Published for SISSA by O Springer

RECEIVED: March 14, 2022 ACCEPTED: May 10, 2022 PUBLISHED: June 10, 2022

The conformal brane-scan: an update

M.J. Duff

Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BZ, U.K. Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, U.S.A.

E-mail: m.duff@imperial.ac.uk

ABSTRACT: Generalizing the *The Membrane at the End of the Universe*, a 1987 paper Supersingletons by Blencowe and the author conjectured the existence of BPS *p*-brane configurations (p = 2, 3, 4, 5) and corresponding CFTs on the boundary of anti-de Sitter space with symmetries appearing in Nahm's classification of superconformal algebras: $OSp(N|4) \ N = 8, 4, 2, 1$; $SU(2, 2|N) \ N = 4, 2, 1$; $F^2(4)$; $OSp(8^*|N)$, N = 4, 2. This correctly predicted the D3-brane with SU(2, 2|4) on $AdS_5 \times S^5$ and the M5-brane with $OSp(8^*|4)$ on $AdS_7 \times S^4$, in addition to the known M2-brane with OSp(8|4) on $AdS_4 \times S^7$. However, finding non-singular AdS solutions matching the other symmetries was less straightforward. Here we perform a literature search and confirm that all of the empty slots have now been filled, thanks to a number of extra ingredients including warped products and massive Type IIA. Orbifolds, orientifolds and S-folds also play a part providing examples not predicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not OSp(7|4). We also examine the status of p = (0, 1) configurations.

KEYWORDS: Conformal Field Models in String Theory, M-Theory, P-Branes

ARXIV EPRINT: 2112.13784

Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. Steven Weinberg

Contents

1	Supersingletons	1
2	The conformal brane-scan	2
3	Significance of the brane-scan	5
4	The missing ingredients $p \ge 2$	6
5	p=0,1	6
6	Conclusion	7

1 Supersingletons

The Membrane at the End of the Universe [1–10] was the name given to a supermembrane [11] (later called the M2-brane) on the $S^1 \times S^2$ boundary of $AdS_4 \times S^7$ described by a SCFT with symmetry

$$OSp(8|4) \supset SO(3,2) \times SO(8) \tag{1.1}$$

namely the N = 8 singleton supermultiplet with 8 scalar and 8 spinors and SO(8) R symmetry. We recall that representations of SO(3, 2) are denoted $D(E_0, s)$ where E_0 is the lowest energy eigenvalue which occurs and s is the total angular momentum quantum number of the lowest energy state, analogous to the mass and spin of the Poincare group. However, Dirac's singletons D(1/2, 0) and D(1, 1/2) have no four-dimensional Poincare analogue [12] and are best interpreted a residing on the three-dimensional boundary [2, 13, 14].

Accordingly, in 1987 Blencowe and the author [3] conjectured the existence of other BPS *p*-brane configurations with p = (2, 3, 4, 5) on the $S^1 \times S^p$ boundary of $AdS_{(p+2)}$ and corresponding CFTs with other symmetries appearing in Nahm's classification of superconformal algebras [15], listed in table 1.

In each case the boundary CFT is described by the corresponding singleton (scalar), doubleton (scalar or vector) or tripleton (scalar or tensor) supermultiplet¹ as shown in table 2. The number of dimensions transverse to the brane, D - d, equals the number of scalars in the supermultiplets. None of these BPS brane CFTs is self-interacting. (For non-BPS see [18, 19]).

A plot of spacetime dimension D vs worldvolume dimension d = p + 1, known as the *brane-scan*, is shown in table 3. This correctly predicted the D3-brane [20–25] with SU(2,2|4) on $AdS_5 \times S^5$ and the M5-brane [22, 23, 26] with OSp(8*|4) on $AdS_7 \times S^4$,

¹Our nomenclature, based on the rank of AdS_{p+2} , is singleton p = 2, doubleton p = (2,3), tripleton p = 5 and differs from that of Günaydin and Minic [17].

d	G	Н		Susy
6	$OSp(8^* N)$	$\mathrm{SO}^*(8) imes \mathrm{USp}(N)$	$N \ even$	8N
5	$F^{2}(4)$	$SO(5,2) \times SU(2)$		16
4	$\mathrm{SU}(2,2 N)$	$\mathrm{SU}(2,2) \times \mathrm{U}(N)$	$N \neq 4$	8N
	SU(2,2 4)	$SU(2,2) \times SU(4)$		32
3	OSp(N 4)	$\mathrm{SO}(N) \times \mathrm{Sp}(4,\mathbb{R})$		4N
2	$G_+ \times G$			
1	$G_{\pm} =$			
	OSp(N 2)	$O(N) \times SU(1,1)$		2N
	$\mathrm{SU}(N 1,1)$	$\mathrm{U}(N) \times \mathrm{SU}(1,1)$	$N \neq 2$	4N
	SU(2 1,1)	$\mathrm{SU}(2) imes \mathrm{SU}(1,1)$		8
	$OSp(4^* 2N)$	$\mathrm{SU}(2) \times \mathrm{USp}(2N) \times \mathrm{SU}(1,1)$		8N
	G(3)	$G_2 \times \mathrm{SU}(1,1)$		14
	F(4)	$\operatorname{Spin}(7) \times \operatorname{SU}(1,1)$		16
	$D^1(2,1,\alpha)$	$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(1,1)$		8

Table 1. Following [15, 16] we list the AdS supergroups in $d \leq 6$ and their bosonic subgroups in the notation of [17].

in addition to the known M2-brane [11, 23] with OSp(8|4) on $AdS_4 \times S^7$. The purpose of the present paper is to report that all of the other slots have now been filled, thanks to a number of extra ingredients: warped products, massive Type IIA and Chern-Simons theories. Orbifolds, orientifolds and S-folds also play a part providing examples not predicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not OSp(7|4). We also examine the status of p = (0, 1) configurations.

2 The conformal brane-scan

Comments:

- The list in table 1 is complete if one assumes that the Killing superalgebras of AdS backgrounds are simple. However a more detailed investigation reveals that there may be some additional central generators in the Killing superlgebra for AdS_3 and AdS_5 backgrounds [27, 28]
- The supersingleton lagrangian and transformation rules were also spelled out explicitly in [3]. This *conformal* or (in later terminology) *near-horizon* brane-scan differs from the scan of Green-Schwarz type kappa-symmetric branes [29] which are not in general conformal and which, in any case, include only scalar supermultiplets. Further developments and elaborations on the brane-scan are summarized in Schreiber's n-lab and references therein.
- In early 1988, Nicolai, Sezgin and Tanii [5] independently put forward the same generalization of the *Membrane at the End of the Universe* idea, spelling out the doubleton

C I
H
Õ
0
\frown
\mathbb{N}
\bigcirc
\mathbb{N}
\mathbb{N}
\bigcirc
\bigcirc
СЛ
Þ

	Supergroup	Supermultiplet	B^{-}	V	χ	ϕ	D
AdS_3	$OSp(n 2) \times OSp(8-n 2)$	$(n_+, n) = (n, 8 - n), d = 2$ singleton	0	0	8	8	10
	$OSp(n 2) \times OSp(4-n 2)$	$(n_+, n) = (n, 4 - n), d = 2$ singleton	0	0	4	4	6
	$OSp(n 2) \times OSp(2-n 2)$	$(n_+, n) = (n, 2 - n), d = 2$ singleton	0	0	2	2	4
	$OSp(n 2) \times OSp(1-n 2)$	$(n_+, n) = (n, 1 - n), d = 2$ singleton	0	0	1	1	3
AdS_4	OSp(8 4)	n = 8, d = 3 singleton	0	0	8	8	11
	OSp(4 4)	n = 4, d = 3 singleton	0	0	4	4	7
	OSp(2 4)	n=2, d=3 singleton	0	0	2	2	5
	OSp(1 4)	n = 1, d = 3 singleton	0	0	1	1	4
AdS_5	$\mathrm{SU}(2,2 2)$	n = 2, d = 4 doubleton	0	0	2	4	8
	$\mathrm{SU}(2,2 1)$	n = 1, d = 4 doubleton	0	0	1	2	6
	$\mathrm{SU}(2,2 4)$	n = 4, d = 4 doubleton	0	1	4	6	10
	$\mathrm{SU}(2,2 2)$	n = 2, d = 4 doubleton	0	1	2	2	6
	$\mathrm{SU}(2,2 1)$	n = 1, d = 4 doubleton	0	1	1	0	4
AdS_6	$F^{2}(4)$	n = 2, d = 5 doubleton	0	0	2	4	9
AdS_7	$OSp(8^* 2)$	$(n_+, n) = (1, 0), d = 6$ tripleton	0	0	1	4	10
	$OSp(8^* 4)$	$(n_+, n) = (2, 0), d = 6$ tripleton	1	0	2	5	11
	$OSp(8^* 2)$	$(n_+, n) = (1, 0), d = 6$ tripleton	1	0	1	1	7
		1,1 • • 1, 1 11, 1, .	1 /				D -

Table 2. Superconformal groups and their singleton, doubleton and tripleton representations. B^- , V, χ , ϕ denote the number of chiral 2-forms, vector, spinors and scalars in each multiplet. The spacetime dimension D equals the worldvolume dimension d plus the number of scalars.

and tripleton lagrangian and transformation rules, in addition to the singleton. However, by insisting on only scalar supermultiplets as in [29] their list excluded the vector or tensor brane-scans of table 3. In this case, as they point out, the spheres are just the parallelizable ones S^1 , S^3 and S^7 .

- The two factors appearing in the p = 1 case, $G_+ \times G_-$, are simply a reflection of the ability of strings to have left and right movers on the worldsheet [30]. In this case, there are many candidate supergroups as shown in table 1, so for p = 0, 1 we did not attempt a complete list of which of these would eventually be realized. In [3], we focused on Type IIA, Type IIB and heterotic strings with $OSp(n|2)_c \times OSp(8 n|2)_c$ and $OSp(n|2)_c \times Sp(2, \mathbb{R})$, respectively, since the singleton CFTs (but not the supergravity AdS_3 solutions) had already been identified [30]. For concreteness the Type IIA case appears on the scan of table 3.
- Even for $p \ge 2$ not all of the conformal algebras listed in table 1 appear in the scan. For example, since none of our CFTs is self-interacting, we restricted [3] SU(2, 2|N) to N = 1, 2, 4 since perturbatively N = 3 implies N = 4. But we now know there

 $\mathrm{D}\uparrow$

		SCALAR						
11				$\mathrm{OSp}(8 4)$				
10			$OSp(n 2) \times OSp(8-n 2)$			_	$OSp(8^* 2)$	
9						$F^2(4)$		
8	•				SU(2,2 2)			
7				OSp(4 4)				
6			$OSp(n 2) \times OSp(4-n 2)$		$\mathrm{SU}(2,2 1)$			
5	•			OSp(2 4)				
4	•		$OSp(n 2) \times OSp(2-n 2)$	OSp(1 4)				
3	•		$OSp(n 2) \times OSp(1-n 2)$					
2	•							
$\begin{array}{c} 1 \\ 0 \end{array}$	•							
0	•	VECTOR				•		
11		VLOIOR						
10					${ m SU}({f 2},{f 2} {f 4})$			
9								
8								
7								
6					SU(2,2 2)			
5								
4					$\mathrm{SU}(2,2 1)$			
3								
2								
1	•							
0	•			•	•	•	•	
		TENSOR						
11 10							$\mathrm{OSp}(8^* 4)$	
10 9	•							
8								
7							$OSp(8^* 2)$	
6							0.5p(0 -)	
5								
4								
3								
2								
1								
0								
	0	1	2	3	4	5	6	$\mathrm{d} {\rightarrow}$

Table 3. The brane-scans of superconformal groups: scalar supermultiplets: singletons (p = 1, 2), doubletons (p = 3, 4) and tripletons (p = 5); vector supermultiplets: doubletons (p = 3); tensor supermultiplets: tripletons (p = 5). The M2-, D3- and M5-branes are in boldface.

are nonperturbative interacting CFTs with just N = 3 [31–35]. We also focussed on N = 1, 2, 4, 8 in OSp(N|4) since they corresponded to the division algebra $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ interpretation of the four diagonal lines in the scalar branescan of table 3. The N = 3, 5, 6, 7 cases are discussed in section 4.

3 Significance of the brane-scan

The significance of the M2, D3 and M5 and indeed the other configurations on the branescan became clearer thanks to four major developments:

• Branes as solitons

The realization that string theory admits p-branes as solitons [20, 21, 23, 36–41]

• M-theory

The realization that the Type IIA superstring in D = 10 could be interpreted [42] as a wrapped supermembrane in D = 11 [11]. The membrane is a 1/2 BPS solution of D = 11 supergravity [43], whose spacetime approaches Minkowski space far away from the brane but $AdS_4 \times S^7$ close to the brane, jumping to the full OSp(8|4) in the limit [44]. Regarded as an extremal black-brane, this limit was also called the near-horizon limit. Moreover multi-brane solutions could be obtained by stacking N branes on top of one another [43], yielding quantized 4-form flux. So $AdS_4 \times S^7$ could equally well be regarded as the large N limit. A similar story applied to its magnetic dual fivebrane [26] as a solution of D = 11 supergravity. Moreover, the five string theories were merely different corners of an overarching M-theory [45–47] with D = 11 supergravity as its low-energy limit. The membrane and fivebrane were accordingly renamed M2 and M5.

• D-branes

The realization that p-branes carrying RR charge, with a closed-string interpretation as solitons, admitted an alternative open string interpretation as Dirichlet-branes, surfaces of dimension p on which open strings can end [25]. In particular the selfdual 3-brane, a solution of Type IIB supergravity with $AdS_5 \times S^5$ and SU(2,2|4) in the large N limit, was reinterpreted as a D3-brane and renamed accordingly.

• AdS/CFT

The AdS/CFT conjecture [48–50] proposes that large N limits of certain conformal field theories in d dimensions can be described in terms of supergravity (and string theory) on the product of d+1-dimensional AdS space with a compact manifold. Another vital ingredient, missing in the early days, was the non-abelian nature of the symmetries that appear when we stack N branes on top of one another [51]. Examples include N = 4 Yang-Mills in D = 4 from $AdS_5 \times S^5$ and ABJM theory [52] from $AdS_4 \times S^7/Z_n$.

4 The missing ingredients $p \ge 2$

Notwithstanding the success with M2, D3 and M5, for quite some time the status of the other slots on the brane-scans remained obscure.² Here we perform a literature search and confirm that all of the empty slots have now been filled, largely thanks to warped products, massive Type IIA, and Chern Simons theories as shown below

- d=6 OSp $(8^*|N)$ N = 4, 2; [54–60]
- d=5 $F^2(4)$ [59, 61–68]
- d=4 SU(2, 2|N) N = 4, 3, 2, 1; [20, 31-35, 59, 69-72].
- $d=3 \operatorname{OSp}(N|4) N = 8, 6, 5, 4, 3, 2, 1 [43, 52, 59, 73-80].$

Comments

- We have included N = 3 in the d = 4 case and N = 3, 5, 6 in the d = 3 case, which, as previously noted, were not predicted in [3]. N = 6 appears in ABJM [52]. and its OSp(6|4) symmetry in [80]. A useful reference on the absence of N = 7 is [59].
- There are no AdS_7 solutions in Types IIA and IIB. In M all are locally isometric to $AdS_7 \times S^4$.
- There are no maximally supersymmetric AdS_6 backgrounds in M, IIA or IIB. There are no half BPS (16 supersymmetries) AdS_6 backgrounds in M and IIA with compact internal space.
- There are no such AdS_5 solutions that preserve > 16 supersymmetries in IIA and D=11 In IIB, all supersymmetric solutions are locally isometric to $AdS_5 \times S^5$. This means that all backgrounds preserving 24 supersymmetries in IIB are locally $AdS_5 \times S^5$.
- There are no > 16 AdS_4 supersymmetric solutions in IIA and IIB. In D=11 all > 16 supersymmetric solutions are locally isometric to $AdS_4 \times S^7$. This means that all solutions with 20, 24, 28 are locally $AdS_4 \times S^7$.

5 p = 0, 1

- d=2 [55, 78, 81–94]
- d=1 [95–106]

Comment

• Not all of the algebras in Nahm's list correspond to known solutions and indeed there may be some for which no solutions exist. A thorough and up-to-date summary maybe found in [94].

²In [53] we entertained the idea that they might arise from classical branes whose symmetry is enhanced when α' corrections are taken into account, but this did not pan out.

6 Conclusion

Thus not only the M2, D3 and M5 but all of the *p*-brane configurations on the $S^1 \times S^p$ boundary of $AdS_{(p+1)}$ with p = (5, 4, 3, 2, 1) mentioned explicitly in the 1987 paper as shown in table 3 have now been discovered: OSp(N|4) N = 8, 4, 2, 1; SU(2, 2|N) N =4, 2, 1; $F^2(4)$; $OSp(8^*|N)$, N = 4, 2, as have most of the (p = 0, 1) in Nahm's list not mentioned explicitly. Orbifolds, orientifolds and S-folds also play a part providing examples not predicted: SU(2, 2|3), OSp(3|4), OSp(5|4) and OSp(6|4) but not OSp(7|4). To be fair, if our colleagues did not take our vector and tensor brane-scans seriously in 1987, it may be because, in the Weinberg sense, we did not take them seriously enough ourselves.

Acknowledgments

Correspondence with Fernando Alday, Connor Behan, Leron Borsten, Eric D'Hoker, George Papadopoulos, Yolanda Lozano and Alessandro Tomasiello is greatly appreciated. I am grateful to Marlan Scully for his hospitality in the Institute for Quantum Science and Engineering, Texas A&M University, and to the Hagler Institute for Advanced Study at Texas A&M for a Faculty Fellowship. This work was supported in part by the STFC under rolling grant ST/P000762/1.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- M.J. Duff, Supermembranes: The First Fifteen Weeks, Class. Quant. Grav. 5 (1988) 189 [INSPIRE].
- [2] E. Bergshoeff, M.J. Duff, C.N. Pope and E. Sezgin, Supersymmetric Supermembrane Vacua and Singletons, Phys. Lett. B 199 (1987) 69 [INSPIRE].
- [3] M.P. Blencowe and M.J. Duff, Supersingletons, Phys. Lett. B 203 (1988) 229 [INSPIRE].
- [4] M.J. Duff and C. Sutton, The Membrane at the End of the Universe, New Sci. 118 (1988)
 67.
- [5] H. Nicolai, E. Sezgin and Y. Tanii, Conformally Invariant Supersymmetric Field Theories on S^{**}p × S¹ and Super p⁻branes, Nucl. Phys. B **305** (1988) 483 [INSPIRE].
- [6] E. Bergshoeff, M.J. Duff, C.N. Pope and E. Sezgin, Compactifications of the Eleven-Dimensional Supermembrane, Phys. Lett. B 224 (1989) 71 [INSPIRE].
- [7] M.J. Duff, C.N. Pope and E. Sezgin, A Stable Supermembrane Vacuum With a Discrete Spectrum, Phys. Lett. B 225 (1989) 319 [INSPIRE].
- [8] E. Bergshoeff, E. Sezgin and Y. Tanii, Stress Tensor Commutators and Schwinger Terms in Singleton Theories, Int. J. Mod. Phys. A 5 (1990) 3599 [INSPIRE].
- [9] M.J. Duff, Classical and Quantum Supermembranes, Class. Quant. Grav. 6 (1989) 1577 [INSPIRE].

- P. Claus, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Conformal theory of M2, D3, M5 and D1-branes + D5-branes, JHEP 06 (1998) 004 [hep-th/9801206]
 [INSPIRE].
- [11] E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett. B 189 (1987) 75 [INSPIRE].
- [12] P.A.M. Dirac, A remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].
- [13] C. Fronsdal, The Dirac Supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].
- [14] H. Nicolai and E. Sezgin, Singleton Representations of Osp(N,4), Phys. Lett. B 143 (1984) 389 [INSPIRE].
- [15] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].
- [16] A. Van Proeyen, Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999) 1 [hep-th/9910030] [INSPIRE].
- [17] M. Günaydin and D. Minic, Singletons, doubletons and M-theory, Nucl. Phys. B 523 (1998)
 145 [hep-th/9802047] [INSPIRE].
- [18] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].
- [19] A. Batrachenko, M.J. Duff and J.X. Lu, The membrane at the end of the (de Sitter) universe, Nucl. Phys. B 762 (2007) 95 [hep-th/0212186] [INSPIRE].
- [20] G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].
- [21] M.J. Duff and J.X. Lu, The selfdual type IIB superthreebrane, Phys. Lett. B 273 (1991) 409 [INSPIRE].
- [22] M.J. Duff and J.X. Lu, Type II p-branes: The brane scan revisited, Nucl. Phys. B 390 (1993) 276 [hep-th/9207060] [INSPIRE].
- [23] M.J. Duff, R.R. Khuri and J.X. Lu, String solitons, Phys. Rept. 259 (1995) 213
 [hep-th/9412184] [INSPIRE].
- [24] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].
- [25] J. Polchinski, TASI lectures on D-branes, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, (1996), pp. 293-356
 [hep-th/9611050] [INSPIRE].
- [26] R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B **276** (1992) 49 [INSPIRE].
- [27] S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras for Warped AdS Backgrounds, JHEP 12 (2018) 047 [arXiv:1710.03713] [INSPIRE].
- [28] A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16supersymmetric AdS₃ backgrounds, JHEP **07** (2018) 178 [arXiv:1803.08428] [INSPIRE].
- [29] A. Achucarro, J.M. Evans, P.K. Townsend and D.L. Wiltshire, Super p-Branes, Phys. Lett. B 198 (1987) 441 [INSPIRE].

- [30] M. Günaydin, B.E.W. Nilsson, G. Sierra and P.K. Townsend, Singletons and Superstrings, Phys. Lett. B 176 (1986) 45 [INSPIRE].
- [31] S. Ferrara, M. Porrati and A. Zaffaroni, N = 6 supergravity on AdS_5 and the SU(2, 2/3) superconformal correspondence, Lett. Math. Phys. 47 (1999) 255 [hep-th/9810063] [INSPIRE].
- [32] O. Aharony and M. Evtikhiev, On four dimensional N = 3 superconformal theories, JHEP
 04 (2016) 040 [arXiv:1512.03524] [INSPIRE].
- [33] I. García-Etxebarria and D. Regalado, $\mathcal{N} = 3$ four dimensional field theories, JHEP 03 (2016) 083 [arXiv:1512.06434] [INSPIRE].
- [34] O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].
- [35] L. Borsten, M.J. Duff and A. Marrani, Twin conformal field theories, JHEP 03 (2019) 112 [arXiv:1812.11130] [INSPIRE].
- [36] P.K. Townsend, Supersymmetric extended solitons, Phys. Lett. B 202 (1988) 53 [INSPIRE].
- [37] A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167 [Erratum ibid. 353 (1991) 565] [INSPIRE].
- [38] M.J. Duff and J.X. Lu, A duality between strings and five-branes, Class. Quant. Grav. 9 (1992) 1 [INSPIRE].
- [39] M.J. Duff, R.R. Khuri and J.X. Lu, String and five-brane solitons: Singular or nonsingular?, Nucl. Phys. B 377 (1992) 281 [hep-th/9112023] [INSPIRE].
- [40] C.G. Callan Jr., J.A. Harvey and A. Strominger, Supersymmetric string solitons, hep-th/9112030 [INSPIRE].
- [41] G.W. Gibbons, D. Kastor, L.A.J. London, P.K. Townsend and J.H. Traschen, Supersymmetric selfgravitating solitons, Nucl. Phys. B 416 (1994) 850 [hep-th/9310118] [INSPIRE].
- [42] M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Superstrings in D = 10 from Supermembranes in D = 11, Phys. Lett. B 191 (1987) 70 [INSPIRE].
- [43] M.J. Duff and K.S. Stelle, Multimembrane solutions of D = 11 supergravity, Phys. Lett. B **253** (1991) 113 [INSPIRE].
- [44] M.J. Duff, G.W. Gibbons and P.K. Townsend, Macroscopic superstrings as interpolating solitons, Phys. Lett. B 332 (1994) 321 [hep-th/9405124] [INSPIRE].
- [45] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].
- [46] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].
- [47] M.J. Duff, M theory (The Theory formerly known as strings), Int. J. Mod. Phys. A 11 (1996) 5623 [hep-th/9608117] [INSPIRE].
- [48] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
- [49] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

- [50] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
 [hep-th/9802150] [INSPIRE].
- [51] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335
 [hep-th/9510135] [INSPIRE].
- [52] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091
 [arXiv:0806.1218] [INSPIRE].
- [53] M.J. Duff, Near-horizon brane-scan revived, Nucl. Phys. B 810 (2009) 193 [arXiv:0804.3675] [INSPIRE].
- [54] R. Güven, J.T. Liu, C.N. Pope and E. Sezgin, *Fine tuning and six-dimensional gauged* N=(1,0) supergravity vacua, Class. Quant. Grav. 21 (2004) 1001 [hep-th/0306201]
 [INSPIRE].
- [55] J.D. Edelstein, A. Garbarz, O. Mišković and J. Zanelli, Stable p-branes in Chern-Simons AdS supergravities, Phys. Rev. D 82 (2010) 044053 [arXiv:1006.3753] [INSPIRE].
- [56] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS₇ solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].
- [57] D. Gaiotto and A. Tomasiello, Holography for (1,0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].
- [58] S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].
- [59] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].
- [60] C. Núñez, J.M. Penín, D. Roychowdhury and J. Van Gorsel, The non-Integrability of Strings in Massive Type IIA and their Holographic duals, JHEP 06 (2018) 078 [arXiv:1802.04269] [INSPIRE].
- [61] A. Brandhuber and Y. Oz, The D-4 D-8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].
- [62] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS₆ duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].
- [63] Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS₆ via T Duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
- [64] E. D'Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped $AdS_6 \times S^2$ in Type IIB supergravity I: Local solutions, JHEP **08** (2016) 046 [arXiv:1606.01254] [INSPIRE].
- [65] E. D'Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].
- [66] E. D'Hoker, M. Gutperle and C.F. Uhlemann, Warped $AdS_6 \times S^2$ in Type IIB supergravity III: Global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].
- [67] D. Corbino, E. D'Hoker and C.F. Uhlemann, $AdS_2 \times S^6$ versus $AdS_6 \times S^2$ in Type IIB supergravity, JHEP 03 (2018) 120 [arXiv:1712.04463] [INSPIRE].
- [68] Y. Lozano, N.T. Macpherson and J. Montero, AdS_6 T-duals and type IIB $AdS_6 \times S^2$ geometries with 7-branes, JHEP 01 (2019) 116 [arXiv:1810.08093] [INSPIRE].

- [69] D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].
- [70] R.A. Reid-Edwards and B. Stefanski Jr., On Type IIA geometries dual to N = 2 SCFTs, Nucl. Phys. B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].
- [71] O. Aharony, L. Berdichevsky and M. Berkooz, 4d N = 2 superconformal linear quivers with type IIA duals, JHEP 08 (2012) 131 [arXiv:1206.5916] [INSPIRE].
- [72] C. Núñez, D. Roychowdhury, S. Speziali and S. Zacarías, Holographic aspects of four dimensional N = 2 SCFTs and their marginal deformations, Nucl. Phys. B 943 (2019) 114617 [arXiv:1901.02888] [INSPIRE].
- [73] J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078
 [hep-th/0411077] [INSPIRE].
- [74] E. D'Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
- [75] E. D'Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [INSPIRE].
- [76] M. Chiodaroli, E. D'Hoker, Y. Guo and M. Gutperle, Exact half-BPS string-junction solutions in six-dimensional supergravity, JHEP 12 (2011) 086 [arXiv:1107.1722]
 [INSPIRE].
- [77] B. Assel, C. Bachas, J. Estes and J. Gomis, *Holographic Duals of* D = 3 N = 4Superconformal Field Theories, JHEP **08** (2011) 087 [arXiv:1106.4253] [INSPIRE].
- [78] A.S. Haupt, S. Lautz and G. Papadopoulos, AdS₄ backgrounds with N > 16 supersymmetries in 10 and 11 dimensions, JHEP 01 (2018) 087 [arXiv:1711.08280]
 [INSPIRE].
- [79] F. Marchesano, E. Palti, J. Quirant and A. Tomasiello, On supersymmetric AdS₄ orientifold vacua, JHEP 08 (2020) 087 [arXiv:2003.13578] [INSPIRE].
- [80] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Studies of the ABJM Theory in a Formulation with Manifest SU(4) R-Symmetry, JHEP 09 (2008) 027 [arXiv:0807.0880]
 [INSPIRE].
- [81] Y. Lozano and C. Núñez, Field theory aspects of non-Abelian T-duality and N = 2 linear quivers, JHEP 05 (2016) 107 [arXiv:1603.04440] [INSPIRE].
- [82] Y. Lozano, N.T. Macpherson, J. Montero and C. Núñez, Three-dimensional N = 4 linear quivers and non-Abelian T-duals, JHEP 11 (2016) 133 [arXiv:1609.09061] [INSPIRE].
- [83] C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS₃/CFT₂, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
- [84] Y. Lozano, C. Núñez and S. Zacarias, BMN Vacua, Superstars and Non-Abelian T-duality, JHEP 09 (2017) 008 [arXiv:1703.00417] [INSPIRE].
- [85] G. Itsios, Y. Lozano, J. Montero and C. Núñez, The AdS₅ non-Abelian T-dual of Klebanov-Witten as a N = 1 linear quiver from M5-branes, JHEP 09 (2017) 038 [arXiv:1705.09661] [INSPIRE].
- [86] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS_3 solutions in Massive IIA with small $\mathcal{N} = (4,0)$ supersymmetry, JHEP **01** (2020) 129 [arXiv:1908.09851] [INSPIRE].

- [87] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, 1/4 BPS solutions and the AdS₃/CFT₂ correspondence, Phys. Rev. D 101 (2020) 026014 [arXiv:1909.09636] [INSPIRE].
- [88] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, Two dimensional $\mathcal{N} = (0, 4)$ quivers dual to AdS_3 solutions in massive IIA, JHEP **01** (2020) 140 [arXiv:1909.10510] [INSPIRE].
- [89] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS₃ solutions in massive IIA, defect CFTs and T-duality, JHEP 12 (2019) 013 [arXiv:1909.11669] [INSPIRE].
- [90] Y. Lozano, C. Núñez, A. Ramirez and S. Speziali, *M*-strings and AdS_3 solutions to *M*-theory with small $\mathcal{N} = (0, 4)$ supersymmetry, *JHEP* **08** (2020) 118 [arXiv:2005.06561] [INSPIRE].
- [91] F. Faedo, Y. Lozano and N. Petri, Searching for surface defect CFTs within AdS₃, JHEP 11 (2020) 052 [arXiv:2007.16167] [INSPIRE].
- [92] F. Faedo, Y. Lozano and N. Petri, New $\mathcal{N} = (0, 4)$ AdS₃ near-horizons in Type IIB, JHEP 04 (2021) 028 [arXiv:2012.07148] [INSPIRE].
- [93] G. Dibitetto and N. Petri, AdS₃ from M-branes at conical singularities, JHEP 01 (2021)
 129 [arXiv:2010.12323] [INSPIRE].
- [94] N.T. Macpherson and A. Tomasiello, $\mathcal{N} = (1, 1)$ supersymmetric AdS₃ in 10 dimensions, JHEP **03** (2022) 112 [arXiv:2110.01627] [INSPIRE].
- [95] G. Dibitetto and N. Petri, AdS₂ solutions and their massive IIA origin, JHEP 05 (2019) 107 [arXiv:1811.11572] [INSPIRE].
- [96] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS₃, AdS₂ and Bubble Solutions, JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].
- [97] N. Kim, Comments on AdS₂ solutions from M2-branes on complex curves and the backreacted Kähler geometry, Eur. Phys. J. C 74 (2014) 2778 [arXiv:1311.7372] [INSPIRE].
- [98] M. Chiodaroli, M. Gutperle and D. Krym, Half-BPS Solutions locally asymptotic to $AdS_3 \times S^3$ and interface conformal field theories, JHEP **02** (2010) 066 [arXiv:0910.0466] [INSPIRE].
- [99] M. Chiodaroli, E. D'Hoker and M. Gutperle, Open Worldsheets for Holographic Interfaces, JHEP 03 (2010) 060 [arXiv:0912.4679] [INSPIRE].
- [100] D. Corbino, E. D'Hoker, J. Kaidi and C.F. Uhlemann, Global half-BPS AdS₂ × S⁶ solutions in Type IIB, JHEP 03 (2019) 039 [arXiv:1812.10206] [INSPIRE].
- [101] D. Corbino, Warped AdS₂ and SU(1,1|4) symmetry in Type IIB, JHEP 03 (2021) 060
 [arXiv:2004.12613] [INSPIRE].
- [102] G. Dibitetto, Y. Lozano, N. Petri and A. Ramirez, Holographic description of M-branes via AdS₂, JHEP 04 (2020) 037 [arXiv:1912.09932] [INSPIRE].
- [103] Y. Lozano, C. Núñez, A. Ramirez and S. Speziali, New AdS₂ backgrounds and N = 4 conformal quantum mechanics, JHEP 03 (2021) 277 [arXiv:2011.00005] [INSPIRE].
- [104] Y. Lozano, C. Núñez, A. Ramirez and S. Speziali, AdS₂ duals to ADHM quivers with Wilson lines, JHEP 03 (2021) 145 [arXiv:2011.13932] [INSPIRE].
- [105] E. D'Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [INSPIRE].
- [106] C. Bachas, E. D'Hoker, J. Estes and D. Krym, *M*-theory Solutions Invariant under $D(2,1;\gamma) \oplus D(2,1;\gamma)$, Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477] [INSPIRE].