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1 Introduction

Identifying independent higher-derivative operators and calculating their predictions in the
form of on-shell scattering amplitudes can be technically challenging, especially in gauge
and gravity theories. Such a challenge naturally invites the application of novel techniques
used to reveal hidden simplicity and structure in scattering amplitudes (see, e.g. [1–13] and
references therein). Here we look to color-dual building blocks, discovering new structure
at five points that we expect to generalize to all multiplicity.

The task of calculating gravitational amplitudes has been remarkably simplified by the
discovery of color-dual double copy structure [14, 15], exploiting the fact that gravity predic-
tions are entirely encoded by the kinematic information of gauge theory amplitudes [16–18].
Gauge theory amplitudes themselves are heavily constrained by the duality between color
and kinematics, the statement that the color weights and kinematic numerators contribut-
ing to gauge theory amplitudes obey the same algebraic relations. This duality allows for
the double copy procedure of replacing color weights with additional kinematic weights,
generating a gravitational amplitude.

Could the calculation of higher-derivative gauge and gravity counterterms be vastly
simplified by exploiting double-copy? Notably, at four points [19] the answer is a
definitive yes. Indeed, outside of a small number of vector building blocks, we reduce
the higher-derivative adjoint-compatible gauge theory problem to one of manipulating
scalar weights. Along the way, we clarify how operators whose predictions involve the
permutation-invariant color structure dabcd can be completely compatible with adjoint-
double copy, despite the non-adjoint nature of their color weights. One must simply com-
pensate for the color’s different algebraic properties by including kinematic functions in
the same graph dressing; we identify these adjoint combinations of color with kinemat-
ics as higher-derivative color weights. This resolves a potentially subtle point — adjoint-
color-kinematics duality can be made manifest in these amplitudes, even if the coefficients
of independent color traces within the full amplitude do not satisfy the so-called Bern-
Carrasco-Johansson (BCJ), or (m − 3)!-basis, field-theory ordered amplitude relations.
Such amplitudes still admit an adjoint-double copy description, as they may be expressed
as a sum over cubic graphs, each dressed with two adjoint-dual weights — it is just that
one of these weights is not pure color, but rather color conspiring with kinematics to satisfy
adjoint relations. In this current manuscript, we show that such simplification is very much
present for the predictions of five-field operators as well.

The color-dual structure of the open superstring serves as a proof of concept for pulling
the complexity of higher-derivative gauge theory corrections into much simpler scalar cor-
rections. Tree-level open superstring amplitudes may be understood as a field-theory double
copy between super-Yang-Mills theory and a bicolored scalar theory known as Z-theory,
which encodes all string higher-derivative corrections [20–23]. In ref. [19], we computed the
scalar corrections needed to span the predictions in the low-energy expansion of the open
superstring (and, through double copy, the closed superstring as well) at four-point tree
level via a constructive approach that focused on the principles of color-kinematics duality,
gauge invariance, locality, and unitarity.
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It is worth taking the time to emphasize what may seem like a peculiar feature of our
approach. Tree-level scattering admits a type of simplification that we choose to avoid.
At tree-level, functional algebraic constraints like the kinematic Jacobi-identity for adjoint
structures can relax to linear constraints on a wider set of elements, if we allow weights
of the same topology but with different labels to have a different functional form. This
has advantages, and indeed allows for the closed-form all-multiplicity momentum-kernel,
or KLT [16–18], representation of double-copy relationships. The penalty for this approach
is a factorial growth in the number of functions one must specify at each multiplicity —
which, in each case, takes a product with the infinite tower of potential higher-derivative
corrections! Instead, here we employ an approach that is indeed required for multiloop cal-
culations — allowing each topology to get its own functional weight. The cost is functional
algebraic constraints to satisfy color-kinematics duality, but the gain is the factorial de-
crease in the number of topologies needed to form a basis to describe every contribution. At
four loops in the maximally supersymmetric case at four-points, where over eighty topolo-
gies may contribute, each with relabelings, only one non-planar topology is required to
span the entire integrand through functional Jacobi relations [24]. For tree-level, provably
to all multiplicity, one requires only the single functional weight of the half-ladder (multi-
peripheral) topology for each multiplicity to span all topologies through Jacobi relations.

The cornerstone of our strategy is to target the construction of higher-derivative color
weights, which mix both color structure and scalar kinematics into single numerator fac-
tors that obey adjoint relations. Their adjoint properties render them appropriate building
blocks for adjoint double copy with vector kinematic weights (such as from Yang-Mills)
to generate gauge and gravity corrections. The procedure of building these modified color
factors was guided at four points by the relevant algebraic structures: adjoint (antisym-
metry about vertices and Jacobi-relations about edges of cubic graphs) and permutation
invariance. Functional graph weights satisfying these algebraic constraints, either in terms
of pure color information or scalar kinematics, proved to be natural building blocks for the
construction of adjoint higher-derivative color weights.

We emphasize that the key innovation of [19] at four-point tree-level was the recog-
nition that these types of functional weights can be composed to generate new functions
that satisfy the same functional algebraic constraints. With a unit-step in Mandelstam
invariants, one can then climb the infinite ladder of higher-derivative corrections rung by
rung without needing to resort to an ansatz at each level to satisfy the functional relations.
Because kinematic permutation invariants close to a basis at finite order, there are only
a finite number of distinct building-blocks one must identify through composition before
allowing permutation invariants to span all higher-dimension predictions. We demonstrate
here that such a kinematic unit building-block exists at five-points with a wide variety of
consequences which we explore in detail in this paper. Indeed, with the pattern at four and
five-points, it becomes clear that the functional kinematic weight at the heart of Jacobi-
satisfying relationships for the unit-step half-ladder for arbitrary multiplicity m > 3 should
take the following simple form:

nunit(1| · · · |m) ∝ (k1 − k2) · (km − km−1) . (1.1)

– 2 –
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Jacobi relations are trivially satisfied on all edges, antisymmetry is manifest algebraically
at the two terminal vertices, and the only question is whether the kinematic weight is odd
or even under the reflection between these terminal vertices. At odd multiplicity, we are
forced to relax the adjoint condition to allow symmetry about the middle-vertex — yielding
a different algebraic structure than adjoint (one, e.g., with fewer basis elements), but
one that can be used to construct the color-dual required adjoint-type structures through
composition. At even multiplicity, one satisfies all adjoint-type algebraic relations with
this simple building block. All order construction via relaxed adjoint for odd-multiplicity
in the specific case of five points is treated in detail in this paper, but we expect this to
generalize to all odd multiplicity.

In this manuscript, we demonstrate that such a simple scalar structure allows the
constructive building of higher-derivative adjoint-type color-weight corrections at five-point
tree level. We see an abundance of algebraic structures give rise to many distinct types of
color and composition rules for generating adjoint modified color factors. These structures,
along with their associated color and scalar kinematic building blocks, prove to be sufficient
for writing down appropriately factorizing five-point tree-level supersymmetry-compatible
gauge theory corrections; we conjecture that only a finite number of building blocks is
necessary to span all higher-derivative corrections compatible with color-kinematics duality
and maximal supersymmetry. Additionally, we uncover a novel form of color-kinematics
duality for local amplitudes, which may be striated into alternatively an adjoint double
copy structure or double copy forms defined by the new algebraic structures appearing
at five points. We may construct such local solutions using the same handful of building
blocks needed to write down factorizing corrections. These constructed factorizing and local
amplitudes are expected to e.g. span the entirety of the α′ expansion of the open superstring,
which we explicitly verify through the ninth order in α′ and present in associated ancillary
computer readable files [25].

The paper is organized as follows. We begin with a review of amplitude properties
and color-kinematics duality in section 2, and then summarize results from our previous
studies of higher-derivative counterterms at four points in section 3. Algebraic structures
and compositions at five points are enumerated in section 4, and then used to generate color
and scalar kinematic solutions in section 5. We combine these results straightforwardly
to find factorizing and local higher-derivative color factors in section 6. New methods
for constructing color-dual local solutions are introduced in section 7. We discuss how
these higher-derivative color-weights can be exploited to build higher-derivative gauge and
gravity corrections in section 8. We demonstrate that our constructive predictions can be
used to span the low-energy expansion of open superstring theory amplitudes in section 9.
We discuss these results and look to future avenues of exploration in section 10.

We provide ancillary Mathematica files hosted, with versioning, on github [25]. We
discuss our approach for discovering functional algebraic composition rules in appendix A,
tabulate our explicit color-basis for five points in appendix B, offer a pedagogic example of
operator matching in appendix C, as well as the explicit composition formulae relevant at
five points in appendix D.

– 3 –
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2 Review of the duality between color and kinematics

In this section, we briefly review features of the adjoint color-kinematics duality and its
associated double-copy construction [14, 15]. For more details on double-copy in general
and its applications, we refer the interested reader to the recent review [26].

2.1 Color-dressed Yang-Mills amplitudes

We can express each full (or color-dressed) m-point tree-level Yang-Mills theory amplitude
as a sum over the contributions of (2m− 5)!! individual cubic (or trivalent) graphs:

AYM
m =

∑
g∈Γ(m)

3

nYM
g cg

dg
(2.1)

where the sum runs over all graphs containing m external edges and only cubic vertices,
Γ(m)

3 . In Yang-Mills, the color factor cg associated with each graph is given simply by
dressing each vertex with an appropriate fabc structure constant, and each internal edge
with a Kronecker delta in color indices. We use ng to represent the kinematic numerator
weight corresponding to a given graph, encoding external state information and the tensor
structure of the theory in terms of Lorentz dot products (ki · kj), (ki · εj), and (εi · εj).
Finally, dg are the (massless) cubic propagators of each graph g.

For example, the color-dressed four point amplitude can be written as:

AYM
4 = nYM

s cs
s

+ nYM
t ct
t

+ nYM
u cu
u

(2.2)

where s, t, and u are the four point momentum invariants s = s12 = (k1 + k2)2, t =
s23 = (k2 + k3)2, and u = −s − t = s13 = (k1 + k3)2, with all momenta massless and
outgoing. These graphs may be equivalently labeled in terms of functional numerators,
as ns = n(1234), nt = n(4123), and nu = n(3142), respectively. The four point contact
term of Yang-Mills has been associated with the three cubic graphs by multiplying its
contribution by appropriate factors of unity, like s/s.

2.2 Adjoint color properties

By virtue of the Lie algebra of the gauge group, the adjoint color factors cg obey antisym-
metry around all cubic vertices and Jacobi identities on all internal edges:

fabc = −facb (2.3)
fabef ecd = fdaef ebc + fdbef eca (2.4)

These relations hold at all multiplicity (correspondingly, a, b, c, d need not be external color
labels). Returning to our four point example, the Jacobi identity simply relates the color
factors of the three channels:

cs = ct + cu (2.5)

where c(abcd) = fabef ecd and cs = c(1234), ct = c(4123), and cu = c(3142).

– 4 –
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2.3 Ordered amplitudes

The full amplitude A is gauge invariant and obeys the Ward identity A|εi→ki = 0. There is
no such condition on the kinematic numerators for individual graphs: ng vary under gauge
transformations. Gauge invariant quantities can, however, be constructed from kinematic
numerators and propagators by expressing the full amplitude in a basis of color factors
using the Jacobi identity. In our four point example, we can express ct in terms of a basis
of cu and cs, yielding,

AYM
4 = cs

(
ns
s

+ nt
t

)
+ cu

(
nu
u
− nt

t

)
= csA(1234) + cuA(1423)

(2.6)

The coefficient of an independent color basis element must be itself gauge invariant. Such
structures arises at every multiplicity once color weights are expressed in a minimal color-
basis. The gauge-invariant coefficients of the basis color weights are referred to as ordered
amplitudes, and can be parameterized by a fixed external ordering.

In our four-point example, we may surmise that while ns and nt both vary under
gauge transformations, they must do so commensurately in such a way there is no effect
on the physical quantity A(1234). In this sense, it is the fact that color factors cg obey the
Jacobi identity that allows gauge-dependent terms to cancel between the distinct graph
numerators ng, thereby ensuring gauge invariance of the overall amplitude. This ability
to shift kinematic numerators in a manner that does not affect the physical amplitude,
known as generalized gauge freedom, means that kinematic numerators are not unique;
we will shortly see that certain representations (which do not necessarily line up with the
representation obtained via Feynman rules) of these numerators make particularly useful
properties manifest.

For SU(Nc) charged theories, the ordered amplitudes like A(1234) may be uncovered
not only by aligning the full amplitude along a basis of graph color weights (like cs and
cu above), but also by writing the color factors in a basis of traces over generators and
reading off the coefficients:

Am =
∑

σ∈Sm−1

Tr (T aσ1T aσ2 · · ·T am)A(σ1, σ2, · · · ,m) . (2.7)

By virtue of the cyclicity of the color traces, the ordered amplitudes must also obey cyclic
invariance.

In particular, we will often refer to the following five-point ordered amplitude:

A(12345) = n(12345)
s12s45

+ n(23451)
s23s15

+ n(34512)
s12s34

+ n(45123)
s23s45

+ n(51234)
s15s34

(2.8)

2.4 Color-kinematics duality and double copy

Adjoint color-kinematics duality states that kinematic numerators obey the same algebraic
properties — antisymmetry and Jacobi — as the adjoint color factors:

c(abc) = −c(acb) ⇔ n(abc) = −n(acb)
cs = ct + cu ⇔ ns = nt + nu

(2.9)

– 5 –
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Generic four-point cubic representations of Yang-Mills satisfy this kinematic Jacobi identity
independent of gauge. At higher multiplicity, not all representations are guaranteed to
make this duality manifest, but by virtue of generalized gauge freedom, it is always [27, 28]
possible to rearrange a given set of numerators into a color-dual representation that satisfies
the corresponding kinematic Jacobi identities.

At tree level, adjoint color-kinematics duality may be equivalently expressed in terms
of the (m− 3)!-basis BCJ relations between ordered amplitudes,

m−1∑
i=2

k1 · (k2 + · · ·+ ki)Am(2, · · · , i, 1, i+ 1, · · · ,m) = 0 (2.10)

We will use this to impose adjoint color-kinematics duality in cases where ordered am-
plitudes prove to be more closely related to the most natural choice of building blocks
than numerators. At four points, these relations amount to demanding the permutation
invariance of the quantity A(abcd)/sac.

Guided by the knowledge that the algebraic properties obeyed by the color factors
ensure the gauge invariance of the amplitude, double copy construction allows us to build
linearized diffeomorphism invariant gravity amplitudes M from gauge theory amplitudes
A by replacing the color factors with kinematic numerators that also satisfy the same
algebraic properties of antisymmetry and Jacobi identities:

A =
∑
g

ngcg
dg

c→ñ−−−→ M =
∑
g

ngñg
dg

(2.11)

where n and ñ need not be numerators from the same gauge theory.
In general, we can label any adjoint-type theory’s double-copy structure by the weight

each single-copy theory contributes graph by graph, i.e.:

Aj⊗k ≡
∑
g

jgkg
dg

(2.12)

General higher derivative corrections to any field theory can also be written on cubic
graphs, with any contact terms assigned to cubic graphs by multiplying by inverse prop-
agators. We will primarily be interested in theories that manifest an adjoint double-copy
structure Aj⊗k; higher derivative corrections to such theories will require j and/or k to take
on additional powers of momentum invariants. The next section will review the progress
made at four-points.

3 Higher-derivative adjoint-type corrections at four-points

In ref. [19], we showed that we can exploit double copy structure to write down higher-
derivative corrections to gauge theory and gravity. Gauge theory corrections may be en-
tirely captured by constructing a double copy between adjoint vector numerators and a
small number of simple objects that mix color structures and scalar kinematics into adjoint-
color-dual modified color factors. When this vector copy is simply Yang-Mills, we generate

– 6 –
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all local four-point higher-derivative corrections that contribute to the tree-level open super-
string. More general higher-derivative vector corrections can be achieved by consideration
of a spanning set of adjoint-type vector numerators, to be discussed later in this section.

Each and every higher-derivative correction can be described in terms of two double-
copy structures: one involving adjoint-type weights dressing cubic graphs, and one involving
permutation-invariant weights dressing the quartic contact. One may wonder about four-
point mixed adjoint-symmetric weights, following e.g. the algebra of f3d3 color-weights, but
as there are no (non-trivial) four-point scalar weights that obey such algebraic relations, we
expect such structures not to be compatible with adjoint-type double-copy. This simplifies
our task to finding building blocks compatible with either adjoint or permutation-invariant
algebraic constraints so that we may construct amplitudes through double copy. We will
frame the discussion of four-point higher-derivative corrections by introducing first the
relevant graphs, then the algebras associated with each of them as well as composition
rules, and finally building blocks involving single-trace color and scalar kinematic weights.

3.1 Algebraic structures at four-points

There are multiple double-copy representations of the same amplitude corresponding to
striations along different algebraic properties. These striations may be associated with
graphical representations. Here, we will discuss this idea in the context of four-point tree-
level amplitudes for massless particles.

3.1.1 Graph representations

Let’s first establish a notation for graphs at four-points. There is only one cubic graph
topology, also known as the half-ladder, defined by one edge and two (cubic) vertices, whose
labels we can specify with an ordered list:

(abcd) ≡

a

b c

d

. (3.1)

Additionally, we have a contact graph with a quartic vertex:

(〈abcd〉) ≡

a

b c

d

. (3.2)

3.1.2 Adjoint algebraic constraints

Cubic graphs g = (abcd) are dressed by adjoint-type weights ag = a(abcd). These weights
obey antisymmetry about each vertex and satisfy Jacobi relations on each internal edge.

– 7 –
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The antisymmetry weights are expressed as:

a(abcd) = −a(bacd) : antisymmetric around vertex

a

b c

d

, (3.3)

a(abcd) = −a(abdc) : antisymmetric around vertex

a

b c

d

, (3.4)

and the Jacobi-like constraint as:

a(abcd) = a(bcda) + a(cadb) : Jacobi relation about edge

a

b c

d

. (3.5)

These combine to generate the familiar 2-cycle equivalence relation:

a(abcd) = a(cdab) , (3.6)

and symmetry under reversal:
a(abcd) = a(dcba) . (3.7)

An ordered partial amplitude with leg ordering (abcd) is given by summing over the
two cubic channels that could contribute to that ordering:

A(abcd) = a(abcd)
(ka + kb)2 + a(bcda)

(kb + kc)2 . (3.8)

Under adjoint type-constraints, all 24 ways of dressing a cubic four-point graph collapse to
the three Mandelstam channels. As a convenient shorthand, we will invoke Mandelstam
labels as shorthand for graphs

s = (1234) (3.9)
t = (2341) (3.10)
u = (3142) (3.11)

as well as propagators,

s = (k1 + k2)2 = (k3 + k4)2 (3.12)
t = (k2 + k3)2 = (k1 + k4)2 (3.13)
u = (k1 + k3)2 = (k2 + k4)2, (3.14)

where, via conservation of momentum for massless particles, s+ t+u = 0. Using conserva-
tion of momentum and the graph dressing adjoint constraints, we may see that the ordered

– 8 –
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amplitudes satisfy the standard field theory relations of Yang-Mills ordered amplitudes:

A(abcd) = A(bcda) cyclic symmetry, (3.15)
A(abcd) = (−1)4A(dcba) reversal symmetry, (3.16)
A(abcd) = −A(adbc)−A(acdb) (n− 2)! basis relations, (3.17)
A(abcd)
(a+ c)2 = A(adbc)

(a+ b)2 = A(acdb)
(a+ d)2 (n− 3)! basis relations. (3.18)

From the second relation, we see that we can simply label each ordered amplitude in terms
of its propagators: A(sab, sbc) ≡ A(abcd). From the last relation, we see that A(s, t)/u is
permutation invariant and thus so is stA(s, t) = tas + sat.

Making adjoint double-copy structure manifest, a full amplitude from a theory de-
scribed by adjoint-type graph weights ag and ãg is given by summing over all three distinct
Mandelstam channels:

A4 = a⊗ ã = asãs
s

+ atãt
t

+ auãu
u

. (3.19)

This expression is manifestly permutation invariant, consistent with Bose-symmetry of the
overall amplitude. By expressing both copies ag and ãg in terms of a Jacobi-basis, and
exploiting conservation of momentum, we can rewrite it to manifest permutation-invariant
double copy form:

A4 = −(tas + sat)(tãs + sãt)
stu

= −stA(s, t)× stÃ(s, t)
stu

(3.20)

so that both copies are encoded in permutation-invariant quantities.

3.1.3 Permutation-invariant algebraic constraints

The four-point quartic contact graph g = (〈abcd〉) is dressed by permutation-invariant type
graph weights pg. These weights are completely symmetric under all permutations, so we
will often omit the graphical argument to permutation invariant weights.

By virtue of the permutation invariance of the quantity sabsbcA(sab, sbc), we may ex-
press an adjoint-ordered partial amplitude with leg ordering (abcd) as:

A(abcd) = p

sabsbc
(3.21)

This convention ensures that the adjoint-ordered partial amplitudes satisfy the (n − 3)!
amplitude relations.

A full amplitude with double-copy structure may be encoded using the permutation
invariant weights pg and p̃g accordingly,

A4 = p⊗ p̃ = − pp̃

stu
(3.22)

Any amplitude with this permutation-invariant double copy structure may be equivalently
expressed as an adjoint-type double copy, and vice-versa.

– 9 –
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3.1.4 Composition at four-points

Wemay take two graph weights and compose them together to generate a new graph weight.
This type of composition obviates the need to employ an ansatz to achieve algebra-satisfying
graph-weights. This quadratic operation can be defined by the following composition rules:

(a a© ã)s = (atãt − auãu) (3.23)
(a a© p)s = as p (3.24)
(a p© ã) = (asãs + atãt + auãu) (3.25)
(p p© p̃) = p p̃ . (3.26)

This notation (f e© g) may be read as a graph weight of algebraic type f composed with
a graph weight of algebraic type g to generate a new graph weight of algebraic type e.
By algebraic type we mean what algebraic relations are being satisfied, e.g. either adjoint-
type relations (Jacobi and anti-symmetry), a, or satisfying permutation-invariant relations,
p. We specifically note that the compositions rules that generate adjoint graph weights,
(f a© g)s, as written will yield an s-channel, or g = (1234), dressing; all other graph orderings
may be obtained via functional relabeling. These definitions hold under scaling by any order
of permutation invariants, including, e.g., overall constant factors.

With these composition rules, we will be able to use an incredibly small number of
building blocks to generate all adjoint-double-copy compatible four-point amplitudes at
all orders in mass-dimension. Note, particularly, that one can simply multiply any graph
weight by a permutation-invariant combination of Mandelstam scalars to trivially generate
higher-mass-dimension weights of the same algebraic type as the initial graph weight.

We will continue now with specific examples of scalar, color, and vector weights. We
will begin with scalar weights, as their two basis permutation invariants trivialize towers
of higher-mass-dimension weights, and they provide useful building blocks for spanning
higher-derivative color-weights.

3.2 Scalar adjoint-type weights

One can show via a generic ansatz that, up to constant factors, there is only one adjoint-
type scalar-weight that is linear in Mandelstam invariants:

as,1s = (t− u) = ass
s . (3.27)

This is precisely the kinematic weight corresponding to a Yang-Mills scalar theory of mass-
less adjoint scalars minimally coupled by gluons, sometimes referred to as the simple scalar
theory. The relevant cubic interaction operator for this theory takes the form:

Lss = fabcAaµ∂
µϕbϕc , (3.28)

and the resulting ordered amplitude is:

Ass
4 (s, t) ∝ s2 + t2 + u2

st
∝ 1 + s

t
+ t

s
. (3.29)
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We can consider two operations with this scalar weight: composing it with itself to a
permutation invariant and composing it with itself to get an adjoint weight of higher mass
dimension. The first operation results in something proportional to the lowest (positive)
mass dimension scalar permutation invariant:

ps,2 = (ass p© ass) = s2 + t2 + u2 = σ2 . (3.30)

So we see that: stAss
4 (s, t) = σ2.

Composing ass with itself to make an adjoint-type numerator results in a mass-
dimension two adjoint-type weight,

as,2s = (ass a© ass) ∝ s(t− u) = anlsm
s . (3.31)

This is proportional to the familiar Nonlinear Sigma Model kinematic weight which builds
amplitudes for the action:

SNLSM =
∫
dDx

(1
2 Tr

[
∂µϕ

1
1− ϕ2∂

µϕ
1

1− ϕ2

])
. (3.32)

Its ordered amplitude is seen to be:

Anlsm
4 (s, t) ∝ stu

st
= u . (3.33)

Composing anlsm with ass to a permutation invariant results in the last unique permu-
tation invariant building block:

ps,3 =
(
anlsm p© ass

)
∝ stu = σ3 . (3.34)

So we see that stAnlsm
4 (s, t) = σ3, and therefore at four-point the double-copy of any theory

with the non-linear sigma model is simply the permutation invariant of that theory itself:

anlsm ⊗ a = stAa(s, t) . (3.35)

All higher order permutation invariants are made of sums of products of various powers
of σ2 and σ3. Because we may always generate new adjoint weights by multiplication of
ass or anlsm with scalar permutation invariants, one might expect that running out of
novel permutation invariant structures indicates that we have also now run out of novel
adjoint-type scalar weights up to permutation invariants. This would indeed be correct.
The ladder of adjoint-type composition for scalars has already closed under permutation
invariant products by weight three:(

anlsm a© ass
)
s
∝ σ2a

ss . (3.36)

All higher-mass-dimension a type weights that generate unique ordered-amplitudes may be
expressed as sums over ass and anlsm each taken with appropriate polynomials in σ2 and
σ3. For a proof that this is sufficient see ref. [19]. As such, there are only two distinct pure-
scalar adjoint-type weights up to permutation invariants, as,1, and as,2 ≡

(
as,1 a© as,1

)
, and

only the first results in new ordered amplitudes (modulo scalar permutation invariants)
when invoking composition. We have the case at four-points where simply knowing the
linear adjoint-type numerator as well as all composition rules gives us everything we need
know about scalar adjoint-type weights.
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3.3 Color adjoint-type weights

There are three independent color-weights linear in traces, i.e. that generate ordered trees
unique up to scalar permutation invariants. The first is simply the most natural, dressing
every vertex with fabc structure constants:

ac,1s = fa1a2bf ba3a4 = cs . (3.37)

This results in an ordered amplitude that looks like:

Ac,1(s, t) = cs
s

+ ct
t

(3.38)

= Abi-adj(s, t) (3.39)

The second involves composition between the simple-scalar numerator and the first color-
numerator:

ac,2s =
(
ac,1 a© as,1

)
= (s− u)ct − (t− s)cu . (3.40)

This results in ordered amplitudes proportional to:

Ac,2(s, t) = csa
nlsm
s + cta

nlsm
t + cua

nlsm
u

st
(3.41)

The third unique adjoint color-weight is as simple as composing the permutation invariant
color-symbol dabcd with the adjoint scalar kinematic weight anlsm,

ac,3s =
(
anlsm a© dabcd

)
s

= dabcds (u− t) . (3.42)

All other adjoint-type compatible color weights linear in color-traces are simply per-
mutation invariants times these three color weights. This means, for example, if we want
to consider all higher-derivative corrections to maximally supersymmetric Yang-Mills at
four-points, we simply need to construct the double-copy between the supersymmetric
Yang-Mills and the following adjoint-type higher-derivative s-channel color numerator:

cHD
s =

∑
m

(
α′
)m ×

 ∑
2X+3Y=m

a
(X,Y )
c,1 σX2 σ

Y
3 ac,1s +

∑
2X+3Y=m−1

a
(X,Y )
c,2 σX2 σ

Y
3 ac,2s

+
∑

2X+3Y=m−2
a

(X,Y )
c,3 σX2 σ

Y
3 ac,3s

 , (3.43)

where X ≥ 0 and, for the first two sums Y ≥ 1, and for the final sum Y ≥ 0, so that in
all cases, we obtain contact corrections with no poles in s, t, or u. The t and u channel
higher derivative color-factors, cHD

t and cHD
u , follow identically from label permutations

of the ac,i. We demand local contact corrections because there are no non-zero higher-
derivative three-point scalar amplitudes for a four-point amplitude with pole structure to
factorize into, as all Lorentz invariant dot products (ki · kj) vanish for on-shell, real three
point momenta. We additionally introduce a dimensionful parameter, α′, to track the or-
der in higher-derivative correction: this constant carries units [α′] = M−2, so corrections
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at nth order in α′ must carry higher-derivative corrections of mass-dimension 2n. This
corresponds to carrying n additional scalar-kinematic Lorentz dot products relative to the
uncorrected theory. Finally, the coefficients a(X,Y )

c,i are free overall parameters accompany-
ing each individual solution at each order, corresponding to Wilson coefficients for distinct
higher-derivative operators.

The full higher-derivative correction amplitude is given by double-copy as:

AsYM+HD
4 = nsYM ⊗ cHD = nsYM

s cHD
s

s
+ nsYM

t cHD
t

t
+ nsYM

u cHD
u

u
. (3.44)

Indeed this structure was exposed in the resummed in α′ four-point tree-level open-
superstring scattering amplitude in ref. [19]. More general corrections to pure Yang-Mills
may be given by the double copy of these higher-derivative adjoint color numerators with
any generic combination nvec of the eight total distinct adjoint-type vector numerators as:

AYM+HD
4 = nvec ⊗ cHD = nvec

s cHD
s

s
+ nvec

t cHD
t

t
+ nvec

u cHD
u

u
. (3.45)

There are seven gauge-invariant tensor structures [29] (see also, e.g. [30, 31] and references
therein) that adjoint-type numerators can be built from (up to products with rational
functions of permutation invariant color-weights), and this yields eight distinct (under
polynomials of σ2 and σ3) vector building blocks, starting (with lowest mass-dimension) at
Yang-Mills. Since Yang-Mills numerators at four points have three Lorentz dot-products
per term, we denote nYM

a as a3
vec; then, a4

vec will generically refer to vectors with one more
dot product in each numerator than Yang-Mills numerators. There are three such a4

vec,
including amplitudes that arise where one vertex gets Tr(F 3) and the other vertex gets
Tr(F 2). Similarly there are three such a5

vec, including amplitudes that arise where each
vertex gets a Tr(F 3), and a final a6

vec. This final unique structure, a6
vec, can be built

non-linearly by rational products of scalar permutation invariants and the lower-weight
vector blocks, reflecting the difference between the unique seven tensor invariants and our
polynomial in permutation-invariant basis of adjoint-type vector numerators. We have
not constructed a direct proof that these vector invariant blocks are sufficient to span all
vector building blocks, but rely on the fact that we span the seven gauge-invariant tensor
structures of ref. [29], and have verified up to α′25 above Yang-Mills that we span all such
gauge-invariant permutation invariants. It was noted in ref. [19] that only four of these
are needed to build the bosonic open-string. We include all eight distinct vector blocks in
associated auxiliary files [25].

We note now that with these eight vector building blocks, and the three color building
blocks, we have the ability to span every higher-derivative gauge operator that is compat-
ible with local adjoint-double-copy by considering simply these with polynomials in the
permutation-invariant scalar weights σ2, and σ3. Additionally we can span every higher-
derivative gravity amplitude compatible with local adjoint-double-copy. This means that
the ansatz to verify whether a gravity amplitude is consistent with adjoint double-copy is
incredibly small.
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3.4 Striating by dabcd structures

At four-points, adjoint-type double-copy means permutation-invariant double-copy, as can
be seen in the equivalent forms of the amplitude in eqs. (3.19) and (3.20). There is no new
physical information here, but it allows a double-copy description where every building
block is a full physical amplitude in some theory, which does offer an interesting perspective
as we will discuss. This is not the first opportunity to see that, depending upon the
algebra made manifest, the same amplitudes admit multiple different decompositions into
double-copies of predictions of distinct theories. A spectacularly notable example involves
considering supergravity in three-dimension, whose scattering amplitudes admit a double-
copy construction from three-algebra striated BLG amplitudes [32–34] as well as the more
familiar adjoint-type double-copy construction from super-Yang-Mills amplitudes.

Consider the full four-point amplitudes for Yang-Mills and Gravity. Writing them as
manifestly permutation-invariant double copies leads to the following representation:

−σ3A(YM) =
[
stAbi−adj(s, t)

] [
stAYM(s, t)

]
(3.46)

−σ3A(GR) =
[
stAYM(s, t)

]2
. (3.47)

Note that every individual permutation-invariant element of the above expressions are rec-
ognizable as proportional to the full four-point amplitudes of known theories. Taking the
color-ordered (s, t) channel of a bi-adjoint scalar, and multiplying it by st yields the full
color-dressed amplitude for the Nonlinear Sigma Model. Famously [stAYM(s, t)] yields
the four-point amplitude for Born-Infeld. Finally, the purely scalar permutation invari-
ant, [σ3 ≡ (stu)], is recognizable as the four-point amplitude of the Special Galileon. So a
perhaps surprising novelty of permutation-invariant striations at four-points is that full am-
plitudes for theories can serve as constructive building blocks. As noted in the first version
of ref. [19], permutation-invariance admits the following whimsical but exact departures
from the typical: “GR∼YM2” slogan at four-points:

A(YM)
4 ≡ Ã

NLSMABorn−Infeld

ASpec.Gal A(GR)
4 ≡ (ABorn−Infeld)2

ASpec.Gal . (3.48)

3.5 An example at four-points

In this example, we take a closer look at the amplitudes of the maximally supersymmetric
F 4 and R4 operators [35],

F 4
SUSY ≡ Tr

[
F νµF

ρ
ν F

σ
ρ F

µ
σ + 2F νµF σρ F ρν Fµσ − 1

4FµνFρσF
µνF ρσ − 1

2FµνF
µνFρσF

ρσ
]

(3.49)

R4
SUSY ≡ t

µ1ν1µ2ν2µ3ν3µ4ν4
(8) tλ1ρ1λ2ρ2λ3ρ3λ4ρ4

(8) Rµ1ν1λ1ρ1Rµ2ν2λ2ρ2Rµ3ν3λ3ρ3Rµ4ν4λ4ρ4 , (3.50)

both through the lens of adjoint double copy construction via higher derivative numerator
factors and using the permutation invariant striation explained above.

The F 4 amplitude is quite naturally striated by permutation invariant color-kinematics
duality, as its color structure is the totally symmetric d4,

AF 4
SUSY = da1a2a3a4

(
s tAsYM(1234)

)
(3.51)
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correspondingly accompanied by the permutation invariant quantity s tAsYM(1234). This
form suggests an associated permutation invariant double copy via the replacement
da1a2a3a4 → s tAsYM(1234), which yields precisely the R4 amplitude:

MR4
SUSY =

(
s tAsYM(1234)

)2
= s t u

(
MSUGRA

)
(3.52)

Both amplitudes also manifest adjoint double copy structure by virtue of higher deriva-
tive factors cHD and nHD at O

(
α′2
)
and O

(
α′3
)
, respectively:

AF 4
SUSY =

∑
g

(
d4 nNLSM

g

) (
nsYM
g

)
dg

(3.53)

MR4
SUSY =

∑
g

(
(stu)nsYM

g

) (
nsYM
g

)
dg

(3.54)

In particular, AF 4
SUSY makes clear the power of the using modified color factors to encode

higher derivative corrections: color conspires with scalar kinematics within a single adjoint
cHD numerator to capture the permutation invariant d4 color of F 4

SUSY in an adjoint-dual
structure. This adjoint numerator cHD,(2)

g = d4nNLSM
g yields the O

(
α′2
)
term in Chan-

Paton dressed Z-theory,

ABA+HD,(2)(1234) ∝ da1a2a3a4 s13 (3.55)

These adjoint forms may be lined up with the permutation invariant striations of
AF 4

SUSY andMR4
SUSY :

−AF 4
SUSY =

(
d4 s tANLSM(1234)

) (
s tAsYM(1234)

)
s t u

= d4
(
s tAsYM(1234)

)
(3.56)

−MR4
SUSY =

(
(s t u) s tAsYM(1234)

) (
s tAsYM(1234)

)
s t u

=
(
s tAsYM(1234)

)2
(3.57)

4 Algebraic structures at five-points

Our methods for constructing higher-derivative corrections at four points were driven by
the guiding principle of finding color and kinematic building blocks that fell into one of
two algebraic categories: adjoint or permutation invariant. This focus on identifying the
smallest elements of prediction that obeyed these two algebraic structures meant that, once
such building blocks were identified, we could use universal composition rules to combine
them to arbitrarily high order in mass dimension, rather than having to treat each order
in mass dimension on a case-by-case basis using an ansatz.

The success of this method hinges on the fact that our constructive composition rules
simply require that their arguments obey standard algebraic relations. Once we’ve obtained
building blocks that obey algebraic relations of interest, we can compose them in new and
interesting ways to generate order after order of correction. At four points, to generate all
maximally-supersymmetric-compatible corrections to gauge theory, we need only a handful
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of compositions rules and just a few adjoint and permutation invariant building blocks
(adjoint color f3f3, adjoint scalar kinematics ass, and permutation invariant color d4).

We thus guide our study of five point corrections in the same manner, beginning by
focusing on the relevant algebraic structures at five points and how they can be composed
together. In this section, we’ll first describe the algebraic structures of interest in the
abstract by looking at relevant graph topologies, and then discuss how to write down general
composition rules. In the following sections, we will find both specific scalar kinematic
and color weights satisfying the algebraic constraints of interest, which will then serve as
building blocks for generating modified color factors cHD that encode higher derivative
corrections.

4.1 Graph representations

Let us start with graph representations of five-point graphs, as all algebraic structures
discussed are naturally described in terms of these graphs. There is only one cubic graph
topology at five points, with three vertices and two internal edges, whose labels we can
specify with an ordered list:

(abcde) ≡

a

b c d

e

. (4.1)

There is one topology with one quartic vertex and one cubic vertex, connected by one
internal edge between them:

(〈abc〉de) ≡

a

b

c d

e

. (4.2)

And there is a contact graph with a quintic vertex:

(〈abcde〉) ≡

a

b

c

d

e

. (4.3)

We will now introduce five algebraic structures at five-points: three that dress cubic graphs
(adjoint, relaxed, and sandwich), one that dresses the quartic-cubic graph (hybrid), and
one that dresses the quintic contact graph (permutation-invariant).
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4.2 Cubic graph structures

4.2.1 Adjoint graph weights

Adjoint numerators ag obey antisymmetry around each cubic vertex and satisfy Jacobi re-
lations on each internal edge. At five points, this results in three antisymmetry constraints:

a(abcde) = −a(bacde) : antisymmetric around vertex

a

b c d

e

, (4.4)

a(abcde) = −a(abced) : antisymmetric around vertex

a

b c d

e

, (4.5)

a(abcde) = −a(edcba) : antisymmetric around vertex

a

b c d

e

. (4.6)

And two Jacobi constraints:

a(abcde) = a(cbade) + a(acbde) : Jacobi relation about edge

a

b c d

e

(4.7)

a(abcde) = a(abedc) + a(abdce) : Jacobi relation about edge

a

b c d

e

(4.8)

Taking these constraints into consideration, any adjoint dressing of the 15 distinctly labeled
cubic five point graphs Γ3 may be written in a basis of six adjoint graph weights. For an
explicit example of DDM basis graphs, we refer the reader to eq. (B.1) in appendix B.

We define the full amplitude as summing over these fifteen cubic graphs, dressing each
with two adjoint weights a and ã and the product dg of two associated cubic propagators,

A =
∑
g∈Γ3

agãg
dg

, (4.9)

where for g = (abcde), the denominator is given as dg = sabsde. We then define the ordered
amplitude on the ã weights as the coefficient of an independent basis element ã within the
full amplitude. Reading off the coefficient of ã(12345), we find the ordered amplitude:

Aa(12345) = a(12345)
s12s45

+ a(12543)
s12s34

+ a(15243)
s15s34

+ a(32415)
s15s23

+ a(45123)
s23s45

. (4.10)
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This is the familiar ordered amplitude, in agreement with the definition of reading off the
coefficient of an independent color trace, for Yang-Mills amplitudes, as found in eq. (2.8).

It turns out that at five points, in stark contrast to four-points, adjoint numerators
cannot be formed solely out of scalar monomials linear in Lorentz products, e.g. αk1 ·
k2 + βk2 · k3 · · · . Since we are looking ahead to construct purely scalar building blocks
to be composed later with color-factors, we exclude here opportunities to satisfy algebraic
constraints by weights that mix scalar and color/flavor structure constants. This motivates
considering an almost adjoint structure.

4.2.2 Almost adjoint (relaxed) graph weights

For the almost adjoint (relaxed) numerators, rg, we still have three vertex constraints and
two edge constraints, but the middle-node antisymmetry condition is now relaxed to a
symmetry condition:

r(abcde) = −r(bacde) : antisymmetric around vertex

a

b c d

e

,

(4.11)

r(abcde) = −r(abced) : antisymmetric around vertex

a

b c d

e

,

(4.12)

r(abcde) = +r(edcba) : symmetric around vertex

a

b c d

e

,

(4.13)

r(abcde) = r(cbade) + r(acbde) : Jacobi relation about edge

a

b c d

e

,

(4.14)

r(abcde) = r(abedc) + r(abdce) : Jacobi relation about edge

a

b c d

e

.

(4.15)
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Any dressing of the 15 cubic five-point graphs with relaxed numerators is expressible in a
basis of five relaxed graph weights. It turns out that scalar kinematic relaxed graph weights
exist at every mass-dimension, and there exists a composition that allows generation of all
such weights from the unique solution that is linear in momentum invariants. This algebraic
structure will be the fundamental building block for five-points.

We define the full amplitude as summing over the fifteen cubic graphs, dressing each
with two relaxed weights r and r̃ and the product dg of two associated cubic propagators,

A =
∑
g∈Γ3

rg r̃g
dg

, (4.16)

where for g = (abcde), the denominator is given as dg = sabsde. We then define the ordered
amplitude on the r̃ weights as the coefficient of an independent basis element r̃ within the
full amplitude. Reading off the coefficient of r̃(12345), we find the ordered amplitude:

Ar(12345) = r(12345)
s12s45

+ r(12435)
s12s35

+ r(32415)
s15s23

+ r(35142)
s24s35

+ r(42315)
s15s24

+ r(45132)
s23s45

. (4.17)

Given the vertex conditions, one might imagine that this type of structure is natu-
rally associated with combining a symmetric three-vertex color-weight dabc with adjoint
fabc structure constants: fa1a2b1db1a3b2f b2a4a5 . It turns out that having a symmetric color-
weight sandwiched between antisymmetric structure constants does not obey Jacobi rela-
tions around the two edges, but instead a less constraining six-term identity — this six-term
identity can be satisfied by graph weights that obey Jacobi relations, like relaxed weights,
but does not require it.

4.2.3 Sandwich graph weights
If we do not impose the two Jacobi requirements, but instead the six-term identities that
are obeyed by f d f type color-weights, we have the vertex constraints:

s(abcde) = −s(bacde) : antisymmetric around vertex

a

b c d

e

, (4.18)

s(abcde) = −s(abced) : antisymmetric around vertex

a

b c d

e

, (4.19)

s(abcde) = +s(edcba) : symmetric around vertex

a

b c d

e

. (4.20)

And the remaining six-term constraint:

s(abcde) + s(acbde)− s(adbce) + s(adceb) + s(aebcd)− s(aecdb) = 0 (4.21)
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There is an 11-element basis of sandwich graph weights for the fifteen distinctly labeled
cubic graphs at five-points. All relaxed adjoint numerators satisfy these constraints as
objects that satisfy Jacobi about internal edges automatically satisfy eq. (4.21), but not
all sandwich numerators satisfy the more stringent relaxed Jacobi constraints of eq. (4.11).
We present one choice of such eleven spanning basis graphs in eq. (B.3).

We define the full amplitude as summing over the fifteen cubic graphs, dressing each
with two sandwich weights s and s̃ and the product dg of two associated cubic propagators,

A =
∑
g∈Γ3

sg s̃g
dg

, (4.22)

where for g = (abcde), the denominator is given as dg = sabsde. We then define the ordered
amplitude on the s̃ weights as the coefficient of an independent basis element s̃ within the
full amplitude. Reading off the coefficient of s̃(12345), we find the ordered amplitude:

As(12345) = s(12345)
s12s45

+ s(42315)
s15s24

. (4.23)

4.3 Quartic and quintic graph structures

4.3.1 Hybrid graph weights

Five point higher-derivative corrections inherit local four-point contact term corrections,
so it is worth exploring whether or not adjoint representations of five-points can live on
associated hybrid quartic-cubic graphs. We introduce hybrid numerators h that dress the
10 graphs containing one cubic and one quartic vertex, Γh, allowing for antisymmetry
around the cubic vertex and symmetry around the quartic vertex:

h(〈abc〉de) = h(〈bac〉de) = h(〈acb〉de) , sym. about quartic vertex:

a

b

c d

e

(4.24)

h(〈abc〉de) = −h(〈abc〉ed) , antisym. about cubic vertex:

a

b

c d

e

(4.25)

As the order of first three external leg labels do not matter for hg we need only provide the
final two entries in order to unambiguously label the graph. Following d4f3 color weights,
hybrid graph weights are constrained to obey four-term identities:

h(de) = h(ec) + h(eb) + h(ea)
h(de) = h(cd) + h(bd) + h(ad)

(4.26)
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Any of the ten distinct hybrid graph weights Γh are expressible in a minimal basis of six
hybrid graph weights. We present one choice for these basis weights in eq. (B.2).

We define the full amplitude as summing over the ten hybrid graphs, dressing each
with two hybrid weights h and h̃ and a single cubic propagator,

A =
∑
g∈Γh

hgh̃g
dg

, (4.27)

where for g = (〈abc〉de), the denominator is given as dg = sde. We then define the ordered
amplitude on the h̃ weights as the coefficient of an independent basis element h̃ within the
full amplitude. Reading off the coefficient of h̃(〈123〉45), we find the ordered amplitude:

Ah(〈123〉45) = h(〈123〉45)
s45

+ h(〈134〉52)
s25

+ h(〈135〉24)
s24

. (4.28)

4.3.2 Permutation-invariant algebraic weights

We also discuss purely local permutation invariant weights, p, which naturally dress the
five-point quintic contact graph:

p(〈abcde〉) = p(〈σ〉) ∀ σ ∈S5(abcde) , permutation symmetry for

a

b

c

d

e

. (4.29)

The full amplitude is given by simply dressing the single contact graph with two
permutation invariants p and p̃,

A = pp̃ , (4.30)

so the ordered amplitude Ap = p is simply the permutation-invariant weight itself.

4.4 Composition rules

Just like at four points, at five points, we are able to find composition rules that non-
trivially combine two numerators into a distinct third numerator. These constructions are
useful for mixing color structures and kinematic factors into adjoint numerators cHD, the
foundation of our method of constructing adjoint-double copy-striations of higher-derivative
predictions. At four points, we only saw two relevant algebraic structures — adjoint and
permutation invariant — and found composition rules to combine these objects accordingly.

At five points, there are now many more ingredients to consider. Two relaxed graph
weights may be composed into a new relaxed graph weight: (r r© r), or composed into an
adjoint weight (r a© r), and so forth with sandwich weights and hybrid weights. In general,
we can aspire to take two numerators of any given algebraic structures e and f and compose
them into a new numerator of desired algebraic structure g, with a rule of the form:

g(12345) = (e g© f) =
∑
g∈ρe

∑
g′∈ρf

befgg,g′e(g)f(g′) (4.31)
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where the sums run over the basis graphs ρ for each given type of numerator (for instance,
for relaxed weights, ρe runs over the five basis graphs that arise from imposing relaxed
constraints on the fifteen cubic graphs). The b coefficients are fixed by imposing g-type
algebraic constraints on this expression for g(12345) while simultaneously exploiting the
algebraic properties of e and f (these coefficients are then specific to the types e, f, and g that
define the particular composition rule). We describe an approach to identifying composition
rules in appendix A, and present explicit formulae for relevant five-point composition rules
in appendix D.

With these composition rules, we are prepared to generate ladders of numerators of
higher and higher mass dimension from those already found: two linear weights may be
composed into a quadratic one, which in turn may be composed with a linear weight to
find a cubic numerator, and so on.

We note here that, analogous to the four point case, we may generically generate
permutation invariants at five points by summing over all graph orderings:(

ej p© ek
)

=
∑
g∈Γe

ej(g)ek(g) (4.32)

where ej and ek are two weights of the same algebraic structure e, and Γe is the list of all
graphs corresponding to that structure (the 15 cubic graphs Γ3 for e = a, r, or s; and the
10 graphs Γh for e = h). As such, we will consistently find it useful to compose (relaxed)
adjoint with (relaxed) adjoint to yield permutation invariants according to:

(
rj p© rk

)
=

15∑
g∈Γ3

rjgr
k
g , (4.33)

(
aj p© ak

)
=

15∑
g∈Γ3

ajga
k
g . (4.34)

4.5 Casting between hybrid and adjoint

Inspired by the solutions we find for adjoint and hybrid color weights that will discussed
in section 5.6.1, we find a symbolic linear mapping between hybrid and adjoint solutions
that we refer to as casting. A weight h that satisfies hybrid constraints may be cast into
an adjoint weight a[h] by writing down the following linear combination:

a[h](12345) = −1
5
(
2 h(〈123〉45) + h(〈124〉35)− h(〈125〉34)

+ 2 h(〈234〉15)− 2 h(〈235〉14)
) (4.35)

Similarly, an adjoint solution a may be cast into a hybrid solution h[a] as follows:

h[a](〈123〉45) = 1
2
(
a(12345)− 3 a(12435) + a(13245)

− 3 a(13425) + 3 a(14235) + 3 a(14325)
) (4.36)

We also note that these casting maps are invertible, in the sense that a[h[a]] = a and
h[a[h]] = h. These mappings are not restricted to pure color solutions, but hold for any
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weights satisfying these algebraic relations. This trivializes the process of finding hybrid
solutions once adjoint ones have been found, or vice versa.

5 Color and scalar kinematic building blocks

Now that the algebraic structures of interest at five points have been established, we will
find both pure color and pure scalar kinematic solutions to those relevant algebraic con-
straints, making use of our composition rules along the way. Our ultimate goal will be to
build adjoint-structure higher-dimensional color-weights of all orders in mass-dimension so
we can trivially generate gauge-invariant higher-derivative corrections to Yang-Mills. By
replacing the color in those corrections with gauge-invariant vector weights of matching
algebraic structure, we will construct gauge-invariant higher derivative corrections to grav-
itation. At four-points, we achieved this by considering as our primary unit-step to all
orders in mass-dimension the adjoint simple-scalar numerator. Here we will see a different
story unfold, where our unit-step lives instead in the relaxed adjoint structure. Before
constructing these building blocks, we first quickly review our language for describing color
and scalar kinematics and their relevant bases.

For color, one common basis is in terms of traces over color generators, but as at four-
points we will find that combining the traces into contractions of structure constants f
and d will allow us to easily identify the solutions to our algebraic constraints. Prioritizing
the color structure basis representation will allow us to uncover novel corresponding color-
kinematics dualities at the level of the graph dressings within our amplitudes, a concept
that may hopefully be generalizable to loop level. In contrast, relying on the trace basis
of color factors will only inform us that the ordered amplitudes dressing each trace within
the full amplitude are cyclically symmetric, a known concept that is not amenable to loop-
level generalizations, as our favorite loop calculation methods rely on writing down and
exploiting the algebraic properties of graph dressings rather than ordered amplitudes.

For scalar kinematics, we will make repeated use of composition rules to generate lad-
ders of solutions to algebraic constraints at each order in mass dimension. In all cases,
we will find simple patterns of repeated composition will generate all desired solutions,
and that each algebraic structure eventually closes at some order under repeated multi-
plication with scalar permutation invariants. Finally, we will see that, at all orders, all
scalar kinematics structures considered — adjoint, relaxed adjoint, hybrid, sandwich, and
permutation invariant — may be generated by appropriate compositions of a single scalar
kinematic building block, the unique relaxed solution that is linear in Mandelstam invari-
ants. The simplest of these building blocks will prove sufficient for writing higher-derivative
modified color factors cHD, as discussed in the following two sections.

5.1 Color at five-points

All five-point single-trace tree-level amplitudes have color structures expressible in terms
of a 4! = 24 element basis of traces over the generators,

Tr (T aσ1T aσ2T aσ3T aσ4T a5) (5.1)
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where σ runs over the S4 permutations of external leg labels (1, 2, 3, 4). By inverting the
definitions of the following color structures:

fabc = Tr
([
T a, T b

]
T c
)

(5.2)

da1···an = 1
(n− 1)!

∑
σ∈Sn−1

Tr(T aσ1 · · ·T aσn−1T an) (5.3)

and making use of the SU(N) Fierz identity (see e.g. ref. [36]), the trace basis may be
converted to a basis of color structure contractions of the following forms:

dabcde dabcif ide fabidicjf jde fabif icjf jde (5.4)

The full basis is written out in appendix B. Other choices of basis are possible [37], including
those that allow for the inclusion of dabif icjf jde contractions (which we have exchanged here
in favor of fabidicjf jde, since those relate more directly to the relaxed-adjoint structure that
is the natural scalar unit-step at five-points). For notational consistency, we will introduce
the following shorthand for these contractions:

d5(〈abcde〉) ≡ dabcde

d4f3(〈abc〉de) ≡ dabcif ide

f3d3f3(abcde) ≡ fabidicjf jde

f3f3f3(abcde) ≡ fabif icjf jde

(5.5)

We may use a simple argument involving color to confirm that the algebraic structures
we consider span all possible five point structures. Each algebraic structure is associated
with a certain number of basis elements: there are six elements in the adjoint basis, eleven
elements spanning sandwich structures (which include all relaxed structures), six elements
spanning hybrid solutions, and one permutation symmetric element. This bookkeeping is
in agreement with the 24 independent color traces at five points.

5.2 Scalar kinematics at five-points

Scalar kinematic numerators at five points are constructed from a five-element basis of
momentum invariants; one such choice,

{(k1 · k2), (k2 · k3), (k3 · k4), (k4 · k5), (k5 · k1)} (5.6)

spans all massless five-point Lorentz invariants. In particular (lower) dimensions there may
be fewer basis elements, but for generality we remain in D dimensions. This particular
choice of basis maximally simplifies the propagators in the ordered amplitude A(12345).

A simple five-term ansatz then demonstrates that there is no linear solution to the
adjoint algebraic constraints given in eqs. (4.4) and (4.7). The lowest mass-dimension non-
vanishing adjoint solution purely in terms of momentum invariants arises at the cubic order
in momentum invariants. Critically, however, there does exist a linear solution to relaxed
adjoint constraints of eq. (4.11):

r(1)(12345) = (k1 · k2)− 2(k2 · k3)− 2(k3 · k4) + (k4 · k5) + 4(k5 · k1)
= (k1 − k2) · (k5 − k4) .

(5.7)
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where we label scalar numerators using a superscript denoting their order in momentum
invariants, or half their mass dimension (these orders will line up exactly with order in α′

corrections to super Yang-Mills or supergravity). We note in the second line of eq. (5.7)
that we have made all antisymmetry properties of the terminal vertices of the half-ladder
manifest. This is consistent with our conjectured all multiplicity expression for the unit-
scalar building block given in eq. (1.1). With this relaxed numerator, it is trivial to generate
the first independent permutation invariant in scalar weights:

p[2] ≡
(
r(1) p© r(1)

)
(5.8)

As we shall see, this linear solution to the relaxed adjoint constraints provides the unit
step we need to climb to all mass-dimensions in each of our algebraic structures.

At four points, we found a ladder of scalar adjoint numerators at each order in momen-
tum invariants through repeated composition with the linear adjoint solution nss. There is
no linear adjoint solution at five points, and repeated composition with the simplest adjoint
solution (cubic) would only generate solutions of orders 3, 6, 9, etc., missing potential ad-
joint solutions at order 4, 5, 7, and so forth. In contrast, our linear relaxed almost-adjoint
building block allows for the generation of a complete ladder of scalar numerators for every
building block. Given the apparent primacy of relaxed weights, we will therefore begin
with a discussion of scalar kinematics and color solutions of relaxed adjoint structures.

5.3 Relaxed building blocks

5.3.1 Relaxed color weights

The relaxed almost-adjoint constraints of eq. (4.11) can be satisfied by color-weights using a
spanning combination of f3d3f3-constraint satisfying color-weights which satisfy the more
general sandwich constraints of eqs. (4.18) and (4.21),

cr(12345) = 6 cs,1 + 2 cs,2 − 3 cs,3 . (5.9)

Explicit forms for cs,i in terms of f3d3f3 color-dressings will be given subsequently in
eqs. (5.41), (5.42), and (5.43). Additional f3d3f3 dressings of orderings beyond (12345) are
necessary to ensure that cr(12345) satisfies the Jacobi identities that represents additional
constraints on the sandwich structure automatically satisfied by f3d3f3 alone.

5.3.2 Relaxed scalar kinematic weights

Our composition rules and the linear-in-Mandelstams relaxed building block r(1) give us
the necessary tools with which to construct additional relaxed scalar kinematic results
that satisfy the relaxed constraints given in eq. (4.11). We may compose r(1) with itself to
generate a relaxed weight quadratic in the Mandelstam invariants:

r(2) =
(
r(1) r© r(1)

)
. (5.10)

Explicit ansatz calculation confirms that this result, r(2), is the only possible solution to
the relaxed constraints at this mass dimension.
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Making use of the quadratic permutation invariant p[2], we may write down two avail-
able structures for a third order relaxed numerator,{

r
(3)
i

}
=
{(

r(1) r© r(2)
)
, r(1)p[2]

}
. (5.11)

Similarly, all fourth order relaxed numerators may be generated from:

{r(4)
i } =

{(
r(1) r© r

(3)
j

)
,
(
r(2) r© r(2)

)
, r(1)p[3]

}
, (5.12)

where p[3] =
(
r(1) p© r(2)

)
. This has four total independent solutions.

We may continue to compose to new relaxed numerators in this fashion. As the order
grows, the number of possible compositions increases, but we find that it is sufficient
to consider just compositions with r(1) and r(2) and products of lower order results with
permutation invariants (whose full definitions we will soon provide in terms of lower-order
relaxed-adjoint weights),{(

r(1) r© r
(m−1)
i

)
,
(
r(2) r© r

(m−2)
j

)
, r(1)p[m−1]

}
(5.13)

where there may be some redundancy between the different terms written. This form allows
us to build up a ladder of relaxed numerators. At ninth order, we find the compositions
cease giving new structures, and the ladder closes simply to products of lower order relaxed
numerators with permutation invariants, so we conjecture it is possible to express all relaxed
numerator weights as follows:

{
r(m)

}
=


{(

r(1) r© r
(m−1)
i

)
,
(
r(2) r© r

(m−2)
j

)
, r(1)p[m−1]

}
3 ≤ m ≤ 8 ,⋃

1≤i≤8,i+j=m
r(i)p[j] m ≥ 9 . (5.14)

We have verified this constructive approach, starting with r(1) and generating all higher
orders via composition, against explicit ansatz calculation through twelve powers of mo-
mentum invariants (or a mass-dimension of 24), and expect it to continue to all orders in
mass-dimension. We record the number of independent solutions at each order in table 1.

5.4 Adjoint building blocks

5.4.1 Adjoint color weights

It is unsurprising that dressing each cubic vertex with f3f3f3 satisfies adjoint constraints,
but we find an additional solution given as a linear combination of hybrid d4f3 contractions:

ca,1(12345) = f3f3f3(12345) (5.15)

ca,2(12345) = 2 d4f3(〈123〉45) + d4f3(〈124〉35)− d4f3(〈125〉34)
+ 2 d4f3(〈234〉15)− 2 d4f3(〈235〉14)

(5.16)

This second solution will prove critical for finding factorizing solutions that correspond to
color-symmetric four-point contact operators (accompanied by d4 color) with three-point
Yang Mills insertions (f3).
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Order Building Blocks Solutions

2
(
r(1) r© r(1)

)
1

3
{(

r(1) r© r
(2)
i

)
, r(1)p[2]

}
2

4
{(

r(1) r© r
(3)
i

)
,
(
r(2) r© r

(2)
j

)
, r(1)p[3]

}
4

5
{(

r(1) r© r
(4)
i

)
,
(
r(2) r© r

(3)
j

)
, r(1)p[4]

}
7

6
{(

r(1) r© r
(5)
i

)
,
(
r(2) r© r

(4)
j

)
, r(1)p[5]

}
10

7
{(

r(1) r© r
(6)
i

)
,
(
r(2) r© r

(5)
j

)
, r(1)p[6]

}
17

8
{(

r(1) r© r
(7)
i

)
,
(
r(2) r© r

(6)
j

)
, r(1)p[7]

}
23

9
⋃

1≤i≤8,i+j=9
r(i)p[j] 33

10
⋃

1≤i≤8,i+j=10
r(i)p[j] 46

11
⋃

1≤i≤8,i+j=11
r(i)p[j] 62

12
⋃

1≤i≤8,i+j=12
r(i)p[j] 80

Table 1. Total number of linearly-independent relaxed numerator scalar solutions at each order in
momentum invariants.

5.4.2 Adjoint scalar kinematic weights

With relaxed numerators in hand, we may proceed to construct adjoint numerators. The
composition rule

(
r(a) a© r(b)

)
is odd under the interchange of its arguments r(a) and r(b), so

(
r(1) a© r(1)

)
= 0 (5.17)

This is consistent with the finding that no ansatz quadratic in momentum invariants sat-
isfies adjoint constraints. The simplest adjoint solution, at third order in momentum
invariants, is simply the composition of the linear and quadratic relaxed numerators:

a(3) =
(
r(1) a© r(2)

)
=
(
r(1) a©

(
r(1) r© r(1)

))
(5.18)

Once we have this unique mass-dimension adjoint weight, we can climb up the ladder of
higher-order adjoint weights by composing with the linear relaxed scalar r(1), as well as
considering trivial permutation invariant products with lower-order adjoint weights,

a(m) =



(
r(1) a© a(m−1)

)
3 ≤ m ≤ 10, even{(

r(1) a© a(m−1)
)
, a(3)

(
p[2]
)(m−3)/2

}
3 ≤ m ≤ 10, odd⋃

1≤i≤10, i+j=m
a(i)p[j] m ≥ 11

(5.19)
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Order Building Blocks Solutions

3
(
r(1) a© a(2)

)
1

4
(
r(1) a© a(3)

)
2

5
{(

r(1) a© a(4)
)
, a(3)

(
p[2]
)}

5

6
(
r(1) a© a(5)

)
8

7
{(

r(1) a© a(6)
)
, a(3)

(
p[2]
)2
}

14

8
(
r(1) a© a(7)

)
21

9
{(

r(1) a© a(8)
)
, a(3)

(
p[2]
)3
}

32

10
(
r(1) a© a(9)

)
45

11
⋃

1≤i≤10, i+j=11
a(i)p[j] 63

12
⋃

1≤i≤10, i+j=12
a(i)p[j] 84

Table 2. Total number of linearly-independent adjoint numerator scalar solutions at each order in
momentum invariants.

closing to simply products of lower-order adjoint results with permutation invariants at
eleventh order. A summary of these results, which have been confirmed against ansatze,
is given in table 2.

5.5 Permutation-invariant building blocks

5.5.1 Permutation-invariant color weights

Permutation-invariant color is simply given by the totally symmetric object d5 ≡ dabcde.
We note here that theories dressed with d5 color must have totally permutation-invariant
ordered amplitudes Ad(σ). We may see this by rewriting such an amplitude, comprising of
symmetric d5 color factorized out from permutation-invariant kinematic information K, in
a basis of traces,

Ad = d5 ·K =

 1
4!
∑
σ∈S4

Tr(σ5)

 ·K . (5.20)

Ordered amplitudes are simply defined as the coefficients of individual traces,

Ad =
∑
σ∈S4

Tr(σ5)Ad(σ5) . (5.21)

So we may identify:
Ad(σ5) = 1

4!K ∀ σ . (5.22)
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K is permutation invariant (otherwise, the full amplitude Ad would not be Bose-
symmetric), so the ordered amplitudes Ad must also be permutation invariant. This is
in contrast to amplitudes from theories dressed with standard adjoint color; for example,
Yang-Mills ordered amplitudes obey the reflection identity:

AYM
m (12 . . .m) = (−1)mAYM

m (m. . . 21) , (5.23)

which, for multiplicity m = 5, is incompatible with the total permutation invariance of Ad

ordered amplitudes.

5.5.2 Permutation-invariant scalar kinematic weights

We may construct permutation invariants from relaxed scalar kinematic solutions using
the composition rule (eq. (4.33)) reproduced here:

(
rj p© rk

)
=

15∑
g∈Γ3

rjgr
k
g . (5.24)

The primary linear relaxed solution naturally gives rise to the quadratic permutation in-
variant quantity p[2]:

p[2] =
(
r(1) p© r(1)

)
=

15∑
g∈Γ(5)

3

r(1)
g r(1)

g . (5.25)

This can be easily verified to be the unique solution to permutation-invariant constraints
at second order via an explicit ansatz calculation. Similarly, the unique cubic permutation
invariant is also simply a composition:

p[3] =
(
r(1) p© r(2)

)
. (5.26)

At fourth order, we are able to write down two structures,

p[4] =
{(

r(1) p© r(3)
)
,
(
r(2) p© r(2)

)}
. (5.27)

We pause here to note that one of the two permutation-invariant structures in p[4] is simply
the lower-order permutation invariant p(2) squared. The other is a new solution at fourth
order that is not spanned by products of lower-order permutation invariants, denoted as
p(4) and defined by:

p(4) = p[4] \
(
p(2)

)2
(5.28)

We will use this notation throughout, where p(m) corresponds to new permutation invariant
structures found at order m, and p[m] to all permutation invariant combinations at order
m, including products of lower order results:

p(m) = p[m] \

 ⋃
|~v|=m

∏
i

p(vi)

 (5.29)

where the union is over all ~v such that
∑
i vi =m, restricting of course to non-negative

integer-valued vi. For ordersm= 2 andm= 3, there is no distinction between p(m) and p[m].
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Order Unique Solutions p(m) Total Solutions p[m]

2 1 1
3 1 1
4 1 2
5 1 2
6 2 5
7 1 4
8 1 8
9 1 9
10 0 13
11 0 15
12 0 23

Table 3. Total number of linearly-independent permutation-invariant scalar solutions, and number
of unique solutions not spanned by products of lower-order solutions, at each order in momentum
invariants.

We find that we can write a general form for building the permutation invariants at a
given order solely from relaxed numerators of lower orders:

p[m] =
⋃

i+j=m

(
r(i) p© r(j)

)
=

⋃
i+j=m

15∑
g∈Γ3

r(i)g r(j)g (5.30)

This construction alone turns out to be sufficient for finding all unique permutation in-
variant combinations of five-point momentum invariants, verified by comparison against
ansatz calculations.

We find new permutation invariant structures appearing through ninth order; permu-
tation invariants starting from the tenth order and higher are completely spanned by linear
combinations of products of permutation invariants of lower mass dimension. The obser-
vation that permutation invariants contribute no novel information past the ninth order
(or mass dimension 18) has been made before, see e.g. [38] and references therein. This is
consistent with the notion that the ladder of relaxed numerators closes at the eighth order.
Permutation invariant results are summarized in table 3.

5.6 Hybrid building blocks

5.6.1 Hybrid color weights

The hybrid constraints are satisfied by d4f3(〈abc〉de), but they admit an additional solution
in the same surprising spirit as adjoint color,

ch,1(〈123〉45) = d4f3(〈123〉45) (5.31)

ch,2(〈123〉45) = f3f3f3(12345)− 3 f3f3f3(12435) + f3f3f3(13245)
− 3 f3f3f3(13425) + 3 f3f3f3(14235) + 3 f3f3f3(14325)

(5.32)
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The two hybrid color solutions bear a striking similarity to the two adjoint color solutions,
which are reproduced below:

ca,1(12345) = f3f3f3(12345) (5.33)

ca,2(12345) = 2 d4f3(〈123〉45) + d4f3(〈124〉35)− d4f3(〈125〉34)
+ 2 d4f3(〈234〉15)− 2 d4f3(〈235〉14)

(5.34)

Hybrid color contains a non-trivial linear combination of f3f3f3 structures that satisfies
the hybrid constraints more naturally associated with d4f3, and adjoint color contains a
non-trivial linear combination of d4f3 structures that satisfies the adjoint constraints more
naturally associated with f3f3f3.

Such symmetry suggests the symbolic mapping between hybrid and adjoint solutions
that we refer to as casting. As previously defined in 4.5, a weight h that satisfies hy-
brid constraints may be cast into an adjoint solution a[h] by writing down the following
combination:

a[h](〈123〉45) = −1
5
(
2 h(〈123〉45) + h(〈124〉35)− h(〈125〉34)

+ 2 h(〈234〉15)− 2 h(〈235〉14)
) (5.35)

where ca,2 ∝ a[d4f3] and a[ch,2] ∝ f3f3f3. Similarly, an adjoint solution a may be cast into
a hybrid solution h[a] as follows:

h[a](〈123〉45) = 1
2
(
a(12345)− 3 a(12435) + a(13245)

− 3 a(13425) + 3 a(14235) + 3 a(14325)
) (5.36)

where ch,2 ∝ h[f3f3f3] and h[ca,2] ∝ d4f3. We also note that these casting maps are in-
vertible, in the sense that a[h[a]] = a and h[a[h]] = h. These mappings are not restricted to
pure color solutions, but hold for any weights satisfying these algebraic relations (including
higher-derivative color weights and even vector weights). We will find that casting gives
us an easy handle on generating hybrid solutions from adjoint ones, and vice versa.

5.6.2 Hybrid scalar kinematic weights

All hybrid scalar kinematic solutions may then be obtained simply as casts of adjoint scalar
kinematics:

h(m) = h
[
a(m)

]
(5.37)

This has been verified by comparison to ansatz calculations through order m = 12. As a
consequence, the number of hybrid scalar kinematic solutions at each order is the same as
the number of adjoint solutions. Note that this relation may be inverted:

a(m) = a
[
h(m)

]
(5.38)

This one-to-one correspondence between hybrid and adjoint scalar kinematics extends
to composition structure. The hybrid from relaxed composition rule

(
rj h© rk

)
is odd under
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the interchange of its arguments, so
(
r(1) h© r(1)

)
= 0, concordant with the finding that

there is no solution to imposing hybrid constraints on a quadratic ansatz and consistent
with the lack of a quadratic adjoint solution. The simplest hybrid solution, h(3) = h[a(3)], is
equivalently given simply by the composition of the linear and quadratic relaxed weights:

h(3) =
(
r(1) h© r(2)

)
= h

[(
r(1) a© r(2)

)]
(5.39)

The same pattern that was established for generating a ladder of adjoint scalar kine-
matic numerators in eq. (5.19) thus applies to hybrid scalar kinematic numerators:

h(m) =



(
r(1) h© h(m−1)

)
3 ≤ m ≤ 10, even{(

r(1) h© h(m−1)
)
, h(3)

(
p[2]
)(m−3)/2

}
3 ≤ m ≤ 10, odd⋃

1≤i≤10, i+j=m
h(i)p[j] m ≥ 11

(5.40)

The composition structures close to products of lower order hybrid results with permutation
invariants at eleventh order.

5.7 Sandwich building blocks

5.7.1 Sandwich color weights

There are three basis color solutions spanning solutions to the sandwich constraints of
eqs. (4.18) and (4.21), all comprised of f3d3f3 structures. The first is simply given by:

cs,1(12345) = f3d3f3(12345) (5.41)

whereas the other two solutions are non-trivial linear combinations:

cs,2(12345) = f3d3f3(12534)− f3d3f3(13524) + f3d3f3(14523) (5.42)

cs,3(12345) = f3d3f3(12534)− f3d3f3(12435)
− f3d3f3(13245) + f3d3f3(23145)

(5.43)

Indeed, the relaxed-adjoint color weight cr given in eq. (5.9) may be expressed as a linear
combination of sandwich color solutions:

cr(12345) = 6 cs,1 + 2 cs,2 − 3 cs,3
= 6 f3d3f3(12345) + 3 f3d3f3(12435)− f3d3f3(12534)

+ 3 f3d3f3(13245)− 2 f3d3f3(13524)
+ 2 f3d3f3(14523)− 3 f3d3f3(23145) ,

(5.44)

as relaxed solutions also satisfy the sandwich constraint eq. (4.21). This precise combi-
nation of sandwich color weights allows cr to satisfy the more stringent relaxed algebraic
constraints in eq. (4.11) of Jacobi relations on each internal edge.
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5.7.2 Sandwich scalar kinematic weights

As rg weights automatically satisfy sandwich constraints, we know there is at least one
solution to sandwich constraints linear in momentum invariants. Applying an ansatz to
the sandwich constraints recovers uniquely s(1)(abcde) = r(1)(abcde). For higher mass
dimensions, we see additional solutions to sandwich constraints that are not compatible
with Jacobi and thus do not appear as relaxed solutions. For instance, there are two unique
solutions to sandwich constraints applied to a quadratic ansatz, which may be obtained
via the composition of the linear relaxed solution with itself:

s(2) =
(
r(1) s© r(1)

)
(5.45)

Higher orders may be obtained via a simple composition structure, which closes to products
of lower order sandwich results and permutation invariants at tenth order:

s(m) =


{(

r(1) s© s(m−1)
)
,
(
s(2) s© s(m−2)

)}
3 ≤ m ≤ 9⋃

1≤i≤9,i+j=m
s(i)p[j] m ≥ 10 (5.46)

A summary of these results is given in table 4. We note here that all scalar results — adjoint,
relaxed adjoint, hybrid, sandwich, and permutation invariant — have been generated with
only one single building block, the linear relaxed adjoint solution r(1), as input. Once r(1)

has been found using an ansatz, all additional weights may be found constructively using
composition rules. Each of these scalar kinematic and color solutions are included in an
auxiliary Mathematica file [25].

6 Building higher-derivative color weights

In previous sections we identified a number of color and scalar building blocks, as well as the
algebraic structures that could allow them be combined into higher-derivative adjoint-type
color-weights. We will now compose color structures with scalar kinematic numerators
into higher-derivative adjoint color factors cHD. These can be paired, in a double-copy
sense, with adjoint vector weights nvec to obtain higher-derivative corrections to gauge
theory; we will discuss this in section 8, along with how they can themselves be promoted
to higher-derivative vector weights to ultimately land on higher-derivative corrections to
gravity. Here we will focus on building these higher-derivative modified color-weights.

We wish to ground this discussion in terms of full-amplitudes. Color-dual structure
allows us our discussion to remain general while focusing on a simple case. It is entirely
sufficient for our purposes to consider the pairing of cHD with secondary adjoint color
weights c̃g to form a bi-colored theory:

ABC+HD
5 =

∑
g

c̃gc
HD
g

dg
(6.1)

Note that, since we in general allow cHD to contain color-weights that are not strictly
adjoint f3f3f3, we emphasize that we are considering a generic bi-colored theory and not
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Order Building Blocks Solutions

2
(
r(1) s© s(1)

)
2

3
(
r(1) s© s(2)

)
4

4
(
r(1) s© s(3)

)
,
(
s(2) s© s(2)

)
8

5
(
r(1) s© s(4)

)
14

6
(
r(1) s© s(5)

)
21

7
(
s(2) s© s(5)

)
34

8
(
r(1) s© s(7)

)
49

9
(
r(1) s© s(8)

)
70

10
⋃

1≤i≤9,i+j=10
s(i)p[j] 98

11
⋃

1≤i≤9,i+j=11
s(i)p[j] 132

12
⋃

1≤i≤9,i+j=12
s(i)p[j] 173

Table 4. Total number of linearly-independent sandwich numerator scalar solutions at each order
in momentum invariants.

necessarily a bi-adjoint theory (it is only the α′ → 0 limit of the theory, without higher-
derivative corrections, that is strictly bi-adjoint). The interplay between scalar kinematics
and more generic color structures allows us to encode non-adjoint color factors in adjoint
weights cHD and thus in adjoint-striated double copy amplitudes.

The higher-derivative color-weights at five-points can be clustered into two types: those
associated with local operators at five points (and hence show up as contact terms), and
those that factorize on physical poles and are thus associated with higher-derivative lower-
multiplicity local operators.

6.1 Factorizing higher-derivative corrections

Here we consider constructing amplitudes that consistently factorize to known results from
lower multiplicity. We do so by introducing a procedure that lets us span all possible
potentially factorizing solutions at a given mass-dimension, whose coefficients need simply
be fixed on one particular cut.

Factorizing five point amplitudes will depend on operators relevant to lower-
multiplicity. Because our mixed kinematic-color weights cHD are functional, we only need
consider distinct topologies, not distinct labels. As the secondary adjoint color-weight c̃ fac-
torizes trivially, and in truth we are fundamentally interested in the possible contributions
of cHD in any case, we need consider only color-ordered cuts (ordering on the secondary
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color factor c̃), which will themselves be functional. Because scalar momentum invariants
vanish on for real, on-shell three-point kinematics, there are no higher-derivative scalar
three-point corrections. Correspondingly, the only color-weight relevant to three points
that satisfies adjoint constraints is fabc — we cannot, for example, modify a dabc color-
structure with momentum-invariants to give it the necessary antisymmetry properties (as
is our method for generating adjoint cHD weights from non-adjoint color at four points and
beyond). As such, we need only consider the following ordered cut:

lim
s12→0

s12A
BC+HD
5 (1, 2, 3, 4, 5) =

∑
s

Abi−adj(1, 2, ls)ABC+HD(−ls̄, 3, 4, 5) (6.2)

=
∑
b

fa1a2bABC+HD
4 (−lb, 3, 4, 5) (6.3)

where, since we are considering scalar amplitudes, the generic sum over states reduces
simply to a sum over the adjoint-color-index b of the cut leg.

Given the local four-point higher-derivative corrections reviewed in section 3, we must
land on four-point amplitudes ABC+HD

4 involving the color structures f3f3 and d4. In
order for color to factorize consistently, our factorizing five point amplitudes are thus
restricted to cHD involving color structures f3f3f3 and d4f3. Correspondingly, we will
consider compositions of kinematics with the general five point adjoint color numerators ca
in eqs. (5.15) and (5.16), given in terms of f3f3f3 and d4f3 type color weights respectively.
The necessary spanning five-point candidate cHD numerators at a given mass dimension are
then expressed simply through repeated composition of each ca weight with an appropriate
number of linear relaxed numerator r(1) dressings as well as products of these two ca weights
with appropriate mass-dimension scalar permutation invariants. We have verified explicitly
that this approach is sufficient to capture all factorizing solutions through mass-dimension
18, or nine orders in momentum invariants.

Let us introduce the following notation for the nested application of composition of
r(1) with generic color weight c to yield higher-derivative adjoint weights:

(
ar

(n)(c)
)

=


(
r(1) a©

(
ar

(n−1)(c)
))

n > 1(
r(1) a© c

)
n = 1

(6.4)

(When c = ca, we may also define
(
ar

(0)(ca)
)

= ca; for non-adjoint c, no such n = 0 adjoint
weight exists.) We find that such continued nested compositions are needed until seventh
order. Higher orders hold no new adjoint structure modulo permutation invariants: we
need only consider products of lower order nested compositions with scalar permutation
invariants (themselves given ultimately solely by r(1), as described earlier),∑

i+j=m

(
ar

(i)(ca)
)
p[j] m > 7 , (6.5)

in order to write down a structure that may be fixed on the cut to be consistent with
lower-point results. The specific building blocks necessary to construct each order are
summarized in table 5. For clarity, we emphasize that these building blocks are not them-
selves consistently factorizing solutions; rather, they contain sufficient freedom to be fixed
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Order Building Blocks d4f3 Solns f3f3f3 Solns

2
(
ar

(2)(ca)
)
, p(2) ca 1 0

3
(
ar

(3)(ca)
)
, p(3) ca 0 1

4
(
ar

(4)(ca)
)

1 1

5
(
ar

(5)(ca)
)

1 1

6
(
ar

(6)(ca)
)

1 2

7
(
ar

(7)(ca)
)

1 2

8
∑
i+j=8

(
ar

(i)(ca)
)
p[j] 2 2

9
∑
i+j=9

(
ar

(i)(ca)
)
p[j] 1 3

Table 5. Necessary building blocks to construct consistently factorizing adjoint modified color
numerators cHD, along with the final number of fixed factorizing solutions at each order.

on eq. (6.2) such that they factorize appropriately. The final number of fixed factorizing
solutions given in table 5 at each order necessarily lines up with the number of Wilson
coefficients accompanying solutions of each color structure d4 and f3f3 in the four-point
higher-derivative corrections ABC+HD

4 , as generated from the four-point modified color fac-
tors cHD as given in eq. (3.43).

These nested compositions and their products with permutation invariants yield all the
expressions necessary for writing down factorizing amplitudes, as we have verified through
mass-dimension eighteen. We conjecture that this closed structure above seventh order will
persist, requiring only a finite number of building blocks — the two adjoint color solutions
and nested compositions and permutation invariants, which all arise purely from r(1).

6.2 Local contact higher-derivative corrections

Amplitudes arising from local five-point operators have no poles. At four points, each
cubic graph is dressed with only a single propagator, meaning that only one cubic graph
contributes to the residue on any given pole. Thus, for all residues to vanish (as is required
for a local contact amplitude), the individual graph contributions had to be free of poles.
At five points, there are two propagators per cubic graph, so multiple graph channels
contribute to the same residue. As a result, we need not require that each channel be
individually local, but rather that the numerators conspire so that any residues from one
graph cancel with residues from other graphs across all channels. One can identify local
contact amplitudes by demanding that all cuts of the functional ordered amplitude of the
bicolored scalar theory vanish:

lim
si,i+1→0

si,i+1A
BC+HD
5 (12345) = 0 i ∈ {1, 2, 3, 4, 5} (6.6)
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where it is understood that s5,6 ≡ s5,1. These conditions ensure there are no residues on
any of the poles of A(12345). This is necessarily a subset of higher-derivative adjoint color-
weights. Such local weights are needed to describe higher-derivative operators that contain
no cubic or quartic interactions, but only five-point and higher vertices, as such operators
cannot contribute to any amplitudes that factorize down to products of four-point and
three-point corrections.

Unlike factorizing amplitudes, local five-point contact amplitudes are not restricted to
any specific color structures, so we generically expect all available color structures — d5,
d4f3, f3f3f3, and f3d3f3 — to appear in local higher-derivative contact amplitudes.

The lowest order five-point contact amplitudes are found at fifth order in momen-
tum invariants (tenth order in mass-dimension) and contain the color structures d4f3 and
f3f3f3. Only at sixth order does f3d3f3 color becomes relevant; d5 color does not emerge
until ninth order. We have found that, through seventh order, nested composition struc-
tures like those used for factorizing solutions, appearing in combination with products with
permutation invariants, (

ar
(m)(ca)

)
+

∑
i+j=m

(
ar

(i)(ca)
)
p[j] (6.7)

may be fixed on eq. (6.6) to give all d4f3 and f3f3f3 local contact amplitudes, as verified
against an explicit ansatz calculation. At sixth order, the f3d3f3 local solution may be
fixed from a nested composition structure starting with sandwich color cs = f3d3f3 rather
than adjoint color ca: (

ar
(m)(cs)

)
+

∑
i+j=m

(
ar

(i)(cs)
)
p[j] (6.8)

Considering the size of the common denominator for the five-point cubic graphs, imposing
the condition of vanishing residues analytically quickly becomes inefficient in comparison
to a new method for generating local contact amplitudes that we will describe in the next
section. By uncovering novel forms of color-kinematics duality and sharpening our focus on
the local contact condition, we will be able to climb several orders higher in mass-dimension
to find additional higher-derivative contact amplitudes.

7 Local dualities complementing adjoint

At five points, we have identified a number of algebraic structures which span single-trace
color, and correspondingly many different color factors (d5, d4f3, f3f3f3, or f3d3f3). For
generic higher-derivative corrections, we must allow for all of these color structures to
appear in our amplitudes (corresponding to the most generic traces of operators that may
be written down in the action).

We find that we can use these new algebraic structures to our advantage by consid-
ering simultaneous color-dual striations of the same full color-dressed bi-color amplitudes.
Specifically, we will introduce here an efficient method for calculating five-point higher-
derivative local counterterm predictions that exploit two forms of color-kinematics duality
using a manifestly local construction.
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7.1 Doubly-dual local amplitudes

All of our higher-derivative bicolored scalar amplitudes have a manifestly adjoint double-
copy structure involving two adjoint-type graph weights,

Abi-color =
∑
g∈Γ3

cHD
g c̃g

dg
. (7.1)

We encode higher-derivative corrections in the adjoint modified color factor cHD through a
mixture of kinematics and color-weights. The color-weights themselves need not be adjoint;
rather, the adjoint behavior of cHD is ensured by kinematics acting in the right way to com-
plement the color-weights so that cHD obeys adjoint-type relations. All higher-derivative
corrections that can be associated with color-weights to form adjoint-type modified color-
factors are captured within cHD. We will generically refer to the type of color factors
appearing in cHD as c, where c may be any of d5, d4f3, f3f3f3, or f3d3f3.

For local counterterm predictions, the scalar kinematics within cHD
g conspire between

graphs to cancel out the residue on all possible poles of the amplitude, thus describing a
five-point contact interaction. At four points, contact interactions were described by simply
demanding that cHD

g be proportional to the unique propagator associated with graph g; at
five points, however, this cancellation of denominators for cubic-graphs is non-trivial, as
multiple graphs contribute to each pole.

Next, we have the ubiquitous secondary adjoint color factor c̃ = f̃3f̃3f̃3 of some addi-
tional gauge group. This constitutes a simple adjoint stand-in that may be replaced in the
double copy with an adjoint vector-kinematic-weight like super Yang-Mills, c̃ → nsYM, to
build higher-derivative corrections to gauge theory. These adjoint color factors c̃ naturally
provide an adjoint-double-copy striation of the amplitude along cubic graphs, even though
the generic color factors c living within cHD may not traditionally lend themselves to a
cubic graph description.

An interesting opportunity arises for c whose natural structure does not lie along
cubic graphs, like d4f3 and d5. We have the freedom to choose to prioritize the c color
structures, using them to provide an alternative striation of the amplitude along the graphs
Γc relevant to their algebraic structure. After all, it is the color structure c that survives
the double copy and appears in the final gauge theory amplitude, rather than the adjoint
color c̃ = f̃3f̃3f̃3. Generically, bi-color amplitudes can be written equivalently as a sum
over the graphs relevant to either structure, so we can choose to rewrite Abi-color in terms
of the graphs Γc relevant to the color structure c inside the adjoint-type cHD. Each of these
graphs is dressed with an appropriate color factor c and a local function fc of both the
higher-derivative kinematics that once resided in cHD and the remaining color c̃,

Abi-color =
∑
g∈Γc

cg fc,g(sij , c̃) (7.2)

The functions fc(g) can be fixed to two remarkable properties: they are manifestly local,
containing no propagator structure to be cancelled non-trivially between graphs, and they
are color-dual to the relevant color structures c, meaning they obey the same algebraic
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constraints as c-type color. To be clear, the functions of fc need not be fc-ordered ampli-
tudes, as we allow a summation over all graphs Γc, not just the basis-graphs for the given
algebraic structure. As such, they are rather simply functions that dress individual graphs,
are manifestly local, and satisfy c-type algebraic relations.

For example, for c = d4f3, the fc(g) functions obey hybrid algebraic constraints (sym-
metry in the first three arguments, antisymmetry in the last two, and four-term Jacobi-like
identities). The sum runs over the ten graphs that contain one quartic vertex and one
cubic vertex. For c = d5, there is just one graph (a single quintic vertex), and its fc
function obeys permutation invariant constraints — a remarkably simpler description than
demanding fifteen graph dressings conspiring to cancel two propagators per graph!

Since these amplitudes enjoy two distinct color-dual striations, we refer to them as
doubly-dual local amplitudes, each admitting two equivalent descriptions:

Abi-color =
∑
g∈Γ3

c̃g c
HD
g (sij , c)
dg

=
∑
g∈Γc

cg fc,g(sij , c̃) (7.3)

The adjoint nature of the c̃-striated amplitude can still be uncovered within the explicitly
local c-dual striation: if the c̃ color factors are expressed in a basis of traces, the coefficient of
each trace is an ordered amplitude that obeys the (m−3)! = 2-basis BCJ 5-point amplitude
relations required of any amplitude that may be written as an adjoint double copy.

7.2 Composing to doubly-dual solutions

Multiple paths exist towards finding an appropriately doubly-dual local fc(g) = fc(g) (sij , c̃)
function. While it is worth mentioning that an ansatz approach to generating fc(g) is more
efficient than constructing an ansatz for cHD (the cHD ansatz is larger, as it must compensate
for two propagators in the denominator, and, after fixing on adjoint color-kinematics, must
additionally be constrained to ensure all residues vanish), both methods are surpassed by
composition directly to dual fc functions for some of our favorite algebraic structures c,
as composition ensures the fc will obey the desired c-type algebraic properties. Numerous
c-dual functions can be formed at each mass-dimension, but only particular combinations
of them admit the type of adjoint-double-copy structure we also require when striating the
amplitude along the c̃ color. We arrive at these particular combinations by requiring that
the adjoint c̃-striated ordered amplitudes satisfy the adjoint 2-basis amplitude relations. A
summary of the total number of doubly-dual solutions at each order in correction for the
different color-algebraic structures c may be found in table 6.

The existence of these two distinct color-kinematics dualities at play within a single
amplitude thus constitutes an efficient tool for generating local solutions. Constructing
the c-dual form first via composition is computationally advantageous since it is manifestly
local; once a c-dual expression is found, its c̃-ordered amplitudes may subsequently be fixed
on the 2-basis BCJ relations to impose adjoint color-kinematics duality. To be explicit, the
c-dual amplitude is re-striated along the adjoint color c̃. Each coefficient of c̃, when all c̃
have been expressed in a in a DDM basis, must represent an adjoint-ordered amplitude if
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Order d4f3 Solutions f3f3f3 Solutions f3d3f3 Solutions d5 Solutions Total
5 1 1 0 0 2
6 2 2 1 0 5
7 5 5 4 0 14
8 9 9 10 0 28
9 16 16 19 1 52

Table 6. Doubly dual local solutions.

this expression is to be doubly dual,

A =
∑
g∈Γc

cg fc,g(sij , c̃) =
∑
σ∈S3

c̃(1σ5)AHD
c (1σ5) . (7.4)

Perhaps more familiar to many, and exactly identical, one can in turn express the c̃ in
terms of a trace basis, and look at each trace’s coefficient. The coefficient of each inde-
pendent trace must represent an adjoint-ordered amplitude AHD

c for our expression to be
doubly dual:

A =
∑
σ∈S4

Tr(T̃ a1 T̃ aσ1 · · · T̃ aσ4 )AHD
c (1σ) . (7.5)

These ordered amplitudes contain the scalar kinematics and c-type color. We then require
that these ordered amplitudes AHD

c satisfy the 2-basis BCJ relation:

s13A
HD
c (13245)− s35A

HD
c (12435)− (s34 + s35)AHD

c (12345) = 0 . (7.6)

This is sufficient to ensure that all 2-basis BCJ relations are satisfied and that the full
amplitude A has an adjoint color-dual representation. Why? After establishing the c-dual
algebra of our fc(g) building blocks, our color-dressed A is manifestly permutation invariant.
This means that any Ac coefficient in a color basis either c̃ or it’s associated trace basis
will be related functionally by relabeling. It is sufficient then to simply impose a single
so-called fundamental BCJ relation. The compatibility of these ordered amplitudes with
the 2-basis field theory relations will eventually ensure that all doubly copy substitutions
c̃→ nvec

a yield fully gauge-invariant vector amplitudes.
For the purposes of this discussion, we will label the fully fixed functions as fc and

the partially fixed functions as f̂c, where partially fixed means that they have been con-
strained on c-type color-kinematics duality, but that they have not yet been fixed such that
their c̃-striated ordered amplitudes AHD

c obey the adjoint-dependent 2-basis BCJ amplitude
relations.

7.2.1 Doubly-dual amplitudes with permutation-invariant color

For permutation-invariant color c = d5, finding a permutation invariant f̂p(sij , c̃) function
is simple from our building blocks:

f̂
(n)
p =

(
a(n) p© c̃a

)
=

15∑
g∈Γ3

a(n)
g c̃ag (7.7)
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This is simply the composition of adjoint scalar kinematic numerators with adjoint color
to form a permutation invariant. We emphasize that all of thee adjoint scalar kinematic
numerators are constructible via iterated composition of r(1). Only this single unit-step
scalar is fundamentally required.

In general, there can be multiple such permutation invariants at any given mass dimen-
sion; these are taken to be summed over, with each given an independent coefficient, thus
defining the relevant candidate solution f̂

(n)
p . One then constructs the candidate bi-color

amplitude as:

Abi-color = d5 f̂
(n)
p (sij , c̃) ≡

∑
σ∈S4

Tr(T̃ a1 T̃ aσ1 · · · T̃ aσ4 )AHD
p (1σ) (7.8)

These free coefficients within f̂p are fixed by requiring that the c̃-striated ordered amplitudes
AHD

p = AHD
p

(
sij , d

5) satisfy the adjoint amplitude relations. Any remaining coefficients
represent distinct valid local operator predictions at this mass-dimension.

We note that f(n)
p will generate the O

(
(α′)n+2

)
order correction to the theory. Orders

in the dimensionful parameter α′ track the order in higher-derivative correction via the
number of additional scalar Lorentz invariants in the amplitude relative to the uncorrected
theory, as discussed in the context of eq. (3.43). Our manifestly local construction of fc
containing n dot-products implies that the corresponding adjoint numerators cHD must
contain (n + 2) dot-products in order to compensate for the two propagators, versus zero
such dot-products in the uncorrected bi-adjoint theory numerators.

For n < 7, the 2-basis adjoint relation of eq. (7.6) admits only vanishing solutions for
f
(n)
p ; for n = 7, or ninth order in α′, there is one solution, and at tenth order in α′, there
are two doubly dual local amplitudes with d5 permutation invariant color. This high mass
dimension makes it particularly unwieldy to give even a simple example. We will sketch an
example of the procedure for identifying this lowest order non-vanishing f7p, called fPI[9]
in the associated ancillary files [25].

As previously discussed in table 2, there are 14 adjoint scalar solutions a7
i at seven

orders in Lorentz-invariant dot products. These have been saved as a sum over distinct co-
efficients in adjoint[7] in the ancillary files [25]. We may write the candidate f̂(7)

p as follows:

f̂
(7)
p =

14∑
i=1

bi
(
c̃ p© a7

i

)
, (7.9)

where each bi is an ansatz coefficient we give to the composition1 of the ith adjoint build-
ing block with c̃ to form a permutation invariant. The candidate expression for the full
amplitude is then given as the product of this ansatz with dabcde.

We may constrain this to be a doubly-dual local solution by demanding that the
coefficients of c̃ satisfy the 2-basis BCJ amplitude relations. Specifically, after expressing c̃
in a spanning DDM basis where legs one and five are fixed, c̃(1σ5), the coefficient of each c̃

1Recall as per eq. (7.7) that this composition corresponds to summing over the 15 cubic graphs, dressing
each with a product of both adjoint weights.
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constitutes an ordered amplitude. We constrain this candidate expression for the ordered
amplitude AHD

p (1σ5) such that eq. (7.6) holds, fixing all but one coefficient as follows:{
b1 → 0, b2 → −

25b13
4 , b3 →

15b13
4 , b4 →

3b13
4 , b5 → −

b13
4 , b6 → −

3b13
4 ,

b7 → 0, b8 → 0, b9 → 0, b10 → −
b13
4 , b11 → −

3b13
2 , b12 → −

3b13
4 , b14 → 0

}
. (7.10)

The lone remaining parameter, b13, can be identified as the Wilson coefficient of the corre-
sponding local five-point operator. In the case where there are multiple unrelated solutions,
such as order ten in α′, we have multiple satisfactory operators that can each rightfully
have its own Wilson coefficient.

7.2.2 Doubly-dual amplitudes with hybrid color

For hybrid color c = ch,1 = d4f3, we similarly construct hybrid fh functions from scalar
kinematics and the secondary c̃ adjoint color factors. It turns out to be sufficient to consider
nested compositions just like those used for factorizing amplitudes:

f̂
(n)
h ≡

(
r(1) h© f

(n−1)
h

)
(7.11)

where for n = 1, we define f̂
(1)
h ≡

(
r(1) h© c̃a

)
. Again, generically we find multiple distinct

solutions to the hybrid conditions at each mass dimension, which will be labeled with
independent coefficients and summed over. The corresponding ordered amplitudes AHD

h =
AHD

h

(
sij , d

4f3) are then constrained on the 2-basis field-theory relations of eq. (7.6) to find
the fully fixed f

(n)
h functions. The full amplitude is then given by:

A =
∑
g∈Γh

d4f3(g)fh(g) =
∑
σ∈S4

Tr(T̃ a1 T̃ aσ1 · · · T̃ aσ4 )AHD
h (1σ) (7.12)

where the first sum runs over the ten graphs Γh with one cubic vertex and one quartic
vertex, and the second sum over the basis of traces at five points. This first expression
makes manifest hybrid color-kinematics duality through the local hybrid-dual f(n)

h graph
weights; the second representation exhibits adjoint color-kinematics duality through its
eq. (7.6) satisfying ordered amplitudes.

For the permutation-invariant doubly dual amplitudes, we find a need to fix each
individual order’s f̂c function such that the c̃-ordered amplitudes satisfy the 2-basis relations
of eq. (7.6). Hybrid solutions turn out to be delightfully simpler — we can compose directly
from BCJ-compatible solution to BCJ compatible solution. To see this, let us run through
some examples at low mass dimension.

Our first objects of interest are the linear nested composition, f̂(1)
h ≡

(
r(1) h© c̃a

)
, and

the quadratic nested composition, f̂(2)
h =

(
r(1) h© f̂

(1)
h

)
; the corresponding ordered ampli-

tudes in both cases admit no solutions that satisfy the 5-point fundamental BCJ relation.
The cubic nested composition f̂

(3)
h ≡

(
r(1) h© f̂

(2)
h

)
contains eight hybrid-color-dual building

blocks: both composition rules used,
(
r(1) h© h

)
or
(
r(1) h© a

)
, generate two independent
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solutions, so there is, for instance, two building blocks within f̂
(1)
h . By third order, we have

23 = 8 building blocks, which we label as h(3)
i . We may write the candidate f̂

(3)
h as follows:

f̂
(3)
h =

8∑
i=1

bih
(3)
i (c̃, sjk) . (7.13)

Here, bi are coefficients of the eight distinct hybrid building blocks h(3)
i that have been

constructed via composition out momentum invariants and c̃. These bi are to be fixed on
the 2-basis BCJ relations at five-points of eq. (7.6) to construct any doubly-dual solutions,
if possible. We build the full amplitude by summing over all ten relevant graphs Γh, each
dressed with d4f3 and our constructed hybrid-dual f̂(3)

h . After expressing the c̃ in a DDM
basis c̃(1σ5), we may interpret the coefficient of each color weight as an ordered amplitude.
These ordered amplitudes must be fixed to satisfy eq. (7.6) in order to represent the fully
doubly-dual solution,

A =
∑
g∈Γh

d4f3(g)fh(g) =
∑
σ∈S3

c̃(1σ5)AHD
h (1σ5) . (7.14)

Imposing eq. (7.6) on the candidate expressions for AHD
h constrains all but one of the bi

parameters, yielding a single solution at this order. The unconstrained parameter should
be understood as a stand-in for the Wilson coefficient associated with the corresponding
higher-derivative local operator. We label this solution by the number of explicit Lorentz
invariants appearing alongside c̃ in the local hybrid weight, f(3)

h . This gives rise to a doubly
dual contact amplitude at fifth order in α′, as the corresponding higher-derivative adjoint
color weight cHD for this amplitude expressed over a sum of cubic graphs must contain five
dot-products to compensate for the two cubic propagators. We therefore call this solution
fHybrid[5] in the ancillary machine readable files [25], where we index by the order in α′.

At the next order, one could calculate f̂
(4)
h ≡

(
r(1) h© f̂

(3)
h

)
and then fix the ordered am-

plitude to generate the final solution f
(4)
h , but there is a much more direct route: composing

the fully fixed cubic solution f
(3)
h with r(1):

f
(4)
h ≡

(
r(1) h© f

(3)
h

)
(7.15)

This composition f
(4)
h already yields ordered amplitudes that automatically satisfy the

(m− 3)! relations, seemingly by virtue of using the fully fixed f
(3)
h in the composition!

At the next order of higher derivative correction, we may play the same sort of game,
only now we have two building blocks at our disposal, f(3)

h and f
(4)
h :

f
(5)
h ≡

{(
r(1) h© f

(4)
h

)
, f

(3)
h p(2)

}
(7.16)

giving rise to five independent doubly dual amplitudes at seventh order in α′. We find that
this pattern continues. It is sufficient to simply consider compositions and products with
permutation invariants of lower-order fully fixed fc functions to find higher-order fully fixed
fc functions through at least ninth order in α′,

f
(n)
h ≡

{(
r(1) h© f

(n−1)
h

)
, f

(n−2)
h p(2)

}
, (7.17)
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without any need to fix the adjoint-striated ordered amplitudes at each order on the (m−3)!
constraints, as they are already satisfied! Through O

(
(α′)9

)
, we have confirmed via explicit

ansatz calculations that our composition structures and doubly dual local construction give
rise to all possible contact amplitudes containing scalar higher-derivative corrections and
hybrid color, with just the linear relaxed solution r(1) and the relevant color structures as
input building blocks. Although we do not currently have a proof, we expect this simple
pattern to continue.

7.2.3 Doubly-dual amplitudes with adjoint color

Once hybrid fh functions are known, obtaining adjoint fa functions for c = ca,1 = f3f3f3 is
rendered trivial via casting:

f
(n)
a = a

[
f
(n)
h

]
. (7.18)

Explicitly, in terms of individual graph labels,

fa(〈123〉45) = −1
5
(
2 fh(〈123〉45) + fh(〈124〉35)− fh(〈125〉34)

+ 2 fh(〈234〉15)− 2 fh(〈235〉14)
) (7.19)

The process could also be repeated in the opposite order, finding adjoint fc functions first
via composition and then casting to hybrid solutions. This one-to-one correspondence
means there are equal numbers of doubly dual contact amplitude solutions with hybrid
color and with adjoint color at each order in higher-derivative correction.

The combined methods of composition, casting, and doubly dual local construction
dramatically simplify calculation — at ninth order in α′, for example, an ansatz for cHD

would contain 6435 free parameters. Introducing the notion of doubly dual amplitudes
would allow us to write a smaller ansatz down for fa, with 1980 free parameters. Using
composition, we are able to avoid ansatze entirely: the hybrid solution fh is obtained directly
by composing r(1) with the previous order in correction, with no parameters needing to be
fixed, and then the adjoint solution fa is written down immediately by casting fh to adjoint.

7.2.4 Doubly-dual amplitudes with sandwich color

One can proceed in much the same way for sandwich color c = cs = f3d3f3. As its
constraints are looser (obeying a six-term identity rather than stricter three-term Jacobi
identities), a more complicated composition pattern is needed to span all solutions. These
compositions involve not only the r(1) building block, but also the quadratic sandwich
building block s(2) =

(
r(1) s© r(1)

)
built from the linear relaxed solution r(1).

7.3 Restricting to bi-adjoint and higher-derivative momentum kernels

All of the higher-derivative correction amplitudes discussed in this and the previous section
admit a double-copy description via the standard field theory limit of the KLT relations [16–
18]. In this description, the standard field-theory KLT momentum kernel (which does not
itself carry any higher-derivative corrections) facilitates the marriage of ordered amplitudes
involving the adjoint higher-derivative color weights cHD with ordered amplitudes involving
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secondary adjoint color factors c̃ (simply the singly-ordered bi-adjoint scalar theory ordered
amplitudes). It is these secondary ordered amplitudes which can be replaced with ordered
vector amplitudes to generate higher-derivative corrections to Yang-Mills, as we will discuss
in the next section.

Before we do so, let us recall to the reader that there exists a notion of local higher-
derivative momentum kernels introduced by Chi, Elvang, Herderschee, Jones, and Paran-
jape.2 Here we identify an additional strategy one might employ towards identifying these
types of local adjoint-compatible momentum kernels. We begin by using our notion of local
c-dual double-copy structure to write down all the ways that adjoint color weights can be
combined with local higher-derivative corrections:

Abi-adj+HD =
∑
c

∑
g∈Γc

f̃c(g)(sij , c̃) fc(g)(sij , c) . (7.20)

Note that we sum over all algebraic structures c relevant at five points. For each structure
c, we must dress the relevant graphs Γc with the product between two c-dual functions,
f̃c(g) and fc(g). Each function is dependent upon adjoint-type color, c or c̃, as well as
scalar kinematics that conspire with the adjoint color to allow the entire weight fc to be
compatible with c-type algebraic constraints — in a manner compatible with adjoint-type
BCJ relations, just as these fc functions do in our doubly dual local amplitudes. This
constitutes essentially a double copy of a doubly-dual local amplitude with itself, with the
appropriate color-dual replacement c(g)→ f̃c(g)(sij , c̃), giving the most general local higher-
derivative modification of the bi-adjoint scalar to admit a local double copy description.

At any multiplicity, one can generate a higher-derivative momentum kernel from the
tree-level higher-derivative bi-adjoint amplitude, Abi-adj+HD. We can proceed by using
Jacobi relations to express every adjoint color factor c in a basis of half-ladder color weights,
c(1|σ|n), and likewise for c̃. This allows us to define doubly-ordered amplitudes of this
theory,3 Abi-adj+HD(σ|ρ), by identifying them as the unique coefficients of independent
color-basis monomials:

Abi-adj+HD =
∑

σ,ρ∈Sn−2

c̃(1|σ|n)Abi-adj+HD(σ|ρ)c(1|ρ|n) = c̃T ·Abi-adj+HD · c . (7.21)

Note that the standard KLT kernel, S, constructs color-dual numerators from ordered-
amplitudes. In other words it allows [27, 28] one to express4 a color-dual (n− 2)!-basis of
adjoint-type color weights c(1|σ|n) in terms of a basis of (n−3)! independent singly-ordered
bi-adjoint amplitudes A. The idea is simple. One can choose any (n− 3)! basis of ordered
amplitudes one likes (independent under the BCJ relations of [14]), but for concreteness let
us choose the basis of ordered amplitudes to be A(1, τ, n, n− 1), and the KLT kernel to be
S1 (see e.g. [21] for a recursive definition, which we implement in the auxiliary Mathematica
files accompanying the present paper [25]). In this construction, all weights, c(1|σ|n), are

2See, e.g. slides and video at ref. [39].
3C.f. the related identification of doubly-ordered bi-adjoint amplitudes as described in e.g. ref. [40].
4A pedagogic introduction to using KLT to build color-dual numerators specifically at five-points can

be found in section 2.3 of ref. [26].
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prescribed to vanish unless the second to last leg (the last entry of σ) is n − 1, in which
case the (non-local5) graph weight is given to be:

c (1|ρ (n− 1)|n) =
∑

τ∈Sn−3

S(ρ|τ)A(1, τ, n, n− 1) . (7.22)

This relationship can be expressed as a dot-product between a zero-padded (n−3)!×(n−2)!
matrix representation of S and the (n− 3)! basis vector of independent singly-ordered bi-
adjoint scalar amplitudes,

c = S ·A . (7.23)

We therefore now exploit the standard KLT kernel, S, in order to rewrite c and c̃ in terms
of their (n− 3)! basis of (singly-)ordered amplitudes, c = S ·A and c̃ = S · Ã,

Abi-adj+HD = ÃT · ST ·Abi-adj+HD · S ·A . (7.24)

Finally, we can now identify6 the most general higher-derivative kernel compatible with a
dual-adjoint striation at this mass-dimension:

SHD ≡ ST ·Abi-adj+HD · S . (7.25)

So we find that the most general local higher-derivative correction amplitude to the
bi-adjoint scalar may equivalently be expressed in terms of uncorrected singly-ordered
amplitudes, A, and this higher-derivative momentum kernel, SHD,

Abi-adj+HD = ÃT · SHD ·A . (7.26)

We identify some intriguing open questions regarding such an approach in our conclusion
section.

8 Double copy to gauge and gravity corrections

8.1 Higher-derivative gauge corrections

We have demonstrated how composition and casting can yield an infinite tower of higher-
derivative corrections in the form of adjoint-type modified color weights dressing graphs in

5The non-locality of the numerators is required for all channels to be present in the full amplitude after
some basis-channel numerators are set to vanish. An analogous choice at four points is to set basis weights
c(1|23|4) = −sA(1342) = cs + s × cu/u, and c(1|32|4) = 0. The final graph weight (the t-channel) follows
from Jacobi: c(1|43|2) = c(1|23|4). Clearly Jacobi is satisfied, and all ordered amplitudes are reproduced,
so these types of non-local (and non-functional) representations are entirely valid even if they superficially
obscure factorization properties of the amplitude.

6With the above choice of the basis of A, Ã and S = S1, this means

SHD(σ|ρ) =
∑

π,τ∈Sn−3

S(π, σ)Abi-adj+HD (π, (n− 1)|τ, (n− 1))S(τ |ρ) ,

although, of course, one is free to use KK and BCJ relations to choose whatever basis one likes, not to
mention relabeling freedom, so the specific representation here is not so important.
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a bi-color scalar amplitude. The fact that Yang-Mills amplitudes are compatible with max-
imal supersymmetry at tree-level means that, through double-copy construction, we can
trivially map bi-color higher-derivative amplitudes to an infinite tower of higher-derivative
corrections to Yang-Mills — all of them entirely compatible with maximal supersymmetry.
The bi-colored amplitudes we constructed in the previous section have the following form,

ABC+HD
5 =

∑
g

c̃gc
HD
g

dg
. (8.1)

By virtue of the fact that the higher-derivative color weights, cHD, satisfy the adjoint alge-
braic relations in eqs. (4.4) and (4.7), we are free to replace the secondary adjoint color c̃
with any graph weight that depends on adjoint relations to build a gauge-invariant ampli-
tude, like the kinematic numerators of Yang-Mills theory, or indeed any vector weight that
can be expressed in terms of adjoint color-dual numerators! For example, higher-derivative
corrections compatible with maximally supersymmetric Yang-Mills can be generated by
pairing cHD with the vector weight nsYM

g associated with Yang-Mills at five-points,

Avec+HD
5 =

∑
g

nvec
g cHD

g

dg
, (8.2)

with nvec
g = nsYM

g . The resulting amplitudes will be compatible with maximal supersym-
metry and manifest an adjoint double copy structure, with the additional mass-dimension
and generic color-weights from the higher-derivative corrections encoded in cHD. For an
example calculation matching one of our higher-derivative vector amplitudes (generated
via double copy of Yang-Mills with our second-order modified color weights cHD) to a tra-
ditional Feynman rules calculation starting from higher-derivative operators in the action,
see appendix C.

Let us point out a feature at this stage. Because we have striated along adjoint
structures, it is entirely sufficient to build the two independent ordered amplitudes,
ABC+HD

5 (12345) and ABC+HD
5 (13245), and simply use the standard KLT relation with or-

dered vector amplitudes Avec
5 (12354) and Avec

5 (13254) to arrive at higher-derivative gauge
theory amplitudes (equivalent to those obtained via graph-based adjoint double copy). Let
us emphasize application of the adjoint momentum kernel is possible even with non-adjoint
color weights like dabcde and f3d3f3 because we have composed those colors with scalar
weights to form adjoint-type amplitudes: by virtue of the composition rules, non-adjoint
color conspires with scalar kinematics to satisfy adjoint constraints. This adjoint-structure
for the c̃ weights guarantees that the replacement with adjoint-dual vector weights c̃→ nvec

a

(such as nsYM results in gauge-invariant amplitudes even in the dual-striated local repre-
sentation,

Avec+HD =
∑
g∈Γc

cg fc(g)(sij , nvec
a ) . (8.3)

It is beyond the scope of this current paper to identify all distinct adjoint vector weights,
modulo scalar-weight modifications, at five-points. While there were only eight at four-
points, there is more freedom at five-points. It will be interesting and useful to identify the
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minimal set of vector building blocks required to build all adjoint-type higher-derivative
vector corrections. We provide some examples, including Yang-Mills, in ancillary Mathe-
matica files [25].

8.2 Higher-derivative gravity corrections

The care we must take in promoting the above discussion to a double-copy construction to
gravity is simply to ensure that gauge-invariance is manifest for both copies after replacing
the remaining color-weights in cHD of eq. (8.2), or equivalent the cg in eq. (8.3), with vector
weights. If we can maintain gauge-invariance of both copies of vector weights, our resulting
expression will describe higher-derivative corrections to the scattering of gravitons.

For trivially modified color weights cHD(g) ∝ f3f3f3(g) × p, we can simply replace
f3f3f3(g) → ñvec(g) in eq. (8.2) as long as the nvec

g have been expressed in a manifestly
adjoint-color-dual form. This is because permutation invariants will not endanger the nvec’s
ability to ensure the gauge-invariance of the ñvec copy. As cHD is adjoint-type the gauge
invariance of the nvec copy is already manifest.

For more general modified color-weights, we must replace the color weights c within
cHD(c, sij) with vector weights both obey the same algebra as c and require the algebra
of c to build gauge-invariant quantities. In factorizing corrections, the color c within the
modified color weights cHD is either of type f3f3f3 or d4f3, so we may only replace these,
respectively, with adjoint (avec) or hybrid (hvec) vector weights that respect gauge invari-
ance of the overall amplitude. For sufficiently high mass-dimension, it is possible for the
individual vector graph weights to be gauge invariant, rendering the question of gauge in-
variance of the full amplitude trivial. Examples of such local dual vector weights are a5

vec,
h5

vec, s6
vec, and p8

vec, where the superscript here refers to the number of Lorentz-invariant
dot products per term in the numerator (for comparison, Yang-Mills numerators contain
four dots per term, but they do not fall into this category, as the graph weights are not
themselves gauge-invariant; rather, they conspire between graph channels to cancel out any
gauge dependence in the overall amplitude). Useful in both factorizing and local gauge cor-
rections, and the predictions associated with local gravity counterterms to be discussed,
we provide these example local gauge-invariant algebraic vector weights in ancillary Math-
ematica files [25].

This strategy is particularly clear in the dual-striated form of the higher-derivative
vector amplitude, eq. (8.3). If we are to promote cg in eq. (8.3) to encode spin-1 vector
information via double-copy replacement, the vector weights ñvec

c must satisfy the same
algebraic relations as c and must result in gauge-invariant amplitude expressions when
dressing the graphs relevant to that algebra, such that A =

∑
g∈Γc

c(g)ñvec
c (g) is gauge-

invariant. If such a vector weight can be identified, its corresponding diffeomorphism-
invariant gravity amplitude may be written down as:

Agrav =
∑
g∈Γc

ñvec
c (g) ñvec

c (g) , (8.4)

and its associated higher-derivative gravity corrections are found simply through double
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copy with the higher-derivative gauge theory corrections Avec+HD given by eq. (8.3):

Agrav+HD =
∑
g∈Γc

ñvec
c (g) fc(g)(sij , nvec

a ) . (8.5)

Finally, we remark on one final form of local higher-derivative gravity counterterms
that may be obtained from our doubly-dual construction: for color structure c, the dual
properties of fc ensure that we may make the replacement c(g) → f̃c(g)(sij , c̃) to arrive at
higher-derivative corrections to the bi-adjoint scalar. The most general such form of these
corrections, as discussed in the context of eq. (7.20), is given by summing over all possible
structures c:

Abi-adj+HD =
∑
c

∑
g∈Γc

f̃c(g)(sij , c̃) fc(g)(sij , c) . (8.6)

For each algebraic structure c, we sum over the relevant graphs g in Γc, dressing each with
two higher-derivative c-dual graph weights, fc(g) and f̃c(g). Since such fc functions are
fixed so that striating the amplitude along the basis elements of the adjoint color weights
c yields (m − 3)!-compatible ordered amplitudes, the replacement c → nvec

a automatically
yields gauge-invariant amplitudes (as seen previously in eq. (8.3)). This compatibility
with the (m − 3)! relations for ordered amplitudes of theories with adjoint-double-copy
structure is ensured by the algebraic properties of c, meaning that this compatibility is
preserved when c is replaced with an appropriately color-dual fc function. As a result, both
adjoint color weights within Abi-adj+HD, c and c̃, may be replaced with any adjoint-color-
dual vector weights to yield fully diffeomorphism-invariant higher-derivative local contact
gravity amplitudes:

AGR+HD =
∑
c

∑
g∈Γc

f̃c(g)(sij , ñvec
a ) fc(g)(sij , nvec

a ) , (8.7)

where these vector weights need not arise from the same theory; the only condition is
that both be adjoint-color-dual. We are free to choose both vector weights to be from
super-Yang-Mills, so that:

ASUGRA+HD =
∑
c

∑
g∈Γc

f̃c(g)
(
sij , n

sYM
)

fc(g)
(
sij , n

sYM
)
, (8.8)

generates local contact higher-derivative corrections to supergravity. We continue to label
the dual graph weights f̃c and fc distinctly in this case to remind the reader that, even
though functions obey the same algebraic relations and are functions of the same vector
weight nsYM, they need not be the same, as they may correspond to higher-derivative
corrections from different orders in mass-dimension.

9 Ladder to string theory

We expect that our new five-point color-kinematic solutions (constructively built from
color-weights and ultimately the unit-step relaxed scalar solution) span the whole space of
BCJ-compatible corrections to Yang-Mills and, in particular, contain the open superstring
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corrections. The connection can be made through the bi-colored Z-theory amplitudes,
which lift, through standard field-theory double copy, field-theoretic amplitudes to string
theory amplitudes at tree-level [20, 21, 23, 41, 42].

Aopen(τ) =
∑

ρ,σ∈Sn−3

Z(τ |1, σ, n, n− 1)S[σ|ρ]Avec(1, ρ, n− 1, n) , (9.1)

where S is the field-theory KLT momentum kernel7 of e.g.specific to the basis and thus does
not carry any string higher-derivative corrections. Z-theory encodes all the α′ corrections
to Yang-Mills that show up in the tree-level open superstring, and carries color structure
from two different gauge groups: the Chan-Paton factors, which can in principle sum over
all single-trace contributions, and secondary adjoint color-weights which are e.g. replaced
by nsYM when double-copying to the open superstring amplitude. These color structures
line up with c and c̃, respectively, in our constructed bicolored scalar amplitudes. In terms
of the modified color factors, the full Z-theory amplitudes can also be expressed as:

Z =
∑
g

c̃gc
HD
g

dg
, (9.2)

so the modified color factors cHD carry the α′ string corrections and the Chan-Paton color
factors. Doubly-ordered amplitudes Z(α|β) can be obtained from eq. (9.2) by expanding
both the color structures into traces:

Z =
∑

σ,ρ∈Sn−1

Tr(T̃ a1 T̃ aσ1 · · · T̃ aσn−1 )Tr(T b1T bσ1 · · ·T bσn−1 )Z(1, σ|1, ρ) . (9.3)

We have verified that up to and including order (α′)9, our solutions span the low-
energy expansion of the open superstring at five-points. This may be checked directly
by comparing our results to Z-theory amplitudes built using Berends-Giele recursion [23],
or by fixing to the following expression for string amplitudes, which is known to high
order [43–45]:

Aopen(1, ρ, n− 1, n) =
∑

σ∈Sn−3

Fρ
σAvec(1, σ, n− 1, n) . (9.4)

Comparing eqs. (9.4) and (9.1) we obtain [23]:

Fρ
σ =

∑
τ∈Sn−3

S[τ |σ]Z(1, ρ, n− 1, n|1, τ, n, n− 1) . (9.5)

For multiplicity n = 5 and the choice ρ = {2, 3}, this yields equations:

F23
23 = S[23|23]Z(12345|12354) + S[32|23]Z(12345|13254) (9.6)

F23
32 = S[23|32]Z(12345|12354) + S[32|32]Z(12345|13254) (9.7)

These equations will allow us to constrain our results to match string theory. Our am-
plitudes, ordered on both group’s color factors, will be used in place of the Z-theory

7Often called S[σ|ρ]1 specifying the choice of (n− 3)!× (n− 3!) basis we have made explicit.
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doubly-ordered amplitudes in these equations, and results for F will be taken directly from
string theory. F can be written in terms of M and P matrices [20, 44]:

F = 1 + ζ2 P2 + ζ3 M3 + ζ2
2 P4 + ζ2ζ3 P2M3 + ζ5 M5

+ ζ3
2 P6 + 1

2 ζ2
3 M3M3 + ζ7 M7 + ζ2ζ5 P2M5 + ζ2

2ζ3 P4M3

+ ζ4
2 P8 + ζ3ζ5 M5M3 + 1

2 ζ2ζ
2
3 P2M3M3 + · · · (9.8)

We parameterize our solutions as follows: b[n, i] labels the ith factorizing solution at nth

order in α′, and b[n, c, i] labels the ith local solution at nth order in α′, with color structure c
of type a, h, s, or p. Here we reproduce the results through fifth order of fixing our solutions
to the α′ expansion of Z-theory (and thus equivalently fixing to open superstring theory):(

α′
)2 : b[2, 1] = 24 ζ2 , (9.9)(

α′
)3 : b[3, 1] = −8 ζ3 , (9.10)(

α′
)4 : b[4, 1] = 48 ζ2

2 , b[4, 2] = −16 ζ2
2/5 (9.11)(

α′
)5 : b[5, 1] = 384 ζ2ζ3, b[5, 2] = −32 ζ5, (9.12)

b[5, h, 1] = −6650112 ζ2ζ3/2615, b[5, a, 1] = −30960 ζ5/523 , (9.13)

with results up to order (α′)9 available in the ancillary files. Note that neither d5 nor
f3d3f3-type color solutions (p or s) contribute to the string amplitude, as their single-trace
Chan-Paton coefficient amplitudes would violate the odd-point reflection identity (just as
these amplitudes are incompatible with the Yang-Mills reflection identity, as discussed in
the context of eq. (5.23)). All other building blocks are given a fixed Wilson coefficient
by comparison to string theory. Above and including sixth order in α′, we frequently
find that multiple linearly-independent solutions (of both the factorizing and local contact
varieties) are available, as summarized in tables 5 and 6. Since string theory only picks
out one particular combination of these multiple distinct solutions, there are a number
of distinct (linearly-independent) operators that string theory avoids at tree level — and
whose invariant predictions are spanned by our construction at five-points.

Some of these distinct directions in solution space may be related to higher genus. It
is possible to match to the M ′ matrices of reference [46], local solutions which were found
to be compatible with monodromy and preserve the BCJ relations of amplitudes, but that
do not show up in string amplitudes at tree level. The lowest mass dimension example
occurs at (α′)7, where we find:

M ′7 : b[7, a, 1] = − 1
256 . (9.14)

This and higher mass dimensions weights, through ninth order, are collected in ancillary
files [25].

10 Conclusion

We have demonstrated that the wealth of higher-derivative algebraic structure at five points
compatible with adjoint-type double-copy can arise from a simple linear scalar building
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block much like at four-points. Beyond this we have a conjectured form for such linear
blocks at all multiplicity, eq. (1.1). We expect this to result in the constructive ability to
write down functional expressions for a rich variety of gauge and gravity higher-derivative
predictions at arbitrary multiplicity. We demonstrate in detail how this can proceed at five-
points, allowing one to methodically construct higher mass-dimension numerators from
lower order solutions and find a ladder of supersymmetry-compatible higher-derivative
corrections to gauge theory and gravity. We exemplify the construction of such composi-
tion rules with four-point examples in appendix A, and give explicit results for all of our
five-point composition rules in appendix D. We emphasize that the value of having such
composition rules is that they allows us to build infinite towers of solutions to functional-
constrains without needing to invoke an ansatz.

Adjoint-compatible higher-derivative gauge theory amplitudes at five points arise via
double-copy from bi-colored amplitudes constructed with explicit higher-derivative adjoint-
compatible color-weights: (sYM+HD) = sYM⊗(BC+HD). This has the virtue of allowing
us to impose either factorization limits or locality conditions in a simpler bicolored scalar
theory. We find factorizing solutions by composing adjoint color factors (containing both
f3f3f3 and d4f3 structures) repeatedly with r(1) to give candidate expressions for cHD,
then fixing on factorization. We conjecture that, above seventh order, no new nested com-
positions are needed to generate the candidate expressions that may be fixed on factoriza-
tion, as eighth and ninth order were spanned by lower order structures times permutation
invariants.

Local solutions can be found by fixing the same candidate expressions instead on the
condition that all possible residues of the amplitude vanish. We find that the local bicolored
scalar amplitudes are more efficiently constructed by making manifest a novel form of color-
kinematics duality, in which each amplitude is manifestly local and displays two different
algebraic striations between color and kinematics. These amplitudes like the factorizing
solutions, contain two color structures: color factors c that will survive in the gauge theory
amplitude, of the form f3f3f3, d4f3, f3d3f3, or d5, as well as a secondary standard adjoint
color factor c̃a, which is replaced with nvec in the double copy to gauge theory corrections.
Coefficients of a basis element of c̃a are ordered amplitudes that consist of scalar kinematics
and c color and obey the (m− 3)!-basis BCJ relations, ensuring compatibility with adjoint
color-kinematics duality. Coefficients of the color factors c, fc(c̃a, sij), contain the secondary
gauge group, and are manifestly local objects that satisfy the same algebraic constraints
as the particular color structure of c. For instance, if cg = d4f3(g), its coefficient functions
fc,g obeys the same mixed vertex (anti)symmetry and four point identities as d4f3. The
amplitude is thus doubly dual: it exhibits both adjoint and d4f3 color-kinematics duality,
depending upon striation.

Our bicolored scalar solutions can be trivially recycled to maximally supersymmetric
gauge theory corrections through double copy with super Yang-Mills compatible graph-
weights. Double copy of gauge theory corrections with another gauge theory to generate
higher derivative supersymmetry-compatible gravity amplitudes is straightforward in some
cases and more complicated in others. In all amplitudes, the replacement of the second
gauge group’s adjoint color factor c̃a → nvec

a is always allowed; but care must be taken when
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replacing c with dual vector kinematics that gauge invariance of the overall amplitude is
preserved. Color structures like d4f3 demand dual gauge theory solutions; we have not
yet identified consistently factorizing d4f3-dual vector numerators. Further exploration of
gauge theory solutions could yield additional gravity solutions of interest. We additionally
find that there is a second avenue for generating local gravity corrections from our doubly
dual amplitudes by dressing each graph with two copies of fc(nvec

a , sij), which is guaranteed
to be gauge invariant.

We verify our proposition that these results — both factorizing and local — span the
low-energy expansion of the five point open superstring amplitude through O

(
α′9
)
. We

note that we find additional local solutions to those appearing in the open superstring at
tree-level, both for color structures compatible with string theory (f3f3f3 and d4f3) and
those forbidden by monodromy (f3d3f3 and d5).

When we restrict ourselves to manifestly bi-adjoint higher-derivative color-weights, we
suggest a procedure for constructing a modified KLT kernel, eq. (7.25), which encodes all
higher-derivative corrections compatible with two adjoint-type algebraic structures. Our
approach of summing over all double-copies of algebraic structures given in terms of adjoint-
color-weights and momentum invariants in eq. (7.20) guarantees that there can be no
missing form of higher-derivative correction, but it does not guarantee a lack of redundancy.
Indeed, the existence of casting between e.g. f3f3f3 and d4f3 algebraic structures suggests
a potentially large amount of redundancy. This leaves us with a number of interesting
open questions that could be instructive to pursue: is there an efficient way of isolating the
unique contributions? Is there an analogy to the unit-step linear relaxed numerator that
can be composed with KLT to generate all KLT-type higher-derivative corrections?

We have not provided explicit operators for any of the higher-derivative corrections we
present here, save a pedagogical example in appendix C. We note that identifying operators
associated with particular predictions can be accomplished by giving an appropriate mass-
dimension ansatz to an action and constraining it on Feynman rules. Yet this is both
laborious and tedious, and only grows more so as multiplicity and higher-mass-dimension
increases. While arguably the gauge-invariant prediction is ultimately what matters, we
find this situation limiting. It would be interesting to see if Hilbert-series methods, see
e.g. [47–51], can be applied to make constructive double-copy structure manifest. We
expect that any approach towards identifying efficient means of generating higher-derivative
operators relevant to these higher-derivative predictions will also aid in clarifying open
questions regarding double-copy construction and the web-of-theories.

The fact that the encoding of higher derivative supersymmetry-compatible corrections
to gauge theory and gravity within scalar theories, constructed from simple color and
scalar kinematic building blocks and composition rules, continues at five points indicates
the potential for using these techniques at both higher multiplicity and at loop level. In
particular, the five-point results of this paper could be used through unitarity to construct
an infinite tower of higher derivative multiloop corrections, as unitarity cuts of two loop
integrands may be fixed on the five point tree level results presented here and in the
auxiliary files [25]. This method shows promise at loop level, since capturing all higher
derivative corrections in modified color factors would allow us to trivially recycle hard-won
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multiloop gauge theory integrand numerators into their higher derivative corrections:

AsYM+HD
L−loops =

∑
g

1
Sg

∫ L∏
i

dDli
(2π)D

nsYM
L (g)cHD

L (g)
d(g) (10.1)

Adjoint-dual loop level integrand numerators nsYM
L have been found through four loops [24].

We conjecture that, for suitable integrand numerators cHD
L , colors factors could be appro-

priately replaced to generate higher derivative gravity integrands via double copy.
There are also many opportunities for further work at tree level. At four points, we

found that only four tensor structures in addition to Yang-Mills were necessary to generate
all corrections within the bosonic open string; non-supersymmetric vector numerators at
five points that could yield more general corrections remain to be explored. Of further
interest are other color algebraic structures: in particular, multitrace amplitudes and pre-
dictions concerning states charged in the fundamental were recently shown to be expressible
in terms of modified color factors for the NLSM and higher derivatives [52, 53]. In addition
to expanding this framework to be compatible with fundamental color-kinematics duality,
extending it to include massive particles could allow for the description of corrections to
QCD containing standard model fermions, which should be of interest in the context of
standard model effective field theory.
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A Finding composition rules

At four points, we may generate a new adjoint numerator n from the composition of two
known adjoint numerators j and k:

na(1234) = (ja a© ka) = ja(4123)ka(4123)− ja(4231)ka(4231) (A.1)

Although it is not difficult to verify that this form ensures that na satisfies antisymme-
try and Jacobi, we will construct it explicitly here, so it is clear how more complicated
compositions may be generated at five points.

To begin, let us make a judicious choice of basis for four point graphs, g(4123) and
g(4231), corresponding to the t and u channel graphs respectively. We start by writing
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down an ansatz for the composed numerator n as the outer product of these basis sets for
numerators ja and ka:

na(1234) = αja(4123)ka(4123) + βja(4231)ka(4123)
+ γja(4123)ka(4231) + δja(4231)ka(4231)

(A.2)

First, impose antisymmetry on na, using the antisymmetry of ja and ka to return to the
basis and constrain the ansatz:

na(2134) = αja(4213)ka(4213) + βja(4132)ka(4213)
+ γja(4213)ka(4132) + δja(4132)ka(4132)

(A.3)

na(2134) = αja(4231)ka(4231) + βja(4123)ka(4231)
+ γja(4231)ka(4123) + δja(4123)ka(4123)

(A.4)

na(2134) + na(1234) = (α+ δ)ja(4231)ka(4231) + (β + γ)ja(4123)ka(4231)
+ (β + γ)ja(4231)ka(4123) + (β + γ)ja(4123)ka(4123)

(A.5)

na(2134) + na(1234) = 0 =⇒ δ = −α, γ = −β (A.6)

Thus, antisymmetry reduces our ansatz down to two parameters:

na(1234) = α[ja(4123)ka(4123)− ja(4231)ka(4231)]
+ β[ja(4231)ka(4123)− ja(4123)ka(4231)]

(A.7)

Now we must impose Jacobi:

na(1234) = na(4123) + na(4231) (A.8)

α[ja(4123)ka(4123)− ja(4231)ka(4231)] + β[ja(4231)ka(4123)− ja(4123)ka(4231)]
= α[ja(1234)ka(1234)− ja(4231)ka(4231)] + β[−ja(4231)ka(1234) + ja(1234)ka(4231)]

+ α[ja(4123)ka(4123)− ja(1234)ka(1234)] + β[−ja(1234)ka(4123) + ja(4123)ka(1234)]
(A.9)

0 = β[ja(4231)ka(4123)− ja(4123)ka(4231) + ja(4231)ka(1234)
− ja(1234)ka(4231) + ja(1234)ka(4123)− ja(4123)ka(1234)]

(A.10)

Using the fact that both ja and ka themselves obey Jacobi allows us to express this relation
in terms of basis elements, and we find β = 0, leaving us with the simple composition rule:

na(1234) = ja(4123)ka(4123)− ja(4231)ka(4231) (A.11)

We proceed to find compositions at multiplicity five in a similar manner. The general
form of a composition rule that takes two numerators of given algebraic structures e and f

and composes them into a new numerator desired algebraic structure g is:

g(12345) = (e g© f) =
∑
g∈ρe

∑
g′∈ρf

βefgg,g′e(g)f(g′) (A.12)

where the sums run over the basis graphs ρ for the given type of numerator. The coefficients
βf,g,eg,g′ are chosen such that ne obeys the e-type algebraic constraints, simply by virtue of
the algebraic properties of jf and kg.
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B Color structure basis at five-points

We choose our 24 element basis of color structures at five points (in agreement with the
4! trace basis elements) to be given as follows: first, there is the single permutation in-
variant structure d5. Then, antisymmetry and Jacobi constrain us to a basis of six adjoint
structures f3f3f3; we choose the (m− 2)! DDM basis f3f3f3(1σ5):

f3f3f3(12345) f3f3f3(12435) f3f3f3(13245)
f3f3f3(13425) f3f3f3(14235) f3f3f3(14325)

(B.1)

Based on the hybrid algebraic constraints of eqs. (4.24) and (4.26), we land on a basis of
six d4f3 color structures:

d4f3(〈123〉45) d4f3(〈124〉35) d4f3(〈125〉34)
d4f3(〈145〉23) d4f3(〈234〉15) d4f3(〈235〉14)

(B.2)

Finally, the sandwich constraints given in eqs. (4.18) and (4.21) give an eleven-element
basis of f3d3f3 color structures:

f3d3f3(12345) f3d3f3(12435) f3d3f3(12534)
f3d3f3(13245) f3d3f3(13425) f3d3f3(13524)
f3d3f3(14235) f3d3f3(14325) f3d3f3(14523)
f3d3f3(23145) f3d3f3(24135)

(B.3)

We have made the choice to prioritize f3d3f3 structures in our basis over d3f3f3; these
structures may be expressed completely in terms of the f3d3f3 structures as follows:

d3f3f3(abcde) = f3d3f3(acbde) + f3d3f3(bcade) . (B.4)

C Operator comparison at five-points

In this appendix, we briefly discuss an example of lining up our amplitudes with results
from a traditional operator approach using Feynman rules. We will use as our example the
lowest order higher-derivative correction to super-Yang-Mills theory at five points, which
is a factorizing correction carrying d4f3 color at second order in α′. The relevant action
for this correction is given by:

S =
∫
ddx

(
LYM + α′

2
F 4

SUSY

)
(C.1)

where the operators are defined as follows:

LYM ≡ −
1
4 Tr [FµνFµν ] (C.2)

F 4
SUSY ≡ Tr

[
F νµF

ρ
ν F

σ
ρ F

µ
σ + 2F νµF σρ F ρν Fµσ − 1

4FµνFρσF
µνF ρσ − 1

2FµνF
µνFρσF

ρσ
]
. (C.3)

Fµν ≡ ∂µAν − ∂νAµ + i√
2
g (AµAν −AνAµ) . (C.4)
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The Feynman rules calculation for this five-point correction contains two parts: one
five-point contact contribution arising from the five-field terms within F 4

SUSY, and one
factorizing contribution arising from the four-field terms of F 4

SUSY sewn together with a
three-point Yang-Mills insertion. Schematically, with F 4-vertices drawn with filled (teal)
circles and standard Yang-Mills vertices as open (pink) circles,

Aaction = +
10∑
g∈Γh

(C.5)

The factorizing contribution must be found by dressing the ten hybrid graphs Γh at five
points: the quartic vertex is dressed with the off-shell four-point vertex from the F 4

SUSY
operator, the cubic vertex is dressed with the off-shell three-point Yang-Mills vertex, and
each graph is dressed with its associated propagator. The contact contribution dresses the
single quintic graph at five points. Both of these contributions are necessary for gauge
invariance of the overall amplitude.

Our method for constructing this correction involves an adjoint double copy between
Yang Mills and our higher-derivative bicolor theory: each cubic graph is dressed with an
adjoint Yang-Mills numerator and the second order adjoint modified color weight:

Adouble-copy =
15∑
g∈Γ3

nYM
g c

HD(2)
g

dg
. (C.6)

The explicit form of this higher-derivative color weight, generated via compositions fixed
to factorize appropriately down to four-point higher-derivative corrections times the three-
point uncorrected bi-adjoint scalar, is given in the ancillary files and reproduced here:

cHD(2)(12345) = 2
5 b[2, 1]

(
d4f3(〈145〉23)s45 (−s12 + 2s34 + s45)

+ d4f3(〈123〉45)
(
s2

12 + s12(9s23 − 6s45)− s45(5s23 + s45)
)

+ d4f3(〈124〉35) ((5s15 − 5s23 − 8s34 − 2s45)s45 + s12(5s15 + s23 + 4s45))

+ d4f3(〈235〉14)
(
s2

12 − s45(9s34 + s45) + s12(5s34 + 6s45)
)

+ d4f3(〈234〉15)
(
−6s2

12 + s12(5s34 + 8s45)− s45(9s34 + 8s45)
)

+ d4f3(〈125〉34)
(
(5s15 − 8s34 − s45)s45 + s12(5s15 − 6s23 + 9s45)

))
.

(C.7)

We find that fixing b[2, 1] = 6
√

2 i g allows for agreement between our amplitude calculation
and the Feynman rules calculation:

Adouble-copy = Aaction , (C.8)

verifying the compatibility of our double copy construction method with higher-derivative
color weights with traditional operator calculations.
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D Relevant composition at five-points

Here we give explicit examples of composition rules. Note: to avoid clutter for hybrid
graph labels in this appendix we have dropped the 〈〉 symbols from the arguments to our
h weights. The first three arguments are taken to be the external labels of the four-point
vertex.

(jr r© kr) = −2jr(12435)kr(13245)− 2jr(13245)kr(12435)− 2jr(13425)kr(13425)
− 2jr(13425)kr(14235)− 2jr(14235)kr(13425)− 2jr(14235)kr(14235)
+ 3jr(12435)kr(13425) + 3jr(12435)kr(14235) + 3jr(13245)kr(13425)
+ 3jr(13245)kr(14235) + 3jr(13425)kr(12435) + 3jr(13425)kr(13245)
+ 3jr(14235)kr(12435) + 3jr(14235)kr(13245)− 4jr(12435)kr(12435)
− 4jr(13245)kr(13245) + 4jr(14325)kr(14325)− jr(13425)kr(14325)
− jr(14235)kr(14325)− jr(14325)kr(13425)− jr(14325)kr(14235)

(jr a© kr) = −2jr(12435)kr(14325) + 2jr(13245)kr(14325) + 2jr(14325)kr(12435)
− 2jr(14325)kr(13245) + 3jr(13425)kr(14325)− 3jr(14235)kr(14325)
− 3jr(14325)kr(13425) + 3jr(14325)kr(14235) + 5jr(12435)kr(14235)
− 5jr(13245)kr(13425) + 5jr(13425)kr(13245)− 5jr(14235)kr(12435)
− 6jr(13425)kr(14235) + 6jr(14235)kr(13425)− jr(12435)kr(13425)
+ jr(13245)kr(14235) + jr(13425)kr(12435)− jr(14235)kr(13245)

(jr a© ka) = a1
(
2jr(12435)ka(13425) + 2jr(13245)ka(14235)

+ 2jr(13425)ka(12435) + 2jr(13425)ka(13245)
+ 2jr(14235)ka(12435) + 2jr(14235)ka(13245)
− 2jr(14325)ka(12435)− 2jr(14325)ka(13245)
− 3jr(12435)ka(12345)− 3jr(13245)ka(12345)
+ 4jr(14325)ka(12345)− jr(12435)ka(12435)
+ jr(12435)ka(13245)− jr(12435)ka(14325)
+ jr(13245)ka(12435)− jr(13245)ka(13245)
− jr(13245)ka(14325) + jr(13425)ka(12345)
− jr(13425)ka(13425)− jr(13425)ka(14235)
+ jr(14235)ka(12345)− jr(14235)ka(13425)
− jr(14235)ka(14235) + jr(14325)ka(13425)

+ jr(14325)ka(14235)
)

+ a2
(
2jr(14325)ka(12345)− jr(12435)ka(12345)

+ jr(12435)ka(13425)− jr(12435)ka(14235)
− jr(13245)ka(12345)− jr(13245)ka(13425)
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+ jr(13245)ka(14235) + jr(13425)ka(12435)
+ jr(13425)ka(13245)− jr(13425)ka(14325)
+ jr(14235)ka(12435) + jr(14235)ka(13245)
− jr(14235)ka(14325)− jr(14325)ka(12435)

− jr(14325)ka(13245) + jr(14325)ka(14325)
)

(jr h© kr) = −2jr(12435)kr(14235) + 2jr(12435)kr(14325) + 2jr(14235)kr(12435)
− 2jr(14325)kr(12435) + jr(12435)kr(13245)− jr(12435)kr(13425)
− jr(13245)kr(12435)− jr(13245)kr(13425) + jr(13425)kr(12435)
+ jr(13425)kr(13245) + jr(13425)kr(14235)− jr(13425)kr(14325)
− jr(14235)kr(13425) + jr(14325)kr(13425)

(jr h© kh) = a1
(
2jr(14235)kh(13524)− jr(12435)kh(12534)

+ jr(12435)kh(14523)− jr(12435)kh(23514)
− jr(12435)kh(34512)− jr(13245)kh(12534)
− jr(13245)kh(13524) + jr(13425)kh(12534)
− jr(13425)kh(14523)− jr(13425)kh(23514)
− jr(13425)kh(24513) + jr(14235)kh(12534)
+ jr(14235)kh(23514) + jr(14325)kh(12534)

+ jr(14325)kh(23514)
)

+ a2
(
2jr(13245)kh(24513) + 2jr(13245)kh(34512)

− 2jr(13425)kh(34512) + 2jr(14235)kh(14523)
− 2jr(14235)kh(34512)− 2jr(14325)kh(14523)
+ 2jr(14325)kh(34512) + jr(12435)kh(13524)
− jr(12435)kh(14523) + jr(12435)kh(34512)
+ jr(13245)kh(23514) + jr(13425)kh(12534)
+ jr(13425)kh(14523)− jr(13425)kh(23514)
− jr(13425)kh(24513)− jr(14235)kh(12534)

− jr(14235)kh(23514)− jr(14325)kh(13524)
)

(jr s© kr) = a1
(
− 2jr(12435)kr(13245)− 2jr(13245)kr(12435)

− 2jr(13425)kr(13425)− 2jr(13425)kr(14235)
− 2jr(14235)kr(13425)− 2jr(14235)kr(14235)
+ jr(12435)kr(13425) + jr(12435)kr(14235)
+ jr(13245)kr(13425) + jr(13245)kr(14235)
+ jr(13425)kr(12435) + jr(13425)kr(13245)
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+ jr(13425)kr(14325) + jr(14235)kr(12435)
+ jr(14235)kr(13245) + jr(14235)kr(14325)

+ jr(14325)kr(13425) + jr(14325)kr(14235)
)

+ a2
(
− jr(12435)kr(12435)− jr(12435)kr(13245)

+ jr(12435)kr(13425) + jr(12435)kr(14235)
− jr(13245)kr(12435)− jr(13245)kr(13245)
+ jr(13245)kr(13425) + jr(13245)kr(14235)
+ jr(13425)kr(12435) + jr(13425)kr(13245)
− jr(13425)kr(13425)− jr(13425)kr(14235)
+ jr(14235)kr(12435) + jr(14235)kr(13245)
− jr(14235)kr(13425)− jr(14235)kr(14235)

+ jr(14325)kr(14325)
)

(jr h© ka) = a1
(
− 2jr(12435)ka(12345)− 2jr(12435)ka(14325)

− 2jr(14235)ka(13425) + 2jr(14325)ka(12345)
− 2jr(14325)ka(12435) + 2jr(14325)ka(14235)
− 3jr(13425)ka(13245) + 3jr(14235)ka(14325)
+ jr(12435)ka(13245) + jr(12435)ka(13425)
+ jr(13245)ka(12345) + jr(13245)ka(13245)
− jr(13245)ka(14235)− jr(13245)ka(14325)
+ jr(13425)ka(12435)− jr(13425)ka(14235)
+ jr(13425)ka(14325)− jr(14235)ka(12345)
− jr(14235)ka(12435) + jr(14235)ka(13245)

+ jr(14235)ka(14235)− jr(14325)ka(13425)
)

+ a2
(
2jr(12435)ka(12435)− 2jr(12435)ka(14235)

+ 2jr(13245)ka(12435) + 2jr(13245)ka(13425)
− 2jr(14235)ka(13425)− 2jr(14325)ka(13245)
+ 2jr(14325)ka(14325)− 3jr(14235)ka(12345)
− 3jr(14235)ka(12435) + 3jr(14235)ka(13245)
+ 3jr(14235)ka(14235)− 4jr(12435)ka(12345)
+ 4jr(14325)ka(12345)− 5jr(13425)ka(13245)
+ jr(12435)ka(13245) + jr(12435)ka(13425)
+ jr(13245)ka(12345) + jr(13245)ka(13245)
− jr(13245)ka(14235)− jr(13245)ka(14325)
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− jr(13425)ka(12435) + jr(13425)ka(14235)
− jr(13425)ka(14325) + jr(14235)ka(14325)

− jr(14325)ka(13425)
)

(jr p© kr) = −2jr(12435)kr(13425)− 2jr(12435)kr(14235)− 2jr(13245)kr(13425)
− 2jr(13245)kr(14235)− 2jr(13425)kr(12435)− 2jr(13425)kr(13245)
+ 2jr(13425)kr(14235)− 2jr(13425)kr(14325)− 2jr(14235)kr(12435)
− 2jr(14235)kr(13245) + 2jr(14235)kr(13425)− 2jr(14235)kr(14325)
− 2jr(14325)kr(13425)− 2jr(14325)kr(14235) + 3jr(12435)kr(12435)
+ 3jr(13245)kr(13245) + 3jr(14325)kr(14325) + 4jr(13425)kr(13425)
+ 4jr(14235)kr(14235) + jr(12435)kr(13245) + jr(12435)kr(14325)
+ jr(13245)kr(12435) + jr(13245)kr(14325) + jr(14325)kr(12435)
+ jr(14325)kr(13245)

(ja p© ka) = −2ja(12345)ka(12435)− 2ja(12345)ka(13245) + 2ja(12345)ka(14325)
− 2ja(12435)ka(12345) + 2ja(12435)ka(13425)− 2ja(12435)ka(14235)
− 2ja(13245)ka(12345)− 2ja(13245)ka(13425) + 2ja(13245)ka(14235)
+ 2ja(13425)ka(12435)− 2ja(13425)ka(13245)− 2ja(13425)ka(14325)
− 2ja(14235)ka(12435) + 2ja(14235)ka(13245)− 2ja(14235)ka(14325)
+ 2ja(14325)ka(12345)− 2ja(14325)ka(13425)− 2ja(14325)ka(14235)
+ 5ja(12345)ka(12345) + 5ja(12435)ka(12435) + 5ja(13245)ka(13245)
+ 5ja(13425)ka(13425) + 5ja(14235)ka(14235) + 5ja(14325)ka(14325)
− ja(12345)ka(13425)− ja(12345)ka(14235)− ja(12435)ka(13245)
− ja(12435)ka(14325)− ja(13245)ka(12435)− ja(13245)ka(14325)
− ja(13425)ka(12345)− ja(13425)ka(14235)− ja(14235)ka(12345)
− ja(14235)ka(13425)− ja(14325)ka(12435)− ja(14325)ka(13245)

(jr s© ka) = a1
(
jr(12435)ka(12345)− jr(12435)ka(12435)

− jr(12435)ka(13245)− jr(13245)ka(12345)
+ jr(13245)ka(12435) + jr(13245)ka(13245)
+ jr(13425)ka(12345) + jr(13425)ka(12435)
− jr(13425)ka(13245)− jr(14235)ka(12345)
+ jr(14235)ka(12435)− jr(14235)ka(13245)

− jr(14325)ka(12435) + jr(14325)ka(13245)
)

+ a2
(
− jr(12435)ka(12345) + jr(12435)ka(12435)

+ jr(12435)ka(13245)− jr(12435)ka(14325)
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+ jr(13245)ka(12345)− jr(13245)ka(12435)
− jr(13245)ka(13245) + jr(13245)ka(14325)
+ jr(13425)ka(12345) + jr(13425)ka(13425)
− jr(13425)ka(14235)− jr(14235)ka(12345)
+ jr(14235)ka(13425)− jr(14235)ka(14235)

− jr(14325)ka(13425) + jr(14325)ka(14235)
)

(js s© ka) = a1
(
3js(12435)ka(13245)− 3js(12435)ka(14235)

− 3js(12534)ka(12345) + 3js(12534)ka(13245)
+ 3js(12534)ka(13425)− 3js(12534)ka(14325)
− 3js(13245)ka(12435) + 3js(13245)ka(13425)
+ 3js(23145)ka(12345)− 3js(23145)ka(12435)
− 3js(23145)ka(14235) + 3js(23145)ka(14325)
− js(12435)ka(12345) + js(12435)ka(12435)
− js(12435)ka(13425) + js(12435)ka(14325)
+ js(12534)ka(12435) + js(12534)ka(14235)
+ js(13245)ka(12345)− js(13245)ka(13245)
+ js(13245)ka(14235)− js(13245)ka(14325)

− js(23145)ka(13245)− js(23145)ka(13425)
)

+ a2
(
− 2js(12435)ka(13425) + 2js(12435)ka(14325)

+ 2js(12534)ka(14235) + 2js(13245)ka(14235)
− 2js(13245)ka(14325)− 2js(23145)ka(13425)
+ 3js(12435)ka(13245) + 3js(12534)ka(13245)
− 3js(13245)ka(12435)− 3js(13425)ka(12345)
− 3js(13524)ka(12345) + 3js(14235)ka(12345)
− 3js(23145)ka(12435) + 3js(24135)ka(12345)
+ js(12435)ka(12345)− js(12435)ka(12435)
− js(12534)ka(12435)− js(13245)ka(12345)

+ js(13245)ka(13245) + js(23145)ka(13245)
)

+ a3
(
js(12435)ka(12345)− js(12435)ka(12435)

− js(12435)ka(13425) + js(12435)ka(14325)
− js(12534)ka(12435) + js(12534)ka(13245)
+ js(12534)ka(14235)− js(13245)ka(12345)
+ js(13245)ka(13245) + js(13245)ka(14235)
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− js(13245)ka(14325)− js(13425)ka(12345)
+ js(13425)ka(12435)− js(13524)ka(13245)
+ js(14235)ka(12345)− js(14235)ka(13245)
− js(14523)ka(12435) + js(14523)ka(13245)

− js(23145)ka(13425) + js(24135)ka(13245)
)

+ a4
(
− 2js(12435)ka(14325)− 2js(12534)ka(12435)

+ 2js(13245)ka(14325) + 2js(23145)ka(13425)
− 3js(12534)ka(12345)− 3js(12534)ka(13425)
+ 3js(13425)ka(12345)− 3js(13425)ka(13245)
+ 3js(13425)ka(13425)− 3js(13425)ka(14235)
+ 3js(13425)ka(14325) + 3js(13524)ka(12435)
+ 3js(13524)ka(13425)− 3js(13524)ka(14235)
− 3js(13524)ka(14325)− 3js(14235)ka(12345)
+ 3js(14235)ka(12435) + 3js(14235)ka(13425)
− 3js(14235)ka(14235)− 3js(14235)ka(14325)
− 3js(14523)ka(12435) + 3js(14523)ka(13245)
+ 3js(23145)ka(12345)− 3js(23145)ka(12435)
− 3js(23145)ka(14235)− 3js(24135)ka(12435)
− 3js(24135)ka(13425) + 3js(24135)ka(14235)
+ 3js(24135)ka(14325)− 4js(12435)ka(12345)
+ 4js(12534)ka(14235) + 4js(13245)ka(12345)
+ 6js(12435)ka(13245) + 6js(12534)ka(13245)
− 6js(13245)ka(12435)− 6js(14523)ka(13425)
+ 6js(14523)ka(14235) + js(12435)ka(12435)
− js(12435)ka(13425)− js(13245)ka(13245)

+ js(13245)ka(14235)− js(23145)ka(13245)
)

g1 = (12345) g2 = (12435) g3 = (12534)
g4 = (13245) g5 = (13425) g6 = (13524)
g7 = (14235) g8 = (14325) g9 = (14523)
g10 = (23145) g11 = (24135)

(D.1)

(jr s©ks) = a1
(
2jr(g5)ks(g2)−2jr(g5)ks(g4)−2jr(g7)ks(g2)+2jr(g7)ks(g4)−3jr(g5)ks(g3)

−3jr(g7)ks(g10)+jr(g2)ks(g1)+jr(g2)ks(g3)−jr(g2)ks(g4)+jr(g4)ks(g1)
+jr(g4)ks(g10)−jr(g4)ks(g2)−jr(g5)ks(g1)+jr(g5)ks(g10)−jr(g7)ks(g1)
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+jr(g7)ks(g3)−jr(g8)ks(g1)+jr(g8)ks(g2)+jr(g8)ks(g4)
)

+a2
(
2jr(g2)ks(g6)+2jr(g5)ks(g3)−2jr(g5)ks(g6)+2jr(g5)ks(g9)−2jr(g7)ks(g6)

+2jr(g7)ks(g9)−jr(g2)ks(g3)−jr(g2)ks(g4)+jr(g2)ks(g7)−jr(g2)ks(g9)
+jr(g4)ks(g11)−jr(g4)ks(g2)−jr(g4)ks(g3)+jr(g4)ks(g5)+jr(g4)ks(g6)
−jr(g4)ks(g9)−jr(g5)ks(g10)+jr(g5)ks(g4)−jr(g5)ks(g5)−jr(g5)ks(g7)
+jr(g7)ks(g2)+jr(g7)ks(g3)−jr(g7)ks(g5)−jr(g7)ks(g7)+jr(g8)ks(g5)

+jr(g8)ks(g7)
)

+a3
(
−jr(g2)ks(g1)+jr(g2)ks(g3)−jr(g2)ks(g6)+jr(g2)ks(g8)+jr(g2)ks(g9)

−jr(g4)ks(g1)+jr(g4)ks(g3)−jr(g4)ks(g6)+jr(g4)ks(g8)+jr(g4)ks(g9)
+jr(g5)ks(g1)−jr(g5)ks(g3)+jr(g5)ks(g6)−jr(g5)ks(g8)−jr(g5)ks(g9)
+jr(g7)ks(g1)−jr(g7)ks(g3)+jr(g7)ks(g6)−jr(g7)ks(g8)−jr(g7)ks(g9)

+jr(g8)ks(g8)
)

+a4
(
−jr(g2)ks(g3)+jr(g2)ks(g6)−jr(g2)ks(g9)−jr(g4)ks(g3)+jr(g4)ks(g6)

−jr(g4)ks(g9)+jr(g5)ks(g3)−jr(g5)ks(g6)+jr(g5)ks(g9)+jr(g7)ks(g3)

−jr(g7)ks(g6)+jr(g7)ks(g9)+jr(g8)ks(g3)−jr(g8)ks(g6)+jr(g8)ks(g9)
)

+a5
(
−2jr(g5)ks(g2)−2jr(g7)ks(g4)−jr(g2)ks(g1)−jr(g2)ks(g10)+jr(g2)ks(g2)

−jr(g4)ks(g1)−jr(g4)ks(g3)+jr(g4)ks(g4)+jr(g5)ks(g1)−jr(g5)ks(g10)
+jr(g5)ks(g3)+jr(g7)ks(g1)+jr(g7)ks(g10)−jr(g7)ks(g3)+jr(g8)ks(g1)

+jr(g8)ks(g10)+jr(g8)ks(g3)
)

+a6
(
−2jr(g5)ks(g9)−2jr(g7)ks(g3)−2jr(g7)ks(g9)−jr(g2)ks(g1)−jr(g2)ks(g10)

+jr(g2)ks(g11)+jr(g2)ks(g3)+jr(g2)ks(g5)−jr(g2)ks(g6)+jr(g2)ks(g9)
−jr(g4)ks(g1)+jr(g4)ks(g7)+jr(g4)ks(g9)+jr(g5)ks(g1)−jr(g5)ks(g11)
−jr(g5)ks(g2)−jr(g5)ks(g3)+jr(g5)ks(g6)+jr(g7)ks(g1)+jr(g7)ks(g10)
−jr(g7)ks(g11)−jr(g7)ks(g4)+jr(g7)ks(g6)+jr(g8)ks(g1)+jr(g8)ks(g11)

+jr(g8)ks(g6)
)

(js s©ks) = a1

(
−2js(g1)ks(g1)+2js(g1)ks(g8)+2js(g8)ks(g1)+js(g1)ks(g3)−js(g1)ks(g6)

+js(g1)ks(g9)+js(g3)ks(g1)−js(g6)ks(g1)+js(g9)ks(g1)
)

+a2

(
−js(g1)ks(g1)+js(g1)ks(g3)−js(g1)ks(g6)+js(g1)ks(g8)+js(g1)ks(g9)

+js(g3)ks(g8)−js(g6)ks(g8)+js(g8)ks(g1)−js(g8)ks(g3)+js(g8)ks(g6)

−js(g8)ks(g9)+js(g9)ks(g8)
)
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+a3

(
2js(g8)ks(g3)−2js(g8)ks(g6)+2js(g8)ks(g9)−js(g1)ks(g3)+js(g1)ks(g6)

−js(g1)ks(g9)+js(g3)ks(g3)−js(g3)ks(g6)+js(g3)ks(g9)−js(g6)ks(g3)

+js(g6)ks(g6)−js(g6)ks(g9)+js(g9)ks(g3)−js(g9)ks(g6)+js(g9)ks(g9)
)

+a4

(
−2js(g1)ks(g11)+2js(g1)ks(g2)+2js(g1)ks(g4)−2js(g1)ks(g5)−2js(g1)ks(g6)

−2js(g1)ks(g7)+2js(g8)ks(g10)−2js(g8)ks(g2)+2js(g8)ks(g3)−2js(g8)ks(g4)
+js(g3)ks(g10)−js(g3)ks(g2)+js(g3)ks(g3)−js(g3)ks(g4)−js(g6)ks(g10)
+js(g6)ks(g2)−js(g6)ks(g3)+js(g6)ks(g4)+js(g9)ks(g10)−js(g9)ks(g2)

+js(g9)ks(g3)−js(g9)ks(g4)
)

+a5

(
−js(g1)ks(g11)+js(g1)ks(g2)+js(g1)ks(g4)−js(g1)ks(g5)−js(g1)ks(g6)

−js(g1)ks(g7)+js(g3)ks(g11)−js(g3)ks(g2)−js(g3)ks(g4)+js(g3)ks(g5)
+js(g3)ks(g6)+js(g3)ks(g7)−js(g6)ks(g11)+js(g6)ks(g2)+js(g6)ks(g4)
−js(g6)ks(g5)−js(g6)ks(g6)−js(g6)ks(g7)+js(g8)ks(g10)−js(g8)ks(g2)
+js(g8)ks(g3)−js(g8)ks(g4)+js(g9)ks(g11)−js(g9)ks(g2)−js(g9)ks(g4)

+js(g9)ks(g5)+js(g9)ks(g6)+js(g9)ks(g7)
)

+a6

(
2js(g10)ks(g7)+2js(g10)ks(g8)+2js(g1)ks(g11)+2js(g1)ks(g5)+2js(g1)ks(g6)

+2js(g1)ks(g7)−2js(g2)ks(g10)−2js(g2)ks(g4)−2js(g2)ks(g8)−2js(g2)ks(g9)
+2js(g3)ks(g5)+2js(g3)ks(g8)−2js(g4)ks(g11)−2js(g4)ks(g2)−2js(g4)ks(g8)
−2js(g4)ks(g9)+3js(g4)ks(g6)−4js(g4)ks(g3)−js(g10)ks(g1)−js(g10)ks(g2)
−js(g10)ks(g3)−js(g10)ks(g4)−js(g10)ks(g5)−js(g10)ks(g6)−js(g1)ks(g10)
−js(g1)ks(g2)−js(g1)ks(g3)−js(g1)ks(g4)+js(g2)ks(g1)+js(g2)ks(g11)
−js(g2)ks(g3)+js(g2)ks(g7)−js(g3)ks(g1)−js(g3)ks(g10)−js(g3)ks(g11)
−js(g3)ks(g2)−js(g3)ks(g4)−js(g3)ks(g7)+js(g4)ks(g1)+js(g4)ks(g10)

+js(g4)ks(g5)
)

+a7

(
−2js(g10)ks(g2)−2js(g10)ks(g7)−2js(g3)ks(g10)−2js(g3)ks(g4)−2js(g3)ks(g5)

+2js(g4)ks(g11)−2js(g4)ks(g6)−js(g10)ks(g3)+js(g10)ks(g4)+js(g10)ks(g5)
+js(g10)ks(g9)−js(g2)ks(g10)−js(g2)ks(g11)−js(g2)ks(g4)+js(g2)ks(g6)
−js(g2)ks(g7)+js(g2)ks(g9)+js(g3)ks(g11)+js(g3)ks(g2)+js(g3)ks(g3)
−js(g3)ks(g6)+js(g3)ks(g7)+js(g3)ks(g9)−js(g4)ks(g10)−js(g4)ks(g2)

−js(g4)ks(g5)+js(g4)ks(g9)
)

+a8

(
2js(g10)ks(g11)+2js(g10)ks(g2)+2js(g10)ks(g3)+2js(g10)ks(g7)+2js(g1)ks(g8)

−2js(g2)ks(g5)−2js(g2)ks(g6)+2js(g3)ks(g10)+2js(g3)ks(g4)+2js(g3)ks(g5)
+2js(g3)ks(g6)−2js(g4)ks(g11)−2js(g4)ks(g7)−js(g10)ks(g10)−js(g10)ks(g4)
−js(g10)ks(g5)−js(g10)ks(g6)−js(g1)ks(g1)+js(g1)ks(g3)−js(g1)ks(g6)
+js(g1)ks(g9)+js(g2)ks(g10)+js(g2)ks(g11)+js(g2)ks(g2)+js(g2)ks(g3)
+js(g2)ks(g4)+js(g2)ks(g7)−js(g3)ks(g11)−js(g3)ks(g2)−js(g3)ks(g3)
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−js(g3)ks(g7)+js(g4)ks(g10)+js(g4)ks(g2)+js(g4)ks(g3)+js(g4)ks(g4)

+js(g4)ks(g5)+js(g4)ks(g6)
)

+a9

(
2js(g11)ks(g1)+2js(g1)ks(g11)+2js(g1)ks(g5)+2js(g1)ks(g6)+2js(g1)ks(g7)

+2js(g5)ks(g1)+2js(g6)ks(g1)+2js(g7)ks(g1)−3js(g10)ks(g2)−3js(g10)ks(g3)
−3js(g2)ks(g10)−3js(g2)ks(g4)−3js(g3)ks(g10)−3js(g3)ks(g4)−3js(g4)ks(g2)
−3js(g4)ks(g3)−js(g10)ks(g1)−js(g1)ks(g10)−js(g1)ks(g2)−js(g1)ks(g3)

−js(g1)ks(g4)−js(g2)ks(g1)−js(g3)ks(g1)−js(g4)ks(g1)
)

+a10

(
−2js(g10)ks(g3)−2js(g3)ks(g10)−js(g10)ks(g2)+js(g10)ks(g5)+js(g10)ks(g6)

−js(g11)ks(g2)+js(g11)ks(g3)−js(g2)ks(g10)−js(g2)ks(g11)−js(g2)ks(g7)
+js(g3)ks(g11)−js(g3)ks(g4)+js(g3)ks(g7)−js(g4)ks(g3)−js(g4)ks(g5)
−js(g4)ks(g6)+js(g5)ks(g10)−js(g5)ks(g4)+js(g6)ks(g10)−js(g6)ks(g4)

−js(g7)ks(g2)+js(g7)ks(g3)
)

+a11

(
2js(g11)ks(g4)+2js(g1)ks(g11)−2js(g1)ks(g2)−2js(g1)ks(g4)+2js(g1)ks(g5)

+2js(g1)ks(g6)+2js(g1)ks(g7)+2js(g3)ks(g4)−2js(g5)ks(g3)−2js(g6)ks(g4)
−2js(g7)ks(g10)−2js(g8)ks(g10)+2js(g8)ks(g2)−2js(g8)ks(g3)+2js(g8)ks(g4)
+2js(g9)ks(g2)+2js(g9)ks(g4)−js(g10)ks(g4)−js(g10)ks(g5)−js(g10)ks(g6)
−js(g2)ks(g10)+js(g2)ks(g11)+js(g2)ks(g3)−js(g2)ks(g4)+js(g2)ks(g7)
−js(g3)ks(g11)+js(g3)ks(g2)−js(g3)ks(g7)+js(g4)ks(g10)−js(g4)ks(g2)

−js(g4)ks(g3)+js(g4)ks(g5)+js(g4)ks(g6)
)

+a12

(
2js(g1)ks(g3)−2js(g1)ks(g6)+2js(g1)ks(g9)−2js(g3)ks(g5)−2js(g5)ks(g3)

+2js(g5)ks(g6)−2js(g5)ks(g9)+2js(g6)ks(g5)−2js(g7)ks(g9)−2js(g9)ks(g5)
−2js(g9)ks(g7)−4js(g8)ks(g3)+4js(g8)ks(g6)−4js(g8)ks(g9)+js(g10)ks(g5)
−js(g11)ks(g5)+js(g11)ks(g6)+js(g2)ks(g3)+js(g2)ks(g4)−js(g2)ks(g6)
−js(g2)ks(g7)+js(g2)ks(g9)+js(g3)ks(g2)+js(g3)ks(g4)−js(g3)ks(g7)
+js(g4)ks(g2)+js(g4)ks(g3)−js(g4)ks(g5)−js(g4)ks(g6)+js(g4)ks(g9)
+js(g5)ks(g10)−js(g5)ks(g11)−js(g5)ks(g4)+js(g5)ks(g7)+js(g6)ks(g11)
−js(g6)ks(g2)−js(g6)ks(g4)+js(g6)ks(g7)−js(g7)ks(g2)−js(g7)ks(g3)

+js(g7)ks(g5)+js(g7)ks(g6)+js(g9)ks(g2)+js(g9)ks(g4)
)

+a13

(
2js(g10)ks(g3)−2js(g10)ks(g7)+2js(g11)ks(g2)−2js(g11)ks(g5)+2js(g11)ks(g9)

+2js(g2)ks(g9)+2js(g3)ks(g10)+2js(g3)ks(g4)+2js(g4)ks(g11)+2js(g4)ks(g9)
−2js(g5)ks(g11)−2js(g5)ks(g3)+2js(g5)ks(g6)+2js(g5)ks(g7)−2js(g5)ks(g9)
−2js(g6)ks(g10)+2js(g6)ks(g11)−2js(g6)ks(g2)+2js(g6)ks(g3)−2js(g6)ks(g6)
+2js(g6)ks(g7)+2js(g6)ks(g9)−2js(g7)ks(g3)+2js(g7)ks(g5)−2js(g7)ks(g9)
+2js(g9)ks(g2)+2js(g9)ks(g4)+3js(g3)ks(g2)−3js(g3)ks(g7)+3js(g4)ks(g3)
+4js(g1)ks(g3)−4js(g1)ks(g6)+4js(g1)ks(g9)+4js(g6)ks(g5)−4js(g9)ks(g5)
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−4js(g9)ks(g7)−6js(g3)ks(g5)−8js(g8)ks(g3)+8js(g8)ks(g6)−8js(g8)ks(g9)
+js(g10)ks(g4)+js(g10)ks(g5)−js(g10)ks(g6)+js(g2)ks(g10)+js(g2)ks(g11)
+js(g2)ks(g3)+js(g2)ks(g4)−js(g2)ks(g7)−js(g3)ks(g11)−js(g4)ks(g10)

+js(g4)ks(g2)−js(g4)ks(g5)−js(g4)ks(g6)
)

+a14

(
2js(g11)ks(g10)+2js(g1)ks(g11)−2js(g1)ks(g2)−2js(g1)ks(g4)+2js(g1)ks(g5)

+2js(g1)ks(g7)−2js(g1)ks(g8)+2js(g3)ks(g2)+2js(g3)ks(g4)−2js(g5)ks(g2)
−2js(g6)ks(g2)+2js(g6)ks(g3)−2js(g6)ks(g4)−2js(g7)ks(g4)−2js(g8)ks(g10)
+2js(g8)ks(g2)−2js(g8)ks(g3)+2js(g8)ks(g4)+2js(g9)ks(g2)+2js(g9)ks(g4)
+3js(g1)ks(g6)−js(g10)ks(g10)+js(g1)ks(g1)−js(g1)ks(g3)−js(g1)ks(g9)

+js(g2)ks(g2)−js(g3)ks(g3)+js(g4)ks(g4)
)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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