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1 Introduction

It has been proposed by West [1-3] that it should be possible to write (the bosonic part of)
D = 11 supergravity in a way that utilises the infinite-dimensional Kac-Moody symmetry
FE11.1 The proposed construction involves a non-linear realisation of E11/K(E11) where
K(E11) C Ey; denotes a subgroup that generalises the eleven-dimensional Lorentz group

'See [4, 5] for early discussions of Kac-Moody symmetries in supergravity and [6] for a different proposal
involving F19. See also appendix E for a discussion on the relation of our model to Fig.



SO(1,10) and will be defined in more detail below.? The fields of the non-linear realisa-
tion depend on space-time coordinates z™ that also transform under Ej; in an infinite-
dimensional highest weight representation [2] that we shall call R(A;) in this paper. The
Maurer-Cartan derivatives dp/VV ™! of the Ey1/K(E11) coset field V are invariant under
rigid right multiplication of V by Ej; and only transform under the K (FEj;) subgroup.?
In [3] a set of first-order ‘modulo equations’ were proposed for the coset field V. These
were constructed out of the Maurer-Cartan derivatives that transform into each other under
K(F11) and are generated from the matter duality equation Fy = xF7. The terminology
of modulo equation means a (first-order) equation that is not gauge-invariant (for gauge
parameters depending on eleven coordinates) but only holds up to certain gauge transfor-
mations that can be eliminated by passing to a higher-order equation [3, 14, 15]. For the
graviton the gauge-invariant equations are second order, and for more complicated fields
gauge-invariance requires differential equations of arbitrarily high order [3, 14, 15]. The
gauge transformations and the intrinsic multiplet structure of the whole K (Ej;)-multiplet
of first-order modulo equations are not known to the best of our knowledge. Another
interesting feature of this proposal is that it involves infinite dualisations of the physical
fields [16], a bit in the spirit of unfolding of equations of motion [17-19]. A similar infinite
dualisation appears for the Eg symmetry of D = 11 supergravity reduced to two space-time
dimensions [20] and also plays a réle in the Fjo proposal via the gradient conjecture [6].

In a different, but not unrelated, strand of research, field theories with extended space-
time symmetries and exceptional symmetry groups have been constructed. These so-called
exceptional field theories (ExFT) [21-30] possess fields in a non-linear realisation of E,
(for n < 9) and these fields depend on extended (internal) coordinates Y involving rep-
resentations of E,, see also [31-33]. Exceptional field theories have proved to be very
powerful tools in analysing Kaluza-Klein reductions in supergravity [31, 34-46]. Their
(pseudo-)actions are uniquely fixed by the symmetries of the ExFT and these symmetries
importantly include a generalised gauge symmetry called the generalised Lie derivative or
generalised diffeomorphisms [47-49].* Closure of this gauge symmetry and consistency of
the whole procedure crucially depends on the section constraint (stated in (2.19)) that
restricts the dependence of all objects on the extended coordinates. Choosing a particular
solution to this section constraint renders ExFT fully equivalent to unreduced D = 11 su-
pergravity or type IIB supergravity [56]. However, while the formulation has F,, symmetry,
picking a solution to the section constraint breaks the F, symmetry and one is left with
the known symmetries of the supergravity theory in question. Besides the generalised dif-
feomorphism invariance and the section constraint, another crucial feature of ExFT is the
occurrence of constrained fields that go beyond the K(FE))/E, coset fields and the usual
supergravity tensor hierarchy [57] but are central to the invariance of the theory [23, 24].
The fields are constrained in the sense of the section constraint and do not carry additional
degrees of freedom.

2Tt is (a spin cover of) this group that is relevant for the fermionic fields as has been discussed for E1o
in [7-9] and for E1; in [10-13]. This subgroup is called I.(E11) in [1-3].

3This transformation includes an inhomogeneous connection piece.

4This generalised similar structures in double field theory and generalised geometry [50-55].



In an effort to define an exceptional field theory for Fy; we have recently proposed a
non-linear set of first-order duality equations [13] that can be written as

MpsFL=QpF7 (1.1)

where F denotes an infinite collection of non-linear field strengths that transform under
Eq; in a representation that is defined by its tensor hierarchy algebra [58]. This represen-
tation is neither highest nor lowest weight but can be shown to carry a symplectic form
that we write as {277 and that generalises at the same time the usual Levi-Civita symbol
that appears in duality equations and the symplectic form familiar from electric-magnetic
duality relations in D = 4. The generalised metric M;; on the left-hand side is the one
constructed from the Ej;/K(E1;1) coset acting in the representation of the field strengths
and a non-degenerate K (F1;)-invariant bilinear form 7;;.> The existence of 77 is a key
assumption in our construction and we shall summarise evidence for it in section 2.1. The
definition of the field strengths F! crucially involves an infinite set of constrained fields
that go beyond the Fp; coset fields. These fields are necessary from the construction of the
tensor hierarchy algebra and sit in an indecomposable representation with the Ej; coset
fields [58].° A similar feature was also observed in the context of Eg ExFT [61]. We em-
phasise that the Ejq-covariance of F! and the mere existence proof of the representation
labelled by I depends on the tensor hierarchy algebra 7 (e11) introduced in [58]. Besides the
use of the tensor hierarchy algebra our approach differs from West’s original E1; proposal
in other aspects, such as the section constraint, as discussed in more detail in [13, 58].

We showed in [13] that the duality equation (1.1) is invariant under Fj; generalised
diffeomorphisms if an appropriate section constraint is obeyed. The argument in [13]
depended on a certain F11 group-theoretic identity, which we refer to as the master identity.
This was checked partially in the reference and in this paper we give a modified version of
this identity and provide strong evidence for its validity.

The duality equation (1.1) by itself is not sufficient to fully determine the dynamics
of F11 ExFT since one also requires equations of motion for the constrained fields, as
explained in [13]. In the present paper we shall provide these equations, thereby completing
the construction of the Fy; exceptional field theory.

We shall arrive at these equations of motion by constructing a pseudo-Lagrangian
whose variation provides all equations for the constrained fields as well as a projection
(mediated by the constrained fields) of the duality equations (1.1). This situation is com-
pletely analogous to what happens for ExFTs in other dimensions as is the structure of the

5Since we are working in a metric formulation the local K (F11) invariance is automatic and all equations
are Fpi-covariant. We note, however, that in order to properly define M;; we have to construct it from
a vielbein in a parabolic K (E11) gauge for the coset E11/K(F11). This will be discussed in more detail in
section 7.

5The need for additional fields can be seen most directly when considering linearised gauge-invariance for
the dual graviton equation where the trace of spin connection needs to be included [58]. Moreover, the latter
transforms indecomposably together with the dual graviton potential under the Poincaré algebra [59, 60]
and indecomposable representations of the Poincaré algebra also occur for unfolded formulations of gauge
fields [19].



pseudo-Lagrangian [23, 30]. The pseudo-Lagrangian takes the schematic form
L= [fpotl =+ Epotz + Lyin + Etop : (12)

The terms occurring in this pseudo-Lagrangian are summarised in (3.19). For the purposes
of this introduction we shall only describe these individual pieces qualitatively.

« The (first) potential term Ly, is the standard one that appears in all ExFTs and
takes a universal form that is given for example in [62]. It depends only on the Ej;
coset fields.

o The (second) potential term Ly, generalises a similar term for Eg [24] and Ey
ExFT [61] and is related to the non-closure of the algebra of generalised Lie derivatives
in the absence of ancillary parameters. It was generalised to any simply laced finite-
dimensional group G in [63]. For Kac-Moody groups L., depends on both the
FEq1 coset fields and the constrained field transforming indecomposably with the eq;
current.

e The kinetic term Ly, generalises the usual field strength squared terms and involves
both the Ej; coset fields and the constrained fields.”

« The topological term Ly, generalises the topological term of other ExFTs that does
not depend on the external metric. It depends on the Fj; coset fields only through
the eq; current, without the explicit appearance of the generalised metric M. It is
defined as a rigid Fii-invariant completion of the total derivative of a constrained
field transforming in an indecomposable representation together with the e1; current,
as does the topological term in E9 ExFT [30].

Each of the individual terms is invariant under rigid F1; but only a specific combination
of the four terms is invariant under FE7; generalised diffeomorphisms. In FE, ExFT, the
invariant terms are invariant by themselves under FE, generalised diffeomorphisms and
connected by external diffeomorphisms. Here, all these diffeomorphisms are subsumed in
F1 generalised diffeomorphisms that therefore fix everything. All objects in this pseudo-
Lagrangian depend on generalised space-time coordinates z in the R(A1) representation
of E1; and the construction crucially requires the associated section constraint. However,
when decomposing F1; into GL(D) x Eq11_p to make contact with exceptional field theory
in D dimensions, the actual kinetic, topological and potential terms will generically get
contributions from all the different parts of (1.2). In that sense the naming of the terms
in (1.2) is somewhat arbitrary and chosen because of structural similarities with those in
E, ExFT.

The construction of the pseudo-Lagrangian (1.2) will be one of the central results
of this paper. Its gauge-invariance will depend on several new Fjp; identities that have

"Strictly speaking, the sign of the kinetic term is the opposite of the usual sign. In section 3.4, we
give an alternative form of the pseudo-Lagrangian where we combine the terms differently to bring out the
standard sign.



not been known to the best of our knowledge. We can prove many of them and provide
supporting partial checks that cover complete E7; representations for the others.

The pseudo-Lagrangian (1.2) and the duality equation (1.1) are fairly formal ob-
jects since F4p is an infinite-dimensional algebra whose exact structure is not known.
The infinite-dimensionality in particular means that one has to be sure that the pseudo-
Lagrangian (1.2) is well-defined as it involves infinite, potentially ill-defined sums. We shall
address this issue in level decomposition of Fq1 where a finite-dimensional subgroup of E1; is
used as an organising principle [6, 59, 64, 65]. By employing an associated ‘semi-flat’ formu-
lation and partial gauge-fixing of the local K (E1)-invariance, we can show that the pseudo-
Lagrangian becomes a well-defined object. It is important to stress that our results do not
rely on a truncated level decomposition of the pseudo-Lagrangian, but hold to all levels.

To underline this point, we analyse in detail two cases. In the first, the finite-
dimensional subgroup is GL(11) C Ejj, corresponding to diffeomorphisms in eleven di-
mensions. The pseudo-Lagrangian (1.2) in that case will be shown to describe eleven-
dimensional supergravity and in particular its Euler-Lagrange equations include the non-
linear Einstein equation. Of course, this also requires choosing the corresponding solution
to the E1; section constraint. The pseudo-Lagrangian (1.2) can moreover be used to obtain
an infinite class of Lagrangians that describe the infinite set of dual fields in the theory.
We shall exhibit in particular the non-linear Lagrangian for the dual graviton and the
three-form potential gradient dual.®

The second case we analyse is for the finite-dimensional subgroup GL(3) x Es, associ-
ated to Eg exceptional field theory. We will show in this case that the pseudo-Lagrangian
reproduces the Lagrangian derived in [24]. Because the individual pseudo-Lagrangians
in (1.2) are not invariant under generalised diffeomorphisms, the reconstruction of the
covariant derivative and field strengths requires to recombine all contributions.

In general we expect the same to be true for any Levi subgroup Lp associated to the
fundamental weight Ap in the convention of figure 1, with?

Lp =GL(D) x Ey1—p, for3<D <8, Fi1_p ExXFT,
Ly = GL(10) x SL(2), type 1IB,
1) x Spin4(10,10), double field theory,
Ly, = GL(11), D=11 supergravity . (1.3)

Choosing a Levi subgroup of this type singles out a GL(1) € GL(D) factor that can be
used to define a Z-grading on FE7; that we shall refer to as the ‘level’. For all Lp, the
dynamical fields appear at level k& € Z in the range 0 < k < —(Aj,Ap) in terms of
the canonically normalised inner product between weights. For instance, for L1 one has

8Gradient duals generalise the (D—2)-form dual to scalar fields to arbitrary p-form potentials. Ei;
exceptional field theory as the E theory of [16] includes an infinite tower of successive gradient duals to the
three-form, its dual six-form and the dual graviton field.

9We here restrict to the standard GL(D)x E11—p subgroups that are obtained by deleting node D from
the Dynkin diagram. Choosing an F1; conjugate of such a subgroup can lead to theories with multiple
time directions [66]. Time-like T- und U-dualities and their effect on the signature of space-time have been
investigated in [67, 68], also in the context of exceptional field theory [69, 70].



—(A1, A1) = % and thus only levels £ = 0,1 appear and they correspond to the usual
propagating fields, namely the metric and the three-form. The other propagating fields
are dual to the dynamical fields with a duality equation £ = 0 between fields of level k
and fields of level —2(A1,Ap) — k. Solving partly the section constraint in the Lp level
decomposition, the pseudo-Lagrangian decomposes as

1
L=Lrp—7 S &, (1.4)

k>—(A1,AD)

up to total derivative terms, such that the corresponding Euler-Lagrange equations sub-
ject to the duality equation & = 0 are equivalent to the Euler-Lagrange equations of
the (pseudo-) Lagrangian Ly,,. Although £ depends on the infinitely many fields of the
E11/K(E1) coset, L, only depends on the fields of level k¥ < —(A;, Ap), which are the
standard fields in the corresponding theory. For GL(3) x Eg we compute that L, is the
exceptional field theory Lagrangian [24] and we expect that Ly, is the exceptional field
theory Lagrangian for odd D between 2 and 8, and the pseudo-Lagrangian for even D.
Similarly Ly, is expected to be the type IIB pseudo-Lagrangian and Ly, the double field
theory pseudo-Lagrangian [71].

In the list (1.3), we have not included cases where the Levi subgroup is infinite-
dimensional. One of those cases is Ly = SL(2) x Eg whose ExFT version has been con-
structed recently [30] and has served as an inspiration for the present paper. The other
Kac-Moody group is L1 = GL(1) x Ejp and we find that the same decomposition (1.4)
of our model applies to D = 1 for Eyg, although the content of the field strength repre-
sentation is more conjectural. We describe this in appendix E and also discuss a possible
relation to the Ejy sigma model that arises in the analysis of the cosmological billiard [6].
The proposed relation constrains the sigma model conserved charge to lie in the E1g-orbit
of its positive Borel subalgebra.!”

The structure of the article is as follows. We first introduce the necessary group-
theoretic facts and notation for E11, its irreducible representations and the indecomposable
representation extending the adjoint ey; that is part of the tensor hierarchy algebra in
section 2. This section also contains the definition of the Ey; coset and constrained fields as
well as their transformations under generalised diffeomorphisms. In section 3, we review the
duality equation (1.1) in more detail and construct the pseudo-Lagrangian (1.2). We verify
that the pseudo-Lagrangian is consistent with the duality equation (1.1) in section 3.3,
postponing the derivation of the equation for the constrained fields to section 5. In section 4,
we prove gauge invariance of the pseudo-Lagrangian under generalised diffeomorphisms.
In order to analyse the pseudo-Lagrangian for a given solution of the section condition
one has to choose a level decomposition and the necessary steps for performing such an
analysis are given in section 6. In section 7, we then study the pseudo-Lagrangian in level

OWe did not include D = 9 supergravity [72] in the list (1.3), because it is associated to a non-maximal
parabolic with Levi Lg 11 = GL(9) x GL(2). But we expect the same result with & > — (A1, Ag+A11) in (1.4).
Another case that is not included in the list is that of massive type ITA which requires a background that
does not satisfy the section constraint, or alternatively, a deformation of the gauge structure [73]. Massive
ITA in the context of E11 was also discussed in [74, 75].



11

*—90 0 0 ¢ 0 ° o—0
1 2 3 4 5 6 7 8 9 10

Figure 1. Dynkin diagram of F7; with labelling of nodes used in the text.

decomposition under GL(11) and show that it gives exactly non-linear D = 11 supergravity.
Section 8 is devoted to studying the consequences of our model for the higher level fields
and how they relate to dual formulations of the theory. In section 9, we perform the
level decomposition for GL(3) x Eg and reproduce Fg ExFT. Appendix A contains the
many proofs and supporting evidence for the group-theoretic identities that are used in
the construction of the theory. In particular, in table 5, we summarise these identities and
recall in the conclusions the main assumptions stated above, namely the master identity
and the existence of n7y. In appendix B, we formalise some aspects of indecomposable
representations in the language of Lie algebra cohomology. Appendices C and D collect
details on the GL(11) and GL(3) x Eg level decompositions of the various fields and tensors.
Appendix E contains details of the GL(1) x E1¢ decomposition and remarks on the relation
to the Fqg sigma model.

Since this is a rather long paper, readers primarily interested in seeing how eleven-
dimensional supergravity emerges from the proposed master exceptional field theory may
focus on sections 2, 3, 6 and 7.

2 Preliminaries

In this section, we introduce the basic group-theoretic building blocks, fields and transfor-
mations laws that will be essential for constructing the pseudo-Lagrangian of Fq1 excep-
tional field theory. Throughout this section several Fq; objects will be introduced with
specific index conventions. These will be summarised at the end in section 2.4 in table
form for the convenience of the reader. The derivation of the group theoretical identities
is relegated to appendix A.

2.1 Building blocks from E;; and its tensor hierarchy algebra

The Lie algebra e1; is a Kac-Moody algebra defined from its Dynkin diagram depicted in
figure 1 and we consider its split real form, see [76]. This means in particular that the
subalgebra corresponding to nodes 1 to 10 of the diagram is the sl(11) (over R) that can
be extended to gl(11) by taking the Cartan generator associated with node 11.

For the development of the general formalism we shall denote the generators of F1; as
t* with commutation relations

t2,67] = £, 87, 1)

There is a non-degenerate E1i-invariant bilinear form on ey; that we shall denote by kB
and that can be used to raise and lower indices on E;i-tensors such as f®8 ~- As usual f By
is totally antisymmetric.



One can define a ‘temporal involution” on e;; that generalises the ‘minus-transpose’
operation on matrices [76, 77]. We shall denote the fixed-point algebra of this involution by
K(eq11) C ey;. Its intersection with gl(11) discussed above is so(1,10) and therefore K (e11)
should be thought of as an infinite generalisation of the Lorentz algebra.'' We shall denote

the corresponding group by K (F11) and it is known that it has a two-fold cover K (E1) [78],
generalising the spin groups and that has finite-dimensional spinor representations [10, 13].
We shall not consider fermions in this paper.

Associated with the Lie algebra ej; is a tensor hierarchy super-algebra 7 (e11) that
was defined in [58], see also appendix A and [79]. The concept of tensor hierarchy super-
algebra was first introduced by Palmkvist in [80], see also [81-84] for related ideas. It is a
super-algebra with a Z-grading that is consistent with the Grassmann Zso-grading

T(en1) = @ Ty (2.2)

PEZ

and eq is the maximal simple subalgebra of 7. The Eq; modules 7, play a prominent role
in the construction of the theory and we will now discuss some of their properties.

Let us first introduce further notation. We use the symbol € to represent an indecom-
posable representation sum M; @ My, meaning that My, C M; @ M, is a proper submodule
while My = M\ (M; @ Ms) is only a quotient module, but not a submodule. Throughout
the paper we shall use the notation that R(\) is the irreducible highest weight module of e;;
with highest weight A = 21i1 kiA;, with A; the ith fundamental weight in the numbering
convention of figure 1. We shall use instead L(\) for a completely reducible bounded weight
module of e1; with highest weight A, which is generally a specific countable direct sum of
irreducible highest weight modules R()\') with weights A’ < X including R()\).'? As we do
not know the full structure of the individual 7, as E1i-representations, we shall sometimes
just list the first low-lying irreducible representations and use the notation L(A) to include
all the lower weight modules that are not known.!?

In particular 7y, 711 and 719 play a special role in the construction of the theory. The
algebra Ty includes e11 as a proper subalgebra and decomposes into F1; representations as
the direct sum [58]

where ;d\j is an indecomposable representation that is built on the adjoint of ¢;; and that
we write as

adj = e11 @ L(A2), (2.4)

1The split real Lie algebra e1; has a ‘maximal compact’ subalgebra that is fixed by the standard Chevalley
involution and whose intersection with gl(11) is so(11) rather than so(1,10). We write K(e11) for the
subalgebra fixed by the temporal involution. For example, for the split real ¢7, the corresponding subalgebras
are su(8) as the maximal compact and su*(8) as the fixed point algebra of a temporal involution.

12%With A < X we mean that A — )\’ is a non-negative linear combination of simple roots. In addition,
X < X denotes the stronger two conditions A’ < X and X # .

13These can be ordered by the height of the highest weight A\, where height refers to the sum of the
coefficients of A\ in a simple root basis.



whereas Dy is completely reducible. In (2.4), L(A2) = R(A2)®. .. is a direct sum of highest
weight modules of E7; that form an indecomposable Lie algebra extension of ¢17 [58]. Which
representations occur exactly is fixed by the tensor hierarchy algebra. To the extent that
it has been analysed, the only known representation in L(A2) at present is the irreducible
module R(A2). The reader is invited to think of L(Az) as just R(Az2) everywhere in this
paper. Our results do not depend on the exact knowledge of additional representations in
L(A2)."* From the investigations in [58] it is known that the completely reducible Dy is a
sum of highest weight modules and that its first summand is given by R(Aqp).
The e11 representation 77 is a bounded weight module of highest weight A; given by

Ti = R(A1) @ R(A1 + Avo) ® R(A11) @ R(A1+2A3) @ ..., (2.5)

where we recognise the irreducible module that was already mentioned in the introduction
for the space-time coordinates [2]. In the theory we shall only consider the generators PM
in R(Al) cTi.

Since 7 is a super-algebra, the level 73 is obtained by anticommutators {P PN}
and thus is contained in the symmetric product of 77 with itself. It is a bounded weight
module of highest weight Ajg with

T2 = L(A1) & Do, (2.6)

where

L(A10) = R(A1)VR(A1) © R(2M1), (2.7)

and Dy is a fully reducible module that can be ignored in our construction. Due to the
defining properties of the tensor hierarchy algebra 7, R(2A1) is not part of 7z. Since R(A1)
is the representation of the derivatives [2], L(A1g) is recognised as the symmetric section
condition [58]. This will be discussed in more detail in section 2.2.

The construction of the theory as defined in [13] relies on the assumption that Dy =
L(A10) ® Dy, where Dy denotes a direct sum of further possible highest weight Ej; repre-
sentations. In appendix A.2, we prove L(A1g) C T2 and provide evidence for the conjecture
that L(A19) C To in appendices A.4 and A.5. Although this would make the algebraic con-
struction of the theory from the tensor hierarchy algebra more uniform, we do not require
this assumption in this paper.

We now discuss in more detail the indecomposable representation adj in (2.4) and
introduce notation for its basis elements to be used throughout the paper. We write the
generators in ;ch as

o~

t = (t%,t%), (2.8)
which besides the E1; generators t, include the basis elements t% in L(A3) that satisfy

[to‘,td} = —Ta&BtB — Kadgtﬁ, (2.9)

14The next potential candidate that we identified and that we could not rule out on cohomological grounds
is R(2A10).



where T ad@ are representation matrices of e;; and K¢ jis a Lie-algebra cocycle. It
represents the fact that the t* are in an indecomposable representation with the adjoint of
¢11 since the action of ej; on t% gives back e1; generators. We give some more information
on Lie algebra cocycles in appendix B.

The action of E1; on the generators t* leads via a Jacobi identity in 7y to the two
identities

TOST 5 — TP T 5 = fPyT%5 (2.10a)
Kadyfﬁ’yzS _ K’defoz'y(s _ TadﬁK’B:y(s 4 Tﬁ&ﬁKoz’yé _ —fa57K7d5 ' (2.10b)

The first identity expresses the fact that the 7% ; are representation matrices of e;; and
thus transform as (invariant) tensors under F1;. The second identity is the cocycle identity
and shows that K 0‘5‘5 is not a tensor under Ej; when & is viewed as an index of the
representation L(Az). The cocycle is defined modulo a redefinition of the generator t* =
t% + K%t such that K% and K'*% satisfying

Kadg ZK/ad5+Tad3K’ég+fa’yﬁK&7 (2.11)

are equivalent cocycles. We shall encounter several F1; invariant tensors with one index &
in the representation a?d\j, as for example the structure constants faﬁg for two generators
in a/d\j. Because of the indecomposable representation, their components written with
a = (o, @) are not Ejj-invariant tensors for the indices « in the adjoint and & in L(Asg),
like fo‘é7 =-—-K 0‘57 for example. It will be convenient to define the failure to transform
under Fj; according to the direct sum representation e;; @ L(Az) as a ‘non-covariant’
variation A®. The notation we employ for an object O is

A“O = (transformation of O under t%) - (naive transformation suggested by the indices).
(2.12)

Equation (2.10b) can be written in this notation as
ACKPYs = 6§85 TP K5 (2.13)

while (2.10a) is A*T54 5 = 0. The naive transformation is simply given by the action of
the corresponding representation matrix; for the adjoint, the matrix representation of t% is
Tocﬁ - _ faﬁ

It is 1mportant to note that due to the indecomposable structure of adJ there is no
invariant tensor /ﬁ;aﬁ that can be used for raising and lowering indices on adJ The dual
module is instead adJ =e¢j; ® L(Ag) C T_o.

We shall denote the generators of L(A1g) C 7o collectively as P. They transform
under E71; with representation matrices as

[t“,PA} = T Pt (2.14)

and there is no non-covariance associated with this action of E1, thus A®TP s, = 0.
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The first negative level 7_; of the tensor hierarchy algebra 7 (e11) was identified in [58]
to be the one relevant for defining field strengths. For n < 9, 7T_1(e,) is the so-called
embedding tensor representation [57, 85] in supergravity in 11 — n dimensions [80]. 7_; is
therefore the natural representation for the generalised fluxes in exceptional geometry [86—
88]. We shall label the generators of 7_1 by t; and they transform as

[t t)] =T 1t (2.15)

under Fq; with proper tensors T ;. As generators of the Lie super-algebra 7 (e11), the ¢7
are Zs-odd. In [58] it was shown that 7_; admits a non-degenerate antisymmetric tensor
Q77 that we shall refer to as the symplectic form. The tensor ;7 is invariant under E7;
(and 7Tp) and is the restriction of the Zo-symmetric invariant bilinear form of degree p = —2
that implies T_o_, = 7,

As a representation of Fq1, the space 7_1 is neither a highest nor lowest weight repre-
sentation, but rather is expected to decompose as a vector space sum as

T1=Raa@RON & PRN), (2.16)
A A

where R_p is the piece that does not admit a highest or lowest weight and R(A) and
W denote a (possibly infinite) sequence of highest and lowest weight representations,
respectively. R_j is the quotient of 7_1 by the maximal proper submodule given by the
sum of highest and lowest weight representations.

Our construction crucially requires the existence of a non-degenerate K (FE1;)-invariant
bilinear form 77y, for instance for writing My in the duality equation (1.1). If 7_; were
completely reducible, in which case R_; would be an Eji-submodule of 7_1, the existence
of a K(Fh)-invariant bilinear form 77 on 7_; would be guaranteed. However, there are
also examples where such a form exists without the requirement of complete reducibility.'®
In the following we shall assume that 7y exists. Our investigations to date have not
unveiled any submodule R(\) so that 7_1 might be irreducible, but at present (2.16) is an
assumption and we do not have proof of the existence of 17y whose existence is crucial for
our model. We have evidence for the existence of n7; from considering subalgebras of e1;.
In [58] we computed the explicit components of 77y in GL(11) level decomposition that are
K (Eh;)-invariant for the first seven gl(11) levels. Considering the eg subalgebra of e;; as
in [30] establishes the existence of 17y on an infinite-dimensional submodule, including the
first three eg levels.

Assuming 7y exists, one has the identity

QK Qge ™ =67, (2.17)

which allows for the definition of a twisted self-duality equation. This identity was also
checked in level decomposition.

5By analysing examples in the branching of 7_1 under ¢g or eio (see (E.12)), we have checked that it
is possible to have indecomposable representations of ¢, within (2.16) that still admit a K(e)-invariant
bilinear form.

- 11 -



2.2 Space-time, fields, currents and field strengths

In this section, we introduce the generalised space-time of F11 exceptional field theory,
define the fields of the theory and a set of currents and field strengths.

2.2.1 Space-time and section constraint

In order to define the fields and the pseudo-Lagrangian, we need to introduce a generalised
space-time on which they live. As West [2] we take this to be given by coordinates z
transforming in the highest weight representation R(A;) of E1;. This is also the natural
coordinate representation obtained by extrapolating the pattern of coordinate representa-
tions for other exceptional field theories [33, 48] or equivalently the vector fields of maximal
supergravity theories [57]. The representation also occurs in the tensor hierarchy algebra
component 7; as described in (2.5) [58]. We recall that 7; is completely reducible, and the
index M will always refer to the first direct summand R(A;) only.

The action of Ey; in the R(A1) representation is through invariant tensors 7% y that
satisfy

ToM PP M el — peB My (2.18)

Partial derivatives with respect to the coordinates z™ will be written as dys. Either by
considering a complex of functions from the tensor hierarchy algebra or by using the general
form of the section constraint of other exceptional field theories one is led to requiring that

1
HagTaPMT’BQNap &® 8Q = —iaM Q@ ON + On Q@ O (2.19)

when the partial derivatives act on any pair of fields or parameters in the theory. The
equation above is the section constraint of Ej; exceptional field theory and follows very
naturally as a Jacobi identity when considering the tensor hierarchy algebra 7 (e;;) [58].
It will play a central réle in our construction. Some of the group-theoretic identities we
write will only be valid ‘on section’ and we shall make this manifest by contracting the
corresponding indices with dummy derivatives as in (2.19).

In terms of representation theory, the section constraint (2.19) picks out specific pieces
of the symmetric (V) and antisymmetric (A) second powers of R(A1). As Ej; representa-
tions these are given by [13, 58]0

L(A10)
R<A1>\/R(A1) = R(2A1) & (R(Alo) & R(AQ + AIO) P.. ) , (2.20&)
R(A1)AR(A1) = R(A2) & (R(Ay) & ...) . (2.20b)
——

L(A4)

5Tensor products of highest weight representations of Fi1 are completely reducible [76] but yield an
infinite sum of highest weight modules. These can be partially ordered by the height of the highest weight
A, where height refers to the sum of the coefficients of A in a simple root basis. When writing the result of
the tensor product, we only show the first few E11 representations in this order. Branching to subalgebras
gl(D) @ e11—p introduces a level that shall be used to organise the corresponding representations. This will
be explained in more detail starting from section 7. For many computations the SimpLie software [89] was
very useful.
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The section constraint (2.19) is the statement that the components along the representa-
tions L(A10) @ L(A4) have to vanish. Note that although L(Ajo) and L(A4) are infinitely
reducible, they should intuitively be thought of as being ‘small’ compare to R(2A;) and
R(A3). For example one can find two linearly independent Xj; and Yy such that XYy
vanishes in L(Aj9) @ L(Ay4), but one cannot find non-trivial vectors such that X;Yy van-
ishes in R(2A1) and its vanishing in R(Ag) implies that they are linearly dependent.

The action of the algebra 7y in the representation 7; (2.9) moreover implies that

TAM v = 0 and TM y satisfies the following identity!”

TM pPP y — TOM paP o = P8 AM B8 el (2.21)
that will be used when checking gauge-invariance of the pseudo-Lagrangian.

2.2.2 Fields

The fields of exceptional field theory will come from ej; B L(A2) @ L(A1p) C T—2, the dual
representation of 7y D e11. The fields of the theory are locally functions on the module
W, and the generalised space-times is locally isomorphic to the module R(A;1). They
include the representative V(z) € Ej; of the coset F11/K(E11), which is associated with a

non-linear realisation of Ey;. It transforms under rigid E1; and local K (F1;) as

V(z) = k(2)V(g '2)g, (2.22)

where the rigid ¢ € Fy; acts on the coordinates z

according to the R(A;) representa-
tion.'® One can consider V(z) in any representation of Fy; and we shall typically suppress
the space-time dependence in the equations. For example, writing V in the R(A;) represen-
tation leads to V4 )/, where A is a flat tangent space index transforming under K (FEy;) and
V is to be thought of as the vielbein on the generalised space-time with local coordinates
M 19 We also note that at the level of the coordinates 2™ there is no meaning to the usual
distinction between ‘external’ and ‘internal’ coordinates. This distinction arises only when
considering a level decomposition GL(D) x Ej;_p C Ej; of the type we consider starting
from section 7.

Besides the vielbein V we will make ample use of the ‘generalised metric’
M=Vipy, (2.23)

where 7 is a K (E1;)-invariant symmetric tensor on the representation in which one wants to
evaluate M. For instance, the R(A1) representation possesses such an invariant tensor 1y n
(as do all highest or lowest weight representations [76]) and this leads to the generalised
metric M,y that is symmetric in its indices and transform only under rigid F1; but is

"Note that it makes sense to restrict the indices to R(A1) because e11 acts on R(A1). Therefore if all
the uncontracted 77 indices are in R(A1), all the contracted 7; indices are also in R(Ay).

8Tn [2], this is expressed by saying that one considers a non-linear realisation of the semi-direct product
Fi1 x R(Al)

19WWe stress that this is only a local concept and, moreover, the generalised space-time dependence is
always restricted by the section constraint (2.19).
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inert under local K(F11). As we have explained above in section 2.1, we assume a similar
K (FEq;)-invariant metric 77 also exists on the field strength representation 7_; and we can
define M;;. We should stress that the generalised metrics M and Mj; are at the moment
formal objects and plagued with infinite sums and questions of being well-defined. We shall
explain in section 6 how to define properly the theory using the vielbein formulation in a
(parabolic) gauge for the coset Ej1/K(FE11). The use of My sy is nonetheless very useful
to simplify the equations, and Fq1 representation theory ensures that all the identities
formally derived using M sy imply well-defined identities in a parabolic gauge. All the
expressions we shall write in the following are formal in the same sense but can be made
meaningful in level decomposition.?’

Starting from the generalised metric M function of the fields in the coset Ey1/K(FE11),

we define the current
MTAOUM = Jpat® = MPVoyuMng = TInuaT g, (2.24)

that takes values in the e1; Lie algebra. We have also given its expression in the fundamental
representation R(A;). Since the generalised metric My is symmetric in its indices we
note that the definition implies the identity

JMaTaPNMNQ = JMaTaQNMNP . (2.25)
The current also satisfies the usual Maurer-Cartan equation
28[MJN}04 + fﬁ’yaJMBJN’Y =0 (2.26)

Since the current is valued in e;; we can use the Killing-Cartan metric k.4 to raise and
lower the adjoint index and Jp“ are the components of an element in the co-adjoint
representation eJ;.

Besides the fields in the coset F11/K(F11), E11 exceptional field theory also includes
additional constrained fields. A constrained (generalised) one-form wy, is a field with an

index M in R(A;) that satisfies the section constraint with any derivative of any field ® or
any other constrained one-form [23, 24], i.e.

1
/iagTaPMTﬁQN wp 8Q(I> = —in OND® +wyn Oy @ . (2.27)

Examples of constrained (generalised) one-forms are Jys, and 9y ® for any function @ since
the form index is carried by an explicit derivative. Together with the current Jy;, the con-
strained field y/* parametrises a constrained one-form in the 7y co-adjoint representation
T_2="Ty

dZM(JMaEa + XMdt_~) €e1n®L(Ag) CT 2. (2.28)

The constrained field x4 does not belong to a representation of ey by itself, but the
components

Jn® = (I xm®) (2.29)

20Tf one restricts all elements to the so-called minimal Kac-Moody group, defined in section 6.4, the

expressions are meaningful as they stand. We shall argue in section 6.4 that, for physical reasons, we need
to work with a completion of the minimal group and explain how the model remains well-defined.
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transform together in the representation R(A1)®a/a\j.21 It will be convenient to think of y /¢

as transforming in the representation R(A1)® L(Ag) with the non-covariant transformation
AP = K8 T (2.30)

As will be justified in what follows, we also need to introduce two more constrained
fields. The first one, (™ in the representation R(A1) ® L(A1o), was already assumed as
part of To in [13], while (3/® in R(A1) ® L(A4) was overlooked. We shall find that they
both are necessary for the duality equation to be gauge invariant.?? So we have

xm®  constrained fields in L(Ag) such that (dz.Jy®, dzMxu®) € adj
(™ constrained fields in L(A1g) = R(A1)VR(A1) © R(2A1), (2.31)

(v constrained fields in L(A4) = R(A1) A R(A1) & R(A),

where by ‘constrained field in L(\)" we mean fields in R(A;) ® L(\) with a constrained
index in R(A;1). We will use the combined notation ¢y for the constrained field

—~ ~

™ = (™, ™), (2.32)

which is valued in the section constraint representation L(A10) @ L(A4), and can schemat-
ically be thought of as (p/7Q with (/7 Qdp @ 0Jg = 0. The semi-colon here is used to
denote a tensor product R(A1) ® R(Aq).

2.2.3 Field strengths

As explained in [58], the tensor hierarchy algebra implies the existence of an Ejj-invariant
tensor defining a map from 71 ® 7_o — T_1 which enters in the definition of a field strength
in 7_;. In general there is a nilpotent differential operator acting on fields in ®(z) € 7, to
give fields in 7,41 as

d®(z) = (adPM)(9y®(2)) (2.33)

where ad(PM) is the graded commutator with P and nilpotency d?> = 0 follows from
the tensor hierarchy algebra [58]. This differential derived from the tensor hierarchy al-
gebra provides a projection of the current components Jp“ (2.29) to the field strength

representation 7_1
[PM,JMOCL?a] = CIMa Jmtr. (2.34)

As we shall see in the next section when discussing the duality equation, the appropriate
field strength requires additional terms and is defined as

Fl— CJMa JMa + (jIMX Car

=C™M, Ty + O™ xm® + C™My Gy + O™ Gt (2.35)

2INote that the field components are in the dual representation of the fields themselves.
*2The representation L(A4) is beyond the level truncation that has been considered in the literature, but
the all-level considerations in appendix A.2 show that it is needed.
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This includes an additional dependence on the constrained fields (¢ u™, ¢ MA). Compared
to [13], the definition of ~the field strength differ in two regards. First, as mentioned above,
the constrained field ¢/ in L(A4) were absent in [13]. Secondly, the constrained field ¢/
in L(A1p) here appears with the tensor CIM , that is defined from 7 as the conjugate of the
commutator [Tz, 7_1] (see (A.34)) while in [13] we used the commutator [77,T_2] similar
to (2.34). We have evidence that these two definitions might be equivalent, but this will
not be essential for the construction of the theory with the definition (2.35).

oM

In the following we will drop the tildes on A and ciM 3 for ease of notation, thus

writing
Fl =™ gy + ™Mo (2.36)

The tensor CTM 1 is not defined from the tensor hierarchy algebra 7, but will be defined
in section 3.1 to ensure gauge-invariance of the duality equation and is discussed in detail
in appendix A.2.

Turning to the structure constants above that do arise in the 7 (e11) algebra, since the
index & of the indecomposable representation is downstairs, we are dealing with the dual

representation ¢f; ® R(A2) and thus the component C' 4 is an E1;-tensor while C'M , is
not. Its non-covariant variation is given by

AYCIM g = g ,01M (2.37)

The field strength (2.36) transforms covariantly under rigid F1; in the 7_; representation,
using (2.30).

The tensors defined above satisfy a number of important identities when their gen-
eralised space-time indices are on section. In particular, 7 = @,7, defines a graded
complex of functions satisfying the section with a nilpotent exterior differential defined
by (2.33). The first identity comes from d?¢ = 0 when acting on a gauge parameter
E€ERN)CT3=T"

CTM TN L 9y on = 0. (2.38)

We have written dummy partial derivatives to emphasise the fact that the identity only
holds when the indices M and N are projected onto the irreducible representation R(2A1)
associated to the section constraint (2.19) on a symmetric tensor. It is important that here
there is no contribution from Dy since {PM, Py} = ToM Nts C adj’ C T_o, as can be
checked by Ej; representation theory since the bounding weight of Dy is Aqg.%3

The same derivation from d?® = 0 for a field ® € T_5 gives

Q; chMacJNgaMaN =0. (2.39)

Z3These standard methods rely on analysing the weight diagrams of highest weight modules and this is the
only methods we are aware of for general indefinite Kac-Moody algebras. For the case of affine algebras, one
could also use the Virasoro algebra that can be constructed in the universal enveloping algebra and make
its coset form act on tensor products [90-93]. A similar structure for E11 or other indefinite Kac-Moody
algebras is not known.
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It is proved in appendix A.3 that this generalises to the following identities when no
symmetry is assumed for the two derivatives:

Q[JCIMQCJNg Oy ® 0Oy = _QH&MNK((X&B) Oy ® On (2.40&)
Q]JCIM&CJNﬁaM ® 0N = —HBMNT[gBd@M ® IN , (2.40b)
Q[JCIMQCJNB oM ®9Iny =0, (2.40¢)

where TI5M% is the intertwiner for the injection R(As) C R(A1)AR(A1). The left-hand
side of (2.40a) does not need to be symmetrised in o and ( since it is automatically
antisymmetric in M and N.

One checks by standard methods for Fj; tensor products [76] that?*

Q]JCIMdCJNK oy @0y =0, (2.41a)
Qr C™MCTN L Oy @ O = 0. (2.41D)

2.3 Generalised diffeomorphisms

Besides the rigid E7; transformations of the fields we shall also require local gauge trans-
formations provided by the generalised diffeomorphisms. These were defined in [13, 58]
following the general pattern of any generalised Lie derivative for arbitrary groups and
representations [94] on a vector VM in R(A;) by

LVM = NonVM — kogTP Q0peQTPM VN 4w oneN VM (2.42)

The subscript &M represents the gauge parameter in the R(A1) representation of FEj.
The vector representation R(A1) of Ej; implies that the gauge parameter ¢ has weight
w=—3 [94].

Closure of the algebra of generalised diffeomorphisms only holds when the section
constraint (2.19) is fulfilled [48] and only modulo ancillary transformations that arise for
the first time for Fg [24, 62, 95]. Computing the closure of the algebra here leads to the
relation

[Cer Le)) VI~ Ligy eV
1 e
= 5 (Fasn T RT 526 1.9 ) ) 0P O TN W VN ~ (G1602), (2.43)
where the section condition was already used and [£1,&] = %E&fg — %55251. In order

to absorb this failure of closure one requires ancillary transformations. Extrapolating the
structure of the ancillary transformations from Eg and Ey [24, 61, 94] one expects that there

is a first gauge parameter in the representation R(A1)® R(As3), i.e., with the index structure
YV wwhere the upper R(Ap) indices are completely antisymmetric and the lower

24Using the notation AMN 9y ® Oy = 0 means that the projection of MN in AMY to the representations
R(2A1) and R(A2) vanishes, see (2.20). In particular, if the solution to the section constraint is realised by

a linear subspace and the indices M and N belong to this linear subspace, the corresponding components
of AMYN vanish.
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index is section constrained. One needs in fact a more general ancillary gauge parameter
Yl with an index I that labels the completely reducible bounded weight representation

L(A3) = R(A1) ® L(A2) © R(A1 + A2) = R(A3) @ R(A1 + A1) © . .. (2.44)
We also impose the tracelessness condition
I Mosy, T =0, (2.45)

where II;M% is an Fy; intertwiner tensor that projects out the R(Aj + A2) from the tensor
product

R(A1) ® L(A2) = R(A1 + A2) © R(A3) © R(A1 + A1o) © R(A1 + Ag) @ R(A1 +2A3) ©
(2.46)

to the representation L(A3) in (2.44). There must be an extension of the theory for which

the scalar fields V(z) are defined in a bigger coset associated to (the conjugate e11 @ L(Az2)
under the Cartan involution of) adj C 7y and the constraint (2.45) is relaxed since it can

be contracted with a generator ToMy in L(A3). This is important in the construction of
the supersymmetric theory including the fermions [13], but we shall not attempt to define
it in this paper.?’

Here, we take II I~M @ to be the direct sum of the canonically normalised projectors to
the individual representations in (2.44). We define its conjugate tensor by

CTara =1 N1 7 NE (2.47)

where, due to the reducibility of the I (and potentially &) indices there is some freedom in
the normalisation of the K (E;;)-invariant tensors 7 (and 7, 53)- We will fix this freedom

below. We prove in appendix A that the tensor CT C ua is part of a larger structure constant
C’IMa (CIMQ,CIMC,) in L(A3) ® R(Al) ® adJ , whose component Cj, transforms
non-covariantly as

ACT 5 = K50 4. (2.48)
We use this tensor to define an extended generalised Lie derivative
LesyVM = LVM =g P07 o Sp T VN (2.49)

Even though only the non-tensorial part c’ Qa appears in the extension of the generalised
Lie derivative, this expression is E1i-covariant due to (2.45). One computes that the algebra
of generalised diffeomorphisms (2.49)

[[’(51,21)7 5(52722)] VM= ﬁ([&,&z}yzlz)vM ) (2'50)

Z5For Fy this is equivalent to the formulation extending Fy by the generator L_; and the associated field

p in (bosonic) exceptional field theory [30, 61]. At the level of supergravity, the field § transforms non-

trivially under supersymmetry [96, 97] and j is necessary for K (FE9) to commute with the supersymmetry
transformations.
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indeed closes with the parameter

~ ~ 1 ~ —~ 1 ~ ~ ~ ~
Yo’ = Le Son’+ §CIN3TQPQ§{V@M3P§§+§T,BIjZ1MJ77f<L77PQ77ﬁWCKP722QL —(1+2).

(2.51)
The Lie derivative of the weightless constrained parameter X MI~ is
LSyt = NonSu! — TP 0T 506957 + TP o TN y0pe95y’
— Noysy — TP Tl 0pe95 0T + 0yE95 ! — %aNgNsz 2

where we have written the second line by using the section constraint (2.19) to make
it manifest that the result is again section constrained on the index M. Moreover, one
checks by Fji-invariance of 11 I~M & that II I~M 5‘552 MI~ =0, i.e., the Lie derivative preserves
the tracelessness condition (2.45). To obtain the last term in (2.51) and show that it
satisfies (2.45), we use that ¥ MI~ and Yo M]~ do and the identity

CanTaPRnQMT]RNaM R0y =0, (2.53)

which follows from the property that neither R(2A;1) not R(A2) are contained in R(A;) ®
L(A3). The structure on the upper indices is that of the tensor product L(As) ® R(A;) C
R(A1)®@ R(A2)® R(A1) and we need to check that this does not contain the representations
R(2A;) and R(A2) that are non-trivial when the section constraint is fulfilled, see (2.20).

To show that the failure (2.43) of the generalised Lie derivative to form a
closed gauge algebra is indeed reabsorbed by the ancillary transformation of parameter
%CfNaTEPngVaMapgg in (2.51), we use the identity

CipETﬁ Mo NIBy o1 CF Oy @ Oy = (f B TV MpTN g — 25[(1];4 TQN)Q])aM ® N,
(2.54)

which we demonstrate in appendix A. To moreover show that this second term in Xq9
satisfies the traceless condition (2.45), we use the additional identity

n&’?nIJnNPCIP:yCJME = HfMdC[Ng, (2.55)

where we recall that B = (B, ,5’), which implies, together with (2.38), that X2 indeed
satisfies the tracelessness condition. Identity (2.55) links the representation L(As) with
index I to the representation 7_; with index I. It is proved in appendix A.1 and fixes the
freedom in the definition of 7; ;.

As we shall see the tensor C7 PR also plays a role in the construction of the pseudo-
Lagrangian of F7; exceptional field theory as it enters what was called the second potential
term in (1.2). This is not surprising since also for Eg the gauge algebra only closes when an
additional ancillary gauge transformation X is introduced and also the potential acquires
a new term compared to E, with n < 7 [24]. The same identity also appears in the definition

of the potential for Eg [61]. More generally is was shown in [63] that the identity (2.54)
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appears in the closure of the algebra and the definition of the potential for all simply laced
finite-dimensional Lie groups G and any highest weight coordinate module R(\).

Having discussed the general Lie derivative and its closure we shall now describe how
the fields of E71; exceptional field theory transform under generalised diffeomorphisms. In
this we shall focus on the parameter ¢V only.? We write the generalised Lie derivative of
any object O as

L0 = M0y 0 — TN pOnETt0 + woy M0, (2.56)

where t*0 is the action of the 1 generator t* on O and w represents the weight of the
object.

The generalised diffeomorphism will be written as 6¢O and need not coincide with the
generalised Lie derivative as there can be non-covariant terms when additional derivatives or
constrained indices are involved. We shall write this non-covariant gauge transformation as

A¢ =8¢ — L. (2.57)

The non-covariant gauge transformation defined above should not be confused with the
‘non-covariant’ rigid e;; transformation A% in (2.30) associated to the indecomposable
structure. In particular L¢x u?® takes into account the indecomposable representation and
includes the term —T,~ pOn&P A% according to (2.56).

For instance, the generalised metric transforms under generalised diffeomorphisms as
always in exceptional field theory

SeM = LeM = MOy M + kosTM N0y EN (MEP + T M) (2.58)

and this coincides with its Lie derivative as it is a fully covariant object. Therefore, A¢M =
0 in any Ej; representation admitting a K (E1;)-invariant bilinear form.
By contrast, the gauge transformation of the current Jys* follows from (2.58) and using
its definition (2.24) as [13, eq. (3.18)]
1
Se ™ = ENON T + TN pOnE” 2% Tn + TP gOpeQT N yp In™ + §0N§NJMO“
+ TV p (O00OnE" + MugM" ROy 0RE?) . (2.59)

The first line coincides with the Lie derivative of a weight w = 1/2 object (since the
derivative index is downstairs) but the second line is a non-covariant gauge transformation

Aedu® = TN p (000nE" + MM RO 0RE?) | (2.60)

26The gauge transformations of parameter EMi for the generalised metric M and t}/l\e cuirent Ju®
follow from the definition, but the gauge transformations of the constrained fields ()(M"‘,CMA) are not
straightforward to get. It is expected that the closure of the algebra of generalised diffeomorphisms on the
constrained fields requires introducing additional gauge transformations with two constrained indices and
under which all the covariant objects M, &' (where £ = 0 is the duality equation for F') are strictly
invariant.
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proportional to second derivatives of the parameter £ that appear in all exceptional field
theories.?”

The gauge transformation of the constrained fields was established in [13, eq. (3.20)].
Since the constrained fields are in some sense completions of the currents according
to (2.36), their transformation is very similar. However, they have an additional non-
covariant piece due to the existence of additional invariant tensors. Their transformation

under generalised diffeomorphisms is?®

Sexmr® = ENonxar® — ToN pone” (TQ&BXMB + K*%Jy" — T“QMXQ&) + %3N§NXM5“
+ TV p (O0ONE” + MugMPROyORE?) + 0 pMN 00T, (261a)
5£<MK _ §N8NCMK ~ TN pone” (T“Kchg _ TO‘QMCQK) i %6N§NCMK
+ T p MY Q8 0T (2.61b)

where compared to [13] we have used the section constraint (2.19). Moreover, we have

additionally used the fact that there is no tensor T4V

p as canAbe checked by E7; represen-
tation theory. This simplifies the gauge transformation of (3, compared to that of ya%.
It is important to note that the algebra of dAiﬂ"eomorphisms generated by (6M, % Mi ) does
not close on the constrained fields x* and ¢, but involves instead higher gauge transfor-
mations starting with a parameter involving two constrained indices. In particular, in the
commutation rules one finds terms involving dp&RdyOnEQ + ONEQDY OpET which cannot
be interpreted as a X MI~ variation. The precise form of these higher gauge transformations
remains to be determined. Nonetheless, they are not needed to demonstrate the gauge
invariance of the dynamics under generalised diffeomorphisms with parameter ¢M only.
Turning to the {-transformations in (2.61a), the first lines of these transformations are
again the Lie derivatives so that we can read off the non-covariant gauge transformation as

Aexur® =T p (9nONE” + MM ROy Ope?) + T op MV 0n0Ne”, (2.622)

Al = T gpMNCop0ner (2.62b)

The extra Ejj-invariant tensors that occur in these transformations are %N and
I yny = (TN, T%yN). They correspond to the projections of the antisymmetric
and symmetric product of two R(A;) representations, see (2.20), onto the corresponding
representations R(A2) C L(A2), L(A4) and L(Ajg), respectively. Thus they have the
symmetry properties

0%y =%, Iy =g Iy =Ty - (2.63)

2TThis is similar to the fact that Christoffel symbols transform non-covariantly under diffeomorphism
whereas the metric is covariant.

28The invariant tensors TN p and T*Y p appearing in the equations below correspond to the action of
To in the tensor hierarchy algebra on its level one representation 711 [13].
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Index Fh1 representation Object

— [ e11(adjoint) ~ Ju® (current (2.24))
ad { Iu® = { -
L(A2) xm® (constr. field (2.31))

Q)

Il
—
ST

= {4| (L= vt |5 o om0
1) = R(Ay | 2 (™ (constr. field (2.31))
M R(A) Oy (space-time derivative (2.19))
I 71 (2.16) F! (field strength (2.36))
i L(A3) = R(Ay) ® L(A2) © R(A1+A3) | Sa!  (anc. parameter (2.45))

Table 1. Summary of the Eq;-representations that occur (up to conjugation) in the construction
of E1; exceptional field theory with some associated objects and where they were defined.

Using the generalised metric in the various representations, we can also define dual

tensors to the projector I1%;n by
MY = Mg MMP MM pg = g g™ PN @IIP pg (2.64)

where nMY and ndB are uniquely defined for the irreducible representation R(A;) and
R(A2), respectively. We also note that we have the following identities involving the Fj;-

invariant projectors

MNPy = o PITeNlp - % TP = 211 iy 17 (2.65)

2.4 Summary of notation

Since we have introduced a fair number of Fj; objects, we briefly summarise the most
relevant notation for the convenience of the reader in tables 1 and 2. The identities for
the various tensors mentioned in this section are summarised in appendix A. Here we call
tensors the invariant tensors in the fully reducible modules only, so the component of the
tensors involving the indecomposable representation gd\j or its conjugate are not called E1;
tensors when they are not invariant tensors for the fully reducible representation e;;® L(Az2)
or its conjugate.

3 Dynamics

Equipped with the preliminaries regarding all fields and their rigid and gauge transforma-
tions, we construct the pseudo-Lagrangian of 1 exceptional field theory in this section.
It will be a pseudo-Lagrangian in the sense that its Euler-Lagrange equations have to be
supplemented by duality equations. These duality equations were already constructed in
our last work [13] and we review them first to set the scene.
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Object occurs where FE41 tensor?
o8, e11 structure constant (2.1) yes
K4 cocycle for indecomposable representation (2.9) no (2.13)
TM . - yes
_ action of generators of adj on coord. module R(A1) (2.21)
TM no
ciM no (2.37)
CIMd
definition of field strength (2.36) yes
cM yes
C’IMK yes
Qry symplectic form on 7_; yes
CfMa no
- anc. gauge transformation (2.49), (2.54)
C'va yes
1%y N intertwiner R(A1)AR(A1) — R(A2) (2.20), (2.63) yes
I v intertwiner R(A1)VR(A1) — L(A1o) (2.20), (2.63) yes
A intertwiner R(A1)AR(A1) — L(A4) (2.20), (2.63) yes

Table 2. Summary of some Ej; objects that occur (up to conjugation) in the construction of
F11 exceptional field theory and whether they are covariant under rigid Fq; for the fully reducible
representation.

3.1 Duality equation

The duality equation was already given in (1.1) in the introduction and we repeat it here

for convenience:

M F? =QpF7, (3.1)
where the field strength F! with values in 7_; was defined in (2.36), the symplectic form
Q7 at the end of section 2.1 and My = (VTnV) 77 is obtained by using 7n7; defined also

in section 2.1 and evaluating the F7; vielbein V in the representation 7_;. Its inverse is
M7 Note that we have QM7 EQpp MET = 51‘].
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Following [13], where the gauge invariance of (3.1), albeit for the field strength F
in (2.34), was studied, we now compute the transformation of the field strength F! to be

6 F1 = Moy FT — TN pon e T jF7 + %aMgMFf
+ (MM TR g + CTM TR Q) MON Mpp
+ O % p MY 4 MR p MO )ayone” . (32)
such that the non-covariant gauge transformation is
AéFI _ ((CIMaTaRQ + CIM&TdRQ)MQNMRP
+ O Qp MO 4 O g p MY Yoy dnET . (3.3)

As explained in [13], there is no gauge covariant field strength unlike for other F,, ExFTs.
Note that the E; field strengths of the vectors are covariant under internal diffeomorphisms
but not under external diffeormorphisms, and only their duality equation is covariant under
both [23].

The gauge-invariance of the duality equation (3.1) requires the non-trivial equality of
the non-covariant gauge transformations of its two sides

MrjAeF? = QpAcF7 (3.4)
and this equality is equivalent to the conjectural tensorial identity

M[JCJMaTaQRMQPMRN = Q[JCJN&HdQPMQM + Q[JCJNKHAQPMQM ,

& Q[JCJMaTaQRMQPMRN = M[JCJN&H&QPMQM + M]JCJNKHAQPMQM .
(3.5)

In the above equation, we recall that C/V4 and HdQ p are E7; invariant tensors and that
TMN p = 0. These equations can also be written without explicit reference to the scalar
matrix M, since they are tensorial, as follows

O CMTN g = CrTIMN + Cr MY, (3.6)

where the conjugate tensors are defined as
éjpd = n[anQndBC‘]QB = M[JMPQM&BCJQB, (3.7&)
Crp = nrmpn=C7% = MyMpoMP=C79. (3.7b)

We shall refer to the conjectured relation (3.6) as the master identity because of its central
role for gauge invariance of our model. Equations (3.2), (3.3) and (3.5), differ from those
given in [13] by extending the sum over the index A to one over A and by the property that
II BM N is the intertwiner in the irreducible representation R(A2) only. In appendix A.2 we
prove that, disregarding (3.7a), the identity (3.6) is guaranteed to be satisfied for some

— 24 —



invariant tensors 6IQA and 6[@3 . The non-trivial claim that we are making with (3.6)
is that GIQB can be identified with C'™ 5 according to equation (3.7a). We establish
this identification in appendix A.2 for the irreducible component of 7_; that contains the
supergravity duality equations. A sufficient, but not necessary, condition for the proof of
the master identity would therefore be the complete reducibility of 7_1. If 7_; turned
out to be indecomposable instead, one may have to modify the definition of C;p® for I
valued in the corresponding invariant subspace for (3.6) to hold. The validity of the master
identity beyond what we prove in appendix A.2 remains one of the key assumptions of our
construction.

Independent of the proof of the master identity, we note that C'¥, in (3.7b) might
be structure constants of the tensor hierarchy algebra. We provide some evidence that
L(A1p) C 7o in appendix A.2, a statement that is further supported when we construct a
To-homomorphism from L(A1g9) C 72 to 7o in appendix A.4. We prove moreover in (A.45)
that the tensor C'M  that we use in (3.6) satisfies

Q0™ CIN \OhOn =0, (3.8)

just as it would if CTM  was identified with the structure constant of the tensor hierarchy
algebra, similarly as in (2.39).

Turning to C QK, we prove in appendix A.2 that they cannot be structure constants
of T(e11), and in particular that

QrC™ o CTN 0NN # 0. (3.9)

Thus, even though the tensor hierarchy algebra 7 (e11) is a very useful and comprehensive
tool for encoding the structure of F1; exceptional field theory, it does not provide all the
ingredients needed. We shall comment further on this in the conclusions.

3.2 The pseudo-Lagrangian of F;; exceptional field theory

In this section, we define the individual pieces of the schematic pseudo-Lagrangian
£ = £potl + £p0t2 + L‘/kin + [:top (310)

stated in (1.2) of the introduction. We shall only show the rigid Ej;-invariance of the
individual pieces in this section but already put the correct relative coefficients for the
combination to be invariant under generalised diffeomorphisms. This invariance will be
checked in detail in section 4.

The first potential term. All exceptional field theories possess a contribution to the
potential term that takes the form

1 1
Lpot, = —ZmagMMNJMaJNﬁ + iJMaTBMpMPQTO‘NQJNB : (3.11)

It only uses the Eq; current (2.24) and depends solely on the Ej; fields, but not on any
of the constrained fields. It is manifestly F4i-invariant as it is only constructed from E7;
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tensors. We have taken the canonical coefficients for this generic term [62].2° They are
canonical in that they produce the Ricci scalar with unit coefficient, see section 7.

The second potential term. The second potential term is the generalisation of a sim-
ilar term in the Fg exceptional field theory [24], that has been generalised to any finite-
dimensional simply laced Lie group in [63]. Its presence is closely tied to the fact that there
are ancillary gauge transformations whose parameter we called X MI~ in section 2.3, with
an associated tensor C7 Ma, see (2.54). Using this we can write the expression

1 - - ~ o~
Lpot, = =5 M Joarryed QEMQMMPNJM"‘JNﬁ, (3.12)

where we recall that I labels the reducible representation L(A3) defined in (2.44). Since a-
indices range over the a?d\j part of Ty only, this potential term depends only of the 1 fields
via the current Jj/“ and of the constrained fields x u& but not on of the other constrained
fields ¢y, The second potential term is manifestly Fji-invariant. The tensor cl pg was
already conjectured to exist in [58] in the analysis of the linearised equations. We prove
its existence and the relevant algebraic identities it satisfies in appendix A.1.

The Ej;i-representation L(Ag) D R(As) is a bounded weight module of highest weight
As. When this representation is branched to GL(3) x Eg C FEj, its first element in
level decomposition is a singlet and the first component of the tensor ol Po 1S the Ejg
Cartan-Killing form, such that (3.12) produces the new term that appears in the Eg ExFT
compared to E, ExFT with n < 7. We shall see this correspondence in much more detail
when we consider the Fg level decomposition in section 9.

Kinetic term. The kinetic term resembles a generalisation of the covariant field strength-
squared terms in other ExFTs. It uses the F4; tensors appearing in the covariant field
strengths F! defined in (2.36), but combines them in a slightly different way.

The kinetic term is given by

[

1 ~ 2 1 ~ 1 N
Liin = ;M1 CMECT 5 0 NP =S My CTYEOM N I Ot = T M CTYRC G O,
(3.13)

where we have fixed the overall coefficients knowing the result of the gauge invariance of
the full pseudo-Lagrangian that will be studied in section 4. The kinetic term depends on
the constrained fields x /%, (™ and .

Note that one might have expected to get the opposite sign for the first term in (3.13)
such that one would have obtained the expected kinetic term [',kin = —i/\/l 17F'F7 in the
democratic formulation of the theory, in which all fields and their duals appear at the same
time. In fact we shall see in section 3.4 below that there exists an alternative decomposition
of the pseudo-Lagrangian in which the kinetic term is Zkin, but the potential term instead
does not take the expected form. This is a consequence of the fact that there is no natural
split of the F11 pseudo-Lagrangian into a kinetic term and a potential term given that the
coordinates do not split into internal and external ones.

29This potential term is more commonly written as iMMNaMMPQONMpQ — %MMpaMMNQ&vMPQ
for finite-dimensional groups E, [21], with ¢ defined such that TQPQTng = ckaqp. However c diverges for
Kac-Moody groups.
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Topological term. The topological term in exceptional field theory for finite-dimensional
groups is the term that neither depends on the external nor the internal metric. There is
no such term for Fj; exceptional field theory, but we call the topological term a term in
the pseudo-Lagrangian that does not depend explicitly on the generalised metric My,
but only implicitly through the current Jy;%. We shall first explain how to obtain such a
term that is invariant under rigid E7; transformations.

For this we take inspiration from FEg exceptional field theory [30] and look for an
Ej;-invariant completion of the derivative of the constrained field /%, i.e., we start from

MY oy e . (3.14)

Recall that II5M¥ is antisymmetric in M and N, see (2.63), and that only the component
in R(A2) C L(A2) is non-vanishing because of the section constraint. The term above is
not F1;-invariant because y/* transforms indecomposably under E1; according to (2.30).
Since IIzM¥ is an Eji-tensor, we only have to parametrise the completion of 0| MXN]&-
Making an ansatz in terms of the tensors at our disposal and requiring it to be E11-covariant
leads uniquely to the combination

Onn® = 20 xn* + J[MaTadBXN}B + I K, %5 In" (3.15)

where adjoint F7; indices are raised and lowered freely using the Killing-Cartan form
kag. Let us briefly check that this is indeed E7q-covariant by computing its non-covariant
transformation

A0y N =200 TN K7 g4+ T *Ta® 5K 7P g Iy = I (K77 15Ty 5= K5 fap”) IN" =0
(3.16)

using (2.30), (2.13) and finally the Maurer-Cartan equation (2.26). Thus, Oy n® is the
FE11-covariantisation of 9jrx N]& that defines a two-form field strength. Projecting it with
H&M N turns it into an Eqp-invariant density.

Another term is required in the topological term for gauge-invariance of the total
pseudo-Lagrangian. This term involves the constrained fields ¢y, and will be needed in
order to use the master identity (3.5). The total topological term we shall consider is

1 1 o~
Liop = §HdMN@MNa - §QIJCIM{§CJNKJMQCNA- (3.17)

We chose the form (3.17) to make F4; invariance manifest, but note that if we write explic-
itly the dependence in the current Jp;% and the constrained field y /% of the second term

o~

QIJCIM{;CJNKJM&\CNA = Q0™ CTN Ty vt + QO GO vt

= QIJCIMaCJNXJMaCNA : (3.18)

one obtains that the field x4 drops out because this contraction of C-tensors vanishes on
section according to (2.41a).

The topological term (3.17) does not depend on the generalised metric M,y explicitly

and we have fixed the coefficients by anticipating the gauge invariance that will be verified
in section 4.

_97 —



Summary. To summarise, the proposed pseudo-Lagrangian is given by the sum (3.10)
of the four terms

1 1
Lpot, = = 3 hapMMN Ty InP 4 S Tara T pMPAT N . ys

1 ~ ~ —~ -~
Lpor, = =5 M 7O paC7 gMOM MY Ty NP,

(UM

1 a5 1 g 1 3
Lin = ZMIJCIM{;CJNEJMQJNﬁ—§MIJCJMQCJNKJM&CNA—ZMIJCIMKCJN§CMACN ;

1 ~ 1 N
Liop= 5N Oun — S QOGO 2T O (3.19)

where
@MN& = QQ[MXN]d + J[MaTadBXN}ﬂ + JMaK[adeNﬁ. (3.20)

This decomposition of the pseudo-Lagrangian gives the expected potential term Lpor, +
Lpot, [63] but Ly, is not the expected kinetic term Liin. An alternative form of this
pseudo-Lagrangian will be given below in (3.29) with the expected kinetic term (3.30a),
but an alternative potential term Ly in (3.30b). We first present (3.10) because it is
more natural from the point of view of exceptional field theory and because we shall use
it to prove the invariance under generalised diffeomorphisms in the next section. The
alternative pseudo-Lagrangian (3.29) involves fewer terms and we will use it when we vary
the pseudo-Lagrangian with respect to the E1;/K(FE11) coset fields in section 5.

3.3 Consistency with the duality equation

The way we arrived at the pseudo-Lagrangian (3.10) was by considering Fp; building
pieces such that the constrained fields’ Euler-Lagrange equations are compatible with the
duality equations that we described in (3.1), so that both can be imposed consistently.
This crucially requires to have both a topological term and a ‘kinetic term’. For obtaining
generalised diffeomorphism invariance one also has to consider terms that are independent
of the constrained fields, such as Lpot,, which is a universal ExF'T term. We postpone the
proof of gauge invariance to section 4 and first investigate the consistency with the duality
equation. This will also provide a first confirmation of the choice of coefficients in the
terms of the pseudo-Lagrangian. We shall discuss the Euler-Lagrange equations obtained
by varying with respect to the E1; generalised metric M in section 5.

Varying with respect to x. There is y-dependence in three of the four terms of the

pseudo-Lagrangian, namely the second potential term (3.12), the kinetic term (3.13) and

the topological term (3.17), in the former two cases via the component Jy¢ = x <.
Varying x /¢ in the kinetic term leads to

1 > ~ -
0Lxin = 5M1J01Ma (CJNEJNB - CJNXCNA)(SXMa (3.21)
The y-variation of the second potential term (3.12) is
0 Lpot, = —M;7C! paC? s MM MPN TP oy n

= —MUCIM&CJNEJN%XM@ (3.22)
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Using equation (2.55), that can be written as
M; ;0! paC? QEMQMMPN = MUCIM&C‘]NE, (3.23)

(3.22) combines with the first term in (3.21) to produce a variation proportional to the
field strength F'.
The x-variation of the topological term (3.17) is, up to a total derivative,

1 ~ -
6£t0p = _§HdMNTo¢a,§JNa5XMﬂ

1 ~
= §QIJCIMBCJN04JN&5XMB

1 IM JN B JN ~ A &
=5C d(C FINT+ RN )5XM

1 )
= §QIJCIMaFJ5XMO‘ ; (3.24)

where we have first used (2.40b) since both Jy® and x /¢ are constrained objects. In the
next-to-last step we have added many terms that vanish by virtue of (2.40c) and (2.41a)
in order to identify the field strength.

Putting the variations (3.21), (3.22) and (3.24) together leads to the x-variation of the
full pseudo-Lagrangian, up to a total derivative,

1 )
5L = —ichd (Mry —Qr)F7oxn®. (3.25)

So the Euler-Lagrange equations for the constrained field x /¢ are a subset of the duality
equation (3.1).

~

Varying with respect to ¢. The constrained fields 32 appear in two places, namely
in the kinetic term (3.13) and the topological term (3.17). We immediately write the full
variation

1 -~ = ~ ~
0L = — 3 (MC™ G + MisC™ 2™ + QO™ ™) 07 380

1 e ~
—5 (MIJFJ — Q[JCJMQJMO‘)C]NK(SCNA

1 -~
— _§CINK(MU — Q) FIoCn™. (3.26)
In the last step we have added a term —QUCJMggMg that vanishes due to (2.41b), in order

to complete the second field strength F/. Therefore, all equations obtained by varying £
with respect to the constrained fields are a subset of the duality equation (3.1).

3.4 Alternative form of the pseudo-Lagrangian

In varying the pseudo-Lagrangian (3.10) with respect to the Eji/K(E1;) fields, it will
be convenient to use an alternative decomposition that will exhibit the expected kinetic
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term. For this purpose we first combine the kinetic term (3.13) and the second potential
term (3.12) into

‘Ckin + £p0t2 (327)

1 1 - P ~ 3
— 7ZMIJFIFJ + §./\/lIJCJMac«JNEJ]\/[CMJJVB _ ijclpaCJQEMQMMPNJMaJNB

— N

1 1 7 7
= —ZM]JFIFJ + iM[JCIMaCJNBJMaJNB — iMijC]paC‘]QﬁMQMMPNJMaJNB.

In obtaining (3.27), we have split the index @ = («, &) in the last step and used iden-
tity (3.23) to cancel the terms containing summation over the index &. The first term is
the expected kinetic term Zkin in a democratic formulation of the theory with the standard
sign. Since the two remaining terms in (3.27) do not depend on the constrained fields, it
is natural to combine them with the first potential term to obtain an alternative potential
term ./jpot. The resulting Epot simplifies remarkably upon using (A.22), which can also be
expressed as

ijCfPaCjQI@MQMMPN - MIJCIMQCJNIB
= MMPTﬂRPMRsTaSQMQN + TQMPMPQTQNQ — MMNMaﬁ . (3.28)

Using this identity, (2.25) and the fact that k5] = Mg, N7, we find that the pseudo-
Lagrangian (3.10) takes the alternative form

L= Zkin + Zpot + Etop ) (329)
where
~ 1
Lyin = _ZMIJFIFJ ; (3.30a)
~ 1 1
Lpot, = Z/iaﬁMMNJMaJNB - §JMaTaMpMPQT5NQJNB, (3.30Db)

with F! is defined in (2.36) and Liop as in (3.19). Note that the potential term Lo differs
from —L;0t, in the contraction of the derivative indices.

4 Gauge invariance of the pseudo-Lagrangian

We now show that the Ej; exceptional field theory pseudo-Lagrangian given in (3.10)
is gauge-invariant. For this we calculate the variation of each term in the pseudo-
Lagrangian (3.10) under generalised diffeomorphisms and then demonstrate that the com-
bination of these variations vanishes. As always in these checks in exceptional field theory
it is sufficient to show that the non-covariant gauge variation A¢ defined in (2.57) vanishes
up to total derivatives. The expressions for the non-covariant gauge transformations of the
fields were given in (2.60) and (2.62).

Our proof proceeds in two steps. In order to underline the necessity of including the
fields Cpr, we first consider the pseudo-Lagrangian for ¢3/* = 0 and computes its non-
covariant gauge variation. As we shall see there are already many cancellations but some
terms are left over. Then we shall show that these terms are exactly cancelled by the
Car-dependent terms in (3.10).
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4.1 (Gauge variation at ( =0

As explained above, we compute first the non-covariant gauge variation of all the pieces of
L at ¢ MA = 0.

~

First potential term. The first potential term (3.11), does not depend on (/* and
we can immediately calculate the full non-covariant gauge variation. A standard excep-
tional field theory calculation involving the definition of the current Jy;“ and the section
constraint gives the first step [62]

Ag {Lpotl} = [ — TBRQMMN + TBMP(;gMPR + fﬁOWT’YMpTaRQMNP} 8M835QJN5

= MiJCiPaCjQBTaRSMQMMPN@MaRSSJNﬂ — 20 <3N]3P§MMNP) )
(4.1)

In the second step we have used the identity (2.54) and simplified the terms with a single
representation matrix T3 and a single inverse MMN into a total derivative.

It is worthwhile to remark that the F4qi-representation with index I has as lowest
component R(A3) according to (2.44). When decomposing Fq; with respect to GL(11 —
n) x E, the first time this representation enters the scalar sector is for Eg which is in
agreement with the fact that this is the first time the potential term (3.11) is not gauge-
invariant and also the first time ancillary transformations are needed. We shall show next
how the failure of gauge-invariance of the first potential term involving the index I is
accounted for by the second potential term.

o~

Second potential term. The second potential term (3.12) does not depend on ¢ s
either. Calculating the full non-covariant gauge transformation yields

~

A¢ |:'Cpot2] = —ijCfPaC’jQEMQMMPNTaRS (3M3R§S + MRUMSTaManU) In”
_ MijdeCjQB\MQMMPNH&RSMTRaMansJNE
= —M;;CT O TR g MOM MEN 91055 Tn
— My CT™M G CIN ST o p MRy 0RET TN (4.2)
where we have first written out the non-covariant variation A¢J e using (2.60) and (2.62a).

In the next step we have distributed the parenthesis on the first line and used the iden-
tity (2.53) to cancel the second contribution

(MO paT™ g MPN MT My ) €7 o MO 03006V T

= (0170 Gz T*F @My yps ) €7 sMTdy0nES Ty =0, (43)

~

where we split the 5 index on the first contribution and used the identities (3.23) and (2.38)

to remove the xx” component. For the second term we have simply used (3.23) to convert
the C7 tensor sum into a C7 tensor sum.
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The first term we obtain in (4.1) cancels precisely the contribution from the first
potential term. This cancelation is the same one that ensures the invariance of the potential
for any finite-dimensional simply laced groups [63]. Consistently, the identity (2.54) that
was used in this cancelation is proved in appendix A.1 using a construction that generalises
the one of [63] to the Kac-Moody algebra e;;. Here, we obtain the combined non-covariant
gauge variation

Ag [ﬁpotlJr LpotQ} = *M]JCIMdCJNEH&QPMQRaMaRépJNB — 26[M (8N]8P§MMNP> .

(4.4)
Thus, compared to [63] where no 1%,y appears, the combination for Ej; is not gauge-
invariant and we shall invoke an additional ingredient to arrive at a gauge-invariant pseudo-
Lagrangian.

Kinetic term at ¢ = 0. In order to determine the non-covariant gauge variation of the
kinetic term (3.13) we break it up into the parts that contain the constrained fields ¢y
(before variation) and those that do not, beginning with the latter:

A [ﬁkin\q:o}
1 - - ~
= M (CJMaTaSQMSPMQR + C‘]M&HO‘QPMQR> C]NEJNﬁaManP (4.5)
where we have used the identity (2.38) to cancel the term in TN pOMONED from the
non-covariant gauge variations (2.60) and (2.62a).

Topological term at ¢ = 0. We first compute the non-covariant gauge transforma-
tion of (3.17) at (u® = 0. An important first observation is that the total derivative
I MN Oy xN? is not invariant under its non-covariant gauge transformation up to a to-
tal derivative. To compute Ag = ¢ — L¢ of MYy n® we need to determine the Lie
derivative of the combined object Oy xn® which is given by

Le(0pxn®) = €70p (0mxn®) + 0 dpxn® + Oner Onrxp®
— aPQang(TadBaMXNB +K°‘%6MJN5). (4.6)

This not a total derivative. Therefore the non-covariant gauge variation is
A¢ HaMNaMXNd} = TIMY [aM (GexN) — Le (5MXN6‘)]
= MY { - TaRPTo‘&gaMaRfPXNB
+ ( . ToaRPKa&ﬁ . TBUQTdQSMUPMSR + T&UQTﬁQSMUPMSR

+ HdQPTﬂQsMSR) OnOrET TN (4.7)

where we used the section constraint (2.19) on Lexa® defined from (2.61a). The three last
terms come from 9y (Ag¢x%) and therefore do combine into a total derivative, but it will
be convenient to distribute the derivative as above.
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The remaining terms in ©;x% defined in (3.15) just pick up their non-covariant varia-
tions defined in (2.60) and (2.62a). We organise the calculation by looking first at all terms
varying into y and then at terms varying into the current J. The sum of terms varying
into x give

1 mN R 5 P, B
A¢ [£t0p|C:0HX82§ = §H& — 21,7 pT* 50MORE XN

+ TadBTaRPaMaR§PX]BV + TadBTaSQMSPMQR6M8R§PXN’B
= IV TN T, 5 o Mg p MOBR O 0pel v e (4.8)

where we used the identity (2.65) on all terms and the fact that the first two vanish using
the section constraint.

The terms whose non-covariant gauge variation contains a current J are

Ae [£t°P|c=o} ’
1

1, MY [_ QTO‘RPKadﬁ — 2T5UQT&QSMUPMSR+2T6UQT5QSMUPMSR

Jo2e

N |

+2M%p T Qe MSE —T5% ;TP p T30 195 o M p MO —T5% 511° g p MO
+2K1. % (TO‘RP —l—TO‘SQMsPMQR)] O OreL IN?

1

= iﬂdMN {—QK(adB)TaRP—Tg&BTﬁRP—F (QK(a&mTaSQ—i—TBdBTﬁSQ)MSPMQR

—QT/?S(QH&P)SMQR] OnOrE" TN, (4.9)
1 a ~
= =5 QOGO TG M p MO0 ORET TN —T1aM N T 5% QU7 pys M@ 001 ORE "IN,

where in the first step we have used the commutation relation (2.21) and (2.65), in the
last step we have used the identities (2.40a) and (2.40b) to write the first line in terms of
the C-tensors and combined the o and & components into an @ index. We finally used the
identity (2.38) to cancel the M independent term.

Combined non-covariant gauge variation at { = 0. Collecting all the terms from
above we therefore find

Ae[£] o] +200r (OmOpeM MNT) (4.10)
1 N B —~

_ 5MIJ0JNE(CIMETO¢SQMSPMQR_CIMdHaQPMQR>8M8R£PJNB

YoM TS o Mg p MORON Ope X v

1 ~ )
- iszuchach 5T M sp MR R TP ~TIMN T% TI% py s MPROY ORET TN

where the first line combines (4.5) and (4.4) while the remaining lines come from the
variation of the topological term given in (4.8) and (4.9).
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So far we have avoided using any identity that mixes adj and L(A1) ® L(A4). The
only equation that does this is the master identity (3.5) and we shall apply it now to the
first line above. Continuing from (4.10) we then obtain

Ac|£] o] +200r (Om0peM MPN)

1 R i ~

= 57N 5 (C™M T g Msp MO —CTM 5T g p M) 01y DT T
1 o~ ~

+ B (M[J-l—Q[J)CINECJMxﬂAQpMQRaMaprjNﬁ

TV ToN TS 0 Msp M@EDy 0peT X N E

- %Q”CIMECJNBTaSQMSPMQRE?MaRfPJNB CTMVTS T1 py s MO 06T T
_ %(M1J+QIJ)CINECJMXHKQPMQRaMaprjNE

- %H&MNTQ%T“SQMSPMQRaMaRgpxsz + %HBMNTﬁ%HdQPMQRaMaRngNﬂ
—TYM TN T8 o Mg p MOROy 0 m v — TN TS (1% p) g MOR D 0T TN

1 ~ - -
= B (M[J—FQ[J)CJMK (AgCMA)CINEJNB —0N (H@MNHQRPMRQaManp) (4.11)

where we have used the identities (2.40c) and (2.40b) to remove most 277 terms when going
to the second equality. In the final step we have used the identity (2.65) to cancel two terms
and have brought out a total derivative. Moreover we can use the identity (A.49) to obtain
that the derivative terms cancel. The remaining term can be written as the non-covariant
variation (2.62b) of ¢ ™ as shown. This result strongly suggests that one might be able
to obtain a pseudo-Lagrangian invariant under generalised diffeomorphisms by adding the
relevant (3 dependent terms. This is indeed what we will show next.

4.2 (Gauge invariance

In order to demonstrate gauge-invariance of £, we now consider the ¢y, dependent terms.
These appear in the kinetic term (3.13) and in the topological term (3.17). Their non-
covariant gauge variation is given by

Ae|L—Llc=o|
— _%(MIHQU)CIMECJ NKJMaAgCNK

- %(MU+QU) (CIMaTaSQMsp+CIMaH6‘QP+CIMXHKQP> /\/lQR@MaRfPCJNxCNK
:—%(MU—i—Q]J)CJMK(AgCMK)CINBJNE (4.12)

where in the first step we have written out the non-covariant variations of J Ma, cancelled
one term using the identity (2.38), and used the identities (2.41b) to add one vanishing
term and group terms together into the non-covariant variation of F!. In the second step
we have then applied the master identity (3.5) twice to cancel the middle line.
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Now we can collect all terms contributing to the variation of the pseudo-Lagrangian
(3.10) and obtain from (4.11) and (4.12)

6L = O (£M2) (4.13)

where we used moreover that the total derivative terms in (4.11) cancel using equa-
tion (A.49). We have therefore proved that the pseudo-Lagrangian is gauge-invariant up
to a total derivative as claimed. Note moreover that it transforms under generalised dif-
feomorphisms as a density, whereas the non-covariant variation usually only vanishes up
to a total derivative.

5 Equations of motion for constrained fields

In section 3.3, we have already demonstrated that our pseudo-Lagrangian (3.10) is consis-
tent with the duality equation

=M —Qr)F’ =0 (5.1)

that we impose on top of the Euler-Lagrange equations derived from L. These are the
equations of motion that the F7; fields have to satisfy and they are obtained by varying
with respect to the constrained scalar fields. The main virtue of the pseudo-Lagrangian
is that it also provides equations of motion for the constrained scalar fields and these are
obtained by varying with respect to the Fqq fields in the pseudo-Lagrangian. This is what
we shall present in detail in this section, explaining first the procedure and then analysing
the result.

5.1 Covariance of the field equations for indecomposable representations

The first question we address is what implications the indecomposable structure of the
representation (2.4) involving the Fj; coset fields has. To this end it suffices to consider
the general variation of the pseudo-Lagrangian with respect to M and x/®. We first define
the equations of motion following from varying the pseudo-Lagrangian by

0L = Ead0™ + EMox1?, (5.2)
where d¢“ denotes the left-invariant infinitesimal variation of the E1; coset fields:
MM = §pat® = 8 I = 0o + fa, " TP . (5.3)

From the dressing by M, d¢,, is not just the infinitesimal variation of the coset fields but
includes an infinite sequence of Baker-Campbell-Hausdorff-like terms. Note that because
xm? is a constrained field, £ is only defined modulo a term that vanishes when contracted
with a constrained vector. However, since we have obtained in section 3.3 that &M is
proportional to the duality equation, we know this equation has to be satisfied and we can
neglect this subtlety.
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The indecomposable representation is such that under an ey; transformation with
parameter Ag, one has

Oadxm® = Mg[T7% 5oxn” + K50 (00000™ + f15%In"66°) — TN poxn®],  (5.4a)

op009% = AgfP. 667 . (5.4b)

Here, the definition of d¢* from (5.3) implies that it transforms as above consistently with
the condition §¢a M 1T M = §p,t?.

As the pseudo-Lagrangian (3.10) is invariant under such rigid ej; transformations,
opL =0, we get

5A0L = 0y [59% S + 5a5¢a]
= N[ (T sxar” + Ko (00106° + £, In"06") = TN proxn®) €M1
+ faﬁvawsa} + ST ONEM + 50765 E,
=0. (5.5)

This determines the Eyi-transformations of the equations of motion & Aé’gf and dp &, as
5A5£/[ = _A/B {Tﬂdggé\/[ — TﬁMNgéV , (5,63)
OrEa = —Ag| = Pl — KPO0MEN + K75 o7 T3, €] (5.6b)

from which we see that the equation &, obtained by varying the E1; coset fields transforms
with a cocycle under F7;. This is to be expected as the Euler-Lagrange equations are in
the dual representation to that of the fields and thus the indecomposability is in the other
direction.
As we saw in section 3.3 we have
1

&' = —§CIM0751 (5.7)
in terms of the duality equation (5.1) and this is consistent with being an Fj;-covariant
object as the component C'M 4 is a tensor under Eq;. By contrast, C'™, is not a tensor
and to obtain a covariant equation for the d¢® variation we have to combine the non-

covariant equation &, from (5.6b) with an appropriate projection of the duality equation.
The correct choice is

. 1 1
Eo=En— 5OfMaaMe] +5 Fra I CM g (5.8)

and it transforms covariantly under ej1: 9 ASAQ = Ag fﬁvaég.

In order to prove this, we use the notation of non-covariant F7; transformations intro-
duced in (2.12). First, (5.6b) can be rewritten as

APE, = KPO opEY — KPO f5, i’ EM (5.9)

— 36 —



while the other parts of (5.8) transform as
1 1
AP | =S O a0mEr + 5 oo T O 581

1 ~ 1 -
= §K%CIM@8M& — §f7a5K5%0’M&JM’*&
= — K9 00 EM 4 KPY f50 1 I 0 Y (5.10)

where we used (2.37) and (5.7). Combining this equation with the previous one shows

-~

that (5.8) is Eqj-covariant and &, is the equation we shall now determine from the pseudo-
Lagrangian (3.10).

5.2 Varying with respect to the F11/K(E71) fields

We consider the variation defined in (5.3) that implies in the various Fj; representations
OMMN = —TM p MV 56, 03t = Oar0¢a + f7anigds
oMy = TaK[MJK(5¢a , 5ij = Taf{f./\/ljf(5¢a . (5.11)

We start with the pseudo-Lagrangian (3.29), and we first look at the combined variation
of Ekin and Liop as these are the only parts of the pseudo-Lagrangian where the indecom-
posable structure enters and for which the considerations from section 5.1 have to be taken
into account. The variation of Ly, from (3.30a) with respect to the Ej; fields, up to a
total derivative terms which we discard, gives

~ 1 1 1
o [Ackin} =0¢" [2CIMaaM (MIJFJ) + §M1JFJCIvaa67JMB - ZTaKIMJKFIFJ
1 1 1
=69 [QCIMa8M£I+ §faB’YCIM'yJMB<€I - ZTaKIMJKFIFJ

1 ~
+5 (2FJCMI7 fap I —=C™M o CTN g 157 T TN +2C™ OV 500 x v

+201MQCJNX8M§NA>] , (5.12)
where we have used the Bianchi identity from [13, eq. (3.42)]:
1 ~
Qr,C™ 0y F! = —§QIJCIMaCJNﬁf75ﬁJM7JN5 + QIJCIMBCJNBB[MXN]ﬁ

+ Q[JCIMQCJNXaMC:NA . (5.13)

The first two terms in (5.12) are the appropriate covariantisation terms in accordance
with (5.8).

The variation of Liop from (3.17), up to total derivative terms which we discard, is
given by

1_ - 5 1 ~ 5 1 ~
5£top = 5¢a |:H6cMN< - iTaagaMXNﬁ + §f’yaﬁTﬂaﬁ~JM7XNﬁ + iK[aaﬁ}fﬁvéjM’yJNé

) 1 ~ ~
- K% f&aBJM’yJNé) + §QIJCIMBCJNX (53 (™ — fvaﬁJM’yCNA> } :
(5.14)
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Combining the variations 5£~kin and dLqop leads to

1

~ 1 1
1) [ﬁkjn—Fﬁtop} =6¢” [2CIMaaM5[+2fa570[M7J£[5] *TQK[MJKFIF‘] (5.15)

4
1 . ; i1 n
—gndMNTaaB@MNB+QIJCIMBCJNX <5§3MCNA—2meJM7CNA)

1 ~ 3 . 3 1
+§HdMNT'yaBJM7 (TaﬂnyM7XN7+Ka55JN§)+291JFJC'IMBf’8mJM7},

where (2.10a), (2.10b), (2.40a) and (2.40b) have been used.
There remains the variation of L, defined in (3.30b). Adding its variation to (5.15)
gives the field equation £* = 0 for the constrained fields, where

g = J (M9 15) {— STMVTL S0 0,0V 07N (5; onen f(;ﬂVJM%NK)
- %T,@KIMJKFIFJ‘F %QIJFJCIM7f7ﬁ6JM6+%H&MNT'ydBJMV (T,GﬁlyXNi‘*'KﬂB&]Né)
- %51\4 (sz\%vﬁq MPQJNV) - i (Hﬁ%\;zs T s M9 =2k 005 MPQfevﬁ) JM”JNS] » (5.16)
and for brevity in notation we have defined the Fy; invariant tensor
KPons = Kag 01 0y — 2T pTs" g, (5.17)
and the projector is required because d¢< satisfies

Masdd? = rapde? . (5.18)

The equation of motion (5.16) is indeed an FEj; tensor. To see this we note that
Q0™ 5C’J N 7 is an invariant tensor and one checks that

1 1 ~ 3 . 3
A7 [ G FI O s+ SIMVE s (T + Ko sy®)| =0, (519)

using the identities (2.40c) and (2.40b).
To understand the implications of equation (5.16), it is useful to look at its linearised
approximation. At linearised order one gets with Jy,¢ = dpr¢® that (5.16) simplifies to

(naﬁ n ﬁaﬁ) Q0™ <CJNd8[MXN]6 B CJNK(?MCNA)
1
= (7]&7 + :‘ia’y) <2T]MN/<L75 — TBMPT,YNQ ?’]PQ> 8M8N(Z)B, (520)

where the index « is explicitly projected to e;; © K(e11). This equation, together with the
linearised duality equation

(s — Q) (CN gong” + CTNaxn® + CTNo¢n?) =0, (5.21)

define the linearised equations of Fj; exceptional field theory. One can anticipate that
the right-hand side of (5.20) looks like a propagating equation for the Ej; coset fields,
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whereas its left-hand side takes the form of an integrability condition for the constrained
fields. One may have hoped that the linearised duality equation (5.21) allowed setting
both sides of (5.20) to zero, but the structure of these equations is more complicated than
this. To extract the propagating degrees of freedom of the theory one needs to consider a
particular solution to the section constraint and analyse these equations in an appropriate
level decomposition. We will carry out this analysis for the GL(11) level decomposition in
section 8.

6 Analysing the pseudo-Lagrangian in level decomposition

The definition of a Kac-Moody Lie group from a Kac-Moody algebra is subtle because
the formal exponential of generic Lie algebra elements diverges. In particular, the current
Jy = M™10y M defining the theory is not well-defined for M = VinV and V a product
of exponentials of generators in the positive Borel subgroup. Likewise, the naive duality
equation (3.1) is ill-defined since the matrix My is the product of an infinite lower- and
an infinite upper-triangular matrix, leading to infinite sums that do not converge. We will
see that the theory is nonetheless well-defined in the unendlichbein formulation, modulo
mathematical subtleties related to the definition of the Kac-Moody group that we discuss
below. Since we want to recover (exceptional) field theory in D dimensions it will be more
convenient to use a hybrid formulation that was introduced in [13] and that we shall refer
to as the ‘semi-flat formulation’ here. In this section, we review this formulation and write
the Eq;1 pseudo-Lagrangian (3.10) in a way that is appropriate for level decomposition.

6.1 The semi-flat formulation

For any Cartan generator of e;; with integer eigenvalues we can decompose the algebra eqq
into eigenspaces of fixed (adjoint action) eigenvalue k € Z that we call level

—1 00
= P 1P a@ePuh, (6.1)
k=1

k=—o0

where [ is a reductive Levi subalgebra and u = @5, u® a ‘nilpotent’ subalgebra includ-
ing all strictly positive levels k.3° The typical example we have in mind is when the Cartan
generator is Hy , for the fundamental weight associated with some node D of the Dynkin
diagram and then (6.1) is the level decomposition of the type studied in [59, 64].
We work in an Iwasawa patch®' where any element of the Kac-Moody group can be
decomposed as
g = hlu, for he K(E11), leL, weU, (6.2)

39The algebra @k>1 u® is not strictly nilpotent as the level goes to infinity. However, this terminology
for the algebra is convenient and suggestive, as is ‘unipotent’ for its exponential image.

31Since the subalgebra K (e11) is fixed by the temporal involution, there is no global Iwasawa decom-
position. In particular, time-like U-dualities, mediated by Weyl reflections associated to compact coset
elements, do not preserve the Iwasawa patch connected to the identity. The resulting group element under
such an action has to be decomposed in a different patch which can also correspond to a different signature
of space-time [66]. An analogy with pure gravity is to write the metric in ADM form everywhere which is
possible only for globally hyperbolic space-times.
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with L the Levi subgroup with Lie algebra [ = [0 (that we assume finite-dimensional in
this section, for example GL(11) or GL(3) x Eg) and U the unipotent subgroup associated
to u. We write V in this gauge as

V=ovlU (6.3)

with v € L the coset representative of the finite-dimensional symmetric space K (L)/L and
U € U. From the Levi element v we define

m=uvn, m L oym = v (Opvv! + L (Oyve ) v (6.4)
Recalling that M = VInV = Utm U, the Ey; current Jy, introduced in (2.24) then becomes
Jyr = Moy M = U (moym + o UUT T o UU T m) U (6.5)

and is still ill-defined. Conjugating with U, however, produces the well-defined object
T = UTy U™ = m ™ oym + Nap + m™N,m (6.6)

with Ny = Oy UU~!. This is well-defined since A3; can be expanded to any order in the
level associated to L using only polynomials and m acts on each level component as a finite-
dimensional L matrix. All the E1; modules we consider in this paper are integrable, and
the components of A3 on an integrable module vanish at some finite order by definition.
In components we write

Ju® = U Tn" . (6.7)

The corresponding field redefinition of the constrained fields is

xu® = U + W (UTHINS et = U, Gt = U, (6.8)

with the indecomposable structure under the action of (the unipotent subgroup) of Ej;
entering for y through the group cocycle w whose infinitesimal version is K adg introduced

in (2.9) (see [13, eq. (2.4)]). Note, in particular, that one can write Ju® = MﬁlanME
with Ju® = Yar®. The semi-flat field strength, defined by F! = ¢/~ ;F7 s

Fl=u1"y (CIMajNa + CIfoNA> . (6.9)
The point of all these redefinitions is that the duality equation (3.1) becomes
mp F = Q F’ (6.10)

and the bilinear form mj;; now acts as a well-defined block diagonal matrix level-by-level
on the level decomposition of the field strength representation 7_;. Recall that m =
UM MU = vInu can be simply computed level by level using the bilinear form 1 and
we have used invariance of the symplectic form UQUT = Q here.
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6.2 The pseudo-Lagrangian

The redefinition applied to the pseudoA—Lagrangian (3.10) also gives a well-defined pseudo-
Lagrangian for m, U, ¥u® and (. For most terms of the pseudo-Lagrangian, Eip;
invariance allows us to simply substitute the tilde fields for the original ones, but some more
care is needed to obtain the topological term because its Fj1 invariance is not manifest
(see (3.16)). The main part (3.15) of the topological term involves the field strength

@MNd[ = 28M(u_1d5)~(NB+wgé(u_l)jN’B)+u_laﬁjMﬁTad?/(Z/[_l:YBS(NB‘H«Uj(u_l)jN’Y)

MN]
—l—jM’Yu*layK[a&g]uflﬁ(sté, (6.11)

where the right-hand side is to be anti-symmetrised in [M N]. To simplify this we note that
the indecomposable action of Fq; implies from the non-tensorial nature of the cocycle that

ufldB ufla,y u(SIBK’yBé_ — Ka&IB + w?(ufl)UﬁﬁTQ&B + w’o;z( ufl) U’yﬁfaaﬂ
= UK = U KU+ U T sl (U + oS (U . (6.12)
This follows from exponentiation of (2.13).3?

One can also check that this is the identity that is needed for ©/n® to transform
covariantly when acting on the & index, using

xu® =g o’ + i), I =y

—la

s’ (6.13)

and the Maurer-Cartan equation, similar to the infinitesimal calculation in (3.16).
Using (6.12) in the topological term (6.11) leads to

@MN& [M:N] 28M(U_16‘5)~(Nﬂ) + 28M(wg‘(L{‘1)L{57) U_ng]v(s

+ 7/1_15‘/5>jz\4a(TozB:yf(Na + Ka%3In") . (6.14)
This can be further simplified by computing the derivative of the group cocycle as follows

O (§U) = (U et

== [wf;“(u—l)exp(—tNM)WB + z,{—l%wg(exp(—tNM))]t:O. (6.15)

Using Ny = O UU™" in the first term, and that w§ (exp(—tN)) = —tA,K7%5 + O(A?)
in the second term, it follows that
8M(w§(u*1)2/{57) U7175 = —UfldBKWB(;NM’Y. (6.16)
Substituting this into (6.14) leads to
Oun® TN 23M(U_1d3>ZNB)+U_1&5 {jMaTaB’yf(N:y‘i‘(jMa—QNMQ)KaBﬁjNﬂ}- (6.17)

32We recall that the action of the group E11 on e1; @ R(Az) is defined by g~ 't%g = g®5t°, ¢ 'i%g =
g&[;fﬁ + wg (g)t?, such that g‘fgggv = (g192)%~ and where wg (g) is a group 1-cocycle satisfying wg (g192) =
w5 (91)93 8 + 91 5w5(92)-
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The similar analysis for the other constrained fields ¢/ is simpler since they are not
in an indecomposable representation. Including their semi-flat version (6.8) leads to the
following semi-flat topological term

Liop = T UM pU N [T T s + (T — 2N K]

- 7QIJCIPACJQ u—lMPu—lNQjMaCN + 1L MNaM( QBX B) (6.18)

where we have used the F7; invariance of the tensors appearing in the pseudo-Lagrangian.

Note that we could drop the last total derivative and the resulting pseudo-Lagrangian would

still be gauge invariant up to a total derivative.?* We shall nonetheless keep this term such

that the pseudo-Lagrangian transforms as a density under generalised diffeomorphisms.
Because

jM—QNM :m_laMm—NM+m_1N]J{4m (6.19)

compared to (6.6), the sign of the positive level components changes and in this way the
cocycle Kaa‘g appears symmetrised in the adjoint indices for high enough levels, rather
than antisymmetrised as in (3.15).

The rewriting of all other terms in the pseudo-Lagrangian is straightforward and similar
to what we just saw for the fields (™.

We note that there is still an action of the unipotent matrix U/ on the constrained
space-time indices of the current and the constrained fields. U~V ;0n gives infinite
sums for an arbitrary unconstrained derivative, but we shall always consider the class of
solutions to the section constraint associated to a finite-dimensional Levi subgroup L, such
that only finitely many components of 9y of bounded level are non-zero and U~ 0
is well-defined.?* This matrix action is important when considering the embedding of
GL(D) x Eq1-p exceptional field theory in F1; exceptional field theory as we shall see in
more detail in section 9. For GL(11) and the D = 11 solution of the section constraint for
which the fields only depend on the eleven coordinates ™, it has no effect since U does
not contain any GL(11) component and so leaves 0y, invariant and we have in this case

U N IN® = 05T, U N yn® =05 tm®, UV ™ = 6™ . (6.20)
6.3 Gauge transformations and compensators

The action of the generalised diffeomorphisms on the fields m and U requires a compen-
sating K (e11) rotation as in [13], such that it preserves the parabolic gauge condition (6.3).
The general formula can be given in level decomposition (6.1) of e¢;;. We write the genera-
tors appearing at level k as t*® and similarly for the associated structure constants. The

331f one instead drops 20 x N]&, gauge invariance is only true up to a more complicated total derivative
mixing linear and non-linear terms.

340ne can define the subgroup U, C U associated to the Lie algebra us; = @Zk ug, and for some
finite k = ks we will have that U~V y;0n only depends on the finite-dimensional equivalence class of U in
U/Uks+1 .
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generalised diffeomorphism acting on V with a K (e;1) compensator to restore the parabolic
gauge (6.3) is then

3¢V = Moy Y + TM NongN Ve = > To MV VN opeQ (140 — p=lexentn)y
k=1

oo o

= §M8MV + Uy, UNQapr (Z Ta(k)MNvto‘“‘) + Z Ta(k)]\/[Nn_lv_thaM)Tm) U.
k=0 k=1

(6.21)

For k > 1, both t*® € u;, and n~'*-» Ty € 1. For a choice of section adapted to the Levi
subgroup L, T0N 1 0n = 0 for k > kg for some finite ks, and the compensating K (e11)
transformation in the first line is a finite sum with k& < ks. For GL(11), ks = 0 and for
GL(D) X Ell—D7 ks =1.

This gives the gauge transformations

em = EMaym + To M N U 0 UN OpEQ (Mt + to0Tm) | (6.22a)
detd = MU + Uy UN QOpe? Y (Ta Mt 4 To M ym ™ to0Tm) U (6.22D)
k=1

One obtains as well for the current and the constrained fields

eI = ENONTn® + OuEN TN + U N UP RIGERT, N p 1O 3 T (6.23a)
ks
+) U N U RIER (Ty(,k)Nwa’“aﬂ - mNSmPUTm)USfWaB)JMﬁ
k=1
+ TR U N g U p (3M3N§P + mNQmPU3M3U§Q> ;
Sexam® = ENOnxm® + 0NN — U9y UPR(?Q{RT%)NPTQ(O)%XMB (6.23b)

ks 5 L
= U ON U RGE T N p (T g0 + K05 0
k=1

- mNSmPUTa(k)US (Ta(k)dBXMB + Ka(k)dﬁjM/B)}
+ T U= "N pUp (3M3N§P + mNQmPU6M3U§Q>
+ T%sm U N g U poyonET

G = ENON U™ + OV OV — UTIONUP ROGER T, PT O s ™ (6.23c)

ks . .

—1 P R N _ra pA NS U AN S

— > U N U RIGE (Ta(,k> pTM2s —m™"mpy Ty, sT" g) M
k=1

+ HAQSmRQ U_INR USPaMﬁNSP .

Here, we assumed that the sum over k can be bounded by some kg associated to a choice of
section, but the same formula holds generally if one takes ks — co. We also used that one
can always choose K“0%; = 0 for a finite-dimensional L.3® One obtains in this way that

35This would not be the case for L = SL(2) x Eg or GL(1) x E19, where the indecomposability already
occurs at level zero [61].
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the transformations of the fields U~V 3,7 @ and Y~V wC that appear in the pseudo-
Lagrangian are finite and well-defined. The proof of the gauge invariance of the pseudo-
Lagrangian in section 4 is not affected by the similarity transformation with respect to U,
so the formal manipulations carried out there apply to the well-defined pseudo-Lagrangian
in the semi-flat formulation.

6.4 Mathematical subtleties

The Lie algebra ej; is an infinite-dimensional (Lorentzian) Kac-Moody algebra that is
defined from its Chevalley-Serre presentation in terms of simple root generators and Cartan
generators satisfying a set of relations [76]. It is not known how to obtain a closed list of all
the infinitely generators with their multiplicities and structure constants from this implicit
definition. There are calculational methods to probe the structure of ¢17 at low levels in a
level decomposition and the most comprehensive results were obtained in [59, 64]. In the
same way that the algebra is defined, the existence and uniqueness of irreducible lowest
and highest modules can be proved from the implicit definition of e1;. For our purposes
we typically only require existence and uniqueness of the modules and certain associated
invariant tensors.

In order to properly define the theory we need to be more precise about the Kac-Moody
group F1; and its modules. There are two natural Kac-Moody groups associated to the Kac-
Moody algebra ¢1: the minimal group Ef and its maximal positive completion Ef; [98,
section 7, section 8].3¢ Any element g € Ef of the minimal group can be written as a finite
product of one-parameter subgroup elements associated to real roots g = [, ;ea1 €XP(Zat®)
(with z, € R) acting on an integrable module. By contrast, elements ¢°* € ES] of
the (positive Borel) maximal group E‘Hr are defined as products of one-parameter group
elements associated to roots g°* = [], exp(z4t®) in an integrable module, such that the
product involves finitely many negative real roots o € A_ N A, but possibly infinitely
many positive (real or imaginary) roots a € Ay.3” Similar to the different notions of the
Kac-Moody group we can also consider different types of modules. Any integrable module
of the Kac-Moody Lie algebra e;; has a weight space decomposition into finite-dimensional
weight spaces. The two different types of ‘modules’ now differ by allowing only finite or
also specific infinite linear combinations of vectors from these weight spaces. To be more
precise, we define a minimal integrable module, such as e}j or R(A)™, as the set of elements
in these vector spaces that have only finitely many non-zero components in a weight space
decomposition. This means that, grading the weights by height, any element of a minimal
module has a bounded height. Equivalently, grading the weights by the level associated
to a finite-dimensional Levi subgroup as in (6.1), any element of a minimal module has
a bounded level. When one talks about the Kac-Moody algebra e;; one often means ejj

36In fact, there are different definitions of each of these groups but they are equivalent in our split real
form [98].

37 An analogy to keep in mind for the definition of these groups is the affine case. The minimal loop group
éff‘ is defined as the group of Laurent polynomials in the spectral parameter w valued in the group G,

whereas its maximal positive extension G‘f‘ is defined as the group of formal Laurent series Zf;im ChW

in the spectral parameter w valued in the group G.
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and this vector space carries the Lie bracket defined in [76]. In particular, all elements
of the Lie algebra ¢} act finitely on minimal modules.*® One can define the exponential
map for the real root generators and the group generated by these one-parameter group
elements acting on all minimal modules, such as e]j or R(A\)™ for any dominant weight A,
defines the minimal group EJ;. The minimal group EJ] therefore acts on minimal modules.

The minimal lowest-weight module R(X)" is defined in the same way as a module of the
minimal group E7j.

Let us consider on which minimal modules one can act with the maximal group Ef .
Since the imaginary root generators are not locally nilpotent, an exponential of a positive
imaginary root generator can and will take a finite linear combination in e to an infinite
linear combination, going infinitely far in the direction of positive height. Therefore, ES;
does not act (finitely) on the (minimal) Lie algebra efi. In the same way, ES{ does
not act (finitely) on minimal lowest weight modules R())" since it can produce infinite
combinations of weight vectors (for positive weight) from exponentials of imaginary roots.
However, it does act on highest weight modules R(\)™ since the heights of the weights in
R(X\)™ are bounded above and therefore all exponential of positive (imaginary or real) root
generators evaluate to finite sums.

In order to define an action of the completed group Eff on more modules one can
consider positively completed modules where infinite linear combinations of weight vectors
of positive weights are allowed. We shall write these modules as ¢ and WC+ and now
the group Eﬁr can act on them formally, since in order to compute the result of the action
of an exponential of a positive imaginary root generator on an element of WH is a finite
calculation for each fixed weight space. The group Ej; cannot act on completed highest
weight modules R(A)°~ (including infinite linear combinations of weight vectors of negative
weights) since there would be infinitely many contributions to a fixed weight space.?® The
module R()\)CJr is the (algebraic) dual of R(\)™ and the pairing is invariant under Ef; .

With this more refined notion of group and modules, we can now be more precise as

to where the fields live and what the symmetry group of our model is.
If one defines the fields and the coordinates of the theory in minimal modules, and V €
11, all the algebraic identities used in this paper are well-defined. However, including all
supergravity fields in a given Iwasawa gauge for the coset Ey;/K(FE11) requires to consider
also the exponential of imaginary (or null) roots generators. This is the case for example
for the dual graviton field with all GL(11) indices different in eleven dimensions [59, 64, 99].

The physical fields must therefore be defined in the (positive Borel) completed group E$;.4°

38¢Acting finitely on a module’ here means that any weight vector in the representation is mapped to a
finite linear combination of weight vectors in the representation. We assume a basis for the module adapted
to the weights with finite-dimensional weight spaces.

39n the analogy of Footnote 37, the action of ES} on WH is like multiplying two formal Laurent
series around zero which is well-defined, whereas the action of E{f on R(\)°~ would be like multiplying a
Laurent series around zero with one around infinity which is not well-defined.

4OWhen using the affine symmetry to study solutions, one also requires elements of a completed group to
describe black hole solutions [100], so physically the minimal group appears too small. But there are more
completions available in the affine case, and what appears relevant for black hole solutions is the group of
meromorphic functions of the spectral parameter on a Riemann surface valued in the group G and not the
full group of formal Laurent series.
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We thus define the fields of the theory such that

VeEES, xyeRAN®LA), ¢(eRA)™®L(Aw) , (eRA)™®LA) "
(6.24)

and the derivative d = P™0,, € R(A1)™ in general. With this definition, the field com-
ponents can be non-zero to arbitrarily large height (or level in a level decomposition),
whereas the coordinate dependence, prior to a choice of section, must be such that there
is always a maximal height for which all the derivative components vanish, and as well for
the constrained indices M of the constrained fields. This definition ensures that V acts
on the fields of the theory and their derivatives. It also ensures that the action of gen-
eralised diffeomorphisms is well-defined in the semi-flat formulation, because for any field
configuration there exists a finite maximal level kg in (6.23).

However, the Cartan involution is not defined on e‘i'f, because it maps an element of
e‘ﬁL to an element of ¢{7, the Lie algebra extended along the negative Borel. For V € Eﬁ",
we have by construction that dVV~1 € R(A;)™ @ ¢T, but according to (6.6), Jas takes

values in the doubly extended vector space ¢, in which elements can have infinitely

many non-zero components for both positive and negative roots. This vector space ¢{7~
is not a Lie algebra, because commutators are not well-defined, and it is not a module
of the completed group Ef; either. Considering the minimal Kac-Moody group E%, it
is nevertheless well-defined as the co-adjoint Ef-module ¢~ 2 ¢!3*, and there is a well-
defined E%-homomorphism from R(A1)™®¢e{7~ — R(A1)°~. The field strength F! belongs
to the doubly extended module 7°7~ of E.

The coset representative V transforms under (2.22) under the constant g € Ef] on the
right, and the compensating k(z) € K(E11) C Eff C E{f on the left, so by construction
the coset projection of dVV~! transforms under K(Ej;) C Ef. It follows that Ef is a
symmetry of E1; exceptional field theory.

With the definitions (6.24), the pseudo-Lagrangian (3.10) remains a formal object. If
we consider for example the first term in (3.11), it involves the Killing-Cartan contraction
of two currents Jys®, which generally produces infinitely many terms for an element Jy* €
¢{77. In the same way, the second term in (3.11) involves the scalar product of an element in
R(A1)°" with an element in WCJF, which is again a formal infinite sum. Nevertheless,
this is not a problem for the definition of the theory. The pseudo-Lagrangian (3.10) is
an infinite sum of terms that depend on infinitely many fields and is well-defined as a
formal pseudo-Lagrangian that generates well-defined Euler-Lagrange equations.*! In the
next section, we shall show explicitly how to use the pseudo-Lagrangian and the duality
equations to obtain well-defined equations in a level decomposition when a solution to
the section constraint is chosen. The level decompositions in sections 7 and 9 use finite-
dimensional Levi subgroups. The analysis for infinite-dimensional Levi subgroups, such as
FEq C Eq1, is yet more subtle and we consider this in appendix E.

4ITo give an illustrative example, this is the same infinity of terms that would occur in the Lagrangian
of infinitely many free fields, which have well-defined equations of motion. For the F;; ExFT pseudo-
Lagrangian as well, the Euler-Lagrange equations are well-defined but it does not make sense a priori to
evaluate the pseudo-Lagrangian (3.10) for a particular solution of the equations of motion.
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upper index | GL(11) level fields and representations

o k adjoint of E71, labelling the current
k L(A2) module for constrained field x
Ay, k constrained field ¢ in L(A1g) ® L(A4)
3
2

m only non-trivial part 0,, of derivatives d); on D = 11 section
I -3 +k field strength components in 7_;
[y Stk L(A3) representation

Table 3. Index assignments for the indices of the various representations in GL(11) level decom-
position. See also appendix C for details on the level decomposition.

To avoid unnecessary complications in the notation we chose to never specify in which
precise module or group the various objects used in the paper lie in. The reader can refer
to this section to obtain this information, but we shall ignore these precisions elsewhere in
this paper.

7 Recovering eleven-dimensional supergravity

In this section, we study the abstract pseudo-Lagrangian (3.10) of Fj; exceptional field
theory in a level decomposition appropriate to the bosonic part of D = 11 supergrav-
ity. This means that we branch all representations of E7; with respect to the subgroup
GL(11) [2, 59, 64, 65, 101] and also consider the solution of the section constraint (2.19) that
corresponds to D = 11 space-time, so that we only retain derivatives 0,, withm = 0,...,10
out of the infinitely may 9ys. We have collected results on Ej; in GL(11) decomposition in
appendix C. The main result of this section is that the metric and the three-form gauge po-
tential, that appear at level 0 and 1, satisfy the eleven-dimensional supergravity equations
of motion [102].

7.1 Taming the infinity of fields on section

Before working out the individual terms in the pseudo-Lagrangian explicitly, we first discuss
the general structure of all terms in the level decomposition. As we shall see there are
(infinitely) many simplifications which make the explicit form amenable to study.

The pseudo-Lagrangian contains an infinite sum of terms, involving both the Ey; coset
fields through the generalised metric M as well as the constrained fields x ;% and (™.
In the GL(11) level decomposition this infinite sum is ordered by the GL(11) level and
we shall use a notation similar to the one in section 6.3, where we append a subscript to
(most) indices to keep track of their GL(11) level, sometimes with a shift to ease notation.
The level assignments we use are displayed in table 3.

We recall that the GL(11) level is the eigenvalue of the action of the Cartan subalgebra
element Hy,, where Aq; is the fundamental weight of node 11 in figure 1. The level for
an index upstairs or downstairs are opposite and we have indicated the counting for upper
indices only. All Ejj-invariant tensors preserve the GL(11) level, so that for instance
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I““)maw is only non-zero for k = ¢. The cocycle K,%3 is not Ejj-invariant but GL(11)-

invariant and therefore also preserves the GL(11) level.
With this notation, the kinetic term (3.13) expands as

[y

1 ~ a1 0
Liyin = ZMIJFIFJ_MIJCIMQCJNKJMQCNA - iMIJCIMKC'JNgCMACN
- i > M P OF (7.1)

~

[e)e] —~ o0 ~ ~

_ Tym__ o Jwn Q) - A(m_l Tnwm_ codJwn. F AwE Ew

> My, C awC R Im" " n 9 > Mg C A(k>C 2, om o=,
k=4 k=4

where in the last line we have used that the A index starts at GL(11) level four, see (7.19)
below.

To write the topological term (6.18), we first observe that the last term in (6.17)
expands according to

mn 7T Qg o & 7
Hd(s) Z(jm 0 — 2Nm ( k))Ka(fk-) (3)/3(3“-) jnﬁ(Hk)

keZ
o0 —00
_ 1. mn 7 Qg a3 7 Ba+r _ 7 Qg a3 7 Baik
= s, ij TRy By Tn Y Z I Koy ™V gy I
k=0 k=—1
— _T[. mn( 7 aq a3 7 B 7 agp a3 7 Ba
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o0
_ _2Hd(;g)mn¢7ma(l>K[a(l)a(g)B@)}jnﬁ(g) + 2H&<3)mn Z jma(ik)K(O{(,k)a(3)5(3+k))‘7n18(3+k) ’ (7'2)
k=0

using that N,,%® = jmo‘“") for £ > 1 and zero otherwise. Moreover, we have used FEji-
invariance of IIz™" and the D = 11 solution to the section constraint to simplify the
unipotent matrices U, see the discussion below (6.18). Using this one obtains for the
complete topological term (6.18)

(%)

- ~ - 1 -~ .
= I, ™" o G() Boy _ Z Ig-ym . ag-nCdmn. ¢ Aw
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(34))
- - ~ 1 - - -
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k=0
(7.3)

where in the second step we used (2.40a) and (2.40b), and the property that the constrained
fields only contribute to F/® for k > 3.
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It turns out that computing the pseudo-Lagrangian in level decomposition produces
an infinite number of terms that are quadratic in the duality equations at level k

_ 7J =],
Enyy = My g FY — Qpyy gy ) F 0 =0. (7.4)
For k > 2, we define Oy, as the square of the duality equation in the form

Oy = —=ml 51 Eag

1 - - 1 - -
— —Zmy,, ]_—I ) Flw 4+ 4mI ;7’6)‘/—-'](3—@‘/—-"](3—1«) _ 591(34)(]&)]:1(37k)}"J(k) . (7.5)

For explicit expressions for Oy and O3 see (7.43) and (8.6) below. Varying O in a pseudo-
Lagrangian will not change the field equations since their variation is proportional to the
duality equations that are imposed in addition to the Euler-Lagrange equations. The
contribution of these terms for all k£ > 3 will be seen to contain the full dependence on the
auxiliary fields ¥m®, Gnl.

The Euler-Lagrange equations for the fields ¥,,%, CNmX give (at least a subset of) the
duality equations (7.4) for all k¥ > 3 and k < 0, see section 3.3. Because the section
condition is completely solved in eleven dimensions, the components of the constrained
fields ¥m®, Gn® are independent and appear algebraically, hence we can integrate them
out by applying their equations of motion, which should be equivalent to subtracting the
pseudo-Lagrangian ;5 Ok from the pseudo-Lagrangian £. Combining the first term in
Lyin from (7.1) with the last term in Liop from (7.3) gives

me[ o F 10 F e —fZQI oo F T Flaen

k‘EZ k 0
7me J(k "rJ '+ ZmI(S+A Jiarn "T_.ISH"T_.JHA +ZO3+1€
k=0
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1 Z mI<k>J<k>‘7:I(k)]:J(k> + 5 Z mfu»)J(k-)]:I(k)FJ(k) + Z O34k - (7.6)
k=1 k=3 k=

The second term cancels precisely the dependence in {,® in Liin, and one gets in total

Liin + Liop = Zml ‘7:1 F dwznnjma(l)K[a(1>d(3>3<z>]jnﬁ<2) (7.7)

~
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Note that the first line contains only the field strengths and currents of levels 1 and 2. The
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first term in the second line can be combined with L4, and identity (A.22) to give
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k=3

where we used the highest weight property 7' 'YWQP =0=Tp, ™q for all k > 1 in the last step.
Similarly, one obtains

1 ~ ~ 1 ~ ~
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k=0

where we have used m_ljntm = jm to get the factor of 2 for the second term, and the
Ej;-invariance of the structure constants to convert m?? in mP™. We see that there will
be cancellations when combining these terms with those from (7.8).

Combining all the terms together we obtain eventually that the E71; exceptional field
theory pseudo-Lagrangian reduces to

2
_ _ 1 _ _
L= —=2ma g m™" Tm™ TnP0 — 2 Z Mag by M T T
k=1
_ _ 12 L
+3 Z ma(kw(memQTﬂmmepmjma<k) T + 4 Z ML Ty F oo
k=1

o
- H&@)mnjmamK[a(lfé@)ﬂ(z)]j”ﬁ(z) + a0 X" + Z O - (7.10)

k=3

We stress that the terms Oy, are not E1;-invariant since we have chosen the GL(11)-invariant
solution to the section constraint. Note also that the Oy, being proportional to squares
of the duality equations, do not modify the dynamics implied by the pseudo-Lagrangian,
since by construction the Euler-Lagrange equations for the pseudo-Lagrangians Oy are
integrability conditions for the duality equationf (7.4). It follows that there is no loss of
information in integrating out the fields {,m®, Gn, as long as we keep the duality equations.
In particular, the Euler-Lagrange equations of the FE7; coset fields ¢®® for k > 3 are
integrability conditions for the duality equations, and are consequences of the constrained
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fields’ Euler-Lagrange equations. In what follows, we shall next show that £— 372, O on
section is the (bosonic part of the) eleven-dimensional supergravity Lagrangian [102]. We
shall also analyse the duality equations at the linearised level, their integrability conditions,
and the role of the constrained fields. To this end, in section 7.2 below, we shall begin with
some preliminaries on the GL(11) decomposition.

We conclude this section by expressing the result (7.10) in an alternative form which
will be useful in the following. To do so, we define the restrictions of the pseudo-Lagrangian
components of (3.10) to level k as follows

1 .
Linl = ~my, g, FloF®
k1n|k k§3 4 I(k)J(k) )

1 L
, = = Flw Flw
Licink W=a 7™M

~

~ 1 o~
_ Ikm/\ Jkn/\ (70 Ak _ Ikm/\ Jkn Ak k
my, g, C'O" s C70 T2 Am QmI(k)J(k)C<) A(A-)C *) (k)cm ® ¢, Zw

_ _T1. mn.g aq a3 7 B
Liopl2 = —a™" T Koy, gy ) Tn
1 ~ ~
— I37k Jk
£t0p|k ]{,‘;3 79](;3,;.)](;“)? ¢ )‘F *) )
r . 1 mn 7 ow 7 Bo 1 TYO? T Q@ 4P 7 o) 7 B
p0t1’0 = _Zmﬂé(o)/ﬂ’(mm Im ™ In +§m04(0)’)/(u) QLBe p™M IO T
Lot |k = _lm m™n g w F Bw lm TV STy Q@ mPm J e 7, B
pot; |k >1 9 oy By m n oMt QLBuw p m n )
1 . - o~ o~
- - - (Mo o I . paMm PR T am) 7 B
Loty |k it 2mI(,C)J(k)C e ()qﬁ’(k)m P Ty O Tn” 0 (7.11)

It follows that

oo oo oo
ACkin = Z Ekin|k ) ['top = Z Etop|k ; *Cpotl = Z Lpotl |k 3 »Cpotg = Z LpotQ |k .
k=0 k=3

kez k=2
(7.12)
Using this notation, one can now resume the computation carried out in this section to the
property that for & > 3 we have

Ekin|3_k + Ekin|k + £p0t1 |k + Epot2|k + £t0p|k
:Ekin|k_£kin‘3_k+ﬁt0p’k :Ok7 (713)

such that (7.10) can be written as

oo
L= Linly+ D> Lpot, |, + Lioply + Moy Om¥Xn™® + > O (7.14)
k=1,2 k=0,1,2 k=3

It is remarkable that the infinite number of terms in the total pseudo-Lagrangian
needed for the Fj; symmetry boils down to the infinite sum over the ‘squares’ of the
duality equations, see (7.5), and only a finite number of terms remains outside this sum.
The emergence of the duality-equations squared terms is due to the relation (7.13). Since
this relation is central to the result (7.14), we illustrate how it works for & = 3 in detail in
appendix C.5, as an example.
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7.2 GL(11) decomposition

For the GL(11) level decomposition we parametrise the unipotent element as

1 1 1
U = exp <3'Anm2n3E"1”2"3> exp (Am,_,mﬂ)E"l“'"G) exp (

6‘ S'hnl...ng,mEnlmn87m> e,

(7.15)

This is the usual GL(11) level decomposition of F1; up to level three involving the three-
form, its dual six-form and the dual graviton [2, 59, 64, 65, 101].4

The metric m on the Levi factor GL(11) is nothing but the eleven-dimensional space-
time metric g,,. From the way the semi-flat formulation was set up, the duality equa-
tion (6.10) contains the my; which is block diagonal in GL(11) level decomposition. There-
fore it acts just like the GL(11) metric on a given GL(11) field strength component by rais-
ing/lowering its indices, with an additional factor of /—g because the GL(11) components
of FI are GL(11) tensor densities of weight one-half. The duality equation (6.10), however,
becomes a set of GL(11) tensorial equations precisely because of this factor.

In the parametrisation (7.15) we obtain

_ 1 1
NM = aMUZ/[ 1_ ?a]wAnlnzngE”Vl1n2n3_|_a <8MA7L1~--TL6+10A[n1n2n36MAn4n5n6]>EnlmnG

1
+§ (aMhnl...ns,m+56A(n1n2n38MAn4...n8,m) (7.16)
+140A (nynons AninsngOM Anzng,m) )Enl'"ns’m‘i‘- S
where ¢--- -y denotes the projection on the (8,1) Young symmetry:

A(mnzng AnwsnesaMAmns,m} - A[n1n2n3 An4n5n6aMAn7ns]m - A[mnznsAnwwaaMAmnsm]'
(7.17)

The R(A1) index M is not included in the anti-symmetrisation in this equation.
Besides the E; fields v and U we also require the constrained fields (2.31). The L(Az2)

index & on the field x /% decomposes as [13]

a
XM — (XM;nl...ngu XM:ni..n10,p1p2s XM;ni..n11,ps - - ) 5 (718)

where we use the same notation as in [13, 58] that a comma separates different columns of
an irreducible GL(11) tableau, while a semi-colon separates different columns of a reducible
tensor product.

The L(A1p) index of the constrained field ¢y decomposes as

Q-MA — (CM;nl...nu,pu CM;nl...nu,pl...p47 .. ) . (719)

The L(A4) index of the constrained field ¢ MK decomposes as

A
v — (gM;mmnn,plmP?v CM?”1~--nlluP1~~-P8§q1q2’ .- ) . (7-20)

42The GL(11) level equals the difference between the number of upper and lower GL(11) indices divided

by three, for the adjoint representation, and this number plus % in the R(A1) representation of E1;. For

more details, see [2, 58, 59, 64]. This rule is only applicable if one keeps sets of 11 antisymmetric indices.
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We also choose the D = 11 solution of the section constraint (2.19) and therefore only
keep the ordinary space-time derivatives 0,,. Since the fields in (7.18) and (7.19) are also

constrained, we also keep only their first component ¥;m®, Cn?, e.g.

Xm;nl...ng 9 (721)

where we recall that the semi-colon indicates that this is a reducible representation of
GL(11) obtained as a tensor product of a one-form with the components of a nine-form
and therefore has the irreducible pieces with Young symmetries (10) and (9, 1).

Currents, field strengths and tensors. As a preparation to the evaluation of the
pseudo-Lagrangian, we first describe how to obtain its various ingredients in GL(11) level
decomposition. We shall from now on leave out all tildes on the components of the redefined
fields, currents and field strengths for readability. However, we shall denote the components
in level decomposition with calligraphic latin letters.

Working out the components of the Levi current (6.4) and the semi-flat current (6.6)
using (7.16), we find (at non-negative GL(11) levels o)

k=0 jp;nm — gmsapgns 5

k=1: jp;nlnzng = 817"4711n2713 ’

k=2 Tpiny..ng = OpAny..ng + 10A[n1n2n38\1?|‘4n4n5n6] ) (7.22)
56

k=3: jp;nl...ng,m = aphnl...ng,m + ?(A[n1n2n38\p|An4...ng]m - Am[nlnza\p|An3mn8])

280
?Am[m ng An3n4n5 8\p| Anamns] :

All the indices occurring here are curved with respect to the Levi factor GL(11) which is
why we call the formulation semi-flat. We shall use the GL(11) metric g, to raise and
lower indices on these and similar GL(11) tensor (densities).

The components of the semi-flat field strength can be obtained from the current com-

ponents (7.22) and the structure constants C'M =~ given in (C.12) as

‘Fnln2m = 2t7[n1;n2}m7
]:n1...n4 = 4t7[n1;n2n3n4] ;
-Fn1...n7 = 7u7[n1;n2...n7} ) (723)

fnl...ng;m - 9t7[n1;n2...n9},m + Xm;nl...ng 9

where in the last equation we have defined the GL(11) reducible field strength

fnl...ng;m = Jny..ngm — Fnl...ngm- (724)

Separating its relation (7.23) to the current components into irreducible constituents yields

]:nl...ng,m - 9x7[n1;n2...n9],m + Xmini..ng — X[m;n1...n9] y

fnl...nlo = X[nl;ng...nlo] N (725)
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These field strengths components take the explicit form

Frana™ = 29" Oy Gnslp
Fny..na = 400, Anonang » (7.26)
Fny.nz = 100, Ang.ng] + T0A [ nons Ong Angngna] »
Fni..ngmm = 99m, Prgnanglim + 840 A1 ms Angnans Ong Ansngng)
+ 168 (A[nlnzns8“4An5n6n7n8n9]m + Am[nlnz Ons An4n5n6n7nsn9]) + Xmsng..ng -

As we have seen in the previous section, the pseudo-Lagrangian (7.10) only involves the
three first field strengths above.

The E1; representation matrices are most easily determined by reading them off from
the rigid e;; transformations of the fields and derivatives. These transformations are dis-
played in appendix C.1 in the conventions of [58]. In particular the components of the
matrices M y can be obtained from (C.6).

HdMN

The components of can be determined from the explicit gauge transformation

of xp® as given in [13, eq. (4.17¢)]. The relevant lowest component of IIzM¥ is fixed by

comparing [13]*3
1
5£Xm;n1..,n9 = 248ma[n1)\n2...ng] — —F/—9nipy - - - gngpggrqulmpgp?“amapgq’ (727)
V=g
to (2.61a). This implies that the relevant component TIzM"N is [T™-~noP1P2 = _cn1--nop1pz
and we take the summation over this & component to include the canonical combinatorial
factor &.44

For the components of the cocycle K¢ s we need to extend the results on the rigid eq
transformation given in [58, eq. (4.33h)] to a few more components. We write this here in
terms of the commutator (2.9) in the form

1 1 1 -
- hmnKmn + genlngngEnlnzn?’ + aenl...ngEnlmn‘s + genl...ns,mEnlmns’ma Fnl...ng
= gh[nlpﬁng...ng]p - 286[n1n2n3Fn4...n9] - 56€[n1...n6Fn7n3n9} + ge[nl...n8,|p|h’pn9} ; (728)

where we recall that the lowest component t® in R(Ay) C T is a nine-form Fy, see (7.18).
The tensors C' pa can be determined conveniently from the auxiliary field strength

that was defined in [58]. Expanding it out to lowest orders in the GL(11) level decompo-
sition leads to [58, eq. (5.26)]

Gny..ng = 9P (Tpiny..ns.q + Xpina..nsq) (7.30)

“30ur convention is that €'~ '® = +1 is the Levi-Civita symbol (with constant components) and its
. gnl

mi1]”

indices are lowered with the metric, so that "' "™ey,,  m,, = 11! det(g)é[[fnl1 .
4411 general, the combinatorial factors are those in the K (FE11) invariant bilinear form on the R(A2)

representation.

~ 54 —



where we have given only the components that are non-zero when choosing the D = 11
solution to the section constraint. From this we find the following components of C ra
G ™7 = 81 (338 57— SB07]) | Gy = 01005 (7.31)
Note that we will not need the components of IIzMV K 0‘5‘5 and C1 pa defined above in
section 7.3 below, because all the corresponding contributions are already canceled in (7.14).

Nevertheless, they are important when considering the dual graviton field and they will be
used in section 8.2 and in appendices C.4 and C.5.

Expansion of the duality equation. Before considering the pseudo-Lagrangian (3.10)
in level decomposition, let us briefly comment on the expansion of the duality equations
as this underscores the role of the constrained fields.

The duality equations (6.10) become for the first two instances [13, eq. (4.14)]

1
Fniomr = mgmm e Gngpr €T F g gaasqa (7.32a)
1

m
]:nlng -

mgnﬂhgan25q1q2p1mpggmqul...]?%q : (732b)
The first equation does not contain the constrained fields and is recognised as the usual
matter duality equation of D = 11 supergravity. An integrability condition of this equa-
tion is Oy, (y/—gFmmn2ns) = ﬁs”m?%pl"'psfpl_”m]:m._,ps, where the familiar non-linear
term [102] is due to the Bianchi identity 9, Fp,..ng] = %]:[nl...’rhl]:ns...ng} of the seven-form
field strength that is implied by (7.26). The second equation is akin to the first-order
dual gravity relation [59, 60, 103-106]. It contains the additional field X:n,..ne that plays
the same role as the Stiickelberg gauge field in the vielbein formulation [59, 60]. Equa-
tion (7.32) can be seen as simply determining the field Xm:n,..ny in terms of the other fields
and therefore imposes no condition on the gravitational dynamics. This is remedied by
the pseudo-Lagrangian (3.10) that we have put forward in this paper: it implies additional
equations for the constrained fields that we derived in section 5. As we shall see in this
section, we can alternatively use the pseudo-Lagrangian together with a choice of section
condition to integrate out the constrained fields, thereby solving their equations of motion.
The remaining dynamics for the Fq; coset fields will then be seen to be equivalent to the
bosonic sector of D = 11 supergravity.

7.3 D = 11 supergravity from the GL(11) expanded pseudo-Lagrangian

We shall now explicitly write out the various terms in (7.10), using the notation introduced
in (7.14). The resulting pseudo-Lagrangian £ — > 72, Oy is the (bosonic part of the)
eleven-dimensional supergravity Lagrangian [102], where we recall from (7.5) that Op= —
gl 0I0EL Eg

Evaluating the first term in (7.14) requires knowledge of the representation-theoretic
contraction that can be extracted from the linearised analysis in [58, eq. (5.39)]. From this
we can immediately write down the resulting expression in GL(11) level decomposition for
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the components of the field strengths deduced above using (C.18)

Z £kin|k =

k=1,2

2
>y g, FrOF® (7.33)
k=1

1
7

e S

1
¢W<.apmﬂ“m+4ﬁwerM)

The /—g comes from the weight of the R(A;) coordinate module (C.7). This contains all
the contributions to the kinetic term that remain after integrating out all the constrained
fields. Indices are raised and lowered with the GL(11) metric g,,,,. In particular the matrix
components my, j, and mj, j, are given respectively by

2N NA;PIP2P3PA — A) /_gg[m|Plg|n2|p2g|n3\P3g|n4]P4 ’

L nTPLPT 7!\/fgg[n1|Plg|n2|P2 - .g|”7]177 ) (7.34)

Next, we compute the terms from Lq¢,. For the first line of (7.9) we get

1 ~ ~
=M M T T —mea“ " Ty J 0 (7.35)

1 2 2
= _1\/_7997% (jm;qun;qp_ §jm;pp~7n;qq+gjm;mpzpsjn;plpng + @jm;m...pe jn;plmpfj) )

where we used m™" = /—gg™" and the bilinear form m4,, g, in the same normalisation as
in [58, appendix A.1], see also (C.16). For the second line of (7.9) we use (C.6) and (C.7)
with the rule

AgTP?,00 = 570m, AT 08m = 0700 (7.36)

so that for any parameters &, Cm, ¥, &P
o T QT @ mPmE Y G P = P €01t m 06 Cp » (7.37)

me

where 04 and 6,,-1t,, act only on ¢, as 5 in (C.6) and (C.7). Performing these steps for
all terms, we find the following expression

Z May, 'Y(k QTﬂu Pmpmj ® jnﬁ(k) (7.38)
=v—g9™ (jqn TImp? — Tpig T+ jmp Tnig!+= qup1p2\7n qp1pz+ jq p . ps T P pd>

where we used Jn.q" 9729rn = Jm:n?. To combine these terms we use moreover the expan-
sion of the Einstein-Hilbert Lagrangian

V—gR=0, [\/jgmngpq(amgnq _&Igmn)}
1 1 1
V=0 (3T Tl = 3 T T+ T Tu = 5 5y T (139
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that can be checked by expanding everything out in the metric and its derivative. Com-
bining (7.35) with (7.38), and using (7.39) we find
1 1

YA B! ny... N
fnl...n4 ! - 7'Fn1...n7f ! 7>

2. Lpouli = V_Q(R_'Q 2.7l

k=0,1,2 4!
- ap [\/ _ggmngpq(amgnq - aqgmn)} s (740)

where we have used the relation (7.23) for expressing the current components via field
strength components.
Finally, we use (7.28) to write (6.18)

£t0p’2 = Enlmnufru...n4fn5...n11 . (741)

2.9

Summing up the results for (7.33), (7.40) and (7.41), we get

e 11~Fn1...n4fn5...n11

1 1
L= \/jg (R — ——Fnpmg P = ]:n1.~~"7fn1'“n7) * 2-9!

44! 4.7!

1 o0
-0 [V —99"" 9" (Omgng — OqGmn) + 9|€pm"'n10Xn1;nz---mo} + Z Ok - (7.42)
’ k=3

The first line describes the bosonic sector of eleven-dimensional supergravity in the
democratic formulation in which both three-form and six-form potentials occur.*® In order
to compare with the standard formulation of eleven-dimensional supergravity it is conve-
nient to exhibit that the terms involving the six-form potential also combine in a term
proportional to the square of its defining duality equation (7.32a)

Oy=-Y_9

1 1
= R <]:n1...n7 I Lh(]enl--.n7p1“'p4-/rp1...p4) <]:n1...n7Lﬂ\/jgsn1...n7lI1‘..Q4]:qlmq4> .

(7.43)
Although Oy cannot be canceled by integrating out an auxiliary field, it does not affect the
equations of motion that include the duality equations. We obtain finally

L = Lougra + Op(UP +VP) + D Oy, (7.44)
k=2

where

1 1
»Csugra =v—4g <R_‘Fn1...n4fn1mn4) _wenlmnuAn1n2n3Fn4...n7fng...n11 ) (7453)

2-4!
Ul =—v —ggm"gpq(amgnq _6qgmn) ) (7'45b)
1
VP = *@6%1"'”10 (4An1n2n3]:n4...n10 JrXm;..-nm) ) (7.45¢)

45Though we are not aware of a worked out democratic formulation of D = 11 supergravity, it is similar
in spirit to the democratic formulation of supergravities in D = .
i irit to the d tic f lati f ities in D = 10 [107
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and we recall that Oy represents the square of the duality equations, as defined in (7.5).
This result shows that £ — > 72,5 Oy is the bosonic part of the eleven-dimensional super-
gravity Lagrangian, up to total derivative terms, as claimed at the beginning of this section.
We have denoted this Lagrangian by Lgugra, even though it represents only the bosonic sec-
tor, for brevity in notation. Given that Y 7—, O does not affect the equations of motion,
as a sum of squares of the duality equations, we proved that E1; exceptional field theory
reproduces eleven-dimensional supergravity dynamics on section.

Moreover, this result implies that the whole dynamics of Fj; exceptional field theory
on the eleven-dimensional section is described by the duality equation (3.1) and the super-
gravity Einstein equation deriving from Lgugra. We shall now describe the dynamics of the
higher-level fields.

8 Higher level dualities and the constrained fields

In this section, we describe how the Euler-Lagrange equations of the pseudo-Lagrangian
provide integrability conditions for the constrained fields, such that the higher-level com-
ponents of the duality equation (3.1) are dynamical and describe the propagation of an
infinite sequence of dual fields, providing a rather explicit realisation of the proposal of [16].
As explained in the last section, this is equivalent to considering the duality equation (3.1)
together with the eleven-dimensional Einstein equation from (7.45a), nevertheless it will
sometimes be more convenient to consider other pseudo-Lagrangians that are equivalent
to the F1; exceptional field theory pseudo-Lagrangian (3.10).

8.1 Preliminaries

The Einstein equation that follows from the full pseudo-Lagrangian £ includes by construc-
tion an energy-momentum tensor with an infinite sum of contributions from all positive
level fields. Using all the infinitely many duality equations (3.1) these infinitely many con-
tributions reduce to a finite expression. If one wants to obtain a finite energy-momentum
for a specific finite set of fields without using the duality equations, one has to consider
pseudo-Lagrangians of the form Lqygra+> rer ckOk, where [ is a finite set of integers k > 2.
By construction, any such pseudo-Lagrangian produces an equivalent set of Euler-Lagrange
equations together with the duality equation (3.1). For some specific choice of ¢ € {0, 1,2}
for k € I, one can moreover obtain an actual Lagrangian for a subset of the fields, as Lgugra
for the metric and the three-form potential. Although these pseudo-Lagrangians are not
invariant under generalised diffeomorphisms (up to a total derivative), the set of equations
of motion they produce transform into themselves and into the duality equations under
generalised diffeomorphisms. The reason for this is that they define the same set of equa-
tions as the Euler-Lagrange equations of the invariant pseudo-Lagrangian £ and the duality
equations (3.1).

The field content of the Ej; coset representative was analysed to all GL(11) levels
in [16] with the result that all generators fall into one of the following four classes of
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GL(11) Young tableaux*

longest column has length < 8: generators that are part of Fg
longest column has length 9: generators that are part of Eg9 but not of Eg
longest column has length 10: generators that are part of F1g but not of Eg  (8.1)

longest column has length 11: generators that are part of E1; but not of Eqg

The fields that include at least one column of either eleven or ten antisymmetrised in-
dices, i.e. belong to E1g or Ei1, appear in exponentially growing number in the GL(11)
decomposition, but they are non-propagating. The fields with one single column of ten an-
tisymmetrised indices correspond for example to non-geometric deformations of the theory,
such as massive type ITA [75, 89]. All the propagating fields instead appear with (outer)
multiplicity one at each level and stem from Eg. These are the metric g, at level 0, the
tensor of Young symmetry (9", 3) at level 1+ 3n, of Young symmetry (9", 6) at level 2+ 3n
and (9,8,1) at level 3 4+ 3n, for all n € IN. Here we use the notation that (9", p,q) is
the partition of 9n + p + ¢ whose Young tableau includes n columns of 9 antisymmetrised
indices. The fields with n = 0 are the standard three-form, the six-form and the dual
graviton field.

It was shown in [108] that the fields with n > 1 cannot be described in the general
framework of [109, 110] for unitary representations of the Lorentz group, in which the
field equations are in the same SO(1, 10) representation as the gauge field. This difficulty
was circumvented in [19], in which it was shown that there are consistent duality equa-
tions for the fields of Young symmetry (9",3), such that they propagate the same degrees
of freedom as the three-form gauge field. The field strength Gion 4 ~ d"+1A9n,3 for the
potential of Young symmetry (9", 3) is defined to be in the irreducible GL(11) representa-
tion of Young symmetry (10™,4) [111]. This representation decomposes under the Lorentz
group SO(1,10) into a tensor with Young symmetry (4,1") (i.e. of Bs weight nA; + A4 in
Bourbaki numbering conventions) plus all possible traces. The next-largest representation
in the branching has Young symmetry (5,1"73) (Bjs highest weight (n — 1)A; + 2A5) and
corresponds to taking four traces.’” The field equation in [19] for the (97, 3) potential is
that all SO(1,10) components that are not in the largest SO(1, 10) representation (4,1")
have to vanish and this is the appropriate alternative generalisation of the usual ‘Riemann
equal Weyl’ equation for mixed symmetry fields. However, it is important that this requires
taking several traces and not only a single trace, so that the Weyl tensor is not defined by
the property that any possible trace vanishes. Therefore the field equation in [19] differs

46Since all generators are in representations of GL(11), any tensor necessarily will involve root spaces
that only exist for ¢;1 and not for its e, subalgebra with n = 8,9,10. In the table, we refer to the lowest
weight element of any GL(11) tensor generator, which is then a root of e,. Equivalently one can think of
the GL(11) tensor with indices restricted to run from 1 to n.

47That this is the first non-trivial trace can be seen for example for G1p,4 from the identity

1 d

1
_ 1..dr
Ga1 ...a10,b1...bg — _W‘Salmﬂlocgbl ...by Gd1 ...d7ejezez,

dy...dgc e1...eq
4!615111»»»@1065111,“174 Gdlmdaelmezt,

ejegesc

which implies that one does not project out any component of a (10, 4) tensor of GL(11) by contracting up
to three pairs of indices.
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from that in [108-110]. Similarly, for the potentials (9",6) and (9", 8,1) the field equation
requires keeping only the largest SO(1, 10) component of the corresponding field strengths.
The fact that the propagating degrees of freedom can be described alternatively using these
higher potentials is also in agreement with the fact that the Ey linear system for D = 2
supergravity provides an infinite cascade of fields dual to the propagating ones using FEg
generators [4, 20].
The linearised duality equation (5.21) was recognised in [58] to relate fields of level
shifted by 3,
Mg F = Qg g0y F100 (8.2)

such that a field of Young symmetry (9"+!, 3) is indeed dual to the one of Young symmetry
(97,3)

Jy3mm Q4+ 3n Jiayzmym _ G4+ 3 Jiay3mym__ X43
mI(4+3n)J(4+3n) (C (4+3n) oc(,Hg,,)Jm @+3n) . CY+3n) a(,Hgn)Xm @+3n) 4 CY@+3n) A<4+3,L)Cm (44 3n)
_ J1-zmm B-1-30) V(-1 - 3n) o143
= QI(4+371)J(7173H) (C ( ) fm———— ( S " T L T Sy O

T1gym &1 T sym_ A1
4+ /1= Gt g Xm (-1-3m) 1 OJ-1-3m) A(,l,gn)cm (-1 3>> , (8_3)

and similarly for (9”,6) and (9",8,1). Moreover, assuming the constrained fields are total
derivatives, the duality equations reduce to

J(4+3nm (44 3n J4+37Lm,, d4+3n J4+3n m__
M 30y T+ 30 (C ) 01(4+3n)8m¢ (e 4 O )amX (s GV A

4+ 3n

8mYA(4 +3n) )

(44 3n)

— Jic1-zmm B-1-30)Y(-1-3 Q1+ 3
- QI(4+371)J(7173”) (C ( " Bi1-3mM ( R H)Ka(l+3n)’y(—l—3n)am¢ (=

+ C‘](*l*:‘")m&(flfim) O X 1= 4 CJ(717371)m;\\(,173”) 8mYK<13”>> , (8.4)
and the fields X¢ and YX provide the correct set of fields to write gauge-invariant linearised
duality equations [13] consistently with [19]. In this section we shall describe how the use of
the pseudo—Lagranigian (3.10) allows us to define integrability conditions for the constrained
fields x,,® and ¢, to obtain the non-linear duality equations.

We shall find in particular that Lgugra + O3 defines a Lagrangian for the metric, the
three-form potential, the dual graviton and the associated constrained field x1.9, which
describes dual gravity at the non-linear level. The Euler-Lagrange equation for the metric
can then be interpreted as an integrability condition for the constrained field x1.9, while
the constrained field Euler-Lagrange equation is the duality equation (7.32b) for the metric
that is algebraic in x1.9. Injecting the algebraic solution of the latter equation into the
former gives back the Einstein equation, while solving first the integrability condition
for the constrained field produces a dynamical duality equation for the dual graviton.
This duality equation reproduces the expected dual graviton propagation in the linearised
approximation. As an aside, we shall show the relation between this dual graviton action
and that of [1, 59, 60] which gives an equivalent description of the dual graviton in the
vielbein formulation.
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After this, we shall examine Lgugra + 204, which provides a Lagrangian for the metric,
the three-form potential, the level 4 potential Ag3 and the associated constrained field
X1;10;2- As for the dual graviton, the Euler-Lagrange equation of the three-form potential
gives an integrability condition for the constrained field x1.10,2, while the Euler-Lagrange
equation of x1,10;2 gives the level 4 duality equation. Solving first the duality equation for
X1;10;2 one recovers the eleven-dimensional supergravity equation for the three-form, while
solving first the integrability condition for x1.10,2 gives a dynamical duality equation for
the gradient dual Ag 3.

We expect that this procedure can be generalised to all levels to give the infinite chains
of gradient dual fields as described originally in [19], along the lines of section 4.3 in [13].
The missing step for showing this equivalence to the chain of linearised duality equations
in [19] is to prove that the constrained fields x,,“ that appear in the propagating duality
equations must be total derivatives 9, X% in the linearised approximation, up to terms that
do not contribute to the duality equations. The generalisation to the GL(11) level 5 field
Ag g is straightforward, but things are more subtle starting from GL(11) level 6. We shall
only describe schematically the generalisation to higher levels, and explain in particular
that one must take additional curls of the gauge-invariant Euler-Lagrange equations as their
integrability conditions to deduce x,,* = 9,, X%. In [3, 75, 112] additional derivatives were
required to get gauge-invariant higher-order duality equations, whereas here the higher
derivatives are rather a technical tool for proving from the duality equations and the
integrability conditions that the constrained fields are effectively total derivatives in the
way they appear in the field strengths to all levels. For the analysis of our system the
equivalence to the chain of linearised duality equations [19] is not a necessary property since
we already proved that our model propagates the correct degrees of freedom non-linearly.

8.2 The dual graviton

We will first analyse the dual graviton. We shall write down the full nonlinear Lagrangian,
the resulting equations of motion and relation to the vielbein formulation. In this section
we show that the Ej;-invariant pseudo-Lagrangian entails a Lagrangian for the (non-linear)
dual graviton in the metric formulation, which we will show, upon truncation to the gravita-
tional sector, to agree with the Lagrangian derived in [1, 59, 60] in the vielbein formulation.

The Lagrangian. As explained above, we shall now compute the Lagrangian

»Cdual-gr =L 8pv7’ — 0y — Z O = ﬁsugra + 8p U? + O3, (8.5)
k=4

that is appropriate for the description of the dual graviton. The explicit expression of O3 is

1 e 1
(fnl,“nsp;q‘F2\/_796”1“.”81)81829117“}'51527”) (f'nl n8q110+75n1...ngqr1r2fnr2p) .

Vg
04 N
(8.6)

T 4.8
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Using the identity

V=g (R+3

1
= _5 V _ggp[mgn]qgrs mgprangqs s (87)

1
fn1n2pfn1n2p - 4fnpp]:nqq) - 8}0(\/ _ggmngpq(amgnq - anmn))

we can now write the Lagrangian

1
ﬁdual-gr =Vv—4g (_29p[mgn]qgrs mgprangqs_
1

1442

1 1 .
ﬁfnl...n4fnlmn4 _ anl.-.ngp;qf"nlmn8%p)

ni...ni1 ni..ni1
3 Anlngng]:n4...n7]:ng...n11 _2-78'8 gpqan1gn2p]:qn3mnlo§ﬂ11 .
(8.8)

This Lagrangian depends only on the metric gp,y,, the three-form potential A, y,n, and
the field strength Fy,,  ng:m. Although the explicit expression of the field strength (7.26)
depends on both the three-form and the six-form potential through the current Jp.n; . .ngps
all these terms can be absorbed in the constrained field Xn.n,..ny by a field redefinition.
So we can indeed consider that (8.8) is a Lagrangian for gmn, Aninons a0d Xmin,...ne-

Equations of motion. The Euler-Lagrange equation for the constrained field Xm;n;...ng

is algebraic and gives

1 1
__~ pmlni.ngmel _ _ —
2. 8!]:m 4.81/—g

which is equivalent to the duality equation (7.32b), as has to be the case on the basis of

quqzm[n1---n8fqlq2n9] , (89)

our general analysis in section 3.3. Integrating out the constrained field is by construction
equivalent to removing the term in Os, and so gives back the bosonic component of the
eleven-dimensional supergravity Lagrangian (7.45a).

The Euler-Lagrange equation for the metric field gives

1
2~8!\/ﬁq€plmp11 (g(m“’l8p2‘7:|")7’3~-1’105p11_g(mlplap29|n)q]:qp3-~mo;pn_8p19p2(m~7:n)p3...p1o;pu)
1
= ﬁfmmps(m]:n)
1

. 1 .
* 4-77!]:(7“‘731“'p7‘1”’]:‘")p1mp77ﬂ7q+ 2-78!]:1?1...psq;(mfn)plmp&q -

1
_ Z (2gp7"gqs _gpqu’s) (8(m‘grsapg|n)q _8pgrsa(mgn)q>

p1p2p3 __ 1

i P1P2P3P4
96 gmn}—lePszx‘F

1 -
8_8|gmn]:p1pgq,r]:p1 psrid

1 1
_ §gr[p99]88pgr(m|aqg‘n)s — ngngrﬂpglﬂsgtuapgﬁaqgsu ) (8.10)

Note that because (8.7) is a total derivative in the linearised approximation, this equation
does not depend on the metric in the linearised approximation and should be interpreted
instead as an integrability condition for the dual graviton field strength Fg.1.

If one uses the Euler-Lagrange equation (8.9) for the constrained field to solve the field
strength Fo,  ngim = —ﬁemmngplmgmq}*plmq in the Euler-Lagrange equation for the
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metric field, one can combine all the terms involving the derivative of the metric on the
left-hand side to obtain the Einstein equation

1 1

Rmn - igmnR = E

This can be seen more easily in the linearised approximation starting from the left-hand
side of (8.10) and substituting (8.9)

1 (lin.) 1

1
FPlPQpS(an)p1p2p3 - %gmn‘rplp2p3p4‘rp1p2p3p4 ‘ (811)

2. 8!€p1mp1177(m|p1 Op2F nyps.. propn = 4. 8!sr(mmmpmsqun)p:s---pmamft;];;é)r
]' in. 1 in. ]‘ in
- _inqrarff;l(mmnn)p a ia(m"r;:)pm + §nm”nrqa7"}-q(;0 i
. 1 A
= R;:jbr;z) - inmnR(hn'> . (8.12)

To analyse the dual graviton we must first solve the integrability condition (8.10) for
the constrained field. This is a non-linear equation that one cannot solve in general, but
one may solve it perturbatively starting from a background metric solution to Einstein
equation. Here, we shall only consider the linearised approximation around Minkowski
space-time. In the linearised approximation, (8.10) reduces to the curl-free equation

8[ ]_-(nnq + 55m[n1 (677,2 (lin.) P _ 617‘7:(11”) ) =0. (8'13)

n1Y |mlns...ng;n10] n3...n10|p; p|n2..‘n9;n10]
Using moreover the trace and the divergence of (8.9) one obtains that

1

9" Fny.mspig = — \ /—g6"1---nsp1p2p38p1gp2p3 =0,
A 1 .
lin. ni...ng;n _ ny...n lin.)n _
ap]:( p[na..nging]l _ _ ~ p1p2ps[m 88p1f2§2p3? 9] 0, (8.14)

2

by symmetry of the metric and the Bianchi identity for Fy,,,,™. We have therefore the
integrability condition

(lin.) . (lin.) _
8["1“F|m|n2.4.n9;n10] - a[”1X|m|n2..‘n9;n10] =0. (815)
According to the generalised Poincaré lemma [111],4 Ximiny .. mg Must be of the form

(lin.) — aanl...ng + 98[n1|2m;\n2...n9] y (816)

Xminy...ng

and checking the first-order constraint (8.15) one finds that
8[711 Enz;ng...nl(}] =0 = Zm;nl...ng = Em,nl...ng + 8m)\n1“.ng . (817)

But A, .ng can be absorbed in a gauge transformation of X, n4, and X, ;. .ng can be
cancelled by a shift of hy, ngm — Ani.mgm — Lmni..ng SO We get the linearised field
strength

Far = 99, Ty ng)m + Om Xy ..ng 5 (8.18)

ni...ng;m

“8For this we split X1.0 = X10-+X1,0 into irreducible components. One can take an additional curl on (8.15)
to obtain (09x)10,2 = 0 in which x10 drops out and the generalised Poincaré lemma implies that x1,0 takes
the form (8.16) projected to the irreducible component. The component (9x)11 implies that xio is also a
total derivative, so that we get (8.16).
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as in [58]. The trivial solution ;g can be traced back to the ancillary gauge transforma-
tion (2.49) of parameter Su7, and condition (8.17) is the first component of (2.45). The
field Xy is then interpreted as the exact derivative that appears in integrating the standard
second-order duality equation for the linearised Riemann tensor [103, 104]

(lin.)ning _ ni (lin.)ng| __ mi...Mmg QN1 (lin.) no
R pip2 — —5[ ‘7:1911)2 I = _ngm 8[ ]:ml...mg; ]
1
- _§5p1p2m1--~m98[nlamlhm2mm9;n2] ? (819)

which follows from (8.9), and does not depend on the field X,,, . n,. If one uses the Bianchi
identity RYp, ,,p,) = 0, one gets

— p1p2p3 (lin.)qg _ 9q T(in.) - (lin.) qp
0= Eny...ng nq[maps}fmm =0 ‘Fnlnﬂst];m am]:mmngqmn

= 6p6phmmn87m + 88p8[n1 th._.nS]nm — 88m8[n1 hng...ng}p,qnpq — 8m8phn1.,.n8,p , (8.20)

which is the propagating equation for the dual graviton. One can in principle solve the
non-linear equations (8.10) and (8.9) iteratively oder by order in the number of fields.
Because (8.10) depends on both the metric and the dual graviton, the dual graviton prop-
agating equation is highly non-local, and there is therefore no contradiction with the no-go
theorem of [113] that assumes locality. Note that although a natural guess for the non-linear
duality equation would have been to replace the left-hand side of (8.19) by the non-linear
Riemann tensor, this is not what shows up in this non-linear equation in which the dual
graviton field strength is not a tensor. Its gauge transformation includes the non-covariant

variation (C.13e)
1
Aanl...ng;m = _ﬁgnl...ngpquramargq ) (8‘21)

that compensates the non-tensoriality of the gravitational flux Fy,n," = 29"70),, Gn,)p-

Relation to the vielbein formalism. The non-linear metric formulation of dual grav-
ity, following from the Lagrangian (8.8), is very similar to the vielbein formulation of dual
gravity [1, 59, 60, 114]. The precise relation is obtained via the change of variable

10
fnl...ng;m = emanl...ng;b - He[manl.‘.ng};b - 9ebpgm[n1 Ynz...ng}p;b
1
+ o Gngpo PP (€1, Opega — €4 Op€ma) 5 (8.22)

—Gnip -
\/jg nipi
where Y, o5 is the field strength defined in [1, 59, 60, 114], that satisfies the duality
equation

1
Qabie — 2QC[a;b] + 4770[aQb]d;d - @‘gabdl"d9 Ya, . doic (8.23)

with the anholonomy coefficients
Qap:© = €5 e (Omen® — Onem”) . (8.24)

The second line in the redefinition (8.22) is linear in the composite Maurer-Cartan so(1, 10)
connection

Q™ = —e"%9e,% | (8.25)
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of the GL(11)/SO(1, 10) symmetric space, and compensates for the property that Y, nq
does not transform homogeneously under SO(1, 10) gauge transformations. We have

Ca" ey e Friny™ = 200 + 4Q o - (8.26)

Note that the change of variables (8.22) is a redefinition of the field Xmn,..no. We find
therefore that Xim.n,..ne can be identified with the Stiickelberg gauge field constituting
Yo, ..mgip In [60].

Substituting (8.22) into the gravitational part of (8.8) one obtains after a tedious but
straightforward computation

n1-N8gq;p
Fny..ngpigl ’ >
1

1 1
\/jg (_2gp[mgn]qgrs mgprangqs - 478'

2. 8'5”1---Tlngpqamgn2p]_-qn3mn10;nu
_ _L 8Y Yal...ag;b —9Y. byal...agc; 1Y, Ym...agc;b (8 27)
o 4.9\ 9 aj...agsb ay...agb; c aj...agb;c .
1
— 5 9|5n1mn11Qn1n2an3...n11;b _ 28m<66am€annab)
€ 1 o1
_ 5.8l (Yal--.agb;b + 25a1...a8b1b2b39b1b2;b3> (Ycu...asc7C + 25a1ma8016263Q5102;c3) ,

which we recognise as the Lagrangian of [60] plus a total derivative and the last line that
is quadratic in the 3-form component of the duality equation (8.23). This last term does
not modify the equations of motion.*® By construction integrating out the Stiickelberg
gauge field gives back Einstein-Hilbert Lagrangian, just as in [1, 59, 60]. The equation of
motion of the vielbein e,,® gives the same integrability condition as in [60], up to a term
proportional to the 3-form component of the duality equation (8.23).

We conclude that E1; exceptional field theory includes a non-linear dual graviton with
the expected dynamics. The Lagrangian (8.8) is not completely obvious to derive from
the Einstein-Hilbert Lagrangian by dualisation, because of its non-trivial dependence on
the metric. It is not possible to obtain the vielbein formulation [1] of the dual graviton
from the coset component of the Maurer-Cartan form, since the vielbein form requires the
anholonomy coefficients that involve the full Maurer-Cartan form with its inhomogeneous
K (E4;) transformation [3]. Using the coset component of the Maurer-Cartan form makes
it clear how to write E7; invariant equations and we have shown in this section how to
obtain the dual gravity Lagrangian (8.8) from Fj; exceptional field theory.

8.3 The gradient dual of the three-form

Similarly as for the dual graviton, one can derive a Lagrangian for the gradient dual
An,..ng:pipaps Of the 3-form gauge potential that has the same equations of motion as the
F11 exceptional field theory pseudo-Lagrangian using the duality equation.

“90ne may think that the last term in the Lagrangian can be reabsorbed by a redefinition of the Stiick-
elberg gauge field constituting Yn,...ng;», however, this is only possible for a complex coeflicient. Still the
Lagrangian (8.27) is fully equivalent to the one in [60].
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In this case one considers the Lagrangian

Esugra+2(’)4
1 1 .
= \/jg<R+ §9f1[mgn]1’gmsl 9" O ApryryOnAgsy sy + @‘Fnl---mmpng;qlngg}_m ~-N7q14243;P1P2P3
1
- mfppmfm)
1

2
ni...nii ni...ni11 P1P2P3
€ AN1n2n3‘Fn4---N7~Fns---n11 — o€ 8711 Ap1p2p3~’r n2...n8;N9N10M11 »

1442 9!

(8.28)

where the field strengths with 13 indices above and their duals F™™ and JF;,"1"2"3 are
defined at the linearised level in (C.12). The Lagrangian (8.28) only depends on the
metric gmp, the three-form potential A, n,n, and the field strengths F,,  ni0:pipops and
Fpr..pri,mn- Although the definition of these field strengths involves the six-form poten-
tial and the dual graviton field through the level 4 component of the current J3,, these
terms can be eliminated by a field redefinition of the constrained fields X.m:n,...n19,pi1p. and
Xminy..m1,ps SO (8.28) defines a Lagrangian for the metric, the three-form potential and
these constrained fields.

The Euler-Lagrange equations for the constrained fields Xom;n;..n10,p1p2 30d Xming..n11,p
are the duality equations

1 1
Fri..nioipipaps = _ﬁem--.momgpﬂhgp2Q29p3q3]:mqlq2q3 = \/jggnlmnlomamAplpzps )
(8.29a)
1
fnl...nn;m,p = ﬁgnl...nllfm,p =0, (829b)

where we used the property that the field strength F™™ = 0 on section.’® As the fields
appear algebraically in the Lagrangian they can be integrated out to give the eleven-
dimensional supergravity Lagrangian. In particular, the field strength 7, ., m,n decou-

ples and can be eliminated by integrating out the constrained field x The

m|;p1...p11,|n) -
three-form gauge field Euler-Lagrange equation

1 a0
116[”1‘Fplpzmm--ﬂs;ngmonn} = _ﬂgmmnuam(\/ _ggpl[mgn]qlgp2q2gp3q3)anAthzqs

1155
+ 4 %21}75523fn4n5n6n7fnsn9n10nu] ) (830)

is not propagating and should rather be interpreted as an integrability condition for the
constrained fields.

%0ne can consider F™" # 0 in a non-geometric background that gives rise to massive type IIA similarly
as in [73, 115]. This requires however to use the semi-flat formulation associated to L = GL(1) x GL(10) C
GL(11), and checking the consistency of this mild violation of the section constraint is beyond the scope of
this paper.
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As for the dual graviton, substituting the solution to (8.29a) into the integrability
condition (8.30) gives

1 16[711 fp1p2p3

1

= %gmmnuam( /_ggmngp1Q1gqugm%anAqqu% -3 /_ggmhgplngpzqsgp3manAqlq2q3) ,

(8.31)

n2...n8;N9MN10N11]

for the left-hand side and one obtains the three-form potential equation of motion of eleven-
dimensional supergravity.
To solve the integrability condition for the constrained fields first, we must analyse the
linearised approximation. The field strengths then reduce to
. . 3 . )
(lin.) _ (lin.) e (lin.) (lin.)
T miopipaps = 106["1’4"2"'”10]4’1?21’3+3X[P1|;n1mn1o,\p2p3]+2 (X[Pl\;m..‘nwlpz’m]+<[p1|;n1u.mo\p2,ps})

(lin.)

in. 5 (lin.) 1
fr(;l..?nn;m,p = 10, Bry..nilmp T 20(m| Cnyonay Jp) + 9 X(mlsn1...n11,lp) + ig(m\;m»-‘nn,lp) '
(8.32)

They satisfy the duality equations (8.29a) and (8.29b). The second equation (8.29b) is a
flat curvature equation and implies that all the fields appearing in F,,. 5, :mp are pure
gauge. As expected, the Ey1/K(E1) fields By, nygmp and Cyp, . n;,,m do not propagate
degrees of freedom. We shall therefore concentrate on the first duality equation (8.29a).
To simplify the discussion we recombine the x and (¢ fields in Fi0.3 in the reducible field

Xm;ni..nio;p1p2 — Xm;ini..n10,p1p2 + QXm;nl...nlo[pl,pg] + §Cm;n1...n10[p1,p2] ) (833)
and we note that the field strength

J—_’lin

ni...n10;P1p2pP3

= 1000, Apy..n10)p1paps + 3x (8.34)

15m1...110;|p2ps]

does not depend on the component of xi.10,;2 with (10,2,1) Young symmetry. Therefore
this component x10.2,1 in

1
Xm;ni..n10;p1p2 — §Xn1--.n1o;mp1p2 + Xni...n10;p1p2,m > (8.35)

is pure gauge and we can write the integrability condition for Xn,..nio;mpip.- The integra-
bility condition gives in the linearised approximation

110y, F ") = 118}, X[ =0. (8.36)

p1p2p3|na..ng;ngnionii] X|p1paps|na..ngmonionii]

Taking the curl of this equation in the (11,4) Young tableau representation one obtains
from the generalised Poincaré lemma [111] that

Xgiln.'.)‘mo;plmps - 108[”1 Enz-‘.mo]mlpz;ﬂs + 38[}71 Xm-‘.mo;\mps} ’ (8'37)

which reinserted in (8.36) implies that ¥g.3 is the sum of an arbitrary X9 3 and the curl of
a (9;2) form. But the second can be absorbed in Xjg.2 so we get

Xgilri‘.)-nlo;plpzps = 1000, Xny..n10),p1peps] T 30py Xn.mioifpaps) » (8.38)
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and the linearised field strength reduces to

’Fr(zlir-l:.)nlo;plpzps = 108[711 (An2-~-"10]7171p2p3 + Z:712~-~7110]7101102;D3) + 38[P1Xn1-.-n10;\172p3} . (8.39)
The Xg 3 is reabsorbed in Ag 3 and we get the expected linearised field strength in which

(lin.) _
Xm;nl...nlo;plpg - 8an1mn10;p1p2 ’ (840)

is a total derivative.
Using (C.13f), (C.13g) and (C.13h) in (8.32), one obtains the gauge transformation
Agf(hn‘) = 3€n1“_n10q8q8[p1 /\p2p3] y (8.41)

ni...n10;p1p2pP3

that can be ascribed to the gauge transformation of Xig.0 and which ensures gauge invari-
ance of the first order duality equation (8.29a). The dependence in the field X2 drops
out in the second-order duality equation

48[]31 |f(linA)

— m _ m
nl...n10;|p2p3p4] - 4677,1...77,10 am a[plApzpsm] = €ni..n1o am Fp1p2p3p4 ’ (842)

which reproduces the duality equation introduced in [19], and X0,2 can be interpreted as
a constant of integration in integrating this second-order equation to (8.29a).

The Bianchi identity for the gradient of the gauge field gives the wave equation for the
(9,3) form

_ q m _ q (lin.)
0=030%n,..ngq" OmApipops = 0 fnl...ngq;mmps

= —0%0,An, .ng.p1paps + 98qa[n1An2.~~n9]q,p1p2p3 + 3aq8[p1\Xn1mn9Q;\p2p3} ) (8.43)

which depends on Xig,2 because the second-order Bianchi identity is not manifestly gauge
invariant. One can write a propagating equation for the field Ag 3 that does not depend
on X2, but it is then third order in derivatives

40y, (979,A — 999y, A =0. (8.44)

n1...n9,|p2p3p4) nz...ng}q,lpzpszu])

We find therefore that the F1; exceptional field theory reproduces the expected equations
for Ag}g.

8.4 Higher levels

According to the analysis of section 4.3 in [13], we expect that the higher level dual fields
can be described in the linearised approximation by the field strength

F(linA)] — CIMa 8M¢a + CIMd aMXd + CIMA aMYA + CJMX aMYA, (845)

and the gauge transformations

be¢ = TN p (OnE" + nngn™oRe?) (8.46a)
5§Xd = T&NP (8N5P + T}NQT]PRaRfQ) + H&QpnNQapr , (8.46D)
5Vt =T opnN Q0N (8.46¢)
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that leave the linearised duality equation
QIJF(linA)J — nIJF(linA)J (847)

invariant, according to the analysis of section 3.1. To get these linearised equations from the
non-linear duality equations, we need to show that the pseudo-Lagrangian Euler-Lagrange
equations imply through the generalised Poincaré lemma that

xu® ~ou X%, (Gt mouYt, (Gt mouY?, (8.48)

up to terms that do not contribute to the components of the field strengths F )1

corre-
sponding to propagating degrees of freedom. We know that the linearised E1; exceptional
field theory equations do not impose directly that the constrained fields are total deriva-
tives, but we expect that this should be true up to Mi gauge transformations and possibly
higher level shift symmetries that leave F®)! invariant. We have indeed found in (8.18)
and (8.40) that F1™)! takes this form (8.45) at levels k = 3 and 4.

To derive this result for all k, we could in principle analyse the pseudo-Lagrangians

associated to the higher level fields in the same way, with for any n > 0

n
for A9",3 : ﬁl,n = ['sugra +2 Z 01+3j )
j=1
n
for A9n76 : ﬁgm = /-:sugra + 2 Z 02+3j , (8.49)
=0
n
for hon g1 : L35 = Lougra+ »_ O343; -
=0

These pseudo-Lagrangians are not invariant under generalised diffeomorphisms, but since
they only differ from the invariant Lagrangian £ by a total derivative and terms quadratic
in the duality equation, their Euler-Lagrange equations together with the duality equation
transform into each other under generalised diffeomorphisms. They are defined such that
for the fields Agn 3, Agn g or hgn g1 of level £ = ¢ + 3n, the pseudo-Lagrangians £; ,,, with
1 = 1,2,3, respectively, only depend on the fields of level £ between 0 and k. Moreover,
in the linearised approximation, £, only depends on the metric and the fields of level
k =1+ 3j (as the propagating fields Ag; 3), L2, on the metric and the fields of level
k =2+ 3j (as the propagating fields Ag; ) and L3, on the three-form potential and the
fields of level k = 3 4+ 3j (as the propagating fields hgj’871).51

Using (7.5) and (3.28) one obtains that the bilinear terms in the Fy; fields of level £

almost cancel in Op+ O3, and one is left with a term in —imfmij )CJw) o ma"mpPn
' @)

jma“)jnﬁ(‘) for ¢ > 3. The computation follows the one below in (8.54). Schematically,
this remaining term is quadratic in the divergence of the level ¢ fields rather than their

Iy
po

curl, so that the corresponding equations of motion are not propagating. This is because

51The property that one needs more and more fields to obtain parent actions for the infinite sequence of
gradient duals was already observed in [116].
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for a fields ¢ of level ¢ that carry 3¢ GL(11) indices, the components of CIWmW) T
have 3¢ + 1 free GL(11) indices, as expected for a field strength, whereas the components
of Cﬂﬂmm m™ 7, ® have only 3¢ — 1 free GL(11) indices, corresponding to a divergence
with the explicit inverse metric m™" = \/—gg™". The sums in (8.49) eliminate in this way
the dependence on the propagating components®? of all fields of intermediate level in the
linearised approximation, and £y, only depends on the propagating degrees of freedom of
the metric and Agn 3, L2, on the propagating degrees of freedom of the metric and Agn g,
and L3, on the propagating degrees of freedom of Az and hgn g 1.

At the non-linear level these pseudo-Lagrangians still depend on all lower level fields
through the non-abelian terms in the current J,,*. Nonetheless, the pseudo-Lagrangians
L; ,, are defined such that their equations of motion are by construction linear combinations
of eleven-dimensional supergravity equations of motions and the duality equations &y, .
It follows that the Euler-Lagrange equations for the lower level fields give a projection
of the Euler-Lagrange equations for the constrained fields, and therefore contain no new
information. In this way £;, can be considered as Lagrangians for the metric, and all
the fields at level £ = 1 + 3j for 0 < j < n, and L3, as Lagrangians for the metric, the
three-form gauge field, and all the fields at level £ =3 + 35 for 0 < j < n.

The pseudo-Lagrangians Ly ,, associated to Agn ¢ instead are not Lagrangians for a
subset of the fields. In particular for the six-form potential already, Lgugra + 202 does
not determine the dynamics of the three-form potential and one must keep the duality
equation (7.32a) as given. But this is not a major difficulty since we know how to describe
the dual six-form and we expect that the same analysis as in the preceding subsection
would allow us to prove (8.48) at level 5 and to get the correct non-linear equations for the
gradient dual field Agg.

However, a more striking difficulty occurs starting from level 6 and above, for dual po-
tentials with a Young tableau with more than three columns. For a dual field at level k, with
a Young tableau of K=1+|k/3] columns, the standard field strength is obtained by taking
K derivatives [111]. The expected duality equation for this field strength will then have
K derivatives. The associated integrability conditions can either be a projection, therefore
involving K derivatives in total, or a divergence, therefore involving K + 1 derivatives. On
the contrary, the Euler-Lagrange equations of the fields at level k—3 will only be first order
in derivatives. So we expect that one needs to take K—1 or K derivatives of the Fuler-
Lagrange equations projected to the appropriate representations to obtain the relevant
integrability conditions. We shall now describe succinctly how we anticipate this to work.

In this discussion we shall work directly with the duality equation in the linearised
approximation, including the linearised Einstein equation. The equations we derive are also
Euler-Lagrange equations for the pseudo-Lagrangians (8.49). We drop the ") superscript
to simplify the notation, but all the equations below are understood to be in the linearised
approximation. The starting point is to use

Q[Jclmaam./f‘] = mJC“”aé)m]:“J (8.50)

52Here, ‘propagating’ generalises the notion of transverse traceless degrees of freedom. See also the
beginning of section 8 and [19] for a related discussion.
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as an integrability condition. From level 6 and higher, the field ¢3;* can contribute a term
on the left-hand side that is not a curl, starting with level 6, as follows

Q00 F! = Q00 (cJ"Ba[mxn]ﬁ + CT\ O Gy + C7 mgnA) . (851)

Note that the symmetric derivative vanishes for the field ¢, because of equation (A.45).
Moreover, the right-hand side of (8.50) is not an equation of motion for level higher than
6. To see this, let us analyse the right-hand side of (8.50) for different k. Because the field
strength FZ® does not involve constrained fields for level k < 3, we have that for k > 0

Ikm ~Jk~_ Ikm ~J3,k
My Iy O™ gy Om F0 = Qi gy OO oy O F7E0

= Q55 C1 0, CT6-0" 5 00,0 00 = 0. (8.52)

The last equality is due to d> = 0 as implied by the tensor hierarchy algebra, and the
property that F7¢-5 is the total derivative of the E11/K(E1) coset fields for 3 —k < 3 in
eleven dimensions. For k£ = 0 we need the Euler-Lagrange equation to get the linearised
Einstein equation (8.12), which gives (8.52) for k = 0, i.e.

My J CT O ) O F/0 = 0. (8.53)

For k < 0, F/6-» does depend on the constrained field x,,* and (8.52) does not vanish.
One can nonetheless use (A.23) to show that

Iwym Jon _p. - oo Tuy  pampen 7 B
(nl(k)J(k)C Ot(k-,)c B nl(k).](k.)c Pa(/c)c qg(k)n ") In (8'54)

= (7704<k)5(k) 1™ = Do T Q15 Qpnp”) F,Bw
5 "
= Nag, " (n5<—k>5<—k>nmn = M5y Ly QT ”Qpn}m) "

— Y(—k I_pyn J—km,\ M= - —k Jn ~ qn pm ~E—k
= Tag, )<77[(7k)‘](7k)c( P O =5, O ey O g T n"h

where we introduced

7704’y = 7704(5”6’Y ; (855)

and used naﬁjnﬁ = nagjnﬁ in the third step. For k£ > 0 one has Cﬂwm(%) = 0 in eleven
dimensions (the non-zero components are CI(UW(M for £ > 3), so one can use the curl
of (8.54) to get

Iwym rJn — I_pym Jiwyn Bk
My O a g OmF = 01000 O a O 5 OO 970
_ I _pyn Jewm . L i(—k) jH") —~ qn ,pm 7 E(fk)
o (nIF“)J(%)C O‘(fk)C B n](fk)J(fk)C Pa(fk)c qﬁ(_k)n n 8mn.7n

_ Yk Iym Jwn_ . - I Jw . pam,pn ~Ek
= ey ()(nf<k>J<k>C M O B My oy & © A O™

— Yk Igym Jmmn__ A _. L Jwy . qm Pn~§k
= Moy Om <77[(k)J(k)C D OG5, € v © g, 1IN ) (8.56)
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where we used (8.52) in the last step. Therefore, the integrability condition for the field
strength of level k > 0 gives

( 3+k)

Q; CI (CJ'H}« A a[an] (3+k) +CJ2+L er)a[an]A(:Hk)) (857)

— Yk gy~ =~ fk Juy qm Im~5(k Iym Jmmn_. K
- am (na(k)< )n[(k)J(k)C ( )p’Y(k)C ( )qﬂ(k)n 77 jn ) + nl(k,)J(k)C *) ’Y(k,)C ) ACTL

+ QI(, Joon CI( k)™ k)CJ(3+l<r)nx(3+k)<'nA(3+k)) 7
where the last line vanishes for £k = 0,1,2 but does not for k¥ > 3. Note that for £ = 0
we used the linearised Einstein equation. At this stage it is not yet clear that the solution
to equation (8.57) will be (8.48) as we would like. We shall now argue that we must take
additional curls to get an integrability condition for the constrained field ¢,%e+».
Let us look at the first non-trivial example. At level 6 we get for £k = 3 that the
right-hand side of (8.57) gives

Om (Ems-.nis 0 (o + Xpipsa) + 800 s ) )(s n’ (8.58)

which is in the irreducible (8,1) representation in the indices ¢pj...psg,my. Using

(lin.) m
nm[nl ng’ng]

= 0 one gets that

qTFéll‘“ z’osq, =0, (8.59)

so that this term can be rewritten as

(lin.)
86 ( Eny.. 711177 8[])1 p2-- p8q7’+Cp1|n1,,.n11,|p2...p8])' (860)

This suggests that one must take an additional curl in J,, to get an integrability condition
for the field (1;11,7 above. We conclude that rather than taking the component of Young
symmetry (8,1) from (8.57) as a first-order Bianchi identity at level 6, one must take a
second-order Bianchi identity of Young symmetry (9, 1) to derive that the constrained fields
are total derivatives as in (8.57). This is something that one may expect because the gauge-
invariant duality equation for the F1;/K(F11) fields are third order at level k = 6,7,8. We
have for example for kK = 6

Flin) =100, Py p1.psm T X o =Eny.nyo 0gh

ni...n10;pP1---P8,m ni...nio;p1..-pg,m

(8.61)

pl--.pslvm ’

where X101 combines all the constrained fields that contribute to this field strength.
Using (8.20) one obtains the integrability condition for Fig. 1

(lin.) (lin.)

8["1]:712 n11lip1.. psm+88[p1|f[n1 n1oyn11}|p2 .pg],m

+ 8 fny Oy F o — O FUm) =0. (8.62)

[n2...n11|p2.. p8]lJ: [n1...n10l5p1.-.ps,n11]
However, this integrability condition still depends on hg g1 so in order to eliminate it, one
needs to take a second-order integrability condition by taking an additional curl

a[plla[nlf (lin.)

na.. n11] |p2...po],m

— OOy i) =0. (8.63)

[n1...n10]5p2..po],In11]
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Fi object

rep. | (=—3 | (=—1| (=—3 (=0 =% | =1 | =3 (=2

el Gurr Map A BAB B, hil,
R(A1) | 04 Ay — —
L(A2) — - X Xia

T4 e Fuy Fua Frusws Fipy

Table 4. The lowest level components of the various objects of E71; exceptional field theory in
GL(3) x Es decomposition. Dashes indicate that there is no GL(3) x Es representation at that
level (since these are parts of highest/lowest weight 17 representations), while ellipses indicate that
there are representations but they play no réle in our discussion.

This gives indeed an integrability condition of Young symmetry (11,9,1) as for the curl
of (8.60).

We expect similarly that the fields at level k& will generally involve order |k/3] Bianchi
identities for their field strengths. Further analysis is required to understand how these
higher order integrability conditions can systematically be constructed at all levels and
how one can prove (8.45) from the pseudo-Lagrangian Euler-Lagrange equations in the
linearised approximation. Note that since the Bianchi identity (8.63) is not the lowest
weight component of a lowest weight Fy; representation, these higher-order integrability
conditions cannot be organised in lowest weight representations of E1;. As we discussed
in section 8.1, the need for these higher order equations appears to be unrelated to the
approach in [3, 14, 15].

9 Relation to Eg exceptional field theory

In this section, we shall show how Eg exceptional field theory [24] can be recovered from
the F1; pseudo-Lagrangian (3.10) and the self-duality equation (3.1). To this end we will
consider the level decomposition of all Eq; objects under GL(3) x Eg in section 9.1 and in
section 9.2 demonstrate a simplification pattern similar to the one exhibited in 7.1.

9.1 GL(3) x Eg level decomposition

The GL(3) x Eg level decompositions of the adjoint representation of Ej; and its R(A;)
representation were deduced originally in [89, 117, 118]. The tensor hierarchy algebra
T (e11) and the duality equations (3.1) in GL(3) x Eg basis were studied in [13] and we
briefly recall the salient points to fix the notation. A short summary of objects is in table 4,
for more details see appendix D and [13].

In this section, we use the indices p, v, . .. to denote (2+ 1)-dimensional external space-
time indices and indices A, B, ... to denote internal coordinate indices that are valued in
the adjoint of Eg and thus take 248 different values. The corresponding derivatives 04
satisfy the usual Eg section constraints [24]

KA38A®8B:0, fBCA83®8C:O, PCDA380®8D=0, (9.1)
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where k48 is Fg Killing-Cartan form and f48o the Fg structure constants. The Eg-
invariant tensor (see [119] for conventions)

1 (A.B 1 1
PABop = ;5(0 5D) - %HABHCD + ﬁfAE(CfD)EB (9.2)

is the projector onto the 3875 representation in the symmetric tensor product of two adjoint
248. One finds indeed that if the fields are not constant in the (24 1)-dimensional external
space-time, the F7; section condition (2.19) implies that their derivatives of levels ¢ < —%
vanish identically while their level £ = —3 derivative d4 satisfy the section constraint (9.1).
Throughout this section, we shall adopt this GL(3) x Eg partial solution to the F1; section
constraint (2.19), so we shall only consider the derivatives 0, and 04, where 04 still needs
to satisfy (9.1).

The Eg scalar matrix is written as Mup and the external space-time metric g,
parametrises the GL(3) subgroup. The ¢-form fields at level 1 < ¢ < 3 in the decom-
position of the adjoint of F1; appear also in the usual tensor hierarchy algebra of D = 3
maximal supergravity [57, 80]. The one-form field Af} are dual to the scalar field Eg cur-
rents. The two-form field B;?f at level ¢ = 2 is in the 3875 representation and sometimes
we will combine it with the singlet B,,, into the reducible field Bﬁ‘f = Bﬁf + xAB B,. We
note that in D = 3 there is no dual graviton since the metric does not propagate degrees
of freedom. The field hil, sitting at level £ = 2 in the adjoint is symmetric in @ and v and
is a gradient dual to the vector field Af} similar to the eleven-dimensional field discussed
in section 8.3.

We shall use the semi-flat formulation introduced in section 6.1 with m(Myp, gw/) €
GL(3) x Eg and U(A, B8, hit

(2R RATTR 2R
that section, the formalism involves derivatives in the form U~V ,;0n, where U is the

.) in the positive level components. As alluded to in

unipotent matrix associated with the positive level fields in the level decomposition under
consideration, see (6.3). While for the GL(11) level decomposition, where the section
constraint was fully solved, the effect of U/ could be ignored since U N On = O, we
here have to take it into account which means that the external space-time derivatives will
typically appear in the combination

U0 =0, — Aloa, U 0N =04. (9.3)

We shall use the same convention as in section 7 that the components of the semi-flat
currents and field strengths are written with calligraphic letters and we omit the tilde on
the semi-flat components of the constrained fields

Z/{_lNMjNa = ( R j,u;uga jA;V07 ju;Aa jA;Bv ju;;jla jA;E? s ) (94)

where we also use the convention that these components include the factor U~V ;05 on
the derivatives. In particular

T = 97 (O — A0 gup,  Tuaf*Peo=-MPBP (0, — AZog)Mcp . (9.5)

The current ;4 should not be confused with the external Eg current j, 4 of [24] that we
shall define below.
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The constrained fields x /% are described in the table using the elements X € L(As),
which is also used in appendices C.2 and D. According to the partial solution to the section
constraint, the constrained index M of x3/* can be either p at level —% or A at level —%,
which leads to the constrained field components

u_lNMf(Nd = (X;w/; XA;p X/,L;ZA/p; XA;EI/? ) (9.6)

We shall not display the level decomposition of the constrained fields ¢/, because their
components only appear at higher level.

The field strengths given in table 4 at ¢ = —% were worked out in [13] and take the

form
Fuv” = 2Ty + 2551‘714;/‘] =297 (0 — AﬁaAMV]ﬂ T 26&8AA§‘] ’
Fua = Tua + fAcDaDAg + XAy - (9.7)
Similarly, the field strengths at ¢ = —&-% are
Fo=2T0t = Tniu — P oxmia

1
A —2AL 0 A} - 0B + (14PABCD+ 4HABKCD) ALOBAL— [P axpi,

=20y
1
Fuw = _jA;ﬁu'i_XM;V +XA;ﬁu = _8Ahﬁ,zx - §fBCAAa8AA% +Xu;v+XA;Z‘u . (9-8)

The duality equation (3.1) implies now that [13]

1 (o)
‘ny = ﬁguogup5 pAMABF/\Ba (9.9&)
1
Fuw = _ﬁg;mgu)ﬁ?)\ap]rapI‘i . (9.9b)

Let us first discuss how the duality relation (9.9a) between scalars and vectors relates to
the one given in [24, eq. (3.26)]. In order to do this we need to first identify our constrained
field with the ones that appear in [24] according to®®

XA;u = BMA y (9.10&)

1 1
xBh, = Cup™ + 3 FAepAGopAL + ﬁguggypsapAﬁBAf. (9.10D)

Identifying moreover the external Eg current covariant under internal Fg diffeormorphisms
defined in [24] as

jMA = MAB‘FMB + K/AB(fBCDaDAS + XB;;U')
=P Tp + (547 + MAP)(fpc”0p A + Byup) | (9.11)

®Note that B4 has the opposite sign as in [24].
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and the Fg two-form field strength as®*

1
F;ﬁ/ = ]:;?zz - fABC\/77—!}g;w.gupggp)\aBAgV (9.12)
=20, A0} — ALOBA) + for PP pAf0BAD + Af,08AS — 08B — f*PcCR.S,,

we see that (9.9a) can be written as

Fﬁ/ = Jl_iggwg,,psgp’\(jAA — k'8Byp). (9.13)
This equation is consistent with the Euler-Lagrange equation of the constrained field B, 4
in Fg exceptional field theory [24, eq. (3.26)], and is satisfied without further projection in
F11 exceptional field theory. The results of section 7 imply that it is also consistent with
eleven-dimensional supergravity.>”

The other duality equation (9.9b) can be identified with the dual graviton equation,
even though there is no dual graviton field. Similar to the GL(11) decomposition, this
equation is not dynamical by itself and only determines the field x,, algebraically. As we
saw in section 8.2 there are two ways of looking at this. Either the integrability condition
for the Einstein equation of [24] to be satisfied determines the first-order equation for x ...
Or one can derive the first-order equation for . from the pseudo-Lagrangian of FEq;
exceptional field theory derived in this paper.

The only other duality equation that cannot be solved algebraically for the constrained
fields is

1
FAB — 7gupgl,)\gm€p’\”MAcMBD]:CD, (9.14)

wo ==
where .
Fap = (14PABCD + 4HABHCD> Joip (9.15)

and .7-";:‘,/% is the field strength of the two-form field B;ff that involves the three-form

potential in the 248 @ 3875 @ 147250 and the constrained fields in the 1 & 248 ® 3875 @
30380.

9.2 From infinitely many to finitely many fields

Before analysing the pseudo-Lagrangian in GL(3) x Eg level decomposition in detail, we
first repeat the general consideration of section 7.1 to show that one only has to consider a
finite number of terms on the chosen solution of the section condition. In particular, this
illustrates how to treat the infinitely many constrained fields in the GL(3) x Eg decomposi-
tion of Eq;. In this section we choose to use the alternative form of the Lagrangian (3.29).
This turns out to slightly simplify the computation.

54 Note that we use Ffu for the Fg field strength including 2-form components, which was written calli-
graphic F in [24], whereas here .7:[:11, refers to the component of the E1; field strength.

551f one further breaks Es covariance to a Levi subgroup one can show that this additional term in B, 4
can be reabsorbed by an additional redefinition of C’WBA such that one gets F4 = xj4.
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We must now treat the two derivatives 9, and 94 of GL(3) x Eg level —3 and —3
separately (see table 4). We first introduce a convenient index k on Ej; indices referring
to the GL(3) x Eg level. We shall use @) to refer to an index of adj at level k, as does
/AX(k) for L(A10) © L(A4). The lowest level for a constrained field x5/ is k = 1 on the &

index while for (32 it is k = 3 on the A index. The (upper) index I labelling the L(As)
components (see (2.44)) will be written as T, () When referring to a component at level T+k
with k& > 1. An (upper) field strength index [, (k) denotes a field strength component at level
—% + k. These two one-half shifts are defined such that the non-vanishing invariant tensors
components are CIW“EW and C1® ~ for an external derivative index. The non-vanishing

HO(k) _
components with an internal derivative index are instead C’IWAa(“ ) and C1w Adu_y Note
that although K,%s is not an Fj; invariant tensor alone (only foéaﬁ is) its components
under level decomposition are GL(3) x Eg invariant tensors and in particular it preserves
the level.

According to the convention of section 6 we shall also absorb the U matrix in the

definition of 7,*® and x,%® according to

oo
U TN e = TPty UV xn%a =D 0. Wtay, (9.16)
keZ k=1
and identically for ¢,“®
Because the Lagrangian is second order in derivatives, there are three classes of terms
according to the derivative (or constrained indices) M N taking the values uv, uA and AB.
The topological term (6.18) involving the projector II5™* expands accordingly into three
blocks with é&, with k& = 1,2,3. We write first the term involving K,%s in the topological
term (6.17) and expand it using (6.19)

( )Z/{ 1M pU” INQH PQK BJN
- Z s " ( H)) Koy ™ g VA
+ Z Ha(?) o ( H)) Ka(fwdu)ﬁ(zm Jaem
+ Z H@@) ( —IN 4O ) a(,k)aw Bt jy5(2+k>
ke
+> Hd(3) ( —2Na%Y ) o™ Barey Ve
keZ
A 7 &} 7 AB ~# ! 7
= —2Ma, " T Ko, 2 ) T 470 = 2May AP Ta®0 Ko * 5,1 T 570 (9.17)
o0 o0
> o 5 = B LA F a, A 5 Buowr
+22H54(1)“V*7Na( k)K(a(fk)a(l)ﬂ(uk))j’/ﬂ(l k)+22Ha(2)u jﬂa( k)K(Ot(fk)au)ﬂ(zm))jAﬁ(z K
_ k=0
o0 o0
Av 7 oy A > Bl AB 7 aly A = Bigix
+2 Z Hd(a) YT k)K(Oé(fk-)a(z) Bmk))j”ﬁum +2 Z Hd(B) Ta™ A)K(a(fk-)a(j) 5(3%))‘735(3 i
k=0 k=0

We find therefore that for all but finitely many levels, the tensor K,% 3 appears symmetrised
on its adjoint indices a and f3, such that we will be able to use (2.40a). Using this equation
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and (2.40b) and the fact that Fl= does not depend on the constrained field ¢y for k& > 0,
one obtains eventually that the total topological term can then be written as

. 17. MA T« Gy 7 Ba _17. AB 7 « A3 7 B
Liop = —Ilay, " Ty mK[au) UﬁuﬂjA W —Ilg, " Ta™ Koy, " 5, T B

+QI<0>J(1>CI(“)Admf(Ad“) (CJU)VB(I)Jyﬁ“)-i-CJ(”BB( JBBO)) +T:MNo,, (L[‘lo‘ N B)
1 ~ -
+§QI(0)J(1)CI(U)AO£(1) jAa(l)CJ(”Vﬁmjyﬁ ZQ[ Jiesny f1< k ]-"Jk+1
=Tl " T K, 4% 0 T 470 g, ABJA Ko, %95, T 5" (9.18)

Ip)A I 21 7 MN IRV
+Q[<U)J(1>C(0) 5‘<1>XA nFia _*ZQI Flow Floon 4 11,MN 9, (Z/l QBX 5>

k+1

where we used (2.40a) and (2.40b). The total derivative evaluates explicitly to
HdMNa (Z/{_la )Z B) = aM(u_lMu(Hd(l)uyxl/B(l) + HO?(Z)MBXBB(Z))>
+0a (Hd(l’) AV)ZVB(Q) + H&(:s)ABXBB(S)) ) (9.19)

showing that it evaluates to a finite number of terms on section that can be discarded
safely.
We define now the square of the duality equation at GL(3) x Eg level k > 1 as (cf. (7.5))

_ 1 T K| =J Jwy L, =L g
O = —gmiga, (F10 =m0y o Floo) (Flo —motoqy, ;- Froo)
1

~ ~ 1
Ty 7
= —*m[(k)t](k); W) FI0) 4+ —my

: 1M ]:'11 A)J:’J1 K *QI k)fl<1—k>fJ<k) . (9,2())

With this notation we can combine the last term of the topological term (9.18) with the
alternative kinetic term Ly, of (3.30a) as

1. ~ ~ oo
__ Z mr, ];I JT-'JU\ - Z QI Jaen JT_'I k JT_‘J 1+k) — _5 Z ml(imJ(ik)]:I(fk)]:J(fk) +Z Oy,
kGZ k 0 k=0 k=1

Lxin (9.21)

The field strengths F» simplify for k > 0 as follows. From the general formula restricted
to the Fg solution of the section condition we have

lry — o np 7 o I nA__ 7 Iwp . F ka I A - K—k‘+l
Flow = glewns | J0 04 0lends - Faorn 4.0l )AH.)QL“ ) + CTen AH-H)CA (k+1)

CI(”“)“O%M jua(—k) + w4, e T A&k , for k>0,
_ (9.22)

Clory, J00 +CloA, | Ty +CI<U>A@(,)>2A°‘“> , for k=0.

Thus, there is only the single component ¥ 4% of all the constrained fields remaining in
the infinite sum over field strengths squared. We can rewrite this sum using (3.28), where

— 78 —



I only contributes for k£ < 1 in one of the following three combinations

I(,k)/j/ J(,L,)I/ _ ~ - i(,k) j(,k) av PH
mI(—mJ(—k)C auc)C By ml(—mJ(—k)C U‘“H‘)C pB kT TV,

I pyp JewB o - _ Tk J okt
ml(—k)J(—k)C a(—k)c Bk +1) mI<_k+1)J(_k+1>C Ca(—k)c PBk+1)

(9.23)
mCBmpPH ’

I Ji CB, DA
cH HQ)COJ(ka)C ey Dﬁ ey m

IwA JenB - .
mI( K J( k)C O‘(*’HI)C Bk +1) mI( k+2)J(—k+2)
as
1 o0
_- Flw FJen
9 2 M J wFF
k=0
— _lm Flo Flo L S m clewn vy, F oen 7 Ben
N CR(0) 9 Iw I (k) Bi-wp v
k=1

[ I A JnB 7 Q—k+1) —k+1)
AR NG a(—k+1)C( ) ﬂ(—lwrl)jA " jB v

I JpA 7 Q) T
+207 0 O T T

I J CB, DA 7 7
2 C (I)Ca(o)c (I)Dﬂw)m m JAOC(O):]B’B(U)

AB A7 ool A
+T5, K om m;-;)\mlea(,l) B’jua( 1)jA5<n>

E . BC ADp F 7 5 1
pm” mprm” Ty, CjAa(U)jBB(O)"‘éTB(—l)

1 ~ ~ 1

Ty TJ,
— (0) 0) — ~ o~
=-3 Mg o) FrOF My Jo

BC AD > a7
HpmPCm, mAP T, Y o Ta% ) TP

1
_7m04 jA j Ao

[e.°]
wy 7 g 7 Bk AB o B
Z [mawﬁ(mm T T A ma g, mTT Ta 0 TP 9

1

2

1 ~ - 5
+§Z [Tﬁ(k)mePQTa(k)tuua(k)jyﬁ(k)+2Tg<lk_)BQmPQTa(k)“PJMO‘( ) J g Pk
k=1
+Tﬁ(l—k)BQmPQ (1-k) PjA - ij - k:|7 (924)

where we used that Ta(,k) p=0for k>1and Ty Q=0 for k> 2, as well as (3.28).
The final term to be added to this is the alternatlve potential term Epot of (3.30b)

that evaluates in Fg decomposition to

~ 1 - - -
w7 ag 7 B AB 7 o B
E My By M T O T + gy g, m=" JTa" 0 Tp""

kEZ

Hrm QTﬁ * QJM j K 2T RmRQTB(kH)Aqua(k)jAB(kH)

3y

keZ

+ To‘(k+1)ARmRQT5(k+ 1)1:)’@&7.40[“44r D sjBﬁuf+ ]):|

1 = a7 1 ;
- Zm%)ﬁ(o)mw‘jﬂa(o) TS0+ Zmam)ﬂ(mmABJAa(o) JB"©
1 & o o
+ 2 Z [mo‘%)ﬁ(mmwjua(k) T, 0+ ma(k)ﬁ(k)mABjAa<k) JB%}
k=1
1 i ]
-3 Z [Ta(k)”PmPQTB qu n P 4 2T, PmPQTﬁ qua(*k)jAB(l—k)
k=0
(9.25)

+ Ty meQTgak)BQjAa““jBB“’“)] ;

where we again used the highest weight property of the module R(A;).
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Combining all the terms therefore leads to

L= ﬁtop +£~kin +Zpot
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where we used E1; invariance of the structure constants and m~1Jtm = J which amounts
to magjﬁ = naf;jﬁ.

Anticipating the comparison with Eg exceptional field theory, we now group the terms
according to

‘C ‘C%Dot + Etop k1n + Z Ok + H MNa (u—lal[;)z 5) (927)
k=1
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2

where we expanded — 2m I .7-" 0 FJ0 and used (3.28) on the terms TS0 T, Bo), The first
term L5, contains the terms in J4%0, i.e. internal derivatives of either the Fg scalar fields

or the external metric. The second term contains all terms involving the Levi-Civita

top
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symbol (signalled by either II or @) and do not depend on the Eg scalar fields and the
external metric. The last term includes all terms involving the external derivatives of the
FEg scalar fields or the external metric, as well as the internal derivative of the vector field
and the constrained field ¥ 4% through 7. Aa“). Varying with respect to ¥4 leads to the
equation of motion

InA 7~J, 7~J, _
c'o ) [QI(U)J(D’F W— mI(n)J(o)'F (U)} =0, (9.29)

which is a projection of the duality equation (9.9), consistently with the general consider-
ation in section 3.3.

9.3 Recovering Eg exceptional field theory

We now give the various parts of (9.28) in an explicit parametrisation. Many steps parallel
those in section 7.3, so we shall be rather brief. Expressions for the various tensors can be

3D

found in appendix D. Starting with the kinetic term L}} , the first line of (9.28c) becomes
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- 4gMVKJABj/.L;A\7V;B> 5 (930)

using (9.5), see table 4 for the fields on different levels.

The second line is more conveniently combined with the last term above to give
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(9.31)

where we introduced the Eg current (9.11) and the Ejg section constraint (9.1). Note also
that J A;E = 8AAE for the level one current component along the adjoint o).
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The last two lines of (9.28¢) give
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such that in total
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where R defines the covariant Einstein-Hilbert Lagrangian as
D 1uu op, KA 1;10 vp KA
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D, (Jjgg”p 9" (Dogpw — Duggp)) : (9.34)

and Dyguw = OoGuy — A20aguw — 2004 A2, The kinetic term L2 therefore matches

the kinetic terms in [24, egs. (3.2) and (3.5)] up to the last line of (9.33) which is a total

derivative.?®

The topological term (9.28b) gives using (D.4)
ESD

top T
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56Tt follows from the weight 2 of the metric and the weight 0 of 94 A that D, (v/—gX*) = 0. (v/—gX") —
da(Aj}/—gX") in the last lines of (9.33) and (9.34).
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which reproduces the Chern-Simons term of [24, eq. (3.8)] up to a total derivative using [24,
eq. (A.1)].

The potential term (9.28a) produces immediately [24, eq. (3.18)]: the component of
J 4Po along eg is the Ey internal current 7, 4B and the one along gl(3) the internal derivative
of the external metric Ja,” = ¢"?0agus, while C’f“)Ag(o) reduces to Ctap = k4p since f(,) =
1 belongs to a singlet under Eg from (D.19a). Consequently, the potential term (9.28a)
takes the form

1 1
ot = V=9 <4M AB Gl 0UP (94 Gua OB vy — OAGuoOBGup) + oM AB g1 9 4 g, FCP 8 T0D

1

1 1
4MABI€CD\7A;CJB;D + iMEFfADEfBCFJA;CjB;D - QJA;BJB;A> - (9:36)

In summary, our 1, exceptional field theory pseudo-Lagrangian and duality equations
produce exactly the Lagrangian of Eg exceptional field theory [24]. In addition to the Eg
exceptional field theory Euler-Lagrange equations, F1; exceptional field theory includes an
infinite series of duality equations, starting with (9.9b), (9.13) and (9.14), whose réle is to
determine redundant or non-propagating higher-form fields.

10 Conclusions

In this paper, we have constructed a pseudo-Lagrangian (3.10), consisting of the terms
displayed in (3.19), that is invariant under rigid Fq; transformation and that complements
a set of Fjj-invariant first-order duality equations that were given in a previous publi-
cation [13]. A summary of all the fields and the relevant Ej; representations is given in
table 1. Imposing the E1;-covariant section condition (2.19), makes the pseudo-Lagrangian
transform as a density under 1, generalised diffeomorphisms such that the Euler-Lagrange
equations derived from the pseudo-Lagrangian are gauge-invariant, as are the first-order
duality equations. This theory therefore deserves to be called F;; exceptional field theory.

We stress that, while our pseudo-Lagrangian, the duality equation and the section con-
straint have rigid E1; symmetry, choosing a particular solution of the section constraint
breaks the F11 symmetry to a subgroup, so that there is no rigid £1; symmetry in D = 11
supergravity for example. This is a property of all exceptional field theories, namely that
E,, is only a rigid symmetry for field configurations that do not depend on the internal
coordinates and then agrees with the Cremmer-Julia symmetry of ungauged maximal su-
pergravity in 11 — n dimensions.

A crucial ingredient in our construction is the appearance of constrained fields that go
beyond the usual tensor hierarchy of fields that are predicted by Ei;. These constrained
fields are familiar from E,, exceptional field theory for n <9 [24, 30, 61] and, importantly
and in analogy with the Fg case, some of them transform indecomposably with the ten-
sor hierarchy fields under rigid Ej; [58], see (2.9). The construction of the topological
term (3.17) in our pseudo-Lagrangian, as the Ej;-invariant derivative of the constrained
field ya/%, was in particular inspired by a similar construction in Eg exceptional field
theory [30].
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To prove gauge-invariance of our theory, a number of group-theoretic identities are
required to hold, as summarised in table 5 in appendix A. Many of these identities can be
deduced either from Fj; representation theory or from using an enveloping tensor hierar-
chy algebra structure [63, 80, 120], based on ¢;1; or even ¢j2. The tensor hierarchy algebra
T (e11) provides naturally the aforementioned indecomposable representation. Among the
required identities there is one, namely the master identity (3.6), that we have only been
able to derive partially for some of the FEj; representations involved. Its full proof re-
mains an outstanding problem of our derivation. Another conjecture that needs to be
proved is the existence of the non-degenerate K (Fii)-invariant bilinear form 7;;, which
is crucial for the definition of the duality equation and the pseudo-Lagrangian, see the
discussion after (2.16). We have not seen any sign of reducibility of the module 7_; to
the levels we have checked, which include all levels up to the level of D-form potentials
in the tensor hierarchy in D > 3. If 7_; turned out to be completely reducible, it would
follow then that n;; exists and that the master identity (3.6) is satisfied. However, com-
plete reducibility is not a necessary condition for its existence. Let us note moreover that
our checks of the master identity cover the infinitely many components of the sub-module
R(A109) @ R(2A3) C L(A10) and in particular all possible checks for any GL(D) x Ej1_p
level decomposition up to the level of the D-form potentials for D > 3 (i.e. of fields with
D external indices in general, including in particular the dual graviton). It is worth noting
that while we do expect that our pseudo-Lagrangian is the unique one compatible with
both F; generalised diffeomorphism invariance and the duality equation, our incomplete
knowledge of E7; tensor calculus precludes a proof of uniqueness.

We have presented two main checks of Fj; exceptional field theory. The first one,
described in section 7 is that, upon choosing the D = 11 solution of the section constraint
and performing the associated GL(11) level decomposition, we recover exactly the bosonic
part of D = 11 supergravity at the non-linear level. No level truncations by hand are
necessary for this analysis as the higher level fields arrange themselves automatically as
squares of duality equations in the pseudo-Lagrangian so that their contribution to the
equations of motion can be ignored consistently. The second check is a similar analysis
for the GL(3) x Eg decomposition that is performed in section 9 where we show that our
theory also contains the well-known FEg exceptional field theory of [24].

The pseudo-Lagrangian (3.10) can be considered as a master Lagrangian since it con-
tains all E, exceptional field theories (n < 8) for maximal supersymmetry upon choosing
appropriate level decompositions and associated solutions to the section condition. We
expect that it also reproduces the (minimal) pseudo-Lagrangian of Eg exceptional field
theory [30]. This behaviour is well-known from Ej; level decompositions at the kinematic
level from previous investigations [74, 89, 117, 121] and, based on our examples, we expect
this to hold dynamically and non-linearly when using the semi-flat formulation of sec-
tion 6. Of particular interest might be to see the relation to type IIB supergravity [58, 121]
or massive type IIA supergravity [74, 75]. Massive type ITA supergravity will require a mild
violation of the section constraint along the lines of [73, 115]. The mild violation will only
occur in the construction of the semi-flat pseudo-Lagrangian in intermediate steps and the
final massive theory will not violate the section constraint.
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We also consider the decomposition of Fj; exceptional field theory to its GL(1) x
FE1p subgroup in appendix E. This defines F19 ExFT and we discuss how it relates to
the Epo sigma model introduced in [6] that emerged from considerations of the Belinskii-
Khalatnikov-Lifshitz limit of D = 11 supergravity [122]. This one-dimensional sigma-model
only depends on a worldline parameter (to be thought of as time) and is conjectured to
encode the spatial dependence of all supergravity fields via ‘gradient representations’ [6]
that are the Ejg-analogues of the Ey; dual fields of type Agn 3, Agn g and Agn g 1. The Eqg
sigma model does not contain any constrained fields. One may have naively thought that
the restriction of E19 ExFT to fields that do not depend on the Ejy internal coordinates
would reproduce the Fqy sigma model. However, we know already from Fg ExFT that it is
necessary to keep the constrained field y ;% with the constrained index in the Eq internal
coordinate module in order to obtain ungauged maximal supergravity [30].>7 We argue in
appendix E that considering the D = 1 exceptional field theory in which the Fy; ExFT
fields only depend on the time coordinate, but with non-zero constrained field y /" subject
to the Eqg section constraint (with M and & = N in the coordinate module R,,(A1) of Eyg),
one indeed reproduces the E1g sigma model, with an additional algebraic constraint on the
FEqo current. We suggest that this algebraic constraint may be useful for resolving some of
the puzzles in the Ejg sigma model conjecture [6].

As mentioned in the introduction, one can also perform a GL(1) x Spiny(10,10) C Eq;
level decomposition. This should produce the double field theory (DFT) formulation of
type II theories [71] and in particular includes the Ramond-Ramond fields in a spinor
representation of Spin (10, 10) [71, 123]. One can also envisage performing a construction
similar to the one of the present paper for theories without maximal supersymmetry. This
would involve DFT itself, but also cases such as pure general relativity in D = 4 space-
time dimensions by replacing E71; by other very-extended Kac-Moody algebras such as
AFT* [15, 101]. For previous work on non-pure supergravity theories see for example [124,
125]. For subalgebras g of ¢11, one obtains a consistent truncation of F1; exceptional field
theory by restricting all fields and tensors to the singlets of a commuting subgroup, as e.g.
E7 for g = AT or more generally Fg_,, for g = AT+ with n < 5.

Besides reproducing the known exceptional field theories, our system also provides an
explicit form of the duality equations for the infinitely many higher level fields. This is
discussed in detail in section 8. The constrained fields are again central for this mechanism
and we have exemplified this in detail for the dual graviton and the first gradient dual
of the three-form gauge field in eleven dimensions. We have in particular derived non-
linear Lagrangians for these fields that descend directly from the E7; pseudo-Lagrangian.
Our analysis of the higher duality equations in eleven dimensions remains nonetheless
incomplete and we have only described schematically the equations for all higher level
fields that are dual to the propagating degrees of freedom. It would be interesting to
analyse the complete set of gauge transformations to solve systematically the linearised

duality equations. We have argued in particular that the ¥ gauge parameters mentioned

5TThere is a component BMAB of xa® that cannot be set to zero. In particular BHAA = 0 would imply
that the two-dimensional dilaton p is constant, whereas it is an arbitrary harmonic function.
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in section 2.3 generalise the Stiickelberg shift gauge parameters introduced in [60] for the
dual graviton to all higher dual fields. A complete analysis of the gauge transformations
and the propagating degrees of freedom in FE7; exceptional field theory should permit us
to derive a completely explicit realisation of the proposal [16], with all duality equations
for the higher gradient duals described as in [19]. The precise relation to the modulo
equation of e.g. [112] remains open. Note nevertheless that all higher dual fields with more
than one column can be consistently eliminated as they are algebraic equations for the
constrained fields components that define Stiickelberg potentials similarly as in [1, 59, 60].
Only the tensor-hierarchy p-forms in exceptional field theory satisfy equations that are not
tautological in this sense. The higher p-forms are not normally considered in exceptional
field theories, but their duality equations are by construction components of the E71; duality
equation. The simplest instances were given in (9.13) and (9.14) for the GL(3) x Eg
decomposition, as well as the equivalent of the dual graviton equation in (9.9b). Although
these higher forms do not need to be introduced in exceptional field theory in order to
write a (pseudo)-Lagrangian for the dynamical fields, they are naturally defined as dual
potentials. The three-form and four-form field strengths were for example introduced in
E; exceptional field theory in [126], and it is clear from representation theory that the
corresponding duality equations would be part of the F1; exceptional field theory duality
equation in the GL(4) x E; decomposition.

While the tensor hierarchy algebra 7 (eq1) is an excellent tool for deriving results about
the algebraic structure of E7; exceptional field theory and in particular for demonstrat-
ing group-theoretic identities, the symmetries of the theory are the usual rigid E;;, local
K(FEj1) and Ej; generalised diffeomorphisms. Thus, there are no symmetries associated
with the tensor hierarchy algebra itself. Understanding whether it can be made to play
a more direct role in the theory is an interesting question. As was hinted at in [13] and
commented on in section 2.3, the extension to a supersymmetric theory seems to require
making more direct use of the tensor hierarchy algebra.

The first steps for the inclusion of fermions into the duality equatiorE\v_vEre undertaken
n [13], building on the finite-dimensional spinor representations of K(E1;), the double
cover of K(Ey1) [78], that were found in [10, 12]. While we have proposed a supersym-
metric version of the duality equation extended by fermion bilinears in [13], adding a
Rarita-Schwinger-like term to the pseudo-Lagrangian and employing a Nog‘%e/r procedure
appears to be an interesting challenge. As there does not appear to be a K (F11)-invariant
quartic fermion term, the quartic term in the fermions of eleven-dimensional supergravity
would have to come from the infinite sum of quadratic terms O,, in the duality equation
in (7.44), as anticipated in [13]. However, because the spinor is in a finite-dimensional
representation, the sum of the quartic terms in the fermion diverges and it is unclear to
us whether a pseudo-Lagrangian with finite order fermionic terms exists or can be defined
unambiguously. The resulting theory should have local supersymmetry on the extended
space-time R(A;) modulo the section constraint and we hope to report on this in the future.

One main property of the K (F71) representation is that the bilinear in the superym-
metry parameter and the gravitino field is not in ¢1; © K (e¢11) but in the quotient of the
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module L(A2)@e11DL(As) by K (e11) [13].5% To define the supersymmetry transformations
one must therefore extend the F7; coset fields to include a new field ¢¢ € L(Ay) for the
second L(Aj), that may be consistently set to zero using field dependent (and traceful)
X MI~ ancillary gauge transformations. One needs to analyse the extension of the theory
including these fields to derive the correct supersymmetry transformations.

This problem is also related to the definition of the general ancillary gauge trans-
formation of the constrained fields that we have not derived in this paper. By con-
struction, the pseudo-Lagrangian and the duality equation are invariant under the an-
cillary gauge transformations generated by the commutator of two generalised diffeormor-
phisms. In particular it is invariant under the ancillary gauge transformations of parameter
Syl = C’fpaTaNQE(MN) (PRI with M N constrained, as in the second term of (2.51). But
this does not cover the whole space of traceless parameters X MI~ . The general ancillary
gauge transformation of the constrained fields should be defined such that it reproduces
the known one when it is generated by the commutator of two generalised diffeomorphisms
and such that the duality equation is invariant. The commutator of two generalised diffeo-
morphisms acting on the constrained fields does not only generate a gauge transformation
of parameter X MI~ , but also an additional ancillary gauge transformation of parameter

PA with two constrained indices M and N, which remains to be defined as a symme-

Tvn
try of the duality equation. Note moreover that the algebra of generalised diffeomorphisms
is infinitely reducible, and only closes on itself up to trivial parameters. In D > 2 ex-
ceptional field theory, these trivial parameters give rise to 1-form gauge transformations
that act on the gauge fields of the theory [24, 30]. Since there is no external p-form in
FE41 exceptional field theory, the trivial parameters do not define gauge symmetries of the
theory. It would only be necessary to introduce them to determine the infinite chain of

ghosts for ghosts of the BRST algebra of F1; generalised diffeomorphisms.

Ey exceptional field theory admits a Virasoro-extended formulation, which involves
all negative Virasoro generators L_, that transform indecomposably with the adjoint of
Eg [30]. This formulation allows reproducing the Ey linear system of two-dimensional su-
pergravity as a consistent truncation of exceptional field theory, whereas the relation to the
linear system remains unclear in the non-extended (minimal) formulation. As mentioned
above, the construction necessary for the supersymmetric theory includes an additional
field ¢® € L(A3). In the case of Ey, this fields is commonly called 5 and is the one associ-
ated to the Virasoro generator L_j in Fgy exceptional field theory. The Virasoro-extended
formulation of [30] has similar fields for all L_,,. Whether a ‘Virasoro-extended form’ of
E11 exceptional field theory, including all fields ¢ % € L(nAs), exists, is not clear to
us. We have verified in appendix B using local algebra techniques, see (B.13), that one
can adjoin the representation @,y L(nA2) to Fi; in an indecomposable manner, such
that the algebra extension exists. If such a Virasoro-extended version of E7; exceptional
field theory existed, it might permit understanding more systematically the infinite chain
of dualities with higher level fields and possibly lead to new integrability structures.

58 Note that the same doubly indecomposable (‘socle length 3’) representation of E1; also features in our
derivation of some FEi; identities in (A.11), therefore proving its existence which was conjectured in [13].
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Another approach to supersymmetrisation of the F1; exceptional field theory may be
a suitable extended superspace approach. This has been studied for the E; exceptional
field theory in [126] where only the four-dimensional (external) geometry was elevated to
(4/32)-dimensional superspace, see also [127-129]. Should a suitable generalisation of this
construction be found for the E1; exceptional field theory, it could provide a framework for
the construction of an action for M-branes propagating in the resulting generalised target
superspace. An additional and very powerful method that could be utilised is based on the
superembedding principle for which superspace is essential [130].

The previous points addressed mainly the formal development of Fy; exceptional field
theory and we now turn to some potential applications.

One interesting avenue is to explore the connection to exotic branes and non-geometric
backgrounds [131-144]. Depending on the co-dimension of the exotic brane, it couples to
different generators from the list (8.1), where we restrict to the GL(11) decomposition and
an M-theory discussion for concreteness. Ordinary branes correspond to the generators of
FEs and are the KK-momentum, the M2, the M5 and the KK-monopole solutions. Their
co-dimension is greater than two. Co-dimension two objects are associated with genuine Fg
generators, co-dimension one objects with genuine F1¢ generators and space-filling objects
with genuine F1; generators. As these are related by rigid F11 symmetries one can consider
the transformation of the solutions. But, as the rigid E1; transformation typically changes
the solution of the section constraint, the transformed solutions tend to be solutions of
a different model. Exceptions to this statement occur when the solution has isometries
that are preserved by the rigid Fq; transformation and this is the framework of U-duality
as a solution generating technique [145]. The non-geometricity of a transformed solution
arises when higher-level fields and coordinates are formally turned on in the solution. A
famous example in the context of DFT is the twisted torus [146] and we refer the reader
to [140, 147] for more examples and references. These non-geometric solutions can in
principle be thought of as coupling electrically to higher level dual fields [148], and it would
be interesting to see whether our model provides a means to constructing the corresponding
geometric theory. The considerations of section 8.4 appear relevant for this.

DFT can be understood as a low-energy limit of the string field theory classical ac-
tion [53]. One may therefore hope to get some hints on what should be the M-theory ef-
fective action from FE7; exceptional field theory. Our construction is limited to the bosonic
two-derivative sector. The tree-level string theory effective action is expected to admit the
continuous Spiny (10,10) symmetry to all orders in o’ [149], so one can possibly construct
higher-derivative couplings in DFT [150-154], see however [155] for a recent puzzle in this
context. On the contrary, U-duality is a symmetry of the quantum theory [156], and there
is no higher-derivative coupling with the continuous symmetry FEj1(R). It was already
understood in the original conjecture of [1] that only a discrete symmetry could remain at
the quantum level. One may only expect to be able to construct higher derivative cou-
plings with the discrete symmetry [157], which would necessarily involve Ej;(Z)-invariant
Kac-Moody automorphic forms [158]. Moreover, the M-theory low energy effective ac-
tions strongly depends on the background. So an effective action with Ej;(Z) symmetry
could only be viewed as a formal object, which upon reduction by taking various limits

— 88 —



would reproduce the effective action of string theory on different backgrounds. One may
expect for example the effective action of string theory on RHVP~1 x T10=P (see e.g [159])
to be captured by such a formal F1;(Z)-invariant effective action. It seems unlikely that
the requirement of E11(Z) symmetry, together with supersymmetry, will determine such a
formal effective action uniquely to all orders in derivatives, but a more detailed study of
these questions could provide interesting insights. An alternative option would be to try to
quantise directly the effective theory. However it is not clear that one can bypass the prob-
lem of the strong section constraint. Double field theory, for example, is not a consistent
truncation of string field theory that can be quantised independently. In exceptional field
theory one has the same problem, there is no integrated action because of the strong section
constraint, and quantum effects allow two 1/2-BPS excitations to produce 1/4-BPS and
non-BPS states in string theory. The effective theory quantum loops considered in [160]
are in this spirit defined such that the internal space is a generalised torus. For Fj; one
must necessarily consider a non-compact space-time, so a discrete Fourier expansion on the
module R(A1) is not a physically meaningful option.
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A Identities for F,;; tensors

In this appendix, we summarise and prove the identities of the various F1; objects that
appear in the pseudo-Lagrangian and the check of gauge-invariance. These objects were
summarised in table 2 and we collect the salient identities in table 5. The only identity
for which we do not have a full proof is (3.6), although in appendix A.2 we show it on an
infinite-dimensional Fq1 representation.

In the table, we have also indicated the method of proof that will be used for demon-
strating the identities and there are two principal methods

o THA techniques. This method relies on constructing a consistent (super-)algebra
extending e1;. This can be either the tensor hierarchy algebra 7 (e;;) already en-
countered in section 2.1 or the tensor hierarchy algebra 7 (ej2) based on ej3. The
identity will then be implied by Jacobi identities in the tensor hierarchy algebra. An
important additional identity that follows from 7 (e12) is (A.22).
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Identity Proof

(254) | CT P GC N0y y=(fo0, T M pTyN) =253 TN ) ) Oy Dy | Section A1, THA

(3.6) Qs CTM TN p = TrpSTIEMN 4 Crph MY [Section A.2, THA]
(2.40c¢) QUC’IM&CINgaM Q0N =0 Section A.3, E1q
(2.41a) QrC™MaCIN < 9y ® Oy =0 Section A.3, Eyq
(2.41b) Qr C™MACTNZ 0y @ Oy =0 Section A.3, Eyq
(2.40b) (MEMN TP 5 + Q1 CTVGCTN 5) Oy @ Oy = 0 Section A.3, Eny
(2.40a) (MY K (%) + 320, O™ (O 5)) Dy @ Dy = 0 Section A.3, i
(2.55) CrptC1; = HfQ@OfPE Section A.1, By
(2.53) CiMaTaPNgM ®dN =0 Section A.1, Ey

Table 5. Summary of identities satisfied by the various E1; objects. Identities that are only valid
on a solution to the section constraint (2.19) are shown contracted with partial derivatives. The
identity (3.6) plays a crucial réle in gauge invariance of the duality equation, and we sometimes
refer to it as the master identity. It is the only identity in the table for which we do not have a
complete proof.

o F41 representation theory. This means that one can analyse the identity either using
highest weight methods for E7; or by constructing appropriate homomorphisms be-
tween F4q representations. Some of the explicit calculations for these proofs will be
done in GL(11) level decomposition which is reviewed in appendix C.

Some proofs also combine both methods and in the table we have indicated the one
that is more prominent in the given proof.

A.1 T (e12) and the proof of (2.54)

An important ingredient in the second potential term (3.12) and the ancillary gauge trans-
formations (2.49) is the tensor cl wa and its relation to the tensor ciM  introduced
in (2.36) and that appears as structure constants of the tensor hierarchy algebra 7 (e11). In
this section we will find that CT wa is defined as structure constants of the tensor hierarchy
algebra 7 (e12). Using this observation, we prove identity (2.54) that we reproduce here for
convenience

C'ipgTﬁ(MQnN)anjnMCijaMaN _ (fa,@A/Tv(MPTﬁN)Q _ 25[(£4TQN)Q])8M8N . (A

We have written the partial derivatives without ® to emphasise that M and N are symmet-
ric. Our proof uses the tensor hierarchy algebra 7 (ej2) extending the Kac-Moody algebra
e12 and follows ideas developed in [63]. In [63], it was shown that for a finite-dimensional al-
gebra g and an irreducible coordinate representation R(\), one can construct a Lagrangian
for the fields in G/K(G) that is invariant under the generalised diffeomorphisms for coor-
dinates in R(A). This Lagrangian takes the form of (3.11) plus (3.12) and its invariance
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uses the equivalent of (A.1), which is shown to be a Jacobi identity for the tensor hierarchy
algebra T (g,) for the Kac-Moody extension gy of g by the weight A. In our context, the
further Kac-Moody extension of ¢1; by the weight A; is ej2 [65], in which an extra node is
attached at node 1 in figure 1.

Indeed by using the tensor hierarchy algebra 7 (e12) we can realise the ¢1; tensors
appearing in (A.1) as structure constants in a Lie super-algebra and use its Jacobi identities
to deduce new identities for the eq; tensors. We first note that the proof of the existence
of the tensor hierarchy algebra 7 (e,) in [58] applies to any n > 3, and therefore to 7 (e12).
This proof is based on a local super-algebra construction as defined in [161]. We can either
use the local super-algebra associated to the GL(12) decomposition introduced in [58], or
the one associated to the GL(4) x Eg decomposition introduced in [13] and further analysed
in section A.5 below.%”

The algebra 7 (e12) has 12 as a subalgebra and a grading analogous to (2.2). One finds
that To(e12) decomposes as

To(e12) = e12 D Lio(A3) © Lin(A1 + A1) (A.2)
with the bounded weight modules

LlZ(Ag) = Rlz(Ag) D... (A3a)
Ly(A+ A1) = Ru(A1 4+ A1) @ Ry(A12) @ Rp(A1 +2A4) D ... (A.3b)

This decomposition is analogous to (2.3), (2.4) and we have written R,, (resp. L,,) for all
highest weight (resp. bounded weights) representations to distinguish ejo-representations
from the ejj-representations. By the same mechanism as [58, eq. (B.50)] we deduce that
L,(A3) D R,,(A3) mixes under ¢12 with ej9 in an indecomposable manner, while the other
highest weight modules in L,,(Ay + Aj1) are proper submodules that appear as a direct
sum. This is also discussed in (A.101) below. Similar to 7g(e11), it is plausible that
Liy(A3) = Ri(A3).
Branching these ejs-representations in Tg(e12) under e11, one has®9

e1a=---GR(A) Ve (gl (1) @en) Q@R Ve, ..,
R,(A3)=...®(R(A3)®R(A1+A10) ®R(A11) B R(A14+A4) D R(A5) D R(A1+A2+A10)
B2x R(A34+A10) B R(2A1+A11) ®2X R(Ag+A1) O R(A1+2A3)®...)
®R(A2)",
Ru(A1+A11) =... B (R(A14+A10) B R(A11) @ R(A5)B...) V@ R(A10)”, (A.4)
Ru(A2)=...®(R(Ag)®...) "V @R(A;) Y,
Ru(A1+2A4) = ... (R(A1+2A3) D R(A3+A4) @ R(Ag+A3+A10)B...) V@ R(2A3)©.

%The generalisation from 7 (e11) to T (¢n) is simply obtained by considering superfields depending on n
Grassmann variables instead of 11. One easily verifies that none of the computations depend on the number
of Grassmann variables.

5OWe note that the complete reducibility of a representation of Fi» implies the complete reducibility
under E1; as can be seen by fixing the GL(1) eigenvalue as we do here.
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The superscripts here refer to the eigenvalues under the adjoint action of gl(1) when branch-
ing to gl(1) @ e11 C e12 and we shall refer to this as the w;-degree. We recognise at degree
wp = 1 only Ejy € R(A1) and at degree w; = 0 the generators ta,tA € To(er1).5t At
degree w; = —1 there are the generators F'™ € R(A;) as well as Fl e L(A3) as given

in (2.44) and realising these latter in an algebra was one of the main reasons for going from
T (e11) to T (e12). We define L(A3) inside the module L,,(A3), such that it transforms in-
decomposably together with e;;. This is indeed possible because one finds from (A.4) that
R(A1) ® R(A2) © R(A1 + Ay) is contained in R,(A3) C Ly,(As). We call the decomposable
part Dy C Ly,(A1 + Aq1). Note that it includesNthe representations in 71 (e11) © R(A1) dis-
played in (2.5) and we shall therefore write FM € D;. In summary, we deduce from (A.4)
that the branching of 7p(e12) under eq; gives

Tolers) = -+ @ (R(A1) ® L(A3) ® D)V @ To(e11)® @ R(A) " & ... (A.5)

Note that the indecomposable structure induced from ej2 @ R(A3) is necessarily trivial in
the category O of Kac-Moody representations, such that R(A1) @ L(A3) = R(A1) & L(A3)
as follows from [76].

Restricting to L(A3), the algebra of 7p(e12) can be written in BRST form as

1 ~ -
Ohe = ifﬁ,yahﬁh’y - Kﬁvahﬁhd - TaMNfMeN + CINCYffeN ’

Ohg = —T’B:y&hfghry + CiN&ffeN, dhp = —T’BEAhghE + HMNAfﬁeN,
seM = TEMNhgeN , (A.6)
S far = =T arhsf 0f5 = =T yhsfy

0fr = ~T% thsf;,

where we have omitted the terms bilinear in hg, hy and f7, f v and we write the structure

constants as C7 No anticipating that we have identified L(A3) such that it agrees with the
representation that appears in (A.1). The structure of the algebra is constrained by 7o (e11)
covariance and the branching of e;o modules under ¢11, such that all the structure constants
are fixed with C7 ~Na an invariant tensor under eqg.

To see this we look at the Jacobi identity in 7g(e12) corresponding to the terms pro-
portional to haffeN in 02h, = 0. This gives

TP N CT po — TP 507 oy — [P 0C Ny + KPP, CT s = 0. (A7)

From this identity we conclude that ol ~Na 18 an ejj-invariant tensor. In particular ol Néa
is a non-zero intertwiner that can be computed explicitly and the relation then gives some
non-trivial components cl Na, leading to a non-trivial tensor cl ~a- This reasoning applies
to all irreducible constituents of L(A3), giving in particular that o Na = c>\1'[1~A Na on any
irreducible ejj-representation R(\) inside L(As3).

S'For ease of notation we use the same index A for the reducible part Dy of 7o in (2.3), as we do for
the generator P* € 73, even though Dy may turn out to do not include the entire bounded weight module
L(A10) C T2. The proof given in this appendix does not rely on the assumption that L(A1o) C Do.
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We now consider the branching of 77 (ej2) under e
Ti(e12) = Riy(A1) ® Riy(Ag + A11) @ Riy(Ag +2A4) @ Riuy(A1 +Ai2) & ... (A.8)

that further branches under ¢q; as

Ru(Ay) =@ (L(A10) ® L(AL)) "% @ R(A)H @18,
Ry(A2+An)=---@ R(A1 + A1),
Ri,(A2 +2M4) = R(A + 2A3) (=3 (A.9)
Riu(A1+ M) = R(Aq11)

which shows that the ejj-representation R(A;) arises together with all other components
of Ti(e11) in Ti(e12) at wy = —%. It is possible that there is more than the module 77 (e11)
at wyp = —%, but this will not be relevant for the arguments of this appendix since we
shall only be interested in the identities one can derive from the algebra 7 (e;2) for the
submodule R(A;) C Ti(e11), i.e. M restricted to M, where M refers to all of Ti(e11).
Using the local super-algebra of 7 (ej2) in [58] one deduces that the branching of

T_1(e12) under e1; gives®?

Toa(ers) = @ L(A3)"9 @ (adj ® L(A1o) @ L(A10)) "D @ (Toi1(enn) @ R(A7)) P
® (L(A2) ® L(A10) ®L(Aa)) D ... (A.10)

wheref3

adj = L(A2) @ e11 @ L(As) (A.11)

is a double extension of the adjoint representation ¢1; that includes both indecomposable
structures. The decomposition (A.10) can be established by starting from the GL(12)
version of the local super-algebra of 7 (e12) and branching the GL(12) representations to
GL(11) and then reassembling them into the structure of 7 (e;1). In particular, there are
two nine-forms of GL(11) arising in the process from the field strength component F,,,?
in the GL(12) decomposition of 7_;(e12). The defining relations of 7 (ej2) then implies the
double indecomposability (A.11).

The double extended module (A.11) is defined such that Fa = (F% F* F%) e L(Ay)@
e11 @ L(A2) admits the non-covariant transformation

AFP = KO8 F7 4 KOP T ACFP = K snPns BT ACEP =0, (A12)

Some of the generators of 7T (e12) in ¢17 language are summarised in table 6, where we
also introduce names for the various elements of the representations discussed above.

52We assume here for simplicity that Do = L(A10) in (2.3). In principle one should write different L¢(Ay)
with a label ¢ for different bounded weight modules extending the irreducible modules R(Ay) and take into
account that A (or more precisely A*) may be an index of different extensions L¢(A10) of R(A10) @ R(2A3).
This will not affect our conclusions in this appendix and we chose to avoid the label ¢ for brevity.

53In this equation, we do not need to put parentheses since L(A2)@e11 D L(As) = L(A2)D (eu G)L(Az)) =
(L(Ag) ) 211) @ L(A2). This module was already conjectured to exist in [13], see footnote 16 there for its
first levels in the GL(3) x Es decomposition.
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w1+%:—1 wl—i—%zo w1+%:1
P2 = 1 QAa QA PM b
plQZO FMaFfaFM h’a taa tA EM
P = -1 F§7 FA7 FA t[a tM Edv EA7 EK
Table 6. Decomposition of 7 (e12) generators under eq11, with p,, the level of 7,,(e12) and w; the
GL(1) weight under Eq;. They are related to the degrees p = % —wy and ¢ = =82 —w; of [63,
table 3]. @ is for adj and A for L(A4). The involution for 7 (e12) is centred around p, = —3 and

q= % but we shall not use this.

We now use the 7 (e12) machinery and ingredients just introduced to prove (A.1), fol-
lowing [63]. The starting point is the Jacobi identity involving the generators Fa, Fj; and
PM_ Using the known commutators of 7 (e11) and using 75(e11) covariance, one determines

the following commutators within 7 (eq2)

[h,p]=—§p7 [p, FM]=—PY, {0, Fy=t", {p,F% =0, {p.tm}=—En,
[PM,En]=6Np, {PM’tN}Zg@A\?hﬂLTaMNtO‘,
[EM,FN]zgaﬁh—TaNMta, [En, N =TIV yat?,

{PM 1} == Qs (CTMo2 MM ) | [Bag, P =CT ot (A.13)

For {PM tx}, one can check using the GL(12) local super-algebra that it does not produce
the generator t* C R(A3). It follows by representation theory that this anti-commutator
with PM € R(A1) cannot produce generators in L(As) @ L(A1g). It is consistent with the
Jacobi identity

[FM, {p,tn}] = {p, [FY tn]} = {tw, [, FM]} (A.14)
provided we define
{FM ty} = 2T, My P — 20, ;77 @ ppy FE (A.15)
that can be checked to be Ej;-covariant using
10T onMnpy = T v . (A.16)

Even though the two terms on the right-hand side are not individually F4i-covariant due
to (A.12), their combination is.

We make now the following ansatz for the remaining (anti-)commutators of F o that
we need for the Jacobi identity involving F' 5, Ey and PM:

[EM, Fi] = QIJéjMZ\ftJ + (%:TBNMtN , (A.17a)
(PM Fa} = CMapl 4 OSTPM NP CMaFN (A.17b)
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where we used that there is a unique homomorphism from e ® R(A1) — R(A1) to deter-
mine the structure coefficients multiplying respectively ¢y and FV,%* while 61M§, éfMé,
and C' NM a are defined on aé\\dj. The latter satisfy the non-covariant transformations induced
by the ones of Fa = (F% F* F%) e L(Ag) @ e11 @ L(As), see (A.12). The way they have
been introduced above, O M§ and C ]~M§ are a priori new objects and we shall argue in the
final step of the proof how they are related to the tensors in (A.1). The tensor C' ﬁMﬁ #0,
but this will be irrelevant for us. The components of these objects are denoted by

Cruo = (alMdaélMaaélMd) and éfMi = (éfMd,éiMa,éfMd> . (A.18)

For the second terms (A.17) we note that the projection 5% is consistent with the non-

covariant transformation (A.12) because adj is the quotient of the module ;/d\\j by the
submodule L(A3).
We now consider the Jacobi identity

[Ep, {PM, FaY] = {PM [Ep, Fal} + {Fa,[Ep, PM]} (A.19)

which reduces to the following expression along @ when we use the commutators above:6

@Macfpgtﬁ - 55TWM rTsEpt? = éjpaCIM/ﬁ\t’B + 6;:T7RPT5M rt? — oM 5§tﬂ . (A.20)
If one takes the Jacobi identity involving F @ one has 5% = 0 and this identity reduces to

éfMdC'ipg = éIP&CIMB‘, (A.21)

which is already similar to (2.55) with éfMd = HfMd the canonically normalised inter-
twiners. If one takes the Jacobi identity involving F'“, one gets

M ot? = CrpCIM ot? 4 TM TR pt? 4+ TR pTpM pt? — . (A.22)

Replacing t? by the invariant tensors TPV ¢ and contracting with derivatives 0p/On to
enforce the section constraint one obtains

CP1CT 5™ Qo = (15T o7 g = 20057 ) Orrd (4.23)

where we have used (2.38) to eliminate the first term on the right-hand side as well as (2.18)
and the section condition (2.19) to simplify the remaining terms into the form given. This

54The uniqueness of the homorphism can be proved in the GL(11) level decomposition by solv-
ing the highest weight condition for the vector X, = cohn"Om + chOhm™On + c1Anp, p, OPF2 +
Z;ozz c"(k)Mk%fk)nAa(k)BM(%J_) for free coefficients ¢®™,,. One finds that ¢; = %co and ¢ = —%co and
because the module R(A1) is generated from the highest weight vector X,, we conclude that all the coeffi-

() NI(,% s

cients ¢ ), are determined as well as ¢®™,, = ¢gT*™,, and the homomorphism is unique. The proof

applies to all e,,.

55The component along t* gives CNMEHNPA = CrpaC’™ ) that we will not use, it implies C’NMQ #0.
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consequence of the Jacobi identity is already very close to the claimed identity (A.1), or
equivalently (2.54).

As the final step in the argument we must identify the relevant components of the
tensors Cppsa and 6I~M§ with the unbarred ones that appear in the actual identities (2.54)
and (2.55). This is only possible for the components in L(Ag2) @ej; C a;\d\j and the identifi-

cation is
61Ma: (élMdaélMaaélMd) = (élMd,UQBUIJUMNCJN,&77&677[J77MNCJN5> s
UfMa _ (6iMd’6I~Ma’6iMd> _ (éjM&’naﬂnfjnMNCJNﬁ’ndﬁnjjnMNCJNB) . (A.24)

leaving C7p/% and an @ untouched as they have no correspondence with the tensors that
arise in Fq; exceptional field theory.

To show this identification, we start from the component of (A.21) along 3. We replace
61 u® on the left-hand side, and identify the right-hand side as the Clebsch-Gordan series
for the tensor product R(A;) ® L(As)

na:,mmPQCJQ:YCJMB _ HfMdﬁ”??PNUmHjNW (A.25)

with the canonically normalised intertwiners HiM& corresponding to the tensor prod-
uct (2.44)

and the K(Fhp)-invariant tensors ni 7 and Nsp defined such that the equation holds. Of
course we assume again that the bilinear form 7;; exists to make this ansatz. These
bilinear forms admit one free coefficient for each irreducible representation in L(As) and
L(As2), that can be chosen such that (A.25) holds, provided the left-hand side vanishes
in the irreducible representation R(A; + Az) not included in L(Ag). That this choice of
normalisation is possible can be verified explicitly for the first few FEj; representations
in the tensor product by going through GL(11) and GL(3) x Eg level decompositions,
where we find explicitly that the left-hand side vanishes upon projection to the irreducible
representation R(A; + Ag), see (C.20) and (D.26). This equation reproduces (A.21) along
/3 provided we identify

cME =M Clys = nunmggn" TN (A.27)
With the identification above, (A.21) ensures that
Epdcmg = T1;9e¢! T (A.28)
Now taking (A.22) along th gives exactly the conjugate of (A.21), which implies that
Crv® = n*PnemunC’N g, CpM* = n*Pnp ™V C7 ng . (A.29)

This concludes the proof that (A.24) is indeed the correct identification and we obtain
therefore that (A.23) is indeed equation (A.l) that we wanted to prove. Moreover, we
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checked in appendices C.4 and D.4 below that at low levels the tensors (A.24) satisfy (2.54),
which permits us to identify the relevant identities following from (A.1) in eleven dimensions
and in Fjg exceptional field theory. So we conclude that the claimed identities are satisfied
in Fq1 exceptional field theory.

A.2 On the master identity

In this section, we shall investigate the central group-theoretic master identity (3.6) that
we recall here

Q[JCJMaTaNQ = U[QBHBMN + E[QAHAMN + EIQAHXMN . (A.?)O)

It is needed for gauge-invariance of the duality equation [13] and of the Lagrangian (3.10).
In this equation C JQB is the conjugate of the tensor hierarchy algebra structure constants
C™ . whereas C JQA and C JQA are new tensors defined such that (A.30) holds. The tensor
Iz MN is restricted to R(A2), while the tensors HKM N and I\ M¥ include a normalisation
constant for each irreducible component contained in L(A4) and L(A1p), respectively. The
same is true for the K (FE1;)-invariant metrics 77z and na=. These constants have to be
fixed for each irreducible component such that (A.30) holds.

We will prove that this equation necessarily holds for some invariant tensor éfQB and

the non-trivial proposition to prove is that
C1Q” = nmeen™C7" (A.31)

for 3 restricted to the irreducible module R(As). We will find that there is a unique
homomorphism from R_; ® R(A;) — R(A2) where R_; is the irreducible component of
T_1 including the duality equation representations in supergravity. If 7_; was completely
reducible, we could always define the theory by restricting the index I to the irreducible
module R_1, n7; would then exist on R_1, and the uniqueness of the homomorphism above
would imply (A.30). So the assumption of complete reducibility 7_; = R_1 & D_; as an
¢11 module is a sufficient condition for all our identities to be satisfied. However, these
identities could still be correct if 7_1 was not the direct sum of an irreducible module R_
and another module D_1, so we will not assume it is the case. The general structure of an
indecomposable module compatible with the existence of a K(F1p)-invariant form is

J1DR 1 DJ 1 C T, (A.32)

where R_; is irreducible and J_; is a possibly indecomposable module which decomposes
as a vector space as the direct sum of a highest weight module L and a lowest weight
module L. The existence of 77 requires that L is the conjugate module to L, justifying
the notation. The uniqueness of the homomorphism does not determine the structure
constants GIQB for I valued in J_1, but we expect that we might still be able to redefine
the corresponding structure constants to satisfy (A.31). In this appendix we will only
consider the module R_;.
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Let us now describe the proof of (A.30) for I valued in R_;. We first consider the
symmetric component in M N

Qp,CTMTN) = G T MY (A.33)

This equation can be defined as a Jacobi identity for the tensor hierarchy algebra 7 (e11),
see also [13]. The commutator of a generator of degree 2 and a generator of degree —1
takes the form

[PA 1] =20 PM (A.34)
for some FE4i-invariant tensor EIMA. The Jacobi identity
2PN (PN, 1)) = [{PM, PN}, 1] (A.35)
gives the identity for the structure constants
Qp,CTM_ToN) ) = G MM (A.36)

just like in (A.33). Therefore this equation (A.33) holds for all indices I in 7—; provided

we define C7p™ from the tensor hierarchy algebra structure constants (A.34).
Let us now consider the antisymmetric component in M N of eq. (A.30)

O CTM TN G = O PN + C ot MY (A.37)

Written in this form, the right-hand side is simply the Clebsch-Gordan series for the tensor
product R(A1)AR(A1) of the indices M N. The components C ;o™ are defined by projection
of the left-hand side. Its conjugate is given by

[m

CWMX =l IpMN anEJN

(A.38)
The only non-trivial equation that remains to check then is that C JQB is indeed the con-
jugate (A.31) of the tensor hierarchy structure constants C' 5 on R(As).

To show this for I valued in R_; we prove that there is a unique homomorphism from
R_1 ® R(A1) — R(A2) determined by the map to the lowest weight vector in R(As2). This
lowest weight vector must be annihilated by d; in the GL(11) decomposition, similar to

above. Writing the ansatz for the lowest weight vector as®

c
Xiny = OpFryng® + 2¢000, Fuylp? + ElaPlPZanmm TR (A.39)
the lowest weight condition is

1
6an1n2 = 7(01 - 1)fp1p2p38P1Fn1n2p2p3 +

1
2 5 (co— 1)8[n1Fn2]P1P2P3 +---=0 (A.40)

9

5Note that for the highest weight module R(A2), the set of components is generated from the lowest
weight component X, n,.
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which can only vanish if ¢y = ¢; = 1, so that
1
Xﬂlnz = ameﬂzp + 26[”1Fn2]13p + §ap1p2Fn1n2p1p2 +... (A'41)

Just like the coefficient c; is uniquely fixed by the coefficients ¢y and 1, all the coefficients ¢,
associated to the terms involving the derivative of weight —% — n are uniquely determined
by the equation § X, n, = 0 because the module R(As) is generated from the lowest weight
vector. We conclude that the homomorphism is unique so that

Crp® = nrmpen™C’%;, (A.42)

on R(A2). We conclude that (A.37) is indeed satisfied on the whole irreducible component
R(Ag). Since the L(A4) components work by construction due to (A.38) we thus have
shown (A.37) on the whole antisymmetric part in [M N] for I restricted to R_;.

Now that we have proved (A.30) for I restricted to R—; C T_1, we would like to
describe in more detail this identity. In particular, we shall find that all structure constants
Cpt are non-zero, so we must consider the complete module L(A1p) @& L(A4) and not a
CIM

submodule. We will moreover discuss the possibility that A is the same tensor as the

CIM

tensor hierarchy algebra structure constants A appearing in the commutator [PM JtA] =

C™™ ,t; for A valued in 7_5. This assumption is not necessary for the consistency of the

theory, but would make the relation to the tensor hierarchy algebra more direct and would
therefore be aesthetically pleasing.

We shall start by proving the complete module L(Ajg) ® L(A4) is required. For this
we can use the consistency of (A.30) with (A.22), which gives

= ManI BN _AP o 5

CMeC! TN 0" © 09

_ (élpaCIMB\TBNQ + TaMRTﬁRPTBNQ + TBMRTaRPTBNQ _ 5yTaNQ>5P ® 9%

_ _QIJélpa (CJQBHBMN + EJQAHAMN _'_éJQAHKMN) of ® 9%

+ (=1 TN BTN g + 26 TM ) — 200 TN ) 7 59
=0, (A.43)
because the first line vanishes according to (2.53). One can check the consistency of (A.43)

QT po (CJQBHIBMN I EJQAHAMN I éJQAHXMN> 9P ® a9
= (= f0 M TN g 4 26T ) — 205 TN g ) 6 0 59 (A.44)

by projecting M N on both sides onto possible irreducible representations. One finds that
when projecting M N to R(2A1), both sides vanish consistently. The symmetric component
of the second line in M N is antisymmetric in PQ, which implies that the symmetric
component in both M N and P(Q of the first line vanishes, i.e.

Q01 ,C79\0pdg =0, (A.45)
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after conjugation, with by definition

C7%n =" M na=Crar=. (A.46)

Note that (A.45) would be satisfied if C'™ y was identified with the tensor hierarchy algebra
structure constant C'M A

[PM t0] =Mty (A.47)

because of the Jacobi identities. Here we defined A’ the index of Dy C 7, that we identify
with A in the common submodule of Dy and L(A1g). We shall give evidence that L(A1g) C
Dy such that we could identify A’ = A and that the structure constants are equal

cM, =M, (A.48)

As explained before, this identification is not essential for the consistency of the theory,
but it would make the algebraic structure more pleasing and it might be useful when
considering additional gauge symmetries of the theory.5” For ease of notations we drop the
tilde and write C'™ , and C’IMK for CI™ , and 5’1MK in the body of the paper.
Projecting M N to R(A2) one finds that the first line in (A.44) equals the second using
the identity
H@PQHdMNaP & 6Q = —28[1\4 & 8N] . (A.49)

However, if one takes M N in another irreducible component R(\) of R(A;)AR(A1), one
can check that it satisfies

3
TsM p TP o X7 = (G + )XY (A.50)
which corresponds to the ‘cross-term’ in the action of the quadratic Casimir on the tensor

product such that%®

(A A) = (0,\) =30 (A.51)

(A A) = (0, A) 4 (A1, A1) +2(As, p) — ; - _%

1
ny=—=
AT
and n) is a strictly positive integer for X f\\/l N'in an irreducible submodule of

R(A) (- L(A4) = R(Al)/\R(Al) © R(Ag) . (A.52)

For example ny, = 36. To prove the positivity of ny, one uses that A = n;A; is a dominant
weight with n; € IN and also A = Ay — o with « positive in the root lattice. Therefore
one gets

1
nx =NAy—aq = <O{,2()\+A2)+Q) > 0. (A53)
If one takes [MN] in R(\) and PQ symmetric one obtains then

Q1T poC Mg MVOTIR = —ny T ps3 0759 # 0 (A.54)

570ne could wonder if the additional gauge parameter in 7_3 © R(A1) could also define gauge symmetries
of the theory, and in this case it would be useful to have the identification such that (CIM;T“N p+
CIMATAN[:)aM@NSP —0.

%8With this we mean that Kapt®v @ tPw = Jrapt*t? (v @ W) — L[Kapt*t?v] @ W — 20 @ [Kast™t?w).
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where [MN], denotes the projection to R(A). It follows that for all R(A) € L(A4) the
left-hand side does not vanish and C” QKX is not part of the 7 (e11) structure constants

C7@Q, (A.47). This is why we have to introduce the additional constrained field (y*
valued in L(A4), which was not found to be necessary for gauge-invariance in [13] because
it does not contribute at low-levels that were analysed.

One can use the same argument to analyse the component symmetric in M N and
antisymmetric in PQ. One has in this case

1
T pTON o x (P9 = <2 - n)\> XMN (A.55)
where

(A A) — (o, \) — 28 (A.56)

(WA = (2. A) + (Ar, Ay) + 2(Ay, p) + ; _ _g

1
ny=——
AT
and n) is a strictly positive integer for X )]\V[N in an irreducible submodule of R(\) C

L(A19) = R(A1)VR(A1) © R(2A1). One obtains then
QljéjpangA’\HA)\MNép X 5Q = —n)\Ta(M[P(Sg])Aép X éQ 0, (A.57)

from which we find that C ;o™ and Iy, ™~ do not vanish for any R(\) C L(Ay). This
justifies the definition of the constrained fields (p/* in L(Aqg).

To summarise, we have obtained that A and A must range over the complete modules
L(A1p) and L(A4) and that ¢y is not a field valued in Ty whereas it seems plausible that
¢ar™ would be defined in Dy C Tg. Note that we have proved that R(A19) @ R(2A3) C Dy
and we will show below that one can identify the structure coefficients as in (A.48) for A
valued in R(A1o) ® R(2A3).

Let us first consider the irreducible components R(Ajp). The tensors crr A and CTF
define E7i-homomorphisms from R_; ® R(A1) — R(A10) and are therefore uniquely de-
termined by the map to the lowest weight vector in R(A1p). We recall from (2.16) that
R_; denotes the irreducible submodule of 7_;. Written in GL(11) level decomposition,
this lowest weight vector must be annihilated by the lowering operators d; with negative
GL(11) level. By GL(11) grading, the general ansatz for the lowest weight vector is

Y™ = 0, F™™ 4 g By + ¢y 02 F ™ 4 GO, P+ (A.58)

and it must satisfy the condition under GL(11) level —1

1 ¢ 1 ¢
opY™ = <4 _80> SO On By " + <4+£+Cl> FPP O Fppy ™+ (co— 1) [ On Fpg +-..

20. (A.59)

This implies by linear independence that

1
co =2, =3, =2, (A.60)
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leading to
1
Y™ =0, F""™ + 20, F,""P — 58”1”2}7”1”2’” + 20" Fp,l + . (A.61)

Just like the coefficients ¢; and ¢} are uniquely fixed by the coefficients ¢y and 1, all the
coefficients c¢,, associated to terms in the ansatz involving the derivative of weight —% -n
are uniquely determined by the equation 6;Y" = 0 because the module R(A;) is generated
from the lowest weight vector. We conclude that the homomorphism is unique (up to an
overall factor) so that we have indeed CIM, — ¢IM | for this irreducible component.

The same argument allows us to prove that there is a unique E11-homomorphism from
R_; ® R(A1) — R(2A3), as we show in (D.17). This extends the proof of (A.48) to the
reducible submodule R(A1g) @ R(2A3) C L(A1o).

We moreover argue in appendix A.4 using a Casimir homomorphism that we have
L(A10) C To(e11), so that we can consistently identify the index A’ in (A.47) with A of
L(A10) on both sides of (A.48). Moreover we have seen from (A.45) that CTM , = CIM s
compatible with the Jacobi identity. However, unlike for the R(A10) & R(2A3) component,
we do not have a full proof, and this identification is not necessary for the consistency of

the theory.

A.3 Proof of QIJCIMaC’JNB identities

In this section, we prove the identities (2.40c), (2.41a), (2.41b), (2.40b) and (2.40a), see the
summary in table 5. A first observation for all these identities is that by (2.39) it is sufficient
to consider the parts of these identities where M and N are antisymmetrised, which means
we only have to consider the antisymmetric part of the section constraint (2.19).

The first three identities are simple consequences of tensor products of Ej; highest
weight representations when we look at their structure in the M and N indices. As the
identities are to be valid only on section, we have to make sure that the tensor products do
not contain the representation R(As) that is the only non-trivial one on the antisymmetric
section according to (2.20). For this we look at the structure of the lower indices.

For the first identity

Q]JCIM&CJNéaM ROy =0 (A.62)

we therefore need to consider the tensor product L(Az) ® L(Ag). A quick check of the
dominant weights that can occur shows that it is sufficient to consider the part R(A3) ®
R(A2) as all other products can never contain the non-trivial section representations. The
tensor product is®

R(A2) ® R(A2) = R(2A2) @ R(Ay) ® R(2A1 + A1o) D R(A1 +A3) @ R(Aa + A1) D ...
(A.63)

59Such tensor products can be computed using the character formulas for highest modules. Any product of
two integrable highest weight representations is completely reducible as an infinite sum of integrable highest
weight representations and the terms can be (partly) ordered by the height of their highest weights [76,
section 10.7].
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showing that it includes neither R(2A;) nor R(Az2). From this we can conclude based on
Eq; representation theory that (A.62) holds.

A similar calculation of the tensor products R(A2) ® R(A1p) and R(Aio) ® R(A1o)
shows by the same argument that (2.41a) and (2.41b) hold. Again the arguments can be
extended from R(A2) and R(Aio) to L(A4) and L(Ajp), giving also (2.41a) and (2.41b) in
full generality.

We now turn to proving (2.40b). A first observation is that the combination

Qr C™M 5N 500 @ On (A.64)

transforms covariantly under Ej; even though it contains the non-covariant object C/~ 8-
Its non-covariance (2.37) is indeed contracted in such a way as to yield (A.62) and thus
disappears.

Since the symmetric part (M N) vanishes according to (2.39), we can view (A.64) as
an ej;-homomorphism e;; ® R(A2) — R(A2), where the target R(A2) is the only non-
trivial component of [M N] on section. The representation matrices TBB@ are similarly the
components of a homomorphism from e¢1; ® R(A2) to R(A2) and we shall prove that this
homomorphism is unique (up to a multiplicative constant) which will then imply (2.40b)
after fixing the constant on one component.

Any homomorphism ¢;; ® R(A2) — R(A2) defines a highest weight representative in
the target for which we make the following ansatz in the GL(11) level decomposition

XT/'Ll...T'Lg = o, P Xy mglp + cohp? Xny..mo + Cli‘iplmngm---ngphmps
+ CllAplp2p3Xn1..-n9P1p2»P3 Tt
o
_ Z ck(¢<7k),X(3+k))' (A.65)
k=0

To be highest weight, the . variation (C.3) must cancel X/,

- n1..mo" Checking the terms in
APp2ps X, o one finds
c
=0, a=-5, d=a (A.66)

To show that it is the unique solution, one uses the general variation

[e.o]

0eX sy = D (Ch(0:0 7, X D) gy (67570, 8. X 49) ) = 0 (A.67)
k=0

which implies by the GL(11) grading
k(00 XO) + 1 (1, 5. X)) =0 (A.68)
for all k. But the module R(Asg) is generated from the highest weight, so
Chr1 (675D, 5, X4 = 0 (A.69)

for k > 0 if and only if ¢y (¢F 1, X)) = 0. We conclude that there is no solution with
co = 0, and since the solution with ¢y # 0 is unique up to a multiplicative constant, the
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homomorphism is unique up to a multiplicative constant. Fixing this constant by using
the explicit expressions for the lowest components of tensors in GL(11) decomposition
proves (2.40b).

We now prove (2.40a). Since (2.40b) is true, we deduce that

~ 1
(HdMNK(aaﬂ) + 2Q[JCIM(QCJN5)> O ® ON (A.70)

is an invariant Fq; tensor despite appearances. The reason is that its non-covariant Fqq
variation is proportional to (2.40b) which was just shown to vanish. Therefore, (A.70)
defines a homomorphism from (e;; ® e11)sym to R(A2). We are now going to prove that
there is no non-trivial such homomorphism.

The existence of any such homomorphism would imply that one can define a highest
weight vector of R(Ag) for which we make the ansatz

/ — P AP1P2P3
an...ng - COA[nlngngAm;...ng} + Clh[nl hnz...ng],p + CQA An1~-~n9,p1p2p3 +..

o

=3 (@0, ) (A.71)

k=0
in GL(11) level decomposition. The Ej; variation of the ansatz is

[e.9]

6X" =3 (r(8e6" 7, 69) + e (679, 8.0 ) (A.72)
k=0

which implies by GL(11) grading that
k(00”7 0 ) + cpra (0, 00" H) = 0 (A.73)

for all k> 0 and co(¢™, 6.0™) = 0. Once again, ¢17 is generated by the local subalgebra,
and therefore

h+1(077, 00 =0 = (T, 0) =0 (A.74)

for all £ > 0, so ¢y must be different from zero, and then all the ¢ are uniquely determined
by co. In order to fix ¢y we look at the terms in eh;!' Ag obtained by varying the ansatz

§X' = —(3cp + 56¢1)e hp,P A

p[lning ng...ng|

1

2
+ 2861h[n1p<3€n2n3n4An5...n9}p + 3ep|n2n3An4‘..n9}> + ... (A75)

This expression can only vanish for zero coefficients which implies ¢y = 0. This concludes
the proof that there is no non-trivial homomorphism from (e;1 ® e11)sym to R(A2), and
therefore that (2.40a) is true.

A.4 Casimir and homomorphic image of L(A1g) in 7o

In this appendix, we study the Tg-homomorphism w; : T2 — 7g in order to provide evidence
that L(A1g) C To. This question arises in view of the constrained fields (3 appearing
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in the field strength (2.35). We define (3/* as being valued in L(A19) C T3 in this paper,
but as we explained in appendix A.2, it would be more satisfactory, but not essential, to
also be able to identify them in 7y. Omne can check at low levels that the components
R(A10) ® R(2A3) C L(A1p) and the decomposable part Dy of 7y are indeed the same. This
is done explicitly in GL(3) x Eg decomposition in appendix A.5 below, see (A.95).

The To-homomorphism wy : 7o — 7o is defined from the quadratic Casimir w for
T (e11) [58]. To show L(A1p) C To we would require this homomorphism to be injective as
a To-homomorphism on L(Ajg) C T2. We check explicitly that R(A1g) C T2 is not in the
kernel of wy. It is plausible that the 7p module generated from R(A19)® R(2A3) is the whole
L(A1p), in which case we would indeed have that w; is injective on L(A1g), establishing the
isomorphism.

The Casimir w defines a 7T (¢11)-homomorphism that acts on the category O of T (e11)-
modules. We will not use such modules, but they could be defined as highest weight
modules for example. The quadratic Casimir w decomposes in the sum of Ty-invariant
quadratic operators w), according to (2.2). w, can also be defined on some of the modules
of the category O of To-modules that are not inside modules of the category O of T (e11)-
modules. In particular, one can act with w, on 7, for p > q.

Recall the standard quadratic Casimir of e1; in the GL(11) decomposition

1 1 13 1
c= §ququ — 1—8Kpquq + EKpp + nglmngp“’”’3 + ... (A.76)
The second component we can be defined in the same way by pairing Tg with its conjugate:

1 1 1 1 26

wo = iKqu(qp + ikquqp - Tngpf(qq — Ef{f’pmq + gkpp
+ éFplmePIWS + éFplmmEmmm - (A.77)
One defines similarly w; as
wy = —33—51_(”” + it”mm”%mmnw — %tm”?mt_mmm + %t”l’pfnqq
— %tm,nfmvn - 1t"ﬂmwt’m’“”?"if + %tpnmpfqmmq +... (A.78)

which is a normal-ordered form of %QI Ttrt ; where all the positive GL(11) weight generators
are on the right.”® We have written them as t/ = Q!7t; to simplify the expressions. They
are defined such that the field strength as an element of 7_1 reads

1 _ _
_ n1...ngP1P m n1...n7P1P2P3P
F=-4 5.91° PP Fonyomgymtpipy TN ' PP Fony o tp1papspa
1 1 1
+ EFn1n2n3n4tnln2n3n4 + §F7Z17”L2mtn1n2m + éanannStmnl'rLQnii + Fm’ntmﬂ'l + M

(A.79)

One can prove that w; and ws commute with e1; by showing that they commute with
E™Mm23 and F nyens and we give the relevant commutators at the end of this section. All

"°The normal ordering is responsible for the term K™,,.
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the terms in the ellipses are determined by the invariant symplectic form on 7 (e;1) and are
automatically invariant because their invariance does not require to modify the ordering
of the generators.

For p > 2, 7_, admits a lowest weight and one can define the corresponding Casimir by
the pairing w, = P®=2 . PC»_ Tts T, invariance does not require reordering, so the linear
terms in K", only appear in w; and wy. Note that for the total Casimir w = > pe1 Wps
these linear terms sum up to —3K",,.

One checks that w is indeed a Casimir of 7 (e11) by proving it commutes with 77 and
T-1. We use GL(11) level decomposition to show

1 S| 1 1 -
[vaw} - _3tmnp+E[Fnlmnmtmmmm}+§[qu7tmqq] _TS[Kpmtmqq] _i[KmmPn] - 07
(A.80)

where we have only written the commutators that appear in putting all the generators
with the same ordering. Because [tp, pypspss K™n] = 0 we do not need to check the ordering
ambiguity to obtain that [fp,popsps,w] = 0. Using commutation with 7y we generate the
whole local algebra [58, section B.3.1], 7 (e11), which concludes the proof that w is indeed
a Casimir of T (e11).

Because w is invariant under 7 (e11), it follows that w, are invariant under 7 and
not only under e¢;;. This is important because it means that w75 C Ty is an ideal of 7Ty,
and so the quotient 7p/w172 is an algebra. Since wi P, = 356F,, € Ty in GL(11) level
decomposition (see (A.88)), R(A1p) is not in the kernel of wy. In particular, L(Ajg) is a
subalgebra 7o that admits a highest weight Ajg. It follows that its action on 7, for p > 1
and it own commutation relations are consistent with highest weight representation theory
of e11. So in particular it is a solvable algebra and its representation matrices are eq1 highest
weight module intertwiners.

To prove the results of this section, we had to compute some commutation relations
of T (e11) that we now display. The representation 7_1 of ¢1; is defined through the com-

mutators

B2 s = 3600 72T ™) — BOTITSE (A.8la)
[Erinans (p1papspa] — _igmnznwl---P4‘11---q4[q1q2q3q4 , (A.81D)
[Emnens gpip2 | — _3glmynanslppe (A.81c)
200 7 ] = 180( 2 gmalm o ggmananyma (A.81d)
[Emmens g ] = 6(5([:;%”2”3]@ 7 (A.81e)

[Frnanss tpips ) = _35[77?1 _nzns}plpz ’ (A.81f)

[Frinans tpipepspa) = ignmwwl--~p4q1...q4tq1q2q3q4 ) (A.81g)
[Fpingng, P1P2P3P] = —36(5[[21222#35"4]”3} — 8glppzpsgpala, (A.81h)
[anzn?,atplmm] = 65{21]37212%3]77” + 65[[51 tp2]n2"3]m N ;5f)?i1l)ithn3]mq : (A'Sli)
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The commutators of 7_1 with itself are

1 _
Nninan3n4a 4P1pP2p3p4 . — ~N1N2N3N4P1P2P3P4919293
{t ot }= 6° Fo14245 (A.82a)
{t t, } = L. E119293 (A.82b)
nina2mnsngs *pi1p2p3pas T 6 nin2n3napi1p2p3p4qiq2493 .
y P1P2P3PAY [P1p2ps gops]  gspipapspa fom
{tn1n2n3n47 15 } - 965[n1n2n3K n4] 85n1n2n3n4K m - (ASQC)

These relations allows checking the invariance of wy under eq;.
We also need the commutators involving P, and P nongn, of R(A19) C T2

[Frinonss Pm] = Pmnynans » [E™1218 P ropapa) = —245[7;112323%4} , (A.83a)
(T ] = ML (P 5Py, o) (4.83)
Frsnansnes Prn] = Prynangnam (o™ Pu] = 407, Bpojn = 0" Ppipy s (A.83¢)

[Epips™ Prinansna] = =407 Pagnanalprp + 4070 Posningnans - (A.83d)
(£, P P2P3 | P, ] = 126[P1P2 ppsl [P, P, = —65" P (A.83e)

and
[K?,, P,] — 45€’an) +..., (A.84)

where F,, is the generator of 7y in R(A10) and we omit the other terms. The commutators
with the 771 module are the ones written in [58] and we do not display them here. We have
the following anti-commutator of {7_1,71} C 7o

{tninanany, P} = 456'}1 Fpopspal » {tpip", P} = _4550:[(”]?2] ) (A.8ba)
{En1n2n3n47 Ppwz} = _Fn1n2n3n4p1p2 ) (A 85b)
{tplp2m7 n1n2} = 25{77111 an]p1p2 - 25(;1 Fpg}nﬂtg ’ (A85C)
{tn1n2n3n4’ Pm} — _%é_mn1712713714]31---106}:'1)1Mp6 , (A.85d)
1 ~
{tnanngm,Pppo} - _ﬁd[[;llgnmgm}qlmqule--qupz] + 1251[7%?7;2Fn3n4] ) (A.85e)
1 ~
{tplpzm, Pn} — ggnmpzqyuqqulmq&m + 357[2}7‘1”11’2] , (A.85f)

where F™"2 is the highest weight generator in R(Ag). After this level it becomes more
difficult to obtain all terms, but since we know that wi P,, if non-zero, must give F,, €
R(A1p), we shall only write the generators in R(Ajp). Obtaining other generators would
be inconsistent with the property that w; is a homomorphism. We determine these terms
by consistency with the property that L(A1g) is an ej;-submodule of 7j, and in particular
[e11, L(A10)] € L(A1g). We use ellipses for the generator in adj with

{t" pipops, P} = _606$&2Fp3] +..., (A.86a)
1
{tmp, P"} = _5521me) +..., (A.86b)
{tP1P2P3P8 P yngnans } = 6000020500 B4 (A.86c¢)
{77, Py } = 0502 By — 40002 F (A.86d)
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and

{2, qu...qs} = _105E;11222FQSq4q5]m - 105:;1[312Fq2q3q4%] e (A.87a)
{tn1n2n3n4’ Pplu-P%m} = 21057[;11......21 FP5P6P7]m + 2106211[1.9..17;72P3Fp4p5p6p7] T (A'87b)
{2t Py ps} = _4206@117?;;37141?1751?61?7178} LR (A.87c)

The latter are needed to compute [K' ", Pr]. With this, one has all the information to
compute

1 1 1
w1 Py, = 280F;, + ${tmn2n3n4a Prpipapspa} + i{tmnzmu Prins} + g{tnppv Pran}

1
+ 3{tm,n7Pn} - Z{tqmnqvpn}
63

5
= <280 +105 + 5 2> F, = 356, , (A.88)

which completes the proof that R(A1p) is not in the kernel of w;. We do not have a proof
that w; is injective on all of L(A1g) C T2, however Tp-equivariance may imply that it is.

A.5 7T (e11) under gl(3) @ es

The local super-algebra of T (e11) associated to gl(3) @ eg has been defined in [13]. Here we
shall compute the next level of superfields to obtain more information about the irreducible
modules that appear in 7,. For this we recall that 7 admits a 7? grading

T(e11) = Z Tp = Z Z Tpa = qu, (A.89)

PEZ PEZ qEZ qEZ

where q — %p is the weight under GL(1) C GL(3) x Eg C E11. ¢ is not consistent with the
Z grading of the super-algebra, but each component S, at fixed ¢ is finite-dimensional.
The algebra can be defined using a BRST complex, with superfields of fixed ¢ degree
that expand as superfields of Grassmann coordinates ¥, of p-degree 1. The components
of degree ¢ = 0 are parametrised by a bosonic vector superfield V,(¢) generating the
reparametrisation in three Grassmann variables 1, and scalar fermionic superfield ®(«9)
in eg. We use (* = 8%' The components of degree ¢ = 1 are parametrised by the fermionic

superfield 1/1;‘ and the bosonic superfield 745 in the 3875 @ 1. The components of degree

g = —1 are parametrised by the bosonic superfield S4 and the fermionic superfield ©*.
The BRST differential is then
SV = Vit Vi + ¥4 S, (A.90a)
1 1

504 = 5 fec@PoC 4 v, it 4 TABSE + fpc (wfwsc - wafsc) +yer,
(A.90b)
684 =Vt S + 4,84 + fpctaB s, (A.90c)
SO = V,.VOH — MV, 0" + 1V, OF — FBAS,, (A.90d)
St = Vol + Vbl — Vi + fee @By, (A.90¢)

STAE = Vi 148 — "V, TP + 20 fopATPIP — 21Uy B) — pE A pp B 1Oyl
(A.90f)
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One checks indeed that 62 = 0 on V,, and ®4 and vanishes up to terms quadratic in the
degree ¢ = 1 on the components of degree ¢ = 1 respectively, showing that this defines
a local super-algebra in the sense of Kac [161]. The tensor hierarchy algebra is defined
as the quotient of the super-algebra freely generated from this local super-algebra by its
maximal ideal. The super-algebra associated to V), is the Kac super-algebra W (3) of super-
diffeormorphisms in three dimensions, while ¢4 is the super-algebra G3(eg) of functions of
three Grassmann variables in eg, and

1
So = Z 7;70 = W(3) G Gg(eg) . (A.gl)

)

p=-3

Now we want to determine the superfields that appear at ¢ = 2. We know from eq;
that at level p = 0 we must have Z‘f in the 1 ¢ 3875 and ¢;2V in the 248. Checking
the generators that they include at p = —2, one obtains d}ﬁl”éAB that gives one (2, 1)-form
and one three-form whereas ¢717 24 gives one symmetric (1,1, 1) tensor and one (2, 1)-form.

Together Ty C e11 @ R(A2) @ R(A1g) at level 3 include these representation and more’!

611|3 = (1, 1, 1;A1)@(2, 1;A1)@(3;A1)@(2, 1;A7)EB(3;A7)EB(2, 1;A2)€B(3;A8)@(2, 1;0)
R(A2)[3=(2,1;A1)B(3; A1) B (2, ;A7) ®(3; A7) (3;A2) B (35 As) (2, 1;0) B(3;0)
R(A10)|s = (3; A7) (A.92)

so we need new superfields for the remaining components
(2, 1; Al) B2 x (3; Al) @(2, 1; A7) B2 x (3; A7) @(2, 1; Ag) S, (3; AQ) S5 (3; Ag) D (2, 1; 0) (A.93)

To have a (2,1) form one must either have a new superfield T, at p = —1, or a new
superfield \,” at p = —2. One checks, however, that the second would lead to (2,2, 1)
forms at level —3 that are incompatible with the level decomposition of 7_3. We must

]

therefore introduce the superfields 7, ,LAB in the antisymmetric tensor product of two 248
and T lfB in 1 3875 at p = —1. However, T;‘B includes one more Eg singlet and
we conclude that 7y D e11 @ R(A2) @ R(A1p) ® R(2A3). We must moreover include the
superfields A5 in R(Ag) of Eg, AP in the 3875 and A in the 248 at p = —2 to get all
the irreducible representations. To remove the R(2A3) representation one would need to

constrain the superfield T}, = ﬁnABTfB to *T,, = 0. But the W (3) representation
o1, =V,."T, + "V, T, — 2."V,) T}, (A.94)

is incompatible with this constraint. (One would need weight +1 and not —2.) There
cannot be any other superfield starting at p = —3 because it would contribute to 73 D R(Ag)
that only starts at ¢ = 3. Together this set of superfields implies

To D e11 @ R(A2) & R(A10) ® R(2A3)

Ti D R(A1) © R(A1 + Aro) ® R(A11) © R(A1 + 2A3)

T2 O R(A19) ® R(2A3) ® R(Ag + Ao) ® R(A1 + A11) @ R(Az + 2A3)

T3 D R(A11) ® R(Az + A1o) @ R(As + Ay) @ R(A2 + Anr) (A.95)

"'Here we use the convention that A; of Es is the 248, A3 the 30380, A7 the 3875 and As the 147 250.

- 109 -



This consistency check shows that at least these representations are in 7 (e11), but one
may in principle have more already at ¢ = 2. We shall now check that there is no extra
superfield. We shall see moreover that the only indecomposable sum is the e @ R(A2) at
this order.

At the next order one computes the following BRST variations

Ot = Vo Vil = Vil + fpe @Ry
. 1
~T4BSp +¢fu®”+*chA¢£uLVSC+¢AB "Sp,
Sial = Vo7l =2 Vi i 2 =27V ln? =28 fop U P + 2000 + fop FBE py iyl

Uit = Vot it + 2Vt o =2 Vot + fre @B+ fep Y S
ST =V TP+ VTSP =20V, TSP + fop 9O TP + fop PeCT 5P

1 v o v 1 v v
(VAP = S 0UC, ) Vo= Ui B8 o P b 8P+ fop P 8P
1
iy + 5 for FPF pu el =20l fep TPy, (A.96)

where TAB = T[AB] + TAB is in R(A1) ® R(A1) © R(2A1) of Es. One can compute
smularly the terms blhnear in (©#,S4) and (¢W ,wl‘:‘w Tlf‘ B \ABiCY) in §TAB by requiring
nilpotency of 6. But the only terms involving AM5C is of the form

OTAB = _\BCSg, 4 (A.97)

and so all the remaining superfields must be included in A5:¢. The general decomposition
of MBiC is

. _ . 1 -
N\AB;C HASAB,C)\AS 4 fOAABID L opABCD) ZKABAC ’ (A.98)

where we used the property that there is no E1; highest weight representation that would
start at ws = 3 with an Eg representation R(Ag) or R(A; + A7) to disregard these pos-
sibilities. We have introduced two adjoint superfields to allow a priori for the need of an
AAB;C’

extra superfield A, To check the variation of , we shall only consider monomial in

TAngSD in 62748, We use that
Ao _ 1254 144 AB;C e,
KJBCA = T)\ + ZA s KAB)\ T =62A (Agg)

TAB

to project in the same way the terms in §2 , after having removed all we could from

the variation of bilinear in Tlf‘;B SC. One obtains
~ 1
A = —6AA = TAB e, + ichL#TB%;‘. (A.100)

This is the only term that could require a new adjoint field and we conclude therefore that
A% = —)4 and there is no more irreducible representation at degree g = 2.
Using (A.96) one moreover checks the Fj; variation of the scalar superfields and one
obtains that
ES (M +44T),) =0, (A.101)
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so the module R(Ag + 2A3) C Tj do not mix with lower level module and one can write a
direct sum, which proves that one has only direct sum in (A.95).
This provides a non-trivial consistency check that L(A1g9) C 7o with

L(A10) = R(A10) ® R(2A2) @ ... . (A.102)

We have also obtained that there is no R(A4) in 7y, consistently with the property that
it belongs to L(A4). In terms of the decomposition of 7 given in (2.6), we have checked
that R(A; 4+ A1) is not part of L(Ajp) but is part of 73 so that Do # 0. This is not in
contradiction with our claim of a homomorphic image of L(A1g) in 7o.7

B Representation extensions and cohomology

In this appendix, we take a slightly more formal look at the indecomposable structure of
ggi\j as described in section 2.1. In particular, we spell out the sense in which the cocycle
Koo 4 is an element of degree one in the Chevalley-Eilenberg cohomology of ¢11 in a certain
module. We shall return to the conjecture that L(As) = R(A2) in this context at the end.

Generally, an extension of the adjoint of ¢;; by a module R to an indecomposable
¢11-representation e1; @ R is determined by a linear map™ K : e;; — Hom(R, e11) such
that the action of t* € e on ¢11 @ R is defined by

1 (gpt” + X5t7) = gpfy — K(t%)(X5t7) — XgT7517
= (@pfy = XK, )1 = X5T0517 (B.1)
where we denote the basis elements of ¢;; by ¢ and those of R by t7 and have used
arbitrary coefficients. The notation is motivated by E7; exceptional field theory and (2.9).
The matrix components of the map K (t*) € Hom(R, e11) are written as K%, and these

off-diagonal terms go beyond the ¢1; action on the direct sum of the two modules. For this
action to define a representation we must have

2 AP (907 + X5t7) =17 [ (63775 — X5 K75 )0 — X5T775#7] — (a5 )
= (G D5 f 0 = X [ K5+ X5 TPt
+ X TP T4 — (o B)
= (03 P5 10 = X5 [P KT — X5 fRTA (B2)

for all ¢, and X5. After renaming dummy indices, this leads to the e Jacobi identity, the
representation property

T Ty — TP ;705 = (0,17, (B.3)

"We thank M. Cederwall for discussions related to this point.
K is only a linear map, not an e;; homomorphism. The target Hom(R,e11) is the space of e1:-
homomorphisms between the modules, however.
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on the module R and the identity
BN RN SO KO8 _ ed 3 KP8 = —pob (B.4)

that was already given in (2.10b). The linear map K is only defined up to a choice of basis,
such that

Koy = Kb, 4 Ta&BKBB + fOKE (B.5)
in the basis #'% = t& — K%4t# with
Bal® + Xat® = (¢ + Ko X5t + Xa(t® — KOt%) = ¢t + Xat'*.  (B.6)

This can be reformulated in the language of Lie algebra cohomology [162] as follows.
Rewriting Hom(R,e11) = R ® e11, where R is the dual representation to R, gives us an
interpretation of K as a map from eq; to the e;;-module M = R ® ¢1; and therefore as an
element of degree one in the Chevalley-Eilenberg complex H(A®(e11), M). The nilpotent
differential on this complex is defined for an element f of degree n by (hat means omission
of the corresponding argument)

n+1
df(xl, ce ,CL‘n+1) = Z(—l)H_liﬁi : f(xl, e ,.Cﬁ'i, e 7~Tn+1)
=1
+ Z(—l)i+jf([xi, .Z'j], Llye--y 9%2-, cee ,:i‘j, ce ,:L'n_H) > (B.7)

1<j
with - denoting the action on the module R ® e11. The cocycle condition for an element K
of degree one means therefore
dK (z1,22) = 1 - K(22) — 22 - K(21) — K([21, 22]) 0. (B.8)
Writing this equation in a basis with K (t%) = K®%¥st5 ® t? leads to
KPe (TQB&EB ®t5+fa5ﬁd®t7) — K% (T55&53®t5+f5575d®t7) — fOPS KO tstT =0,
(B.9)

which is equivalent to (B.4).

An exact cocycle of degree one in the Chevalley-Eilenberg complex is the differential
of a degree zero element A € M, viewed as a linear map from the one-dimensional vector
space A%(e11) 2R to M = R® ey,

d\(z) =z - \. (B.10)
Writing this element as A = K¢ 57?& ® t?, an exact cocycle expands in components as
(%) = 1% K%la 017 = KOgT P15 068 + [P KOsi5 0 07, (B.11)
which means we have to identify
K% ~ K% 4 T K5 4 fo75K% (B.12)

in agreement with (B.5).
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The existence of the tensor hierarchy algebra 7 (ej;) gives the existence of a non-
trivial cocycle for the case of R = R(A3). We see directly that condition (B.8) is satisfied.
To check that there is no trivialisation K%, one can resort to level decomposition: the
structure constants are invariant under the Levi subgroup L C FEj; associated to a level
decomposition, and one finds that the irreducible representations of L in R(A3) do not all lie
in e1;. Therefore no K%, can trivialise the cocycle, given that by Schur’s lemma there are
no non-trivial homomorphisms between non-isomorphic irreducible representations of L.

It would be interesting to investigate which representations can be added indecom-
posably to the adjoint e1;. There is a non-trivial cocycle mixing e;; with R(nAz) for all
n > 1. They are direct generalisations of the Virasoro extensions L,, of affine Lie algebras.
To prove the existence of these cocycles, one defines an algebra U, (e11) D ¢11 @ R(nAsg)
extending ej; for any n > 1 using the local algebra construction [161]. The local algebra of
0, (e11) is defined in the branching under ¢g @ s[(2) such that the grading is the eg central
charge, with

Uy (e11) D (20R(Ro) 1) " @ (0@ (L) @51(2)) " @ (20 R(Ag) s 2@ R(Ag), 1), (B.13)
and
(=1 (0) (1)
e11 D (20 R(Ag)s) @ (eo®sl(2) @ (2@ R(Ao)-3) ',
R(n2) > {L)® @ (2© R(Ao), 1), (B.14)
such that the subscripts w = —% or n—% are the eigenvalues of the eg derivation d = Lo4w

on the highest weight vector. One moreover checks that the commutation relations are
uniquely fixed by solving Jacobi identities.” Preliminary checks suggests that there might
be many more possibilities, and we have evidence for a non-trivial cocycle mixing e;; with
R(2MA410).7

In the context of the tensor hierarchy algebra, our conjecture is that for a/d\j we have
L(A2) = R(A2). From the analysis of the tensor hierarchy algebra in GL(3) x Eg we can
show that there is no R(2A2) inside adj, suggesting that there is no R(nA3). The structure
of the Virasoro algebra indeed requires that if R(nAsg) is present, all R(mAs) for m > n
must also be. It would be rather disturbing to have such an infinite sequence with a gap
between R(As) and the first occurring R(nAg). Moreover, we have partly checked the local
algebra construction of 7 (e11) based on the degree zero component 2 (e11), which would
prove that none of the R(nAg2) with n > 2 appear in Ty. Nevertheless, the statement
L(A2) = R(A2) remains conjectural.

™One can combine all modules with n > 1 to obtain an algebra Ui (e11) D e11 @ (@n>1 R(nAz)).
Performing a level decomposition of the latter with respect to the grading element H,,, the degree zero
subalgebra, is eg @ (@m>0
algebra [Ly, Ln] = (m — n) Lymin.

"SWe have checked that it is consistent with the positive Borel subalgebra by C e;;. For discussions of

(Lm)) @ sl(2) where the Virasoro generators L,, with m > 0 satisfy the Virasoro

Lie algebra cohomology for Kac-Moody algebras see [163, 164].
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C GL(11) formulae

In this appendix we collect some relevant reference expressions for the GL(11) level de-
compositions of the various objects of Ej; exceptional field theory. The GL(11) level
decomposition of E1; was originally studied in [59], see also [64, 101]. The extension to the
tensor hierarchy algebra 7 (e11) and in particular the field strength representation was given
in [13, 58]. E; is generated by the level £1 generators E™1"2"3 and F,,nyn,, respectively.

C.1 FE4; transformations

In order to describe the adjoint of e¢1;, we introduce formal fields that are not projected
to the coset component, with a + superscript for positive or null GL(11) level and a —
superscript for negative level. More specifically we need to describe the indecomposable
representation adj, so we define this formal field in 7_5 as explained in [58, eq. (4.30)]

~_ 1 1 _ 1 _ _
¢ata = ...+ ghﬁlmn&anl...ng,m 4 aAzl'“neiFnl...nﬁ + §A711n2n3Fn1n2n3 + hmenm
4 %Aqt Enlngng, + éAJr E_'n1~~~n6 + thr Enl...ng,m (Cl)

ninans ni...ng ]| ni...ng,m
1

Jr8!

_ 1 _ 1 _
Xm.anEmmng + gX"I~-~n107p1p2Emmmo’plm + @an-unu:mEmmnn’m T
Under the Fq1 generator

1 1
A= Eramens 4 gunonsp (C.2)

genlnzng 3'

these components transform in our conventions as [58]

AR = 5 f {manans gnansmy (C.3a)
SpA™T0 = 90 flrinans gransnie] | %eplmqhﬁl"'%mma (C.3b)
SIS = Ly ATITEOPIPRTS g g prbanap] (C.30)

5Ah;:m = %enplmAT—nmm - %fmplpzA:mm
- %@T (eplpzpsAZipopg - fp1p2p3A;_1p2p3) ) (C.3d)
R L R T (C30)
OAAR, ng = 20€(n, nong A e — %fplmhgl__nﬁplpw, (C.3f)

NS, g = 56€ mrmams Ay o (C.3g)
AKXy g = —%fplmpi‘Xm..,ngm,m + [P X ngpipaips — 28€[nimang A, gy T

(C.3h)

where (nj ...nx, my denotes the projection to the irreducible representation of Young sym-
metry (k,1).
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The derivatives 9y belong to the R(A;) module, see section 2.2. Their level decom-
position was first analysed in [2], see also [65]. At lowest GL(11) levels they are

8M — (8”“ anlng; 8n1...n5; anl...n7,m’ anl...ng; N ) ] (04)
Under the Fq1 generator

1 1 1
_ n1...ng,M ;N1...n8,M n1...n6 n1n2mn3
T=_—¢ MmE 4 *enl...n(;E + §€n1n2n3E

8! 6!

1 1 1
+ ?fnannSFnlngng, + @f’nl...naFnlm’RG + gfnlmn&anl.,,ng,m (C5)

they transform in our conventions as [58|

1 1 1 3
5T6 = Qemnlrmanﬂ12 + gemnl...ng) gt 4 ﬁemn1...n7,pan1mn7’p+ ﬁemnl...n7pan1mn7z7
5T8n1n2 — fn1n2p6p+é€p1p2p3 o"1n2P1P2p3 +%emmp5qan1n2p1--.p57q_‘_ T €p1..p6 omin2pi---pe
Sy = 10f[n1n2n3 an4n5] _ f”l"'"5p8p—|— %ep1p2qan1---n5p1p27Q+ éeplpﬂ?:‘s Hn1--N5P1P2P3
6Tan1...n7,m _ 35f<n1n2n38n4...n7,m) _7f(n1...n6 an7,m) +fp<n1...n7,m>8p
S8 = _7f[n1n2n36n4...n3] +7f[n1n6 8n7ns] _ gfnl...n&pap’ (CG)

while they transform under gl(11) as tensors of density weight % For instance, one has the
gl(11) transformation with A - K = h,,," K™,

1 1
OnkcOm = han?0p = ShpPOm + .., Op ™ = 2h, M o2l — SO L (CT)

and similarly for the lower level components. We need these components to write the
potential terms (3.11) and (3.30b) in GL(11) level decomposition, this is why we give them
explicitly.

The FE7; transformation rules of the components of the field strengths F I'in 7_1 un-
der (C.2) are given by [13, 58] (see for example [58, table 3])

1 1
GpF™" = §fp1p2(m]:p1p2n) - éempzpa}—plpng(mm) ) (C.8a)
ST, 1m2ns — _3fp[n1n2]:mpn3] + prmz [n1 872 Fpy o nsl _ é€p1p2p3fmn1n2n3p1p2p3
— g FI2PA 257[21 emmq}-nzns]plpz,q 7 (C.8b)

1
a m __ a mpip2 _ m T p1p2p3 rm,p
OAFnins Ep1pa[n1Y ng) 9 eplpzpsé[m n2] €pnina ’

1, 1 m
_ 5f Ll - §fp1p2p35[n1"rn2] (C.8¢)

P1p2p3 >

1
OATninangng = _66p[n1n2]:n3n4]p_ gfplmmfnmznsmmpzps ) (C.8d)

"The last two field strengths transformations were not given in eq. (4.37) of [13], and here we choose to
represent Fp,...ng;m = Fni..ng,m + Fmni...ng i the reducible representation.
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1
5A-Fn1...n7 = _35e[n1n2n3fn4...n7] - 5fp1p2p3fn1...n7p1p2;p3 ) (CSG)

1
5/\‘/—-‘7’114..7110 = 4e[n1n2n3fn4...n10] +Efplp2p3‘/_:p1 [nl...ng,nlo]pgpg Y (C8f)
6Afn1...n9;m = _28€[n1n2n3fn4...ng}m_246m[n1nzfn3...ng] (CSg)

1 1
__ _ fp1p2p3 _— fP1p2p3
2f ]:m.-.ngpupzpsm"" 18f ‘mengm;mmm

P1p2P3
+f ‘7:711---719171172?17377” ’

135
5A~Fn1...n1o;p1p2p3 = 15€p1p2][n1]:n2.--mo];[p3 - Tem}[n1n2~7:n3---n10}[p2;p3 + fripaps ( . ) > (C-8h)
55 .
5/\}—”1...”11;%(1 = ?ep)[mnz"rn:a---nu];(q+fp1p2p3(' - ) ) (0'81)

where we use the notation that two sets of indices separated by a semi-column are in the
tensor product of the two respective antisymmetric tensor representations, while two sets
of indices separated by a comma are in the biggest irreducible component of the same
tensor product, excluding further antisymmetrisation. For example, F™" is a symmetric
tensor while F,,  ng:m includes both the hooked irreducible representation (9, 1), written
as Fn,..ng,m, and the antisymmetric rank 10 tensor, written as F, .n,,-

We also need to describe the module L(Ag), which we write with an auxiliary field
strength GI. The first components of GM: € R(A3) C L(A3) are

G]V[S = (Gnl...ng§ Gn1...n9,p1p2; cee ) ) (Cg)

and they transform under (C.2) as

1
_ _ = rp1ip2p3 _ _ P1P2D3
5Gn1---ns = 2f Gm---ﬂsm;pzp:s ) 5Gn1---n9;p1p2 = 9€p1p2[n1Gn2mn9] + f ( .- ) .

(C.10)
C.2 Field strengths and gauge transformations

An important role is played by the tensor CTM ~ arising from the tensor hierarchy algebra
since it defines the field strengths out of the currents according to (2.36). To display the
components CM ~ it is convenient to write the linearised field strength

F({in.) = CIMaanba + CIM&QMXd + C’IMA(?MYA + CIMK({?MYA , (C.ll)

in terms of the field gba = (¢*, X%) and YX, where we use /¢ = Oy X% and CMX = 8MYK
to simplify notations. These linearised field strength F(}, | are given by [13, 58]

=5 1
FR = 0N 4 GO ) A e £ (C.12a)

""The last two field strengths, the 9™1"*5 terms in (%)f,(,lfln, ‘_),m7 and the 9P? terms in (%U-',(Llli?',)ng;m were not
given in eq. (4.36) of [58]. Note that there is a typo in eq. (4.36g) of [58] where the correct coefficient of
the last term should be ‘;—? instead %9, Note that the tensor CT™ , defined in this paper agrees with the

one defined in [58] for A valued in R(A1g) which is all that enters here.
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(?)szil:)gm = PR A Sa[mmhmn;ﬂ + %anmzn;splpzAmplm

1 1
+ @an1n2n3P1P2p3p4,qAmp1p2p3p4q — §8n1n2n3p1p2p3p4p5 Amp1p2p3p4p5
+ §5[”1 (3”2qhqn3] - 13712"311)11)21)3Aplpzps - gransPL P AL
9 m 6 25!
1
+ 6'8mn3}p1...11)6‘,41?1.”])6) +..., (C.12b)
=3 in 1
G )fr(zlﬁ)gm - 28[711 hn2]m + 0™ Apynop + 563111 o An2]p1p2 LR (C.12¢)
=1 in 1 1
= ).7'—,(,111:').,”4 = 48[m1 Am2m3m4] - iananAml-..mz;mnz - ﬂamm%hml~~~m4n1~--n47n5
1
+ 56"1"'n5Xm1...m4n1...n5 +., (012d)
1 1
(i)fﬁ?:?.m7 - 7a[m1 Am2...m7] + 0™ hm1-~m7n1,n2 - iaanXmlmm7”1”2
1 1
B EanlmnsXm1...m7n1n2n3,n4n5 o ﬂammnsXml---m7n1--ﬂ47n5
1
— ﬂanlmr%ynu...m7n1...n4,n5 +..., (0126)
3 B 1
(E)fgir?:?ng;m = 98[711 hn2...n9],m + aanL..ng + §aplp2A"1--~n9:mp1p2 (Cle)
+g(aqu +orIX )+iaqu
10 pny...ng,mq pm[ni...ng,nglq 15 n1...n9M,pq
27 1
+ 2 (aquPan..ng,m + 8ququ[n1...ns7n9}) + %aqunl.“ngmp,q
9 7
+ % (8pqy;)qn1...n9,m + 8quanm[n1...n8,n9]) + %aqunL..ngmp,q +..,
(5>‘Fr<7111?:.).m10;n1n2n3 = 108[m1Am2...m10Ln1n2n3 + 3a[n1\Xm1...m10,\n2n3}
3 3
5 0m Xms miolnz.na] 5 0ms Yms.msofnang) - (C-12¢)
(ﬁf?(?lz;.).mn;n,p = 110, Biny..misinp + 20(m| Cry i )
5) 1
+ 500 X man o) + 50w Y + - (C.12h)

Note that compare to [13, 58] we find convenient to use the reducible field strength
GFn) o = GFm 4 CFn) | instead of its irreducible components.

We now write out the linearised gauge transformations of the coset potentials using
the coset element (7.15) together with the linearised metric gmn = Mmn + Np(mhn)P. We also
present the corresponding formulas for the lowest level constrained fields (7.18) and (7.19).
According to (2.61a), these gauge variations contain the tensors T L %, v and T4 N

1
5§hnm = 8n§m—8mp/\np+8m§n —8np)\mp—|— géﬁaqupq+. . (C.13a)
1
5§An1n2n3 = 36[711 )‘nznﬂ +§8p1p2 Aninanspips +38[n1n2‘§n3} te (C.13b)
5€An1"-n6 = 68[711 )‘nzmne] —oPpe 5"1"'”61’171’2 +oPrpe )‘m--'nb‘mpz Ty (0.130)
6§hn1~~~n3,m = 88[m§n2__,n8]7m+248<m)\nQ.,.ng,m +-ee (Cl3d)

- 117 -



5£XM;n1...n9 = 248M8[n1)‘n2---n9] —Enl_._ngpanapfq—i-. . (C.lBe)

1 1
6§XM;m1~~m10,n1n2 :5m1--‘m10paM <ap)‘n1n2+561[0n18q)‘n2]q871171251) 5 [m n2 qf )

(C.13f)
1

5£XM;m1...m11,n = Esml...mllaM(ap)\np_ npgp)+- B (Cl3g)
1

5§CM;m1...m11,n = _isml...mnaM(ap)\np+anp£p)+- cey (C].Sh)

where indices are lowered and raised with the Minkowski metric 7;,,, and we distinguished
&ny.ompm from A, e at level 9

We finally write the first components of GT appearing in (7.29) that defines the tensor
o wa through Gam = C’IMa MNg <;3°‘ ™ The components of GM: € R(A3) are given
by [58]

Gglln >ng = éq(hm---ns,q + Xm---nsq) - 285[n1n2 Ansmns} - 565[n1mn5An6n7n8} (C.14a)
+ 8a[n1-..n7lvqhns]q - 248q[n1---n7hns}
Gglln )ng,plpz Op1ps Xny..ng — 0" Xy . mgmpips + 20" Xy ngmipr,pa] T - - (C.14b)

while the highest weight components in R(A1+A19)® R(A11) are combined in the reducible
tensor

égzli;'.).nm;m = 105m[an2...n1o] B épXm---nlmmp B 25pXﬂ1~~-n10[P7m] T (0‘15)
where we only give the components cl wanMNON XS at level %

C.3 Bilinear forms

One defines the following invariant bilinear forms. The Killing-Cartan form expands as

Haﬁ(pgq)‘ﬂf' — h-l-nh-i-m . 7h+mh+n + A+ Amanzns

3 ninans

+ ‘A+ A6 2 pltnEm g (C.16)

6 ni...Nne 8‘ ni...ng,m" "—

One can also check that the K (FE1;) invariant bilinear forms on R(A1) and 7_; respectively
expand as

1 1 -
77MNaMaN — nmnaman+ 577n1p1 Nnaps amnz aplm + gnmpl . ,nnspsam...% apl...po

1

+ ﬁnnlpl e nn7p777mqan1...n7,m8p1...p77q+

1
ﬁ/,flnlpl e fr]nspsanl---nsapl---p8 +... ,
(C.17)

"®Recall that there is no direct use of this field strength Gl =T M;;MM N JN® in the theory, but it is

simply convenient to use G{Hn') to write the components of the tensor CIMA
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and

1 1
Ind _ F---1105P1P2P3 P1N1...NY;N10P2P3
WJF Fl=..— 7']:n1...n10;p1p2p3 - 7']:711~--n10§1’11721?3]:
3 - 10! 2-9!
1

. 1 . 1
+ fnl,..nll;m,p]:nlmn117m7p + gfnl...ng;mfmnlmn&ng + ﬁ]:nl...nrrrhujw

11!
1 1
+ Efn1~"n4fn1.“n4 + §fnln2mﬁlln2m - anpfnqq
4
+ 6]—’”4 [nannan4]n1n2n3 + f_‘mm]:‘mﬂ ... (C18)

We have the Eq; invariant symplectic form

Q[JFIF/J
7i ni...n11 lf mf/ —lf mf/ _.F J—_'/
- 4!7[5 G- ™Mn2 ng..nipmo gY mm n2..M10;N11 ningngnaY ng..ni1
1 F p1p2p3]:/ 1 F p1p2q]:’ 1 ]:map]:/
—@ ny nz...n11;p1p2p3+@ q m..-mo;nnmm_ﬁ n1---n11;m7p+"‘ ’

(C.19)

where we included in the ellipses the terms with F and F’ exchanged that can be deduced
by antisymmetry of the symplectic form.

One compute that (A.28) is satisfied at this level provided the K (FE7;) invariant bilinear
form 777 expands as

~ ~ 1 1 .
UijIGJ — anl...nanlmnS + 2‘79'Gn1.”ng;ppoGTLl...TLg,plpg
L A - : 11 - . ,
— TOIG”l---nm;me'”mo’m + 4'710'G[mmnm;m]Gm...mo,m_ (C.20)

This exhibits in particular that the module L(A3) must indeed include R(A1+A19) D R(A11).
We note also that the coefficients of the irreducible components of the bilinear form 7;; are
not all positive, it is positive for R(A3), negative for R(A; + A1o) and positive for R(A11).

C.4 Closure of gauge transformations on the dual graviton

Here, we shall verify the first non-trivial component of the identity (2.54) in GL(11) level
decomposition and show how it relates to the closure of gauge transformations on the dual
graviton. The first non-trivial component of this identity in the GL(11) decomposition is
when T is at level % and it corresponds to an eight-form. Let us write it as it appears in
the closure of the algebra of generalised diffeomorphisms

haCl 5T QO NP 00N E? = ha (fo7, T pTsN g =201 T°N ) )€ On0n e, (C.21)

in which case the level % component I of ¥ MI~ corresponds to the Stiickelberg gauge pa-
rameter X, ,,, .ng that allows us to reabsorb the dual graviton field in a redefinition of the
constrained field Xm:n,..ng-

For the left-hand side we observe that

C’]PETﬁMQﬁpﬁM&Q = cfpggpagha, (C.22)
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where we have introduced the notation
65 he = TM vy e, (C.23)
so for the eight-form component one gets
968 (hnynsq + Xnynsa) = 28X n1ng0g Ang.mg] = 56X n, 508 Angnrn]

+ 8€ny..nel 008 ) — 24Nglny. ng O D

= 8(§qa[n1 (éng...ng],q + 3)‘n2...n8]q) - 21)‘[n1n28n3)‘n4...ng] - 21)\n1...n58n6)\n7n8
+ (g[nl...nﬂ,q + 3>‘[n1...n7\q)ang]£q : (024)

q
ng]

Using then the eight-form component of C'fN *Onha
O A1 1185 (C.25)
one obtains for the left-hand side of (C.21)
LM = RS €030, (6 gl + s nla) + G + B i) O I
— 21\ (1119 Fns A ] — 21Am,,.n5‘amanﬁxnm8) . (C.26)
For the right-hand side of (C.21) one first identifies
PP e T pEPTEN QE? = =dery (8ers (Tp)R)EM X 061, (T7)EN (C.27)
and we expand this component for M = m and N =n
Oe1y (0ery (Tg)R)E™ % 0oy (T7)€"
= e, (e (KO I)E™ X Gy (KPQE" — ey (e (P )NE™ x by, (K )E"

1 m n
+ 65e11(5e11(Fp1p2p3)h)f X Oeyy (Epypops )" + - -
n m 1 T m
= Oexy (0o (KT R)E™ X & 4 5 0er, (e, (FMH2)R)E™ X Agugy + .
1 n \nLm r
= _ﬁ(‘seu(K QRPN e 3y prr) X &1
210y, (FP 02 ATPIPO0 e X Agugy + - )
1 n r m 7.mn, r
B _ﬁ(h PLPTT (Epy o oprr T+ 3Apyprr) X & A TR PTG, e v+ 3Apy L prr) X €
A+ RTPEPINE e A BApyppr) X € — 3 X 21Bmpl"'p5[qlq2’n})‘pl-..ps X Aqigo T - )
(C.28)
Then one uses that
ha TN E? = 0y, ()EY (C.29)
to write 1
5e11(h)§n = _ﬂhnplmp%r(gm...pmr + 3)\p1...p77’) 3 (C'?’O)
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for the second term. Combining the two terms in the right-hand side (C.21) one finds
indeed the left-hand side (C.26) as computed above.

This shows in particular from (C.26) that the 3-form and 6-form potential gauge trans-
formations do not close on themselves on the dual graviton field at the non-linear level,
but they close up to a Stiickelberg gauge transformation of parameter

mens’m = —21)\[n1n2|8m3n3)\n4_"n8} — 21)\n1...n5|am6n6/\n7n8 , (0.31)

that does not affects the dual graviton field strength. The same is true for the commutator
of a dual-graviton gauge transformation and a diffeomorphism, with

an...ng,m = fqama[nl (§n2...n8]7q + 3/\n2...n8}q) + (f[n1...n7|,q + 3>‘[n1...n7|q)8ng]am§q ) (0'32)

similarly as in the vielbein formulation [60].

C.5 On the cancelations in the pseudo-Lagrangian

In this appendix we illustrate the general proof of section 7.1 by showing explicitly how the
cancelation (7.13) occurs for k = 3. The case k = 3 is particularly relevant to construct
the dual graviton Lagrangian (8.8) in section 8.2.

We expand the terms in (7.13) for k = 3, using (C.18). From the kinetic term we find

kzog £k1n|k - (;fm@m}"mmm — Fom " F"P), — ;fnl.,,ngp;qu'ngq;p) . (C.33)
The potential term (7.9) gives
Lpoty |3 = _%mw m"™" IO T + ;mm e T QT Ly T T
=-3. 8,F 99™" Tripy...ps,gTnP P
+ 35 8,F 99" (Tasmpn.oprr T P77 = T TP 4779

k7[711’712 ng jnhnz n97f1+

28!

_ﬁﬁ( i Tams. n&pjpmlm”M) (C.34)

Finally, using (C.20), (7.27) and (7.28) we compute

=

q;n1...n8,p PN N ni;ng...ngp
£P0t2|k:3 9.8l (jpynl nquj + 2:7[n1 in2...ng],pX + Xpini..ng X ) )

1
£t0p|k:073 = _4 i 9!E’Jlenllfnlnzs(‘F’n;;...nll,s + 9Fn3...n11s) . (035)

Combining the results for £ = 3 given above allows us to check that

2£kin|k:3 + »Cpotl |k:3 + [fpotz |k:3 =0, (036)
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as proved for all k£ > 3 in section 7.1, such that the sum of all terms gives O3 as in (7.13)
ﬁkin‘k 0 + Ekin|k:3 + Epot1 ’k:3 + £p0t2 |k:3 + Etop’k:073

1 1
1

_ ni...ni11 V4
4. 8'6 ]:anLQ fpng...nm;nu

— 0. (C.37)

‘Fnl ...ngp;qfnl 'TLBQQP>

D GL(3) x Eg formulae

Many details for the Fg decomposition and the tensors appearing in the tensor hierarchy
can be found in [13]. We recall the salient features here and refer to table 4 for a summary of
the representations. We use the conventions and the explicit projectors onto Ejg irreducible

representations of [119].7

D.1 FE;; transformations

In order to describe the adjoint of ¢;1 in this basis, we introduce formal fields that are not
projected to the coset component, with a + superscript for positive or null level and a —
superscript for negative level. These transform under the adjoint action of the elementary
level 1 ¢11 element

A= fRF} + el EY (D.1)
as

SahfY = et ALY — fRATY — 61 (e AL — fRATY) (D.2a)
OA®L = fap el A — fapC fEALY (D.2b)
AASA = —et bV + fOApelal — f3BAP — fABcfpht O, (D.2c)

1
oaBiME = 28P P e, AT + i Renef A+ 13 (), (D.2d)
Oahiy = —feee(ALC + fR(-..). (D.2e)

To write the relevant structure constant components of T E; and K adﬁ we introduce a
more general element

1
Y = fAF} 4+ kKP4 ka KA + e B + 53 ERBERL + 2,0 E" + eff ,ERY,  (D.3)

and the formal field X% in L(A3) with the indecomposable transformation
Sr Xy = k" Xy + X0 + 1)) + et — 2eih, AV
S X[, = =2k, X[, — [CBke X)), — 260, X,) — o el AG — el ®p — 2e5,hy)”
+ fB (X}I?VB;' s ) )
5TXAB _ 3]45[ pXAB +2fC DkCXB}D Ge [A +f [A ‘C|B 1D

uvo uvo [ vo|

—2feptep) AL

+ fABC (26[%3”0] + 2I{DE€[M5AU]) + fg,( .. ) s (D4.)

"We here use capital latin letters A, B, C' for the adjoint instead of lower case.
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where X flf, is a reducible antisymmetric tensor in AB. It is not the only level 3 component
(see eq. (A.92) for the exhaustive list), but the others structure coefficients do not appear

in the topological term.

The module R(A) of derivatives transforms under ¢;; as

570, = €;0a, (D.5a)
5A8A = fza# + ef@jB + fABCefﬁg , (D.5b)
1
570k 5 = 14PCP 4 fh0p + EHABHCD fhop +ef(...), (D.5¢)
1

= §!;“’3(’”‘,@5)0 +eB(...), (D.5d)

which determines the structure constants 7% 5. More specifically, we need the transfor-
mation d¢0y = —P T )On for the coset element ®, in order to write the potential

terms (3.11) and (3.30b). One computes that

620, = ((hf - ;5,%,70) <h,,” - ?{;hﬁ) +AL AL+ iBﬁfégﬂg +4B,,,B"° +2hﬁal_ﬁ{’> d,
+ ((h,y—;qzh;) Af— AR AP AC Dt BAP A+ fABchgyA“B> O
5304 = (F7AFPP 50n— [P Al 4+
+ANAD+ AD AR+ 68 AG AL — FEP o fap® AC AY,
A 50 (L BEF Bl b2, R )+ (1B Bl + 4B B 4205, T ) 65 )0

1

_ _ 1 _ _ —
+ ( OB DoAY+ AY (h,,“ — 26{,%0") - ihy”A‘jl+A,’,3Bf‘”B — fa® APRY, ) o (D.6)

where we keep track of the ordering of the fields to recall on which term the derivative acts
in the potential terms. Here we used the notation that

Al =oapn"A] . B = dacdspon' 0By, Y =0dapn 7 h,. (D7)

The dual module of gauge parameters can be obtained by invariance of the bilinear
form

1. .
MOy = €10, + 204 + ﬁAf}Baﬁ;B + 4N, 0" + 26101 (D.8)

The transformations are simply obtained by using that the two modules induce the same
K (FE11) representations.
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The field strength F! in the representation 7_; decomposes into components that
transform as

oaFua = e, Fap+ el fap Fut — fagC fEFL, + faFuu, (D.9a)
OAFu® = =2e, Fy)% + 26,00, F,)) — fAFm — 21400, F,, (D.9b)
OnFl = =€) Fu’ +2f P oel Fyp+ £2(...), (D.9¢)
ONFw = eoFua + £5(...), (D.9d)
1
5AFAB = <14PCDAB + 4HABI€CD> fg’FuD + 65( < ) ) (Dge)
1

and the auxiliary field strength G7 in L(A3), have components in R(A3) transforming as

0ZG =—fhGy,  0G) = —e)G+ fRGREP +GEP), (D.10a)
06G1iP = e, GJ =3¢l G — for® AP pel,Gh + fE(...), (D.10b)
O7GHE = 2e(1GD) + for® FAE peG,GD + f2(...) (D.10c)

where G4;P belongs to the 1 & 3875 & 248 & 30380, with
GaB =GP + GAP + kPG, (D.11)
while Gﬁjf belongs to the 1 & 3875 @ 248 with
GEB = G5 + k*BG,, + fABGE . (D.12)
D.2 Gauge transformations and field strengths

In this section we give the linearised gauge transformations and field strengths. We intro-
duce the notation that bar fields or derivative are understood to be conjugated with the
background M matrix as

5# — nﬂvay’ 5/—1 — 5AB@B 7 5;13 — 6AC§BD77MV86D ’ gu — nuyéu ’ (D13)

and in particular the level % derivative 5# should not be confused with the level —% deriva-
tive d,,.
Using this notation, the linearised gauge transformations of the eq; fields read

1 . . 1. .
Sehyt = 0,6" — ﬂaz,BAf}B — 40"\, + 20460 + 20, (an“ + ?GZBA;‘B + 86“>\U>

+ %€, — %5;13&;13 BN+ 200E, + . (D.14a)

5e®a = (fanC — 6apfP%p) (_80/\3 _ %85[,)\5/3 + 28555) +... (D.14b)
Se Ayt = 0N+ 0pNyE — fABCOpeT + 04, + 0P g — fAPc0Ap + ... (D.14c)
0eBial =20y, 07 = 200,P8, + ., (D.14d)
Sehiy, = 200,80 + 200,60 + - - (D.14e)
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whereas the ones of the constrained fields y ;% = 0y X® are defined by the variations of
X% as
0¢ X, = 28,45;? + 25;?5% — €MVU(E)V§U +
A A AAF A0 A _ AA
6§XMV = —28[Mfu] + 28[#£"] — e (0PN = 07E°) + ...,
0e X8 = —9¢,,,0N\B . (D.15)

uvo

We define the linearised field strengths in the same way as

%f;fyi 36[MB1/0] ’ (D16a)
Gy =20, hi) o+ 00 X[, (D.16b)
(%)’F.LW — Qa[MAA} aBBAB fAB opX ;w :

(Q‘F/J,;l/ :8HXV+8AXuV_aAhM,y (D16C)

GF” =20),h,)7 + %éﬁwég‘f +40° B, +205 X, 4267, <8AAV] += QZBBV]p +89°B,, )
GFua= 0,0+ fap“0c AL +04X,

42 FanC OB~ i (Wl + X0~ Fan oL, ~ XE) .. (D-16d)
FF = (14PCDAB+111,<;CD,{AB> Oc®p =204 p)+ 7 A fEB"0c®p),
CF =0, A% —0ahy” —04p AL — fapC 0L Al — *5nyCAan)C+5VaABA (D.16e)

, 1 ) )
COF S =0, BY] 204 pho V]—25[“<(14PCDAB+4/¢ DHAB>8 lop+ pOP A(?B])C ),

(D.16f)
SUITE (14PCDAB+ le’iCD/fAB) (0c A +0p®p) 204 ghut — fOP (Aé%)C(I)D ;

(D.16g)
GIFRY = 9y bl —20% ") + 5007, DB +40M) D 4 +3FBC 404 ®¢), (D.16h)
F g =200 Al =20/, @ g+ [P 14005 P D — éfABCégD@D+éfABCa“<I>C, (D.16i)

which determine the coefficients CM o+ One obtains the coefficient CI™ , up to a normal-
isation constant using the same construction as in appendix A.2, by proving that there is
a unique highest weight vector in the module R(Ajp) and a unique highest weight vector
in the module R(2A3) of the form Y, = Q7 ;C™ 9y, F”7 given together by
Vap=0u(F i =l p) +0c ((14PCDAB+1HCD’€AB) SFL =P Fep >

(D.17)
Moreover, it follows from (A.96) that the coefficient C'* , for the irreducible representation
R(2A3) is non-zero. This allows us to extend the proof of (A.48) to the submodule R(A19)®
R(2A3) C L(Aqo).
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In this paper we also need the structure coefficients ol ma that are conveniently com-
bined on the auxiliary field strength in L(As3)

Gl =l - MMN gy~ oT oM e (D.18)

The R(A3) component G of GI can be defined in the linearised approximation as
G=0"X,+0"®y—20 A + ..., (D.19a)
Gi =" (X}, —hit )+ 04X, + fpc?0P AT — 200, + 9B ®p — fAPO 0 + ... .
(D.19Db)

GiiP = 20X [) — fpc?0° BEP — 40, AL — 2fe PP o AL + 2 fopl4a))C AL
+ 8[“ X, — 48 Ca{;}xy] (D.19¢)
Gl = 2045, + for” PP pdChE, — 2fep'*0)) AL . (D.194)

At level %, G also includes components in R(A; + Ajp) starting with GAB L » components in
R(A1 + 2A3) starting with GW and components in R(A; + Ay) starting with G’ﬁy that are
given by

G’Z‘VB = 25(AXB)+fCE(AfB)E' 5CXD —fep AacBB )D —2fep Aa[ )C Au] (DQO)
_48[(A B) 2fCE AfB DaCA v] 8[“ v
4 2 8 _
AAQB AB aA AB
:fBC 8 X/U/_gaBB/“’ —ga B 48[“ } ga[u AI/}B_ 8[ ]—QfBC 6NAV],

where we have combined Gﬁf = Gﬁf +rABG,

D.3 Bilinear forms

One defines the following invariant bilinear forms. The Killing-Cartan form expands as

KPDIDL = hivnfh — h;#hj” +rABOL DL + 24314

+ 1 4B S BEAR 4B B+ 2h MR 4 (D.21)
One can also check the K (FEj;1) invariant bilinear form on R(A;) and 7_; respectively
expand as
N oo = 08,0, + 6489408 + ﬁa“‘c 58P, 04 0%
+ 41, 01 + 26487, 04 0% + ... (D.22)
and

1
UIJFIFJ — 577uanA770HFuVUFp)\H _ nMVF,uJUFI/pp + nMV(SABF,uAFyB
1
+ 1 0B F Fy 4 00 F i Fyyo

1 . .
+ﬁ5AC<SBDFABF(;D+4F2 + B EUFYS — EARY) +...,  (D.23)

with Fup = Fap + kagF and Fap in the 3875.
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We have the Fy; invariant symplectic form

1 o A A L » zap 4
QI FY = & (—Fg AFS + FulF,., —2F,F, 5 — 51 4FABF[“,f — gFF/M

1 2 oupe 4
+ Fj,Fio — FppF),P +2F AFLQ+FABFAB+FMVUF'+,,,)_

pric 314" 1o 3
(D.24)
We have also
77M3N;3GM3GN3
=G+ 0" apGHGE + ﬁéﬁf Gl + 4G, GPY 1 2GL G
b GAB G 4G, G + JOIEPIGH, b = fan® OGP 4
(D.25)

Here, we have used the indices M;, N, to denote the representation R(As) C L(As). One
checks that (2.41a) is satisfied to this level for the bilinear form 7;;

- 1 2,pZ - 9 -, =
n;7GLGT = N, GMGN — %G;‘f‘ag@ —2G ., G + ﬂG;j‘Vfo;’ : (D.26)
As in (C.20), we see that the irreducible components of 7;; come with alternating sign,
positive for R(A3), negative for R(A1 + Ajo) and R(A; +2A3) and positive for R(A; + A4).
One also consistently finds that both R(A3) and R(A; + Ajg) appear with the canonical
normalisation.

D.4 Consistency checks of the identities

In order to give a consistency check of various Fy; identities that we have introduced in
this paper, it is useful to check the results of section 9 by doing an explicit level expansion
of the various terms up to level 2 fields.

In particular, one can check identities (2.40a) and (2.40b) from the computation of the
topological term. The explicit expansion up to level 2 fields gives

"N Oy N =& (28;0(1/;0 _ju;vaU;p+MAngA~7u;§(Xuf;‘p _ju;f,p) +*7u;f*70%f4
1
+8/1XA;§J - le;VpXA;?p - iju;CfCABXA;Ea - ju;fXA;a
1 1
580" Tt T + 5 T Tap+ s Tio”

fCA

1
_aAX‘u,;IzA/o'_jA;upr;gp—’_ijA;C BXHE(;_jA;ﬁXV;O'

1 1
+§fBCA\7A;Ejy;g_ QJA;ﬁyBjU;B‘i‘jA;;‘,ﬂju;ap
1

"3

1
aAXB;ﬁVB;' —jA;,[quB;ﬂ—i- 6fAB[CjC;/€),lAjD;f+. . )
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o 1
=t (28MXV;O'+8;1XA§ZII40'_8AX;L£U+38AXB;Z,1£
1 A
*§(ZJMVP+25,L€*7A;V)(XU§P+XB;UBp7jB§§,p)
1
+ <MABQP>\L7M§ — T’ — zangCAJB;c> Xvinp—Ti)
1 1
+§(2JM;;/4_\.7B;/§VB)(\.70;A_XA;U)_§fABCXB;SV(jU;A+fADEjE;UD+XA;U)
1 1
+§jmf£«7A;B—ngBDjC;E;ljD;f—F. . )
o 1
=t <28MXV;J+8[LXA;ZI/40'_8AX;L;30'+38AXB;Z,11§7
1 P 1_4 p A 1 . i+ 2
5T Fogt 3 F i Foat FiaF gt = FultP Fan+ S F e F 4.

1
~FuiXaio = Fa5 Tt Jog +3fABDJC;§;*JD;§) (D.27)

which indeed matches the results in (9.18) using (D.24). The explicit level expansion of the
other terms in the pseudo-Lagrangian is more complicated and we won’t display it in this
paper. We have computed them and we obtain indeed the same resulting Fg Lagrangian
provided the Fg tensor identity

1 , 2
(zaﬁagag + 7656865 + foa® fGEcag) B°PBpp
3 , 2
= (—QfACGfBEG(sg — 7I€Acl€BE(5£ + 2fACEfBFD> BCDBEF (D.28)

for BEP and BE r in the 3875 is satisfied. This identity must therefore be a consequence
of (A.22).

We can also check explicitly the first level component of Identity (A.1). The first
non-trivial component in the Fg decomposition is when I is the highest weight singlet.
At first-order one can take all the indices to be in the adjoint of Eg, with ol QA — KQA

and (2.54) reduces to
— kppfPM or™NA0non = (FABcfMpfNop + 25[1‘}/3[fANQ])8MaN (D.29)

which is indeed equivalent to equation (A.1) of [24]. This identity is necessary for the
invariance of the potential and the closure of the algebra in [24], so that it is satisfactory that
it appears exactly as the simplest component of the generalised identities required for Fi;.

E E,;o exceptional field theory and the E,¢ sigma model

The GL(1) x Ejg level decomposition of Ep; exceptional field theory as put forward in
this paper should correspond to Fig exceptional field theory in the same way that the
GL(D) x Ej11-p level decompositions correspond to Ej;_p exceptional field theory as
we have shown for D = 11 (meaning usual D = 11 supergravity) in section 7 and for
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D = 3 in section 9. As such Fj( exceptional field theory is expected to be able to describe
D = 11 supergravity, but this requires the internal coordinates and extra constrained fields.
By contrast, the one-dimensional Ejg sigma model, proposed by Damour, Henneaux and
Nicolai and studied in [6, 165, 166], has no internal coordinates and no extra constrained
fields but is also conjectured to describe full D = 11 supergravity [6]. In this appendix,
we develop some initial ideas on the relationship between the GL(1) x E19 decomposition
of our model and the one-dimensional F+y sigma model. For the comparison we have to
make a number of assumptions that will be highlighted along the way.

E.1 FE,¢ exceptional field theory from Fi,

To obtain Fy exceptional field theory from our model we must branch all the relevant
Eq; representations under GL(1) x Ejg. This branching is more involved because ¢j¢ is an
indefinite Kac-Moody algebra and generically all GL(1) levels will be infinite direct sums
of irreducible ¢;p modules. We shall write irreducible modules of ¢jg as R,,(A) and bounded
weight modules L,,(\), similar to e;;. The numbering conventions for the ¢;yp fundamental
weights are such that A1g denotes the exceptional fundamental weight while A1, ..., Ag are
the fundamental weights along the ‘gravity line’ gl(10) C eqp.
The branching of the adjoint of e;; under gl(1) @ e gives [167]

e11 = & Lu(A3) ™ & Ry(A) 7 & (g1(1) & e10)” & Ru(A) ' .. (E-1)
where superscripts are the gl(1)-grading and L,,(A3) is given by
LIU(A3) - Rlo(Al) A Rm(Al) S Rlo(AQ) . (Ez)

This module is the representation in which antisymmetric derivatives dy;Adyn B must
vanish according to the section constraint. We define similarly for the symmetric section
constraint the module

Llo(AQ) = RllJ(Al)\/RIU(Al) S Rlo(QAl) (E3)

such that 9 AOn)B|r,,(ng) = 0. The module R(Az) C L(Ag) of the first rung of con-
strained fields ;% branches similarly as

R(A2) = Ry(A1) & (Ri(A2) ® Li(A3) @ Liy(Ag)) "V & ... (E4)
and the constrained fields ¢/* and ¢ MK branch as
L(A1g) = Ly(Ag) V@ ..., L(Ay) = Ly(A3) "V @ ... (E.5)
The module for the coordinates branches as
R(A1) =19 & Ry(A) Y & (Lu(Ag) @ Liy(As)) "2 ... (E.6)

The interpretation of this branching is that the singlet corresponds to the external time
direction ¢ (that will be identified with that of the one-dimensional E19 model below) while
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R, (A1) is the first set of internal coordinates subject to the section constraints that two
derivatives vanish in the representations (E.2) and (E.3).

The branching of the field strength module 7_1(e11) under ejg is more complicated
to obtain. Checking the representations that appear under the GL(10) and GL(2) x Eg
decompositions shows that

[N

1 —_— .
7-—1(911) D) (Rlo(Al) @ €10 @ Rlﬂ(Al))( 2) @ (Rm(Al) @ e1() @ Rlo(Al))< ) . (E7)
This is consistent with the property that the weight % component must include the dual
of To(e10) D e10 D Ry(A1) as T(e19) C T(e11). It is conjectured in [79] that To(e1g) =
10 D Ry(A1). In analogy with (A.11), we use the following notation for this doubly inde-
composable module

adj,, = Ru(A1) @ e10 ® Ry (A1) (E.8)

We do not have a proof that these representations exhaust the field strength representations
1
2
representation L, (Ap) appears, it does as a direct sum, such that

at levels —5 and %, but we will assume in this section that if any other bounded weight

_ = D o (AT D
7:1(911) =D (ad.]w ¥ Lm()\D)) SY, (ad-]m S5 Ll()()\D)) b.... (Eg)

It follows that the duality equation for the hypothetical field strengths in the modules
L,y(Ap) and L,,(Ap) do not mix with the equations for ?dj and its conjugate. We assume
that the duality equation for L, (Ap) does not impose additional constraints on the Fjq
fields, and we shall therefore ignore the corresponding hypothetical field strengths. Using
the results of appendix A.5 one obtains that (A2, A\p) < —3 and so (A1g, A\p) < —6.50

We write the level % derivative d; with a 0 index when convenient, and the weight —%
derivative dj; where M is now understood as an Fjg index in R, (A;). The Ejg section
constraint can be written as

T“PMTQQNOP ® OQ =0y Q0 — Oy QI . (E.10)

We will ignore all the derivatives appearing at lower levels. The part of the level % field

strength in z;/fij]0 decomposes as
F® = (FM  po FMy, (E.11)

where « is an adjoint e¢jg index. This field strength transforms indecomposably under an

e1p transformation with parameter A, as
SAFM = ATM EFN

SAF® = Ay fO 58 + NVEK (@ FM
SAFM = A TMNFN 4 A KM Fo 4 A KM EN (E.12)

80This excludes the module R, (2A1) and R,,(3A1) that define indecomposable extensions of e10@ Ri(A1).
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The indecomposable part adj,, = e10D R, (A1) of To(e10) is the quotient submodule that can
be obtained by setting FM — 0 in these transformations. The acute accent distinguishes
FM in the submodule R,o(A;) from FM in the quotient module Ry, (A1) = Elo/ﬁlu. The
existence of the invariant bilinear form 77y in 7_1(e;;) implies that

Kom® = 0,50 nun KN 5. (E.13)

From 7 (e10) we also have the 7g(e10) representation matrices TP o = (T*Pq, TMP,). We
shall use @ = (o, M) as an index for g(Tjw and & = (M, a, M) for ?djw with Fa at gl(1)
level % and F§ at level —%.

In order to derive the FEjg exceptional field theory duality equations and pseudo-
Lagrangian, we use the semi-flat formulation as defined in section 6. In this case the
Levi subgroup GL(1) x Ejg is also infinite-dimensional, so the expressions we write below
are only defined for the minimal group Ejj, and should be written in a specific level de-
composition to be extended to the maximal group E%r , as discussed in section 6.4. We
shall only briefly discuss this subtlety in the next section.

At level —% we have the field strengths

FC2 = (Fy, Fa, Fu) (E.14)

that we can parametrise explicitly using (E.1) with the help of an einbein e (a.k.a. lapse) for
the GL(1) component, a generalised metric M,y for the adjoint of F1g and a Kaluza-Klein
vector AM in R, (Ay) for level +1. This leads to

s = CM 0P + 88 (2 My 0, AN — 2¢710ye) (E.15)

« «

with explicit components
FEoD = (éMNEJNB, CaNgJN’B, CMNB\JNB + My no AN — 26_13M€> . (E16)

As for Fg, we distinguish the element Fy; (respectively the tensor Cys™ E) that transforms

in the submodule R,(A1) from the element Fj; that transforms indecomposably. The
relative coefficient in the last term is determined by linearised gauge invariance with®!

_ 1
0 Anr = One?, Qe:iaﬁ, (E.17)

with the notation of (C.23). By representation theory it is consistent to include a vector of
R, (Ay) as 2 MyrnO AN —2e7 10y e in the definition of the field strength Fy;. By contrast,
trying to construct a linear combination of this field in R,,(A;) that transforms according
to (E.12), shows that there can be no such terms for Fiy and F,.

We now study the constraints on the remaining components C~™ 5 appearing in (E.16)
o

imposed by the doubly indecomposable structure. Firstly, Fy is a tensor in the submodule

81The true gauge transformation is dee = 9;(£%) but the coefficient is halved when we do not consider
the conjugate non-covariant term.
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R, (Aq), so C’MN p must be an invariant tensor. But there is no such invariant tensor since
R, (A1) ® Ry(A1) 2 Ri(A1), so we conclude that C’MNP = 0. Then it follows that C’MNa
is an invariant tensor because AVC"MN o =—KP aC'MN p, and using that there is a unique
homomorphism from R,,(A1) ® e19 — R,,(A1) (see footnote 64), one obtains that up to an
overall coefficient

CarY GIN" = TN u v (E.18)

For simplicity we assume that the coefficient is 1. The indecomposable structure is then
consistent if one takes

Ca® 5N = 2KV gy In + T wxar™ | (E.19)
Indeed, as in (2.13) and (2.30)
ACRKPM = oM pho M goN L AN = KN TP (E.20)
so that

A”(C’QMEJNB) = AV (2K gy In" + T vxar™)
= (2K"™ 5 f(ap)’ — 2T NEN gy + Ty KN 5) T

-~

= K™ (15N In?) = —K'YMQ(C/’MNEJN'G) : (E.21)

Using the same argument as in equation (A.71) and below one proves that there is no
homomorphism from ¢jg ® e19 — R(A1), so the structure coefficients C,”~ are uniquely
fixed to (E.19). The structure coefficients Cp™ g are uniquely determined by the indecom-
posable representation as well, up to a term in TgN M as we saw in (E.18). We will not
attempt to write these last coefficients in terms of other known coefficients as they will
turn out to be irrelevant for the Ejg exceptional field theory.

In summary, we conclude that the level —% field strength (E.16) decomposes as

FC3) = <T5NMJNB, QK(QNB)JNB-FTQNPXNP, CMNEJNB+6_2MMN8,5AN—26_1(9]\/[6) .

(E.22)

We shall now determine the level % field strength (E.11). Because FM ig a tensor in

R, (A1), it does not depend on J,* and o AN by representation theory. Therefore we
conclude that

FM — M (E.23)

for the constrained field x p*V, whose symmetric component in M N vanishes in R,,(2A1).
In principle, we can write the same term for the (p™V field, but we assume that the
field xp™V has been redefined in order to absorb it. We can always do this because
L(A3) ® L(Ag) C Riy(A2) & Lyy(As) & Lyy(Ag) trivially. We define the fields such that
the free coefficients in this expression are all 1, i.e. that there is no relative coefficient for
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each irreducible representation in R,,(A2) @ Ly (A3) ® L,y(Ag).5? Then the indecomposable
structure implies that the remaining component of the weight % field strength is

Fa = Jta + TaMNﬁMAN + CaPM;NXpM;N + 5Z)¢\M<NM;N . (E24)
The coefficients COF M;N are determined by the indecomposable structure such that

AVCQPM;N = /{’Yéfngaéjl\Df — IQWSF(;(MO‘(S]]\D[) (E25)

27’

where one removes the component M N in R(2A;) as indicated by the notation (M N)ay,.
The duality equation MaxF 8 = Fx relating F(2) and F %) is therefore
OC/B (63

MypxnT = eTgNMJNﬁ, (E.26a)
¢ (Jea + TM N MV Mr1gOp A? + MagC? arnxp™™N + Marrxn™ ™)
= 2K, 5 I + T M vxar™ (E.26D)
MM&<Jta + TP yop AN + CaPQ;NXPQ;N) + MynCp™V P + Murnxp™
= cCu™ 3N + ¢ My 0, AV — 20)e. (E.26¢)
This last equation determines ;M = Jta:M in terms of the other fields. Note that My;n

is identical to the same matrix for the module R(A;), and so is invertible, while My only

appears through the indecomposable structure

N Mun Marg Muyn . 0 0 o
Q7 M= = 0 My Man |, Q=P =1 0 2o . (E.27)
’ 0 0 Myy N0 0

So we can indeed invert My in MasnxeY to solve this last equation (E.26¢) by fixing
x¢M. Therefore we define the Ejq exceptional field theory to only depend on the fields
Myn, AM, xpu™ and x N3P, which satisfy the duality equations (E.26a) and (E.26b).

We have checked that these equations in the GL(10) level decomposition are indeed
compatible with (C.12).

We shall now determine the Fjg exceptional field theory pseudo-Lagrangian. Using
the same procedure as in section 9.2, one computes that, up to a total derivative, the Fqy
exceptional field theory pseudo-Lagrangian (3.10) can be rewritten as a pseudo-Lagrangian
for the Fjg exceptional field theory plus the infinite sum of the squares of the duality
equations

L= Z O + H:YMN({)MXN:Y + £E10 (E.28)
k=0

82Representation theory only gives that it is the sum over irreducible representations > L OAX N BN

but by a choice of normalisation we can set cx = 1 for all irreducible representations, unless some of
them vanish.
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with

— 17~ ON 7.0 o Bo I_yA_ Gy Ja
Ly =5, "N IO Ky 105 INP0 4+ Q5 CT0 A5 xa%0 P

- i KawBo mMN Jy 00 g Po 4 % JMa(U)TB(())M PmPQTa(U)N QIO

a %mi @I clo Pa ¢l @B m Mm@ gy, JNE(U)

* i(%‘w)ﬁ’(o) - 2Ta<OJ00T5<o>00)mOOJ P00 — Ta<O>OUmOOTﬁ<1>N0Jta((]) IN

=m0 Ty, M T, Mo Jas 0 I (E.29)
and where we use mM» = eMMYN and m® = —e~! to distinguish the GL(1) x Ej9 ma-

trices in Fy; from the Eg matrix MM and the lapse e. Note that o includes both the
¢10 adjoint index and the gl(1) index for the lapse. The pseudo-Lagrangian (E.29) only
N;P

depends on the fields Myn, AM and ", but not on xV*, and can be written out in

the explicit form

Li, = JOKM s In® + T pxar” (1% + TN gon A9)

1 1
— Zeﬁa,gMMNJMaJNﬁ + §€JMQT5MPMPQTQNQJNB
1 ~ ~ ~ ~
—5eM; 7O paC g MY MOM 1y TN + 20 eOn MM
1
- Zeflnagjtajtﬂ — O o AM 4+ e 719 AM g AN (E.30)

Here, we have dropped the subscript % on the I index, that is valued in R,(A1)®@Ry(A1) O
R,,(2A1) with C1 Ma—p = c! w;p the Eyg intertwiner and the bilinear form 7;; determined
such that

TM TN o = Ol ooz iRy 0V g (E.31)

The non-invariant coefficients C7 Mo are related to the field strength structure coeffi-
cients (E.25) through

Clvte = —1asmun CPN p.on®finS Clg.s . (E.32)

One recognises the second and the third line in (E.30) as the expected potential term for
the internal current and the internal derivative of the lapse e. The first line is a topological
term while the last line gives a kinetic term —%e‘lﬁatho‘Jtﬁ . Note, however, that it has
the opposite sign compared to a standard sigma model, but this is due to the mixing with
the topological term. The K(Fg)/FE1p coset fields are the only ones that are dynamical,
whereas the Euler-Lagrange equations for the lapse e and the generalised shift AM can be
interpreted respectively as a Hamiltonian constraint and a generalised (spatial) momentum
constraint. Although the latter is a total internal derivative

o (Ore ! — e tan AN + xnY) — O (e tom AN + xuY) =0, (E.33)

the fact that it transforms in R,,(A;) is consistent with the proposed momentum constraint
for the Fo sigma model [166].
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Note that the duality equations (E.26) do not follow from the Euler-Lagrange equa-
tions, and the pseudo-Lagrangian Lg,, is not a bona fide Lagrangian, unlike the case of
exceptional field theories in odd dimensions greater than one. This difference can be un-
derstood as follows. The Euler-Lagrange equations of exceptional field theory Lagrangians
never determine the equations for the non-propagating higher-form fields, so in this sense,
could be considered as pseudo-Lagrangians even in odd dimensions. In higher dimensions,
one separates the equations for the propagating and non-propagating fields and thus ob-
tains a proper Lagrangian for the propagating fields. For D = 1, however, the K(FE19)/FE10
coset fields already include non-propagating fields and there is no Fjg-covariant distinction
between propagating fields and non-propagating ones, so one cannot have a Lagrangian for
the propagating fields alone.

E.2 Relation to the F;g9 sigma model

The E19 exceptional field theory gives an Fqp-covariant formulation of maximal supergrav-
ity theories, so it is natural to ask how it may relate to the Fjg sigma model [6] that is
conjectured to describe eleven-dimensional supergravity. Note that because of the section
constraint, Fqg exceptional field theory does not provide an FEjg-invariant formulation of
eleven-dimensional supergravity, whereas the sigma model has Fj¢p symmetry. In order to
recover the sigma model, it seems therefore necessary to remove the dependence on the
internal coordinates for all the fields. In the spirit of to the ‘gradient representation’ con-
jecture [6], it is natural to consider a gradient expansion of all fields in Ejy exceptional
field theory.

The gradient expansion is valid in the limit in which the spatial gradients of the metric
and the three-form are much smaller than their time derivative. So the corresponding small
gradient approximation in Fqg exceptional field theory is to consider

[Jtal > [ntal s |Jial > [0 AY], (E.34)

and to take fields that only depend on the time-coordinate at zeroth order in the gradient
expansion. We remark that such a small gradient approximation is inconsistent with the
duality equation in eleven dimensions, because

Foij > Fijri & Foiy.ig < Fiyin s (E.35)

and similarly for higher level duality equations. Nevertheless, we shall assume in this
section that the approximation (E.34) makes sense prior to a choice of section thanks to
the constrained fields. Looking at (E.26b) one finds that it may indeed be consistent to
have (E.34) as long as |xaV| is of the same order as |J;o|. To prove the sigma model
conjecture [6] using Ejp exceptional field theory, one would need to prove that such a
gradient expansion can systematically be solved iteratively as a formal power series such
that the zeroth order fields Mysn|y—o determine the full dynamics unambiguously, where y
denotes the internal coordinates. The first order duality equation (E.26) may be solvable
iteratively in this way, but we leave this question for future investigations. We shall only
discuss here the zeroth order dynamics in the gradient expansion as an E7g sigma model
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in which My;n is a function of time only. To define this sigma model we must determine

at which order the constrained fields contribute, so in particular how |x/"| and |x V|

compare to |Jio| and |Jpse| in the small gradient approximation.®?

If we considered that |xa/V| and |xaV¥'| were both of the same order as the Ejg
gradients |Jprq|, the duality equation (E.26b) would give e 1Jiy|y—0 = 0 at the zeroth
order in the gradient expansion, and the corresponding sigma model would be trivial. To
get a non-empty sigma model we must therefore keep some constrained fields. To determine
which ones, let us first consider the truncation in which one sets all internal derivatives to
zero and takes fields that only depend on the time coordinate, while keeping both x s
and V¥ as time-dependent fields satisfying the section constraint. With this definition,

the duality equations truncate to
v =0, e (Tt + MupCPP pr.nxp™N) = T nxarY (E.36)

where the first equation comes from (E.26a) and the second one from (E.26b), and we
have set to zero all dependence of the FEj; coset fields on the internal coordinates, i.e.
JN® = 0pAQ = Oye = 0. The pseudo-Lagrangian (E.29) plus the square of (E.36)
simplifies to®*

0) _
LEIO - [:Elo ’61\420
1 _ . .
56 1(Jtoz‘i‘Moz'yC’YRM;NXRM’N_eTaMNXMN)(Jta+CaSP;QXSP7Q_eMaBTﬂPQXPQ)
1 _ _ . 1 _ . .
=€ Y Jadis+e 1JtaCO‘PM;NXPM’N+§€ "M O nx RMN CP9p.oxsTH9
(E.37)

+

for fields that do not depend on the internal coordinates, but where we have kept the
internal M component of the constrained fields. Note that C*¥ M:;NX PN is an Fjg tensor
on-shell using (E.25) since x5V = 0 according to (E.36). The corresponding quadratic
term in (E.26b) would not be Ejg invariant without the truncation Jy* = 9y AN = 0.
We now argue that this model cannot describe the full eleven-dimensional super-
gravity dynamics. After having shown this, we will neglect ya/N*¥ at zeroth order and
will only keep xa/Y in the sigma model. We begin by solving the section condition for

xarViF and xaY in the GL(10) level decomposition of Ejg. Then x,™V¥ contributes to
Fe = J*+ CO‘PM;NXPM?N starting from level kK = 3 and above. This means that we can

rewrite (E.37) as

2
1
o _ - =1 .o B
L, = 4 Z € Kk Jio Jigy,
k——2

1 oo . .
+ 2 Z eilMa(k-)B(k) (Je® + Ca(k)RM;NXRM’N) (Jtﬂ(k) + CB(MSP;QXSRQ) , o (E38)
k=3

83The components x:" are fixed by duality from (E.26c) and thus xa" are the lowest components
to consider.
84 N s ‘e woith B 07 0 173 07 0 0_ 13 02 _
By construction the kinetic term for e vanishes with ho ho” — 5ho"ho” — 2(ho” — 5ho”)* = 0, and the
equation of motion of x;” being the duality equation, one gets that the term ieflffo‘ﬁJtath in the duality
equation changes sign.
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where we also used the Cartan involution to double the Ma(k_) Bu J%® JP terms for k > 3.
Because TOC(L,)M ~nxum” only contributes to negative levels k¥ < 0 in (E.36), the second line
in (E.38) is quadratic in the duality equation (E.36) and can be consistently disregarded
in the pseudo-Lagrangian. Moreover, one gets from (E.36) that J,*0 = J;%® = 0 and the
only remaining field is the metric, with

Ly ~ ie_l(gikgﬂatgijatgkz — 97 019i9" Ohgw1) - (E.39)

We conclude that the constrained field y /" has the effect of truncating the sigma
model to the GL(10) subgroup, so if we want the sigma model to describe the full eleven-
dimensional dynamics we need to consider instead that |xa/V¥'| < |Ji| in the gradient
approximation and to only keep x /" non-zero at zeroth order in the gradient expansion.
By construction this simply corresponds to set x;V*¥ = 0 in the duality equation (E.36)
and the pseudo-Lagrangian (E.37).

Doing so, one obtains the standard Fjo sigma model Lagrangian

1
L= Ze_lmaﬁ Jiadis s (E.40)

in one (time) dimension, together with the duality equation
e_lJta = TaMNXMN . (E.41)

This gives precisely the Lagrangian L of the sigma model of [6] with the additional con-
straint (E.41). The sigma model Lagrangian and the duality equation (E.41) determine the
dynamics for the time-dependent fields My, of F1p, the lapse e and the constrained fields
xuY. Note that the section constraint for the constrained fields yas” is now algebraic, and
therefore the dynamics of this mechanical model is truly Fqg invariant. The quadratic con-
straint sV satisfies is an algebraic constraint similar to Berkovits’ pure spinor constraint
in [168].

Solving explicitly the section constraint in the GL(10) decomposition one obtains
that (E.41) implies that e !J,, = Q4 is in the Ejg orbit of an element in the positive
Borel subalgebra b C ¢, i.e. there exists a time-independent g € Fp such that

g 'Qgecb,. (E.42)

This condition would be trivially satisfied for a finite-dimensional Lie algebra [169], but
it is a priori a non-trivial constraint for a hyperbolic Kac-Moody algebra. This problem
depends on the precise definition of the Kac-Moody groups in which V and ¢ are defined.
Equation (E.42) is well-defined for V and g valued in the minimal group ETj and by the
minimal module according to the terminology introduced in section 6.4, see [170] for some
results. However, physically interesting solutions require a priori to consider V' in a non-
trivial extension of the minimal group. For V € Ef{f , the projection of the Maurer-Cartan
form is valued in ¢~ and the charge @ is generally not defined. It seems therefore that
one may need an intermediate completion of Ejj that is yet to be discovered in order to
properly define the model.
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The analysis above made a number of assumptions whose validity and consistency
would need to be investigated further. First, keeping only the constrained fields that
are independent of the internal coordinates may be justifiable through a gauge-fixing of
generalised diffeomorphisms (including ancillary transformations) which would not break
FEqo symmetry. The consistency of the gradient expansion might require to introduce an
additional momentum constraint as proposed in [166], that could be a consequence of the
generalised momentum constraint (E.33). Second, the duality equation (E.41) restricts
the Eqg current through the surviving field y/%. This could be related to the analysis
of additional constraints to be imposed on the Ejp sigma model according to [166] that
are related to null (or potentially) imaginary roots of the Ejy root lattice. The first such
constraint appears for the null root Ay of Ejg, see also (E.33).
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