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1 Introduction

Axions and axion-like particles provide excellent dark matter candidates [1–9], as well as
candidates for driving inflation [10–13] and, perhaps, even present day acceleration [14–17].
While originally motivated as a solution to the strong CP problem [18–20], they are ubiq-
uitous in many high energy physics theories [21–24]. A variety of experimental efforts are
underway to detect axions and axion-like particles (ALPs) in the laboratory [25–28] and
through their unique astrophysical and cosmological signatures [29–38]. Many of these
searches rely upon a coupling of the axion field φ(x, t) to electromagnetism via the inter-
action gaγφE ·B. Constraints on this coupling depend on the axion’s mass, and they are
typically at the level of gaγ . few× 10−11 GeV−1 for a light dark matter axion.

Since the gaγφE ·B interaction between axions and electromagnetism is expected to
be very weak, one might seek to compensate the tiny coupling gaγ by searching for signa-
tures in systems with a strong electromagnetic field and/or a large axion field amplitude.
Moreover, if φ is oscillating it can also have an enhanced effect through resonances [39–41].
With these considerations, it is natural to explore the impact of axion stars in strong elec-
tromagnetic fields. Axion stars are large amplitude, spatially localized and oscillating φ

field configurations (also known as scalar solitons, oscillons, axitons etc. [42–55]). Such
exploration is the main purpose of this paper. We aim to understand how the interplay
between the axion-photon coupling strength, parameters defining solitons, and electromag-
netic fields influences the production of electromagnetic radiation from such solitons.

The study of axions in astrophysical and cosmological electromagnetic fields has a
long history [56, 57]. Some of the strongest constraints on the coupling of axions to matter
come from considering the production of axions in the hot and dense stellar interiors.
Alternatively, if axions were produced in the early universe and survive today as dark
matter, then the flux of these cold axions onto magnetized compact stars could result
in a distinctive radio emission [58–65]. As much as an O(1) fraction of the axion dark
matter could be in the form of axion stars, and therefore it is also important to develop
strategies for detecting the encounter of axion stars with magnetized compact stars [66–78].
Furthermore, the collision of and collapse of axion stars can amplify even small fluctuations
in the electromagnetic fields [41, 53, 66, 79].

In the work being presented here, we consider the coherent emission of electromagnetic
radiation from an axion star in an electromagnetic field. Because of the high occupation
number of the axions in the solitons, it is natural to treat the axion field classically. We
calculate the spectrum and luminosity of the resultant electromagnetic radiation using
both analytical techniques and 3+1 dimensional lattice simulations. Based on Floquet
analysis, we argue that different qualitative behaviour of the electromagnetic radiation is
determined by a dimensionless effective coupling parameter C ∼ (gaγϕ0)(ωR), where ϕ0
is the field amplitude, ω and R are the oscillation frequency and radius of the axion star
respectively.

In the small effective coupling C � 1 regime, the analytical analysis is based on the
observation that an axion star in an external electromagnetic field develops a charge and
current dipole, which oscillates in time and produces dipole radiation. In the absence of res-
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onance effects, we find that the signal has a strong dependence on the axion star’s radius and
oscillation frequency, which leads to a suppression (that goes like the Fourier transform of
the spatial profile) at large ωR > O(1). This understanding leads us to focus our attention
on compact axion-star configurations and oscillons. Our dipole approximation is validated
with numerical simulations of the axion electrodynamics on a 3 + 1 dimensional lattice.

Floquet analysis and lattice simulations also allow us to study the regime of moderate
to large C ∼ 1, where perturbative analytical results are difficult to obtain. We are able
to capture a non-trivial transition from a steady photon production rate to an explosive
(exponential) one as we vary the coupling strength and axion field configuration. We find
qualitative and quantitative differences between the photon production rate in the presence
of external electric and magnetic fields (including significant suppression of the radiated
power at moderate coupling). We also analyse the backreaction of photons on the axion
configuration when necessary.

Most earlier work on axion stars in astrophysical magnetic fields relies on a ‘resonant’
axion-to-photon conversion, when the plasma frequency approximately matches the energy
of the axion particles (see, for example, [7]). While our simulations do not include the
effects of a plasma, we are able to incorporate this resonant conversion in our calculation
analytically in the small coupling regime. We also comment on the relevance of a coher-
ent solitonic configuration compared to an incoherent collection of dipoles, as well as the
connection of our results to the well-known quantum mechanical calculation related to the
axion-photon conversion probability (see, for example, [56]).

The remainder of this article is organised as follows: in section 2 we briefly introduce
the model of interest, namely axion electrodynamics, and in section 3 we introduce axion
stars. In sections 4 and 5 we employ analytical and numerical techniques to calculate
the spectrum of electromagnetic radiation that arises from an axion star in an external
electromagnetic field. In section 6 we comment on a few supplemental topics such as finite
density and coherence effects, and in section 7 we discuss several possible observational
signatures. Finally, we summarize and conclude in section 8. We include an appendix A
with details of the dipole radiation calculation.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field φ coupled to the electromagnetic
field. The action for our system is given by

S =
∫

d4x

[
−1

2∂µφ∂
µφ− V (φ)− 1

4FµνF
µν − gaγ

4 φFµνF̃
µν
]
, (2.1)

where we adopt the − + ++ signature of the metric. The electromagnetic field-strength
tensor, and its dual are:

Fµν = ∂µAν − ∂νAµ , F̃µν = 1
2ε

µνρσFρσ, (2.2)
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where ε0123 = 1. The equations of motion for the axion and the gauge fields are given by

∂µ∂
µφ− ∂φV = gaγ

4 FµνF̃
µν ,

∂µF
µν = −jν , ∂µF̃

µν = 0 ,
(2.3)

where
jν ≡ gaγ∂µφF̃µν . (2.4)

Note that ∂µjµ = 0, and that we have assumed that there are no free currents or charges
in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)εijkF jk , (2.5)

with εijk = εijk. The coupled Klein-Gordon and Maxwell equations are then given by [80]

φ̈−∇2φ+ ∂φV = gaγE ·B ,

Ė = ∇×B − gaγ
(
φ̇B +∇φ×E

)
,

Ḃ = −∇×E ,

∇ ·E = −gaγ∇φ ·B ,

∇ ·B = 0 .

(2.6)

Note that the effective charge and current densities are

ρ = −gaγ∇φ ·B and J = gaγ
(
φ̇B +∇φ×E

)
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to include
weak-field gravity (gravitational potential |Ψ| � 1), the substitution ∂φV → (1 + 2Ψ)∂φV
in the equation of motion for the scalar field captures the most relevant gravitational
contributions. Moreover, we would need to include a Poisson equation ∇2Ψ = (1/2m2

pl)ρφ
where ρφ is the density of the axion field to close the system. This prescription allows certain
gravity-supported scalar field configurations to exist, but ignores gravitational effects (such
as redshifts) in the dynamics of electromagnetic fields and also ignores the contribution of
electromagnetic fields in determining the gravitational potential.1

3 Compact axion stars in constant electromagnetic fields

We are interested in electromagnetic radiation generated by a spatially localized, spherically
symmetric, coherently oscillating axion field configuration of the approximate form

φ(t, r) ≈ ϕ(r) cos(ωt) . (3.1)

Such solutions of the nonlinear Klein-Gordon equation (with and without gravity), which
we generically refer to as solitons, are a result of a balance between the tendency of the field

1We are also assuming gaγ is sufficiently small here, and the electromagnetic fields are the subdominant
contribution to the total energy density of the system.
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Figure 1. Left: the scalar field potentials that support solitons. For the quadratic potential
and cosine potential, gravity is essential for supporting long-lived solitons, whereas the “flattened”
potentials can support solitons without gravity, but typically require amplitudes ∼ f . For any
potential where solitons have a small amplitude compared to f , gravity is essential for long-lived
stable solitons. Right: a schematic representation of a solitons. Dilute solitons have ϕ0 � f and
R� m−1. Dense solitons have ϕ0 ∼ f and R ∼ few×m−1. The frequency is always ω . m.

configurations to disperse and (i) attractive self-interactions in the potential V (φ) and/or
(ii) gravitational interactions.

The detailed form of ϕ(r) depends on the potential V (φ) as well as ω. For most of our
purposes, we use an ansatz of the form ϕ(r) = ϕ0 sech (r/R) so that

φ(t, r) = ϕ0 sech (r/R) cosωt . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior:
∼ e−r/R, with R ∼ 1/

√
m2 − ω2 where m > ω. Note that there is also polynomial de-

pendence of the profile on r at large radii multiplying the exponential, which are ignoring
here [81, 82]. Typically, ω is not too different from m, however, ϕ0 and R can vary sig-
nificantly for small changes in ω close to m. In a typical scenario, ϕ0, R and ω are not
independent. Usually we are free to chose only one, and even that has constraints from
stability analyses.

To understand what to expect for ϕ0 and R, we consider two relevant cases below.

3.1 Self-interaction supported solitons

For potentials that have V (φ) ≈ (1/2)m2φ2 where φ � f and V (φ) ∝ φα<2 where φ � f

(see figure 1), exceptionally long lived spatially localized configurations of the above form
exist, and are called oscillons (setting gaγ → 0 for the moment). Typically, for very long-
lived oscillons, we have a field amplitude ϕ0 ∼ f , a spatial width R ∼ few ×m−1 and an
oscillation frequency ω . m [83]. In detail, there is a one parameter family of long lived
configurations for a given potential V (φ). Moreover, typically the solution also includes
higher frequencies and a very small radiating tail (scalar radiation [84]).

Because of the scalar radiation, oscillons are not perfectly stable, and they exhaust
their energy on a time scale τ . This lifetime depends sensitively on the scalar potential
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V (φ). For example, a cosine potential leads to a lifetime τ ∼ 103m−1, whereas some other
potentials shown in figure 1 give much longer lifetimes τ & 1012m−1 [83, 85, 86]. The
formation of such oscillons from cosmological initial conditions (especially in the early uni-
verse) has been explored in detail before [87–91], and typically happens when H ∼ m. An
almost homogeneous, oscillating condensate naturally fragments into oscillons. As a result,
compared to the H−1 at the time of formation, oscillons can be exceptionally long lived,
and have important cosmological implications [85, 92–95]. Using similar arguments, oscil-
lons in ultra-light axions might potentially survive until today [85, 96, 97]. Furthermore,
oscillons appear to be attractors in the space of solutions [98], and might also nucleate in-
side dark matter halos [79], or even near black-holes [99], although most of these analyses
are done in the context of gravitationally supported solitons so far.

If we are interested in a population of oscillons in the contemporary universe which
have a primordial origin, their lifetimes will likely be short compared to H−1

0 ∼ 1033 eV−1

(unless m . 10−21 eV). While challenging, claims exist in the literature for oscillons that
have lifetimes comparable to the present age of the universe [100, 101]. As discussed earlier,
late universe formation mechanisms can also ameliorate this problem (also see [33]). The
detailed investigation of oscillon production and population is not considered in this paper;
we simply take these objects to exist and examine their consequences due to encounters
with external electromagnetic fields.

3.2 Gravitationally supported non-relativistic solitons

It is also possible to obtain solutions of the form in eq. (3.1) for V (φ) = (1/2)m2φ2

(ie. without nonlinearities in the potential) as long as we now allow for gravitational
interactions [42, 45]. Such configurations are sometimes referred to as oscillatons [102].
Such oscillatons can be compact, with R ∼ 10m−1, with an amplitude ϕ0 ∼ 0.1mpl [42, 103].
For some formation mechanisms, see [79, 104–107].

Less compact configurations can also exist if the amplitude of the field is not so large,
and R � m−1 — they are referred to as dilute axion stars [52, 55]. In this regime the
central field amplitude ϕ0 ∝ 1/R2, the frequency ω ≈ m, and the radius R ∼ 1/

√
m2 − ω2.

Such dilute configurations are well described by a Schrödinger-Poisson system (with a con-
served particle number), and are often the focus in fuzzy dark matter studies [85, 108, 109].
Dilute axion stars have the benefit of being cosmologically long-lived. However, as we will
see, electromagnetic radiation from dilute axion stars in external electric and magnetic
fields is heavily suppressed. As a result, most of our focus will be on the dense, smaller
radius solitons.2

4 Analytic calculation of electromagnetic radiation

In this section, we calculate the electromagnetic radiation generated by spatially local-
ized, coherently oscillating axion configurations (solitons) discussed in the previous section.
In the presence of external electromagnetic fields, such configurations can be effectively

2Solitons can also form with gravitational and repulsive self-interactions. See, for example, [110].
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thought of as time-dependent charge densities and currents that produce electromagnetic
radiation. We provide analytic results for the produced radiation at leading order in the
coupling gaγ , and discuss difficulties with going beyond the leading order analytically. We
also discuss the expected non-perturbative (in the coupling) results in general terms.

The first-order Maxwell equations (2.6) can be rearranged into the following differential
equations:

Ë −∇2E = −∇ρ− J̇ , B̈ −∇2B = ∇× J . (4.1)

The 4-current (ρ,J) defined in (2.7) is spatially localized because the axion field configu-
ration φ given by eq. (3.1) is spatially localized. Note that (ρ,J) depend on φ as well as
the E and B via eq. (2.7). Beyond the spatial extent of the axion stars, both E and B
propagate like free waves.

4.1 Floquet analysis

Because the system is linear in E and B fields, and we assume φ to be periodic in time,
we expect the solutions to obey Floquet’s Theorem [111, 112]. That is, the solutions are
either bounded and periodic, or have exponential growth in time. However calculating
Floquet exponents (µ), or explicit solutions is a tall order because of the large number
of coupled degrees of freedom associated with each spatial point (formally infinite, and
usually a rather large number in discretized three dimensions). Equivalently, the modes in
Fourier space are coupled because of the spatial variation in φ.3

While the explicit calculation of the Floquet exponents is non-trivial, we can get a
physical understanding of their scaling with parameters and the parametric boundary be-
tween bounded and unbounded solutions as follows. For the homogeneous axion field with
amplitude ϕ0 and oscillating harmonically with a frequency ω, the electromagnetic fields
are always unstable, with the k ≈ ω/2 electromagnetic field modes growing as eµhomt where
µhom ≈ gaγϕ0ω/4 at least when gaγϕ0 is not too large [113] (for larger amplitudes, it
is model dependent [41]). In contrast, for the localized soliton configuration, we expect a
threshold value of the coupling gaγϕ0 for which we get exponentially growing solutions. The
parameter ϕ0 should now also be thought of as the central amplitude of the soliton. The
threshold can be determined by comparing µ−1

hom to the width of the soliton R [41, 113, 114].
Essentially, if the produced photons can escape the system quickly enough (ie. R is small
enough), they do not lead to exponential growth due to parametric resonance (equivalently,
Bose-enhancement). This motivates the definition of a dimensionless effective coupling

C ≡ R

µ−1
hom
≈ 1

4gaγϕ0ωR. (4.2)

3The number of Floquet exponents is equal to the dimensionality of phase space for the system. For a
system with N3 Fourier modes, there would be 2N3 Floquet exponents. For a coupled system of Fourier
modes (ie. inhomogeneous background), each Floquet exponent does not correspond to a single Fourier
mode, but a linear combination of modes. Note that Floquet exponents are complex in general. When they
have a non-zero real part, we can get exponential solutions in time. When we refer to Floquet exponents
from here onwards, we are referring to the real part.
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In terms of this effective coupling:

C � 1 −→ bounded periodic solutions, steady radiated power ,
C & 1 −→ unbounded exponential solutions and radiated power .

(4.3)

We remind the reader that C is independent of background electromagnetic fields. Note
that for C > Ccrit ∼ 1, the power in radiated electromagnetic fields

Pγ ∝ e2µefft where µeff ∝ gaγϕ0ω , (4.4)

In section 5, we will confirm this behaviour, and provide the numerical coefficient in front
of this expression for µeff based on a specific soliton profile.

We remind the reader that soliton configurations do not allow us to specify ϕ0, ω and R
independently. For example, dilute and gravitationally supported solitons have ϕ0 ∝ R−2.
For dense, self-interaction supported axion stars/oscillons, ϕ0 ∼ f . For the dilute case, we
have ωR � 1, so we can get C ∼ 1 for gaγϕ0 � 1. For the dense case, we typically have
R ∼ few × m−1, so we can get C ∼ 1 with gaγϕ0 ∼ 1. The C � 1 can be achieved, for
example, by simply making gaγ smaller in each case.

Before moving on to a quantitative analytical analysis, we briefly discuss the connection
of C � 1 and C & 1 regimes with effective field theory (EFT) considerations. The action in
eq. (2.1) represents the leading operators in an EFT with cutoff Λ ∼ g−1

aγ describing axion-
photon interactions.4 The EFT also contains sub-leading operators that are suppressed
by additional powers of the cutoff, e.g. Lsub ⊃ csub g

2
aγφ

2F 2 or csub g
3
aγ�φFF̃ . Validity

of the EFT requires the sub-leading operators to be negligible. As discussed above, it is
possible to have gaγϕ0 � 1 to get C � 1. For dilute axion stars, C ∼ 1 can be obtained for
gaγϕ0 � 1 also. However, for C ∼ 1 in the dense case, we need gaγϕ0 ∼ 1, which threatens
to break the EFT if higher-order operators are only suppressed by additional powers of
gaγϕ0. Even in this case, the EFT can remain reliable even for gaγϕ0 ∼ 1 if the numerical
coefficient of the higher-order operators is small, e.g. csub � 1. For some theoretical work
on models with a large axion-photon coupling, see [115–121].

4.2 Perturbative analysis

With the expectation of bounded solutions for C � 1, we pursue an analytic treatment in
the limit of small gaγϕ0. With this small parameter in mind, we expand the fields, densities
and currents as follows:

E = E(0) +E(1) +E(2) + · · · , B = B(0) +B(1) +B(2) + · · · , (4.5)
ρ = ρ(0) + ρ(1) + ρ(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of gaγϕ0.
At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (ρ(0),J (0)) which are independent of the axion field configuration. For
4If the axion-photon interaction is loop-induced, such as for models of the QCD axion, then one expects

gaγ ≈ α/2πf ∼ 10−3/f . However in this work we take a more general approach by treating gaγ and f as
independent parameters where f enters as a scale in the axion potential.
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B̄ Ē

Figure 2. The effective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

example such background fields could be the fields in the magnetosphere of a neutron star
or in the intergalactic medium. To make the physics more transparent, we will consider
spatio-temporally constant background electromagnetic fields which we denote by

E(0) = Ē , and B(0) = B̄ . (4.7)

We are essentially assuming that the spatial extent of the axion star is much smaller
than the coherence length of the background fields, and that the time variation of the
background fields is slow compared to the time that configuration spends in the given
volume of the fields.

4.2.1 Leading order in gaγϕ0: dipole radiation

At leading order in the coupling gaγϕ0, we have

Ë(1) −∇2E(1) = −∇ρ(1) − J̇(1), (4.8)
B̈(1) −∇2B(1) = ∇× J(1). (4.9)

At this order in gaγϕ0, the background electromagnetic fields along with the axion config-
uration φ(t,x) = ϕ(r) cosωt induce an effective charge and current density:

ρ(1)(t,x) = Re
[
%(1)(x)e−iωt

]
, J(1)(t,x) = Re

[
j(1)(x)e−iωt

]
, (4.10)

with %(1)(x) = −gaγ∇ϕ(r) · B̄, j(1)(x) = −iωgaγϕ(r)B̄ + gaγ∇ϕ(r)× Ē. (4.11)

Due to the spatial derivative acting on ϕ along the direction of B̄ field, the positive and
the negative charges are distributed separately along the B̄ field axis like a dipole (see
left panel in figure 2). And with its oscillating nature of the axion configuration, such an
oscillating dipole will lead to dipolar electromagnetic radiation. A constant Ē field results
in an oscillating azimuthal current, which also results in dipolar radiation (see right panel
in figure 2).
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It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the asso-
ciated Poynting flux S(2) ≡ E(1) × B(1) and power emitted per unit solid angle. See for
example [122, 123]. We review some of the relevant details of the derivation in appendix A.
Here, we directly write down the solution for the flux below. At a position x far from the
source, and at sufficiently late times, the power per unit solid angle dP γ(2)/dΩ = |x|2x̂ ·S(2),
is given by

dP γ(2)
dΩ = ω2

32π2

(
− |%̃(1)(k)|2 + |j̃(1)(k)|2 − Re

[
e−i2ωtei2ω|x|

(
−%̃2

(1)(k) + j̃2
(1)(k)

) ])
,

where k = ωx̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of
the charge and current densities in (4.11), we have %̃(1)(k) = −igaγωϕ̃(ω)x̂ · B̄ and
j̃(1)(k) = −iωgaγϕ̃(ω)B̄ + igaγωϕ̃(ω)ix̂× Ē, which yields

dP γ(2)
dΩ =

g2
aγω

4ϕ̃2(ω)
32π2

[ (
x̂× B̄

)2
+
(
x̂× Ē

)2
− 2x̂ ·

(
Ē × B̄

) ]
(1 + cos (2ωt− 2ω|x|)) .

(4.13)

The radiation spectrum is a delta function in frequency, with the radiation emitted at the
frequency ω. The spatial pattern of radiation energy density is shown in figure 3.

The total power emitted, and its time average are given by

P γ(2) =
g2
aγω

4ϕ̃2(ω)
12π

(
B̄2 + Ē2

)
(1 + cos (2ωt− 2ω|x|)) ,

〈P γ(2)〉t =
g2
aγω

4ϕ̃2(ω)
12π

(
B̄2 + Ē2

)
.

(4.14)

It is important to note that the emitted power is proportional to the squared Fourier
transform ϕ̃(ω) of the oscillon radial profile evaluated at ω (which is the frequency of the
oscillon, and that of the emitted electromagnetic radiation):

ϕ̃(ω) =
∫

d3y ϕ(y)e−iωx̂·y = 4π
ω

∫ ∞
0

dr
[
r sin(ωr)ϕ(r)

]
, (4.15)

for a spherically-symmetric oscillon. Then the ratio F (ω) = ϕ̃2(ω)/ϕ̃2(0) is a form factor
for the oscillon profile. If the wavelength of the radiation is large compared to the scale
radius of the oscillon, R� λ = π/ω, then the form factor approaches F (ω) ≈ 1 as ω → 0,
corresponding to radiation from a point-like dipole. Shorter wavelength radiation probes
the structure of the oscillon and F (ω) → 0 as ω → ∞. This behavior is illustrated in
figure 4 for a few representative oscillon profile functions.

Using the profile ϕ(r) = ϕ0 sech (r/R), we get

ϕ̃(ω) =π3ϕ0R
2

ω

tanh(πωR/2)
cosh(πωR/2) ≈

2π
ω3ϕ0(πωR)2e−πωR/2, (4.16)
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Figure 3. (Top panels) Energy density of the emitted electromagnetic radiation from an oscillating
electric dipole created by an axion star at rest in a background magnetic field. (Bottom panels)
Dipole radiation from an oscillating magnetic dipole created by an axion star at rest in a background
electric field. The magnetic and electric fields point in the z direction. The colors represent
electromagnetic energy density εγ = (1/2)(E2+B2) after subtracting the background fields. Darker
colors represent higher energy densities. For visual clarity, we have allowed for colors to be saturated
in the densest regions.

where the second equality assumes ωR & 2. When the radius of the axion configuration
R ∼ ω−1, there is no suppression of the emitted power from ϕ̃(ω). However, when R� ω−1

we get an exponential suppression. We have checked that the exponential suppression also
exists for numerically obtained spatial profiles for dilute axion stars where ωR� 1.

The physical origin of this suppression is destructive interference between the emit-
ted electromagnetic waves which are emitted in phase from different locations within the
oscillon. Also see discussion of coherence and interference in section 6.2. Note that this
suppression is more severe than the suggested by [72], where a power law suppression is
obtained because of to a cusp in their ϕ(r) at the origin. This can make a rather large
difference in the radiated power even for ωR & few. Compare the blue curve for the sech
profile with the dashed gray curve for an exponential profile with a cusp at the origin.5
Also see section 3 for further discussion of the expected form of the axion star profiles.

5Note that one can define the scale R for different profiles (approximately) in terms of the radius R90

which encloses 90% of the soliton mass. For the exponential and sech profiles we find R ≈ 0.4R90, whereas
for a Gaussian profile R ≈ 0.8R90 when R is sufficiently large.
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Figure 4. The form factor F (ω) = ϕ̃2(ω)/ϕ̃2(0), where ω is the frequency of oscillation of the
axion field (and of the emitted electromagnetic radiation), and ϕ̃(ω) is the Fourier transform of the
soliton’s spatial profile at k = ω. This form factor determines the amplitude of the dipole radiation,
and has a very strong dependence on the radius of the soliton. The blue curve corresponds to the
sech profile ∝ sech (r/R), with the correct exponential behaviour at large R. The solid gray curve
is for a Gaussian profile ∝ e−r2/R2 , the dashed one for an exponential profile ∝ e−r/R with a cusp
at the origin, and the dotted line correspond to a top-hat profile of the soliton with radius R. While
the form factor is identical at small ωR for the different profiles, it is very sensitive to the profile
choice at large ωR.

Summary of dipole radiation. Finally, to make the dipole nature of the radiation
apparent, let us set the background electric field to zero. In this case〈

dP γ(2)
dΩ

〉
t

=
g2
aγω

4ϕ̃2(ω)
32π2 B̄2 sin2 θ ≈ (gaγϕ0)2

8ω2 (πωR)4e−πωRB̄2 sin2 θ, (4.17)

where θ is the angle with respect to the B̄ direction. The same formula holds for the
electric field also. The second equality is a good approximation for ωR & 2 for the sech
profile. To get significant emitted power, it is essential to have Rω not be too large, and
gaγϕ0 not be too small, which provides motivation for considering dense axion stars and
oscillons. At the same time, it is also beneficial to have a small ω ∼ ma which pushes us
towards pursuing lighter axions.

4.2.2 Higher orders in gaγϕ0: beyond dipole radiation
Our organization of the calculation using powers of gaγϕ0 is fraught with subtleties as we
go beyond the leading order in gaγϕ0, with the system best dealt with non-perturbatively
using Floquet theory (with a large number of coupled degrees of freedom). However, to
appreciate these subtleties, we try to follow our nose and proceed with the calculation
order by order in gaγϕ0. While we will be unable to complete the calculation, the set up
also provides some physical insight into how the radiated power deviates from the dipole
estimate of the previous section as we increase the coupling strength.

The field equations, charge and current densities are given by

Ë(n)−∇2E(n) =−∇ρ(n)−J̇(n) , B̈(n)−∇2B(n) = ∇×J(n) , (4.18)

ρ(n) =−gaγ∇φ·B(n−1), J(n) = gaγ
(
φ̇B(n−1)+∇φ×E(n−1)

)
. (4.19)
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for n ≥ 1. Recall that (n) denotes the order in gaγϕ0, E(0) = Ē and B(0) = B̄ are
assumed to be constants, and φ = ϕ(r) cosωt. We will continue ignoring backreaction of
the produced electromagnetic fields on the axion field configuration in this subsection.6
Order by order this represents a system of periodically forced oscillators. We can use these
to understand the possible frequency structure of the fields at different orders (ignoring
resonances for the moment). Since φ oscillates with a frequency ω, so do (ρ(1),J(1)), which
in turn source (E(1),B(1)) which also oscillate with a frequency ω. However, because
of the products of oscillating terms coming from φ and oscillating electromagnetic fields,
(ρ(2),J(2)) will include frequency components 0ω and 2ω. Similarly, (ρ(3),J(3)) will contain
ω and 3ω and so on.

The above arguments reveal that if we are interested in the radiated electromagnetic
fields at O[(gaγϕ0)n], they will contain multiple frequencies. Conversely, if we want to
consider fields with a fixed frequency, they will contain terms with many different orders in
gaγϕ0. This latter fact does mean that there is a possibility that the generated electromag-
netic fields (and power) at a given frequency, or in total, can be enhanced or decreased as we
go to higher couplings. That is, the power radiated can be non-monotonic in the coupling
(when the coupling is not too small), and its dominant frequency content might also change
with coupling strength. We observe these effects in our numerical simulations. Finally, note
that fields with higher frequencies beyond ω always come with higher powers in gaγϕ0; this
is because higher frequencies are sourced by the electromagnetic fields already sourced by
the axion field configuration. Again, we confirm this behavior in the simulations.

The above discussion is incomplete because we ignored the possibility of resonances
that should be present in a system with periodic forcing terms. These resonances make
it notoriously difficult to carry out our perturbative scheme for long time scales. We can
get a rough idea of the difficulties and subtleties by trying to solve the (4.18) equations in
momentum space. First, let us consider the n = 1 case:

B̈(1)(t,p) + p2B(1)(t,p) = −iωgaγϕ̃(p)p× B̄ sin(ωt), (4.20)

with B(1) = 0 and Ḃ(1) = 0 at t = 0. The general solution is

B(1)(t,p) =


−iωgaγϕ̃(p)p× B̄ p sin(ωt)−ω sin(pt)

p(p2−ω2) , p 6= ω

−iωgaγϕ̃(p)p× B̄ sin(ωt)−tω cos(ωt)
2ω2 , p = ω

. (4.21)

As we see, the result is periodic and bounded, except when p equals ω. This is just the
behavior of a periodically forced harmonic oscillator. As expected, for p = ω, there is a
term that is linear in t (secular growth). After sufficient time, such a term will dwarf the
zero order terms. This in turn can limit the reliability of the perturbative expansion we
used in the first place. To maintain the validity of the perturbative expansion, besides
requiring a small gaγϕ0, one should further restrict ourselves to small times. This scenario
with secular terms is reminiscent of the challenge of solving the Mathieu equation via
perturbative methods, and in principle, there exist mathematical tools to deal with such

6Note that the change in the axion field configuration due to backreaction δφ/ϕ0 ∼ g2
aγB̄

2/m2 � 1.
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situations. For example, one can go beyond the naive perturbation theory (4.5), and resort
to the Renormalization Group [124] or resurgent resummation [125]. But the question here
is more complicated than in the Mathieu equation because of the vast number of coupled
momentum degrees of freedom.

Furthermore, there is another subtlety. While the individual mode for B(1)(p = ω)
has a secular term, when we obtain the fields in position space via a Fourier transform, the
secular term disappears. Note that the secular term above can be reached by the expression
of p 6= ω, in the limit p → ω, and therefore this imposes no pole or singular point in the
momentum integral.

Nevertheless, there are good reasons to believe the secular terms will appear at high
order in gaγϕ0 terms for the fields. One reason is that Floquet theory predicts (and we
observe in simulations) the existence of exponentially growing solutions that can be con-
structed out of solutions with different power law (unbounded) in time dependencies at
various orders. More generally, such terms can combine in non-trivial ways to give real and
imaginary Floquet exponents corresponding to bounded and unbounded solutions.

5 Results of numerical lattice simulation

The axion-photon system can be simulated numerically [41, 126–129]. In general, when
there exist charged matter fields, the usage of the electromagnetic potential Aµ is unavoid-
able, as the gauge covariant derivatives require Aµ explicitly. But in the simple axion-
photon system where there is no charged field, the electromagnetic scalar potential φ and
vector potential A are not necessary. Instead, we can directly evolve the electric field E
and the magnetic field B in the axion background through the Maxwell’s equations, and as
a byproduct, there is no gauge fixing needed. We will present the details of our numerical
scheme in a separate paper.

Simulation parameters and initial conditions. Our benchmark simulation has a
physical volume m3V = 64 × 64 × 64, with N3 = 1603 lattice sites, and the resolution is
mdx = 0.4. We also used N3 = 3203 for convergence tests (for more details, see [41]). We
typically run our simulations up to mtmax = 50. We also used mtmax = 100 when using an
eight times larger simulation volume. We employ periodic boundary conditions but make
sure that we do not have our results contaminated by radiation cycling through the box.

For initial conditions we start with the axion field in a solitonic configuration of the
form φ(t) = ϕ0 sech (r/R) cos(ωt + θ0) with θ0 = −π/2. That is, φ(t = 0) = 0 and
φ̇(t = 0) = ωϕ0 sech (r/R). We include either a constant magnetic field or a constant
electric field through the box. For our fiducial values of our parameters, we use

ϕ0 = 2.6f , ω = 0.82m, R = 1.6m−1 , and Ē = 102m2 or B̄ = 102m2 . (5.1)

With these above values (see eq. (4.2)):

C = gaγϕ0ωR/4 ≈ 0.85(fgaγ) . (5.2)

The soliton parameters are consistent with those of dense solitons found in [83], although
the precise values can differ based on the functional form used to fit the true profile. Apart
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from transients, our results are insensitive to the chosen values of Ē and B̄ apart from
a trivial scaling of the radiated power in the C � 1 regime, and a change in logarithmic
time scale of backreaction (see below) in the C & 1 regime.7 The chosen values of the
background fields are for numerical convenience. We also varied these parameters within
factors of two or even an order of magnitude to delineate general statements from those
that are sensitive to this particular choice of fiducial parameters.

While we focus on dense solitons, we could have carried out simulations in the dilute
soliton regime as well. However, the exponential suppression expected from (4.14) would
make this uninteresting (at least for dipole radiation, though not necessarily for the case
with parametric resonance [113]).

Backreaction considerations. For most of our simulations, it is unnecessary to evolve
the axion field using its equation of motion numerically (although it is still necessary to
solve for the electromagnetic fields numerically for C ∼ 1). That is, the soliton sources
electromagnetic fields, but it is not significantly affected by them. To see this, recall
that the energy extracted from a dense soliton with C � 1 grows linearly with time with
P γ ∼ 10B̄2(fgaγ)2/m2 (see (4.14)). Hence it will take

mtbr ∼
mMsol
P γ

∼ 10 m2

g2
aγB̄

2 � mtmax , C � 1 , (5.3)

for backreaction on the soliton to be relevant. We have used Msol ∼ 102f2/m above for
the energy of a dense soliton. Note that since even for the strongest fields possible around
neutron stars B̄ . m2

e ∼ 10−1MeV2, and with gaγ . 10−10GeV−1 andm & 10−7eV, we have
m/(gaγB̄) � 1. Hence, we can safely ignore backreaction on the axion field configuration
in our simulations when C � 1 and mtmax . 102.

Note that another way of thinking about backreaction is at the level of the equation
of motion for the axion field (first equation in (2.6)). The correction to the axion field
evolution due to the source term gaγE · B is given δφ/ϕ0 ∼ g2

aγB̄
2/m2 � 1. This is

essentially the same ratio that appears in the discussion above.
For C & 1, the exponential growth in the radiated power can lead to backreaction on

the soliton within mtmax. At the end of this section, we provide simulation results where
backreaction eventually shuts down the resonant electromagnetic field production.

Numerically calculated power. The main output from our simulations will be the
radiated power in electromagnetic fields. We define this radiated power as the surface
integral of the Poynting vector over a spherical surface whose radius is much larger than
the size of our soliton. In our set-up, we compute the luminosity by a sum

P γ ≡ |x|2
∫

dΩ x̂ · (E ×B) = 4π|r|
N

N∑
j=1
rj · [Ej ×Bj ] (5.4)

7Note that we do not need to add seed fluctuations in the electromagnetic field (unlike the case in [41]),
since the background electromagnetic field in presence of the axion-configurations sources the electromag-
netic field fluctuations.
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where the sum is over all sites of index j with a distance within (r−ε, r+ε), given ε� m−1.
Note that we exclude Ē or B̄ when we compute the Poynting vector since these background
fields are not part of the radiation that escapes to infinity. In our simulations, the radiated
power is measured atmr = 16 withmε = 0.1. Note that formtmax = 50, the radiation does
not have sufficient time to cycle through our periodic box and contaminate the radiated
power calculation.

In general, we found that the numerically calculated power was not very sensitive to
the lattice size or the radius of the sphere where we calculated the radiated power as long
as this radius � R. Our finite lattice spacing, mdx, leads to a slightly smaller numerically
evaluated power in comparison to the power calculated in the continuous limit (when such
a calculation is possible). For mdx = 0.4, the discrepancy with the analytic expectation is
∼ 1% for C . 1.

5.1 Bounded vs. unbounded radiating fields

As we discussed at the beginning of section 4, we expect periodic solutions for C � 1 and
exponential growing ones for C & 1 based on Floquet theory. To confirm this behaviour,
we numerically solve for E and B fields sourced by the same soliton configuration (with
our fiducial values of R, ϕ0 and ω), but different fgaγ .

In figure 5 (left panel) we plot the power radiated as a function of time for different
gaγ . Note that the power radiated is constant for C . 1 but increases exponentially as
P γ ∝ e2µefft for C & 1 as expected. Also note the different scales on the vertical axes for
different parts of the panel. In the right panel of figure 5, we plot the maximum Floquet
exponent µeff from the numerically obtained time dependence of the radiated power. This
plot reveals that

µeff/m ≈ 0.75× C for C ≥ Ccrit ≈ 1.3 . (5.5)

Note that the Floquet exponent is a property of the axion configuration and coupling gaγ
(through the combination in C), but is independent of the presence or absence of background
electromagnetic fields. While we expect Ccrit ∼ 1, its precise value and the numerical
coefficient appearing in the expression for µeff will depend on the details of the soliton
solution.

5.2 Small coupling: dipole estimate

In section 4.2.1, we provided an analytic calculation for the power radiated by the soliton
configuration in the presence of background E and/or B fields. This result is expected to
hold for C � 1.

We confirm this expectation in detail with numerical simulation for C ≈ 0.09. In
figure 6, we present the time-dependent power radiated by the soliton in the presence of a
constant background B field (left) and E field (right). The radiated power oscillates with
a frequency 2ω, consistent with our analytic result in the first line of (4.14). Moreover, the
magnitude of the time averaged power is also consistent with our analytic calculation in the
second line of (4.14) (horizontal black lines). Finally, the spatial pattern of the radiated
energy density is consistent with dipole radiation as predicted in eq. (4.17) (see figure 3).
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Figure 5. (Left) The radiated power versus time for the different effective dimensionless coupling
C = gaγϕ0ωR/4 = 0.09, 0.42, 0.85 and 1.7 due to a dense soliton in a constant magnetic field
background. Notice on the last plot (lower right) the logarithmic vertical scale and the unbounded
solution, while the other three are bounded. (Right) The exponent µeff extracted from the expo-
nential growth of the radiated power. There exists a linear relationship between µeff and C in the
unbounded region. The Ccritical ≈ 1.3 can be read off as the zero point of the linear relationship,
with µeff/m ≈ 0.75C. We caution that the precise numerical coefficients depend on the details of
the soliton configuration. For the above plots we are dealing with a dense soliton ϕ0 ∼ f and
R ∼ few×m−1 and ω . m.

While we do not do so here, we can easily include both electric and magnetic field
backgrounds together to confirm eq. (4.13).

5.3 Intermediate couplings

We now consider the power radiated when 0.1 . C . 1. As we saw in section 4.2.2, it is
difficult to extend the perturbative calculation to include terms that are higher order in
gaγϕ0. Numerically, we of course have no issues probing this regime. In this regime, new
phenomenon emerge, which have not been reported before to the best of our knowledge.

As we move away from the C � 1 regime towards C = Ccrit, the radiated power is still
constant in time (ie. we have periodic solutions for the radiated fields at each point in
space). However, we find that the dipole estimate 〈P γ(2)〉t from eq. (4.14) starts deviating
significantly from our numerical results. See figure 7, where the black curve is 〈P γ(2)〉t
whereas the orange and green curves represent the numerically obtained 〈P γ〉t for the case
of background B and E fields respectively. In the following, when we vary C, we hold all
parameters fixed apart from fgaγ .
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Figure 6. The radiated electromagnetic power from a dense soliton in constant background E or
B field as function of time for C = 0.09. In this regime the radiation is expected to be described
well by dipole radiation P γ(2) provided in (4.14). The black lines are the analytic results for the
time-averaged power which matches nicely with the numerical results. Note the frequency of 2ω is
expected from analytics as well.

Background B. For the case of the background B field, we find that the 〈P γ(2)〉t overesti-
mates the power in this regime (see figure 7). The frequency content of the radiated power
continues to be dominated by 2ω. As discussed in section 4.2.2, we believe that this is due
to higher order contributions of O((gaγϕ0)4) to the radiated power at frequency 2ω. These
next-to-leading order in gaγϕ0 contributions have an opposite sign compared to the leading
order result. This is confirmed by our fits to 〈P γ〉t as a function of C(∝ gaγ). As C ∝ gaγ
increases further, 〈P γ〉t even shows a non-monotonic behavior — first increasing with g2

aγ

at small gaγ and then turning over and decreasing as gaγ increases further. Increasingly
higher order terms in gaγϕ0 can no-longer be ignored as C ∼ 1/2.

For our fiducial parameters for the profile, we see that the dipole estimate can differ
by more than an order of magnitude as C becomes order unity (see figure 8, left panel). We
also find that for certain C, even the dominant frequency content of the radiated power can
change from 2ω to 4ω signalling a cancellation between various higher order terms in gaγ at
the frequency 2ω! In figure 9 we show a comparison between the frequency(=wavenumber)
content of the radiation in our simulation box at for C = 0.09 and C = 0.85. Notice the
vanishing of the dominant k ≈ ω as we go from C = 0.09 to C = 0.85.

Background E. For the case of the background E field, we find that the 〈P γ(2)〉t under-
estimates the power as we move to larger C. See figure 7. The frequency content of the
radiated power continues to be dominated by 2ω. The detailed reason for difference in be-
haviour of the radiated power between the background B and E fields is not entirely clear
to us. However, we do note that it might be sensitive to the fiducial parameters chosen.
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Figure 7. The dependence of the time-averaged radiated power 〈P γ〉t on the effective dimensionless
coupling C = gaγϕ0ωR/4. The above plot is based on a dense soliton of field amplitude ϕ0 = 2.6f ,
frequency ω = 0.82m and radius R = 1.6m−1. For changing C ≈ 0.85(fgaγ), only fgaγ is varied.
The black line is the dipole estimate 〈P γ(2)〉t from eq. (4.14). The orange and green dots show the
numerically evaluated 〈P γ〉t for E and B field backgrounds respectively. Note that the numerics
agree with the dipole estimate at C � 1 as expected. The deviation becomes more and more
pronounced as we move from C � 1 towards C ∼ 1. In particular, note the difference in the radiated
power between E and B field backgrounds. For the B background, note the significant suppression
of the radiated power compared to the dipole estimate and the non-monotonic behaviour with C.
Finally, as C > Ccrit = 1.3 (grey shaded), we have an exponentially growing (in time) power due to
parametric resonance.

By reducing the radius of the soliton, we were able to also find a regime where the 〈P γ(2)〉t
overshoots the numerical results even with an E field background.

5.4 Large coupling with backreaction

When the coupling C > Ccrit ≈ 1.3, we transition to exponentially growing E and B fields.
This exponential growth can be rapid enough so that an order unity fraction of the energy
of the soliton is extracted from the soliton within the duration of our simulations. The
duration to backreaction depends on the initial energy in the soliton, as well as initial
conditions. For the present case the background B and E fields generate fluctuations in
the electromagnetic fields, which are then enhanced via parametric resonance.

To include this backreaction on the soliton, we evolve the fully coupled axion-photon
system dynamically. The results are shown in figure 10. The key point to note is that
backreaction naturally regulates the exponentially growing radiated power once sufficient
energy has been extracted from the soliton.
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Figure 8. Power radiated our fiducial dense soliton in a background magnetic (left panel) and
electric (right panel) field, for an intermediate value of the effective dimensionless coupling C = 0.85.
The horizontal black line refers to the value from the dipole estimate, which is the same on both
left- and right-hand plots. Note that there is a significant suppression of the radiated power in
a magnetic field background compared to the dipole estimate, with the radiated power becoming
dominated by the 4ω (instead of the 2ω) radiation. However, for the electric field background, there
is an enhancement compared to the dipole estimate.

0.0 0.5 1.0 1.5 2.0 2.5

p[m]

10−6

10−3

100

103

p
h
ot

on
oc

cu
p
at

io
n

n
u
m

b
er

C= 0.09

0.0 0.5 1.0 1.5 2.0 2.5

p[m]

10−2

10−1

100

101

102

103

104

p
h
ot

on
oc

cu
p
at

io
n

n
u
m

b
er

C= 0.85

Figure 9. The photon particle number distribution in momentum space obtained by taking a
Fourier transform of the electromagnetic fields in our simulation volume at a fixed time (for more
details, see [41]). Three gray lines represent p = ω, 2ω and 3ω. Left panel is for C = 0.09 whereas
the right panel is for C = 0.85. Note that at C = 0.85, the dominant radiation frequency in ω

is absent, and is connected to the suppression of power in the magnetic field background at this
coupling.
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Figure 10. Power radiated by a dense soliton for large effective coupling C = 1.7 (left panel). In
this regime the power grows exponentially with time, however backreaction eventually curtails this
growth when the radiated electromagnetic energy becomes comparable to the initial energy of the
soliton (right panel).

6 Medium effects and coherence

In order to illuminate the connection between our calculation and calculations of axion-
photon conversion in the literature, we address three issues here. First we discuss how
our calculation should be modified in the presence of a medium, such as the dense plasma
around a compact star, and the associated phenomenon of resonant conversion. Second
we clarify how the axion star’s coherence has affected the final radiation power. Third
we compare our calculation with a perturbative calculation of the axion-photon conversion
probability. Here, we will restrict our attention to leading order in gaγϕ0 to simplify the
discussion.

6.1 Medium effects and “resonant” conversion

Our previous calculation was done with the axion star in the presence of background
electromagnetic fields, with no other medium present at the background level. However,
in applications to astrophysical scenarios, such as axion-stars in the magnetosphere of a
neutron star, a plasma is present that leads to the photon having an effective mass ωp. The
effect of such a constant effective mass ωp < ω can be approximately taken into account
by modifying eq. (4.8) and (4.9) making the replacement ∇2 →

(
∇2 − ω2

p

)
. Note that if

ω < ωp the propagating mode would be exponentially suppressed.8

8Since we assume the background E and B fields to be constant, it is natural to assume ωp is constant,
although in practice it does depend on the spatially varying free charge density also. In neutron star
atmospheres, an approximation to the plasma frequency is given by ωp =

√
4παemne/me where ne is the

Goldreich-Julian charge density [130], and me is the mass of the electron. Note that ne(x) ∼ Ω · B(x)
where Ω is the angular velocity of the neutron star.
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Figure 11. The dependence of the time averaged power radiated by the axion star as a function
of the plasma frequency ωp and radius R of the star. Note the “resonant conversion” when ωp → ω

(the soliton frequency), and the strong dependence on the radius of the star. The plot should be
understood under the assumption that the plasma frequency is constant within the radius of the
star. In the above plot, ωR varies between 1 and 10, with the peak scaling as (ωR)6. Also note
that while the power increases with radius for ωp ≈ ω, it decreases with radius when ωp � ω for
large radii.

Following through with the same calculation as before, but carefully keeping track
of κ and ω separately, we arrive at the generalization of our equation for the radiated
power (4.14):

〈P γ(2)〉t =
g2
aγω

4

12π
κ

ω
ϕ̃2(κ)

(
B̄2 + Ē2

)
, where κ ≡

√
ω2 − ω2

p , (6.1)

where ϕ̃(κ) is the Fourier transform of the axion field profile at |k| = κ. Note that for
ωp = 0, κ = ω and we recover our earlier result without the medium (4.14). However, for
ωp → ω (“resonant conversion” domain), we have to be careful. Importantly, in the limit
κ→ 0, we can remove the exponential suppression in ϕ̃(κ) (see eq. (4.16)), and we obtain

〈P γ(2)〉t = π(gaγϕ0)2

48ω2 (πωR)6

√
1−

ω2
p

ω2

(
B̄2 + Ē2

)
+O

[(
1− ω2

p/ω
2
)3/2

]
. (6.2)

In the above expression we have assumed that ωp does not vary within R. Notice that
the medium effects point us to move to larger axion stars to get a large amount of power
emitted, whereas without the medium, we must limit ourselves to a smaller radius because
of the exponential suppression (assuming ωp is constant on the scale R).

To see the detailed dependence of the radiated power on the radius R and ωp, see
figure 11. Note the large enhancement as we increase the radius for ωp approaching ω

from below. This is the resonant conversion. The ratio of the power emitted when ωp ≈ ω
above, compared to that when ωp = 0 is (1/16)(πωR)2eπωR

√
1− ω2

p/ω
2.

6.2 Spatio-temporal coherence

The dipole radiation power that we calculated in section 4.2.1 was derived with the as-
sumption that the value of the axion field at different points across the soliton all oscillate

– 21 –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
2

in phase. That is, we have phase coherence across the entire configuration. It is worth
exploring the importance of this coherence for our results. To this end, suppose that the
charge density generated by our axion configuration is replaced by N idealized, equally
spaced charge dipoles. Each dipole oscillates with frequency ω but a random phase θj .
The total charge density is

%N(1)(x) =
N∑
j=1

(∆x)3%(1)(xj) δ(x− xj) eiθj , (6.3)

as shown in figure 12. Recall that %(1)(x) = −gaγ∇ϕ · B̄. Then, under the assumption
that the phases are random, we have

|%̃N(1)(k)|2 =
∣∣∣∣∣
N∑
i=1

(∆x)3%(1)(xj)eik·xj+iθj
∣∣∣∣∣
2

∼ V

N

N∑
i=1

(∆x)3
∣∣∣%(1)(xj)

∣∣∣2 → Q2
0
N

, (6.4)

where k = ωx̂, we have assumed that N is large, V is the volume in which the %(1)(x) is
non-zero. Note that (∆x)3 = V/N , and we defined

Q0 ≡
√
V

∫
d3x

∣∣∣%(1)(x)
∣∣∣2 . (6.5)

Since the power radiated is proportional to |%N(1)(k)|2, we can now compare the coherent
and incoherent cases

〈P γ(2)N 〉t
〈P γ(2)〉t

=
|%̃N(1)(k)|2

|%̃(1)(k)|2 ∼
Q2

0
N |%̃(1)(k)|2 . (6.6)

That is, if N > Q2
0|%̃(1)(k)|−2, the radiated power will be larger from a coherent config-

uration. For our sech profile and a constant background B field, we have |%̃(1)(k)|2 ≈
(4π2B̄2/ω4)(gaγϕ0)2(πωR)4e−πωR and Q2

0 ∼ 10−1(πωR)4(gaγϕ0)2B̄2/ω4, which tells us
that we need N & 10−3eπωR for coherence to win.9

For some localized configuration of radius R with a characteristic density %0 ∼ Q0/R
3,

we can define a coherence length:

λC ≡ R
(
|%̃(1)(k)|
%0R3

)2/3

. (6.7)

If we subdivide the volume of our coherent configuration into N incoherent regions, each
with a volume smaller than λ3

C , then the power radiated from the coherent configura-
tion will be larger. For our specific case of interest related to our soliton profile, we get
λC ∼ e−πωR/3R. Hence for large radius configurations, incoherent emission will typically
dominate over the coherent one.

9There can be purely numerical coefficients in front that depend on choice of V and the details of the
profile. The scaling with ωR, is the main result we want to focus on.
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Figure 12. A soliton of the axion field in an external magnetic field creates a coherently oscillating
dipole configuration, which leads to dipole electromagnetic radiation. If instead, we replace the
solition with N oscillating dipoles with random phases, we can get less power radiated than the
coherent soliton case for sufficiently large N .

6.3 Axion-photon conversion probability

We have calculated the electromagnetic radiation from an axion star in an external mag-
netic field by recognizing that the soliton behaves like a coherent dipole antenna. However,
the conversion of axions into photons can be understood from a different point of view.
The axion and photon fields mix with one another in the presence of an external magnetic
field [131], and an incident axion develops a nonzero probability to be detected later as a
photon. This phenomenon is the basis of many laboratory probes of axions [80].

In the presence of an external magnetic field B̄, the action from eq. (2.1) contains a
mixing, Lmix = −gaγφȦ · B̄, where we work in the Weyl gauge with A0 = 0. To leading
order in the coupling, the probability for an axion with momentum pµ = {Ep,p} to convert
into a photon with momentum kµ = {ωk,k} is [132]

Pa→γ =
g2
aγ

4
(∣∣B̃(q+)

∣∣2 +
∣∣B̃(q−)

∣∣2) , (6.8)

where B̃(qz) is the Fourier transform of B̄(z). We have assumed that the magnetic field is
static and only varies in the z direction. The longitudinal momentum transfer, qz = kz−pz,
is restricted by energy and transverse momentum conservation to only take on two values,
q± = ±

√
p2
z +m2−pz. If the magnetic field has a top-hat shaped profile, meaning that it is

only nonzero (and takes value B0) for a region of longitudinal distance `, then the Fourier
transform is B̃(qz) = (2B0/qz) sin(qz`/2). Moreover if the incident axion is non-relativistic,
then q± ≈ m. For a fiducial volume V containing Na axions, the power per unit area of
photons being emitted in the z-direction is P γ/A = ωkNaPa→γ/V , which corresponds to
P γ = ρaPa→γA where ρa = mNa/V ∼ m2ϕ2

0 is the axion energy density and ωk = m.
It is interesting to compare this calculation with the classical dipole radiation formula

from eq. (4.17). They display a similar parametric behavior, and both powers scale as
P γ ∝ g2

aγϕ
2
0B̄

2R2. If we further identify the size of the B-field filling region with the
radius of the axion star, ` = R, then we have a factor of sin2(mR), which also arises
from an axion star with a top-hat density profile ϕ̃2(ω = m) ∝ sin2(mR). However, the

– 23 –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
2

two calculations are not necessarily equivalent, since eq. (4.17) is the power output from an
(inhomogeneous) axion star in a homogeneous magnetic field, whereas the estimate above is
for a homogeneous axion flux in an inhomogeneous (longitudinally-varying) magnetic field.
We believe that these two approaches will yield consistent results when put onto the same
footing (soliton structure and coherence), and we defer this investigation to future work.10

7 Observational signatures

The central goal of our work is to understand the emission of electromagnetic radiation
that occurs when an axion star passes through a strong electromagnetic field. We have seen
that the radiation spectrum peaks at E ∼ ω ∼ ma, which corresponds to radio frequencies
for typical axion masses. We have also seen that the radiation power grows as P γ ∝ B̄2

with the strength of the external magnetic field. In this section we will discuss how this
phenomenon could lead to a variety of observational signatures in different environments
with strong magnetic fields. We again restrict our attention to results at leading order in
gaγ , although the large gaγ results might lead to more radiated power in some cases.

Using the dipole approximation from eq. (4.14) and (6.2), the luminosity (L ≡ 〈P γ(2)〉t)
of an axion star in a background magnetic field (with strength B̄) is estimated as

L '
(
4× 1022 W

) ( m

10−5 eV

)−2 ( gaγ

0.66× 10−10 GeV−1

)2 ( f

1010 GeV

)−2

×
(

B̄

1010 G

)2 (
ϕ0
f

)2
F(ωR, ωp/ω),

(7.1)

where we have normalized the axion-photon coupling gaγ to the 95% CL upper limit from
the CAST helioscope [133], and we have set ω = m. We also remind the reader that
1 W = 107 erg/sec. The function F holds information about the soliton shape and plasma
effects:

F(ωR, ωp/ω) ≈

(πωR)4e−πωR, for ωp ≈ 0 ,
1
16(πωR)6

√
1− ω2

p/ω
2, for ωp ≈ ω .

(7.2)

where ωp is the plasma frequency. Note the beneficial dependence on large radius and the
lack of exponential suppression in the “resonant” (ωp ≈ ω) case. As long as the radius of
the star is smaller than the size of the resonant region, our calculation holds, and leads to
a large enhancement in the radiated power compared to the non-resonant case.

For the estimates in this section, we approximate the radiation spectrum as monochro-
matic, corresponding to a single spectral line. The frequency of this line is taken to be

νγ = ω

2π ≈
m

2π '
(
2 GHz

) ( m

10−5 eV

)
, (7.3)

and we take the width of the line, i.e. the signal bandwidth, to be ∆νγ ∼ νγ . For these
fiducial parameters, we also note that the mass scale and radius of a very dense axion star

10Furthermore, at larger couplings, non-perturbative effects (Bose-effects) should be included in the
framework of this calculation.
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(soliton) are expected to be on the order of

Msol ∼ 102f2/m '
(
2× 109 kg

) ( f

1010 GeV

)2 ( m

10−5 eV

)−1

Rsol ∼ 2m−1 '
(
4 cm

) ( m

10−5 eV

)−1
.

(7.4)

Note that 2× 109 kg ≈ 10−21 M�.

7.1 Compact stars

The strongest magnetic fields in the universe today can be found in the magnetospheres of
compact stars. The magnetic field strength at the surface of a white dwarf star is typically
106−8 G [134] whereas the smaller neutron stars can reach 1012−14 G [135]. If an axion star
were to encounter these extreme magnetic fields, the result would be a sudden and extreme
release of electromagnetic radiation [67].

If the compact star is a distance d? away, then the flux of radiation reaching Earth is
F = L/(4πd2

?), which can be measured in erg/cm2/sec. The corresponding spectral flux
density is calculated as S = F/B where B = ∆νγ = ω/2π is the signal bandwidth. For a
nearby star, the spectral flux density evaluates to

S '
(
2× 107 µJy

) ( d?
100 pc

)−2 ( m

10−5 eV

)−3 ( gaγ

0.66× 10−10 GeV−1

)2

×
(

f

1010 GeV

)−2( B̄

1010 G

)2

F(ωR, ωp/ω) ,
(7.5)

whereas the flux from a star at the galactic center (d? ≈ 8 kpc) would be reduced to
S ' 3 × 103 µJy. For reference, an hour-long observation with a current or planned
telescope (such as GBT, JVLA, or SKA) would have a flux sensitivity of δS ∼ 1 µJy; see
the estimates in refs. [61, 72]. If an axion star were to pass through the magnetosphere of
a compact star while it was being observed by a radio telescope, then the signal could be
quite striking, even for modest couplings and field strengths.

Since the compact star is surrounded by a plasma, this must be taken into account for
the signal strength estimates. In section 6.1 we have argued that the finite plasma density
modifies the radiation spectrum, which is captured by F in eq. (7.2). This factor depends
on the plasma frequency ωp, which is grows larger at points closer to the star, and F peaks
near to where the plasma frequency matches the soliton’s oscillation frequency, ωp ≈ ω, as
shown in figure 11. For example, using the fiducial parameters in ref. [61], the width of the
resonance region is estimated to be ωL ∼ O(100). If the axion star’s radius is R ∼ 0.1L
then figure 11 implies an enhancement of F ∼ 104 to the spectral flux density estimate
from eq. (7.5), which further increases the detectability.

Even if an axion star’s encounter with a compact star could be detected, we must
address the expected rate of these encounters [67, 72, 74]. The encounter rate between
a particular compact star and the ambient population of axion stars is estimated as Γ =
σeffvrelnas where σeff is the effective cross sectional area for the scattering, vrel is the typical
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relative velocity, and nas is the number density of axion stars (near the target compact
star). We can also write nas = ρas/Msol where ρas is the local mass density in axion
stars and Msol is the typical energy per axion star (soliton). The effective cross sectional
area is further enhanced by the gravitational focusing factor, and we estimate σeff = (1 +
v2

esc/v
2
rel)πR2

? where v2
esc = M?/4πm2

plR? is the escape velocity at the surface of the neutron
star. Combining these factors allows us to estimate the encounter rate of axion stars with
a particular white dwarf star to be

Γ '
(
4× 10−5 hr−1) ( M?

1M�

)(
R?

0.01R�

)(
ρas

0.3 GeV/cm3

)(
Msol

109 kg

)−1 ( vrel
10−3

)−1
, (7.6)

whereas the rate for encountering a neutron star (with R? = 10 km and other fiducial
parameters unchanged) is Γ ' 5 × 10−8 hr−1. The fiducial axion star density is taken to
equal the local dark matter energy density near Earth, ρdm = 0.3 GeV/cm3, although axion
stars are not expected to compose an O(1) fraction of the total dark matter density, which
is typically dominated by a diffuse population of axion particles.

The estimate in (7.6) appears very unfavorable. For the fiducial parameters we expect
a particular white dwarf star to encounter an axion star approximately once every 3 years
(or once every 2000 years for a neutron star). However, there are several reasons why the
rate might be enhanced over these estimates. First, the rate increases for compact stars
at the galactic center or within dark matter subhalos (where ρas is higher if it tracks the
dark matter density). Second we estimated σeff using the star’s geometrical cross section,
∼ R2

?, whereas the magnetic field extends far beyond the boundary of the star and scales
like B ∼ r−3 for a magnetic dipole. Third, depending on the nature of the observation, it
may be necessary to integrate over a finite region of the sky, such as toward the galactic
center, which could contain many neutron stars, further increasing the encounter rate [136].
Fourth, the fiducial axion star mass Msol = 109 kg is a free parameter, and a smaller value
implies a larger encounter rate.

7.2 Direct detection in our solar system

The phenomenon of electromagnetic radiation from an axion star in an external magnetic
field could be used to develop a strategy for detecting axion stars when they encounter our
solar system. The strongest magnetic fields generated in laboratories on Earth can reach
strengths of a few Tesla, corresponding to ∼ 104 G. However, the flux of axion stars at
Earth is expected to be quite low, making these signals very unlikely to be observed. The
flux is estimated as Φ = ρasvrel/Msol, and the expected encounter rate with a 1 meter-scale
detector is Γ = Φ(100 cm)2 ∼ (10−17 yr−1) (ρas/0.3 GeV/cm3)(vrel/10−3)(Msol/109 kg)−1.
Going beyond the confines of the laboratory, the Earth sustains its own magnetic field with
a strength of ∼ 1 G. The smaller field strength would lead to a weaker signal, but the larger
volume implies an increased encounter rate, Γ ∼ (10−4 yr−1)(Msol/109 kg)−1. Finally,
axion star encounters with the Sun’s ∼ 1 G magnetosphere could also provide a channel for
detection. The encounter rate is enhanced by the Sun’s much larger surface area, giving
Γ ∼ (100 yr−1)(Msol/109 kg)−1, but the radiation power is much weaker, approximately
P ∼ 10−24 L�, making this signal undetectable for the fiducial parameters.
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7.3 Galactic magnetic field

The axion stars in our Milky Way galaxy are continuously exposed to its ∼ 10−6 G magnetic
field. The corresponding electromagnetic radiation power is estimated using eq. (7.1). For
the fiducial parameters used above we find P ∼ 4× 10−10 W for a single axion star. This
power output is incredibly weak. For reference, if we sum the power output from all of
the axion stars in a galaxy like the Milky Way (assuming that they make up all the dark
matter), then the net power output is still only 10−3 L�! However, see also ref. [137] for a
discussion of resonant axion-photon conversion in the intergalactic magnetic field.

7.4 Early universe

We know very little about the extreme environment of the Universe during the first fractions
of a second after the Big Bang. Some theories predict that a magnetic field may have
arisen during the period of cosmological inflation, post-inflationary reheating, or during
a subsequent cosmological phase transition [138, 139]. The strength of this primordial
magnetic field may have been incredibly large by our every-day standards. For instance a
study of magnetogenesis from axion inflation [140] concluded that magnetic field generation
could be so efficient as to transfer an O(1) fraction of the inflaton’s energy into the magnetic
field, leading to field strengths as large as ∼ 1052 G at the end of inflation (for an inflaton
mass of minf ∼ 1014 GeV).

Formation of oscillons and dense axion-star configurations has been explored in earlier
works [87–91, 141]. In well-motivated, observationally constrained models of inflation, the
universe can become dominated by such solitons at the end of inflation (if the coupling to
other fields is sufficiently weak) [88]. Similar phenomena are possible in moduli fields and
other (pseudo-)scalars in the early universe. Typically, such configurations are long-lived
compared to the age of the universe then, although they are not expected to survive until
the present day.

If the early universe were to contain both a strong primordial magnetic field and
a population of axion stars [142–146], then their interaction will induce electromagnetic
radiation from the axion stars, thereby precipitating their decay (but also raise the question
of whether the solitons would form in the first place). Recall from the estimates in eq. (5.3)
that an axion star with massMsol ∼ 100f2/m emitting with a power P γ ∼ 10B̄2(fgaγ)2/m2

would exhaust an O(1) fraction of its energy on a time scale of τ ∼Msol/P
γ ∼ 10m/g2

aγB̄
2.

Since B̄ can be very large in the early universe, this axion star lifetime can potentially
drop below the Hubble time scale at that time, which is tH ∼ mpl/T

2 during radiation
domination at temperature T . We also note that even without strong magnetic fields,
the solitons might be able to decay into photons rapidly due to collisions via mechanisms
similar to those discussed in [41].

The phenomenon of magnetic-induced axion star decay would be challenging to test,
since we have only a few handles on early universe physics. If the decay happens to occur
during primordial nucleosynthesis, then the injection of electromagnetic radiation into the
primordial plasma could potentially disrupt the formation of the light nuclei [147], and
measurements of the light element abundances would provide an indirect constraint on
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this scenario. Nucleosynthesis also provides strong constraints on the QCD axion, even
in the absence of a primordial magnetic field [148]. The interplay between solitons and
electromagnetic fields can affect the rate of energy transfer and equation of state during
reheating, as well as gravitational wave production, and spectral distortions during the
early universe [90, 126, 127, 149–154].

8 Summary and conclusion

A spatially localized, periodically oscillating axion configuration (soliton: oscillon, axion
star etc.) in background electromagnetic fields, sources electromagnetic radiation. We in-
vestigated this production analytically and numerically (with 3+1 dimensional lattice sim-
ulations when necessary), focusing in particular on the dependence of the emitted radiation
on the characteristics of the axion field configuration as well as the strength of the coupling
to the electromagnetic field. We also pointed out how the coherence of the soliton configu-
ration, as well as the plasma effects, change the radiated energy in electromagnetic fields.

Our key results regarding the radiated power (luminosity) in electromagnetic waves
are as follows:

• We delineated and verified the boundary between bounded, constant luminosity so-
lutions and exponentially growing ones based on axion-photon coupling and soliton
properties. For a soliton with central amplitude ϕ0, oscillation frequency ω and ra-
dius R, this boundary lies at C ≡ gaγϕ0ωR/4 ∼ 1. This boundary is independent of
the background electromagnetic fields.

• For C � 1, we get dipole radiation with a constant time-averaged luminosity. We
derived an explicit formula for this dipole radiation, including an understanding of
the strong (exponential) dependence on the radius of the solitons.

• For the dense solitons (which we explore in detail in the numerics), we see a rich
behavior of the radiated power as gaγ is varied to explore all scenarios from C � 1 to
Ccrit ∼ 1. Although the time-averaged radiated power remains constant in time, the
details of the magnitude of the radiated power differ between background E and B
field cases, and they are also sensitive to the details of the soliton configuration. For
the B field case, for all cases we have considered, we see a suppression compared to
the dipole estimate and a non-monotonic behavior with C. The same is not true for
the E field background.11

11We have checked that the radiated power is constant in this regime by doubling the linear size of the
box and the duration of the simulation. While this constancy is expected from Floquet theory, it is not
quite a proof since the possibility of band structure in C with complicated boundaries also exists which
we might have missed out on numerically. Furthermore, the boundary at C = Ccrit might be richer than
just going from a constant-in-time radiated power to an exponentially growing one. We cannot exclude
the possibility of a power-law behavior with time for the radiated power at this boundary. We leave this
investigation to future work.
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• For C & 1, parametric resonance leads to an exponentially (in time) growing lumi-
nosity based on Floquet Theory. In the parametric resonance regime, background
electromagnetic fields are unnecessary, small fluctuations can be sufficient. The ex-
ponential transfer of energy can be significant enough to cause backreaction on the
soliton, and regulate photon production.

• We explained the relevance of the coherently oscillating axion field configuration
compared to an incoherent collection of dipoles and defined a critical coherence length
which allows us to determine whether the coherent or incoherent configuration would
radiate more efficiently.

• We explored how the presence of a plasma affects the radiation from a soliton. In
particular, we find that when the plasma frequency is approximately equal to the
oscillon frequency we get an enhanced resonant conversion to photons (‘resonant’
conversion, which is different from parametric resonance).

There are a number of avenues for future work to extend our results. Our formalism
and code includes background electric and magnetic fields together, however, we presented
detailed numerical results for each separately. Considering them both together would
introduce additional rich phenomenology which might be necessary, for example, when
axion stars are boosted through static fields or when the astrophysical background fields
themselves are time-dependent as is the case with neutron stars. In future work, we also
plan to numerically include gravitational effects, such as tidal disruption, and take time-
dependent medium effects around compact stars into account.
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A Dipole radiation Green’s function

In this appendix we solve the field equations, (4.8) and (4.9), using the method of Green’s
functions, and we derive the time-averaged Poynting vector 〈S〉t. Consider the retarded
Green’s function

G(t,x; t′,x′) =
∫ d4k

(2π)4
eik·(x−x

′)−ik0(t−t′)

(k0 + iε)2 − |k|2
= −δ(t− t

′ − |x− x′|)
4π|x− x′| Θ(t− t′) . (A.1)
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Solutions of eqs. (4.8) and (4.9) are written as

E(1)(t,x) =
∫
M

dt′ d3x′ G(t,x; t′,x′)
[
∇ρ(1)(t′,x′) + J̇(1)(t′,x′)

]
(A.2)

−
∫
∂M

d3x′ G(t,x; 0,x′) Ė(1)(0,x′)

+
∫
∂M

d3x′ ∂t′G(t,x; 0,x′) E(1)(0,x′),

B(1)(t,x) =
∫
M

dt′ d3x′ G(t,x; t′,x′)
[
−∇× J(1)(t′,x′)

]
(A.3)

−
∫
∂M

d3x′ G(t,x; 0,x′) Ḃ(1)(0,x′)

+
∫
∂M

d3x′ ∂t′G(t,x; 0,x′) B(1)(0,x′) ,

where the integration contourM is understood as the upper half plane (time t′ > 0), while
the boundary ∂M is located at time t′ = 0.

In each expression above, the second and third terms enforce the initial conditions.
However, for the purposes of calculating the late-time radiation at a point far away from
the localized charge distribution, we can safely ignore these terms. Notice that these terms
depend on the Green’s function through G(t,x; 0,x′) ∝ δ(t−|x−x′|). When x′ is restricted
in the oscillon region and x is fixed for the observation, the delta function in the Green’s
function can not be satisfied given t is big enough.

At a point x that is far away from the localized charge distribution, we can approximate
|x− x′| ≈ |x| − x̂ · x′ where x̂ ≡ x/|x|. Under this approximation, the fields are

E(1)(t,x) ≈ −Re
[
e−iωt+iω|x|

4π|x|

∫
d3x′

[
∇%(1)(x′)− iωj(1)(x′)

]
e−iωx̂·x

′
]
, (A.4)

B(1)(t,x) ≈ −Re
[
e−iωt+iω|x|

4π|x|

∫
d3x′

[
−∇× j(1)(x′)

]
e−iωx̂·x

′
]
, (A.5)

where we have used eq. (4.10) and the Green’s function from eq. (A.1) enforces e−iωt′ =
e−iωteiω|x−x

′| ≈ e−iωteiω|x|e−iωx̂·x
′ . The integrals above are Fourier transforms, and we

adopt the following conventions:

f(x) =
∫ d3p

(2π)3 f̃(p) eip·x, f̃(p) =
∫

d3x f(x) e−ip·x . (A.6)

This realization leads to

E(1)(t,x) ≈ −Re
[
e−iωt+iω|x|

4π|x|
[
ik%̃(1)(k)− iωj̃(1)(k)

]]
, (A.7)

B(1)(t,x) ≈ −Re
[
e−iωt+iω|x|

4π|x|
[
−ik × j̃(1)(k)

]]
, (A.8)

with k ≡ ωx̂. The Poynting vector is defined as

S(2) = E(1) ×B(1) . (A.9)
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To calculate this quantity we use the arithmetic formula Re [a] Re [b] = Re [ab∗ + ab] /2 and
the current conservation equation ω%̃(1)(k) = k · j̃(1)(k). Explicitly,

S(2)(t,x) = ω k

32π2|x|2

(
− |%̃(1)(k)|2 + |j̃(1)(k)|2 (A.10)

− Re
[
e−i2ωtei2ω|x|

(
−%̃2

(1)(k) + j̃2
(1)(k)

) ])
.

The first two terms are independent of time t, while the third term oscillates with period
π/ω and it vanishes upon taking the time average (over many oscillations cycles). Thus,
the time-averaged Poynting vector is

〈S(2)〉t(x) = ω k

32π2|x|2
(
− |%̃(1)(k)|2 + |j̃(1)(k)|2

)
, (A.11)

where k = ωx̂, for a spatially-localized, spherically-symmetric charge distribution that
oscillates with period 2π/ω.

A similar calculation goes through for a photon with nonzero mass 0 < mγ < ω. In a
mediummγ = ωp is the plasma frequency. The field equations, (4.8) and (4.9), are extended
to include the mass term. The Greens function in eq. (A.1) involves a massive propagator
that enforces the dispersion relation, k2

0 − |k|2 = ω2
p. Ultimately the Poynting vector is

expressed as in eq. (A.11) but with the wavevector k = ωx̂ replaced by k = κx̂ with
κ = [ω2 − ω2

p]1/2. For larger photon masses, ω < ωp, the fields are exponentially damped.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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