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1 Introduction

The lsland formula [1–3] has lead us new insights on how entanglement entropy in a CFT
behaves when it is coupled to a gravitational theory. In particular, the lsland formula gives
a remarkable explanation of the Page curve [4, 5] in black hole evaporation processes. Even
though we can directly derive the Island formula in two dimensional gravity by taking into
account the replica wormhole contributions [6, 7], we need to rely on indirect arguments to
justify the Island formula in higher dimensions at present. One argument is to consider the
holographic entanglement entropy formula [8–10] with quantum corrections [11, 12]. This
formula has originally been considered to be applicable to asymptotically AdS backgrounds,
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Figure 1. A sketch of AdS/BCFT setup.

assuming the AdS/CFT [13]. In principle, however we can straightforwardly generalize
the holographic entanglement entropy formula to any gravitational backgrounds such as
asymptotically flat spacetimes, though their dual field theories are not clear. This formally
leads to the Island formula.1

Another way to derive the Island formula is to employ the double holography argu-
ment [3]. A bulk dual of a CFT on Rd coupled to a quantum gravity on AdSd can be
described by inserting an end of the world-brane (EOW brane) in an d + 1 dimensional
bulk AdS by applying the brane-world holography [55–58], where the gravity on the d
dimensional brane arises as an induced gravity (refer to figure 1). Interestingly, the same
gravity setup appears when we consider a gravity dual of a boundary conformal field theory
(BCFT), so called AdS/BCFT [59–62].2 Thus, there are two different interpretations of an
identical gravity dual with an EOW brane. Both of them have the same rule to calculate
the holographic entanglement entropy, namely the minimal area surface, whose area gives
the entanglement entropy, can end on the EOW brane.

From this holographic argument one may wonder if the two boundary theories: (i) a
CFT coupled to a gravity and (ii) a BCFT, are equivalent as depicted in figure 2. The
purpose of this paper is to argue that this is indeed the case by presenting evidences of the
equivalence by focusing on two dimensional (2d) CFTs d = 2. We call this equivalence the
Island/BCFT correspondence. This duality was originally obtained by combining two: the
brane-world holography and the AdS/BCFT as we explained. However, we assign a new
name because this Island/BCFT correspondence can be formulated purely in d dimensional
theory without mentioning the d+ 1 dimensional gravity dual, which implies that it can
be more than the combination of the two holographic dualities. To test the Island/BCFT
correspondence, we will show not only that the calculation of entanglement entropy matches

1Further discussion on the lsland formula are given for example in [14–54].
2The AdS/BCFT has been applied to many problems. This includes the studied of renormalization group

flow [63–66], applications to models in condensed matter physics or statistical mechanics [67–75], to eigenstate
thermalization hypothesis [76, 77] and to computational complexity [78–81]. Refer also to [53, 82–88] for
string theory embeddings, to [89–92] for application to cosmological models and to [93, 94] for higher
codimension holography.
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Figure 2. A sketch of setup of calculating entanglement entropy when we couple a CFT on a half
line to a gravity on AdS2 (left) and an equivalent setup in BCFT (right).

between the two, but also that the energy flux reflection in (ii) the BCFT, can be obtained
from (i) the CFT coupled to a gravity. We will also identify the 2d gravity realized on
the EOW brane in the case of pure AdS3 gravity dual. Finally, we also consider bulk one
point functions, which are a part of essential information of a given BCFT. We will show
that to obtain non-vanishing bulk one-point functions in BCFTs we need to modify the
prescription of [60, 61] such that we turn on non-trivial background matter fields. The
Neumann boundary condition of matter fields imposed on the EOW brane induces this
non-trivial matter field background.

The paper is organized as follows. In section 2, we calculate the entanglement entropy
in a 2d CFT coupled to a 2d gravity and show that it agrees with the result form a
BCFT. From this we argue the Island/BCFT correspondence. In section 3, we calculate
the entanglement entropy of a BCFT from the gravity dual by using the AdS/BCFT and
compare the result with that obtained in section 2. In section 4, we derive the 2d gravity
dynamics induced on the EOW brane from both holographic and field theoretic analysis in
the case of pure AdS3 gravity dual. We identify the 2d induced gravity dual to the boundary
dynamics of BCFTs via the Island/BCFT correspondence. In section 5, we explicitly show
the boundary condition of energy stress tensor in a BCFT matches with that derived from
a 2d CFT coupled to a 2d gravity. Moreover we derive the Island formula used in section 2
from the replica wormhole calculation. In section 6, we show that by turning on bulk
matter fields, we can reproduce one point functions in a BCFT from the AdS/BCFT. For
a bulk one point function of an exactly marginal operator, we can analytically construct
such a background by using the known Janus solution. For more general operators, we
numerically find the gravity dual backgrounds with a massive scalar field turned on. In
section 7, we summarize our results and discuss future problems. Since we use various
coordinates in this paper, we summarize our notation in appendix A. In appendix B, we
present a naive discussion about on-shell action of the induced gravity we discussed in
section 4. In appendix C, we summarize the ADM energy in JT gravity, which is originally
discussed in [95] and in appendix D, we review the replica wormholes in JT gravity coupled
to a conformal matter, following the discussion of [7].
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2 Island/BCFT correspondence

We consider a two dimensional (2d) CFT on a half line x ≥ −δ coupled to a two dimensional
gravity on AdS2 as depicted in the left of figure 2. We assume δ to be an infinitesimally
small positive constant so that the spacetime of gravity includes an asymptotically AdS2
region. We choose the coordinate (t, x) such that the metric is given by3

ds2
(2) = e2φ(x)(−dt2 + dx2), (2.1)

where the Weyl factor takes the form

e2φ(x) = 1 for x ≥ −δ,

e2φ(x) = δ2

x2 for x < −δ. (2.2)

Now we choose the subsystem A in the CFT2 in the right of figure 2 to be the half
line x ≥ l and compute the entanglement entropy SA. Since we have gravity in the left
half, we need to employ the Island prescription [1–3] to calculate SA. We choose the island
region Is to be an semi-infinite line x < s, where we assume s < −δ. The island formula
tells us that to calculate SA we need to evaluate the field theory entanglement entropy for
the region A∪ Is plus a gravity area contribution Sgravity of the boundary of the Island and
then we can determine s by minimizing the total contribution. In our current setup, SA
can be found by minimizing

SA = c

3 log
(
l − s
ε

)
+ c

6 log
(
δ

−s

)
+ Sgravity, (2.3)

with respect to s, where c is the central charge of the CFT2 and ε is the UV cut off. The
first term is the standard entanglement entropy in two dimensional CFT [96] and the second
term, which is identical to c

6φ(x = s), arises due to the Weyl rescaling in order to take
into account the non-trivial metric on AdS2. The final term Sgravity denotes all of the
gravitational contributions.

We would like to consider an induced gravity where the full gravity action is produced
by integrating the matter CFT degrees of freedom, though the metric (i.e. φ) is dynamical.
In this case we can ignore Sgravity, as the all induced gravity contributions are included in
the CFT parts. In this case, the minimization of SA is achieved at

s = −l. (2.4)

The resulting entanglement entropy reads

SA = c

6 log
(2l
ε

)
+ c

6 log
(2δ
ε

)
. (2.5)

Interestingly if we assume δ is infinitesimally small such that δ = O(ε), the above
expression (2.5) takes the same form as that for a 2d BCFT [97], as sketched in the right

3We summarize our notation in appendix A.
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of figure 2. In this relation, which may be called as Island/BCFT correspondence, the
second term in the entanglement entropy (2.5) can be identified with the boundary entropy
Sbdy [98]. The end point x = −l of the Island can be interpreted as the mirror image of the
endpoint of the subsystem A, which indeed arises when we perform the replica calculation
of SA in the BCFT using the twist operators [97]. To get the location of this mirrored
point (2.4), the AdS2 geometry plays a crucial role. However, up to now, we did not use
holography at all.

3 Entanglement entropy in AdS/BCFT

We can give a gravity dual of the previous correspondence between the entanglement
entropy in the Island prescription and that in BCFT’s by employing the AdS/BCFT
correspondence [60, 61]. We focus on the case where the boundary is a straight line. For
non-trivial shapes of boundaries refer to [62].

The total action of the gravity dual in AdS/BCFT is given by

Itotal = Ibulk + Ibrane + Ibdy , (3.1)

where

Ibulk = − 1
16πGN

∫
M
d3x
√
−g(R− 2Λ) , (3.2)

Ibrane = − 1
8πGN

∫
Q
d2x
√
−h(KQ − T ) , (3.3)

Ibdy = − 1
8πGN

∫
Σ
d2x
√
−γKΣ , (3.4)

where R is Ricci scalar and K is the trace of extrinsic curvature Kij . We denote the induced
metric on the brane by hij and that on the asymptotic boundary by γij . By choosing the
AdS radius to be unit i.e. Λ = −1, in the Poincare AdS3,

ds2
AdS3 = −dt

2 + dy2 + dz2

z2 , (3.5)

we introduce the end of the world brane Q (EOW brane) as the two dimensional plane
specified by

y = −λz, (3.6)

where λ > 0 is a parameter related to the tension T of the brane via

λ = T√
1− T 2

. (3.7)

The region given by z > ε and y > −λz provides a gravity dual of a BCFT defined as a two
dimensional CFT on the half space y > −λε via the AdS/BCFT [60, 61]. This is depicted
in figure 1. The metric of EOW-brane is written as that of the AdS2:

ds2
(2) = (1 + λ2)dz2 − dt2

z2 = (1 + λ2)dx
2 − dt2

x2 , (3.8)
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where we introduced the coordinate x along the EOW brane by x2 = y2 + z2 so that the
metric takes the form of (2.1). We can equivalently employ the hyperbolic slice of AdS3

ds2 = dρ2 + cosh2 ρ

(
−dt2 + dη2

η2

)
, (3.9)

where the new coordinates η and ρ are defined by

z = η

cosh ρ , y = η tanh ρ . (3.10)

Then the gravity dual of the BCFT is given by the region −ρ∗ ≤ ρ ≤ ∞ and the brane Q is
located at a constant ρ = ρ∗ and its value is determined by the brane tension T as

T = tanh ρ∗ . (3.11)

For the boundary BCFT2, we consider the vacuum state (which is a pure state) and thus
we have SA = SĀ, where Ā is the complement of the subgreion A defined by −λε < y < l.
The holographic entanglement entropy [8, 9] of a subregion A is computed in terms of the
area of the codimension two minimal surface (called ΓA) anchored at A as

SA = Area(ΓA)
4GN

. (3.12)

In the setup of the AdS3/BCFT2, the minimal surface ΓĀ is given by the spacial geodesic
ΓA as depicted in figure 1. Since ΓA is the arc with the radius l, the holographic calculation
leads to

SA = 1
4GN

∫ ρ∗

−ρ∞
dρ = ρ∞ + ρ∗

4GN
= c

6 (ρ∞ + ρ∗) , (3.13)

where we used the dictionary between the AdS3 radius LAdS3 and the central charge c of a
CFT2 [99]

c = 3LAdS3

2GN
, (3.14)

and we set LAdS3 = 1. Using the relation between the coordinates (3.10), we have ρ∞ =
arccosh(l/ε) ≈ log(2l/ε) and ρ∗ = arctanh(T ). Combining these results, we finally find

SA = c

6 log
(2l
ε

)
+ c

6 log
√

1 + T
1− T

= c

6 log
(2l
ε

)
+ c

6 log(λ+
√

1 + λ2) . (3.15)

This is the prediction by AdS/BCFT for the entanglement entropy in the dual BCFT.
Since we impose the Neumann boundary condition on the EOW brane, there is another

interpretation of our setup, namely a CFT on the half space coupled to a gravity on the
AdS2 (left side in figure 2). By comparing this setup with the previous Island setup, we can
identify (from x2 = y2 + z2)

δ =
√

1 + λ2 ε, (3.16)
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which leads to the entanglement entropy (2.5) in the Island prescription, assuming an
induced gravity, evaluated as

SA = c

6 log
(2l
ε

)
+ c

6 log
(
2
√

1 + λ2
)
. (3.17)

When λ is large, this nicely agrees with the AdS/BCFT result (3.15). This provides another
support for the Island/BCFT correspondence. On the other hand, if λ is not large, we
expect the gravity on the EOW brane is highly quantum and we cannot trust the 2d gravity
analysis using the classical geometry (3.8), for which we may need more care analysis when
we relate δ to ε.

4 2d induced gravity and gravity dual

Next we would like to identify the gravitational theory realized on the AdS2 (EOW brane)
by directly analyzing the AdS3/BCFT2 setup of figure 1. In other words, this 2d gravity
is supposed to be equivalent to the boundary dynamics of a BCFT via the Island/BCFT
correspondence. For this, we will work with a 2d Euclidean space.

Via the holography, the 2d effective gravity can be found as follows. We impose the
Dirichlet boundary condition on the asymptotic AdS3 region Σ and solve the bulk Einstein
equation for a fixed metric ds2 = hijdx

idxj on the EOW brane Q. Then we find the on-shell
Euclidean action IG[h] defined by

IG = 1
16πGN

∫
M

√
g(R− 2Λ) + 1

8πGN

∫
Σ

√
γK + 1

8πGN

∫
Q

√
h(K − T ). (4.1)

Moreover, if we impose the saddle point equation δIG[h]
δhij

= 0 under the variation of the
metric hij on Q, then this gives the Neumann boundary condition

Kij −Khij + Thij = 0, (4.2)

as is standard in the AdS/BCFT. By solving this Neumann boundary condition, we find
that the metric of EOW brane Q is that of AdS2. Therefore, we can identify the effective
2d gravity action on Q with the on-shell action IG[h].

4.1 Naive dimensional reduction argument

Before diving into details of the induced gravity (which we will discuss in the next subsection),
let us first consider a naive dimensional reduction argument.

Using the hyperbolic slice coordinates of AdS3 (3.9), now we regard the 2d quantum
gravity which appears in the brane-world on Q is dual to the 3d bulk on the region
−ρ∗ ≤ ρ ≤ 0, where ρ∗ > 0 depends on λ by

λ = sinh ρ∗. (4.3)

Under this interpretation we can find the effective two dimensional Newton constant G(2)
N

in terms of the three dimensional Newton constant GN via a simple dimensional reduction

– 7 –
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as follows4

1
16πG(2)

N

∫
d2x

√
−g(2)R(2) = 1

16πGN

∫
d3x

√
−g(3)R(3)

≈ 1
16πGN

∫ 0

−ρ∗
dρ

∫
d2x

√
−g(2)R(2) (4.4)

This leads to 1
G

(2)
N

= ρ∗
GN

. (4.5)

In the two dimensional gravity picture, we have the AdS2 entropy given by
1

4G(2)
N

= ρ∗
4GN

= c

6 log(λ+
√

1 + λ2). (4.6)

Since in the present induced gravity treatment with the Newton constant G(2)
N , the matter

CFT was already integrated out, there is only gravitational contribution to the entanglement
entropy. Thus the total entanglement entropy SA in the system where the induced gravity
in the left half is coupled to a CFT in the right half, is obtained by the sum of (4.6) and
the entanglement entropy in the right half CFT, estimated as ∼ c

6 log 2l
ε . This agrees with

the entanglement entropy in the holographic BCFT result (3.15). In appendix B, we also
give a naive discussion for the on-shell action of the induced gravity.

4.2 Deriving 2d induced gravity

We argue that this 2d gravity on the EOW brane Q is an induced gravity, where the
original gravity action before the path-integration of the matter CFT, is simply given by a
cosmological constant term µ̃

∫
Q

√
g(2). Here g(2) represents the metric in the 2d gravity.

Note that in this case, the equation of motion of two dimensional metric leads to

TCFT
ij + µ̃g

(2)
ij = 0 (4.7)

In particular this guarantees
TCFT
tx = 0, (4.8)

at the interface (i.e. ∂Σ = ∂Q) where the 2d gravity is coupled to the 2d CFT. This
reproduces the correct boundary condition of energy stress tensor in the BCFT, which
means the complete reflection of energy flux at the boundary.5 We will discuss this boundary
condition of the stress tensor further in the next section.

In this treatment, the total partition function in the 2d induced gravity is expressed as

ZInd =
∫

[Dg(2)]
∫

[DΦCFT]e−µ̃
∫
Q

√
g(2)

e−SCFT(g(2),ΦCFT), (4.9)

4Given the metric ansatz (3.9), the precise reduction of the three-dimentional Ricci scalar is given by√
−g(3)R(3) =

√
−g(2)

[
R(2) − 2

(
3 cosh2 ρ− 1

)]
.

Since we are interested in the contribution to gravitational entropy, we neglect the shift due to the second
term.

5The reflection of null geodesics in the setup of AdS/BCFT was previously discussed in [100].

– 8 –



J
H
E
P
0
6
(
2
0
2
2
)
0
9
5

where SCFT is the CFT action and ΦCFT represents matter CFT fields on Q. If we first
integrate out the CFT fields ΦCFT, then, follwing the well-known fact [101], we obtain6 the
(minus) Liouville action IL[h] if we take the UV limit e2φ � ε2:

IL[h] ' − c

24π

∫
dτdx

[
(∂τφ)2 + (∂xφ)2 + µe2φ +Rφ

]
, (4.10)

so that we have
ZInd =

∫
[Dg(2)]e−IL[h], (4.11)

where we performed the 2d coordinate transformation such that the metric on Q is given by

ds2 = e2φ(dτ2 + dx2). (4.12)

The potential coefficient µ comes from µ̃ plus quantum corrections. This has a wrong sign
of the kinetic term compared with the normal Liouville CFT and this is indeed expected as
the effective theory for a 2d CFT on a curve space. If we choose

µ = 1
δ2 = 1

(1 + λ2)ε2 , (4.13)

then we get the expected metric (2.2) from the Liouville equation of motion with the
background solution e2φ = (µx2)−1.

Indeed, we can show that in the UV limit e2φ � ε2, the 2d gravity action computed
from the gravity dual, namely IG[h], agrees with the Liouville action IL[h] in (4.10). Since
this calculation is essentially identical to earlier works [102–104], we will not repeat it here.
This argument shows that the effective 2d gravity will be well approximated by the Liouville
gravity when λ is very large. This identification of 2d induced gravity also agrees with
the observation in [105] where the energy flux in the moving mirror model was found to
be explained by the Liouville gravity. For finite λ, there are higher derivative corrections
non-linearly as in eq. (18) in [102]. As pointed out in [106], we also expect additional
non-local interactions which are expected to enhance when λ is not large.

We can covariantize the Liouville action using the Polyakov action [101]:

IG[h] = c

96π

∫
dτdx

√
h

[
R

1
�
R− 4µ

]
, (4.14)

where we expressed the 2d scalar Laplace operator as �. By introducing an auxiliary field
ϕ, we can rewrite this in a local form:

IG[h, ϕ] = − c

24π

∫
dτdx

√
h [ϕ�ϕ+Rϕ+ µ] . (4.15)

This is an example of dilaton gravity in 2d, where there is a kinetic term for the dilaton as
opposed to the JT gravity. As opposed to the Liouville theory, here both the scalar ϕ and
metric h are dynamical. This provides a covariant induced gravity action which is dual to
the boundary dynamics of a 2d BCFT via the Island/BCFT correspondence.

6In a setup for λ < 0, this was evaluated in the gravity dual of path-integral optimization [102, 103]. We
can find the analytical solution to the Einstein equation for any hij because the bulk solution should always
be locally AdS3. In our case, we get the action with minus sign compared with eq. (18) in [102].
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5 Energy flux and replica wormholes

In this section, we would like to give a justification of the extremization equation (2.4) we
found in the island prescription by studying the replica wormholes [7] in this two-dimensional
system. We also explicitly show that the boundary condition of energy stress tensor in a
BCFT matches with that derived from a 2d CFT coupled to the 2d induced gravity. In
this section, we denote a = −s and b = l just to follow the notation of [7]. Therefore,
the bath CFT subregion A is defined by b < x < ∞ and the island region is defined by
−∞ < x < −a.

Before discussing the replica wormhole, it’s useful to introduce several coordinate
changes. First we move to the light cone coordinates

x+ = iτ + x , x− = −iτ + x . (5.1)

In this coordinates, we have the metric

ds2
2 = e2φ(x+,x−)dx+dx− , (5.2)

with

e2φ(x+,x−) = 4δ2

(x+ + x−)2 for x+ + x− < −2δ , (5.3)

e2φ(x+,x−) = 1 for x+ + x− ≥ −2δ . (5.4)

Next, we would like to bring the boundary between the gravitating region and the bath CFT
to a periodic circle. For the gravitating region, this can be implemented by the conformal
transformation7

x+ = tanh
(
πy

β

)
, x− = tanh

(
πȳ

β

)
, (5.5)

which brings the metric in the following form

ds2
in =

(2πδ
β

)
dydȳ

sinh2
(
π(y+ȳ)
β

) for y + ȳ < −2δ . (5.6)

For the bath CFT region, we cannot use this conformal transformation and this fact is
related to the conformal welding problem discussed in [7]. Therefore, for the bath CFT
region, we simply set y = x+ and ȳ = x−, which gives

ds2
out = dydȳ for y + ȳ ≥ −2δ . (5.7)

Furthermore, we also use the following coordinates

w = e
2πy
β (for in) , v = e

2πy
β (for out) (5.8)

7Obviously the y coordinate introduced here and we use for the entire this section is differ from the y
coordinate used in the previous sections.

– 10 –
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which gives

ds2
in = 4δ2dwdw̄

(1− |w|2)2 , (5.9)

ds2
out =

(
β

2π

)2 dvdv̄

|v|2
. (5.10)

The crucial ingredient for the discussion of replica wormhole is the energy flux equation
at the intersection between the gravitational region and the bath CFT. Let us first
review this energy flux equation for the case of JT gravity coupled to conformal matter
fields [2, 95, 107]. This system is defined by the total action Itot = I0 + IJT + IM with

I0 = − φ0
16πG

[∫
d2x
√
gR+ 2

∫
dx
√
hK

]
(5.11)

IJT = − φ0
16πG

[∫
d2x
√
gφ(R+ 2) + 2

∫
dx
√
hφK

]
(5.12)

IM = ICFT[g, χ] , (5.13)

where χ denotes a set of the matter fields. I0 is just a topological contribution and we
consider the self-interacting matter fields; namely ICFT does not contain the dilaton field φ.
Therefore, the variation of the dilaton gives R = −2, so that the background is AdS2 and
we can take the Poincare coordinates

ds2
AdS2 = dτ2 + dη2

η2 . (5.14)

On the other hand, the variation with respect to the metric gives the dilaton equation

∇µ∇νφ− gµν∇σ∇σφ+ gµνφ = −8πGT (M)
µν , (5.15)

where T (M)
µν is the matter field stress tensor. In order to consider the dynamical boundary [95],

we parametrize the boundary by the boundary time u as (τ(u), η(u)). The boundary
condition of the metric gives us

1
ε2

= τ ′2 + η′2

η2 ⇒ η = ετ ′ +O(ε3) , (5.16)

where the prine denotes a derivative with respect to u and the boundary condition of the
dilaton gives

φ
∣∣
bdy = φ̄r

ε
. (5.17)

The energy flux equation comes from the (τ, η) component of the dilaton equation (5.15),
which is explicitly written as

∂τ∂ηφ = −8πGT (M)
τη . (5.18)
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By using ∂τ = (1/τ ′)∂u and introducing a normal derivative of the boundary by ∂n =
ε(η′∂τ − τ ′∂η), we can rewrite the energy flux equation as

−∂u
( √

h

8πG ∂nφ

)
= −(τ ′)2 T (M)

τη , (5.19)

up to a singular contribution. For JT gravity, we note that the ADM energy is given by [95]

M = −
√
h

8πG
(
∂nφ+ · · ·

)∣∣
bdy = φ̄r

8πG {τ, u} , (5.20)

where the ellipsis denotes a singular contribution. (In appendix C, we gives a short summary
for a derivation of the ADM energy in JT gravity. For more complete discussion, see [95].)
Therefore, the flux equation is now expressed in terms of the change of the ADM energy
as [2, 95, 107]

∂uM = −(τ ′)2 T (M)
τη = −i(τ ′)2(Tx+x+ − Tx−x−

)
. (5.21)

The discussion of replica wormhole in this system (i.e. JT gravity coupled to conformal
matter fields) is summarized in appendix D.

Now we come back to our AdS/BCFT set-up. The induced gravity on the brane actually
does not have the Schwarzian boundary action as we discussed in section 4. Therefore, in
the present set-up, the boundary energy flux equation is simply given by the bath CFT
energy-momentum tensor as

Tyy(iu)− Tȳȳ(−iu) = 0 , (5.22)

where 2iu = y− ȳ. Again this energy flux equation perfectly agrees with the energy reflection
equation in a BCFT point of view.

Under the conformal transformation

y → z ≡ F (v) , (5.23)

the energy-momentum tensor transforms as

Tyy(iu)→ e
4πy
β


dF

(
e

2πy
β

)
dv


2

Tzz −
c

24π

{
F

(
e

2πy
β

)
, v

} . (5.24)

Now we consider the replicated geometry. For this geometry, the uniformizing map is given by
z → z̃ ≡ z1/n, such that Tz̃z̃ = 0. Therefore, the energy-momentum tensor on the z-plane is

Tzz = − c

24π
{
z1/n, z

}
= − c

48π

(
1− 1

n2

) 1
z2 . (5.25)

Combining all, now the energy flux equation is written as

0 = ie
4πiu
β

(n2 − 1)
2n2

F ′
(
e

2πiu
β

)2

F
(
e

2πiu
β

)2 +
{
F
(
e

2πu
β

)
, v
}+ c.c. (5.26)
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In order to study the n→ 1 limit, it’s convenient to set

F (v) = v −A
B − v

, A = e
− 2πa

β , B = e
2πb
β . (5.27)

We note that for this choice of F (v), we have

{F (v), v} = 0 . (5.28)

This is simply because the choice of F (v) in (5.27) is a special case of Möbius transformation
and for any Möbius transformation the Schwarzian derivative is zero. Therefore, the energy
flux equation becomes

F = 0 , (5.29)

where

F = ie
4πiu
β
F ′(v)2

F (v)2 + c.c.

= i
e

4πiu
β (A−B)2(

e
− 2πiu

β −A
)2 (

e
2πiu
β −B

)2 + c.c. (5.30)

Furthermore, Fourier transforming the energy flux equation from u to k, the k = 1 equation
reads

0 =
∫ β

0
du e

− 2πiu
β F . (5.31)

Performing the τ -integration, this is written as

0 =
sinh

(
π(a−b)
β

)
sinh

(
π(a+b)
β

) . (5.32)

In order to compare with the quantum extremal surface condition (2.4), we need to go back
to the infinite straight line boundary. This is simply obtained by taking β →∞ and this
leads to

0 = a− b
a+ b

. (5.33)

This agrees with the quantum extremal surface condition (2.4) and set the location a by a = b.
In this section, we have lengthily discussed replica wormholes mainly following [7] to

obtain the externalization equation a = b. However, we can summarize what we have
done in this section much shortly without replica wormholes. The crucial equation is again
the energy flux conservation equation (5.22). More precisely we require this energy flux
conservation on the z plane:

Tzz(z)− Tz̄z̄(z̄) = 0 . (5.34)

– 13 –
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By transforming

z → z̃ =
(
x+ − a
b− x+

) 1
n

, z̄ → ¯̃z =
(
x− − a
b− x−

) 1
n

, (5.35)

we consider the vacuum state on the z̃ plane i.e. Tz̃z̃(z̃) = T¯̃z ¯̃z(¯̃z) = 0. Therefore, the stress
tensor on the z plane is simply given by the Schwarzian derivative as

Tzz(z) = − c

24π
{
z̃, z

}
= −

c
(
1− 1

n2

)
48π

(a− b)2

(a− x+)2(b− x+)2 , (5.36)

Tz̄z̄(z̄) = − c

24π
{¯̃z, z̄

}
= −

c
(
1− 1

n2

)
48π

(a− b)2

(a− x−)2(b− x−)2 , (5.37)

where x± = ±iτ − δ. Since we require Tzz(z) = Tz̄z̄(z̄) for any value of τ , this implies we
have to have a = b. This is the externalization equation.

6 AdS/BCFT and one point function

In general, one point functions in BCFT are non vanishing [108]. For a scalar primary
operator, the one point function looks like

〈O(y)〉 = N
|y|∆

, (6.1)

where |y| is the distance from the boundary and ∆ is the conformal dimension of the scalar
primary operator O. We also write the overall normalization as N . Below we will see
that in order to reproduce this non-vanishing one-point function, we need to consider a
bulk gravity solution with a non-trivial expectation value of a bulk scalar (see also earlier
work [61, 109]). Moreover, we need to explain the non-vanishing one point function from
the 2d gravity picture to justify the Island/BCFT correspondence. Again we focus on two
dimensional BCFTs and we employ the Euclidean signature. We will first study ∆ = 2 case
where we can obtain analytical results and later examine ∆ 6= 2 case numerically. The basic
guide line in the gravity dual is that the 3d metric is foliated by AdS2, which explains the
boundary conformal invariance.

6.1 Massless bulk scalar ∆ = 2

As a special case where we have an analytical solution, let us start with the scalar operator
with the dimension ∆ = 2, which is dual to a massless bulk scalar φ in the AdS/BCFT
setup. This scalar field is described by the standard action:

I = − 1
16πGN

∫
d3x
√
g(R− gab∂aφ∂bφ+ 2). (6.2)

As shown in [110], this has the Janus solution

ds2 = dρ2 + f(ρ) ds2
AdS2 , f(ρ) = 1 +

√
1− 2γ2 cosh 2ρ

2 ,

φ = φ0 + 1√
2

log
[

1 +
√

1− 2γ2 +
√

2γ tanh ρ
1 +

√
1− 2γ2 −

√
2γ tanh ρ

]
, (6.3)
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where ds2
AdS2

= dη2+dτ2

η2 is the Euclidean AdS2 metric. The parameter γ describes the
amount of the Janus deformation such that we have the pure AdS3 solution at γ = 0.

We will show that we can obtain a class of setups of AdS3/BCFT2 from this solution.
We assume the EOW brane Q is at ρ = ρ∗, such that the gravity dual extends in the
region ρ∗ < ρ <∞. Clearly, this background has the isometry of AdS2 which is dual to the
boundary conformal invariance.

For the scalar field φ, we assume the linear interaction on the brane

Ibdy = a

8πGN

∫
Q

√
hφ, (6.4)

where a is a coupling constant and hij is the induced metric on Q. Combined with the
original action, under the variation of φ, the total action I + Ibdy leads to the Neumann-like
boundary condition at Q:

∂ρφ|ρ=ρ∗ = a. (6.5)

This is satisfied if we set the parameter γ is related to a via

2γ(1 +
√

1− 2γ2)
(1 +

√
1− 2γ2)2 cosh2 ρ∗ − 2γ2 sinh2 ρ∗

= a. (6.6)

The Neumann boundary condition of the gravity coupled to the scalar field reads

Kij − hijK = −(T + aφ)hij . (6.7)

This is satisfied if
T + aφ(ρ∗) = − f

′(ρ∗)
2f(ρ∗)

. (6.8)

We find for ρ∗ → −∞ we have T → ∞ and vice versa. For a given value of T and a we
can determine the values of ρ∗ and γ, which give the AdS/BCFT setup. For example, the
boundary entropy in this model can be found from the holographic entanglement entropy
as we did in (3.15) and thus it is given by

Sbdy = c

6ρ∗. (6.9)

Now let us calculate the one-point function. In the AdS/CFT on the Poincare coordinate,

ds2 = dτ2 + dy2 + dz2

z2 , (6.10)

the bulk scalar behaves near the AdS boundary z → 0:

φ(τ, y, z) ' J(τ, y)z2−∆ + α(τ, y)z∆ + · · ·. (6.11)

Here J is interpreted as the source such that it adds the linear interaction
∫
dτdyJ(τ, y)O(τ, y)

and α corresponds to the expectation value as

α(τ, y) = 〈O(τ, y)〉. (6.12)
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Figure 3. The tension parameter T (left) and the boundary condition parameter a (right) as
functions of ρ for fixed values of γ. The blue, red, yellow and green curves correspond to γ = 0,
γ = 0.9/

√
2, γ = 0.99/

√
2 and γ = 1/

√
2, respectively. We set φ0 = 0.

In our solution (6.3) we find in the ρ→∞ limit:

φ ' φ∗ −
4γ(1 +

√
1− 2γ2)

(1 +
√

1− 2γ2)2 − 2γ2 e
−2ρ. (6.13)

Since the Poincare coordinate is related to the AdS2 slice coordinate via y
z ' sinh ρ, we

find
〈O(τ, y)〉 = − γ(1 +

√
1− 2γ2)

(1 +
√

1− 2γ2)2 − 2γ2 ·
1
y2 . (6.14)

Since the massless field corresponds to ∆ = 2, this result indeed agrees with the general
form (6.1). Note that the coefficient of one point function goes to ±∞ when γ → ∓1/

√
2.

Therefore, we can take any real values of the boundary entropy Sbdy and the one-point
function coefficient N in this holographic model.

On the other hand, the allowed range of the parameters (T, a) in this model is non-
trivially limited as plotted their behaviors as functions ρ for various values of γ in figure 3.
For example, a is always bounded as |a| ≤

√
2, where the equality is saturated in the

extreme limit γ → ±1/
√

2. It is also interesting to note that in the original AdS/BCFT
model [60, 61] without any matter fields, the range of the tension T is limited to |T | ≤ 1.
However, in our generalized model with a scalar, this is no longer true. In the extreme limit
γ → 1/

√
2, we find T → −2ρ∗, which is no longer bounded.

6.2 Massive bulk scalar: ∆ 6= 2

We would like to extend the previous analysis to a massive scalar so that we can treat
operators with ∆ 6= 2. We start with the following general action:

I = − 1
16πGN

∫
d3x
√
g
[
R− gab∂aφ∂bφ− U(φ)

]
. (6.15)

The scalar equation of motion and Einstein equation read

−2∂a
(√

ggab∂bφ
)

+√gU ′(φ) = 0 ,

Rab −
1
2gabR+ 1

2gabU(φ) = −1
2gab(∂φ)2 + ∂aφ∂bφ, (6.16)

where (∂φ)2 = gab∂aφ∂bφ.
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6.2.1 Ansatz and boundary condition

We impose the metric and scalar field ansatz:

ds2 = dρ2 + f(ρ)
(
dη2 + dτ2

η2

)
,

φ = φ(ρ). (6.17)

Then the equation of motions take the following form

−2∂ρ(f∂ρφ) + fU ′(φ) = 0, (6.18)
(∂ρf)2 + 4f + 2f2U(φ)− 2f2(∂ρφ)2 = 0, (6.19)

2f∂2
ρf − (∂ρf)2 + 2f2U(φ) + 2f2(∂ρφ)2 = 0. (6.20)

The previous massless case can be obtained by choosing U(φ) = −2. For a free massive
scalar we have U(φ) = −2 + m2φ2. The null energy condition reads NaN bRab ≥ 0. By
choosing Nρ = 1, Nη = 0, N τ = iη/

√
f , this leads to

2f + (∂ρf)2 − f∂2
ρf ≥ 0. (6.21)

We can show that the scalar field equation of motion (6.18) is automatically satisfied
if the Einstein equations (6.19) and (6.20) hold. Therefore the independent equations of
motion, which we need to solve, are summarized as

(∂ρφ)2 =
2f + (∂ρf)2 − f∂2

ρf

2f2 , (6.22)

∂2
ρf + 2 + 2fU(φ) = 0. (6.23)

Note that the null energy condition (6.21) simply says the obvious fact that the right hand
side of (6.22) is non-negative. For any given function φ(ρ) we can find f(ρ) by solving (6.22)
and also find the potential U(φ) by solving (6.23).

We would like to find a solution which satisfies the boundary condition at the AdS
boundary ρ→∞:

φ(ρ) ' φ1 + αe−∆ρ, f(ρ) ' f1e
2ρ, (6.24)

where we can set φ1 = 0 by shifting the scalar field. We also impose the boundary condition
on the end of the world-brane ρ = ρ∗ (6.5) and (6.8). The boundary behavior of φ(ρ)
in (6.24) shows that the one-point function in BCFT agrees with the general form (6.1)
and the coefficient N is proportional to the parameter α.

6.2.2 Analytical model at ∆ = 1

For ∆ = 1, we can find a simple analytical model. We choose

f(ρ) =
(
A cosh λρ

)2
. (6.25)

This determined the scalar field as

∂ρφ =
√

1−A2λ2

A cosh λρ . (6.26)
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Thus we require Aλ ≤ 1. This is solved as follows

φ = 2
√

1−A2λ2

Aλ
arctan

[
tanh λρ2

]
. (6.27)

In the limit ρ→ ±∞, it behaves as follows

φ(ρ) ' 2
√

1−A2λ2

Aλ

(
±π4 ∓ e

∓λρ
)
. (6.28)

Therefore this solution interpolates two criticial points φ = φ± ≡ ±π
√

1−A2λ2

2Aλ . The potential
is found as

U(φ) = −2λ2 − 1−A2λ2

A2 cos2
[

Aλ√
1−A2λ2

φ

]
. (6.29)

Note that we get the pure AdS3 solution if we set Aλ = 1.
Around φ = φ±, it is expanded as

U(φ) ' −2λ2 − λ2(φ− φ±)2. (6.30)

Since the AdS radius is LAdS = 1
λ in the limit |ρ| → ∞, we can obtain the conformal

dimension of primary dual to φ as ∆ = 1. This also agrees with the bahavior in (6.28). In
this model, we can limit the space to ρ∗ < ρ <∞ to get the gravity dual of the BCFT.

6.3 Numerical solution for free massive scalar

We consider the free massive dilaton case by setting U(φ) = −2 + m2φ2. The Einstein
equation and the Klein-Gordon equation are given by

f ′′ − 4f + 2 = −2m2fφ2 , (6.31)
(f ′)2 − 2ff ′′ + 4f2 = 2f2(m2φ2 + (φ′)2) , (6.32)

fφ′′ + f ′φ′ = m2fφ . (6.33)

The two equations (6.31) and (6.32) from the Einstein equation are not independent and
can be reduced into one equation

(f ′)2 − 4f2 + 4f = 2f2((φ′)2 −m2φ2) . (6.34)

Therefore, we need to solve the Klein-Gordon equation (6.33) and this equation (6.34)
simultaneously for f and φ. For the boundary conditions (6.24) for f and φ, we impose in
the ρ→∞ limit

f(ρ)→ 1
4 e

2ρ + 1
2 −

α2

8 e2(1−∆)ρ + · · · , (6.35)

φ(ρ)→ α e−∆ρ + · · · , (6.36)

where we kept two different subleading terms for f(ρ) because the actual subleading term
depends on whether ∆ < 1 (e2(1−∆)ρ is dominant) or ∆ > 1 (1/2 is dominant). The
coefficients of these subleading terms are fixed by consistency of the Einstein equation (6.34).
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Figure 4. Numerical plots of singular solutions of g(u), χ(u), f(u) and φ(u) with ∆ = ∆+ for
various dimensions in the range of 1.6 ≤ ∆+ ≤ 2.4. Here we have Log plot for f(u) and choose the
parameter α = 2.0.

Also the coefficient of the leading term in f(ρ) is adjustable by shifting ρ coordinate, so we
choose it for later convenience. From the behavior of φ(ρ) in (6.35) we can confirm that the
one-point function in BCFT (6.1) can be reproduced and the coefficient N is proportional
to the parameter α.

The numerical solutions for various small masses are shown in figure 4 and 5. In order
to perform numerical evaluation, we have to map the coordinate and the field into finite
space. To this end, we introduced

u = tanh ρ , (6.37)

which map the coordinate into −1 ≤ u ≤ 1 and8

f(u) = 4g(u)
1− u2 , φ(u) =

(
1− u2

4

)∆
2 −1

χ(u) , (6.38)

where we choose ∆ = ∆+ = 1 +
√

1 +m2.9 In this paper, we focus on the masses m2 > −1
above the BF bound [112, 113], so in terms of the dimensions we consider ∆+ > 1. In terms

8We could use φ(u) =
(

1−u2

4

)∆
2
χ(u), but it seems ∆

2 − 1 factor is numerically more stable [111].
9The choice ∆ = ∆− = 1−

√
1 +m2 corresponds to excited states in the boundary theory, which might

be interesting for other topics, but here we focus on the choice ∆ = ∆+ = 1 +
√

1 +m2 which corresponds
to the vacuum state in the boundary theory.
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Figure 5. Numerical plots of non-singular solutions of g(u), χ(u), f(u) and φ(u) with ∆ = ∆+ for
various dimensions in the range of 1.2 ≤ ∆+ ≤ 2.0. At least, adjusting the values of α, we can find
a non-singular solution for a wide range of non-irrelevant dimension ∆. Here we took α = 2.101 (for
∆ = 1.2), α = 2.083 (for ∆ = 1.4), α = 1.962 (for ∆ = 1.6), α = 1.663 (for ∆ = 1.8) and α = 1.414
(for ∆ = 2.0).

of g and χ, the boundary conditions are written as

g(u)→ 1
4 −

α2

8

(
1− u2

4

)∆

+ · · · , (6.39)

χ(u)→ α

(
1− u2

4

)
+ · · · , (6.40)

for u→ 1. In particular this means that χ(u)→ 0 and χ′(u)→ −α/2 in the u→ 1 limit.
In figure 4, we plotted singular solutions for various dimensions in the range of 1.6 ≤

∆+ ≤ 2.4. For each value of ∆+ (or m2) we see a naked singularity at u = us where
g(us) = 0 (i.e. f(us) = 0). From (6.22), at such location we have φ′(us) diverging, so the
location is singular. Such a naked singularity must be prohibited for the usual AdS/CFT
without an EOW brane [110, 114]. However, for our current study with an EOW brane, the
existence of the naked singularity just means that we have to place the EOW brane before
this singularity (us < u∗). Then, the presence of this singularity behind the EOW brane
does not cause any problem. In general, as we decrease the value of α, the singular location
us moves towards the other boundary u→ −1 and it eventually becomes a non-singular
solution. On the other hand, if we increase the value of α, the singular location us moves
towards the first boundary u→ +1; therefore the allowed bulk region becomes narrower.
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In figure 5, we plotted non-singular solutions for the entire bulk region (−1 ≤ u ≤ 1)
with non-irrelevant dimensions ∆+. We have not investigated the whole solution space
(which is spanned by ∆+ and α), but at least adjusting values of α appropriately, we could
find such non-singular solutions for a wide range of non-irrelevant dimensions ∆+.

We can read off the holographic energy stress tensor Tij by rewriting the above solution
into the Fefferman-Graham expansion:

ds2 = dz2 + γij(x, z)dxidxj
z2 ,

γij(x, z) ' δij + Tij(x)z2 +O(z3). (6.41)

From this analysis, we can confirm from the behavior of f(ρ) given by (6.35) that Tij
is vanishing. We write (x1, x2) = (τ, y). Therefore the above numerical solution indeed
corresponds to the vacuum state of the BCFT.

6.4 One point function and Island/BCFT correspondence

Finally, we would like to come back to the Island/BCFT correspondence. Since one point
functions (6.1) are generally non-vanishing in BCFTs, the same should be true in the
other description where a 2d CFT is coupled to a 2d induced gravity. The latter theory is
described by a 2d CFT on the union of AdS2 and a flat half plane as in (2.2) with the metric
is dynamical only on the AdS2 region. One may think that it is clear that the one-point
function of a primary is vanishing as is true in 2d CFTs on R2. Moreover, the dynamical
metric on AdS2 does not seem to change the situation.

However, if we look into the AdS/BCFT solution shown in previous subsections, the
non-trivial profile of a scalar field plays a crucial role to reproduce the one-point function.
Indeed, we find that the value of the scalar field on the EOW brane Q given by φ(ρ∗) is
non-vanishing when α 6= 0. This means that there is a source to O(x) on the 2d gravity on
Q. We can write this source by adding α̂

∫
dτ ′dx′

√
hO(τ ′, x′) to the CFT action, where the

external field α̂ is proportional to α when α is small. In the presence of such a source we
can estimate the one-point function by a perturbation with respect to the source as follows

〈eα̂
∫
dτ ′dx′

√
hO(τ ′,x′)O(τ, x)〉 ' α̂

∫
dτ ′dx′

√
h〈O(τ ′, x′)O(τ, x)〉

= α̂

∫
dτ ′dx′

x′2
(x′)∆

[(x− x′)2 + (τ − τ ′)2]∆

∝ 1
x∆ , (6.42)

which indeed reproduces the general form (6.1). Note that in the above calculation we
took into the Weyl factor e−∆φ = (x′)∆ from the operator O(τ ′, x′) inserted on Q because
the induced metric on Q is given by hττ = hxx = 1

(x′)2 . In this way we can obtain the
non-trivial one point function in a BCFT from the 2d gravity description.

7 Conclusions and discussions

In this paper, we argued an equivalence relation, which we call Island/BCFT correspondence,
between two theories: (i) a CFT in a right half plane coupled to an induced gravity in the
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left half one, and (ii) a BCFT, as in figure 2. We focused on the two dimensional case
and confirmed this equivalence by examining the calculation of entanglement entropy, the
boundary condition of energy stress tensor and one-point functions. We also identified the
2d induced gravity which is dual to the boundary dynamics of a 2d BCFT.

The Island prescription of computing entanglement entropy in the theory (i) is equivalent
to the mirror charge calculation of the field theoretic entanglement entropy in the theory (ii).
The complete reflection boundary condition of energy flux Txt = 0 in (ii) is also obtained in
(i) because the dynamical metric in 2d gives the vanishing of energy stress tensor, namely
the Virasoro constraint. We derived the 2d induced gravity from its 3d gravity dual and
found that it is given by a 2d CFT coupled to a 2d gravity whose action is simply given
by the cosmological constant term. After integrating out the CFT fields, we obtain the
Liouville action (4.10) or more covariantly a specific type of dilaton gravity (4.15). We also
showed that to obtain non-vanishing bulk one-point functions in BCFTs (6.1), we need to
modify the original prescription of AdS/BCFT by considering a non-trivial background
of matter fields. The Neumann-like boundary conditions of matter fields (6.5) and (6.7),
imposed on the EOW brane, induce this non-trivial matter field background. We obtained
analytical solutions for the calculation of a holographic one point function of an exactly
marginal operator. For more general scalar operators we found numerical solutions. We
confirmed that this new prescription correctly reproduces non-trivial one point functions.
We also explained how we obtain the non-vanishing one point functions from the theory
(i). For this we noted that due to the background bulk scalar field in the gravity dual, a
source is turned on for the operator dual to the scalar field and this leads to a non-trivial
one point function.

There are several interesting future directions. An obvious one is a higher dimensional
generalization, which we will come back soon [115]. Another important problem is to explore
string theory embedding of the Island/BCFT correspondence and see how the coefficients
of one-point functions behave in such top down models. It will also be intriguing to extend
the AdS/BCFT construction and the Island/BCFT correspondence to gravity duals of more
general critical theories [116–120].
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A Notation

In this paper, we use various coordinates to discuss the AdS3/BCFT2 and its braneworld
holography. For readers convenience, we summarize our notation in this appendix. When
we combine whatever three-dimensional coordinates, we use indices a, b, · · · = 1, 2, 3, while
when we combine whatever two-dimensional coordinates, we use indices i, j, · · · = 1, 2. The
bulk three-dimensional metric is denoted by gab, the induced metric on the brane is denoted
by hij and the induced metric on the asymptotic boundary is denoted by γij . We also use
the following explicit coordinates.

• AdS3 Poincare coordinates:

ds2
AdS3 = −dt

2 + dy2 + dz2

z2 , (for Lorentzian) (A.1)

= dτ2 + dy2 + dz2

z2 , (for Euclidean) (A.2)

• AdS2 foliation coordinates of AdS3:

ds2
AdS3 = dρ2 + cosh2 ρ

(
dη2 − dt2

η2

)
, (for Lorentzian) (A.3)

= dρ2 + cosh2 ρ

(
dη2 + dτ2

η2

)
, (for Euclidean) (A.4)

• Janus AdS3 coordinates:

ds2
Janus AdS3 = dρ2 + f(ρ)

(
dη2 − dt2

η2

)
, (for Lorentzian) (A.5)

= dρ2 + f(ρ)
(
dη2 + dτ2

η2

)
, (for Euclidean) (A.6)

• AdS2 coordinates on the brane:

ds2
AdS2 = dη2 − dt2

η2 , (for Lorentzian) (A.7)

= dη2 + dτ2

η2 , (for Euclidean) (A.8)

• BCFT2 coordinates:

ds2
BCFT2 = −dt2 + dy2 , (for Lorentzian) (A.9)

= dτ2 + dy2 , (for Euclidean) (A.10)

where y is restricted −δ ≤ y.
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• Two-dimensional extended coordinates: we combine the AdS2 coordinates on the brane
and the BCFT2 coordinates by introducing a new spacial coordinate x as

ds2
(2) = δ2(dx2 − dt2)

x2 (x < −δ) , ds2
(2) = −dt2 + dx2 (−δ ≤ x) (for Lorentzian)

(A.11)

ds2
(2) = δ2(dx2 + dτ2)

x2 (x < −δ) , ds2
(2) = dτ2 + dx2 (−δ ≤ x) (for Euclidean)

(A.12)

• Light cone coordinates of AdS2:

x+ = t+ η , x− = −t+ η , (for Lorentzian) (A.13)
x+ = iτ + η , x− = −iτ + η , (for Euclidean) (A.14)

which gives

ds2
AdS2 = 4dx+dx−

(x+ + x−)2 , (for both Lorentzian and Euclidean) (A.15)

B On-shell action of induced gravity

In this appendix, we present a naive discussion for the derivation of the energy refrection
eqaution in the higher-dimensional version of the AdS/BCFT set-up. More complete
discussion will be presented in [115]. We would like to compute the on-shell action of the
induced gravity on the brane. The total action we start with is given by

Itotal = Ibulk + Ibrane + Ibdy , (B.1)

where

Ibulk = − 1
16πG

∫
M
dd+1x

√
g(Rd+1 − 2Λ) , (B.2)

Ibrane = − 1
8πG

∫
Q
ddx
√
h(KQ − T ) , (B.3)

Ibdy = − 1
8πG

∫
Σ
ddx
√
γKΣ . (B.4)

As discussed in [102, 103], the induced gravity on the brane is described by

Ibulk + Ibrane ⇒ IΣ + IIG + Ict , (B.5)

where

IΣ = −(d− 1)Vd−1L

κ2εd
, (B.6)

IIG = (d− 1)Vd−1
κ2

∫ 0

−∞
dx edφ

[√
1− e−2φφ̇2 + e−φφ̇ arcsin

(
φ̇e−φ

)
+ T

d− 1

]
, (B.7)

Ict = −Vd−1
κ2

[
e(d−1)φ arcsin

(
φ̇e−φ

)]0

−∞
, (B.8)
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where the dot denotes a derivative with respect to x. We also defined L as the length of
the y direction on the boundary and Vd−1 as the rest of d − 1 dimensional volume. The
constant contribution IΣ is the contribution from the BCFT on Σ with width given by
L− λε, where λ is defined in (3.7). The background solution obtained from IIG is given by

e2φ = 1(
−
√

1−
(

T
d−1

)2
x+ ε

)2 , (B.9)

and one can compute the on-shell actions for the induced gravity as

Ion-shell
IG = Vx

κ2

arcsin
√

1−
(

T
d−1

)2

εd−1 , (B.10)

Ion-shell
ct = −Vx

κ2

arcsin
√

1−
(

T
d−1

)2

εd−1 . (B.11)

Therefore, the total on-shell action vanishes due to the precise cancellation between Ion-shell
IG

and the counterterm. This implies that the ADM energy of the induced gravity also precisely
zero. Hence the energy flux equation between the induced gravity on the brane and the
boundary CFT on the asymptotic boundary Σ (which we will describe more in detail in
next section) gives

Tx+x+ − Tx−x− = 0 , (B.12)

for any dimension. Here x± are the light cone coordinates constructed by the spacial normal
coordinate of the interface and time direction.

However this discussion is naive as we did not care appropriately the cutoff ε. We will
come back to this question in the near future [115].

C ADM energy in JT gravity

This appendix is a quick summary of the ADM Energy in JT gravity. For more complete
discussion, refer to [95].

For two-dimensional gravity, the ADM energy is defined by (e.g. see [121])

8πGM =
√
h(−∂nφ+ φ) , (C.1)

where h is the induced metric on the boundary and ∂n denotes the derivative with respect to
an outward pointing unit normal vector. In JT gravity, the boundary surface is defined by
(τ(u), η(u)), where u is a parameter called “boundary time” [95]. The boundary condition
of the metric fixes η(u) = ετ ′(u) + · · · , while the boundary condition of dilaton gives
φ|bdy = φ̄r/ε. Therefore, the normal derivative is now given by

∂n = ε(η′∂τ − τ ′∂η) , (C.2)
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and the induced metric is
√
h = ε−1. Combining these, the ADM energy is now written as

8πGM = τ ′∂ηφ− η′∂τφ+ φ

ε
. (C.3)

Using the (η, η) component of the dilaton equation

∂2
τφ−

1
η
∂ηφ−

1
η2 φ = 0 , (C.4)

we can eliminate the ∂ηφ term from the r.h.s. of (C.3). Then, rewriting ∂τ = (τ ′)−1∂u, we
find the ADM energy is given by the Schwarzian derivative

8πGM = φ̄r{τ(u), u} . (C.5)

D Replica wormholes in JT gravity

In this appendix, we review the replica wormholes in the system of JT gravity coupled to
conformal matter fields [2]. In JT gravity the energy flux equation is given by (5.21)

φ̄r
8πG ∂u{τ, u} = −i(τ ′)2(Tx+x+ − Tx−x−

)
. (D.1)

If we set τ = e2πiu/β , then we have

Tyy − Tȳȳ =
(
dτ

du

)2 (
Tx+x+ − Tx−x−

)
= −

(2π
β

)2 (
Tx+x+ − Tx−x−

)
, (D.2)

so the energy flux equation is written as

φ̄r
8πG

(
β

2π

)2
∂u{τ, u} = i

(
Tyy − Tȳȳ

)
. (D.3)

For replicated geometry, we have

τ̃ =
(
τ −A
1−Aτ

) 1
n

, (D.4)

so the energy flux equation becomes

φ̄r
8πG

(
β

2π

)2
∂u{τ̃ , u} = i

(
Tyy − Tȳȳ

)
. (D.5)

We can easily evaluate the Schwarzian derivative and find

{τ̃ , u} = 2π2

β2 −
2π2

β2

(
1− 1

n2

) (1−A2)2

|1−Aτ |4 . (D.6)

The transformation of the stress tensor is evaluated as in section 5. Therefore, in the
replicated geometry, the energy flux equation is found as

∂uR(u) = cG

3φ̄r
F
(
e

2πiu
β

)
, (D.7)
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where F is defined in (5.30) and

R(u) = (1−A2)2

|1−Aτ |4 . (D.8)

Finally Fourier transforming from τ to k, the k = 1 equation gives

0 =
∫ β

0
du e

− 2πiu
β

(
cG

3φ̄r
F − ∂uR(u)

)

= βcG

3πφ̄r

sinh π(a−l)
β

sinh π(a+l)
β

− 1
sinh 2πa

β

. (D.9)

This equation gives the same condition as derived from the quantum extremal surface:

sinh 2πa
β

= 3πφ̄r
βcG

sinh π(a+l)
β

sinh π(a−l)
β

. (D.10)
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