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Abstract: Generalizing the The Membrane at the End of the Universe, a 1987 paper
Supersingletons by Blencowe and the author conjectured the existence of BPS p-brane
configurations (p = 2, 3, 4, 5) and corresponding CFTs on the boundary of anti-de Sit-
ter space with symmetries appearing in Nahm’s classification of superconformal alge-
bras: OSp(N |4) N = 8, 4, 2, 1; SU(2, 2|N) N = 4, 2, 1; F 2(4); OSp(8∗|N), N = 4, 2.
This correctly predicted the D3-brane with SU(2, 2|4) on AdS5 × S5 and the M5-brane
with OSp(8∗|4) on AdS7 × S4, in addition to the known M2-brane with OSp(8|4) on
AdS4 × S7. However, finding non-singular AdS solutions matching the other symmetries
was less straightforward. Here we perform a literature search and confirm that all of
the empty slots have now been filled, thanks to a number of extra ingredients including
warped products and massive Type IIA. Orbifolds, orientifolds and S-folds also play a part
providing examples not predicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not
OSp(7|4). We also examine the status of p = (0, 1) configurations.
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1 Supersingletons

The Membrane at the End of the Universe [1–10] was the name given to a supermem-
brane [11] (later called the M2-brane) on the S1×S2 boundary of AdS4×S7 described by
a SCFT with symmetry

OSp(8|4) ⊃ SO(3, 2)× SO(8) (1.1)

namely theN = 8 singleton supermultiplet with 8 scalar and 8 spinors and SO(8) R symme-
try. We recall that representations of SO(3, 2) are denoted D(E0, s) where E0 is the lowest
energy eigenvalue which occurs and s is the total angular momentum quantum number of
the lowest energy state, analogous to the mass and spin of the Poincare group. However,
Dirac’s singletons D(1/2, 0) and D(1, 1/2) have no four-dimensional Poincare analogue [12]
and are best interpreted a residing on the three-dimensional boundary [2, 13, 14].

Accordingly, in 1987 Blencowe and the author [3] conjectured the existence of other
BPS p-brane configurations with p = (2, 3, 4, 5) on the S1 × Sp boundary of AdS(p+2) and
corresponding CFTs with other symmetries appearing in Nahm’s classification of super-
conformal algebras [15], listed in table 1.

In each case the boundary CFT is described by the corresponding singleton (scalar),
doubleton (scalar or vector) or tripleton (scalar or tensor) supermultiplet1 as shown in
table 2. The number of dimensions transverse to the brane, D − d, equals the number
of scalars in the supermultiplets. None of these BPS brane CFTs is self-interacting. (For
non-BPS see [18, 19]).

A plot of spacetime dimension D vs worldvolume dimension d = p + 1, known as
the brane-scan, is shown in table 3. This correctly predicted the D3-brane [20–25] with
SU(2,2|4) on AdS5 × S5 and the M5-brane [22, 23, 26] with OSp(8∗|4) on AdS7 × S4,

1Our nomenclature, based on the rank of AdSp+2, is singleton p = 2, doubleton p = (2, 3), tripleton
p = 5 and differs from that of Günaydin and Minic [17].
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d G H Susy

6 OSp(8∗|N) SO∗(8)×USp(N) N even 8N
5 F 2(4) SO(5, 2)× SU(2) 16
4 SU(2, 2|N) SU(2, 2)×U(N) N 6= 4 8N

SU(2, 2|4) SU(2, 2)× SU(4) 32
3 OSp(N |4) SO(N)× Sp(4,R) 4N
2 G+ ×G−
1 G± =

OSp(N |2) O(N)× SU(1, 1) 2N
SU(N |1, 1) U(N)× SU(1, 1) N 6= 2 4N
SU(2|1, 1) SU(2)× SU(1, 1) 8
OSp(4∗|2N) SU(2)×USp(2N)× SU(1, 1) 8N
G(3) G2 × SU(1, 1) 14
F (4) Spin(7)× SU(1, 1) 16
D1(2, 1, α) SU(2)× SU(2)× SU(1, 1) 8

Table 1. Following [15, 16] we list the AdS supergroups in d ≤ 6 and their bosonic subgroups in
the notation of [17].

in addition to the known M2-brane [11, 23] with OSp(8|4) on AdS4 × S7. The purpose
of the present paper is to report that all of the other slots have now been filled, thanks
to a number of extra ingredients: warped products, massive Type IIA and Chern-Simons
theories. Orbifolds, orientifolds and S-folds also play a part providing examples not pre-
dicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not OSp(7|4). We also examine
the status of p = (0, 1) configurations.

2 The conformal brane-scan

Comments:

• The list in table 1 is complete if one assumes that the Killing superalgebras of AdS
backgrounds are simple. However a more detailed investigation reveals that there
may be some additional central generators in the Killing superlgebra for AdS3 and
AdS5 backgrounds [27, 28]

• The supersingleton lagrangian and transformation rules were also spelled out explic-
itly in [3]. This conformal or (in later terminology) near-horizon brane-scan differs
from the scan of Green-Schwarz type kappa-symmetric branes [29] which are not in
general conformal and which, in any case, include only scalar supermultiplets. Fur-
ther developments and elaborations on the brane-scan are summarized in Schreiber’s
n-lab and references therein.

• In early 1988, Nicolai, Sezgin and Tanii [5] independently put forward the same gener-
alization of the Membrane at the End of the Universe idea, spelling out the doubleton
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Supergroup Supermultiplet B− V χ φ D

AdS3 OSp(n|2)×OSp(8− n|2) (n+, n−) = (n, 8− n), d = 2 singleton 0 0 8 8 10
OSp(n|2)×OSp(4− n|2) (n+, n−) = (n, 4− n), d = 2 singleton 0 0 4 4 6
OSp(n|2)×OSp(2− n|2) (n+, n−) = (n, 2− n), d = 2 singleton 0 0 2 2 4
OSp(n|2)×OSp(1− n|2) (n+, n−) = (n, 1− n), d = 2 singleton 0 0 1 1 3

AdS4 OSp(8|4) n = 8, d = 3 singleton 0 0 8 8 11
OSp(4|4) n = 4, d = 3 singleton 0 0 4 4 7
OSp(2|4) n = 2, d = 3 singleton 0 0 2 2 5
OSp(1|4) n = 1, d = 3 singleton 0 0 1 1 4

AdS5 SU(2, 2|2) n = 2, d = 4 doubleton 0 0 2 4 8
SU(2, 2|1) n = 1, d = 4 doubleton 0 0 1 2 6

SU(2, 2|4) n = 4, d = 4 doubleton 0 1 4 6 10
SU(2, 2|2) n = 2, d = 4 doubleton 0 1 2 2 6
SU(2, 2|1) n = 1, d = 4 doubleton 0 1 1 0 4

AdS6 F 2(4) n = 2, d = 5 doubleton 0 0 2 4 9

AdS7 OSp(8∗|2) (n+, n−) = (1, 0), d = 6 tripleton 0 0 1 4 10

OSp(8∗|4) (n+, n−) = (2, 0), d = 6 tripleton 1 0 2 5 11
OSp(8∗|2) (n+, n−) = (1, 0), d = 6 tripleton 1 0 1 1 7

Table 2. Superconformal groups and their singleton, doubleton and tripleton representations. B−,
V , χ, φ denote the number of chiral 2-forms, vector, spinors and scalars in each multiplet. The
spacetime dimension D equals the worldvolume dimension d plus the number of scalars.

and tripleton lagrangian and transformation rules, in addition to the singleton. How-
ever, by insisting on only scalar supermultiplets as in [29] their list excluded the
vector or tensor brane-scans of table 3. In this case, as they point out, the spheres
are just the parallelizable ones S1, S3 and S7.

• The two factors appearing in the p = 1 case, G+ ×G−, are simply a reflection of the
ability of strings to have left and right movers on the worldsheet [30]. In this case,
there are many candidate supergroups as shown in table 1, so for p = 0, 1 we did
not attempt a complete list of which of these would eventually be realized. In [3], we
focused on Type IIA, Type IIB and heterotic strings with OSp(n|2)c×OSp(8− n|2)s,
OSp(n|2)c×OSp(8− n|2)c and OSp(n|2)c×Sp(2,R), respectively, since the singleton
CFTs (but not the supergravity AdS3 solutions) had already been identified [30]. For
concreteness the Type IIA case appears on the scan of table 3.

• Even for p ≥ 2 not all of the conformal algebras listed in table 1 appear in the scan.
For example, since none of our CFTs is self-interacting, we restricted [3] SU(2, 2|N)
to N = 1, 2, 4 since perturbatively N = 3 implies N = 4. But we now know there
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D↑

SCALAR
11 . OSp(8|4)
10 . OSp(n|2)×OSp(8− n|2) OSp(8∗|2)
9 . F 2(4)
8 . SU(2, 2|2)
7 . OSp(4|4)
6 . OSp(n|2)×OSp(4− n|2) SU(2, 2|1)
5 . OSp(2|4)
4 . OSp(n|2)×OSp(2− n|2) OSp(1|4)
3 . OSp(n|2)×OSp(1− n|2)
2 .
1 .
0 . . . . . .

VECTOR
11 .
10 . SU(2,2|4)
9 .
8 .
7 .
6 . SU(2, 2|2)
5 .
4 . SU(2, 2|1)
3 .
2 .
1 .
0 . . . . . . .

TENSOR
11 OSp(8∗|4)
10 .
9 .
8 .
7 . OSp(8∗|2)
6 .
5 .
4 .
3 .
2 .
1 .
0 . . . . . . .

0 1 2 3 4 5 6 d→

Table 3. The brane-scans of superconformal groups: scalar supermultiplets: singletons (p = 1, 2),
doubletons (p = 3, 4) and tripletons (p = 5); vector supermultiplets: doubletons (p = 3); tensor
supermultiplets: tripletons (p = 5). The M2-, D3- and M5-branes are in boldface.
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are nonperturbative interacting CFTs with just N = 3 [31–35]. We also focussed on
N = 1, 2, 4, 8 in OSp(N |4) since they corresponded to the division algebra R,C,H,O
interpretation of the four diagonal lines in the scalar branescan of table 3. The
N = 3, 5, 6, 7 cases are discussed in section 4.

3 Significance of the brane-scan

The significance of the M2, D3 and M5 and indeed the other configurations on the brane-
scan became clearer thanks to four major developments:

• Branes as solitons

The realization that string theory admits p-branes as solitons [20, 21, 23, 36–41]

• M-theory

The realization that the Type IIA superstring in D = 10 could be interpreted [42]
as a wrapped supermembrane in D = 11 [11]. The membrane is a 1/2 BPS solution
of D = 11 supergravity [43], whose spacetime approaches Minkowski space far away
from the brane but AdS4 × S7 close to the brane, jumping to the full OSp(8|4) in
the limit [44]. Regarded as an extremal black-brane, this limit was also called the
near-horizon limit. Moreover multi-brane solutions could be obtained by stacking
N branes on top of one another [43], yielding quantized 4-form flux. So AdS4 × S7

could equally well be regarded as the large N limit. A similar story applied to its
magnetic dual fivebrane [26] as a solution of D = 11 supergravity. Moreover, the
five string theories were merely different corners of an overarching M-theory [45–47]
with D = 11 supergravity as its low-energy limit. The membrane and fivebrane were
accordingly renamed M2 and M5.

• D-branes

The realization that p-branes carrying RR charge, with a closed-string interpretation
as solitons, admitted an alternative open string interpretation as Dirichlet-branes,
surfaces of dimension p on which open strings can end [25]. In particular the self-
dual 3-brane, a solution of Type IIB supergravity with AdS5 × S5 and SU(2, 2|4) in
the large N limit, was reinterpreted as a D3-brane and renamed accordingly.

• AdS/CFT

The AdS/CFT conjecture [48–50] proposes that large N limits of certain conformal
field theories in d dimensions can be described in terms of supergravity (and string
theory) on the product of d+1-dimensional AdS space with a compact manifold.
Another vital ingredient, missing in the early days, was the non-abelian nature of
the symmetries that appear when we stack N branes on top of one another [51].
Examples include N = 4 Yang-Mills in D = 4 from AdS5×S5 and ABJM theory [52]
from AdS4 × S7/Zn.

– 5 –
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4 The missing ingredients p ≥ 2

Notwithstanding the success with M2, D3 and M5, for quite some time the status of the
other slots on the brane-scans remained obscure.2 Here we perform a literature search and
confirm that all of the empty slots have now been filled, largely thanks to warped products,
massive Type IIA, and Chern Simons theories as shown below

• d=6 OSp(8∗|N) N = 4, 2; [54–60]

• d=5 F 2(4) [59, 61–68]

• d=4 SU(2, 2|N) N = 4, 3, 2, 1; [20, 31–35, 59, 69–72].

• d=3 OSp(N |4) N = 8, 6, 5, 4, 3, 2, 1 [43, 52, 59, 73–80].

Comments

• We have included N = 3 in the d = 4 case and N = 3, 5, 6 in the d = 3 case, which,
as previously noted, were not predicted in [3]. N = 6 appears in ABJM [52]. and its
OSp(6|4) symmetry in [80]. A useful reference on the absence of N = 7 is [59].

• There are no AdS7 solutions in Types IIA and IIB. In M all are locally isometric to
AdS7 × S4.

• There are no maximally supersymmetric AdS6 backgrounds in M, IIA or IIB. There
are no half BPS (16 supersymmetries) AdS6 backgrounds in M and IIA with compact
internal space.

• There are no such AdS5 solutions that preserve > 16 supersymmetries in IIA and
D=11 In IIB, all supersymmetric solutions are locally isometric to AdS5 × S5.
This means that all backgrounds preserving 24 supersymmetries in IIB are locally
AdS5 × S5.

• There are no > 16 AdS4 supersymmetric solutions in IIA and IIB. In D=11 all > 16
supersymmetric solutions are locally isometric to AdS4 × S7. This means that all
solutions with 20, 24, 28 are locally AdS4 × S7.

5 p = 0, 1

• d=2 [55, 78, 81–94]

• d=1 [95–106]

Comment

• Not all of the algebras in Nahm’s list correspond to known solutions and indeed there
may be some for which no solutions exist. A thorough and up-to-date summary
maybe found in [94].

2In [53] we entertained the idea that they might arise from classical branes whose symmetry is enhanced
when α′ corrections are taken into account, but this did not pan out.
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6 Conclusion

Thus not only the M2, D3 and M5 but all of the p-brane configurations on the S1 × Sp

boundary of AdS(p+1) with p = (5, 4, 3, 2, 1) mentioned explicitly in the 1987 paper as
shown in table 3 have now been discovered: OSp(N |4) N = 8, 4, 2, 1; SU(2,2|N) N =
4, 2, 1; F 2(4); OSp(8∗|N), N = 4, 2, as have most of the (p = 0, 1) in Nahm’s list not
mentioned explicitly. Orbifolds, orientifolds and S-folds also play a part providing examples
not predicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not OSp(7|4). To be fair,
if our colleagues did not take our vector and tensor brane-scans seriously in 1987, it may
be because, in the Weinberg sense, we did not take them seriously enough ourselves.
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