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Abstract: The mass, current coupling, and width of the doubly charmed four-quark meson
T+
cc are explored by treating it as a hadronic molecule M+

cc ≡ D0D∗+. The mass and current
coupling of this molecule are calculated using the QCD two-point sum rule method by
including into analysis contributions of various vacuum condensates up to dimension 10.
The prediction for the mass m = (4060±130) MeV exceeds the two-meson D0D∗+ threshold
3875.1 MeV, which makes decay of the moleculeM+

cc to a pair of conventional mesons D0D∗+

kinematically allowed process. The strong coupling G of particles at the vertex M+
ccD

0D∗+

is found by applying the QCD three-point sum rule approach, and used to evaluate the
width of the decay M+

cc → D0D∗+. Obtained result for the width Γ = (3.8 ± 1.7) MeV
demonstrates that M+

cc is wider than the resonance T+
cc .
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1 Introduction

Recently, the LHCb collaboration informed about observation, for the first time, of a doubly
charmed axial-vector state T+

cc composed of four quarks ccud [1, 2]. This state was fixed in
D0D0π+ mass distribution as a narrow peak with the width Γ = (410± 165± 43+18

−38) keV,
which means that it is longest living exotic meson discovered till now. The mass of T+

cc is
very close to the two-meson D0D∗+ threshold 3875.1 MeV, but is smaller than this limit by
an amount of δmexp = (−273±61±5+11

−14) keV. These features of T+
cc , in particular its narrow

width, made the doubly charmed exotic meson T+
cc an object of intensive studies [3–11].

It is worth emphasizing that doubly charmed tetraquarks attracted already interests
of researchers. This is connected with estimated stability some of tetraquarks containing
heavy diquarks bb, bc and cc against strong and maybe electromagnetic decays. If exist,
such particles can transform to mesons only through weak decays, and have mean lifetimes
which would be considerably longer than that of conventional mesons [12–15]. There is
growing conviction that tetraquarks built of bb diquarks are stable particles, whereas the
situation with ones composed of bc and cc diquarks is still remaining controversial [16–18].

Because the present work is devoted to investigation of doubly charmed states, below
we restrict ourselves by analyses of problems and achievements connected only with these
particles. Thus, tetraquarks ccqq′ were theoretically studied using different methods of the
high energy physics. In the framework of the QCD sum rule method they were analyzed
in refs. [19, 20]. In the first article the authors explored the axial-vector tetraquark ccud.
Prediction for its mass (4000± 200) MeV implies that the axial-vector tetraquark ccud is
unstable and readily decays to mesons D0D∗+. Four-quark exotic mesons of general ccqq′

content and quantum numbers JP = 0−, 0+, 1− and 1+ were investigated in ref. [20].
In accordance with results of this analysis, masses of tetraquarks ccqq, ccqs, and ccss

are above corresponding thresholds for all explored quantum numbers. In other words, a
class of tetraquarks composed of a diquark cc and a light antidiquark does not contain
strong-interaction stable particles.
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Discovery of doubly charmed baryon Ξ++
cc = ccu by the LHCb collaboration [21], and

extracted experimental information stimulated relatively new studies of heavy tetraquarks.
A reason was that, these experimental data were employed as new input parameters in
a phenomenological model to estimate masses of the axial-vector tetraquarks T−

bb;ud and
T+
cc;ud [16, 17]. In these articles it was demonstrated that T+

cc;ud has the mass (3882±12) MeV
and 3978 MeV, respectively, which are above thresholds for both D0D∗+ and D0D+γ decays.
Other members of ccqq, and ccqs families were considered in ref. [17]: none of them were
classified as a stable state. Similar conclusions about properties of T+

cc;ud were drawn in
refs. [22–24] as well. Contrary to these studies, in ref. [25] the authors calculated the mass
of T+

cc;ud using a constituent quark model and found that it is 23 MeV below the two-meson
threshold. Stable nature of T+

cc;ud was demonstrated also by means of lattice simulations [26],
in which its mass was estimated (−23± 11) MeV below the two-meson threshold.

Detailed studies of pseudoscalar and scalar exotic mesons ccud were done in ref. [27].
Analysis performed there, demonstrated that these particles are strong-interaction unstable
structures, and fall apart to conventional mesons. Full widths of these tetraquarks were
evaluated by utilizing their decays to D+D∗(2007)0, D0D∗(2010)+, and D0D+ mesons,
respectively. It was found, that these structures with widths ∼ 130 MeV and ∼ 12 MeV are
relatively wide resonances. Structures ccss and ccds form another interesting subgroup of
doubly charmed tetraquarks, because they are also doubly charged particles. Masses and
widths of such pseudoscalar tetraquarks were evaluated in ref. [28].

Doubly charmed four-quark structures were studied also in the context of the hadronic
molecule picture, i.e., they were modeled as molecules of conventional mesons. It is worth
noting that charmonium molecules are not new objects for investigations: problems of such
compounds were addressed in literature decades ago [29]. As a hadronic molecule M+

cc ≡
D0D∗+ built of ordinary mesons D0 and D∗+, the axial-vector state ccud was considered in
refs. [30, 31]. The mass of M+

cc was estimated in ref. [30] using the QCD spectral sum rule
approach. Obtained prediction (3872.2± 39.5) MeV shows that this molecule cannot decay
to mesons D0 and D∗+, but its mass is enough to trigger the strong decay M+

cc → D0D0π+.
In our recent article, we treated T+

cc as an axial-vector diquark-antidiquark (tetraquark)
state with quark content ccud, and calculated its spectroscopic parameters and full width [3].
Computations performed in the context of the QCD two-point sum rule method led for
the mass of this state to the result (3868± 124) MeV, which is consistent with the LHCb
measurements. This means that T+

cc does not decay to a meson pair D0D∗+. Therefore,
we evaluated full width of T+

cc by considering its alternative strong decay channels. In
fact, production of D0D0π+ can run through decay of T+

cc to a scalar tetraquark T 0
cc;uu

and π+ followed by the process T 0
cc;uu → D0D0. The process T+

cc → T̃ π0 → D0D+π0 is
another decay mode of T+

cc . Here, T̃ is the scalar exotic meson with content ccud. This
means, that in our analysis decays to scalar tetraquarks T 0

cc;uu and T̃ was considered as
a dominant mechanism for transformation of T+

cc . Full width of T+
cc estimated in ref. [3]

equals to Γ = (489± 92) keV which nicely agrees with the experimental data.
As is seen, an assumption about the diquark-antidiquark structure of T+

cc gives for its
mass and width results compatible with the LHCb data [3]. In accordance to ref. [30], the
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molecule model for the mass of M+
cc leads to almost the same prediction. Unfortunately, in

this paper the authors did not compute width of the molecule M+
cc , therefore it is difficult

to declare a full convergence of results for T+
cc and M+

cc obtained in the framework of the
QCD sum rule method. The reason is that masses of T+

cc and M+
cc were extracted, as usual,

with theoretical uncertainties, and due to overlapping of relevant regions, this information
is not enough to distinguish diquark-antidiquark and molecule states. To make reliable
statements about internal organization of the four-quark state seen by LHCb, it is necessary
to investigate decay modes of this particle, and calculate its full width.

The program outlined above was realized in the diquark-antidiquark picture in our
article [3]. In the present work, we consider this problem in the framework of the hadronic
molecule model, and calculate the mass and width of M+

cc . We wish to answer a question
whether both the mass and width of M+

cc agree with new LHCb data. For these purposes,
we calculate the spectroscopic parameters of M+

cc using the QCD two-point sum rule
method [32, 33]. Our analysis proves that the mass of M+

cc exceeds the LHCb data, which
makes the process M+

cc → D0D∗+ kinematically allowed one. The width of this decay
channel is found by means of the three-point version of QCD sum rule approach: it is used
to extract the strong coupling G at the vertex M+

ccD
0D∗+.

This article is structured in the following manner: in section 2, we compute the mass m
and coupling f of the molecule M+

cc in the context of the QCD two-point sum rule method.
In these calculations, we take into account various vacuum condensates up to dimension 10.
In section 3, we consider the decay mode M+

cc → D0D∗+, find the strong coupling G and
evaluate the width of this process. We reserve section 4 for discussion and conclusions.

2 Spectroscopic parameters of M+
cc

The sum rules necessary to evaluate the spectroscopic parameters of the molecule M+
cc can

be derived from analysis of the correlation function

Πµν(p) = i

∫
d4xeipx〈0|T {Jµ(x)J†ν(0)}|0〉, (2.1)

where Jµ(x) is the interpolation current for the axial-vector state M+
cc . In the hadronic

molecule model the current Jµ(x) is given by the expression

Jµ(x) = da(x)γµca(x)ub(x)γ5cb(x), (2.2)

where a and b are color indices.
To find the sum rules for m and f , we express the correlation function Πµν(p) in terms

of M+
cc molecule’s physical parameters. Because M+

cc is composed of ground-state mesons
D0 and D∗+, it can be treated as lowest lying system in this class of particles. Therefore, in
the correlation function ΠPhys

µν (p), we write down explicitly only first term that corresponds
to M+

cc

ΠPhys
µν (p) = 〈0|Jµ|M

+
cc(p, ε)〉〈M+

cc(p, ε)|J†ν |0〉
m2 − p2 + · · · . (2.3)

– 3 –
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The ΠPhys
µν (p) is obtained by inserting into the correlation function eq. (2.1) the full set of

states with spin-parities JP = 1+, and carrying out integration over x. The dots in eq. (2.3)
denote contributions coming from higher resonances and continuum states.

To derive eq. (2.3), we assume that the physical side of the sum rule can be approximated
by a single pole term. In the case of the multiquark systems ΠPhys

µν (p) receives contribution,
however, also from two-meson reducible terms [34, 35]. That is because the current Jµ(x)
interacts not only with a molecule M+

cc , but also with the two-meson continuum with
the same quantum numbers and quark content. Effects of current-continuum interaction,
properly taken into account, generates a finite width Γ(p2) of the hadronic molecule and
leads to the modification in eq. (2.3) in accordance with the prescription [36]

1
m2 − p2 →

1
m2 − p2 − i

√
p2Γ(p2)

. (2.4)

The two-meson contributions can be included into analysis by rescaling the coupling f of
M+
cc , and keeping untouched its mass. Calculations demonstrated that these effects are

small and do not exceed uncertainties of sum rule calculations. Indeed, in the case of
the doubly charmed pseudoscalar tetraquark ccss with the mass mT = 4390 MeV and full
width ΓT ≈ 300 MeV, two-meson effects lead to additional ≈ 7% uncertainty in the current
coupling fT [28]. For the resonance Z−c (4100) these ambiguities amount to ≈ 5% of the
coupling fZc [37]. As we shall see below, the molecule M+

cc has the width (3.8± 1.7) MeV.
Therefore, aforementioned effects are negligible, and in ΠPhys

µν (p) it is enough to employ the
zero-width single-pole approximation.

The function ΠPhys
µν (p) can be presented in a more compact form. To this end, we

introduce the matrix element

〈0|Jµ|M+
cc(p, ε)〉 = fmεµ, (2.5)

where εµ is the polarization vector of the molecule M+
cc . It is not difficult to demonstrate

that the function ΠPhys
µν (p) in terms of m and f has the simple form

ΠPhys
µν (p) = m2f2

m2 − p2

(
−gµν + pµpν

m2

)
+ · · · . (2.6)

The QCD side of the sum rules ΠOPE
µν (p) has to be calculated in the operator product

expansion (OPE) with some fixed accuracy. To find ΠOPE
µν (p), we calculate the correlation

function using explicit form of the current Jµ(x). As a result, we express ΠOPE
µν (p) in terms

of heavy and light quark propagators

ΠOPE
µν (p) = i

∫
d4xeip·x

{
Tr
[
γ5S

bb′
c (x)γ5S

b′b
u (−x)

]
× Tr

[
γµS

aa′
c (x)γνSa

′a
d (−x)

]
− Tr

[
γµS

ab′
c (x)γ5

×Sb′bu (−x)γ5S
ba′
c (x)γνSa

′a
d (−x)

]}
. (2.7)

In eq. (2.7) Sabq (x) and Sabc (x) are propagators of q(u, d) and c-quarks, formulas for which
are collected in appendix.
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The QCD sum rules can be derived using the same Lorentz structures in ΠPhys
µν (p) and

ΠOPE
µν (p). For our purposes, the structures proportional to gµν are appropriate, because

they are free of contributions of spin-0 particles. To obtain a sum rule, we equate invariant
amplitudes ΠPhys(p2) and ΠOPE(p2) corresponding to these structures, and apply the Borel
transformation to both sides of the obtained expression. The last operation is necessary
to suppress contributions stemming from the higher resonances and continuum states. At
the following phase of manipulations, we make use an assumption about the quark-hadron
duality, and subtract from the physical side of the equality higher resonances’ and continuum
contributions. By this way, the final sum rule equality acquires a dependence on the Borel
M2 and continuum threshold (subtraction) s0 parameters. This equality, and second
expression obtained by applying the operator d/d(−1/M2) to its both sides, form a system
which is used to find sum rules for the mass m and coupling f

m2 = Π′(M2, s0)
Π(M2, s0) , (2.8)

f2 = em
2/M2

m2 Π(M2, s0), (2.9)

where Π′(M2, s0) = dΠ(M2, s0)/d(−1/M2).
In eqs. (2.8) and (2.9) the function Π(M2, s0) is Borel transformed and continuum

subtracted invariant amplitude ΠOPE(p2). We calculate Π(M2, s0) by taking into account
quark, gluon and mixed vacuum condensates up to dimension 10. It has the following form

Π(M2, s0) =
∫ s0

4m2
c

dsρOPE(s)e−s/M2 + Π(M2), (2.10)

where ρOPE(s) is the two-point spectral density. The second component of the invariant
amplitude Π(M2) contains nonperturbative contributions calculated directly from ΠOPE

µν (p).
The explicit expression of the function Π(M2, s0) is removed to appendix.

The quark, gluon and mixed condensates which enter to the sum rules (2.8) and (2.9)
are universal parameters of computations:

〈qq〉 = −(0.24± 0.01)3 GeV3,

〈qgsσGq〉 = m2
0〈qq〉, m2

0 = (0.8± 0.1) GeV2,

〈αsG
2

π
〉 = (0.012± 0.004) GeV4,

〈g3
sG

3〉 = (0.57± 0.29) GeV6,

mc = 1.275± 0.025 GeV. (2.11)

The correlation function Π(M2, s0) depends on the c quark mass, numerical value of which
is shown in eq. (2.11) as well. Contrary, the Borel and continuum threshold parameters
M2 and s0 are auxiliary quantities of calculations: their choice depends on the problem
under consideration, and has to meet restrictions imposed on the pole contribution (PC)
and convergence of OPE.
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To estimate the PC, we use the expression

PC = Π(M2, s0)
Π(M2,∞) . (2.12)

The convergence of the operator product expansion is checked by means of the formula

R(M2) = ΠDimN(M2, s0)
Π(M2, s0) , (2.13)

where ΠDimN(M2, s0) is the contribution of the last three terms in OPE, i.e.,

DimN = Dim(8 + 9 + 10).

In the current investigation, we use a restriction PC ≥ 0.2 which is typical for multiquark
hadrons. We also consider OPE as a convergent provided at the minimum of the Borel
parameter the ratio R(M2) is less than 0.01. Calculations confirm that the working windows
that satisfy these requirements are

M2 ∈ [4, 6] GeV2, s0 ∈ [19.5, 21.5] GeV2. (2.14)

In fact, within these regions PC changes on average in limits 0.20 ≤ PC ≤ 0.61, and at the
minimum M2 = 4 GeV2, we get R(M2) ≤ 0.01. In general, sum rules’ predictions should
not depend on the choice of M2, but in real analysis there is a undesirable dependence of
m and f on the Borel parameter M2. Therefore, the window for M2 should minimize this
dependence as well, and the region from eq. (2.14) obeys this condition.

To extract the mass m and coupling f , we calculate them at different choices of the
parameters M2 and s0, and find their values averaged over the working regions eq. (2.14)

m = (4060± 130) MeV,
f = (5.1± 0.8)× 10−3 GeV4. (2.15)

These results correspond to the point M2 = 5 GeV2 and s0 = 20.4 GeV2 which is ap-
proximately at middle of the regions eq. (2.14). The pole contribution computed at this
point is equal to PC ≈ 0.53, which guarantees credibility of obtained predictions, and the
ground-state nature of M+

cc in its class of particles.
The massm of the moleculeM+

cc as a function ofM2 is plotted in figure 1. Here, we show
dependence ofm on the Borel parameter in a wide range ofM2. One can see, that predictions
obtained at values of M2 from eq. (2.14) are relatively stable, though residual effects of M2

on m is evident in this region as well: this is unavoidable feature of the sum rule method
which limits its accuracy. At the same time, this method allows one to estimate ambiguities
of performed analysis which is the case only for some of nonperturbative QCD approaches.

The second source of uncertainties is the continuum threshold parameter s0, that
separates a ground-state term from contributions of higher resonances and continuum states.
It carries also physical information about first excitation of the M+

cc , meaning that √s0
should be smaller than a mass of such state. Parameters of excited conventional hadrons

– 6 –
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Figure 1. The mass of the hadronic molecule M+
cc as a function of the Borel parameter M2 at fixed

s0. Vertical lines show boundaries of working region for M2 used in numerical computations.

M
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2
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HG

e
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Figure 2. Dependence of m on the continuum threshold parameter s0 at fixed M2.

are known from theoretical studies or were measured in numerous experiments. Therefore,
a choice of the scale s0 in relevant studies does not create new problems. The mass spectra
of multiquark hadrons, in general, may have more complex structure. Additionally, there
are only a few resonances, which can be considered as radially or orbitally excited exotic
hadrons. Thus, the resonances Zc(3900) and Zc(4430) with a mass gap ≈ 530 MeV may
be treated as the ground-state and first radially excited axial-vector tetraquark [cu][cd],
respectively [38]. This conjecture was later confirmed by the sum rule calculations in
refs. [39, 40]. The mass spectra of the doubly heavy tetraquarks were analyzed in ref. [41]
in the framework of a chiral-diquark picture. The difference between masses of doubly
charmed 1S and 2S axial-vector tetraquarks was found there equal to ≈ 400 MeV. In light
of these investigations, √s0 may exceed m approximately 0.4− 0.6 MeV. In our case, this
gap is √s0 −m ≈ 450 MeV which is a reasonable estimate for an exotic state composed
of mesons D0 and D∗+ and containing two c quarks. Dependence of m on the continuum
threshold parameter s0 is shown in figure 2.
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The central value of the mass m is above the two-meson D0D∗(2010)+ threshold
3875.1 MeV, and exceeds the datum of the LHCb collaboration. Even the low estimate for
the mass 3930 MeV overshoots this boundary. In other words, the dominant decay channel
of the molecule M+

cc is the process M+
cc → D0D∗+. In the next section, we are going to

calculate the width of M+
cc using this decay.

3 Width of the decay M+
cc → D0D∗+

The four-quark state T+
cc was observed in D0D0π+ mass distribution, and therefore it decays

strongly to these mesons. The hadronic molecule M+
cc has the same quantum numbers and

quark content, therefore the process M+
cc → D0D0π+ is among possible decay modes of

M+
cc . This decay may proceed through two stages: the process M+

cc → D0D∗+ followed by
the decay D∗+ → D0π+. Our calculations show that the mass of M+

cc is enough to generate
this chain of transformations.

In this section, we study the decay M+
cc → D0D∗+ and find the strong coupling G of

particles at the vertex M+
ccD

0D∗+. The QCD three-point sum rule for this coupling can be
derived from analysis of the correlation function

Πµν(p, p′) = i2
∫
d4xd4yei(p

′y−px)〈0|T
{
JD
∗

ν (y)JD(0)J†µ(x)
}
|0〉, (3.1)

where Jµ(x), JD∗ν (x) and JD(x) are the relevant interpolating currents. For the molecule
M+
cc the current Jµ(x) is given by eq. (2.2). The JD∗ν (x) and JD(x) are currents of the

mesons D∗+ and D0, which have the following forms

JD
∗

ν (x) = di(x)γνci(x), JD(x) = uj(x)iγ5ci(x), (3.2)

where i and j are color indices. The 4-momenta of the particles M+
cc and D∗+ are p and p′,

respectively, hence the momentum of the D0 meson is q = p− p′.
We continue using standard prescriptions of the sum rule method and, first calculate

the correlation function Πµν(p, p′) in terms of physical parameters of involved particles.
Isolating in eq. (3.1) a contribution of the ground-state particles, we get

ΠPhys
µν (p, p′) = 〈0|J

D∗
ν |D∗+(p′, ε)〉〈0|JD|D0(q)〉

(p2 −m2)(p′2 −m2
D∗)(q2 −m2

D)
× 〈M+

cc(p, ε)|J†µ|0〉〈D0(q)D∗+(p′, ε)|M+
cc(p, ε)〉+ · · · , (3.3)

which is the physical side of the sum rule. In eq. (3.3) mD∗ and mD are the masses of the
D∗+ and D0 mesons [42], respectively:

mD∗ = (2010.26± 0.05) MeV,
mD = (1864.84± 0.05) MeV. (3.4)

For our purposes, it is necessary to employ the D∗+ and D0 mesons’ matrix elements,
and, by this way to find compact expression for the function ΠPhys

µν (p, p′). This can be

– 8 –
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achieved by using the matrix elements

〈0|JD∗ν |D∗+(p′, ε)〉 = fD∗mD∗εν ,

〈0|JD|D0(q)〉 = fDm
2
D

mc
, (3.5)

where fD∗ and fD are their decay constants, whereas εν is the polarization vector of the
meson D∗+. We model the vertex 〈D0(q)D∗+(p′, ε)|M+

cc(p, ε)〉 by the expression

〈D0(q)D∗+(p′, ε)|M+
cc(p, ε)〉 = G(q2)

[
(p · p′)(ε∗ · ε)− (p · ε∗)(p′ · ε)

]
, (3.6)

with G(q2) being the strong coupling at the vertex M+
ccD

0D∗+. Then, it is not difficult to
show that

ΠPhys
µν (p, p′) = G(q2) fmfD∗mD∗m

2
DfD

mc(p2 −m2)(p′2 −m2
D∗)

× 1
(q2 −m2

D)

(
m2 +m2

D∗ − q2

2 gµν − pνp′µ

)
+ · · · . (3.7)

The double Borel transformation of ΠPhys
µν (p, p′) over variables p2 and p′2 yields

BΠPhys
µν (p, p′) = G(q2)fmfD

∗mD∗m
2
DfD

mc(q2 −m2
D)

e−m
2/M2

1

× e−m2
D∗/M

2
2

(
m2 +m2

D∗ − q2

2 gµν − pνp′µ

)
+ · · · . (3.8)

The function BΠPhys
µν (p, p′) is the sum of two terms ∼ gµν and ∼ pνp′µ, which may be utilized

to obtain the required sum rule. For further studies, we choose the invariant amplitude
ΠPhys(p2, p′2, q2) corresponding to the structure ∼ gµν . The Borel transformation of this
amplitude constitutes the physical side of the sum rule.

To determine the QCD side of the three-point sum rule, one should compute Πµν(p, p′)
using quark propagators. As a result, one gets

ΠOPE
µν (p, p′) = i2

∫
d4xd4yei(p

′y−px)
{

Tr
[
γνS

ia
c (y − x)

×γµSaid (x− y)
]

Tr
[
γ5S

bj
u (x)γ5S

jb
c (−x)

]
−Tr

[
γνS

ib
c (y − x)γ5S

bj
u (x)γ5S

ja
c (−x)γµSaid (x− y)

]}
. (3.9)

The correlation function ΠOPE
µν (p, p′) is computed by taking into account terms up to

dimension 6, and has structures identical to ones from ΠPhys
µν (p, p′). The explicit expression

of ΠOPE
µν (p, p′) is rather lengthy, therefore we do not provide it here.
The double Borel transform of the invariant amplitude ΠOPE(p2, p′2, q2) which corre-

sponds to the term ∼ gµν forms the QCD side of the sum rule. By equating the Borel
transforms of the amplitudes ΠOPE(p2, p′2, q2) and ΠPhys(p2, p′2, q2), and carrying out the
continuum subtraction, one gets the sum rule for the coupling G(q2).
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The amplitude ΠOPE(p2, p′2, q2) after the Borel transformation and subtraction can
be expressed in terms of the spectral density ρ(s, s′, q2) which is determined as a relevant
imaginary part of ΠOPE

µν (p, p′),

Π(M2, s0, q
2) =

∫ s0

4m2
c

ds

∫ s′0

m2
c

ds′ρ(s, s′, q2) e−s/M2
1 e−s

′/M2
2 . (3.10)

Here, M2 = (M2
1 ,M

2
2 ) and s0 = (s0, s

′
0) are the Borel and continuum threshold parameters,

respectively. The sum rule for G(q2) is given by the following expression

G(q2) = 2mc

fmfD∗mD∗m2
DfD

q2 −m2
D

m2 +m2
D∗ − q2 e

m2/M2
1 em

2
D∗/M

2
2 Π(M2, s0, q

2). (3.11)

The coupling G(q2) is a function of q2 and parameters (M2, s0): the latter, for simplicity,
are not written down in eq. (3.11) as its arguments. In what follows, we use a new variable
Q2 = −q2 and fix the obtained function by the notation G(Q2).

The sum rule eq. (3.11) depends on the mass and coupling of the hadronic molecule
M+
cc , which are original results of the current work and have been presented in eq. (2.15).

The equation (3.11) also contains the masses and decay constants of the mesons D∗+ and
D0. The masses of these mesons have been written down in eq. (3.4), whereas for their
decay constants, we employ

fD∗ = (223.5± 8.4) MeV,
fD = (212.6± 0.7) MeV. (3.12)

Besides these parameters, for computation of G(Q2) one should choose working windows
for M2 and s0 as well. The restrictions used in such analysis are standard ones for sum rule
computations and have been considered above. The windows for M2

1 and s0 correspond to
the M+

cc channel and are given by eq. (2.14). The parameters (M2
2 , s
′
0) for the D∗+ meson’s

channel vary inside the intervals

M2
2 ∈ [2, 4] GeV2, s′0 ∈ [5.5, 6.5] GeV2. (3.13)

We calculate G(Q2) at fixed Q2 = 1− 6 GeV2 and plot obtained results in figure 3. It
is worth noting that at each Q2 computations satisfy constraints imposed on parameters
M2 and s0 by the sum rule analysis. Thus, in figure 4 the coupling G(Q2) is depicted as
a function of the parameters M2

1 and M2
2 at Q2 = 1 GeV2 and middle of the regions s0

and s′0. A relative stability of G(1 GeV2) upon changing of M2 is evident: variations of
M2

1 and M2
2 within explored regions do not exceed 30% of the central value for G(1 GeV2).

Numerically, we find
G(1 GeV2) = 0.48+0.14

−0.09 GeV−1. (3.14)

The width of the process M+
cc → D0D∗+ is determined by the coupling G at the mass

shell q2 = m2
D of the meson D0, which cannot be calculated directly using the sum rule

method. To avoid this difficulty, we introduce fit functions F (Q2) and F (Q2) that for the
momenta Q2 > 0 give results identical to QCD sum rule’s ones, but can be extrapolated to
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Figure 3. The sum rule results and functions F (Q2) (FF 1) and F (Q2) (FF 2) for the strong
coupling G(Q2). The red diamond fixes the point Q2 = −m2

D.

Figure 4. The strong coupling G = G(1 GeV2) as a function of the Borel parameters M2
1 and M2

2
at s0 = 20.5 GeV2 and s′0 = 6 GeV2.

the region of Q2 < 0 to fix G. We employ the fit functions F (Q2) and F (Q2) given by the
expressions

F (Q2) = F0exp

c1
Q2

m2 + c2

(
Q2

m2

)2
 , (3.15)

and

F (Q2) = F 0(
1− Q2

m2

)(
1− σ1

Q2

m2 + σ2
(
Q2

m2

)2
) , (3.16)

where F0, c1 and c2 and F 0, σ1 and σ2 are fitting parameters. From numerical computations,
it is not difficult to find that F0 = 0.39 GeV−1, c1 = 3.29 and c2 = −1.95. Similar analysis
gives F 0 = 0.39 GeV−1, σ1 = 2.11 and σ2 = 2.97. In figure 3, along with the sum rule results
for G(Q2), we plot also the functions F (Q2) and F (Q2). It is seen, that there are nice
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agreements between the fit functions and QCD data. Their predictions for the coupling G
are also very close to each other, and generate only small additional uncertainties ±0.01 in G.

The functions F (Q2) and F (Q2) at the D0 meson’s mass shell lead to the average result

G = (0.192± 0.061) GeV−1, (3.17)

where the theoretical errors are the sum (in quadrature) of uncertainties coming from
sum rule computations ±0.06 and ones due to fitting procedures. The width of decay
M+
cc → D0D∗+ is determined by the expression

Γ
[
M+
cc → D0D∗+

]
= G2m

2
D∗λ (m,mD∗ ,mD)

24π

(
3 + 2λ2 (m,mD∗ ,mD)

m2
D∗

)
, (3.18)

where
λ (a, b, c) = 1

2a

√
a4 + b4 + c4 − 2 (a2b2 + a2c2 + b2c2). (3.19)

Using the strong coupling from eq. (3.17), one can evaluate width of the processM+
cc→D0D∗+

Γ
[
M+
cc → D0D∗+

]
= (3.8± 1.7) MeV. (3.20)

There are also other decay modes of the molecule M+
cc , which produce mesons D0D0π+

or D0D+π0. They run through creation of intermediate scalar tetraquarks followed by their
decays to a pair of conventional mesons [3]. These modes establish the main mechanism for
strong decays of T+

cc , but are subdominant processes for the molecule M+
cc , and therefore

can be neglected. Our prediction for the width of M+
cc demonstrates that it is a relatively

wide resonance.

4 Discussion and conclusions

We have calculated the mass and width of the doubly charmed axial-vector state with quark
content ccud by modeling it as the hadronic molecule M+

cc = D0D∗+. Predictions obtained
for the mass m = (4060± 130) MeV and width Γ = (3.8± 1.7) MeV of this molecule exceed
the LHCb data [1, 2]. In our previous work, we carried out similar analysis by treating the
axial-vector T+

cc = ccud state in the context of the tetraquark model [3]. Parameters of the
exotic meson T+

cc agree nicely with data of the LHCb collaboration. Comparing with each
another results extracted from the sum rules in tetraquark and molecule models, we see
that the molecule M+

cc is heavier and wider than the tetraquark structure.
Actually one might expect such outcome, because colored diquark and antidiquark

compact to form tightly-bound state, whereas interaction of two colorless mesons is less
intensive. Decays of tetraquarks and molecules to conventional mesons also differ from each
other. Indeed, in the case of a tetraquark these processes require reorganization of its quark
structure. Contrary, a hadronic molecule’s dissociation is free of such obstacles. Hence,
hadronic molecules are usually heavier and wider than their tetraquark counterparts.

In this regards, it is instructive to recall a situation with the resonance X0(2900)
discovered also by the LHCb collaboration. In ref. [43], we investigated X0 and evaluated
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its parameters. Results obtained for the mass and width of X0 allowed us to interpret it
as the hadronic molecule D∗K∗. We argued additionally that a ground-state 1S scalar
tetraquark with the same content should have considerably smaller mass. This conclusion
was supported by analysis of ref. [44], in which X0 was considered as the radially excited
2S tetraquark [ud][sc]. The mass difference between 1S and 2S particles equals there to
≈ 500 MeV. Because the molecule D∗K∗ and 2S tetraquark [ud][sc] have approximately
equal masses, the same estimate is valid for a mass gap between the molecule D∗K∗ and
ground state tetraquark. In the case of the exotic mesons M+

cc and T+
cc this mass difference

amounts to approximately 200 MeV being in a qualitative agreement with the above analysis.
The molecule M+

cc was considered using the QCD sum rule method also in other articles.
Thus, in ref. [30] the mass of M+

cc was estimated indirectly using the spectral sum rule
prediction for the ratio between the masses of M+

cc and resonance X(3872). Let us note that
relevant calculations were carried by taking into account condensates up to dimension-6.
The prediction m = (3872.2 ± 39.5) MeV obtained there for the mass of M+

cc is below
two-meson threshold and close to the LHCb data.

Direct sum rule computations of parameters of doubly charmed axial-vector states
ccud were performed in refs. [11, 22]. In the tetraquark model the mass of such state was
predicted within the range [22]

m̃ = (3900± 90) MeV. (4.1)

This is higher than the LHCb data, and exceeds also our result (3868± 124) MeV for this
model from ref. [3].

The axial-vector isoscalar and isovector molecules built of mesons D0 and D∗+ were
explored in ref. [11], in which their masses were found equal to

mI=0 = (3880± 110) MeV,
mI=1 = (3890± 110) MeV, (4.2)

respectively. The isoscalar molecule was interpreted as the LHCb resonance T+
cc , or its

essential component. Of course, comparing eqs. (2.15) and (4.2) one sees overlapping regions
for the mass of M+

cc , but there are essential differences between relevant central values.
It is interesting that masses of the tetraquark and molecule states from eqs. (4.1)

and (4.2) coincide with each other. This fact may be explained by different choices for the
renormalization/factorization scale µ used to evolve vacuum condensates and quark masses.
Indeed, m̃ was obtained at µ = 1.3 GeV, whereas mI extracted by employing the scale µ =
1.4 GeV. Different scales presumably eliminate a typical mass gap between tetraquark and
molecule structures. The choice for the scale µ > 1 GeV may also generate the discrepancy
between eq. (4.2) and our result for the molecule D0D∗+. It is worth to note that eq. (2.15)
have been obtained at µ = 1 GeV, which is necessary for leading-order QCD calculations.

To fix the scale µ unambiguously and damp sensitivity of results against its variations,
one needs to find physical quantities with the next-to-leading order (NLO) accuracy: the
NLO results have enhanced predictive power, and their comparisons with data lead to more
reliable conclusions. The factorized NLO perturbative corrections to doubly heavy exotic
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mesons’ masses and couplings were computed in ref. [45] in QCD Inverse Laplace sum rule
approach. These corrections are important to legitimate the choice of heavy quark masses
used in relevant studies, though in the MS scheme NLO effects themselves are small [45].
The authors explained by this fact success of corresponding leading-order QCD analyses. It
is possible to carry out similar NLO computations in the context of the two-point sum rule
method to remove ambiguities in the choice of the scale µ while calculating parameters of
T+
cc and M+

cc , which, however, are beyond the scope of the current article.
Summing up, investigations of T+

cc and M+
cc in the framework of QCD sum rule method

lead for these states to wide diversity of predictions. The sum rule method relies on
fundamental principles of QCD and uses universal vacuum condensates to extract parameters
of various hadrons, nevertheless it suffers from theoretical errors which make difficult
unambiguous interpretation of obtained results. Thus, predictions for the mass and width
of the hadronic molecule M+

cc obtained in the current article differ from relevant LHCb data,
but these differences remain within 1.5 and 2 standard deviations, respectively. Therefore,
though our studies demonstrate that a preferable assignment for the LHCb resonance is the
tetraquark model T+

cc , within the theoretical uncertainties, they also do not rule out the
molecule picture M+

cc ≡ D0D∗+.
Controversial predictions for parameters of the molecule M+

cc were made in the context
of alternative methods [8–10] as well. Results for the full width of the M+

cc obtained
in papers [8, 9] are rather small compared with the LHCb data. At the same time, a
nice agreement with recent measurements was declared in ref. [10]. Moreover, in this
work the authors predicted existence of another doubly charmed resonance with the mass
m = 3876 MeV and width Γ = 412 keV.

As is seen, even in the context of same models and methods, theoretical investigations
sometimes lead to contradictory predictions for the parameters of the molecule M+

cc : new
efforts are required to settle existing problems. Additionally, more accurate LHCb data
are necessary for the full width of the doubly charmed state T+

cc to compare with different
theoretical results.

A The propagators Sq(Q)(x) and invariant amplitude Π(M2, s0)

In the current article, for the light quark propagator Sabq (x), we employ the following
expression

Sabq (x) = iδab
/x

2π2x4 − δab
mq

4π2x2 − δab
〈qq〉
12 + iδab

/xmq〈qq〉
48 − δab

x2

192〈qgsσGq〉

+ iδab
x2/xmq

1152 〈qgsσGq〉 − i
gsG

αβ
ab

32π2x2 [/xσαβ + σαβ/x]− iδab
x2/xg2

s〈qq〉2

7776

− δab
x4〈qq〉〈g2

sG
2〉

27648 + · · · . (A.1)
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For the heavy quark Q = c, we use the propagator SabQ (x)

SabQ (x) = i

∫
d4k

(2π)4 e
−ikx

{
δab (/k +mQ)
k2 −m2

Q

−
gsG

αβ
ab

4
σαβ (/k +mQ) + (/k +mQ)σαβ

(k2 −m2
Q)2

+ g2
sG

2

12 δabmQ
k2 +mQ/k

(k2 −m2
Q)4 + g3

sG
3

48 δab
(/k +mQ)

(k2 −m2
Q)6

×
[
/k
(
k2 − 3m2

Q

)
+ 2mQ

(
2k2 −m2

Q

)]
(/k +mQ) + · · ·

}
. (A.2)

Here, we have used the short-hand notations

Gαβab ≡ G
αβ
A λAab/2, G2 = GAαβG

αβ
A , G3 = fABCGAαβG

BβδGCαδ , (A.3)

where GαβA is the gluon field strength tensor, λA and fABC are the Gell-Mann matrices and
structure constants of the color group SUc(3), respectively. The indices A,B,C run in the
range 1, 2, . . . 8.

The invariant amplitude Π(M2, s0) obtained after the Borel transformation and sub-
traction procedures is given by eq. (2.10)

Π(M2, s0) =
∫ s0

4m2
c

dsρOPE(s)e−s/M2 + Π(M2),

where the spectral density ρOPE(s) and the function Π(M2) are determined by formulas

ρOPE(s) = ρpert.(s) +
8∑

N=3
ρDimN(s), Π(M2) =

10∑
N=6

ΠDimN(M2), (A.4)

respectively. The components of ρOPE(s) and Π(M2) are given by the expressions

ρDimN(s) =
∫ 1

0
dα

∫ 1−a

0
dβρDimN(s, α, β), ρDimN(s) =

∫ 1

0
dαρDimN(s, α), (A.5)

and

ΠDimN(M2) =
∫ 1

0
dα

∫ 1−a

0
dβΠDimN(M2, α, β), ΠDimN(M2) =

∫ 1

0
dαΠDimN(M2, α),

(A.6)
depending on whether ρ and Π(M2) are functions of α and β or only of α. In eqs. (A.5)
and (A.6) variables α and β are Feynman parameters.

The perturbative and nonperturbative components of the spectral density ρpert.(s, α, β)
and ρDim3(4,5,6,7,8)(s, α, β) have the forms:

ρpert.(s,α,β) = Θ(L1)
49152π6L2N8

1

[
m2

cN2−sαβL
]2{

s2α2β2L3 [18β2+18α(α−1)−β(18+325α)
]
+m4

cN
2
1
[
18β5

+ 18α3(α−1)2+β4(37α−36)+β2α(54−110α+29α2)+β3(18−91α+29α2)+βα2(54−91α+37α2)
]

−2m2
csαβ

[
18β7+18α3(α−1)4−3βα2(α−1)3(18+13α)−3β6(24+13α)+β5(108+63α−296α2)

−2β2α(α−1)2(−27−3α+148α2)+β4(−72+45α+598α2−571α3)+β3 (18−123α−254α2+930α3

− 517α4)]} , (A.7)
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ρDim3(s,α,β) = mcΘ(L1)
512π4N5

1

[
m2

cN2−sαβL
]

×
{

2〈dd〉(11β−α)
[
m2

cN2−2sαβL
]
−〈uu〉(β−11α)

[
m2

cN2−3sαβL
]}
, (A.8)

ρDim4(s,α,β)

= 〈αsG
2/π〉Θ(L1)

73728π4(β−1)L2N6
1

{
−s2(β−1)α2β2L2 [18β4+6α(α−1)2(3α−2)+3β3(417α−16)

+β2(42−1521α−91α2)−3β(4−94α−333α2+423α3)
]
−m4

cN
2
1
[
18β8+β7(611α−108)

+β6(228−2053α+1918α2)−6α3(α−1)2(2−9α+3α2+2α3)+β5(−216+2567α−5375α2+2181α3)
+β4(90−1455α+5518α2−5083α3+857α4)+βα2(−36+342α−555α2+248α3+23α4−22α5)
−β3(12−366α+2565α2−4315α3+1686α4+94α5)−β2α

(
36−540α+1743α2−1306α3+16α4

+105α5)+2m2
csαβ

[
15β10+13β9(74α−9)+β8(372−5060α+3754α2)−3α3(α−1)4(4−14α+5α2+2α3)

+β7 (−630+10956α−17152α2+6047α3)−βα2(α−1)3(−36+348α+174α2−439α3+11α4)

+β6 (615−12500α+31809α2−23517α3+4514α4)
+β5 (−345+7970α−30691α2+36238α3−13408α4+160α5)
−β2α(α−1)2 (36−672α+1809α2+1220α3−2788α4+538α5)
+β4 (102−2772α+16465α2−28426α3+14658α4+2648α5−2675α6)
−β3 (12−480α+4893α2−12403α3+7946α4+6091α5−8153α6+2094α7)]} , (A.9)

ρDim5(s,α,β) =−mcΘ(L1)L
1024π4N4

1

{
−〈ugsσGu〉(β−11α)

[
m2

cN2−2sαβL
]

+〈dgsσGd〉(11β−α)
[
m2

cN2−3sαβL
]}
, (A.10)

ρDim6
1 (M2,α,β) = 〈g3

sG
3〉Θ(L1)

45·219π6L2N7
1

{
36m2

cN
2
1
[
12β9−5β4α5−4β3α5(α−1)+12βα5(α−1)3+12α6(α−1)3

+4β8(8α−9)+β2α5(13−18α+5α2)+β7(36−76α+45α2)+3β5α(−4+11α−12α2+5α3)+2β6 (−6
+28α−39α2+18α3)]−sαβL2 [216β9+216α6(α−1)3−24βα5(α−1)2(3+73α)−24β8(27+73α)

+β2α4(α−1)2(144+2773α)+β3α4(−543−1759α+2302α2)+β7(648+3432α+2611α2)
−3β4α2(−48+235α−544α2+357α3)+2β6(−108−804α−2539α2+989α3)
−β5α(72−2323α+1273α2+1233α3)

]
+72m2

c

[
2β13+2α8(α−1)5−βα7(α−1)4(6+α)−β12(10+α)

+β11(20−2α−5α2)−β2α6(α−1)3(−6+10α+5α2)+β3α5(α−1)3(2−21α+8α2)+β4α5(α−1)2

×(12−46α+31α2)+β10(−20+18α+5α2+8α3)+β5α3(α−1)2(−2+8α−30α2+41α3)+β9 (10−32α
+21α2−45α3+31α4)+β8(−2+23α−43α2+89α3−108α4+41α5)+β7α

(
−6+28α−77α2+135α3

−112α4+32α5)+β6α2(−6+27α−70α2+109α3−92α4+32α5)
]}
, (A.11)

ρDim7
1 (M2,α,β) = mc〈αsG

2/π〉Θ(L1)
4608π2N4

1

{
2〈dd〉

[
25β5−2β4(14+19α)+β3(3+65α−68α2)

+β2α(−27+84α−56α2)+βα2(−27+53α−26α2)+α3(3−4α+α2)
]

+〈uu〉
[
−5β5+β4(8+22α)+βα2(27−37α+10α2)+α3(−3−16α+19α2)

+β2α(27−72α+34α2)+β3(−3−49α+46α2)
]}
, (A.12)

ρDim8
1 (M2,α,β) =− 〈αsG

2/π〉2

24576π2N3
1

Θ(L1)αβL. (A.13)
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The components ρDim6(7,8)(s, α) are given by the formulas

ρDim6
2 (s, α) = 〈dd〉〈uu〉192π2 Θ(L2)

[
13m2

c + 3sα(α− 1)
]
, (A.14)

ρDim7
2 (s, α) = mc〈αsG2/π〉

9216π2 Θ(L2)
[
〈uu〉(1− 12α) + 〈dd〉(−22 + 24α)

]
, (A.15)

and

ρDim8
2 (s, α) = 〈dd〉〈ugsσGu〉48π2 Θ(L2)α(α− 1). (A.16)

Components of the function Π(M2) are:

ΠDim6(M2,α,β) = m4
c〈g3

sG
3〉

45·218π6αβ(β−1)L3N4
1

exp
[
− m2

cN2

M2αβL

][
29β11−(α−1)3α7(99+70α)

+β10(−186+113α)+β9(384−447α−50α2)−β(α−1)2α6(−108+212α+111α2)
+β8(−326+663α+200α2−447α3)+β6α(108+340α−1886α2+2485α3−1042α4)
+β7(99−437α−370α2+1510α3−880α4)+β5α2(−120+1030α−2607α2+2577α3−740α4)
+β4α3(−207+1209α−2358α2+1593α3−377α4)+β3α4 (−270+943α−1143α2

+527α3−120α4)+β2α5(−120+112α+179α2−74α3−97α4)
]
, (A.17)

ΠDim7(M2,α,β) = mc〈αsG
2/π〉

4608π2M2αβL2N4
1

{
M2α2β2L3[2〈dd〉(11β2−α2)+〈uu〉(11α2−β2)]

+m4
c〈uu〉N2

1 exp
[
− m2

cN2

M2αβL

][
10β5+10α4(α−1)+β4(−10+19α)+β3α(−20+29α)

+βα3(−20+31α)+β2α2(−20+41α)
]
+m2

c〈dd〉exp
[
− m2

cN2

M2αβL

][
m2

cN
2
1
(
10β5+10α4(α−1)

+βα3(−20+19α)+β2α2(−20+29α)+β4(−10+31α)+β3α(−20+41α)
)

−M2αβ
(
10β7+10α4(α−1)3+α3β(α−1)2(−20+29α)+β6(−30+41α)+2β5(15−51α+41α2)

+β2α2(−20+99α−137α2+58α3)+β3α(−20+111α−180α2+89α3)

+β4(−10+81α−173α2+101α3)
)]}

, (A.18)

ΠDim8(M2,α,β) = 〈αsG
2/π〉2

27·213π2M4α2β2L4N3
1

{
3M4α3β3L5+m2

c exp
[
− m2

cN2

M2αβL

]{
8m4

cα
2β2N2

1

×
[
2β3+2α2(α−1)+αβ(−4+5α)+β2(−2+5α)

]
−8m2

cM
2 [3β11+3α6(α−1)5+3β10(−5+7α)

+3βα5(α−1)4(−4+7α)+β9(30−96α+74α2)+β2α4(α−1)3(21−84α+74α2)
+3β8(−10+58α−102α2+57α3)+β3α3(α−1)2(−24+153α−295α2+171α3)
+β4α2(α−1)2(−21+159α−385α2+286α3)+β7(15−156α+495α2−637α3+286α4)
+β5α(−12+147α−625α2+1215α3−1091α4+366α5)+β6 (−3+69α−389α2+914α3

−957α4+366α5)]+M4αβ
[
48β9+48α4(α−1)5+3β8(−80+71α)+3βα3(α−1)4(−23+71α)

+2β2α2(α−1)3(21−180α+239α2)+β7(480−921α+478α2)+6β6(−80+259α−299α2+120α3)
+3β3α(α−1)2(−23+116α−317α2+240α3)+3β5(80−422α+852α2−797α3+287α4)

+β4(−48+489α−1684α2+2970α3−2588α4+861α5)
]}

. (A.19)
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The dimension 9 contribution to the correlation function is equal to zero. The Dim10
term is exclusively of the type (A.6) and has two components ΠDim10

1 (M2, α, β) and
ΠDim10

2 (M2, α)

ΠDim10
1 (M2,α,β)

= 〈αsG2/π〉〈g3
sG

3〉
135·216π2M8α4β4(β−1)2L6N4

1
exp

[
− m2

cN2
M2αβL

]{
36M8α3β3L6R1(α,β)

−m8
cαβ(β−1)2N4

1R2(α,β)+m6
cM

2(β−1)2N3
1R3(α,β)−2m4

cM
4αβ(β−1)2N2

1R4(α,β)

−2m2
cM

6α2β2L2R5(α,β)
}
, (A.20)

and

ΠDim10
2 (M2, α) = m2

c〈αsG2/π〉〈dd〉〈uu〉
432M4α3(α− 1)3 exp

[
− m2

c

M2α(α− 1)

] [
m2
c + 2M2α(α− 1)

]
×
(
1− 2α+ 2α2

)
, (A.21)

where the functions Ri(α, β) are:

R1(α,β) =β5−4β6+6β7−4β8+β9+β4α5+4β3α5(α−1)+6β2α5(α−1)2+4βα5(α−1)3

+α5(α−1)4;

R2(α,β) = 2β9+16βα6(α−1)2+2α7(α−1)2+4β8(4α−1)+β5α2(12+64α−111α2)
+β6α(16−30α−35α2)+β3α4(−30+64α−35α2)+6β2α5(2−5α+3α2)+2β7 (1−16α
+9α2)−3β4α3(10−44α+37α2);

R3(α,β) = 27β13+27α8(α−1)5+75βα7(α−1)4(2α−1)+15β12(−9+10α)+β11 (270−675α
+376α2)+β2α6(α−1)3(42−333α+376α2)+3β10(−90+400α−487α2+139α3)
+3β3α5(α−1)2(25−23α−130α2+139α3)−β4α4(α−1)2(−138+741α−1056α2+326α3)
+β9(135−1050α+2169α2−1224α3−326α4)+β8 (−27+450α−1501α2+1128α3

+1708α4−1960α5)+β5α3(75−1017α+4264α2−7734α3+6372α4−1960α5)
−β6α2(42+219α−2676α2+7734α3−8756α4+3438α5)
−β7α(75−459α+177α2+3179α3−6372α4+3438α5);

R4(α,β) = 6β13+6α7(α−1)6−12βα6(α−1)5(−6+5α)−12β12(3+5α)+β11(90+372α−552α2)
−3β2α5(α−1)4(75−257α+184α2)−β3α4(α−1)3(−273+1914α−3696α2+2087α3)
−β10(120+960α−2979α2+2087α3)+β9 (90+1320α
−6621α2+9957α3−4948α4)−β4α3(α−1)2(273−2490α+8327α2−11038α3+4948α4)
−β5α2(α−1)2(225−2283α+8789α2−14735α3+8390α4)−β8 (36+1020α−7734α2+19263α3

−20934α4+8390α5)+β7(6+420α−4986α2+19190α3−35351α4+31515α5−10793α6)
+β6α(−72+1671α−10257α2+30182α3−46649α4+35918α5−10793α6)
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R5(α,β) = 99β15+99α7(α−1)6+β14(−792+591α)−3βα6(α−1)5(116−263α+66α2)
+3β13(924−1495α+615α2)+3β12(−1848+4949α−4384α2+1279α3)
+3β2α5(α−1)4(154−926α+1274α2−460α3+33α4)+β11 (6930−27993α+40629α2

−25599α3+6053α4)+3β3α4(α−1)3(−113+1295α−3950α2+4306α3−1722α4+199α5)
+β4α3(α−1)3(−339+3231α−13948α2+21305α3−11307α4+1809α5)
+β10(−5544+32865α−70902α2+73401α3−37829α4+7829α5)+β5α2(α−1)2 (462−3732α
+15793α2−38400α3+43898α4−21541α5+3639α6)+β9 (2772−24591α+76245α2

−117654α3+100903α4−46182α5+8648α6)+β8 (−792+11445α−51540α2+114630α3

−149274α4+116108α5−48984α6+8414α7)+β6α
(
348−4854α+24609α2−72793α3

+137991α4−162173α5+110796α6−39539α7+5615α8)+β7 (99−3027α+21267α2

−68907α3+133130α4−162246α5+118955α6−46584α7+7313α8) . (A.22)

In expressions above, Θ(z) is Unit Step function. We have used also the following
short-hand notations

N1 = β2 + β(α− 1) + α(α− 1), N2 = (α+ β)N1, L = α+ β − 1,

L1 ≡ L1(s, α, β) = (1− β)
N2

1

[
m2
cN2 − sαβL

]
, L2 ≡ L2(s, α) = sα(1− α)−m2

c , (A.23)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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