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ied in various approaches for many years. These studies do not take into account the
saturation and multiple rescatterings in the field of the proton. The first saturation cor-
rection to these leading order results (the terms that are enhanced by the combination
α2
sµ

2, where µ2 is the proton’s color charge squared per unit transverse area) has not been
completely derived despite recent attempts using a diagrammatic approach. This paper is
the first in a series of papers towards analytically completing the first saturation correction
to physical observables in high energy proton-nucleus collisions. Our approach is to ana-
lytically solve the classical Yang-Mills equations in the dilute-dense regime using the Color
Glass Condensate effective theory and compute physical observables constructed from clas-
sical gluon fields. In the current paper, the Yang-Mills equations are solved perturbatively
in the field of the dilute object (the proton). Next-to-leading order and next-to-next-to-
leading order analytic solutions are explicitly constructed. A systematic way to obtain all
higher order analytic solutions is outlined.
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1 Introduction

The two decades worth of experimental measurements at RHIC and, then, the LHC have
provided many unexpected results, including strong evidence for the formation of a strongly
coupled plasma of quarks and gluons in heavy-ion collisions at high energy. This plasma
demonstrated properties of a nearly perfect fluid; this fact facilitated a theoretical descrip-
tion of the collision dynamics in the framework of hydrodynamics starting just about 1 fm/c
after the heavy ion impact (see refs. [1–3] and references therein).

The success of the hydrodynamic description, however, cannot be complete without a
detailed understanding of the initial non-equilibrium state. The properties of this state go
beyond the range of applicability of hydrodynamics but are crucial in fitting experimental
data; the evolution of this state towards equilibrated thermal nearly perfect liquid have
been one of the open theoretical problems being extensively studied [4–8]. One dominant
mechanism describing the initial phase is based on the saturation framework [9–12], also
widely known as the Color Glass Condensate (CGC). According to the framework, the
high energy particle production and scattering processes are dominated by the classical
gluon fields providing a background for systematic weak-coupling computation of quantum
correction on top of it.

Under laboratory conditions, collisions of heavy-ions create probably the most optimal
environment for probing quark-gluon plasma near equilibrium, but at the same time they
are poorly suited to study the initial state particle production. This is because most of the
observables in heavy-ion collisions are sensitive not only to initial state, but also to rather
strong final sate interactions [13, 14]. However, to uniquely map the transport properties of
the plasma, it is critical to extract information about the initial state in collisions where the
final state is better understood and the initial state is expected to play the dominant role.
This necessitates probing a nucleus and a nucleon with the smallest projectiles: proton
and ultimately electron. Theoretically, a controlled, first principle description of such
asymmetric collisions (e-A, p-A, heavy-light nuclei) is not as complex as A-A collisions.

In the CGC framework, the key building block of soft gluon production in hadronic
collisions is the single inclusive gluon cross section for a fixed configuration of the valence
charges. Then the multi-gluon productions can be constructed from it iteratively. Analyt-
ical calculations of the single inclusive gluon production in asymmetric hadronic collisions
at leading order in the color charge density of the dilute projectile (e.g. proton) have been
done by various groups for more than two decades [15–19]. The leading order result takes
into account the multiple rescatterings/saturation in the dense nucleus (target) to all or-
ders while treats the collision partner (projectile) as dilute object. Beyond the leading
order result, the first saturation corrections in the projectile to single- and double-inclusive
gluons production were partially calculated in refs. [20–22]. These incomplete results were
sufficient to convincingly demonstrate that, in the CGC framework, the first saturation cor-
rections are responsible for the generation of the odd azimuthal anisotropy [22, 23] which
was missing at the leading order.

In order to calculate the first saturation corrections to the single gluon production
amplitude, the authors of ref. [21] used the diagrammatic approach based on the light-cone
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perturbation theory and the eikonal approximation. Reference [21] provides a result for the
order-g3 single gluon production amplitude; the order-g5 gluon production amplitude was
not evaluated but it is needed to establish the complete first saturation corrections to the
single inclusive gluon production in high energy proton-nucleus collisions. An alternative
computational approach was adopted in ref. [22]. The authors of ref. [22] solve the classical
Yang-Mills equations in the dilute-dense regime considering the projectile charge density
as parametrically small. Particle production is then constructed from the classical gluon
fields using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. Although this
approach was proven to be more powerful in helping organize calculations and extract
the odd azimuthal anisotropy of double-inclusive gluon production, the authors of ref. [22]
also only computed order-g3 production amplitude. The goal of this series of papers is to
systematically complete the effort started in ref. [22] and more specifically: 1) to solve for
the next-to-leading order solutions of the classical Yang-Mills equations; 2) calculate the
order-g5 gluon production amplitude; 3) complete the first saturation corrections to the
single- and double- inclusive gluon productions; 4) evaluate the early time-dependence of
the energy-momentum tensor 〈Tµν(τ, x)〉 and its correlation 〈Tµν(τ, x)Tµ′ν′(τ ′, x′)〉.

Before proceeding with solving the classical Yang-Mills equations, we want to outline
the role of the saturation corrections in high energy nuclear collisions. General perturbative
corrections are terms expressed as power series expansions in the strong coupling constant
g. In high energy nuclear collisions, the colliding hadrons are highly Lorentz contracted
and the number of “valence” color sources per unit area as a random variable scales as
N⊥ ∼

√
A1/3 with A the nuclear atomic number for a nucleus. For large A, at each order

gn (n ≥ 1), there are terms that are enhanced by N⊥. The most enhanced term at each
perturbative order is the saturation correction we aim to compute.

In order to illuminate the meaning of the saturation correction term, we will use small-
x gluon distribution of a high energy proton as an example. The amplitude at order g and
g3 are schematically shown in figure 1. The order-g5 amplitude is illustrated in figure 2.
We start our discussions with the leading order. At order g, only one of the color source
radiates a gluon, but there are N⊥ color sources, thus the amplitude is proportional to
gN⊥. The number of produced gluons is proportional to the amplitude squared which
is parametrically g2N2

⊥ ∼ αsA
1/3. At order g3, there are two types of diagrams, see

figure 1. For the first kind, the gluon is radiated from one single color source; in this case,
the amplitude is proportional to g3N⊥. For the second kind, the gluon originates from
interaction of two color sources; in this case, the amplitude is proportional to g3N2

⊥. The
saturation correction only takes into account diagrams proportional to g3N2

⊥, as they are
most enhanced by the nuclear effects. For this term, the amplitude square is proportional
to g6N4

⊥ ∼ α3
sA

2/3. Compared to the leading order contribution, it is higher order in
α2
sA

1/3, which is what we have alluded to as the saturation correction. Now, at order g5,
there are three types of diagrams, see figure 2. The first type of diagrams only involve
one color source to radiate a gluon. The amplitude is proportional to g5N⊥. The second
type comes with two color sources radiating gluons. Its amplitude is proportional to g5N2

⊥.
And, finally, the last type of diagrams with three color sources emitting gluons leads to
the amplitude proportional to g5N3

⊥. At order g5, the saturation correction only takes into
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gN⊥ g3N⊥ g3N2
⊥

+

Figure 1. Schematic diagrams showing perturbative corrections to small-x gluon distribution at
order g and order g3. Saturation correction at order g3 only takes into account the type of diagrams
which are parametrically proportional to g3N2

⊥.

g5N⊥ g5N2
⊥ g5N3

⊥

+ +

Figure 2. Schematic diagrams showing perturbative corrections to small-x gluon distribution
at order g5. Saturation correction at order g5 only considers the types of diagrams proportional
to g5N3

⊥.

account the diagram that is proportional to g5N3
⊥. For this term, the amplitude squared

is proportional to g10N6
⊥ ∼ α5

sA. Compared to the leading order term, it is parametrically
higher order in (α2

sA
1/3)2, which is the second order in terms of the saturation correction.

The above discussions can only be formally applied to a large nucleus A� 1 ensuring
that the saturation corrections are leading compared to the other perturbative contribu-
tions. Superficially, in case of proton-nucleus collisions, the saturation corrections should
not play any special role, since the nuclear atomic number for proton is A = 1. However,
this is not completely right. At high energy, the number of color sources could still be large
for at least two reasons. First, the proton wave-function can be in a rare configuration at
the moment of collisions. The configurations like this are believed to be responsible for the
high multiplicity events observed in high energy pA collisions in the experiments at the
LHC and the RHIC. Second, the high energy evolution equations (BK and B-JIMWLK, see
refs. [24–33]) predict proliferation of the color charges; this ultimately leads to a universal
high energy fixed point at which all hadrons look alike. To incorporate this general situa-
tion, it is more appropriate to reformulate the about counting in terms of the saturation
scale Qs of the projectile instead of the nuclear atomic number.

In the CGC framework [34, 35], the color sources responsible for gluon radiations are
characterized by the random color charge density ρa(x−,x), which represents “valence”
partonic degrees of freedom. Specifically, in the McLerran-Venugopalan model, the color
charge density is assumed to follow the Gaussian distribution with width µ(x−,x). The
longitudinally integrated Gaussian width µ2(x) =

∫
dx−µ2(x−,x) has the physical meaning

of color charge squared per unit transverse area. It represents the Gaussian width of the
random variable ρa(x) =

∫
dx−ρa(x−,x). As a random variable, the characteristic scale
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of the color charge density is ρa(x) ∼
√
A1/3. On the other hand, the saturation scale is

shown to be related to µ2 by Q2
s ∼ (g2µ)2 ∼ α2

sA
1/3 [36]. This highlights the fact that

the saturation corrections represent an expansion in terms of the projectile’s saturation
scale squared. It is not surprising that the power counting is captured exactly by solving
the Yang-Mills equations for the classical gluon fields; this was explicitly demonstrated by
Kovchegov [37].

To sum up, the single inclusive soft gluon productions in high energy nuclear collisions
can be parameterized as a double Taylor series expansion of the saturation scales of the
projectile and the target, Qs,P and Qs,T , respectively [21, 23, 38]. Using the notation of
ref. [21],

dN

d2kdy = 1
αs
f

(
Q2
s,P

k2
⊥
,
Q2
s,T

k2
⊥

)
= 1
αs

∑
n,m

cn,m

(
Q2
s,P

k2
⊥

)n(
Q2
s,T

k2
⊥

)m
. (1.1)

In the case of a dilute projectile and a dense target, resummation over the target satura-
tion corrections is possible and eq. (1.1) can be written as an expansion in the projectile
saturation momentum

dN

d2kdy

∣∣∣∣∣
pA

= 1
αs

∞∑
n=1

(
Q2
s,P

k2
⊥

)n
fn

(
Q2
s,T

k2
⊥

)
. (1.2)

The leading order result f1(Q2
s,T /k

2
⊥) is known, see refs. [15, 18]. Corrections f2 and fi>2

are not known analytically at present.
In case of double-inclusive gluon production, we have, schematically

dN

d2k1dy1d2k2dy2

∣∣∣∣∣
pA

= 1
α2
s

∞∑
n=1

(
Q2
s,P

k2
⊥

)2n

hn

(
Q2
s,T

k2
⊥

)
. (1.3)

Here for simplicity we consider |k1| = |k2| = k⊥. The leading order result, h1, was derived
in refs. [39, 40]. The first saturation correction was computed partially — only the odd
component under the transformation k1 → −k1 was extracted in refs. [22, 23].

The goal of this series of papers is to compute the complete first saturation corrections,
that is f2(Q2

s,T /k
2
⊥) and h2(Q2

s,T /k
2
⊥).

There are several reasons why saturation corrections are important. On the practical
side, leading order result does not include any final state interactions of the produced glu-
ons. It basically assume the gluons propagate freely once created at proper time τ = 0.
This might be a reasonable assumption for a dilute system created. The first saturation
correction introduces non-trivial gluon interactions through three-gluon and four-gluon
vertices. These interactions might be responsible for the onset of isotropization, thermal-
ization and hydrodynamization. Additionally, having an expression for the first saturation
corrections provides direct comparison of the relative importance of the initial state vs. final
state effects. Furthermore, as alluded before, the most important feature of the final state
effects is the generation of odd harmonics in multigluon distributions. Finally, the first
saturation correction allows one to estimate the role of higher order contributions in the
dilute-dense approximation. In all these cases, the saturation corrections are indispensable
for any attempts to compare theory with experimental data.
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On the academic side, rigorously calculating the first saturation correction is a first
step towards including all saturation corrections. The ultimate goal is to resum all order
saturation corrections and thus solve the dense-dense scattering problem analytically [41–
43]. This is one of the unsolved problems in high energy QCD.

It should be mentioned that the classical Yang-Mills equations can be and were solved
numerically. This approach was used for calculating the single- and double-inclusive gluon
productions to all orders in both projectile and target color charge densities [44–46]. These
calculations however rely on truncating the final state interactions at proper finite time.

The paper is organized as follows. After a brief introduction of the CGC framework
and the classical Yang-Mills equations in section 2, we discuss the initial conditions in
section 3. This includes explicit derivation of high order expansions; we also discuss a
few convenient forms of different gauge fixings. The subsequent sections solve the classical
Yang-Mills equations at orders g, g3 and g5 using the method of variation of parameters
and Garf’s formula for Bessel functions. For the discussions in section 8, we review which
phsyical quantities can be obtained using our results.

2 The color glass condensate effective theory

The Color Glass Condensate (CGC) effective theory concerns quantum chromodynamics
in the hight energy limit [47–49]. It is based on a formal separation of large and small
longitudinal momentum modes of partons inside a hadron. The partonic degrees of freedom
with large longitudinal momenta (large-x) are effectively described by the color charge
density ρa(x). The gluons with small longitudinal momentum (small-x) are the dominant
degrees of freedom and they are characterized by the classical gluon fields Aµ(x). The color
charge density is responsible for the production of the gluon fields through the classical
Yang-Mills equations

DµF
µν = Jν (2.1)

with the covariant derivative Dµ = ∂µ − igAµ and the field strength tensor Fµν = ∂µAν −
∂νAµ − ig[Aµ, Aν ]. For a right-moving hadron at high energy, the color current Jµ(x) =
δµ+ρ(x−,x) is approximately independent of light-cone time x+ as far as the dynamics of
the small-x gluons is concerned.

In applying CGC to high energy nuclear collisions with a right-moving projectile and
a left-moving target, the color current can be approximated as Jµ = δµ+ρP (x−,x) +
δµ−ρT (x+,x). Before the collisions, two sheets of small-x gluons, generated separately by
the projectile and the target, approach each other at the speed of light, see figure 3. The
collisions happen instantaneously (high-energy approximation). After the collisions, the
large-x color charges are still approximately traveling along the lightcone x+ = 0 and x− =
0 while classical gluon fields are produced in the forward lightcone x+ > 0, x− > 0. The
dynamics of the produced gluon fields is governed by the sourceless Yang-Mills equations.
The initial conditions are crucial as they encode the information about the instantaneous
collisions. Once this initial value problem for the classical Yang-Mills equations is solved,
one can compute physical observables that depend on classical gluon fields. Eventually,
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x+x−

projectile target

t

z

αi
P (x) =

i
g
V (x)∂iV †(x) αi

T (x) =
i
g
U(x)∂iU †(x)

Aµ(x) =?

Figure 3. Schematic diagram showing high energy nuclear collisions on the spacetime diagram.
The Weizsacker-Williams fields of the projectile and targets live in the regions x− > 0, x+ < 0
and x− < 0, x+ > 0 separately before the collisions. The collisions happen at x+ = x− = 0. The
goal is to find out the classical gluon fields Aµ(x) produced in the region x+ > 0, x− > 0 after the
collisions.

through the initial conditions, any physical observable will be a functional of the color
charge densities of the projectile and the target O(ρP , ρT ).

The event/initial configuration-averaged results are obtained by evaluating the average
over projectile and target color charge densities separately. In the McLerran-Venugopalan
model, the color charge densities are assumed to follow Gaussian distributions. Their
two-point correlation functions are

〈ρaP (T )(x∓,x)ρbP (T )(y∓,y)〉 = δabδ(x∓ − y∓)δ(2)(x− y)g2µ2(x∓,x). (2.2)

To solve the sourceless classical Yang-Mills equation in the forward light cone x+ >

0, x− > 0, we follow the literatures [18, 50] and consider the Fock-Schwinger gauge x−A+ +
x+A− = 0. In this gauge, the solutions can be parameterized as

A+ = A− = x+α(τ,x) ,
A− = A+ = −x−α(τ,x) ,
Ai = αi(τ,x).

(2.3)

Note that boost-invariance is assumed so that the classical gluon fields are independent of
the rapidity η. The coordinate system used is denoted by (τ, η,x) with τ =

√
2x+x− and

η = 1
2 ln x+

x− . In terms of α(τ,x), αi(τ,x), the classical Yang-Mills equations become

∂2
τα+ 3

τ
∂τα− [Di, [Di, α]] = 0 ,

−ig[α, τ∂τα] +
[
Di,

1
τ
∂ταi

]
= 0 ,

1
τ
∂ταi + ∂2

ταi − igτ2 [α, [Di, α]−DjFji] = 0.

(2.4)
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The initial conditions were derived in refs. [50, 51]:

α(τ = 0,x) = ig

2 [αiP (x), αiT (x)],

αi(τ = 0,x) = αiP (x) + αiT (x).
(2.5)

Here αiP (x) and αiT (x) are the Weizsacker-Williams gluon fields of the projectile and target,
respectively. The fields αiP (x) and αiT (x) are two dimensional pure gauge fields; they
depend on the transverse coordinate and can be parameterized using Wilson lines

αiP (x) = i

g
V (x)∂iV †(x), αiT (x) = i

g
U(x)∂iU †(x) (2.6)

with V (x) = exp{igΦP (x)} and U(x) = exp{igΦT (x)}. The relation between ΦP (T ) and
ρP (T ) will be explained in more details in the following sections.

Eqs. (2.4), (2.5) define an initial value problem for a set of second order partial differen-
tial equations. The goal of the paper is to solve the Yang-Mills equations in the dilute-dense
regime relevant to high energy proton-nucleus collisions. In the case of proton-nucleus scat-
terings, the color charge density of the proton is parametrically small ρP ∼ g while the
color charge density of the nucleus is dense ρT ∼ 1/g. We proceed to solve the classical
Yang-Mills equations by expressing the gluon fields as power series expansions in terms
of ρP . The Yang-Mills equations can then be solved order by order perturbatively. The
dependence on ρT is resummed to all orders through the Wilson line. In the next section,
to be consistent with the expansions of Yang-Mills equations, the initial conditions will also
be expressed as power series expansions in ρP . It is worth pointing out that the expansion
here is not the same as the conventional expansion in the strong coupling constant g, as
we only keep terms that are enhanced by ρP at each order of perturbative expansion in g.

3 Expanding the initial conditions

3.1 Expanding the Weizsacker-Williams field

From eq. (2.6), the field generated by the “valence” color charge densities of the proton,
also known as the Weizsacker-Williams (WW) field, can be expanded as

αiP (x) = i

g
V (x)∂iV †(x)

= ∂iΦ + 1
2 ig[Φ, ∂iΦ]− 1

6g
2[Φ, [Φ, ∂iΦ]] +O(g3Φ4).

(3.1)

To simplify the notation, we dropped the subscript of Φ(x) for the projectile.
The structure of the equation suggests that the WW gluon field in eq. (3.1) is a pure

gauge field. Additionally, it has to satisfy the static Yang-Mills equation

∂iαiP (x) = gρP (x). (3.2)
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Note that we have explicitly separated the g dependence in ρP and thus parametrically
ρP ∼ 1 should be understood in the following discussions. This equation of motion con-
strains Φ(x),

∂2Φ + 1
2 ig[Φ, ∂2Φ]− 1

6g
2∂i[Φ, [Φ, ∂iΦ]] +O(g3Φ4) = gρP (x). (3.3)

We solve for αiP (x) and Φ(x) perturbatively in g. Only terms with odd powers of coupling
constant are nonvanishing

αiP (x) =
∞∑
m=0

g2m+1α
i,(2m+1)
P (x),

Φ(x) =
∞∑
m=0

g2m+1Φ(2m+1)(x).
(3.4)

Substituting the expansion of Φ(x) into eq. (3.3), we obtain

Φ(1) = φ,

Φ(3) = −1
2 i

1
∂2 [Φ(1), ∂2Φ(1)] = −1

2 i
1
∂2 [φ, ∂2φ],

Φ(5) = − 1
∂2

(1
2 i[Φ

(3), ∂2Φ(1)] + 1
2 i[Φ

(1), ∂2Φ(3)]− 1
6∂

i[Φ(1), [Φ(1), ∂iΦ(1)]]
)

= −1
4

1
∂2

[ 1
∂2 [φ, ∂2φ], ∂2φ

]
− 1

4
1
∂2 [φ, [φ, ∂2φ]] + 1

6
∂i

∂2 [φ, [φ, ∂iφ]].

(3.5)

To economize notation we introduced φ = 1
∂2 ρP . We only need up to order-g5 expansions

for the purpose of calculating the first saturation correction to gluon productions in high
energy proton-nucleus collisions.

Now it is straightforward to obtain the perturbative expressions for the WW gluon
field order by order. Indeed, substituting eq. (3.5) into eq. (3.1), we get

α
(1),i
P = ∂iΦ(1) = ∂iφ (3.6)

at the leading order. From this we conclude that the right hand-side of eq. (3.2) is sat-
urated automatically at the leading order, i.e. ∂iα(1),i

P = ρP . Therefore all higher order
contributions α(n),i

P with (n ≥ 3) have to have vanishing gradient:

∂iα
(n≥3),i
P = 0. (3.7)

We use this condition to cross-check the trivial algebra when deriving the higher order
terms in the expansion of the WW gluon field.

The cubic and quintic orders are

α
(3),i
P = ∂iΦ(3) + 1

2 i[Φ
(1), ∂iΦ(1)] = 1

2 i
(
δij − ∂i∂j

∂2

)
[φ, ∂jφ] (3.8)
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and

α
(5),i
P = ∂iΦ(5) + 1

2 i[Φ
(3), ∂iΦ(1)] + 1

2 i[Φ
(1), ∂iΦ(3)]− 1

6[Φ(1), [Φ(1), ∂iΦ(1)]]

= 1
2

(
δij − ∂i∂j

∂2

)[ 1
∂2 [φ, ∂2φ], ∂jφ

]
− 1

6

(
δij − ∂i∂j

∂2

)
[φ, [φ, ∂jφ]].

(3.9)

We factorized out the projection operator δij−∂i∂j/∂2 to make the property (3.7) manifest.
We illustrate the expansion using Feynmann diagrams corresponding to terms at each

order of the expansion. This is useful to ultimately establish a comparison with results from
the diagramatic approach. Previously, this has been explicitly done in ref. [37]; however,
the discussion was limited to two color sources. Additionally, the expansion in ref. [37] was
conducted in the coupling constant g; in the current work, we perform the expansion in
terms of the projectile saturation momentum, ∝ αsρP . Therefore our conclusions do not
have to agree with ref. [37] beyond order g3, as our goal is to account for the saturation
correction rather than the perturbative correction!

To proceed with the Feynmann diagrams it is convenient to explicitly define the inverse
Laplacian operator appearing in φ(x) = φa(x)T a,

φ(x) = 1
∂2 ρP = 1

2π

∫
d2y ln (|x− y|Λ)ρP (y) . (3.10)

Here the scale Λ is an IR regularization scale. The vector potential is thus

∂iφ(x) = 1
2π

∫
d2y(x− y)i
|x− y|2 ρP (y). (3.11)

Taking gradient of ∂iφ(x) leads to ∂2φ(x) = ρP (x) by construction.
Now we are ready to proceed with the Feynmann diagrams. The leading order αi,(1)

P

is illustrated in figure 4. The order-g3 WW gluon field α
i,(3)
P involves interactions of two

color charges. Written in explicit form, it has two terms

α
i,(3)
P = 1

2 i
(
δij − ∂i∂j

∂2

)
[φ, ∂jφ]

= − 1
2(2π)2 f

abc
∫
d2y1 ln (Λ|x− y1|)ρbP (y1)

∫
d2y2

(x− y2)i
|x− y2|2

ρcP (y2)

+ 1
2(2π)2 f

abc
∫
d2y2

(x− y2)i
|x− y2|2

∫
d2y1 ln (Λ|y2 − y1|)ρbP (y1)ρcP (y2) .

(3.12)

The Feynmann diagrams corresponding to these two terms are shown in figure 5. In these
diagrams, the gluon emission at x from source at y2 corresponds to the factor (x−y2)i

|x−y2|2
while the factor ln (λ|x− y1|) illustrates one-gluon exchange between colored objects at x
and y1.
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ρa(y)

a, x

Figure 4. The order-g classical gluon field α(1),a,i
P (x) produced at transverse position x by a color

source at transverse position y.

ρb(y1)

ρc(y2)

a, x

−−

Figure 5. The order-g3 WW gluon field αi,a,(3)
P (x) produced at transverse position x by two color

sources at transverse positions y1 and y2.

The order-g5 WW gluon field involves interactions of three color charges. In the
expression for αi,(5)

P , there are six topologically different contributions

α
i,(5)
P = 1

2

(
δij − ∂i∂j

∂2

)[ 1
∂2 [φ, ∂2φ], ∂jφ

]
− 1

6

(
δij − ∂i∂j

∂2

)
[φ, [φ, ∂jφ]]

= 1
2

[ 1
∂2 [φ, ∂2φ], ∂iφ

]
− 1

2
∂i

∂2

[
∂j

∂2 [φ, ∂2φ], ∂jφ
]
− 1

2
∂i

∂2

[ 1
∂2 [φ, ∂2φ], ∂2φ

]

− 1
6[φ, [φ, ∂iφ]] + 1

6
∂i

∂2 [∂jφ, [φ, ∂jφ]] + 1
6
∂i

∂2 [φ, [φ, ∂2φ]].

(3.13)

We write them out explicitly one by one. The first term is
1
2

[ 1
∂2 [φ, ∂2φ], ∂iφ

]
= −1

2f
abef bcd

1
∂2 (φcρdP )∂iφe

= −1
2f

abef bcd
∫
d2y2 ln (|x−y2|Λ)

(∫
d2y1 ln (|y2−y1|Λ)ρcP (y1)ρdP (y2)

)

×
∫
d2y3

(x−y3)i
|x−y3|2

ρeP (y3).

(3.14)
The subsequent two terms are

− 1
2
∂i

∂2

[
∂j

∂2 [φ, ∂2φ], ∂jφ
]

= 1
2f

abef bcd
∂i

∂2

(
∂j

∂2 (φcρdP )∂jφe
)

= 1
2f

abef bcd
∫
d2y(x− y)i
|x− y|2

(∫
d2y2

(y− y2)j
|y− y2|2

∫
d2y1 ln (|y2 − y1|Λ)ρcP (y1)ρdP (y2)

×
∫
d2y3

(y− y3)j
|y− y3|2

ρeP (y3)
)

(3.15)
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ρc(y1)

ρd(y2)

ρe(y3)

a, x

− y −

(a)

ρc(y1)

ρd(y2)

ρe(y3)

a, x

− −

(b)

Figure 6. Two sets of diagrams contributing to order-g5 WWfield αi,a,(5)
P (x) produced at transverse

position x by three color sources at transverse position y1, y2 and y3. Similar diagrams with
different orderings of gluon exchanges are not shown.

and

−1
2
∂i

∂2

[ 1
∂2 [φ, ∂2φ], ∂2φ

]
= 1

2f
abef bcd

∂i

∂2

( 1
∂2 (φcρdP )ρeP

)

= 1
2f

abef bcd
∫
d2y3

(x− y3)i
|x− y3|2

∫
d2y2 ln (|y3 − y2|Λ)

×
∫
d2y1 ln (|y2 − y1|Λ)ρcP (y1)ρdP (y2)ρeP (y3) .

(3.16)

These three terms correspond to the diagrams shown in figure 6a. Note that in the second
diagram, there is an integration over all the possible transverse positions y.

The remaining three terms are

−1
6 [φ, [φ, ∂iφ]] = 1

6f
acbf bdeφcφd∂iφe

= 1
6f

acbf bde
∫
d2y1 ln (|x−y1|Λ)ρcP (y1)

∫
d2y2 ln (|x−y2|Λ)ρdP (y2)

×
∫
d2y3

(x−y3)i
|x−y3|2

ρeP (y3),

(3.17)

1
6
∂i

∂2 [∂jφ, [φ, ∂jφ]] = −1
6f

acbf bde
∂i

∂2

(
∂jφcφd∂jφe

)
= −1

6f
acbf bde

∫
d2y (x−y)i
|x−y|2

(∫
d2y1

(y−y1)j
|y−y1|2

ρcP (y1)
∫
d2y2 ln (|y−y2|λ)ρdP (y2)

×
∫
d2y3

(y−y3)j
|y−y3|2

ρeP (y3)
)

(3.18)
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and
1
6
∂i

∂2 [φ, [φ, ∂2φ]] = −1
6f

acbf bde
∂i

∂2φ
cφdρeP

= −1
6f

acbf bde
∫
d2y3

(x− y3)i
|x− y3|2

∫
d2y1 ln (|y3 − y1|Λ)ρcP (y1)

×
∫
d2y2 ln (|y3 − y2|Λ)ρdP (y2)ρdP (y3).

(3.19)

The corresponding Feynman diagrams are shown in figure 6b.

3.2 Residual gauge fixing and initial conditions

The classical Yang-Mills equations eq. (2.4) are written in the Fock-Schwinger (FS) gauge.
The equations involve three fields αi(τ,x), α(τ,x) (here i = 1, 2), but only two of them
are independent degrees of freedom. In other words, the FS gauge does not completely fix
the gluon fields. There is still residual freedom to perform gauge transformations which
only depend on the transverse coordinates. While the form of the classical Yang-Mills
equations given in eqs. (2.4) remain unchanged under residual gauge transformations, the
initial conditions in eq. (2.5) depend on sub gauge transformations. Physical observables,
however, are independent of gauge choices. Thus it is beneficial to select a sub gauge in
such a way to simplify the calculations of the physical observables. Denoting the sub gauge
transformations by Ω(x), gluon fields in two sub gauges are related by

Ãi = Ω†AiΩ + i

g
Ω†∂iΩ ,

Ã+ = Ω†A+Ω ,

Ã− = Ω†A−Ω .

(3.20)

There are a few choices of the sub gauges. We discuss them below.

3.2.1 Sub gauge transformation by U(x)

In the literature, when calculating particle production in pA collisions, U(x) was often
chosen [18, 22] to define the residual gauge fixing. With Ω(x) = U(x) the initial condition
for transverse fields in eq. (2.5) becomes

ζi(τ = 0,x) = U †αi(τ = 0,x)U + i

g
U †∂iU = U †αiPU

= αa,iP (x)Uab(x)T b.
(3.21)

Note that the target field αiT = i
gU∂

iU † is gauged away. In this form, both the gradient
∂iζ

i and the curl εji∂jζi are nonvanishing. The initial condition for the longitudinal field
in eq. (2.5) becomes

ζ(τ = 0,x) = U †α(τ = 0,x)U = 1
2
(
∂i(U †αiPU)− U †∂iαiPU

)
= 1

2α
a,i
P (x)∂iUab(x)T b.

(3.22)
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In this sub gauge, the order-g, order-g3 and order-g5 initial conditions are

ζi(1)(τ = 0,x) = U †αiP,(1)U,

ζ(1)(τ = 0,x) = 1
2
(
∂i(U †αiP,(1)U)− U †∂iαiP,(1)U

)
;

ζi(3)(τ = 0,x) = U †αiP,(3)U,

ζ(3)(τ = 0,x) = 1
2∂

i(U †αiP,(3)U);

ζi(5)(τ = 0,x) = U †αiP,(5)U,

ζ(5)(τ = 0,x) = 1
2∂

i(U †αiP,(5)U).

(3.23)

This sub gauge has the advantage that the initial conditions have clear physical mean-
ing. The ζi is the projectile WW gluon field αiP eikonally rotated by the target Wilson line
U(x). The ζ is the difference between the eikonally rotated projectile WW gluon field and
the gluon field generated by the eikonally rotated projectile color charge density. However,
in solving the classical Yang-Mills equations for pA collisions beyond the leading order, this
sub gauge is not the most convenient one. In a desirable sub gauge, either the gradient or
the curl of ζi(τ = 0,x) would vanish.

3.2.2 Sub gauge condition ∂iβi(τ = 0, x) = 0

It has been shown in ref. [52] that the following sub gauge transformation

Ω(x) = U(x)
[
1 + ig

∂l

∂2

(
U †αiP,(1)U

)]
(3.24)

guarantees that the lowest order gradient of βi vanishes, i.e. ∂iβ(1)
i (τ = 0,x) = 0. To go

beyond the lowest order, we consider the ansatz

Ω(x) = U(x)W(x) (3.25)

with W(x) = eigΣ(x). Unitarity condition of Ω requires Σ† = Σ. Under this gauge trans-
formation, the initial condition for the transverse fields in eq. (2.5) becomes

βi(τ = 0,x) = Ω†αiPΩ + Ω†αiTΩ + i

g
Ω†∂iΩ

=W†U †αiPUW + i

g
W†∂iW

= U †αiPU − ig[Σ, U †αiPU ] + 1
2(ig)2[Σ, [Σ, U †αiPU ]] + . . .

− ∂iΣ + 1
2 ig[Σ, ∂iΣ]− 1

6(ig)2[Σ, [Σ, ∂iΣ]] + . . .

(3.26)

In obtaining the last equality, we used the Baker-Campbell-Hausdorff formula. We express
Σ(x) as a power series expansion in terms of coupling constant g

Σ(x) = gΣ(1) + g3Σ(3) + g5Σ(5) + . . . (3.27)
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and solve Σ(x) order by order by imposing the requirement ∂iβi(τ = 0,x) = 0. The
results are

Σ(1) = ∂l

∂2 (U †αlP,(1)U),

Σ(3) = ∂l

∂2

(
U †αlP,(3)U − i[Σ(1), U

†αlP,(1)U ] + 1
2 i[Σ(1), ∂

lΣ(1)]
)
,

Σ(5) = ∂l

∂2

(
U †αlP,(5)U − i[Σ(1), U

†αlP,(3)U ]− i[Σ(3), U
†αlP,(1)U ]− 1

2[Σ(1), [Σ(1), U
†αlP,(1)U ]]

+1
2 i[Σ(1), ∂

lΣ(3)] + 1
2 i[Σ(3), ∂

lΣ(1)] + 1
6[Σ(1), [Σ(1), ∂

lΣ(1)]]
)
.

(3.28)

The initial conditions for the transverse field at the corresponding orders are

βi(1)(τ = 0,x) =
(
δij − ∂i∂j

∂2

)
U †αjP,(1)U,

βi(3)(τ = 0,x) =
(
δil − ∂i∂l

∂2

)(
U †αlP,(3)U − i[Σ(1), U

†αlP,(1)U ] + 1
2 i[Σ(1), ∂

lΣ(1)]
)
,

βi(5)(τ = 0,x) =
(
δil − ∂i∂l

∂2

)(
U †αlP,(5)U − i[Σ(1), U

†αlP,(3)U ]− i[Σ(3), U
†αlP,(1)U ]

− 1
2[Σ(1), [Σ(1), U

†αlP,(1)U ]] + 1
2 i[Σ(1), ∂

lΣ(3)]

+1
2 i[Σ(3), ∂

lΣ(1)] + 1
6[Σ(1), [Σ(1), ∂

lΣ(1)]]
)
.

(3.29)

We will only need initial conditions up to order-g5. However, one can recursively obtain
all higher order gauge transformations by imposing the condition ∂iβi(n)(τ = 0,x) = 0 for
n ≥ 7. It is not clear to us whether a closed form expression for Σ(x) exist or not.

On the other hand, the initial condition for the longitudinal field under the gauge
transformation becomes

β(τ = 0,x) = ig

2 Ω†[αiP , αiT ]Ω

= 1
2W

†
(
∂i(U †αiPU)− U †∂iαiPU

)
W

= 1
2(∂i(U †αiPU)− U †∂iαiPU)− ig

[
Σ, 1

2(∂i(U †αiPU)− U †∂iαiPU)
]

− 1
2g

2
[
Σ,
[
Σ, 1

2(∂i(U †αiPU)− U †∂iαiPU)
]]

+ . . .

(3.30)

From it, the order-g, order-g3, order-g5 initial conditions for the longitudinal field are

– 15 –



J
H
E
P
0
6
(
2
0
2
1
)
1
4
0

obtained

β(1)(τ = 0,x) = 1
2
(
∂i(U †αiP,(1)U)− U †∂iαiP,(1)U

)
,

β(3)(τ = 0,x) = 1
2∂

i(U †αiP,(3)U)− i[Σ(1), β(1)(τ = 0)],

β(5)(τ = 0,x) = 1
2∂

i(U †αiP,(5)U)− i
[
Σ(1),

1
2∂

i(U †αiP,(3)U)
]
− i[Σ(3), β(1)(τ = 0)]

− 1
2[Σ(1), [Σ(1), β(1)(τ = 0)]].

(3.31)

In obtaining the above results, we have used the fact that ∂iαiP,(n) = 0 for n ≥ 3.
The sub gauge condition ∂iβi(τ = 0,x) = 0 resembles the general Coulomb gauge

∂iβi(τ,x) = 0. Previously, in numerically solving the classical Yang-Mills equations, the
Coulomb gauge condition was also used. However, instead of imposing it at τ = 0, it was
imposed at some particularly chosen proper time τ0, at which physical observables were
calculated [46, 53].

One may wonder, whether it is possible to find a sub gauge transformation such that
instead of the gradient of βi, the curl of βi is zero εij∂iβj(τ = 0,x) = 0. First of all, we
want to point out that there is no Ω(x) that can completely gauge away βi(τ = 0,x). From
βi(τ = 0,x) = Ω†αiPΩ + Ω†αiTΩ + i

gΩ†∂iΩ = 0, one obtains αiP +αiT = i
gΩ∂iΩ†. The right

hand side is a pure gauge field. On the other hand, both αiP and αiT are pure gauge fields,
their sum cannot be a pure gauge field. Not even at the lowest order. It is not clear that
the following condition on the curl of βi

εhi∂hβ
i(τ = 0,x) = εhi∂h

(
Ω†αiPΩ + Ω†αiTΩ + i

g
Ω†∂iΩ

)
= 0 (3.32)

has a perturbative solution for Ω(x). As it will become clear in the following sections, the
gradient of βi(τ,x) is an auxiliary field while its curl is a dynamical field. Therefore, as far
as gluon production is concerned, the initial time Coulomb gauge constraining the gradient
of βi(τ = 0,x) serves as a convenient gauge choice.

Our motivation for choosing different sub gauge transformations was purely to sim-
plify computations as physical observables are gauge invariant. However, when discussing
the time evolution of the gluon field (a gauge variant object), the concept of initial vs.
final state effects becomes blurred and, strictly speaking, not well-defined. A sub-gauge
transformation may (and does) shift some final state effects to the realm of initial state
effects and vice-versa. As a matter of fact our motivation was exactly to simplify the time
evolution and transfer the computational burden to the initial conditions.

In the main body of this paper, the classical Yang-Mills equations are solved in the
initial time Coulomb sub gauge ∂iβi(τ = 0,x) = 0. In the appendix D, solutions in the
sub gauge determined by U(x) are given. The two sub gauges are related by W(x). By
comparing gluon fields in the two gauges, it will become clear how final state interactions
in one gauge become initial state effects in another gauge.
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4 The dynamical equations and the constraint equation

As discussed in the previous section, the classical Yang-Mills equations are invariant under
the sub gauge transformation. Thus the equations of motion in the initial time Coulomb
sub gauge are obtainted by simple replacements of α, αi with β, βi in eqs. (2.4).

τ2∂2
τ β̃ + τ∂τ β̃ − β̃ − τ2∂2

i β̃ + igτ2∂i
[
βi, β̃

]
+ igτ2

[
βi, ∂iβ̃

]
+ g2τ2

[
βi, [βi, β̃]

]
= 0 ,

∂i∂τβi − ig [βi, ∂τβi]− ig
[
β̃, ∂τ β̃

]
= 0 ,

τ2∂2
τβi + τ∂τβi − τ2(∂2δij − ∂j∂i)βj − igτ2

[
β̃, ∂iβ̃

]
− g2τ2

[
β̃, [βi, β̃]

]
+igτ2∂j [βj , βi] + igτ2 [βj , ∂jβi − ∂iβj ] + g2τ2 [βj , [βj , βi]] = 0.

(4.1)

We have written out the detailed expressions for the equations using the covariant derivative
Di = ∂i − igβi and the field tensor Fji = ∂jβi − ∂iβj − ig[βj , βi]. We also separated the
linear and nonlinear terms in the equations and introduce β̃ = τβ to simplify the notation.

The second equation in eqs. (4.1) is first order in time derivative and thus serves
as a constraint equation. Only two of the three field components β(τ,x), βi=1,2(τ,x) are
independent. To explicitly demonstrate this, it is convenient to split the transverse field
into the gradient part and the curl part

βi(τ,x) = εil∂lχ(τ,x) + ∂iΛ(τ,x). (4.2)

Here εil is the two dimensional Levi-Civita symbol. Using εih∂hβi = ∂2χ and ∂iβi = ∂2Λ,
one can separate the third equation in eqs. (4.1) into two equations:

τ2∂2
τ∂

2Λ + τ∂τ∂
2Λ = igτ2

[
β̃, ∂2β̃

]
+ igτ2[βj , (∂2δji − ∂j∂i)βi]

+ g2τ2∂i
[
β̃,
[
βi, β̃

]]
− g2τ2∂i [βj , [βj , βi]] .

(4.3)

τ2∂2
τ∂

2χ+ τ∂τ∂
2χ− τ2∂2∂2χ = igτ2εih

[
∂hβ̃, ∂iβ̃

]
− g2τ2εih∂h

(
[β̃, [β̃, βi]] + [βj , [βj , βi]]

)
− igτ2εih∂h ([∂jβj , βi] + 2[βj , ∂jβi]) + igτ2εih[∂hβj , ∂iβj ].

(4.4)
The constraint equation only imposes restriction on Λ

∂τ∂
2Λ = ig[βi, ∂τβi] + ig[β̃, ∂τ β̃]. (4.5)

The independent degrees of freedom are β̃(τ,x) and χ(τ,x). The Λ(τ,x) is a non-dynamical
field. In the appendix A, it is proved perturbatively that the second order equation (4.3)
is just a consequence of the first order equation (4.5). Thus, although the superficial
appearance does not suggest it, the second order differential equation for Λ is not an
independent dynamical equation.

In the following sections, we seek solutions of the classical Yang-Mills equations in
terms of power series expansion in the coupling constant g.

β(τ,x) =
∞∑
n=0

gnβ(n)(τ,x),

βi(τ,x) =
∞∑
n=0

gnβ
(n)
i (τ,x).

(4.6)

It is obvious that only odd powers of the expansions β(2n+1), β
(2n+1)
i are nonvanishing.

– 17 –



J
H
E
P
0
6
(
2
0
2
1
)
1
4
0

5 Order-g solutions

The order-g classical Yang-Mills equations are
τ2∂2

τ β̃
(1) + τ∂τ β̃

(1) − β̃(1) − τ2∂2
i β̃

(1) = 0 ,

∂i∂τβ
(1)
i = 0 ,

τ2∂2
τβ

(1)
i + τ∂τβ

(1)
i − τ

2(∂2δij − ∂j∂i)β(1)
j = 0

(5.1)

with the initial conditions

β
(1)
i (τ = 0,x) =

(
δij −

∂i∂j
∂2

)
U †αjP,(1)U,

β(1)(τ = 0,x) = 1
2
[
∂i
(
U †αiP,(1)U

)
− U †∂iαiP,(1)U

]
.

(5.2)

Performing the decomposition β(1)
i (τ,x) = εil∂lχ

(1)(τ,x)+∂iΛ(1)(τ,x), we trivially establish
that the constraint equation together with the initial condition ∂iβ

(1)
i (τ = 0,x) = 0 is

equivalent to Λ(1)(τ,x) = 0, as expected at this order.
The Yang-Mills equations are easier to solve in transverse momentum space. Using

the convention

βi(τ,x) =
∫

d2k
(2π)2 e

−ik·xβi(τ,k), β(τ,x) =
∫

d2k
(2π)2 e

−ik·xβ(τ,k), (5.3)

for the Fourier transformations, we obtain that after the projection εih∂hβ(1)
i = ∂2χ(1) the

two independent equations are
s2∂2

s β̃
(1)(τ,k) + s∂sβ̃

(1)(τ,k) + (s2 − 1)β̃(1)(τ,k) = 0,
s2∂2

sχ
(1)(τ,k) + s∂sχ

(1)(τ,k) + s2χ(1)(τ,k) = 0.
(5.4)

Here s ≡ k⊥τ and k⊥ = |k| is the magnitude of the two dimensional transverse momentum.
These two equations are easily recognized as standard Bessel equations. We require the
solutions to be finite at τ = 0, only Bessel functions of first kind satisfy this constraint.
We thus have

β(1)(τ,k) = bη(k)J1(k⊥τ)
k⊥τ

,

β
(1)
i (τ,k) = −iεilkl

k2
⊥

b⊥(k)J0(k⊥τ).
(5.5)

where bη,⊥(k) are fixed by the initial conditions

bη(k) = 2β(1)(τ = 0,k),

b⊥(k) = −iεijkiβ(1)
j (τ = 0,k).

(5.6)

It is easy to check that ∂iβ(1)
i (τ,x) = 0 for any τ .

The order-g solution has already been obtained in ref. [18]. The order-g equations in
this sub-gauge are free field equations and the solutions are free field solutions. Somewhat
nontrivial time dependence characterized by J1(k⊥τ)/k⊥τ and J0(k⊥τ) is solely due to the
Milne coordinates (τ, η,x). Now, we turn to higher orders and for the first time we will
obtain order-g3 and order-g5 solutions.
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6 Order-g3 solutions

The order-g3 classical Yang-Mills equations are

τ2∂2
τ β̃

(3) + τ∂τ β̃
(3) − β̃(3) − τ2∂2

i β̃
(3) + iτ2∂i

[
β

(1)
i , β̃(1)

]
+ iτ2

[
β

(1)
i , ∂iβ̃

(1)
]

= 0 ,

∂i∂τβ
(3)
i − i

[
β

(1)
i , ∂τβ

(1)
i

]
− i

[
β̃(1), ∂τ β̃

(1)
]

= 0 ,

τ2∂2
τβ

(3)
i + τ∂τβ

(3)
i − τ

2(∂2δij − ∂j∂i)β(3)
j − iτ

2
[
β̃(1), ∂iβ̃

(1)
]

+iτ2∂j
[
β

(1)
j , β

(1)
i

]
+ iτ2

[
β

(1)
j , ∂jβ

(1)
i − ∂iβ

(1)
j

]
= 0

(6.1)

with the initial conditions

β(3)(τ = 0,x) = 1
2∂

i(U †αiP,(3)U)− i[Σ(1), β(1)(τ = 0,x)] (6.2)

and

βi(3)(τ = 0,x) =
(
δij − ∂i∂j

∂2

)(
U †αjP,(3)U − i[Σ(1), U

†αjP,(1)U ] + 1
2 i[Σ(1), ∂

jΣ(1)]
)
. (6.3)

6.1 Solving for β(3)(τ, k)

The first equation when transformed into momentums space is an inhomogeneous Bessel
equation (s = k⊥τ)

s2∂2
s β̃

(3)(τ,k) + s∂sβ̃
(3)(τ,k) + (s2 − 1)β̃(3)(τ,k) = S(3)

η (τ,k) (6.4)

with

S(3)
η (τ,k) = −iτ3

∫
d2xeik·x

(
[∂iβ(1)

i , β(1)] + 2[β(1)
i , ∂iβ

(1)]
)

= iτ2
∫

d2p
(2π)

2k× p
p2
⊥|k− p|

J0(p⊥τ)J1(|k− p|τ)
[
b⊥(p), bη(k− p)

]
.

(6.5)

In order to solve the inhomogeneous differential equations as eq. (6.4), one can apply a well
established method which is often referred to as variation of parameters. The method is
briefly reviewed in the appendix B. The two independent solutions for the corresponding
homogeneous Bessel equation are J1(x) and Y1(x), whose Wronskian is W (x) = 2

πx . So the
general solutions for the inhomogeneous equation can be formally expressed as

β̃(3)(τ,k) = C1J1(s) + C2Y1(s) + π

2

∫ s

0
dz [J1(z)Y1(s)− J1(s)Y1(z)] S

(3)
η (z)
z

. (6.6)

The initial condition is finite at τ = 0, thus Y1(x) does not contribute, i.e. C2 = 0. The
coefficient C1 can be then determined straightforwardly

β(3)(τ = 0,k) = 1
τ
β̃(3)(τ,k)|τ=0 = k⊥

2 C1 . (6.7)

Putting everything together we get

C1 = 2
k⊥
β(3)(τ = 0,k), C2 = 0. (6.8)
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Further evaluations of the formal solution eq. (6.6) require computing time integrals
involving products of three Bessel functions in the integrand∫ s

0
dzzJ1(z)J0

(
q⊥
k⊥
z

)
J1

( |k− q|
k⊥

z

)
,∫ s

0
dzzY1(z)J0

(
q⊥
k⊥
z

)
J1

( |k− q|
k⊥

z

)
.

(6.9)

Here we face a difficulty because for integrands involving products of three or more Bessel
functions, there are no known formula to compute the indefinite integrals. This is in a
stark contrast to the case with integrands of only two Bessel functions:∫ s

0
dzzJ1(az)J1(bz) = 1

a2 − b2
(
bsJ0(bs)J1(as)− asJ0(as)J1(bs)

)
,∫ s

0
dzzY1(az)J1(bz) = 2b

πa

1
a2 − b2

+ 1
a2 − b2

(
bsJ0(bs)Y1(as)− asY0(as)J1(bs)

)
.

(6.10)

This defines our strategy: we will aim at reducing the number of Bessel functions in the
integrand from three (or more) to two in order to use the above equations to evaluate time
integrals. The key step is to expressing a product of two Bessel functions in terms of an
integral of one Bessel function using Graf’s formula. Mathematical details are given in the
appendix C.

Substituting the expression of S(3)
η into the formal solution, one obtains

β̃(3)(τ,k) = C1J1(s) + π

2

∫ s

0
(Y1(s)J1(z)− J1(s)Y1(z))S(3)

η (z)dz
z

= C1J1(s) + iπ

2

∫
d2p
(2π)

2k× p
k2
⊥p

2
⊥|k− p|

[
b⊥(p), bη(k− p)

]
(
Y1(s)

∫ s

0
dzzJ1(z)J0

(
p⊥
k⊥
z

)
J1

( |k− p|
k⊥

z

)

− J1(s)
∫ s

0
dzzY1(z)J0

(
p⊥
k⊥
z

)
J1

( |k− p|
k⊥

z

))
.

(6.11)

Introducing the notation w1 = p⊥/k⊥ and w2 = |k− p|/k⊥, and using the formula

J0(w1z)J1(w2z) =
∫ π

−π

dφ

2πe
iΨ′J1(wz) (6.12)

with
w =

√
w2

1 + w2
2 − 2w1w2 cosφ, (6.13)

and
eiΨ
′ = w2 − w1 cosφ

w
+ i

w1 sinφ
w

(6.14)

we can express the integrals of products of three Bessel functions as integrals of products of
two Bessel functions. We have to pay a price of introducing an auxiliary angular integral.
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Nevertheless, after performing this manipulation, the structure of the solution simplifies
significantly. Finally we will end up with an expression of the following form

Y1(s)
∫ s

0
dzzJ1(z)J1(wz)− J1(s)

∫ x

0
dzzY1(z)J1(wz)

= Y1(s) 1
1− w2 [wsJ0(ws)J1(s)− sJ0(s)J1(ws)]

− J1(s) 1
1− w2 [wsJ0(ws)Y1(s)− sY0(s)J1(ws)]− J1(s)2w

π

1
1− w2

= 2
π

1
1− w2

(
J1(ws)− wJ1(s)

)
,

(6.15)

where we performed further simplification by using that fact that theWronskian is J1(s)Y0(s)
− J0(s)Y1(s) = 2

πs . Note that w = 1 is a removable singularity; indeed,

2
π

1
1− w2

(
J1(ws)− wJ1(s)

)
w→1−−−→ 1

π
sJ2(s), (6.16)

which is finite and well-defined.
Collecting everything together we obtain the final solution

β(3)(τ,k) = 2β(3)(τ = 0,k)J1(k⊥τ)
k⊥τ

− i
∫

d2p
(2π)2

k× p
p2
⊥|k− p|2

[
bη(p), b⊥(k− p)

]

×
∫ π

−π

dφ

2π

(
1 + 2k · p

w2
⊥ − k2

⊥

)(
J1(w⊥τ)
w⊥τ

− J1(k⊥τ)
k⊥τ

)
,

(6.17)

where w⊥ =
√
p2
⊥ + |k− p|2 − 2p⊥|k− p| cosφ.

The are a few notable features of the solution.

• First is that the time-dependent factors are completely determined by one type of
Bessel function; in this case, it is Bessel function of first kind of order one J1(λτ)/λτ .
However, the Bessel function contributes with different arguments. For the first
term, the argument of the Bessel function is completely determined by the external
momentum k. The second term is more involved, for given momenta k and p,
the time-dependent factor sums over all possible momentum mode between wmax =
p⊥+ |k−p| and wmin = |p⊥−|k−p||. It should be pointed out that the second term
has a removable singularity at w⊥ = k⊥. It can be checked by performing Taylor
expansions of the difference J1(w⊥τ)/w⊥τ − J1(k⊥τ)/k⊥τ ; it starts from w2

⊥ − k2
⊥.

This combination J1(w⊥τ)/w⊥τ−J1(k⊥τ)/k⊥τ also guarantees that the second term
is zero at τ = 0.

Naively, it is expected that at asymptotically large τ , the gluon system should
behave like free gas of gluons. This is not that easy to confirm on the level of the
field; the asymptotic behavior of the Bessel function reads

J1(w⊥τ) −→ 1√
2πw⊥τ

eiw⊥τe−i
3
4π. (6.18)

and thus the summation over all the momentum modes persists even at τ →∞.
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• The second feature is about the color structure of the solution. It involves interactions
of two color charges in the proton. Let us look at each term in the solution in detail.
First we can recognize from eq. (3.28) that

Σ(1)(k) = iki

k2
⊥

∫
d2xeik·xαi,aP,(1)(x)Uad(x)T d. (6.19)

is the order-g WW gluon field αiP,(1) eikonally color rotated by the target Wilson line
Uad and then projected along the momentum k. Next, consider

bη(k) = 2β(1)(τ = 0,k)

= −k2
⊥Σ(1)(k)−

∫
d2xeik·xρaP (x)Uad(x)T d

= −iki
(∫

d2xeik·xαi,aP,(1)(x)Uad(x)T d − iki

k2
⊥

∫
d2xeik·xρaP (x)Uad(x)T d

)
(6.20)

and

b⊥(k) = −iεijki
∫
d2xeik·xαj,aP,(1)(x)Uad(x)T d

= −iεijki
(∫

d2xeik·xαj,aP,(1)(x)Uad(x)T d − ikj

k2
⊥

∫
d2xeik·xρaP (x)Uad(x)T d

)
.

(6.21)

In the parenthesis, we have a difference between two terms. One is the order-g
projectile WW gluon field eikonally rotated by the target Wilson line Uad. The
other is the WW field generated by the eikonally rotated color density ρaPU

ad (it
corresponds to the gluon cloud of the receding color charge or to the Fadeev-Kulish
state). The net field is projected also along k for bη(k) and projected perpendicular
to k for b⊥(k). In this sense, one can attribute bη(k) and b⊥(k) to two polarizations
of the order-g gluon field produced in the collisions.

In the solution eq. (6.17), the initial field at order-g3 is

2β(3)(τ = 0,k) = −iki
∫
d2xeik·xαi,aP,(3)(x)Uad(x)T d − i

∫
d2p

(2π)2 [Σ(1)(k− p), bη(p)] .

(6.22)

The first term is the order-g3 WW gluon field αiP,(3) which was eikonally color rotated
by the target Wilson line Uac and then projected to the momentum k. The diagrams
representing αiP,(3) have been shown in figure 5. The color structure of the second
term in eq. (6.17) can be schematically illustrated in figure 7.

We note that this discussion was specific for the used sub-gauge, since the color
structure depends on sub gauge transformations.
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ρa1(x1)

ρa2(x2)

ρb1R(x1)

ρb2R(x2)

+

Figure 7. Schematic representation of the color structure for the second term in β(3)(τ,k). The
shaded bar represents the target nucleus. The eikonally rotated color charge density ρR is repre-
sented using red lines.

6.2 Solving for β(3)
i (τ, k)

As a first step, we want to demonstrate explicitly that from the order-g3 constraint equation
and the order-g Yang-Mills equations, the second order differential equation for ∂iβ(3)

i can
be derived. This would prove that ∂iβ(3)

i is not a dynamical field. From the third equation
of the set (6.1), the second order differential equation for ∂iβ(3)

i is

τ2∂2
τ∂iβ

(3)
i + τ∂τ∂iβ

(3)
i = iτ2[β̃(1), ∂2β̃(1)]− iτ2[β(1)

j , (∂i∂j − ∂2δij)β(1)
i ]. (6.23)

From the constraint equation of (6.1), one obtains

τ∂τ∂iβ
(3)
i = iτ [β(1)

i , ∂τβ
(1)
i ] + iτ [β̃(1), ∂τ β̃

(1)],

τ2∂2
τ∂iβ

(3)
i = iτ2[β(1)

i , ∂2
τβ

(1)
i ] + iτ2[β̃(1), ∂2

τ β̃
(1)].

(6.24)

Adding these two equations and substituting the order-g Yang-Mills equations in eqs. (5.1)
reproduce eq. (6.23).

In what follows, we will use the decomposition

β
(3)
i (τ,x) = εil∂lχ

(3)(τ,x) + ∂iΛ(3)(τ,x) (6.25)

to separately solve for χ(3)(τ,x) and Λ(3)(τ,x).

6.2.1 The solution Λ(3)(τ, k)

In order to solve for Λ(3), the constraint equation in momentum space is used

− k2
⊥∂τΛ(3)(τ,k) = S

(3)
Λ (τ,k) . (6.26)

The source term is given by

S
(3)
Λ (τ,k)

=
∫
d2xeik·x

(
i[β(1)

i (τ,x), ∂τβ(1)
i (τ,x)] + i[β̃(1)(τ,x), ∂τ β̃(1)(τ,x)]

)
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= i

∫
d2p

(2π)2

(p · (k− p)
p2
⊥|k− p|

[b⊥(p), b⊥(k− p)] J0(p⊥τ)J1(|k− p|τ)

− 1
p⊥

[bη(p), bη(k− p)] J1(p⊥τ)J2(|k− p|τ)
)

= i

∫
d2p

(2π)2
p · (k− p)
2p2
⊥|k− p|2

[b⊥(p), b⊥(k− p)](|k− p|2 − p2
⊥)
∫ π

−π

dφ

2π
1
w⊥

J1(w⊥τ)

+ i

∫
d2p

(2π)2
1

2p⊥|k− p| [bη(p), bη(k− p)](p2
⊥ − |k− p|2)

∫ π

−π

dφ

2π
cosφ
w⊥

J1(w⊥τ) .

(6.27)

In obtaining the last equality, we changed the integration variable p to k−p and used the
fact that [b⊥(p), b⊥(k − p)] and [bη(p), bη(k − p)] are antisymmetric under the exchange
p↔ k−p. Additionally, we applied the Bessel function identity J2(z) = 2J1(z)/z−J0(z),
and we expressed product of two Bessel functions in terms of angular integral of one Bessel
function:

J0(p⊥τ)J1(|k− p|τ) =
∫ π

−π

dφ

2πe
iΨ′J1(w⊥τ) =

∫ π

−π

dφ

2π
|k− p| − p⊥ cosφ

w⊥
J1(w⊥τ) (6.28)

with the definitions w⊥ =
√
p2
⊥ + |k− p|2 − 2p⊥|k− p| cosφ and

eiΨ
′ = |k− p| − p⊥ cosφ

w⊥
+ i

p⊥ sinφ
w

. (6.29)

To obtain the solutions, directly integrating S(3)
Λ involves indefinite integrals of products of

two Bessel functions of different orders and with different arguments. We are not aware of
if these integrals can be done analytically. That is why we express products of two Bessel
functions as an integral of one Bessel function.

The solution for Λ(3)(τ,k) is obtained by direct integration of S(3)
Λ

Λ(3)(τ,k) =

− i

k2
⊥

∫
d2p

(2π)2
k · (k− 2p)
2p2
⊥|k− p|2

p · (k− p) [b⊥(p), b⊥(k− p)]
∫ π

−π

dφ

2π
1
w2
⊥

(1− J0(w⊥τ))

− i

k2
⊥

∫
d2p

(2π)2
k · (k− 2p)
4p2
⊥|k− p|2

[bη(p), bη(k− p)]
∫ π

−π

dφ

2π

(
1− p2

⊥ + |k− p|2

w2
⊥

)
(1− J0(w⊥τ)) .

(6.30)

The time dependent factors are completely determined by Bessel function of first kind with
order zero in the form 1 − J0(w⊥τ). Again, for given k and p, all the momentum modes
from |p⊥ − |k − p|| to p⊥ + |k − p| contribute to the argument of the Bessel function.
Interestingly, the two polarization modes b⊥ and bη do not mix.

6.2.2 The solution β(3)
⊥ (τ, k)

The equation of motion for β(3)
i (τ,k) is

τ2∂2
τβ

(3)
i (τ,k) + τ∂τβ

(3)
i (τ,k) + τ2(k2

⊥δij − kjki)β
(3)
j (τ,k) = S

(3)
i (τ,k) (6.31)
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with the time dependent source term given by

S
(3)
i (τ,k) = iτ2

∫
d2xeik·x

(
[β̃(1), ∂iβ̃

(1)]− ∂j [β(1)
j , β

(1)
i ]− [β(1)

j , ∂jβ
(1)
i − ∂iβ

(1)
j ]
)

= τ2
∫

d2p
(2π)2 (k−p)i[β̃(1)(τ,p), β̃(1)(τ,k−p)]− (2k−p)j [β(1)

j (τ,p), β(1)
i (τ,k−p)]

+ (k−p)i[β(1)
j (τ,p), β(1)

j (τ,k−p)] .
(6.32)

Instead of working with χ(3)(τ,k), it is convenient to project out the curl of β(3)
i by

β
(3)
⊥ (τ,k) = iεihkh

k⊥
β

(3)
i (τ,k) . (6.33)

The β(3)
⊥ (τ,k) = k⊥χ

(3)(τ,k) by construction has the same dimension as β(3)
i (τ,k). The

source term becomes

S
(3)
⊥ (τ,k) = iεihkh

k⊥
S

(3)
i (τ,k)

= −iτ2
∫

d2p
(2π)2

(
− k× p
k⊥p⊥|k− p|

[
bη(p), bη(k− p)

]
J1(p⊥τ)J1(|k− p|τ)

+ (k× p)(k · p− p2
⊥ − k2

⊥)
k⊥p

2
⊥|k− p|2

[
b⊥(p), b⊥(k− p)

]
J0(p⊥τ)J0(|k− p|τ)

)
.

(6.34)

We changed variables p↔ k− p, where appropriate, to symmetrize this expression.
After the projection of eq. (6.31), the equation of motion for the curl β(3)

⊥ (τ,k) becomes

s2∂2
sβ

(3)
⊥ + s∂sβ

(3)
⊥ + s2β

(3)
⊥ = S

(3)
⊥ (τ,k) . (6.35)

This is an inhomogeneous differential equation and the corresponding homogeneous part is
the Bessel equation of the first kind. We again use the method of variation of parameters
to solve it. The two independent general solutions for the corresponding homogeneous
equation is J0(s) and Y0(s). Their Wronskian is W (s) = 2

πs . The formal solution of
eq. (6.35) is

β
(3)
⊥ (s) = D1J0(s) +D2Y0(s) + π

2

∫ s

0
dz (J0(z)Y0(s)− J0(s)Y0(z)) 1

z
S

(3)
⊥ (z) (6.36)

The solution is nonsingular at τ = 0, thus D2 = 0. Substituting the explicit expression for
S

(3)
⊥ into the formal solution, one obtains

β
(3)
⊥ (τ,k)

=D1J0(k⊥τ)− iπ2
1
k2
⊥

∫
d2p

(2π)2
p×k

k⊥p⊥|k−p| [bη(p), bη(k−p)]

×
(
Y0(s)

∫ s

0
dzzJ0(z)J1

(
p⊥
k⊥

z

)
J1

(
|k−p|
k⊥

z

)
− J0(s)

∫ x

0
dzzY0(z)J1

(
p⊥
k⊥

z

)
J1

(
|k−p|
k⊥

z

))
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+ (k×p)(p ·k− p2
⊥− k2

⊥)
k⊥p2

⊥|k−p|2 [b⊥(p), b⊥(k−p)]

×
(
Y0(s)

∫ s

0
dzzJ0(z)J0

(
p⊥
k⊥

z

)
J0

(
|k−p|
k⊥

z

)
− J0(s)

∫ x

0
dzzY0(z)J0

(
p⊥
k⊥

z

)
J0

(
|k−p|
k⊥

z

))
.

(6.37)

We use the same strategy as described in the previous section for β(3), i.e., we proceed
by reducing integrals of three Bessel functions into integrals of two Bessel functions using
Graf’s formula. In this case, we have

J0(w1z)J0(w2z) =
∫ π

−π

dφ

2πJ0(wz),

J1(w1z)J1(w2z) =
∫ π

−π

dφ

2πe
iφJ0(wz).

(6.38)

Here w1 = p⊥/k⊥, w2 = |k − p|/k⊥ and w2 = w2
1 + w2

2 − 2w1w2 cosφ. After performing
this manipulations, the remaining integrals with two Bessel functions can be combined into
the form

Y0(s)
∫ s

0
dzzJ0(z)J0(wz)− J0(s)

∫ s

0
dzzY0(z)J0(wz)

= Y0(s) 1
w2 − 1

(
wxJ0(s)J1(ws)− xJ0(ws)J1(s)

)
− J0(s) 1

w2 − 1
(
wxJ1(ws)Y0(s)− xJ0(ws)Y1(s)

)
− J0(s) 2

π

1
1− w2

= 2
π

1
1− w2

(
J0(ws)− J0(s)

)
.

(6.39)

Using these steps, the parts involving Bessel functions in eq. (6.37) are simplified as

Y0(s)
∫ s

0
zdzJ0(z)J1(w1z)J1(w2z)− J0

∫ s

0
zdzY0(z)J1(w1z)J1(w2z)

=
∫ π

−π

dφ

2πe
iφ
(
Y0(s)

∫ s

0
zdzJ0(z)J0(wz)− J0

∫ s

0
zdzY0(z)J0(wz)

)
=
∫ π

−π

dφ

2πe
iφ 2
π

1
1− w2 (J0(ws)− J0(s))

(6.40)

and

Y0(x)
∫ s

0
zdzJ0(z)J0(w2z)J0(w1z)− J0(s)

∫ s

0
zdzY0(z)J0(w2z)J0(w1z)

=
∫ π

−π

dφ

2π

(
Y0(s)

∫ s

0
zdzJ0(z)J0(wz)− J0(s)

∫ x

0
zdzY0(z)J0(wz)

)
=
∫ π

−π

dφ

2π
2
π

1
1− w2 (J0(ws)− J0(s)).

(6.41)

– 26 –



J
H
E
P
0
6
(
2
0
2
1
)
1
4
0

With this, we arrive at the final solution for β(3)
⊥ (τ,k)

β
(3)
⊥ (τ,k) = β

(3)
⊥ (τ = 0,k)J0(k⊥τ) + i

k⊥

∫
d2p

(2π)2
(k× p)

2p2
⊥|k− p|2

[
bη(p), bη(k− p)

]

×
∫ π

−π

dφ

2π

(
1 + 2p · (k− p)

w2
⊥ − k2

⊥

)
(J0(w⊥τ)− J0(k⊥τ))

+ i

k⊥

∫
d2p

(2π)2
(k× p)(p · k− p2

⊥ − k2
⊥)

p2
⊥|k− p|2

[
b⊥(p), b⊥(k− p)

]
×
∫ π

−π

dφ

2π
1

w2
⊥ − k2

⊥
(J0(w⊥τ)− J0(k⊥τ)) .

(6.42)

The time dependence is completely determined by one type of Bessel function — Bessel
function of the first kind of zero order, J0(λτ). The arguments of the Bessel functions are
different, ranging from ||k− p| − p⊥| to |k− p|+ p⊥.

For completeness, we supplement this solution with the detailed expression of the
order-g3 initial field

β
(3)
⊥ (τ = 0,k) = iεihkh

k⊥

∫
d2xeik·xαi,aP,(3)(x)Uad(x)T d − i

∫
d2p

(2π)2
k · p
k⊥p

2
⊥

[Σ(1)(k− p), b⊥(p)]

− i
∫

d2p
(2π)2

p× k
2k⊥

[Σ(1)(k− p),Σ(1)(p)].

(6.43)

7 Order-g5 solutions

The solutions presented in previous sections are sufficient to compute the full first saturation
correction to single inclusive gluon production, as will be demonstrated in the second paper
of this series [54]. However, in order to compute other interesting physical quantites like
the energy-momentum tensor of the classical gluon fields, including the first saturation
correction requires going beyond order-g3 and finding order-g5 solutions. Our motivation
is to derive the energy-momentum tensor in a semi-analytic form to extract information
about the energy density, pressure, stresses and initial flows after the collisions; these
quantities can be as model initial conditions for a subsequent hydrodynamic evolution.

The order-g5 equations of motion are

τ2∂2
τ β̃

(5) + τ∂τ β̃
(5) − β̃(5) − τ2∂2β̃(5)

= −igτ2
(
[∂iβ(3)

i , β̃(1)] + [∂iβ(1)
i , β̃(3)]

)
− g2τ2[β(1)

i , [β(1)
i , β̃(1)]]

− 2igτ2
(
[β(3)
i , ∂iβ̃

(1)] + [β(1)
i , ∂iβ̃

(3)]
)
,

(7.1)

∂τ∂iβ
(5)
i = ig

(
[β(3)
i , ∂τβ

(1)
i ] + [β(1)

i , ∂τβ
(3)
i ]
)

+ ig
(
[β̃(1), ∂τ β̃

(3)] + [β̃(3), ∂τ β̃
(1)]
)
, (7.2)
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and

τ2∂2
τβ

(5)
i + τ∂τβ

(5)
i − τ

2(∂2δij − ∂i∂j)β(5)
j

= igτ2
(
[β̃(1), ∂iβ̃

(3)] + [β̃(3), ∂iβ̃
(1)]
)
− igτ2∂j

(
[β(3)
j , β

(1)
i ] + [β(1)

j , β
(3)
i ]
)

− igτ2
(
[β(1)
j , ∂jβ

(3)
i − ∂iβ

(3)
j ] + [β(3)

j , ∂jβ
(1)
i − ∂iβ

(1)
j ]
)

+ g2τ2[β̃(1), [β̃(1)
i , β̃(1)]]− g2τ2[β(1)

j , [β(1)
j , β

(1)
i ]],

(7.3)

with the initial conditions given in eq. (3.29) and eq. (3.31).
Again, as in the previous section for g3-order, one can explicitly show that from the

constraint equation for ∂iβ(5)
i and all the lower order solutions, the second order differential

equation for ∂iβ(5)
i can be derived. This leaves only the curl of β(5)

i as an independent field,
see appendix A.

We want to write down the equations for the independent fields in momentum space.
Performing the decomposition

β
(5)
i (τ,x) = εil∂lχ

(5)(τ,x) + ∂iΛ(5)(τ,x), (7.4)

we can separate the equations for the curl and the gradient of β(5)
i . In momentum space,

we have

β
(5)
⊥ (τ,k) = k⊥χ

(5)(τ,k) = iεihkh
k⊥

β
(5)
i (τ,k), (7.5)

Λ(5)(τ,k) = iki
k2
⊥
β

(5)
i (τ,k). (7.6)

The two dynamical equations governing the time evolutions of β(5)
⊥ (τ,k) and β(5)(τ,k) are

τ2∂2
τ β̃

(5)(τ,k) + τ∂τ β̃
(5)(τ,k) + ((k⊥τ)2 − 1)β̃(5)(τ,k) = S(5)

η (τ,k),

τ2∂2
τβ

(5)
⊥ (τ,k) + τ∂τβ

(5)
⊥ (τ,k) + (k⊥τ)2β

(5)
⊥ (τ,k) = iεihkh

k⊥
S

(5)
i (τ,k).

(7.7)

On the other hand, the constraint equation is sufficient to determine Λ(5)(τ,k)

∂τΛ(5)(τ,k) = − 1
k2
⊥
S

(5)
Λ (τ,k). (7.8)

The source terms in momentum space are

S(5)
η (τ,k) = −gτ3

∫
d2q

(2π)2 (k + q)i
[
β

(1)
i (τ,k−q), β(3)(τ,q)

]
− gτ3

∫
d2q

(2π)2 (2k−q)i
[
β

(3)
i (τ,q), β(1)(τ,k−q)

]
− g2τ3

∫
d2q

(2π)2

∫
d2p

(2π)2

[
β

(1)
i (τ,k−q),

[
β

(1)
i (τ,p), β(1)(τ,q−p)

]]
,

(7.9)
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S
(5)
⊥ (τ,k) = iεilkl

k⊥
τ2
∫

d2q
(2π)2 (k− 2q)i

(
[β̃(3)(τ,q), β̃(1)(τ,k−q)] + [β(3)

j (τ,q), β(1)
j (τ,k−q)]

)
+
(
−(2k−q)j [β(3)

j (τ,q), β(1)
i (τ,k−q)] + (k + q)j [β(3)

i (τ,q), β(1)
j (τ,k−q)]

)
+
∫

d2q
(2π)2

d2p
(2π)2

(
[β̃(1)(τ,k−q), [β(1)

i (τ,p), β̃(1)(τ,q−p)]]

+[β(1)
j (τ,k−q), [β(1)

i (τ,p), β(1)
j (τ,q−p)]]

)
,

(7.10)
and

S
(5)
Λ (τ,k) = ig

∫
d2q

(2π)2

[
β

(3)
i (τ,q), ∂τβ(1)

i (τ,k− q)
]
−
[
∂τβ

(3)
i (τ,q), β(1)

i (τ,k− q)
]

+
[
β̃(3)(τ,q), ∂τ β̃(1)(τ,k− q)

]
−
[
∂τ β̃

(3)(τ,q), β̃(1)(τ,k− q)
]
.

(7.11)

We now have everything ready to find all the components of the gluon fields at order-g5.

7.1 Solving for β(5)(τ, k)

From eq. (7.9), the explicit expression of the source term S
(5)
η (τ,k) is

S(5)
η (τ,k)

= iτ2
∫

d2q
(2π)2

2k×q
q2
⊥|k−q|

(
[q⊥β(3)

⊥ (τ = 0,q), bη(k−q)]−
[
2β(3)(τ = 0,k−q), b⊥(q)

] )
× J0(q⊥τ)J1(|k−q|τ)

+ τ2
∫

d2q
(2π)2

d2p
(2π)2

2q×k
|k−q|2

q×p
p2
⊥|q−p|2

[
[b⊥(p), bη(q−p)], b⊥(k−q)

]
×
∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

(
J1(w⊥τ)
w⊥

− J1(q⊥τ)
q⊥

)
J0(|k−q|τ)

+ τ2
∫

d2q
(2π)2

d2p
(2π)2

2k×q
q2
⊥|k−q|

q×p
2p2
⊥|q−p|2

∫ π

−π

dφ

2π
1

q2
⊥−w2

⊥

(
(−p2

⊥− |q−p|2 +w2
⊥)

[[
bη(p), bη(q−p)

]
, bη(k−q)

]
+ 2(p ·q− p2

⊥− q2
⊥)
[[
b⊥(p), b⊥(q−p)

]
, bη(k−q)

])
× (J0(w⊥τ)− J0(q⊥τ))J1(|k−q|τ)

+ τ2
∫

d2q
(2π)2

∫
d2p

(2π)2
(2k−q) ·q
q2
⊥|k−q|

q · (q− 2p)
4p2
⊥|q−p|2

∫ π

−π

dφ

2π
1
w2
⊥

(
(−q2

⊥+w2
⊥+ 2p · (q−p))

[
[bη(p), bη(q−p)] , bη(k−q)

]
+ 2p · (q−p)

[
[b⊥(p), b⊥(q−p)] , bη(k−q)

])
× (1− J0(w⊥τ))J1(|k−q|τ)

+ τ2
∫

d2q
(2π)2

∫
d2p

(2π)2
(q−p) ·p

p2
⊥|q−p|2|k−q|

[
b⊥(p), [b⊥(q−p), bη(k−q)]

]
× J0(|q−p|τ)J0(p⊥τ)J1(|k−q|τ).

(7.12)
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The last term involves three Bessel functions. The product of the three Bessel functions
can be rewritten as

J0(|q − p|τ)J0(p⊥τ)J1(|k− q|τ) =
∫ π

−π

dφ

2πJ0(w⊥τ)J1(|k− q|τ). (7.13)

To solve for β(5)(τ,k), we repeat the procedure used when solving for β(3)(τ,k). The
formal solution obtained by the method of variation of parameters is

β̃(5)(τ,k) = C ′1J1(s) + C ′2Y1(s) + π

2

∫ s

0
dz(J1(z)Y1(s)− J1(s)Y1(z))S

(5)
η (z)
z

(7.14)

with the coefficients C ′1 and C ′2 fixed by initial conditions at order-g5

C ′1 = 2
k⊥
β(5)(τ = 0,k), C ′2 = 0. (7.15)

The time-dependent factors in each term of S(5)
η (τ,k) can always be reduced to just one

single Bessel function, Bessel function of first kind with order one J1(cτ), although different
terms might have different values of argument c. This reduction is done by using Graf’s
formula

J0(aτ)J1(bτ) =
∫ π

−π

dψ

2π
b2 − a2 + c2

2bc J1(cτ) (7.16)

with c2 = a2 + b2 − 2ab cosψ. Next, the formula
π

2

(
Y1(s)

∫ s

0
dzzJ1(z)J1(λz)− J1(s)

∫ s

0
dzzY1(z)J1(λz)

)
= 1

1− λ2 (J1(λs)− λJ1(s))

= ck2
⊥

k2
⊥ − c2

(
J1(cτ)
c
− J1(k⊥τ)

k⊥

) (7.17)

helps to carry out the integration over the source terms in the formal solution. Note that
λ = c/k⊥. Schematically, our recipe is to replace each J0(aτ)J1(bτ) factor in S(5)

η (τ,k) by

J0(aτ)J1(bτ) −→ 1
2b

∫ π

−π

dψ

2π
b2 − a2 + c2

k2
⊥ − c2

(
J1(cτ)
c
− J1(k⊥τ)

k⊥

)
. (7.18)

To be specific, we need the following replacements

J0(q⊥τ)J1(|k− q|τ) −→ 1
2|k− q|

∫ π

−π

dφ′

2π
k · (k− 2q) + w′2⊥

k2
⊥ − w′2⊥

(
J1(w′⊥τ)
w′⊥

− J1(k⊥τ)
k⊥

)
,

J1(q⊥τ)J0(|k− q|τ) −→ 1
2q⊥

∫ π

−π

dφ′

2π
−k · (k− 2q) + w′2⊥

k2
⊥ − w′2⊥

(
J1(w′⊥τ)
w′⊥

− J1(k⊥τ)
k⊥

)
,

J0(w⊥)J1(|k− q|τ) −→ 1
2|k− q|

∫ π

−π

dθ

2π
|k− q|2 − w2

⊥ + u2
⊥

k2
⊥ − u2

⊥

(
J1(u⊥τ)
u⊥

− J1(k⊥τ)
k⊥

)
,

J1(w⊥)J0(|k− q|τ) −→ 1
2w⊥

∫ π

−π

dθ

2π
w2
⊥ − |k− q|2 + u2

⊥
k2
⊥ − u2

⊥

(
J1(u⊥τ)
u⊥

− J1(k⊥τ)
k⊥

)
(7.19)
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with
w′⊥ =

√
q2
⊥ + |k− q|2 − 2q⊥|k− q| cosφ′,

u⊥ =
√
w2
⊥ + |k− q|2 − 2w⊥|k− q| cos θ.

(7.20)

Using the above recipe, we obtained the order-g5 solution β(5)(τ,k)
β(5)(τ,k)

= 2β(5)(τ = 0,k)J1(k⊥τ)
k⊥τ

+ i

∫
d2q

(2π)2
k×q

q2
⊥|k−q|2

(
[q⊥β(3)

⊥ (τ = 0,q), bη(k−q)]

−
[
2β(3)(τ = 0,k−q), b⊥(q)

] ) ∫ π

−π

dφ′

2π
k · (k− 2q) +w′2⊥

k2
⊥−w′2⊥

(
J1(w′⊥τ)
w′⊥τ

− J1(k⊥τ)
k⊥τ

)

+
∫

d2q
(2π)2

d2p
(2π)2

2q×k
|k−q|2

q×p
p2
⊥|q−p|2

[
[b⊥(p), bη(q−p)], b⊥(k−q)

]

×
∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

{
1

2w2
⊥

∫ π

−π

dθ

2π
w2
⊥− |k−q|2 +u2

⊥
k2
⊥−u2

⊥

(
J1(u⊥τ)
u⊥τ

− J1(k⊥τ)
k⊥τ

)

− 1
2q2
⊥

∫ π

−π

dφ′

2π
−k · (k− 2q) +w′2⊥

k2
⊥−w′2⊥

(
J1(w′⊥τ)
w′⊥τ

− J1(k⊥τ)
k⊥τ

)}

+
∫

d2q
(2π)2

d2p
(2π)2

k×q
q2
⊥|k−q|2

q×p
2p2
⊥|q−p|2

∫ π

−π

dφ

2π
1

q2
⊥−w2

⊥

(
(−p2

⊥− |q−p|2 +w2
⊥)

[[
bη(p), bη(q−p)

]
, bη(k−q)

]
+ 2(p ·q− p2

⊥− q2
⊥)
[[
b⊥(p), b⊥(q−p)

]
, bη(k−q)

])
×
{∫ π

−π

dθ

2π
|k−q|2−w2

⊥+u2
⊥

k2
⊥−u2

⊥

(
J1(u⊥τ)
u⊥τ

− J1(k⊥τ)
k⊥τ

)

−
∫ π

−π

dφ′

2π
k · (k− 2q) +w′2⊥

k2
⊥−w′2⊥

(
J1(w′⊥τ)
w′⊥τ

− J1(k⊥τ)
k⊥τ

)}

+
∫

d2q
(2π)2

d2p
(2π)2

(2k−q) ·q
q2
⊥|k−q|

q · (q− 2p)
4p2
⊥|q−p|2

∫ π

−π

dφ

2π
1
w2
⊥

(
(−q2

⊥+w2
⊥+ 2p · (q−p))

[
[bη(p), bη(q−p)] , bη(k−q)

]
+ 2p · (q−p)

[
[b⊥(p), b⊥(q−p)] , bη(k−q)

])
×
{

|k−q|
k2
⊥− |k−q|2

(
J1(|k−q|τ)
|k−q|τ − J1(k⊥τ)

k⊥τ

)

− 1
2|k−q|

∫ π

−π

dθ

2π
|k−q|2−w2

⊥+u2
⊥

k2
⊥−u2

⊥

(
J1(u⊥τ)
u⊥τ

− J1(k⊥τ)
k⊥τ

)}

+
∫

d2q
(2π)2

d2p
(2π)2

(q−p) ·p
2p2
⊥|q−p|2|k−q|2

[
b⊥(p), [b⊥(q−p), bη(k−q)]

]
×
∫ π

−π

dφ

2π

∫ π

−π

dθ

2π
|k−q|2−w2

⊥+u2
⊥

k2
⊥−u2

⊥

(
J1(u⊥τ)
u⊥τ

− J1(k⊥τ)
k⊥τ

)
.

(7.21)
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ρa2(x2)

ρa3(x3)

ρ
b2
R(x2)

ρ
b3
R(x3)

+

ρa1(x1) ρ
b1
R(x1)

+

Figure 8. Schematic representation of the color structure for the double commutators in β(5)(τ,k).
The shaded bar represents the target nucleus. The eikonally rotated color charge density ρR is
represented using red lines.

ρa2(x2)

ρa3(x3)

ρ
b2
R(x2)

ρ
b3
R(x3)

+

ρa1(x1) ρ
b1
R(x1)

Figure 9. Schematic representation of the color structure for the single commutators involving
β(3), β

(3)
⊥ in β(5)(τ,k). The shaded bar represents the target nucleus. The eikonally rotated color

charge density ρR is represented using red lines.

The order-g5 solution β(5)(τ,k) involves interactions of three color charges in the pro-
ton as evidenced by the double color commutators. From the definitions of b⊥(k), bη(k) in
eqs. (6.21) and (6.20), the color structure of the three double commutators can be diagram-
matically illustrated. The [[b⊥(p), bη(q − p)], b⊥(k− q)], [[bη(p), bη(q − p)], bη(k− q)] and
[b⊥(p), [b⊥(q − p), bη(k− q)]] are shown in figures 8. As for the single commutators con-
taining β

(3)
⊥ (τ = 0,q) and β(3)(τ = 0,q), they are represented by many topologically

different diagrams. Two of them are shown in figure 9.
The time-dependent factors are expressed solely in terms of one type of Bessel functions

J1(aτ)/aτ with the cost of introducing two auxilliary angular integrals. Typical terms also
contain two transverse momentum integrations. These transverse momentum integrations
reflect the momentum exchanges between the projectile and the target during the collisions.
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7.2 Solving for β(5)
⊥ (τ, k)

From eq. (7.10), the explicit expression of the source term S
(5)
⊥ (τ,k) is

S
(5)
⊥ (τ,k)

= iτ2

k⊥

∫
d2q

(2π)2
2(k×q)
q⊥|k−q|

[
2β(3)(τ = 0,q), bη(k−q)

]
J1(q⊥τ)J1(|k−q|τ)

+ iτ2

k⊥

∫
d2q

(2π)2
(k2
⊥+ q2

⊥−k ·q)(2k×q)
q⊥|k−q|2

[
β

(3)
⊥ (τ = 0,q), b⊥(k−q)

]
J0(q⊥τ)J0(|k−q|τ)

− τ2

k⊥

∫
d2q

(2π)2

∫
d2p

(2π)2
2(k×q)(q×p)
p2
⊥|q−p|2|k−q|

[
[b⊥(p), bη(q−p)], bη(k−q)

]
×
∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

(
J1(w⊥τ)
w⊥

− J1(q⊥τ)
q⊥

)
J1(|k−q|τ)

+ τ2

k⊥

∫
d2q

(2π)2
d2p

(2π)2
(k2
⊥+ q2

⊥−k ·q)(k×q)(q×p)
q2
⊥|k−q|2p2

⊥|q−p|2
∫ π

−π

dφ

2π
(
(w2
⊥− p2

⊥− |q−p|2)

×
[
[bη(p), bη(q−p)], b⊥(k−q)

]
+ 2(p ·q− p2

⊥− q2
⊥)
[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
× 1
q2
⊥−w2

⊥
(J0(w⊥τ)− J0(q⊥τ))J0(|k−q|τ)

+ τ2

k⊥

∫
d2q

(2π)2
d2p

(2π)2
(2k−q) ·q k · (k−q)q · (q− 2p)

4p2
⊥|q−p|2|k−q|2q2

⊥

∫ π

−π

dφ

2π
(
(w2
⊥− q2

⊥+ 2p · (q−p))

× [[bη(p), bη(q−p)], b⊥(k−q)] + 2p · (q−p)
[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
× 1
w2
⊥

(1− J0(w⊥τ))J0(|k−q|τ)

+ τ2

k⊥

∫
d2q

(2π)2
d2p

(2π)2
p ·k

|q−p||k−q|p2
⊥

[
bη(q−p), [b⊥(p), bη(k−q)]

]
× J1(|q−p|τ)J0(p⊥τ)J1(|k−q|τ)

+ τ2

k⊥

∫
d2q

(2π)2
d2p

(2π)2
q · (q−p)(k−q) ·k
|q−p|2p2

⊥|k−q|2
[
b⊥(q−p), [b⊥(p), b⊥(k−q)]

]
× J0(|q−p|τ)J0(p⊥τ)J0(|k−q|τ) .

(7.22)
The product of three Bessel functions in the last two terms can be further reduced to a
product of two Bessel functions using Graf’s formula:

J1(|q − p|τ)J0(p⊥τ)J1(|k− q|τ) =
∫ π

−π

dφ

2π
|q − p|2 − p2

⊥ + w2
⊥

2|q − p|w⊥
J1(w⊥τ)J1(|k− q|τ),

J0(|q − p|τ)J0(p⊥τ)J0(|k− q|τ) =
∫ π

−π

dφ

2πJ0(w⊥τ)J0(|k− q|τ).

(7.23)
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To solve for β(5)
⊥ (τ,k), we again follow the same procedure used when solving for

β
(3)
⊥ (τ,k). The formal solution is obtained by using the method of variation of parameters

β
(5)
⊥ (τ,k) = D′1J0(s) +D′2Y0(s) + π

2

∫ s

0
dz(J0(z)Y0(s)− J0(s)Y0(z))S

(5)
⊥ (z)
z

(7.24)

with the coefficients determined by the initial condtions at order-g5

D′1 = β
(5)
⊥ (τ = 0,k), D′2 = 0. (7.25)

The time-dependent factors in S(5)
⊥ (τ,k) can always be reduced to one single type of Bessel

function, Bessel function of the first kind with order zero J0(cτ), although different terms
might have different values of the argument c. To be more precise, using Graf’s formula,
only two possibilities are involved

J0(aτ)J0(bτ) =
∫ π

−π

dψ

2π J0(cτ),

J1(aτ)J1(bτ) =
∫ π

−π

dψ

2π cosψJ0(cτ)
(7.26)

with c2 = a2 + b2 − 2ab cosψ. The next step is to use the formula (λ = c/k⊥)
π

2

∫ s

0
zdz(J0(z)Y0(s)− J0(s)Y0(z))J0(λz)

= 1
1− λ2 (J0(λs)− J0(s))

= k2
⊥

k2
⊥ − c2 (J0(cτ)− J0(k⊥τ)) .

(7.27)

It is clearly by now that the recipe is to replace time-dependent factors J0(aτ)J0(bτ) and
J1(aτ)J1(bτ) in the source term S

(5)
⊥ (τ,k) by

J0(aτ)J0(bτ) −→
∫ π

−π

dψ

2π
1

k2
⊥ − c2 (J0(cτ)− J0(k⊥τ))

J1(aτ)J1(bτ) −→
∫ π

−π

dψ

2π
cosψ
k2
⊥ − c2 (J0(cτ)− J0(k⊥τ)) .

(7.28)

To be specific, we only need the following replacements in the source term

J1(q⊥τ)J1(|k− q|τ) −→
∫ π

−π

dφ′

2π
cosφ′

k2
⊥ − w′2⊥

(J0(w′⊥τ)− J0(k⊥τ)),

J0(q⊥τ)J0(|k− q|τ) −→
∫ π

−π

dφ′

2π
1

k2
⊥ − w′2⊥

(J0(w′⊥τ)− J0(k⊥τ)),

J1(w⊥τ)J1(|k− q|τ) −→
∫ π

−π

dθ

2π
cos θ

k2
⊥ − u2

⊥
(J0(u⊥τ)− J0(k⊥τ)),

J0(w⊥τ)J0(|k− q|τ) −→
∫ π

−π

dθ

2π
1

k2
⊥ − u2

⊥
(J0(u⊥τ)− J0(k⊥τ)),

J0(|k− p|τ) −→ 1
k2
⊥ − |k− p|2

(J0(|k− p|τ)− J0(k⊥τ)).

(7.29)

The definitions of w′⊥, u⊥, φ′, θ are given in eqs. (7.20).
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The final expression for the order-g5 solution β(5)
⊥ (τ,k) is

β
(5)
⊥ (τ,k)

= β
(5)
⊥ (τ = 0,k)J0(k⊥τ) + i

1
k⊥

∫
d2q

(2π)2
2(k×q)
q⊥|k−q|

[
2β(3)(τ = 0,q), bη(k−q)

]
×
∫ π

−π

dφ′

2π
cosφ′

k2
⊥−w′2⊥

(J0(w′⊥τ)− J0(k⊥τ))

+ i
1
k⊥

∫
d2q

(2π)2
(k2
⊥+ q2

⊥−k ·q)(2k×q)
q⊥|k−q|2 [β(3)

⊥ (τ = 0,q), b⊥(k−q)]
∫ π

−π

dφ′

2π
J0(w′⊥τ)− J0(k⊥τ)

k2
⊥−w′2⊥

− 1
k⊥

∫
d2q

(2π)2
d2p

(2π)2
2(k×q)(q×p)
p2
⊥|q−p|2|k−q|

[
[b⊥(p), bη(q−p)], bη(k−q)

] ∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

×
{

1
w⊥

∫ π

−π

dθ

2π
cos θ(J0(u⊥τ)− J0(k⊥τ))

k2
⊥−u2

⊥
− 1
q⊥

∫ π

−π

dφ′

2π
cosφ′(J0(w′⊥τ)− J0(k⊥τ))

k2
⊥−w′2⊥

}

+ 1
k⊥

∫
d2q

(2π)2
d2p

(2π)2
(k2
⊥+ q2

⊥−k ·q)(k×q)(q×p)
q2
⊥|k−q|2p2

⊥|q−p|2
∫ π

−π

dφ

2π
1

q2
⊥−w2

⊥

(
(w2
⊥− p2

⊥− |q−p|2)

×
[
[bη(p), bη(q−p)], b⊥(k−q)

]
+ 2(p ·q− p2

⊥− q2
⊥)
[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
×
{∫ π

−π

dθ

2π
J0(u⊥τ)− J0(k⊥τ)

k2
⊥−u2

⊥
−
∫ π

−π

dφ′

2π
J0(w′⊥τ)− J0(k⊥τ)

k2
⊥−w′2⊥

}

+ 1
k⊥

∫
d2q

(2π)2
d2p

(2π)2
(2k−q) ·q k · (k−q)q · (q− 2p)

4p2
⊥|q−p|2|k−q|2q2

⊥

∫ π

−π

dφ

2π
1
w2
⊥

(
(w2
⊥− q2

⊥+ 2p · (q−p))

×
[
[bη(p), bη(q−p)], b⊥(k−q)

]
+ 2p · (q−p)

[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
×
{
J0(|k−p|τ)− J0(k⊥τ)

k2
⊥− |k−p|2

−
∫ π

−π

dθ

2π
J0(u⊥τ)− J0(k⊥τ)

k2
⊥−u2

⊥

}

+ 1
k⊥

∫
d2q

(2π)2
d2p

(2π)2
p ·k

|q−p||k−q|p2
⊥

[
bη(q−p), [b⊥(p), bη(k−q)]

]
×
∫ π

−π

dφ

2π
|q−p|2− p2

⊥+w2
⊥

2|q−p|w⊥

∫ π

−π

dθ

2π
cos θ

k2
⊥−u2

⊥
(J0(u⊥τ)− J0(k⊥τ))

+ 1
k⊥

∫
d2q

(2π)2
d2p

(2π)2
q · (q−p)(k−q) ·k
|q−p|2p2

⊥|k−q|2
[
b⊥(q−p), [b⊥(p), b⊥(k−q)]

]
×
∫ π

−π

dφ

2π

∫ π

−π

dθ

2π
1

k2
⊥−u2

⊥
(J0(u⊥τ)− J0(k⊥τ)) .

(7.30)
It is apparent that the transverse gluon field at order-g5 solely depends on one type of
Bessel function J0(aτ) although different terms have different arguments. Color structure
of the solution can be similarly analyzed as having done for β(5)(τ,k).

7.3 Solving for Λ(5)(τ, k)

Unlike the solutions β(5)(τ,k) and β(5)
⊥ (τ,k), which are determined through the method of

variation of parameters, the non-dynamical field Λ(5)(τ,k) is obtained by direct integration

– 35 –



J
H
E
P
0
6
(
2
0
2
1
)
1
4
0

over the source term S
(5)
Λ (τ,k). In the following, we reorganize the time-dependent factors

in S(5)
Λ (τ,k) so that they only involve one type of Bessel function, Bessel function of the

first kind with order one J1(cτ). The expression of S(5)
Λ (τ,k) in eq. (7.11) can be further

expressed as

S
(5)
Λ (τ,k) = i

∫
d2q

(2π)2
q · (k− q)
q⊥|k− q|

[
β

(3)
⊥ (τ,q), b⊥(k− q)

]
J1(|k− q|τ)

+ i

∫
d2q

(2π)2
q × k
|k− q|

[
Λ(3)(τ,q), b⊥(k− q)

]
J1(|k− q|τ)

+ i

∫
d2q

(2π)2
q · (k− q)
q⊥|k− q|2 [∂τβ(3)

⊥ (τ,q), b⊥(k− q)]J0(|k− q|τ)

+ i

∫
d2q

(2π)2
q × k
|k− q|2 [∂τΛ(3)(τ,q), b⊥(k− q)]J0(|k− q|τ)

− i
∫

d2q
(2π)2 [β̃(3)(τ,q), bη(k− q)]J2(|k− q|τ)

− i
∫

d2q
(2π)2

1
|k− q| [τ∂τβ

(3)(τ,q), bη(k− q)]J1(|k− q|τ) .

(7.31)

We compute each term separately. The first and the third terms can be combined together

i

∫
d2q

(2π)2
q · (k−q)
q⊥|k−q|

( [
β

(3)
⊥ (τ,q), b⊥(k−q)

]
J1(|k−q|τ)

+ 1
|k−q| [∂τβ

(3)
⊥ (τ,q), b⊥(k−q)]J0(|k−q|τ)

)
= i

∫
d2q

(2π)2
q · (k−q)
q⊥|k−q|2 [β(3)

⊥ (τ = 0,q), b⊥(k−q)](|k−q|2− q2
⊥)
∫ π

−π

dφ′

2π
J1(w′⊥τ)
w′⊥

+
∫

d2q
(2π)2

q · (k−q)
q2
⊥|k−q|2

∫
d2p

(2π)2
q×p

2p2
⊥|q−p|2

∫ π

−π

dφ

2π
1

q2
⊥−w2

⊥

(
− (p2

⊥+ |q−p|2−w2
⊥)

×
[
[bη(p), bη(q−p)], b⊥(k−q)

]
+ 2(p ·q− p2

⊥− q2
⊥)
[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
×
(

(|k−q|2−w2
⊥)
∫ π

−π

dθ

2π
J1(u⊥τ)
u⊥

− (|k−q|2− q2
⊥)
∫ π

−π

dφ′

2π
J1(w′⊥τ)
w′⊥

)
.

(7.32)
Here

w′⊥ =
√
q2
⊥ + |k− q|2 − 2q⊥|k− q| cosφ′,

u⊥ =
√
w2
⊥ + |k− q|2 − 2w⊥|k− q| cos θ.

(7.33)

We have also used the identity∫ π

−π

dφ

2π
J1(wz)
w

= 1
a2 − b2

(
aJ0(bz)J1(az)− bJ0(az)J1(bz)

)
(7.34)

with w =
√
a2 + b2 − 2ab cosφ.
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The second and the fourth terms can be combined together

i

∫
d2q

(2π)2
q×k
|k−q|2

( [
Λ(3)(τ,q), b⊥(k−q)

]
J1(|k−q|τ)|k−q|

+ [∂τΛ(3)(τ,q), b⊥(k−q)]J0(|k−q|τ)
)

=
∫

d2q
(2π)2

d2p
(2π)2

q×k
|k−q|2q2

⊥

q · (q− 2p)
4p2
⊥|q−p|2

∫ π

−π

dφ

2π
1
w2
⊥

(
2p · (q−p) [[b⊥(p), b⊥(q−p)], b⊥(k−q)]

− (q2
⊥−w2

⊥− 2p · (q−p)) [[bη(p), bη(q−p)], b⊥(k−q)]
)

×
{

(w2
⊥− |k−q|2)

∫ π

−π

dθ

2π
J1(u⊥τ)
u⊥

+ J1(|k−q|τ)|k−q|
}
.

(7.35)
Finally the fifth and the sixth terms are combined

− i
∫

d2q
(2π)2

(
[β̃(3)(τ,q), bη(k−q)]J2(|k−q|τ) + 1

|k−q| [τ∂τβ
(3)(τ,q), bη(k−q)]J1(|k−q|τ)

)

= −i
∫

d2q
(2π)2

q2
⊥− |k−q|2

q⊥|k−q| [2β(3)(τ = 0,q), bη(k−q)]
∫ π

−π

dφ′

2π
cosφ′
w′⊥

J1(w′⊥τ)

+
∫

d2q
(2π)2

∫
d2p
(2π)

q×p
p2
⊥|q−p|2

[
[b⊥(p), bη(q−p)], bη(k−q)

] ∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

×
{
w2
⊥− |k−q|2

w⊥|k−q|

∫ π

−π

dθ

2π
cos θ
u⊥

J1(u⊥τ)− q
2
⊥− |k−q|2

q⊥|k−q|

∫ π

−π

dφ′

2π
cosφ′
w′⊥

J1(w′⊥τ)
}
.

(7.36)
We used relation J2(z) = 2

zJ1(z)− J0(z) to obtain

1
q⊥
J1(q⊥τ)J2(|k− q|τ)− 1

|k− q|J2(q⊥τ)J1(|k− q|τ)

= 1
q⊥
J1(q⊥τ)J0(|k− q|τ)− 1

|k− q|J0(q⊥τ)J1(|k− q|τ)

= 1
q⊥

∫ π

−π

dφ′

2π
q⊥ − |k− q| cosφ′

w′⊥
J1(w′⊥τ)− 1

|k− q|

∫ π

−π

dφ′

2π
|k− q| − q⊥ cosφ′

w′⊥
J1(w′⊥τ)

= q2
⊥ − |k− q|2

q⊥|k− q|

∫ π

−π

dφ′

2π
cosφ′
w′⊥

J1(w′⊥τ) .

(7.37)

Using the explicit expression of S(5)
Λ (τ,k), the solution Λ(5)(τ,k) is

Λ(5)(τ,k) = − 1
k2
⊥

∫ τ

0
dτ ′S

(5)
Λ (τ ′,k)

= i

∫
d2q

(2π)2
q · (k−q)(|k−q|2− q2

⊥)
q⊥|k−q|2

[
β

(3)
⊥ (τ = 0,q), b⊥(k−q)

] ∫ π

−π

dφ′

2π
1
w′2⊥

(1− J0(w′⊥τ))

− i
∫

d2q
(2π)2

q2
⊥− |k−q|2

q⊥|k−q|

[
2β(3)(τ = 0,q), bη(k−q)

] ∫ π

−π

dφ′

2π
cosφ′
w′2⊥

(1− J0(w′⊥τ))
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+
∫

d2q
(2π)2

d2p
(2π)2

q · (k−q)
q2
⊥|k−q|2

q×p
2p2
⊥|q−p|2

∫ π

−π

dφ

2π
1

q2
⊥−w2

⊥

(
− (p2

⊥+ |q−p|2−w2
⊥)[

[bη(p), bη(q−p)], b⊥(k−q)
]

+ 2(p ·q− p2
⊥− q2

⊥)
[
[b⊥(p), b⊥(q−p)], b⊥(k−q)

])
×
{

(|k−q|2−w2
⊥)
∫ π

−π

dθ

2π
1
u2
⊥

(1− J0(u⊥τ))− (|k−q|2− q2
⊥)
∫ π

−π

dφ′

2π
1
w′2⊥

(1− J0(w′⊥τ))
}

+
∫

d2q
(2π)2

d2p
(2π)2

q×k
|k−q|2q2

⊥

q · (q− 2p)
4p2
⊥|q−p|2

∫ π

−π

dφ

2π
1
w2
⊥

(
2p · (q−p) [[b⊥(p), b⊥(q−p)], b⊥(k−q)]

− (q2
⊥−w2

⊥− 2p · (q−p)) [[bη(p), bη(q−p)], b⊥(k−q)]
)

×
{

(w2
⊥− |k−q|2)

∫ π

−π

dθ

2π
1
u2
⊥

(1− J0(u⊥τ)) + (1− J0(|k−q|τ))
}

+
∫

d2q
(2π)2

d2p
(2π)

q×p
p2
⊥|q−p|2

[
[b⊥(p), bη(q−p)], bη(k−q)

] ∫ π

−π

dφ

2π
q · (q− 2p) +w2

⊥
q2
⊥−w2

⊥

×
{
w2
⊥− |k−q|2

w⊥|k−q|

∫ π

−π

dθ

2π
cos θ
u2
⊥

(1− J0(u⊥τ))− q2
⊥− |k−q|2

q⊥|k−q|

∫ π

−π

dφ′

2π
cosφ′
w′2⊥

(1− J0(w′⊥τ))
}
.

(7.38)

Let us summarize and comment on the general procedures for solving the classical
Yang-Mills equations perturbatively in the dilute-dense regime. At each fixed order g2m+1,
the dynamical fields β(2m+1)(τ,k) and β(2m+1)

⊥ (τ,k) satisfy the inhomogeneous Bessel dif-
ferential equations of orders one and zero, respectively. They are solved using the well-
established method of variation of parameters. The success of this method relies on re-
combining the time-dependent factors in the source terms S(2m+1)

η and S
(2m+1)
⊥ so that

S
(2m+1)
η only depends on J1(cτ) and S(2m+1)

⊥ only depends on J0(cτ). Owing to the Graf’s
formula, this is always possible. As for Λ(2m+1)(τ,k), it satisfies first order differential
equation with source term S

(2m+1)
Λ . All one needs to do is express the time-dependent

factors in S
(2m+1)
Λ (τ,k) in terms of Bessel functions J1(cτ). Each time Graf’s formula is

used, an extra angular integral is introduced. Unfortunately, the number of terms in the
solutions increases dramatically as one goes to higher and higher perturbative orders and
the problem quickly becomes unmanageable analytically.

8 Discussions and outlooks

In this paper, we have presented the first step towards completing the calculations of the
first saturation corrections to physical observables in high energy proton-nucleus collisions.
We solved the classical Yang-Mills equations in the dilute-dense regime beyond the leading
order. We explicitly constructed the order-g3 and order-g5 solutions. The main results are
presented in eqs. (6.17), (6.30), (6.42), (7.21), (7.30) and (7.38). The major mathematical
technique that makes the analytic solutions possible is Graf’s formula, which expresses
product of two Bessel functions in terms of an angular integral of one Bessel function. As
a consistence check of our main results, when the target Wilson line U(x) = 1, the gluon
fields vanish β(τ,k) = 0 and βi(τ,k) = 0, i.e. there is no gluon production in the absence
of scattering as expected.

– 38 –



J
H
E
P
0
6
(
2
0
2
1
)
1
4
0

There are a few apparent features of the solutions. First of all, the time dependent
factors in the longitudinal gluon field

β(τ,k) = β(1)(τ,k) + β(3)(τ,k) + β(5)(τ,k) + . . . (8.1)

are uniquely determined by one single type of Bessel functions J1(aτ) although the values
of the argument a might be different at different orders. On the other hand, the time
dependent factors in the transverse field

βi(τ,k) = β
(1)
i (τ,k) + β

(3)
i (τ,k) + β

(5)
i (τ,k) + . . . (8.2)

are completely determined by J0(aτ) again with possible different arguments a.
Second, the order-g solutions β(1)(τ,k), β(1)

i (τ,k) do not involve mutual interactions
of the “valence” color charges in the proton. Each color charge in the proton indepen-
dently scatter on the target. On the other hand, the order-g3 solutions β(3)(τ,k), β(3)

i (τ,k)
represent interactions of two color charges in the proton. Their interactions can happen
before or after the collisions with the target. The order-g5 solutions β(5)(τ,k), β(5)

i (τ,k)
represent interactions of three color charges in the proton. Their interactions likewise can
happen before or after the collisions with the target. It can also be that two color charges
interact with each other before scattering on the target and then interact with the third
color charge only after the collisions with the target.

Another important feature is related to the gauge dependence of the concepts of initial
state effects and final state effects as defined on the basis of the field. In the main context
of the paper, the solutions are given in the initial time Coulomb sub gauge. In appendix D,
we present the order-g and order-g3 solutions in the non-Coulomb sub gauge. These two
sets of solutions are related by a gauge transformation. Performing direct comparison of
these two sets of solutions, would convince the reader that some final state effects in the
non-Coulomb subgauge become the initial state effects in the Coulomb subgauge.

On the other hand, physical observables are independent of gauge transformations.
With the solutions of the classical Yang-Mills equations at hand, one can calculate several
interesting physical quantities that can be constructed from the classical gluon fields. For
example, the energy-momentum tensor of the gluon fields produced in high energy pA
collisions by

Tµν(τ,x) = Fµλ(τ,x)F ν
λ (τ,x) + 1

4g
µνF κλ(τ,x)Fκλ(τ,x). (8.3)

Tracing over the color matrix is understood in the above definition like AB = AaBa =
Tr(AB) with a = 1, . . . N2

c − 1.
In the second paper of this series, we will calculate the single inclusive soft gluon

production and double inclusive soft gluon production. These observables are constructed
using the LSZ formula

âa†p (τ) = −iτ
√
π

4
(
H

(2)
1 (p⊥τ)←→∂τ β̃a(τ,p)

)
,

ĉa†p (τ) = −iτ
√
π

4
(
H

(2)
0 (p⊥τ)←→∂τ βa⊥(τ,p)

)
,

(8.4)
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and taking the limit τ →∞. Here H(2)
0 (x) andH(2)

1 (x) are Hankel functions of second kind,
order zero and order one, respectively. The left right derivative is defined as f1(x)←→∂x f2(x) =
f1(x)∂xf2(x)−∂xf1(x)f2(x). Unlike the energy-momentum tensor which is gague invariant
by construction, the single inclusive gluon production by âa,†p âap + ĉa,†p ĉap are explicitly
dependent on β(τ,k) and β⊥(τ,k) which are gauge variant objects. Thus gauge invariance
of the single inclusive production will serve as a non-trivial of the derived solutions.

It should be mentioned that to solve the classical Yang-Mills equations in the dense-
dense regime, another semi-analytical approach was developed in refs. [55, 56]. In this
method, the solutions are expanded as power series expansions in proper time τ . Although
at each order in τ , all the saturation effects are included, the solutions are only meaningful
when the values of τ are small. This small-τ expansion method cannot be used to rigorously
calculate the single inclusive gluon production by the LSZ formula which requires taking
the τ →∞ limit. Our expansions in terms of coupling constant g are valid for all the proper
time but can only take into account the saturation effects order by order. Amusingly one
can combine these two analytical approaches into a double expansion in τ and g which
gives a non-trivial insights into the dense-dense regime. We defer further discussion for a
future publication.
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A The non-dynamical field Λ(τ, x)

In this appendix, we give a general proof that Λ(τ,x) is not a dynamical field. To be
precise, we want to show that the second order differential equation for Λ(τ,x) can be
obtained from the first order constraint equation. The proof is done perturbatively using
induction. The perturbative expansions for the solutions are

β̃(τ,x) =
∞∑
n=0

g2n+1β̃(2n+1)(τ,x),

β̃i(τ,x) =
∞∑
n=0

g2n+1β
(2n+1)
i (τ,x),

Λ(τ,x) =
∞∑
n=0

g2n+1Λ(2n+1)(τ,x).

(A.1)

Substituting these expansions into the classical Yang-Mills equations in eq. (4.1), at order-
g2N+1, the first order constraint equation is

∂τ∂
2Λ(2N+1) = i

N−1∑
M=0

[β(2N−2M−1)
i , ∂τβ

(2M+1)
i ] + i

N−1∑
M=0

[β̃(2N−2M−1), ∂τ β̃
(2M+1)] . (A.2)
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The right hand side of this equation involves all the lower order solutions β(K)
i , β̃(K) for

K = 1, 3, . . . , 2N − 1.
The second order differential equation for the order-g2N+1 field is

τ2∂2
τ∂

2Λ(2N+1) + τ∂τ∂
2Λ(2N+1)

= iτ2
N−1∑
M=0

[β̃(2N−2M−1), ∂2β̃(2M+1)] + iτ2
N−1∑
M=0

[β(2N−2M−1)
i , (∂2δij − ∂i∂j)β(2M+1)

j ]

+ τ2
N−1∑
M=0

M−1∑
L=0

∂i
[
β̃(2N−2M−1), [β(2M−2L−1)

i , β̃(2L+1)]
]

+ τ2
N−1∑
M=0

M−1∑
L=0

∂i[β(2N−2M−1)
j , [β(2M−2L−1)

i , β
(2L+1)
j ]].

(A.3)

Our goal is to prove that from the order-g2N+1 constraint equation eq. (A.2), using all the
lower order equations of motion, the second order differential equation eq. (A.3) can be
derived. Taking time derivative of eq. (A.2) w.r.t. τ , one obtains

τ2∂2
τ∂

2Λ(2N+1) = i
N−1∑
M=0

[β(2N−2M−1)
i , τ2∂2

τβ
(2M+1)
i ] + i

N−1∑
M=0

[β̃(2N−2M−1), τ2∂2
τ β̃

(2M+1)].

(A.4)
Combining eqs. (A.2) and (A.4), we obtain

τ2∂2
τ∂

2Λ(2N+1) + τ∂τ∂
2Λ(2N+1) = i

N−1∑
M=0

[β(2N−2M−1)
i , τ2∂2

τβ
(2M+1)
i + τ∂τβ

(2M+1)
i ]

+ i
N−1∑
M=0

[β̃(2N−2M−1), τ2∂2
τ β̃

(2M+1) + τ∂τ β̃
(2M+1)] .

(A.5)

It contains lower order equations of motion. They are (for M = 0, 1, . . . , N − 1)

τ2∂2
τ β̃

(2M+1) + τ∂τ β̃
(2M+1) = β̃(2M+1) + τ2∂2

i β̃
(2M+1)

− iτ2
M−1∑
M ′=0

∂i[β(2M−2M ′−1)
i , β̃(2M ′+1)]− iτ2

M−1∑
M ′=0

[β(2M−2M ′−1)
i , ∂iβ̃

(2M ′+1)]

− τ2
M−1∑
M ′=0

M ′−1∑
N ′=0

[β(2M−2M ′−1)
i , [β2M ′−2N ′−1

i , β̃2N ′+1]]

(A.6)

and

τ2∂2
τβ

(2M+1)
i + τ∂τβ

(2M+1)
i

= τ2(∂2δij − ∂i∂j)β(2M+1)
j + iτ2

M−1∑
M ′=0

[β̃(2M−2M ′−1), ∂iβ̃
(2M ′+1)]

− iτ2
M−1∑
M ′=0

∂j [β(2M−2M ′−1)
j , β

(2M ′+1)
i ]− iτ2

M−1∑
M ′=0

[β(2M−2M ′−1)
j , ∂jβ

(2M ′+1)
i − ∂iβ(2M ′+1)

j ]
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+ τ2
M−1∑
M ′=0

M ′−1∑
N ′=0

[β̃(2M−2M ′−1), [β(2M ′−2N ′−1)
i , β̃(2N ′+1)]]

+ τ2
M−1∑
M ′=0

M ′−1∑
N ′=0

[β(2M−2M ′−1)
j , [β(2M ′−2N ′−1)

i , β
(2N ′+1)
j ]].

(A.7)

Substituting these two equations in eq. (A.5), we get

τ2∂2
τ∂

2Λ(2N+1) + τ∂τ∂
2Λ(2N+1)

= i
N−1∑
M=0

[β(2N−2M−1)
i , τ2∂2

τβ
(2M+1)
i + τ∂τβ

(2M+1)
i ] + i

N−1∑
M=0

[β̃(2N−2M−1), τ2∂2
τ β̃

(2M+1) + τ∂τ β̃
(2M+1)]

= i
N−1∑
M=0

[β(2N−2M−1)
i , τ2(∂2δij − ∂j∂j)β(2M+1)

j ] + i
N−1∑
M=0

[β̃(2N−2M−1), τ2∂2
i β̃

(2M+1)]

− τ2
N−1∑
M=0

M−1∑
M ′=0

[β(2N−2M−1)
i , [β̃(2M−2M ′−1), ∂iβ̃

(2M ′+1)]]

+ τ2
N−1∑
M=0

M−1∑
M ′=0

[β(2N−2M−1)
i , ∂j [β(2M−2M ′−1)

j , β
(2M ′+1)
i ]]

+ τ2
N−1∑
M=0

M−1∑
M ′=0

[β(2N−2M−1)
i , [β(2M−2M ′−1)

j , ∂jβ
(2M ′+1)
i − ∂iβ(2M ′+1)

j ]]

+ τ2
N−1∑
M=0

M−1∑
M ′=0

[β̃(2N−2M−1), ∂i[β(2M−2M ′−1)
i , β̃(2M ′+1)]]

+ τ2
N−1∑
M=0

M−1∑
M ′=0

[β̃(2N−2M−1), [β(2M−2M ′−1)
i , ∂iβ̃

(2M ′+1)]] .

(A.8)
First of all, we have used the fact that the following terms vanish

N−1∑
M=0

[β̃(2N−2M−1), β̃(2M+1)] = ([β̃, β̃])(2N) = 0 (A.9)

N−1∑
M=0

M−1∑
M ′=0

M ′−1∑
N ′=0

[β(2N−2M−1)
i , [β(2M−2M ′−1)

j , [β(2M ′−2N ′−1)
i , β

(2N ′+1)
j ]]]

= ([βi, [βj , [βi, βj ]]])(2N−2) = 0 (A.10)
N−1∑
M=0

M−1∑
M ′=0

M ′−1∑
N ′=0

[β(2N−2M−1)
i , [β̃(2M−2M ′−1), [β(2M ′−2N ′−1)

i , β̃(2N ′+1)]]]

−
N−1∑
M=0

M−1∑
M ′=0

M ′−1∑
N ′=0

[β̃(2N−2M−1), [β(2M−2M ′−1)
i , [β2M ′−2N ′−1

i , β̃2N ′+1]]]

= ([βi, [β̃, [βi, β̃]]]− [β̃, [βi, [βi, β̃]]])(2N−2) = 0 .

(A.11)

Trivial algebra shows that eq. (A.8) reproduces eq. (A.3). Q.E.D.
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B The method of variation of parameters

For the sake of completeness, we briefly review the method of solving inhomogeneous
differential equations used in the main body of the paper. The method is often called
variation of parameters. For a general second order inhomogeneous differential equation

a(x)y′′ + b(x)y′ + c(x)y = f(x), (B.1)

there are four steps to obtain its general solutions:

• find two independent solutions y1(x) and y2(x) of the homogeneous equation

a(x)y′′ + b(x)y′ + c(x)y = 0 . (B.2)

The general solution for the homogeneous equation is

yh(x) = C1y1(x) + C2y2(x) , (B.3)

where C1 snd C2 are coefficients to be fixed by the initial (and/or boundary) condi-
tions.

• calculate the Wronskian of the two independent solutions y1(x), y2(x),

W (x) = y1(x)y′2(x)− y′1(x)y2(x). (B.4)

• construct the particular solution of the inhomgeneous equation.

yp(x) = y1(x)
∫ x y2(z)(−f(z))

a(z)W (z) dz + y2(x)
∫ x y1(z)f(z)

a(z)W (z)dz

=
∫ x y1(z)y2(x)− y1(x)y2(z)

W (z)
f(z)
a(z)dz.

(B.5)

• finally, by adding together the general solution of the homogeneous equation yh(x)
and the particular solution of the inhomogeneous equation yp(x), obtain the general
solution for the inhomogeneous equation

y(x) = C1y1(x) + C2y2(x) +
∫ x y1(z)y2(x)− y1(x)y2(z)

W (z)
f(z)
a(z)dz. (B.6)

C Integrals for the products of two Bessel functions

There are a few general identities expressing the product of two Bessel functions in terms
of an integral of one Bessel function from Dixion and Farrar’s paper in 1933 [57]. For our
problem here, only integer orders of Bessel functions are involved. The more well-known
Graf’s formula [58, 59] serves our purpose:

einΨJn(ω) =
∞∑

m=−∞
Jn+m(Z)Jm(Z ′)eimφ (C.1)
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where
ω =

√
Z2 + Z ′2 − 2ZZ ′ cosφ . (C.2)

The angle Ψ is defined by

ω cos Ψ = Z − Z ′ cosφ, ω sin Ψ = Z ′ sinφ. (C.3)

Integrating both sides of the Graf’s formula using
∫ π
−π

dφ
2πe
−im′φ, one obtains∫ π

−π

dφ

2πe
−im′φeinΨJn(ω) = Jn+m′(Z)Jm′(Z ′). (C.4)

This can be rewritten in the form which is more convenient for the applications

Jn+m(az)Jm(bz) =
∫ π

−π

dφ

2πe
−imφeinΨJn(wz) . (C.5)

In this case, w =
√
b2 + a2 − 2ab cosφ is symmetric with respect to a, b and

eiΨ = (a− b cosφ) + i(b sinφ)√
b2 + a2 − 2ab cosφ

. (C.6)

Here are a few examples that were used in the main body of the paper:

J0(Z)J0(Z ′): In this case m = 0, n = 0, thus we obtain

J0(az)J0(bz) =
∫ π

−π

dφ

2πJ0(wz). (C.7)

J0(Z)J1(Z ′): Here we can choose between two combinations of n and m. For n = 1,m = −1, we
obtain

J0(az)J1(bz) = −
∫ π

−π

dφ

2πe
iφeiΨJ1(wz) . (C.8)

For m = 0, n = 1,
J1(az)J0(bz) =

∫ π

−π

dφ

2πe
iΨJ1(wz) . (C.9)

Therefore we have two integral representation for this product

J0(az)J1(bz) = −
∫ π

−π

dφ

2πe
iφeiΨJ1(wz) =

∫ π

−π

dφ

2πe
iΨ′J1(wz) . (C.10)

Here Ψ′ is related to Ψ by the exchange a↔ b,

eiΨ
′ = (b− a cosφ) + i(a sinφ)√

b2 + a2 − 2ab cosφ
. (C.11)

It can be easily checked that φ+ π + Ψ = Ψ′. Thus the two integral representations
are equivalent. Additionally, since w is an even function of φ, only φ-even part of the
exponentials contributes:

J0(az)J1(bz) = 2
∫ π

0

dφ

2π cos Ψ′J1(wz)

= 2
∫ |b+a|
|b−a|

dw
b2 − a2 + w2

b
√

((a+ b)2 − w2)(w2 − (a− b)2)
J1(wz).

(C.12)
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In the second equality, we have changed the integration variable from φ to w using

cosφ = a2 + b2 − w2

2ab , (C.13)

dφ = wdw

ab sinφ = 2wdw√
4a2b2 − (a2 + b2 − w2)2 . (C.14)

cos Ψ′ = b− a cosφ
w

= b2 − a2 + w2

2bw . (C.15)

J1(Z)J1(Z ′): Setting n = 0,m = 1, we get

J1(az)J1(bz) =
∫ π

−π

dφ

2πe
−iφJ0(wz). (C.16)

Alternatively for m = −1, n = 0,

J1(az)J1(bz) =
∫ π

−π

dφ

2πe
iφJ0(wz). (C.17)

These two expressions are equivalent. Since w is even function of φ, only the even
part of eiφ contributes to the integral:

J1(az)J1(bz) = 2
∫ π

0

dφ

2π cosφJ0(wz). (C.18)

On the other hand, for n = 2,m = −1,

J1(az)J1(bz) = −
∫ π

−π

dφ

2πe
iφei2ΨJ2(wz). (C.19)

The case of n = −2,m = 1 will yield the same expression. We can further simplify
to get

J1(az)J1(bz) = −2
∫ π

0

dφ

2π cos (φ+ 2Ψ)J2(wz). (C.20)

J1(Z)J2(Z ′): There are two ways to express J1(Z)J2(Z ′) in terms of an integral of J1(Z ′′). For
n = 1,m = −2 or n = −1,m = 2, one obtains

J1(az)J2(bz) = −
∫ π

−π

dφ

2πe
2iφeiΨJ1(wx). (C.21)

For n = 1,m = 1 or n = −1,m = −1,

J2(az)J1(bz) =
∫ π

−π

dφ

2πe
−iφeiΨJ1(wx). (C.22)

Again, it seems like we have two expressions

J1(az)J2(bz) = −
∫ π

−π

dφ

2πe
2iφeiΨJ1(wx) =

∫ π

−π

dφ

2πe
−iφeiΨ

′
J1(wx), (C.23)

but they are equivalent due to cos (φ−Ψ′) = − cos (2φ+ Ψ).
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D Solutions in the non-Coulomb subgauge

In this appendix, we present the solutions of the Yang-Mills equation at order-g and order-
g3 in the non-Coulomb sub-gauge that is defined by U(x). Initial conditions in this gauge
has been discussed in section 3.2.1.

Order-g solutions

ζ(1)(τ,k) = bη(k)J1(k⊥τ)
k⊥τ

,

ζ
(1)
i (τ,k) = −iε

ilkl
k2
⊥

b⊥(k)J0(k⊥τ)− ikiΛ(k)
(D.1)

with the initial conditions
bη(k) = 2ζ(1)(τ = 0,k),

b⊥(k) = −iεijkiζ(1)
j (τ = 0,k),

Λ(k) = iki
k2 ζ

(1)
i (τ = 0,k).

(D.2)

Here bη(k) and b⊥(k) are exactly the same as those in eq. (5.6). In the non-Coulomb
subgauge, ∂iζi 6= 0, so Λ(k) contributes to the initial condition.

The order-g3 solutions are

ζ(3)(τ,k) = 2ζ(3)(τ = 0,k)J1(k⊥τ)
k⊥τ

+ i

∫
d2p
(2π)

([
Λ(k−p), bη(p)

](J1(p⊥τ)
p⊥τ

− J1(k⊥τ)
k⊥τ

)

− k×p
p2
⊥|k−p|2

[
b⊥(k−p), bη(p)

] ∫ π

−π

dφ

2π

(
−1 + 2k ·p

k2
⊥−w2

⊥

)(
J1(w⊥τ)
w⊥τ

− J1(k⊥τ)
k⊥τ

))
,

(D.3)

ζ
(3)
⊥ (τ,k) = ζ

(3)
⊥ (τ = 0,k)J0(k⊥τ)− i

k⊥

∫
d2p

(2π)2

∫ π

−π

dφ

2π
1

k2
⊥−w2

⊥

× (k×p)
2p2
⊥|k−p|2

(
(p2
⊥+ |k−p|2−w2

⊥)
[
bη(p), bη(k−p)

]
+ 2(p ·k− p2

⊥− k2
⊥)
[
b⊥(p), b⊥(k−p)

])
(J0(w⊥τ)− J0(k⊥τ))

+ (k ·p)
p2
⊥

[
b⊥(p),Λ(k−p)

]
(J0(p⊥τ)− J0(k⊥τ))

+ 1
2(p×k)

[
Λ(p),Λ(k−p)

]
(1− J0(k⊥τ)),

(D.4)

Λ(3)(τ,k) = Λ(3)(τ = 0,k)− i

k2
⊥

∫
d2p

(2π)2

∫ π

−π

dφ

2π
k · (k− 2p)

4w2
⊥p

2
⊥|k−p|2(

2p · (k−p) [b⊥(p), b⊥(k−p)]− (k2
⊥−w2

⊥− 2p(k−p)) [bη(p), bη(k−p)]
)

× (1− J0(w⊥τ)) + p×k
|k−p|2 [Λ(p), b⊥(k−p)] (1− J0(|k−p|τ)).

(D.5)
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Comparing with the solutions in the initial time Coulomb sub gauge given by eqs. (6.17),
(6.30) and (6.42), the terms containing Λ(p) in eqs. (D.3), (D.4), (D.5), which represent
final state interactions in the non-Coulomb sub gague, are shifted to become initial state
effects in eqs. (6.17), (6.30) and (6.42)
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