F̃Ncj and F̃ 1/Nc

j had some contributions with
hyperlogarithms of weight 5, which means n = 5 in eq. (3.3). Those cancelled after the
described simplification of the rational prefactors, leaving only hyperlogarithms of weights
≤ 4. In contrast, the form factors F̃ closed

j had weight ≤ 4 from the outset.
To conclude, we check numerically for linear relations among the Hk, using the PSLQ

algorithm implemented in Mathematica. Once all linear relations among the Hk have been
applied to the expressions, we check again for relations among the new rational prefactors,
to confirm that the expressions cannot be further reduced by means of the techniques
described in this section.3 We stress here that the surviving transcendental expressions are
still not in a fully simplified form, and we expect that they can be further optimized both
in size and for numerical evaluation by applying the same methods described in [30]. This
step is very elaborate due to the large number of different square roots, but it could lead to
substantially simpler results. Given its complexity, we leave this analysis for future work.

The expressions for the rescaled form factors F̃i presented here (and hence, for the
form factors Fi) are valid in all of the three physical regions

0 < m2
h < 4m2

V , s > m2
h and t, u < 0 for qq → Hg,

0 < m2
h < 4m2

V , t > m2
h and s, u < 0 for gq → Hq,

0 < m2
h < 4m2

V , u > m2
h and s, t < 0 for gq → Hq,

(3.18)

by giving to T , U , and ω − T −U a small positive imaginary part for analytic continuation.
3Except for some new zero rational prefactors in F open,1/Nc

2 , no further simplifications happen at this point.
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Original Partial reduction Monomial reduction Basis No zeroes

F̃
open,(1)
1,ε0 8 (31) 7 (31) 7 (24) 6 (24) 6 (24)
F̃

open,(1)
2,ε0 8 (33) 7 (33) 7 (30) 6 (30) 5 (24)
F̃

open,(1)
1,ε1 23 (70) 18 (70) 18 (50) 12 (50) 9 (21)
F̃

open,(1)
2,ε1 22 (58) 16 (58) 16 (43) 12 (43) 9 (22)
F̃

open,(1)
1,ε2 45 (87) 26 (87) 26 (65) 17 (65) 12 (37)
F̃

open,(1)
2,ε2 44 (73) 23 (73) 23 (58) 17 (58) 10 (22)

Ẽ1 46 (45) 22 (45) 22 (28) 15 (28) 10 (17)
Ẽ2 46 (45) 22 (45) 22 (28) 15 (28) 10 (17)
F̃Nc

1,ε0 1410 (1454) 234 (1294) 234 (1093) 134 (1093) 100 (983)
F̃Nc

2,ε0 1413 (1389) 213 (1285) 213 (1186) 134 (1186) 117 (1169)
F̃

1/Nc

1,ε0 5526 (6789) 1174 (6788) 1100 (5177) 690 (3823) 325 (983)
F̃

1/Nc

2,ε0 5524 (5905) 1139 (5894) 1139 (4604) 784 (4517) 460 (1169)

B̃1 4 (7) 4 (7) 4 (7) 4 (7) 4(7)
B̃2 4 (7) 4 (7) 4 (7) 4 (7) 4(7)
C̃1 43 (104) 35 (104) 32 (98) 30 (98) 30 (95)
C̃2 41 (188) 34 (188) 33 (184) 30 (184) 30 (123)
D̃1 67 (161) 64 (161) 61 (151) 54 (151) 54 (151)
D̃2 93 (601) 91 (601) 89 (513) 54 (346) 54 (136)

Table 3. Number of linearly-independent rational prefactors (and rational monomials) at different
stages of the reduction procedure. We list the first three non-zero orders Ã in the ε expansion for the
LO amplitude, followed by the different component of the two-loop NLO amplitude and then by the
different parts of the two-loop finite remainder, without taking into account the part proportional
to log(m2

V /µ
2
R) (see section 4).

We kept both of the form factors separately through the simplification process in order
to cross check our results thanks to the equivalence between them under the exchange
t↔ u, see (2.24) and (2.26). For size reasons we provide only the first form factor for each
component, the second being retrieved by the same exchange.

4 Ultraviolet renormalization and infrared structure

The amplitude contains both ultraviolet and infrared singularities. While UV poles are
removed through renormalization, IR singularities cancel only in infrared safe observables.

We remove the UV poles by renormalization of the strong coupling constant αS in the
MS scheme. The NLO renormalization of the strong coupling constant reads [60]

αS = αS
(
µ2
R

)
S−1
ε

(
µ2
R

µ2
0

)ε [
1− αS

(
µ2
R

)
2π

β0
ε

]
+O

(
α3
S

(
µ2
R

))
, (4.1)

where αS indicates the bare strong coupling constant, αS
(
µ2
R

)
the renormalized one, µ2

R is
the renormalization scale, µ2

0 is the dimensional regularization scale, Sε = (4π)ε e−εγ , with
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γ being the Euler-Mascheroni constant, and

β0 = 11CA − 4NfTR
6 , (4.2)

with CA = Nc, TR = 1/2, and Nf the number of active flavors. From now on, we fix
µ0 = µR for definiteness.

We provide our results for the MS-renormalized form factors Fclass
j as a series expansion

in the renormalized strong coupling constant as follows

Fopen
j = Sε

√
αS
(
µ2
R

)
Sε

[
Fopen,(1)
j +

(
αS
(
µ2
R

)
2π

)
Fopen,(2)
j +O

(
α2
S

)]
,

Fclosed
j = Sε

√
αS
(
µ2
R

)
Sε

[(
αS
(
µ2
R

)
2π

)
Fclosed,(2)
j +O

(
α2
S

)]
,

(4.3)

where the coefficients read

Fopen,(1)
j = S−1

ε F
open,(1)
j ,

Fopen,(2)
j = S−2

ε F
open,(2)
j − S−1

ε

β0
2εF

open,(1)
j ,

Fclosed,(2)
j = S−2

ε F
closed,(2)
j ,

(4.4)

and the dependence of the form factors on the vector boson mass mV is left implicit from
now on for ease of notation.4 After UV renomalisation, Fopen,(2) still contains IR poles.
The structure of such singularities for QCD virtual NLO corrections is well-known and is
fully captured by Catani’s operator I(1) [60]. We define therefore the finite reminders as

Fopen,(2)
j = I(1)Fopen,(1)

j + Fopen,(2)
j,fin , Fclosed,(2)

j = Fclosed,(2)
j,fin (4.5)

where Catani’s operator I(1) reads

I(1) = −1
2

e εγ
Γ(1− ε)

{
Vsingq (ε)2CF − CA

CF

(
−µ

2
R

s

)ε
+

+1
2

(
Vsingg (ε) + CA

CF
Vsingq (ε)

)[(
−µ

2
R

t

)ε
+
(
−µ

2
R

u

)ε]}
,

(4.6)

where the Mandelstam invariants carry an implicit small positive imaginary part,
CF = (N2

c − 1)/(2Nc), and

Vsingq (ε) = CF
ε2

+ 3CF
2ε , (4.7)

Vsingg (ε) = CA
ε2

+ 11CA − 2Nf

6ε . (4.8)

In order to construct the finite remainders Fopen,(2)
fin we also require the one-loop results,

Fopen,(1)
fin , up to order ε2. To compute it, we use the same projectors and techniques

4We stress that the extra factor of Sε in eqs. (4.3) is chosen to reabsorb the terms proportional to γ and
log (4π) coming from the loop integration on the electroweak vector bosons.
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Hyperlogarithms Weight Size

Ãε0 11 1 to 2 0.5 kiB
Ãε1 82 1 to 3 3.1 kiB
Ãε2 386 1 to 4 16.7 kiB

B̃1 11 2 to 3 1.7 kiB
C̃1 6907 1 to 4 0.7 MiB
D̃1 16 755 1 to 4 1.3 MiB
Ẽ1 292 0 to 4 16.6 kiB

Table 4. The complexity of our final expressions for the LO, and NLO finite remainder. The second
column shows the number of different hyperlogarithm functions that appear.

illustrated in section 2 and we compute the one-loop master integrals by direct integration
over Feynman-Schwinger parameters. We provide the set of propagators and the master
integrals for the one-loop case in appendix A. We have checked numerically that the ε-pole
structures of Fopen,(2)

j and I(1)Fopen,(1)
j agree, in different points in Euclidean and Minkowski

regions, using Ginac [61] and PolyLogTools [59].
After all these manipulations, the one-loop and two-loop finite reminders can be

decomposed as a polynomial in Nc and Nf . To simplify the notation and present our results
we write

Fopen,(1)
j,fin = Aj , Fopen,(2)

j,fin = NfBj +NcCj + 1
Nc
Dj , Fclosed,(2)

j,fin = Ej . (4.9)

We apply the same simplification procedure illustrated in section 3 to the finite remainder
as well (see table 3 and table 4 for the details). We provide the analytical expressions for
the coefficients A1, B1, C1, D1, E1 (which have transcendental weight up to four), keeping
the scale µ2

R general, as supplementary material attached to this paper. As discussed in
eq. (2.24) and (2.26), the remaining form factor can be obtained by exchanging t↔ u.

For reference, in table 5 we provide numerical values for the coefficients listed in eq. (4.9)
evaluated at the points

Pqq = { s→ +375.1 GeV , t→ −100.0 GeV , u→ −150.0 GeV } ,
Pqg = { s→ −150.0 GeV , t→ +375.1 GeV , u→ −100.0 GeV } ,
Pqg = { s→ −100.0 GeV , t→ −150.0 GeV , u→ +375.1 GeV } ,

(4.10)

with µR = mh = 125.1 GeV and mV = mW = 80.4 GeV.

5 Conclusions

In this paper, we computed the helicity amplitudes for the two-loop mixed QCD-Electroweak
corrections to Higgs plus ject production in the quark-initiate channels qg, qg, and qq,
keeping full dependence on the Higgs and EW vector boson masses. These amplitudes are
the last missing ingredient, together with the ggHg expressions computed in [30, 31], to
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Pqq Pqg Pqg

Ã1,ε0 +0.33014631 +0.07937750 + 0.56737915 i −0.20133007 + 0.56797218 i
Ã1,ε1 +0.86304102 −0.29185479 + 1.53102839 i −1.22164117 + 0.87055442 i
Ã1,ε2 +1.28181266 −1.04954624 + 1.96804187 i −1.87982473 + 0.03486591 i

B̃1 −0.00116710 +0.15432174 + 0.02054956 i +0.12722625 + 0.11327291 i
C̃1 +0.51514217 + 0.00193541 i −0.26266335− 0.57780014 i −0.49525929− 1.62795284 i
D̃1 +0.96451329 + 0.74965721 i +1.25415918 + 0.18720716 i −1.20060441 + 0.68012840 i
Ẽ1 −0.11645020− 0.21841056 i +0.51765798 + 0.00588251 i +0.85351666 + 0.01089854 i

Table 5. Numerical values of the different parts of the LO and NLO form factors, evaluated at
points defined in eq. (4.10).

construct electroweak corrections to Higgs plus jet production at hadron colliders. Starting
from the Feynman diagrams contributing to the process we extracted the form factors
by means of projectors and subsequently build the independent helicity amplitudes as a
linear combination of scalar two-loop Feynman integrals. We use IBP relations to write the
form factors as linear combinations of master integrals, which we subsequently evaluate by
direct integration over Feynman/Schwinger parameters using the public code HyperInt,
exploiting their property of linearly reducibility. We simplify the outcome by separating
the algebraic prefactors from the transcendental functions and rewriting the first ones in
terms of a basis of linearly independent prefactors, while the transcendental expressions
are investigated numerically to remove any linearly-dependent or zero term by means of
the PSLQ algorithm. The result is formally more compact and reduces the number of
transcendental functions to be evaluated to obtain numerical results. As a byproduct we also
obtained expressions for the leading order one-loop form factors up to order ε2, necessary
to verify the UV-renormalized IR pole structure described by the Catani’s operator.

The computation described here shares many formal similarities with the ggHg case
discussed in [30], although being much more challenging on a practical level. The main
reason for this is the fact that we are considering a NLO computation with a nonzero ε-pole
structure, that requires the evaluation of a larger number of master integrals, with more
complex topologies and up to higher order in the ε expansion. The complexity and size of
the ε0 results required additional refinement, obtained through the reduction to a basis of
rational prefactors and the implementation of linear relations among the transcendental
expressions obtained through PLSQ. While the results presented here are not optimised
for fast numerical evaluation due to the complexity of the alphabet involved, they can
be evaluated straightforwardly in all relevant kinematical regions by specifying a suitable
imaginary part for all kinematical invariants. Moreover, they can be used as a starting
point for the construction of a optimised analytic expressions in the various kinematical
regions, for example following the ideas described in [62] and already used in for example
in [30]. We leave this non-trivial step for a future investigation.
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Denominator Integral family LO

D1 k2 −m2
V

D2 (k − p1 − p2 − p3)2 −m2
V

D3 (k − p2 − p3)2

D4 (k − p2)2

Table 6. Definition of the LO integral family LO. The loop momentum is denoted by k. mV

indicates the mass of the vector boson. The prescription +iε is understood for each propagator and
not written explicitly.
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A The master integrals

A.1 LO amplitude and master integrals

The LO amplitude consists of 3 Feynman diagrams, whose sum can be expressed in terms
of 5 master integrals (modulus permutation of the external legs). We proceed in the same
way as for the virtual NLO amplitude, see section 2 and section 3. The propagators of the
integral family LO are listed in table 6. The Symanzik polynomials are

U = x1 + x2 + x3 + x4 and F = −m2
hx1x2 − tx2x4 − ux1x3 +m2

V (x1 + x2)U .

As master integrals, we have chosen

ILO(3, 0, 0, 0) , ILO(2, 1, 0, 0) , I(6)
LO(2, 0, 2, 0) , I(6)

LO(2, 2, 1, 0) , I(6)
LO(1, 1, 1, 1) . (A.1)

The integrals with an upper index (6) are evaluated in d = 6− 2ε dimensions (without any
upper index: in d = 4− 2ε).
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A.2 Virtual NLO master integrals

We expressed the NLO virtual amplitude in terms of 93 master integrals (modulo permuta-
tions of the external legs). In particular

• the planar integral family PL has four maximal topologies (T3–T6 in figure 2),

IPL(1, 1, 1, 1, 1, 1, 1, 0, 0) , IPL(0, 1, 1, 1, 1, 1, 1, 1, 0) ,
IPL(1, 1, 1, 1, 0, 0, 1, 1, 1) , IPL(0, 1, 1, 1, 1, 0, 1, 1, 1) ,

and contains 70 master integrals

I(6)
PL (0, 0, 0, 2, 0, 2, 2, 2, 0) , IPL(0, 0, 1, 2, 0, 0, 2, 0, 0) , I(6)

PL (0, 0, 2, 0, 0, 2, 1, 2, 0) ,

I(6)
PL (0, 0, 2, 0, 1, 1, 2, 1, 0) , I(6)

PL (0, 0, 2, 0, 2, 0, 2, 1, 0) , IPL(0, 0, 2, 2, 0, 0, 1, 0, 0) ,

I(6)
PL (0, 0, 3, 0, 0, 2, 0, 2, 0) , IPL(0, 1, 1, 0, 1, 1, 1, 0, 0) , IPL(0, 1, 1, 1, 0, 1, 0, 1, 0) ,

IPL(0, 1, 1, 1, 0, 1, 1, 0, 0) , I(6)
PL (0, 1, 1, 1, 1, 1, 1, 2, 0) , I(6)

PL (0, 1, 1, 1, 1, 1, 2, 1, 0) ,

IPL(0, 1, 2, 0, 0, 2, 0, 0, 0) , I(6)
PL (0, 1, 2, 0, 0, 2, 2, 1, 0) , IPL(0, 1, 2, 0, 1, 0, 1, 0, 0) ,

IPL(0, 1, 2, 0, 2, 0, 0, 0, 0) , I(6)
PL (0, 1, 2, 0, 2, 0, 2, 1, 0) , IPL(0, 1, 2, 1, 0, 0, 1, 0, 0) ,

IPL(0, 1, 2, 1, 0, 1, 0, 0, 0) , I(6)
PL (0, 1, 2, 2, 0, 0, 2, 0, 1) , IPL(0, 2, 0, 2, 0, 1, 0, 0, 0) ,

IPL(0, 2, 0, 2, 0, 1, 1, 0, 0) , I(6)
PL (0, 2, 0, 2, 0, 2, 2, 1, 0) , IPL(0, 2, 1, 1, 0, 1, 1, 0, 0) ,

I(6)
PL (0, 2, 1, 1, 1, 1, 1, 0, 0) , I(6)

PL (0, 2, 1, 1, 1, 1, 1, 1, 0) , I(6)
PL (0, 2, 1, 1, 1, 1, 2, 0, 0) ,

IPL(0, 2, 2, 0, 0, 1, 0, 0, 0) , I(6)
PL (0, 2, 2, 0, 0, 2, 0, 1, 0) , I(6)

PL (0, 2, 2, 0, 0, 2, 0, 1, 1) ,

IPL(0, 2, 2, 0, 1, 0, 0, 0, 0) , IPL(0, 2, 2, 0, 1, 0, 1, 0, 0) , I(6)
PL (0, 2, 2, 0, 1, 1, 0, 1, 0) ,

I(6)
PL (0, 2, 2, 0, 1, 1, 1, 1, 0) , I(6)

PL (0, 2, 2, 0, 2, 0, 1, 1, 0) , IPL(0, 2, 2, 1, 0, 0, 1, 0, 0) ,

IPL(0, 2, 2, 1, 0, 1, 0, 0, 0) , I(6)
PL (0, 2, 2, 1, 0, 1, 1, 0, 0) , I(6)

PL (0, 2, 2, 1, 1, 0, 1, 0, 0) ,

I(6)
PL (0, 2, 2, 2, 0, 0, 1, 0, 1) , I(6)

PL (0, 3, 1, 1, 1, 1, 0, 0, 0) , I(6)
PL (0, 3, 1, 1, 1, 1, 1, 0, 0) ,

I(6)
PL (0, 3, 2, 0, 1, 1, 0, 1, 0) , I(6)

PL (0, 3, 2, 1, 1, 0, 1, 0, 0) , I(6)
PL (0, 4, 1, 1, 1, 1, 0, 0, 0) ,

IPL(1, 0, 1, 0, 1, 0, 2, 0, 0) , I(6)
PL (1, 0, 1, 1, 1, 0, 3, 0, 0) , I(6)

PL (1, 0, 1, 1, 1, 0, 4, 0, 0) ,

IPL(1, 0, 2, 0, 1, 0, 2, 0, 0) , I(6)
PL (1, 0, 2, 1, 0, 0, 2, 0, 1) , I(6)

PL (1, 0, 2, 1, 0, 0, 3, 0, 1) ,
IPL(1, 1, 1, 0, 0, 1, 1, 0, 0) , IPL(1, 1, 1, 0, 1, 0, 1, 0, 0) , IPL(1, 1, 1, 0, 1, 0, 2, 0, 0) ,
IPL(1, 1, 1, 0, 1, 1, 1, 0, 0) , IPL(1, 1, 1, 1, 0, 0, 1, 0, 0) , IPL(1, 1, 1, 1, 0, 1, 1, 0, 0) ,

I(6)
PL (1, 1, 1, 1, 1, 0, 2, 0, 0) , I(6)

PL (1, 1, 1, 1, 1, 0, 3, 0, 0) , I(6)
PL (1, 1, 2, 0, 1, 0, 2, 0, 0) ,

I(6)
PL (1, 1, 2, 1, 0, 0, 2, 0, 1) , IPL(1, 2, 1, 0, 0, 0, 0, 0, 0) , I(6)

PL (1, 2, 1, 1, 1, 0, 2, 0, 0) ,

I(6)
PL (2, 0, 2, 0, 0, 0, 2, 1, 0) , I(6)

PL (2, 0, 2, 0, 0, 0, 2, 1, 1) , IPL(2, 1, 1, 0, 0, 0, 2, 0, 0) ,

I(6)
PL (2, 1, 2, 0, 0, 0, 2, 1, 0) , I(6)

PL (2, 1, 2, 0, 0, 0, 2, 1, 1) , IPL(2, 2, 0, 0, 1, 0, 0, 0, 0) ,
IPL(2, 2, 0, 0, 1, 0, 1, 0, 0) ; (A.2)

– 20 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
5

• the integral family NA (with maximal topology INA(1, 1, 1, 1, 1, 1, 1, 0, 0), T2 in figure 2)
contains 18 master integrals:

I(6)
NA(0, 1, 1, 0, 1, 3, 1, 0, 0) , I(6)

NA(0, 1, 1, 1, 1, 2, 1, 0, 0) , I(6)
NA(0, 1, 1, 2, 1, 1, 1, 0, 0) ,

I(6)
NA(0, 1, 1, 2, 1, 2, 1, 0, 0) , I(6)

NA(0, 1, 1, 3, 1, 0, 1, 0, 0) , I(6)
NA(0, 1, 1, 4, 1, 0, 1, 0, 0) ,

INA(1, 1, 0, 1, 1, 0, 1, 0, 0) , INA(1, 1, 0, 1, 1, 1, 1, 0, 0) , I(6)
NA(1, 1, 1, 0, 0, 3, 1, 0, 0) ,

I(6)
NA(1, 1, 1, 0, 0, 4, 1, 0, 0) , I(6)

NA(1, 1, 1, 1, 0, 2, 1, 0, 0) , I(6)
NA(1, 1, 1, 1, 1, 2, 1, 0, 0) ,

I(6)
NA(1, 1, 1, 1, 1, 3, 1, 0, 0) , I(6)

NA(1, 1, 1, 2, 0, 1, 1, 0, 0) , I(6)
NA(1, 1, 1, 2, 0, 2, 1, 0, 0) ,

I(6)
NA(1, 1, 1, 2, 1, 1, 1, 0, 0) , I(6)

NA(1, 1, 1, 3, 0, 0, 1, 0, 0) , I(6)
NA(1, 1, 1, 3, 1, 1, 1, 0, 0) ;

(A.3)

• the integral family NB (with maximal topology INB(1, 1, 1, 1, 0, 1, 1, 1, 0), T1 in figure 2)
contains 5 master integrals:

I(6)
NB(1, 1, 1, 0, 0, 3, 1, 1, 0) , I(6)

NB(1, 1, 1, 1, 0, 3, 1, 1, 0) , I(6)
NB(1, 1, 1, 2, 0, 2, 1, 1, 0) ,

I(6)
NB(1, 1, 1, 3, 0, 0, 1, 1, 0) , I(6)

NB(1, 1, 1, 3, 0, 1, 1, 1, 0) .
(A.4)

The integrals with an upper index (6) are evaluated in d = 6− 2ε dimensions (without any
upper index: in d = 4− 2ε).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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