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1 Introduction

The origin of light neutrino masses and dark matter (DM) remain unsolved puzzles of the
Standard Model (SM). Many explanations have been proposed; of particular interest are
those that can simultaneously account for both of them. A successful model should not
only provide a natural explanation for the smallness of neutrino masses, it should also
include a viable DM candidate. For the former case, radiative neutrino mass models (see
refs. [1, 2] for a review), with new states at the TeV scale, are an attractive solution. As for
DM, a GeV–TeV scale Weakly Interacting Massive Particle, stabilised by some remanent
symmetry (e.g., Z2), provides an elegant solution. In this context, the Scotogenic Model
(ScM), first proposed by Ernest Ma (2006) [3] (see also refs. [4–19]), emerges as one of
the simplest joint solutions for neutrino masses and DM. It adds a new scalar doublet Φ
and new Majorana singlets ψi (i ≥ 2), all of them charged under a Z2 symmetry. Another
interesting variant has been recently proposed where the Z2 symmetry is exchanged for a
U(1) symmetry; it is referred to as the Generalised Scotogenic Model (GScM) [20].

In the ScM, neutrino masses are generated at the one-loop level, and are proportional
to a particular quartic coupling, λHΦ,3, and the Majorana masses, mψi . In principle, DM
can either be in the form of the lightest ψi, or the lightest neutral component of Φ (either
CP-even or CP-odd, depending on the sign of λHΦ,3). In both cases, however, saturat-
ing the observed DM relic abundance is non-trivial as the models are subject to strong
constraints from neutrino masses, electroweak precision tests (EWPT), direct detection
(DD) experiments, and particularly lepton flavour violation (LFV) processes; the DD lim-
its, however, can be circumvented by imposing a lower bound on the splitting between
the CP-even and CP-odd scalars, i.e., a lower bound on λHΦ,3. For the fermion DM case,
coannihilations are typically required [20].

In this work, we investigate how the parameter space of the original ScM is augmented
in the presence of a real scalar singlet, denoted by ϕ. This can be understood as the
simplest extension of the Scotogenic model [3], which we refer to as the ScotoSinglet Model
(ScSM). Notice that the usual ScM is recovered in the limit of no mixing, and when
the singlet decouples. The model was first outlined in ref. [21], assuming an MeV-scale
scalar DM with annihilations into neutrinos only (see also ref. [22], based on the one-loop
classification of ref. [23]). A scale-invariant version of the ScM with an extra scalar singlet
was studied in ref. [14].1 A similar singlet-doublet model,2 also in the fermion sector, was
studied in ref. [25]; for other studies, see refs. [26–28]. Collider signatures of a similar
model (without the λ5 term) were studied in ref. [29]. Low-scale leptogenesis was studied
in the context of ScM [30] and a real scalar singlet [31]. Recently, in ref. [32], inflation was
studied in a ScM with an additional scalar singlet (not charged under the Z2 symmetry).
Also recently, a different variant of the ScM with a scalar singlet not charged under Z2
and spontaneously broken lepton number was studied in ref. [33]. Here we aim to provide
a more detailed analysis of the full parameter space while focusing on all possible DM

1In this case, the scalar singlet is not charged under a Z2 symmetry, and instead plays the role of a
dilaton with very different phenomenological implications.

2A singlet-triplet DM model with radiative neutrino masses is proposed in ref. [24].
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candidates in the ScSM, and comparing our results against the usual ScM. We also study
how the parameter space expands with respect to the case of pure singlet or pure doublet
DM via turning on/off the relevant couplings.

The ScSM has some interesting features (mostly due to the presence of a scalar singlet-
doublet mixing, and a trilinear coupling between ϕ, Φ and the Higgs doublet H): new
contributions to neutrino masses, 3 potential DM candidates (one of which is a mixture of
singlet and doublet), and the possibility to maintain the Z2 symmetry up to high energy
scales. In light of these features, we perform, for the first time, a convergent global fit
of the ScSM. As we will show, the presence of the singlet significantly opens up the
allowed parameter space of the CP-even scalar DM, which now has a non-negligible singlet
component. Due to the presence of the trilinear coupling with the singlet, there exists
a splitting between the CP-even components. This naturally translates into a significant
mass splitting between the lightest CP-even and CP-odd scalars, which allows to naturally
evade the stringent DD limits.

The rest of the paper is organised as follows. In section 2, we introduce the ScSM.3 The
phenomenology of the ScSM and various theoretical/observational constraints that we im-
pose are described in section 3. Sections 4 and 5 are devoted to our numerical analysis
and results, respectively. Our conclusions are presented in section 6. A list of appendices
provide supplementary information for understanding various expressions in the paper.

2 The ScotoSinglet Model (ScSM)

The new particle fields of the ScSM and their quantum numbers are presented in table 1.
The Lagrangian for the Majorana fermion fields Ψ ≡ (ψ1, . . . , ψN )T is given by

LΨ = 1
2Ψ(i/∂ −MΨ)Ψ−Ψ yΨ Φ̃† L+ H.c. , (2.1)

where MΨ is an N × N diagonal mass matrix with real and positive values, and yΨ
is an N × 3 complex matrix of Yukawa couplings. Without loss of generality, we take
mψ1 ≥ mψ2 ≥ . . . ≥ mψN . To reproduce the neutrino masses, N ≥ 2. Here we study the
minimal case (N = 2).4

The most general form of a Z2 symmetric scalar potential is

V = −µ2
HH

†H + λH(H†H)2 +m2
ΦΦ†Φ + λΦ(Φ†Φ)2 + 1

2m
2
ϕϕ

2 + 1
4λϕϕ

4

+ λHΦ,1(H†H)(Φ†Φ) + λHΦ,2(H†Φ)(Φ†H) + 1
2
[
λHΦ,3(H†Φ)2 + H.c.

]
+ 1

2λHϕH
†Hϕ2 + 1

2λΦϕΦ†Φϕ2 +
[
κΦ†H ϕ+ H.c.

]
. (2.2)

3Our FeynRules [34] and CalcHEP [35] model files are available here.
4For the main purpose of our study (scalar DM and comparison with the ScM), the results are not

expected to change significantly for N > 2.
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Fields SU(3)C SU(2)L U(1)Y Z2

Real ϕ 1 1 0 −
Φ 1 2 1/2 −
ψk 1 1 0 −

Table 1. Particle content of the ScotoSinglet Model (ScSM). Here k = 1, . . . , N are the number of
new Majorana fermion fields; in our study, we consider N = 2.

Here H ≡
(
0, (v + h)/

√
2
)T

is the SM Higgs doublet after electroweak symmetry breaking
(EWSB).5 Without loss of generality, λHΦ,3 can be made real by performing a rotation of
Φ. Although κ, in general, can be complex, we also take it as real in our study.

We assume that the Z2 symmetry is exactly preserved such that in the vacuum state,
〈Φ〉 = 〈ϕ〉 = 0. The electrically neutral and charged field components of the weak scalar
doublet Φ are

Φ ≡

 φ+

1√
2

(φR + iA)

 . (2.3)

After EWSB, the physical masses of charged scalar φ+ and CP-odd pseudoscalar A are

m2
φ+ = m2

Φ + 1
2λHΦ,1v

2 , (2.4a)

m2
A = m2

Φ + 1
2(λHΦ,1 + λHΦ,2 − λHΦ,3)v2 . (2.4b)

In the (φR, ϕ) basis, the squared mass matrix is non-diagonal, namely

M2 =


∂2V

∂φ2
R

∂2V

∂φR ∂ϕ

∂2V

∂ϕ∂φR

∂2V

∂ϕ2

 =
(
a c

c b

)
, (2.5)

where6

a = m2
Φ + 1

2(λHΦ,1 + λHΦ,2 + λHΦ,3)v2 , b = m2
ϕ + 1

2λHϕv
2 , c = κv . (2.6)

Notice from eq. (2.2) that κ controls the mixing between φR and ϕ, and λHΦ,3 the mass
splitting between φR and A. To diagonalise the mass matrix in eq. (2.5), we perform a
rotation into the physical mass basis (η1, η2) by(

η1
η2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
φR
ϕ

)
, (2.7)

5The SM Higgs boson mass is mh =
√

2λHv2 =
√

2µ2
H = 125GeV, where the vacuum expectation value

is v =
√
µ2
H/λH = 246.22GeV.

6Notice that m2
A = a − λHΦ,3v

2, where a is the mass of the CP-even scalar doublet in the absence of
mixing (θ = 0).
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such that

tan 2θ = 2c
a− b

. (2.8)

The mixing angle θ ∈ [0, π] and the quadrant is determined by the signs of a − b and c.
For instance, a− b > 0 and c > 0 implies θ ∈ (0, π/4), whereas a− b < 0 and c > 0 implies
θ ∈ (π/4, π/2). The physical scalar η1,2 masses are given by

m2
η1 = 1

2

(
a+ b+

√
(a− b)2 + 4c2

)
, (2.9a)

m2
η2 = 1

2

(
a+ b−

√
(a− b)2 + 4c2

)
. (2.9b)

Note that by convention, mη1 ≥ mη2 . The DM candidate can either be the CP-even scalar
η2, the CP-odd pseudoscalar A or the lightest Majorana fermion ψ2 (as mψ1 ≥ mψ2 by
convention).

3 Phenomenology

After EWSB and rotation into the physical mass basis, the ScSM contains 12 free model
parameters, namely

5 masses (1 mixing angle) : {mψ1 , mψ2 , mη1 , mη2 , mA, θ} , (3.1a)
6 couplings : {λΦ, λϕ, λHΦ,1, λHΦ,2, λHϕ, λΦϕ} . (3.1b)

The remaining parameters in eq. (2.2) can be expressed as (see appendix A)

m2
Φ = m2

η1 cos2 θ +m2
η2 sin2 θ − 1

2 (λHΦ,1 + λHΦ,2 + λHΦ,3) v2 , (3.2a)

m2
ϕ = m2

η1 sin2 θ +m2
η2 cos2 θ − 1

2λHϕv
2 , (3.2b)

m2
φ+ = m2

Φ + 1
2λHΦ,1v

2 , (3.2c)

λHΦ,3 = 1
v2

(
m2
η1 cos2 θ +m2

η2 sin2 θ −m2
A

)
, (3.2d)

κ = 1
v

(m2
η1 −m

2
η2) sin θ cos θ . (3.2e)

We also have free parameters within the complex Yukawa matrices, for which we use a
Casas-Ibarra parametrisation [36]. For N = 2 fermionic singlets, there are N = 2 real
angles from the complex orthogonal Casas-Ibarra matrix R, and N − 1 = 1 Majorana
phase in the PMNS matrix U (as one of the neutrinos is massless); see appendix B for
more details. Thus, we can express the 6 complex Yukawa couplings in terms of the low-
energy neutrino oscillation data (3 masses, 3 angles, and 2 phases), the 2 heavy Majorana
masses parameters, and the 2 real angles of the R matrix. These are considered as nuisance
parameters in our study.

In the following subsections, we discuss various theoretical/observational constraints
that are imposed on the allowed model parameter space.
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3.1 Naturalness, perturbativity and Z2 symmetry breaking

3.1.1 Perturbativity

From perturbativity arguments, we require all quartic couplings in the potential to satisfy

|λi| < 4π . (3.3)

In addition, we also impose the co-positivity conditions discussed in appendix C. As for
the Yukawa couplings (derived parameters in our scan), we require

|yαψi |
2 < 4π , (3.4)

where i = 1, 2 and α = e, µ, τ .

3.1.2 Naturalness

Using eq. (2.8) and expressing everything in terms of the physical scalar masses, the trilinear
coupling κ can be bounded as

c ≡ κv = (m2
η1 −m

2
η2) sin θ cos θ =⇒ |κ| .

m2
η1

2v , (3.5)

where we have used m2
η1 � m2

η2 in the last step. However, as the heavy neutral scalar
masses are unknown, this upper bound is not very useful.

We can make use of the fact that the trilinear coupling gives a correction to the Higgs
boson mass at the one-loop level, where the new scalars run in the loop. Up to factors of
2 and logs, we estimate

m2
h &

|κ|2

16π2 . (3.6)

For the fine-tuning to be under control, i.e., δmh/mh < ε, we demand that

|κ| . 4πεmh ' 1.5 TeV , (3.7)

where we have assumed ε ' 1. Similar considerations were made in the Zee model [37]. If
the fine-tuning condition is relaxed (i.e., ε & 1), the upper limit on κ can also be relaxed.

3.1.3 Z2 symmetry breaking at tree-level

If |κ| is much larger than the scalar masses, it can lead to a deeper minimum than the SM
one, thereby breaking the Z2 symmetry. Looking at different field directions, and using
eq. (3.3), we get

|κ| . O(1) (−µ2
H +m2

Φ +m2
ϕ) . (3.8)

The above requirement, although more robust than the naturality one in eq. (3.7), turns
out to be weaker, particularly for mΦ and mϕ larger than the EW scale. In order for
the model to be valid above the EW scale (such that the Z2 symmetry is preserved), it is
important to check that the RGE evolution does not only preserve m2

Φ > 0 and m2
ϕ > 0,

but also that |κ| is not too large compared to the rest of the scalar masses. The latter
requirement, however, is expected to be easily satisfied, as κ renormalises multiplicatively
(see section 3.9).
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L

H H

L

Φ Φ

ψ ψ
L L

H H

Φ Φ

ϕ

ψ ψ

Figure 1. Feynman diagrams for the neutrino masses at the one-loop level. The left panel shows
the contribution in the Scotogenic Model (proportional to λHΦ,3), whereas the right panel shows
the new contribution in the ScotoSinglet Model (ScSM) (proportional to κ2).

3.2 Neutrino masses

Neutrino masses are generated at the one-loop level with the neutral fields running in
the loop, see figure 1. From the Yukawa Lagrangian, eq. (2.1), and the scalar potential,
eq. (2.2), we can see that the lepton number is violated by 2 units in the presence of yΨ,
MΨ and either:

1. The quartic coupling λHΦ,3 . This contribution is same as in the ScM; see the left
diagram in figure 1.

2. The square of the dimensionful trilinear coupling, κ2. This is the new contribution
in the ScSM; see the right diagram in figure 1.

These are the parameter combinations that enter in the expression for the neutrino masses,
namely7

(Mν)αβ =
2∑

k=1

ykαmψk ykβ
32π2

[
cos2 θ Fk(mη1) + sin2 θ Fk(mη2)− Fk(mA)

]
, (3.9)

where the loop function is

Fk(mx) = m2
x

m2
x −m2

ψk

log
(
m2
x

m2
ψk

)
. (3.10)

It is instructive to expand in the limit of small λHΦ,3 and κ. For a > b and small κ, the
mixing is θ ≈ 0, thus η1 (η2) is mostly doublet (singlet). In this case, the mass splitting
between η1 and A reads m2

η1 −m
2
A ≈ λHΦ,3v

2. For mη1 > mη2 � mψk , we find that

(Mν)αβ ≈
2∑

k=1

ykαmψk ykβ
32π2

[
λHΦ,3 v

2

m2
η1

− κ2v2

(mη2
1
−m2

η2)2 log
(
m2
η1

m2
η2

)]
. (3.11)

For mη1 � mψk � mη2 , we get

(Mν)αβ ≈
2∑

k=1

ykαmψk ykβ
32π2

[
λHΦ,3 v

2

m2
η1

− κ2v2

m4
η1

log
(
m2
η1

m2
ψk

)]
. (3.12)

7We believe there are two typos in the expressions of ref. [21]: i) a factor of π is missing in the denomi-
nator; and ii) an extra contribution to the scalar masses after EWSB is missing — this is due to the λHΦ,1

term in the potential (λ4 in the notation of ref. [21]).
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Alternatively, for b > a, θ ≈ π/2 and thus η1 (η2) is mostly singlet (doublet). The mass
splitting between η2 and A is m2

η2 −m
2
A ≈ λHΦ,3v

2. For mη1 > mη2 � mψk , we get

(Mν)αβ ≈
2∑

k=1

ykαmψk ykβ
32π2

[
λHΦ,3 v

2

m2
η2

+ κ2v2

(mη2
1
−m2

η2)2 log
(
m2
η1

m2
η2

)]
, (3.13)

whereas for mη1 � mψk � mη2 , we get

(Mν)αβ ≈
2∑

k=1

ykαmψk ykβ
32π2

{
λHΦ,3v

2

m2
ψk

[
log

(
m2
ψk

m2
η2

)
− 1

]
+ κ2v2

m4
η1

log
(
m2
η1

m2
ψk

)}
. (3.14)

Note how the Scotogenic-like contribution (proportional to λHΦ,3 v
2) is always suppressed

by the fermion or doublet mass, depending on which one is the heaviest state in the
spectrum.

3.3 Integrating-out the heavy scalar singlet

If the singlet ϕ is the heaviest particle in the spectrum, e.g., m2
ϕ � m2

Φ (b� a), it can be
integrated out (see ref. [38] for a similar study, and ref. [39] for the example of a charged
scalar singlet). For scalar DM and θ ' π/2, the DM candidate η2 is mainly doublet and
this is a good approximation. Assuming that the weak and mass eigenstates are similar,
i.e., for small mixing (small θ), after integrating out the singlet at tree-level before EWSB,
we obtain the following expression for the scalar potential at dimension-6:

Veff(H,Φ) =
(
λHΦ,2 −

|κ|2

m2
ϕ

)
|H†Φ|2 + 1

2

[(
λHΦ,3 −

(κ†)2

m2
ϕ

)
(H†Φ)2 + H.c.

]

− λHϕ |κ|2

m4
ϕ

|H†Φ|2H†H − λΦϕ |κ|2

m4
ϕ

|H†Φ|2Φ†Φ

− 1
2

(
λHϕ (κ†)2

m4
ϕ

(H†Φ)2H†H + H.c.
)

− 1
2

(
λΦϕ (κ†)2

m4
ϕ

(H†Φ)2Φ†Φ + H.c.
)
. (3.15)

After EWSB, the effective coupling 1
2 [λeff

HΦ,3 (H†Φ)2 + H.c.] that appears in the neutrino
masses is

λeff
HΦ,3 ≡ λHΦ,3 −

(κ†)2

m2
ϕ

− λHϕ
(κ†)2

m4
ϕ

v2

2 . (3.16)

This agrees with our expectation from considerations of lepton number violation. We see
that neutrino masses can be suppressed either by small λHΦ,3 and κ, or by cancellations
among these terms. Notice that the last term in eq. (3.16) gives a contribution to neutrino
masses via a dimension-7 Weinberg-like operator, which is expected to be suppressed com-
pared to the usual dimension-5 one (the rest of the terms). In our numerical scan, we check
that the combination in eq. (3.16) is indeed fixed (with the scale set by the neutrino masses).

Let us elaborate a bit more on the threshold corrections to λHΦ,2 and λHΦ,3 at the
scale of the singlet ϕ. Interestingly, the threshold effects increase their values for high

– 7 –
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energies. The stability conditions, however, must to be applied differently above and below
mϕ. This effect has been used to keep the Higgs potential stable up to high energy scales
in ref. [40]. Notice also that the signs of λHΦ,3 and κ are preserved under the RGE flow due
to their multiplicative renormalization. The behaviour in eq. (3.16) can also be understood
from the scalar mass matrix, see eqs. (2.5) and (2.6). In the symmetric Higgs phase (scales
above the EW scale) and for m2

ϕ � m2
Φ, the neutral scalar masses are see-saw like, i.e.,

from eqs. (2.9), we have

m2
η1 ' m

2
ϕ + κ2 v2

m2
ϕ

, m2
η2 ' m

2
Φ −

κ2 v2

m2
ϕ

. (3.17)

We see that the lightest state (by convention η2) is mainly doublet (Φ), while the heaviest
state (η1) is mainly singlet (ϕ), corresponding to a mixing angle of θ ≈ π/2. This repulsion
of mass eigenvalues is the same effect that we see in the quartic couplings λHΦ,2 and λHΦ,3,
see eq. (3.15).

3.4 Electroweak precision tests

The new particles in the ScSM contribute to the W± and Z boson self-energies. These con-
tributions are parametrised by the oblique S, T and U parameters [41, 42]. The strongest
constraint comes from the T parameter, which bounds the mass splitting of the neutral
and charged scalars. It is given by [43]

T = 1
16π2αemv2

[
cos2 θF(m2

φ+ , m2
η1) + sin2 θF(m2

φ+ , m2
η2) + F(m2

φ+ , m2
A)

− cos2 θF(m2
η1 , m

2
A)− sin2 θF(m2

η2 , m
2
A)
]
, (3.18)

where the loop function (symmetric in x and y) is

F(x2, y2) = x2 + y2

2 − x2y2

x2 − y2 ln
(
x2

y2

)
. (3.19)

The S parameter is given by

S = 1
πm2

Z

[
cos2 θB22(m2

Z , m
2
η1 , m

2
A) + sin2 θB22(m2

Z , m
2
η2 , m

2
A)− B22(m2

Z , m
2
φ+ , m2

φ+)
]
.

(3.20)
Similarly, the combination S + U reads

S + U = 1
πm2

W

[
cos2 θB22(m2

W , m
2
φ+ , m2

η1) + sin2 θB22(m2
W , m

2
φ+ , m2

η2)

+ B22(m2
W , m

2
φ+ , m2

A)− 2B22(m2
W , m

2
φ+ , m2

φ+)
]
, (3.21)

where
B22(q2, m2

1, m
2
2) = B22(q2, m2

1, m
2
2)−B22(0, m2

1, m
2
2) . (3.22)
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The Passarino-Veltman function B22 [44] (symmetric in the last two arguments) is

B22(q2, m2
1, m

2
2) = 1

4(∆ + 1)(m2
1 +m2

2 −
1
3q

2)− 1
2

∫ 1

0
X ln(X − iε) dx , (3.23)

where
X ≡ m2

1x+m2
2(1− x)− q2x(1− x) , ∆ ≡ 2

4− d + ln 4π − γE , (3.24)

in d space-time dimensions and γE ' 0.577 is the Euler-Mascheroni constant. We use the
compact analytic expressions from appendix B of ref. [37]. Our expressions agree with the
ones for the Inert Doublet Model (IDM) [45] in the appropriate limits.

The oblique parameters are constrained from the global electroweak fit [46], assuming
SM reference values of mref

h = 125GeV and mref
t = 172.5GeV. The most recent fit gives

S = 0.04± 0.11, T = 0.09± 0.14, U = −0.02± 0.11, (3.25)

along with the following correlation matrix:

ρij =

 1 0.92 −0.68
0.92 1 −0.87
−0.68 −0.87 1

 . (3.26)

3.5 Higgs decay into di-photons

The coupling between the SM Higgs h and charged scalar φ+ in eq. (2.2) modifies the decay
rate of the h→ γγ process. The ratio with respect to the SM value is [47–49]

Rγγ ≡
Γ(h→ γγ)ScSM
Γ(h→ γγ)SM

=

∣∣∣∣∣∣∣1 + λHΦ,1 v
2

2m2
φ+

A0(τφ+)

A1(τW ) + 4
3A1/2(τt)

∣∣∣∣∣∣∣
2

. (3.27)

Here the loop functions Ai(τj ≡ 4m2
j/m

2
h) read

A0(x) = −x+ x2 f

(1
x

)
, (3.28a)

A1/2(x) = 2x+ 2x(1− x) f
(1
x

)
, (3.28b)

A1(x) = −2− 3x− 3x(2− x) f
(1
x

)
, (3.28c)

where j = φ+, t and W , and f = arcsin2(
√
x) for mh < 2mi.

3.6 Lepton flavour violation

We use the usual expressions for the lepton flavour violation (LFV) processes (including
µ − e conversion rates in various elements) that are applicable for the ScM [11, 20]. For
instance, radiative decays are given by

BR(`α → `βγ) = 3αem
64πG2

F m
4
φ+

∣∣∣∣∣∑
i

y∗iβ yiα F

(
m2
ψi

m2
φ+

)∣∣∣∣∣
2

BR(`α → `βνανβ) , (3.29)

where
F (x) = 1− 6x+ 3x2 + 2x3 − 6x2 log x

6(1− x)4 . (3.30)

The various LFV processes that we include in our study are summarised in table 2.
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LFV process Upper limit (90%CL) Ref.
µ→ eγ 4.2× 10−13 MEG [50]
τ → µγ 4.4× 10−8 PDG [51]
τ → eγ 3.3× 10−8 PDG [51]
µ→ 3e 1.0× 10−12 PDG [51]
τ → 3µ 2.1× 10−8 PDG [51]
τ → 3e 2.7× 10−8 PDG [51]

µ→ e (Au) 7.0× 10−13 PDG [51]
µ→ e (Ti) 4.3× 10−12 PDG [51]

Table 2. Upper limits on the branching ratios/conversion rates of various lepton flavour violation
(LFV) processes at 90%CL. Here µ→ e refers to conversion rate in gold (Au) and titanium (Ti).

3.7 Relic abundance

The ScSM permits both scalar and fermionic DM candidates, but we focus on the case of
scalar DM for two reasons:

1. The fermion DM case is very similar to the usual ScM where strong constraints
from LFV exist on the Yukawa couplings. It requires special textures, and/or coan-
nihilations and/or fermion triplets instead of singlets to saturate the observed DM
abundance. In our scan, we indeed find the need for coannihilations (see section 5).

2. It is interesting to study the rich phenomenology of CP-even scalar DM (η2) as an
admixture of singlet (pure singlet case is θ ' 0) and doublet (pure doublet case is
θ ' π/2) components, see eq. (2.7). The doublet case (both CP-even and CP-odd)
has the phenomenology of the ScM, while the singlet has some extra terms from the
scalar potential with respect to just a pure singlet scalar. As the CP-odd scalar A
can be a DM candidate, there are a few possible mass hierarchies:

• DM candidate = η2 with mη2 < mη1 < mA or mη2 < mA < mη1 ;

• DM candidate = A with mA < mη2 < mη1 .

In general, several (co-)annihilation channels are possible in the ScSM. All of these
are included in micrOMEGAs v5.2.0 [52] which we use to compute the DM relic abundance.
The DM abundance is required to be equal to or smaller than the Planck (2018) measured
abundance [53]:

ΩDMh
2 = 0.120± 0.001. (3.31)

Thus, the Planck measurement provides an upper limit on the DM relic abundance.

3.8 Direct detection

Direct detection (DD) typically imposes strong constraints on scalar DM candidates with
a non-zero hypercharge due to the presence of t-channel Z/h-mediated diagrams [8]. The
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gauge interactions stem from the kinetic term for the doublet, namely

L ⊃ (DµΦ)†(DµΦ)

⊃− g

2 cos θW
Zµ (φR ∂µA−A∂µφR)

=− g

2 cos θW
Zµ
[

cos θ(η1 ∂
µA−A∂µη1)− sin θ(η2 ∂

µA−A∂µη2)
]
. (3.32)

Notice that the Z-mediated interactions are inelastic, and always involve a CP-even scalar
and pseudoscalar A. A small enough mixing can suppress DD limits via the last term in
eq. (3.32), as in this case, η2 is mainly singlet and does not directly couple to the Z-boson.
In addition, a large enough mass splitting (& MeV) can kinematically forbid the scatterings
between η2 and A. This implies that λHΦ,3 & 10−6. Two cases are possible:

1. For b� a (and b� c), η2 is mainly doublet (with a correction proportional to κ) and
the mass splitting with A is given by λHΦ,3 (which can be made naturally smaller
than in the ScM);

2. For b � a (and a � c), η2 is mainly singlet and mA is given in terms of other
parameters, so there is no reason for the mass splitting to be small, and thus inelastic
scatterings are expected to be forbidden.

Interactions mediated by the SM Higgs h lead to the usual elastic (and also inelastic)
spin-independent (SI) scattering; the resulting limits are also quite severe [54, 55], but they
can be suppressed by small scalar couplings unlike in the case of Z-mediated interaction [56].
For non-zero mixing, the dimensionless h-η2-η2 coupling is given by [26]

λeff ≡
1
v

[
λHϕv cos2 θ − 2κ sin θ cos θ + λ123 v sin2 θ

]
, (3.33)

where λ123 ≡ λHΦ,1 + λHΦ,2 + λHΦ,3. As λeff decreases, the h-mediated direct detection
cross section also decreases. This coupling will vanish (i.e., no overall h-η2-η2 coupling)
when the mixing angle satisfies the following relation:

sin2 θ =
(m2

Φ −m2
ϕ) + λHϕv

2 −
√

(m2
Φ −m2

ϕ)2 + λ123λHϕv4

2 (m2
Φ −m2

ϕ)− λ123v2 + λHϕv2 . (3.34)

We confirm that when the coupling λHϕ (λ123) vanishes, the Higgs-DM coupling is zero
only for pure singlet (doublet) DM. In the event that the couplings are exactly equal and
dominate over the bare masses, λ123 = λHϕ � |m2

Φ −m2
ϕ|/v2, the effective Higgs coupling

λeff vanishes for maximal mixing θ = π/4.
Using micrOMEGAs, we compute the effective SI DM-proton scattering cross section,

assuming that the local DM energy density scales proportional to the global one:

σeff ≡ σpSI · frel , frel ≡ ΩX/ΩDM , (3.35)

where ΩX is the X DM abundance (X = η2, A or ψ2) and ΩDM is the Planck measured
abundance in eq. (3.31). We then recast the observed exclusion limit from XENON1T [57]
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within micrOMEGAs [58] for a fixed DM mass and compare it against the effective SI
cross section in eq. (3.35). There are a number of planned xenon-based experiments that
will increase the sensitivity significantly, e.g., XENONnT [59], PandaX [60], LZ [61] and
DARWIN [62]. In our plots, we will illustrate the expected reach of LZ only.

3.9 Z2 symmetry at high energies

The ScSM also has interesting features in light of the model viability up to high-energy
scales [19, 63–65]. The trilinear coupling κ, due to the presence of the scalar singlet, gives
positive contributions to the RGE evolution of the new scalar mass-squared parameters if it
is real, thereby helping prevent the breaking of the model symmetries even in the absence of
finite temperature effects. The compatibility with the evolution of the bare Higgs mass (and
thus of EWSB) requires a separate study, which we leave for a future work. In principle,
one could incorporate the evolution of Renormalisation Group Equations (RGEs) of model
parameters into our numerical scan to verify that the Z2 symmetry remains unbroken
at high-energy scales, but the practical implementation remains computationally difficult.
Thus, we do not include RGE effects in our numerical analysis.

4 Numerical analysis

To efficiently sample the allowed parameter space of the ScSM, we use the Importance
Nested Sampling algorithm implemented in MultiNest v3.10.0 [66] with 25,000 live points
(nlive) and a stopping tolerance (tol) of 10−3.8 The composite log-likelihood used is

lnLtotal(θ) = lnLκ(θ) + lnLEWPT(θ) + lnLRγγ (θ)
+ lnLLFV(θ) + lnLΩh2(θ) + lnLDD(θ) , (4.1)

where θ are the free parameters of the ScSM. The individual log-likelihood contributions
are described below:

1. lnLκ(θ): log-likelihood for the trilinear coupling κ. It is Gaussian in nature, centered
at 0TeV with a standard deviation of 1.5TeV, see eq. (3.7).

2. lnLEWPT(θ): log-likelihood for the electroweak precision tests (EWPT) (see subsec-
tion 3.4). It is given by [67]

lnLEWPO(θ) = −1
2
∑
i, j

(∆Oi −∆Oi)
(
Σ2
)−1

ij
(∆Oj −∆Oj), (4.2)

where ∆Oi are the central values for the shifts in eq. (3.25), Σ2
ij ≡ σiρijσj is the

covariance matrix, ρij is the correlation matrix in eq. (3.26) and σi are the associated
errors in eq. (3.25).

8As we will see in section 5, our fixed log-likelihood contours are mostly flat in the model parameter
planes. For this reason, we run MultiNest with stringent settings to efficiently sample the 1σ and 2σ CL
regions.
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3. lnLRγγ (θ): log-likelihood for Rγγ ≡ Γ(h → γγ)ScSM/Γ(h → γγ)SM (see subsec-
tion 3.5). It is a Gaussian likelihood function, centered at the PDG measured value
of 1.1 with a standard deviation of 0.1 [51]. The SM expectation is Rγγ = 1.0.

4. lnLLFV(θ): log-likelihood for the LFV processes (see subsection 3.6). It is given by

lnLLFV(θ) = lnLµ→ eγ(θ) + lnLτ→µγ(θ) + lnLτ→ eγ(θ)
+ lnLµ→ 3e(θ) + lnLτ→ 3µ(θ) + lnLτ→ 3e(θ)
+ lnLµ→ e (Au)(θ) + lnLµ→ e (Ti)(θ) . (4.3)

Each of the individual likelihood functions are Gaussian, and centered at a branching
ratio/conversion rate of 0 with a standard deviation equal to the respective upper
limit shown in column 2 of table 2.

5. lnLΩh2(θ): log-likelihood for the DM relic density Ωh2 (see subsection 3.7). It is a one-
sided Gaussian, i.e., a flat likelihood on ΩX ≤ ΩDM and Gaussian for ΩX > ΩDM. The
Planck measured uncertainty is also combined in quadrature with a 5% theoretical
uncertainty (stemming from our assumed uncertainty on the relic density calculation
in micrOMEGAs).

6. lnLDD(θ): log-likelihood for the XENON1T experiment (see subsection 3.8). It is
a simple step-function-like likelihood, i.e., parameter points are allowed (rejected) if
the effective SI cross section in eq. (3.35) is below (above) the official XENON1T
exclusion limit [57] for a given DM mass.

The ranges and priors for the 21 (12 free + 9 nuisance) model parameters in normal
ordering (NO) and inverted ordering (NO) are summarised in table 3.9 Due to the presence
of coannihilations, we find it efficient to scan over δ1 and δA (instead of mη1 and mA) where

δ1 ≡ mη1 −mη2 , δA ≡ mA −mη2 . (4.4)

By convention, δ1 ≥ 0 as mη1 ≥ mη2 . Meanwhile, δA > 0 for η2 as DM, δA < 0 for A as
DM, and either for ψ2 as DM.

In the next section, we show various two-dimensional (2D) plots of the profile likelihood
ratio (PLR) [68] in the relevant parameter planes or key observables of interest. Model
parameters that are not shown in those plots are profiled over, i.e., the composite log-
likelihood function in eq. (4.1) is maximised with respect to those parameters. Using
Wilks’ theorem [69], the PLR can be used as a test statistic to approximately construct
the 1σ (∼ 68.3%) and 2σ (∼ 95.4%) CL contours [70].

9We keep the CP-even (mη1,2 ) and CP-odd (mA) scalar masses & 100GeV to avoid constraints from
h/Z invisible decays and collider limits.
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Ranges Priors
Model parameters
{mψ1 , mψ2} (GeV) [10, 106] Log
mη2 (GeV) [100, 104] Log
δ1 ≡ mη1 −mη2 (GeV) [10−3, 104] Log
δA ≡ mA −mη2 (GeV) [−104, −10−3] ∪ [10−3, 104] Log |value|
θ (rad.) [0, π] Flat
{λΦ, λϕ} [10−3, 4π] Log
{λHΦ,1, λHΦ,2, λHϕ, λΦϕ} [−4π, −10−3] ∪ [10−3, 4π] Log |value|

Nuisance parameters
sin2 θ12 [0.275, 0.350] Flat

sin2 θ13
[0.02044, 0.02435] (NO)
[0.02064, 0.02457] (IO) Flat

sin2 θ23
[0.433, 0.609] (NO)
[0.436, 0.610] (IO) Flat

∆m2
21

10−5 eV2 [6.79, 8.01] Flat

∆m2
3l

10−3 eV2
[2.436, 2.618] (NO)

[−2.601,−2.419] (IO) Flat

δCP (◦)
[144, 357] (NO)
[205, 348] (IO) Flat

α (rad.) [0, 2π] Flat
{ζ1, ζ2} [10−3, 103] Log

Table 3. Ranges and priors for 21 (12 free + 9 nuisance) model parameters. The parameters
{ζ1, ζ2} belong to the R matrix of the Casas-Ibarra parametrization [36] (see appendix B), whereas
α is the Majorana phase in the PMNS matrix. The terms NO (IO) refer to Normal (Inverted)
Ordering, whereas ∆m2

3l ≡ m2
3 −m2

1 > 0 (NO) and m2
3 −m2

2 < 0 (IO).

5 Results

We start by showing results for the scalar DM in the case of no mixing between the
singlet and doublet (e.g., θ = 0, π/2). For scalar doublet DM, we reproduce the standard
results [71, 72]; we consider the CP-even scalar, but the results for the CP-odd scalar are
similar. For singlet DM, we also reproduce the results from the literature [54, 55, 73, 74].10

Next, we turn on the mixing angle θ and consider separately the case of real scalar η2,
real pseudoscalar A and Majorana fermion ψ2 as DM candidates. We pay special attention
on studying how the parameter space opens up in each cases with respect to the usual ScM.

10There is an extra parameter with respect to both models separately, λΦϕ, but as expected, we see that
it does not affect the model phenomenology.
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Figure 2. 2-dimensional (2D) plots of profile likelihood ratio (PLR) for the scalar singlet η2 relic
density (left panel) and spin-independent (SI) η2-proton direct detection (DD) cross section (right
panel), scaled by the DM fraction, frel = Ωη2/0.120, for the case of θ = 0 in Normal Ordering
(NO). The dashed (dotted) red lines in the left (right) panel show the Planck measured DM
abundance [53] (official XENON1T exclusion limit [57]), whereas the projected LZ sensitivity [75]
is shown as dashed orange line in the right panel.

5.1 No mixing case: Scotogenic model + scalar singlet

From eq. (2.7), the physical state η2 in the case of no mixing is

η2 ≡

scalar singletϕ , θ = 0 ,
scalar doublet φR , θ = π/2 .

(5.1)

In both cases, the trilinear scalar coupling κ = 0, and the model reduces to the usual
Scotogenic model plus a scalar singlet; we indeed recover the results from the literature.

In the left (right) panel of figure 2, we plot the η2 relic density (effective SI η2 scattering
cross section with protons) versus the singlet DM η2 mass for θ = 0. We see two allowed
disconnected regions, at masses around 150GeV and above ∼TeV. Notice that only in the
latter region, the singlet can constitute 100% of the observed DM abundance [54]. As we
see from the plot in the right panel, next-generation DD experiments will be able to test
this model, given the fact that the quartic couplings are large enough to reproduce the
abundance.

Similarly in figure 3, we plot the η2 relic density (effective SI η2-p cross section) versus
the CP-even doublet DM η2 mass for θ = π/2.11 The upper left corner in the left plot
implies a too-large annihilation cross-section to reproduce the observed DM abundance.
Indeed, for the doublet DM to saturate the abundance, its mass should be & 500GeV. In
this case, next-generation DD experiments will still leave a large portion of the parameter
space unexplored. This is due to the fact that the annihilation cross section, driven by

11Notice the under-sampling of the profile likelihood surface at small cross sections. This is expected due
to the nature of our XENON1T likelihood (a step-function-like), i.e., parameter points have same likelihood
if they are all compatible with the official XENON1T limit. A full coverage of this region requires a dedicated
scan over extremely small h-η2-η2 couplings, which is not the main goal of our study.
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Figure 3. Same as figure 2, but for the case of θ = π/2, i.e., pure scalar doublet DM.

gauge interactions, is decoupled from the DD cross section (unless the mass splitting with
the CP-odd scalar is . MeV).

5.2 DM candidate: real scalar, η2

For the case of CP-even scalar DM η2 with non-zero mixing, we find large regions in the
model parameter space that can satisfy all included constraints. In figure 4, we plot some
of the relevant parameters of interest; Normal ordering (NO) is always assumed, unless
stated otherwise. In the top-left plot, we see the expected triangular-shaped region in the
Yukawa couplings (plotted for the heaviest sterile singlet fermion ψ1) vs λHΦ,3. This stems
from reproducing the observed neutrino masses. Small values of λHΦ,3 demand large values
for the Yukawa couplings, while for large λHΦ,3 values, large values of the Yukawas are
also somewhat possible, and compensated by the masses of the new particles. A somewhat
similar structure is seen in the case of the trilinear coupling κ (top-right plot) for the
same reasons, although in this case, the region is much less pronounced. In the bottom-
left plot, we see how the Yukawa couplings are correlated amongst each other, with the
heaviest sterile (y1) being larger than the lightest one (y2); this correlation becomes even
more pronounced at large couplings. In the bottom-right plot, we observe how the ScSM
demands a relationship between the trilinear and quartic couplings, such that neutrino
masses are reproduced. This can be understood analytically in the limit of heavy scalar
singlet masses, see eq. (3.16), as represented by a solid brown line in the plot.

In the top-left plot in figure 5, the η2 abundance is much smaller for mη2 ∼ mh due to
direct annihilation process η2 η2 → hh. Final states with gauge bosons (W+W−/ZZ) are
always open. Indeed, the dominant annihilation channels that determine the η2 abundance
involve gauge bosons, and less often the Higgs bosons. Annihilations into tt̄, leptons or
photons are sometimes present. When the scalar masses are degenerate enough, coanni-
hilations can be important. An upper limit of mη2 . 5TeV is obtained at the 1σ CL,
but is somewhat below the upper limit from the prior of 10TeV. In the top-right plot, we
show the effective SI η2-proton scattering cross section. The rise in upper limit with DM
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Figure 4. 2D plots of PLR in the planes of model parameters for the case of η2 DM. In the bottom-
right plot, the solid brown line corresponds to a 1:1 relationship between κ2/m2

ϕ and λHΦ,3.

mass is expected from the DM number density for heavier masses. The small cross sections
arise from a cancellation in eq. (3.34); in any case, they are well below the sensitivity of
next-generation DD experiments.

In the bottom-left plot in figure 5, we observe that the Higgs to di-photon rate with
respect to the SM is enhanced (suppressed) for λHΦ,1 < 0 (λHΦ,1 > 0). It is evident that the
currently allowed value, shown by horizontal brown lines, demands λHΦ,1 < 0. Finally, in
the bottom-right plot, we show the effective neutrino mass parameter 〈mee〉 ≡

∣∣∑U2
eimi

∣∣,
which enters in the expression for the lifetime of neutrinoless double beta (0νββ) decay [76].
As expected, we reproduce the expected result for NO and IO. In particular, IO results
imply that 0.012 eV ≤ 〈mee〉 ≤ 0.05 eV. These values can potentially be tested in coming
years, see refs. [77, 78] for recent reviews.

In the left panel of figure 6, we plot an LFV radiative decay versus the Yukawa of
the heaviest fermion singlet; here we observe a V -shaped region. The behaviour for large
Yukawas goes as ∼ |y|4, as expected. For |y1| . 10−4, the contribution from other neutrino
(∝ |y2|) dominates. The upper-left region corresponds to |y2| � |y1|; we see that it is
not allowed, as the mass of lightest fermion singlet is too light to suppress enough LFV.
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Figure 5. 2D plots of PLR for key observables of interest. Top-left and top-right plots: same as
figure 2 but for η2 DM with non-zero mixing. Bottom-left plot: solid (dashed) brown lines show the
PDG central (standard deviation) value for Rγγ of 1.1 (0.1). Bottom-right plot: 〈mee〉 vs

∑
mν for

Normal Ordering (NO) and Inverted Ordering (IO); see text for more details.

In the right panel of figure 6, we see how the next-generation DD experiments (e.g., LZ
projected sensitivity for 50GeV DM [75] — dashed orange line) test complementary parts
of the parameter space to those of LFV experiments (e.g., expected sensitivity of µ − e
conversion rate (an improvement by 4 orders of magnitude) — solid brown line).

We have checked that different LFV observables (see table 2) show a clear correlation
among themselves. This is expected from the fact that Yukawa couplings are smaller than
one, so that the box (dipole) contributions are suppressed (dominant):

BR(µ→ 3e) ' 6× 10−3 BR(µ→ eγ) , (5.2a)
CR(µ− e, Al) ' 10−2 BR(µ→ eγ) . (5.2b)

It is interesting to highlight that the sensitivity to BR(µ → 3e) is expected to improve
by up to 4 orders of magnitude [79]. These conclusions have already been obtained in the
literature, although for somewhat different versions of the model [11, 13, 20]. In addition,
we have checked that there are no significant differences between the two mass orderings
(NO vs IO).
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Figure 6. Left panel: LFV radiative decay versus the Yukawa of the heaviest fermion singlet. Right
panel: SI DD cross section versus the µ → e conversion rate in aluminium (Al). The solid brown
(dashed orange) lines show the expected sensitivity of next-generation µ→ e conversion experiments
(LZ projection for 50GeV DM [75]).
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Figure 7. 2D plots of PLR for the η2 relic abundance (left panel) and SI η2-proton cross section
(right panel) versus the dimensionless h-η2-η2 coupling, λeff , see eq. (3.33) for more details.

In the left panel of figure 7, we show how the η2 relic abundance changes with the
dimensionless h-η2-η2 coupling λeff , see eq. (3.33). We observe how the smallest relic
abundance is obtained for λeff values of order one, in which the annihilations proceed via a
Higgs-mediated s-channel diagram. In the right panel, we see that the SI DD cross section
scales linearly with λeff , meaning that Z-mediated processes do not contribute significantly
to the DD cross section.

5.3 DM candidate: real pseudoscalar, A

The allowed parameter space and phenomenology of the ScSM in this case is similar to
the real (CP-even) scalar coming from the doublet (see figure 3). The relic abundance of
A is also bounded from above for low masses, as shown in the left panel of figure 8. This
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Figure 8. Same as figure 2 but for the case of real pseudoscalar A DM.

translates into a lower limit of mA & 300GeV for pseudoscalar A to saturate the observed
DM abundance, somewhat smaller than for the CP-even candidate. This difference comes
from the coupling λHΦ,3, which enters differently into the scalar masses.

5.4 DM candidate: Majorana fermion, ψ2

We do not investigate the case of fermion DM in detail, as it has already been explored
in a model with similar phenomenology [20]. Here we simply confirm that we arrive at
the same conclusions, namely that the fermion DM case requires coannihilations for its
abundance to match the Planck measured value. In figure 9, we see that viable parameter
space requires mψ2 to be degenerate with mη2 (left panel) and mφ+ (right panel). This is so
because the scalar masses are set by similar combinations of Lagrangian parameters, and
EWPT demands them to be close in mass, although there is somewhat a wider region at
small masses for the charged scalar. Thus, the case of fermion DM in the ScSM introduces
a fine-tuning that is not present in the case of scalar DM. Apart from this difference, the
Yukawa couplings and LFV processes are similar to the case of η2 and A DM. In regards
to DD in the Scotogenic model with a fermion singlet, it occurs at one-loop level, and is
typically suppressed [9, 20, 80, 81].

6 Conclusions

We have proposed a simple variation of the original Scotogenic Model (ScM), namely with
an extra real scalar singlet. The model, termed the ScotoSinglet Model (ScSM), is arguably
the simplest extension of the popular ScM, with a very rich phenomenology and several
interesting features:

1. It allows for DM to be scalar (CP even or odd) with a naturally-suppressed direct
detection rate, either due to a typically large mass splitting with the opposite-CP
scalar (not only dependent on λHΦ,3 as in ScM), or due to a small mixing, θ ' 0.
In this case, DM is mainly singlet with a small doublet component, and Z-boson
mediated interactions are suppressed;
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Figure 9. 2D plots of PLR in the case of ψ2 DM. Both panels show the need for a mass degeneracy
to saturate the observed DM abundance via coannihilations.

2. There are two contributions to neutrino masses: the usual Scotogenic one (∝ λHΦ,3)
and the new singlet one (∝ κ2). In principle, lepton number violation (e.g., the small-
ness of neutrino masses) demands both couplings to be small, which is technically
natural. However, in the limit of large singlet mass, a large λHΦ,3 can be cancelled
with the trilinear coupling term (∝ κ2/m2

ϕ), see eq. (3.16). This allows for the cou-
plings to be larger than usual and contribute to the DM phenomenology, e.g., to DM
annihilations and scatterings.

3. The presence of the singlet improves the stability of the Z2 symmetry up to high-
energy scales when the trilinear coupling κ is real, as it contributes positively to the
evolution of Renormalisation Group Equations (RGEs) for m2

ϕ and m2
Φ.

The above features significantly open up the parameter space with respect to the ScM.
Extensions to three sterile fermions are not expected to change our results significantly.
Other variations, such a proper RGE study, or a Generalised ScotoSinglet Model [20], is
left out for a future work.

The origin of neutrino masses, the nature of DM, and their possible connection remains
an open question that may possibly take several decades to fully understand. While we
wait eagerly for a positive signal, the study of simplified models (such as the ScSM) allows
us to gain insight into the big puzzles, and search for new correlations among different
observables that can help us in distinguishing models among a plethora of possibilities.
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A Mass eigenstate basis

For the weak eigenstates A = (φR , ϕ)T , the mass-term is given by

Lmass-term = −1
2A

TM2A , (A.1)

where

M2 =


∂2V

∂φ2
R

∂2V

∂φR ∂ϕ

∂2V

∂ϕ∂φR

∂2V

∂ϕ2

 =
(
a c

c b

)
(A.2)

is a (non-diagonal) squared mass matrix. To diagonaliseM2, we define the mass eigenstates
(η1, η2) as (

η1
η2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
φR
ϕ

)
, (A.3)

where θ is the mixing angle. Thus,(
φR
ϕ

)
= O

(
η1
η2

)
, O =

(
cos θ − sin θ
sin θ cos θ

)
. (A.4)

In the mass eigenstate basis, a squared mass matrix satisfies the following relation:

OTM2O = D ≡
(
m2
η1 0

0 m2
η2

)
. (A.5)

Following the analysis in appendix B of ref. [83], we find that

m2
η1 = a cos2 θ + b sin2 θ + c sin 2θ , (A.6a)

m2
η2 = a sin2 θ + b cos2 θ − c sin 2θ , (A.6b)

0 = −1
2(a− b) sin 2θ + c cos 2θ , (A.6c)

where the last equality can also be expressed as

tan 2θ = 2c
a− b

. (A.7)

In matrix notation, the above expressions read as
m2
η1

m2
η2

0

 =


cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ



a

b

c

 . (A.8)
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By taking θ → −θ, we can express (a, b, c) in terms of (m2
η1 , m

2
η2 , θ) as

a = m2
η1 cos2 θ +m2

η2 sin2 θ , (A.9a)

b = m2
η1 sin2 θ +m2

η2 cos2 θ , (A.9b)

c = (m2
η1 −m

2
η2) sin θ cos θ . (A.9c)

Using the relations for (a, b, c) from section 2, we get

m2
Φ = m2

η1 cos2 θ +m2
η2 sin2 θ − 1

2(λHΦ,1 + λHΦ,2 + λHΦ,3)v2 , (A.10a)

m2
ϕ = m2

η1 sin2 θ +m2
η2 cos2 θ − 1

2λHϕv
2 , (A.10b)

κ = 1
v

(m2
η1 −m

2
η2) sin θ cos θ . (A.10c)

B Parameterisation of the Yukawa couplings

Following the working in the original Casas-Ibarra paper [36] (see also ref. [84] for a one-
loop parametrization, and ref. [85] for a general parametrization), we write the neutrino
mass matrix in terms of our high energy parameters, equivalent to eq. (3.9), as

Mν = fyT M̂y , (B.1)

where f = 1/(32π2), y is a 2× 3 matrix of Yukawa couplings and M̂ = diag(m̂1, m̂2) with

m̂k = mψk

[
cos2 θ Fk(η1) + sin2 θ Fk(η2)− Fk(A)

]
, (B.2)

where the loop function is given in eq. (3.10).
The neutrino mass matrix can also be written in terms of the physical neutrino masses

(m1, m2, m3) and unitary PMNS matrix U as

UTMνU = Dν , (B.3)

where Dν = diag(m1, m2, m3); in our model with two fermion singlets, m1 = 0 for NO and
m3 = 0 for IO. The neutrino mass eigenstates νi (i = 1, 2, 3) are related to the neutrino
flavour eigenstates να (α = e, µ, τ) by

να =
3∑
i=1

Uαi νi . (B.4)

Now, we can write Dν = fUT yT M̂yU , and pre- and post-multiply with D−1/2 and DT
−1/2,

respectively, to get

I2×2 = f D−1/2 U
T yT M̂1/2T M̂1/2 y U DT

−1/2 , (B.5)
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where

D±1/2 ≡



(
0 m±1/2

2 0
0 0 m

±1/2
3

)
, NO ,

(
m
±1/2
1 0 0
0 m

±1/2
2 0

)
, IO .

(B.6)

We define an orthogonal 2× 2 matrix R as

R ≡
√
f M̂1/2 y U DT

−1/2 , (B.7)

such that

y = 1√
f
M̂−1/2RD1/2 U

† . (B.8)

It is easy to check that this satisfies the low energy definition by substituting back into
the high energy expression. We parametrise the R matrix as

R ≡
(

cos(ζ1 + iζ2) sin(ζ1 + iζ2)
− sin(ζ1 + iζ2) cos(ζ1 + iζ2)

)

=
(

cos ζ1 cosh ζ2 − i sin ζ1 sinh ζ2 sin ζ1 cosh ζ2 + i cos ζ1 sinh ζ2
− sin ζ1 cosh ζ2 − i cos ζ1 sinh ζ2 cos ζ1 cosh ζ2 − i sin ζ1 sinh ζ2

)
, (B.9)

where ζ1, ζ2 ∈ R. In our numerical scans, we use the standard parametrisation for U =
(u1, u2, u3) for one massless neutrino, namely

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13


 1 0 0

0 eiα 0
0 0 1

 , (B.10)

where cij ≡ cos θij and sij ≡ sin θij (θ12, θ13, and θ23 are the 3 lepton mixing angles), α
(δCP) is the Majorana (Dirac) phase. As the lightest neutrino is massless with just two
fermionic singlets, there is only one physical Majorana phase. For the neutrino oscillation
parameters, we use the results based on a global fit from the Nu-FIT collaboration [86, 87]
with SK atmospheric data (see table 4).

– 24 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
6

Table 4. Neutrino oscillation parameters from Nu-FIT v4.1 (2019) [86, 87].

C Potential stability

We follow the analysis in refs. [88, 89]. We parameterise

H†H = 1
2h

2
1, Φ†Φ = 1

2h
2
2, ϕ2 = h2

3, H†Φ = 1
2h1h2ρ12e

iφ12 . (C.1)

The quartic part of the potential now reads

V4 = λH(H†H)2 + λΦ(Φ†Φ)2 + λϕ
4 ϕ4 + λHΦ,1(H†H)(Φ†Φ)

+ λHΦ,2(H†Φ)(Φ†H) + 1
2λHΦ,3

[
(H†Φ)2 + H.c.

]
+ 1

2λHϕ(H†H)ϕ2 + 1
2λΦϕ(Φ†Φ)ϕ2

=
(
h2

1 h
2
2 h

2
3

)a11 a12 a13
a12 a22 a23
a13 a23 a33


h

2
1
h2

2
h2

3

 , (C.2)

where

a11 = 1
4λH , a22 = 1

4λΦ , a33 = 1
4λϕ , a13 = 1

8λHϕ , a23 = 1
8λΦϕ , (C.3a)

a12 = 1
8
[
λHΦ,1 + ρ2

12

(
λHΦ,2 + λHΦ,3 cos(2φ12)

)]
. (C.3b)

The potential is minimised with respect to ρ12 and φ12 by setting

cos(2φ12) =
{
−1 , λHΦ,3 > 0 ,
1 , λHΦ,3 < 0 , ρ12 =

{
0 , λHΦ,2 − |λHΦ,3| > 0 ,
1 , λHΦ,2 − |λHΦ,3| < 0 . (C.4)
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The co-positivity conditions are given by

{λH , λΦ, λϕ} ≥ 0 , (C.5a)

c1 ≡
1
2
[
λHΦ,1 + ρ2

12(λHΦ,2 − |λHΦ,3|)
]

+
√
λHλΦ ≥ 0 , (C.5b)

c2 ≡
1
2λHϕ +

√
λHλϕ ≥ 0 , (C.5c)

c3 ≡
1
2λΦϕ +

√
λΦλϕ ≥ 0 , (C.5d)√

λHλΦλϕ + 1
2
[
λHΦ,1 + ρ2

12(λHΦ,2 − |λHΦ,3|)
]√

λϕ

+1
2λHϕ

√
λΦ + 1

2λΦϕ
√
λH +

√
2c1c2c3 ≥ 0 . (C.5e)

D Renormalisation Group Equations (RGEs)

Here we provide the Renormalisation Group Equations (RGEs) for the ScSM at one-loop
level, as computed using the SARAH package [90].

D.1 Gauge couplings

β(1)
g1 = 21

5 g
3
1 , β(1)

g2 = −3g3
2 , β(1)

g3 = −7g3
3 . (D.1)

D.2 Quartic scalar couplings

β
(1)
λH

= 27
200g

4
1 + 9

20g
2
1g

2
2 + 9

8g
4
2 −

9
5g

2
1λH − 9g2

2λH + 24λ2
H + 2λ2

HΦ,1 + 2λHΦ,1λHΦ,2

+ λ2
HΦ,2 + λ2

HΦ,3 + 1
2λ

2
Hϕ + 12λHTr

(
YdY

†
d

)
+ 4λHTr

(
YeY

†
e

)
+ 12λHTr

(
YuY

†
u

)
− 6Tr

(
YdY

†
d YdY

†
d

)
− 2Tr

(
YeY

†
e YeY

†
e

)
− 6Tr

(
YuY

†
uYuY

†
u

)
, (D.2)

β
(1)
λΦ

= 27
200g

4
1 + 9

20g
2
1g

2
2 + 9

8g
4
2 + 2λ2

HΦ,1 + 2λHΦ,1λHΦ,2 + λ2
HΦ,2 + λ2

HΦ,3 −
9
5g

2
1λΦ

− 9g2
2λΦ + 24λ2

Φ + 1
2λ

2
Φϕ + 4λΦTr

(
YψY

†
ψ

)
− 2Tr

(
YψY

†
ψYψY

†
ψ

)
, (D.3)

β
(1)
λHΦ,1

= 27
100g

4
1 −

9
10g

2
1g

2
2 + 9

4g
4
2 −

9
5g

2
1λHΦ,1 − 9g2

2λHΦ,1 + 12λHλHΦ,1 + 4λ2
HΦ,1

+ 4λHλHΦ,2 + 2λ2
HΦ,2 + 2λ2

HΦ,3 + 12λHΦ,1λΦ + 4λHΦ,2λΦ + λHϕλΦϕ

+ 6λHΦ,1Tr
(
YdY

†
d

)
+ 2λHΦ,1Tr

(
YeY

†
e

)
+ 2λHΦ,1Tr

(
YψY

†
ψ

)
+ 6λHΦ,1Tr

(
YuY

†
u

)
− 4Tr

(
YeY

†
ψYψY

†
e

)
, (D.4)

β
(1)
λHΦ,2

= 9
5g

2
1g

2
2 −

9
5g

2
1λHΦ,2 − 9g2

2λHΦ,2 + 4λHλHΦ,2 + 8λHΦ,1λHΦ,2 + 4λ2
HΦ,2 + 8λ2

HΦ,3

+ 4λHΦ,2λΦ + 6λHΦ,2Tr
(
YdY

†
d

)
+ 2λHΦ,2Tr

(
YeY

†
e

)
+ 2λHΦ,2Tr

(
YψY

†
ψ

)
+ 6λHΦ,2Tr

(
YuY

†
u

)
+ 4Tr

(
YeY

†
ψYψY

†
e

)
, (D.5)
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β
(1)
λHΦ,3

= −9
5g

2
1λHΦ,3 − 9g2

2λHΦ,3 + 4λHλHΦ,3 + 8λHΦ,1λHΦ,3 + 12λHΦ,2λHΦ,3 + 4λHΦ,3λΦ

+ 6λHΦ,3Tr
(
YdY

†
d

)
+ 2λHΦ,3Tr

(
YeY

†
e

)
+ 2λHΦ,3Tr

(
YψY

†
ψ

)
+ 6λHΦ,3Tr

(
YuY

†
u

)
, (D.6)

β
(1)
λϕ

= 2
(
9λ2

ϕ + λ2
Hϕ + λ2

Φϕ

)
, (D.7)

β
(1)
λHϕ

= − 9
10g

2
1λHϕ −

9
2g

2
2λHϕ + 12λHλHϕ + 4λ2

Hϕ + 4λHΦ,1λΦϕ + 2λHΦ,2λΦϕ + 6λHϕλϕ

+ 6λHϕTr
(
YdY

†
d

)
+ 2λHϕTr

(
YeY

†
e

)
+ 6λHϕTr

(
YuY

†
u

)
, (D.8)

β
(1)
λΦϕ

= 12λΦλΦϕ + 2λHΦ,2λHϕ + 2λΦϕTr
(
YψY

†
ψ

)
+ 4λHΦ,1λHϕ + 4λ2

Φϕ + 6λΦϕλϕ

− 9
10g

2
1λΦϕ −

9
2g

2
2λΦϕ . (D.9)

D.3 Yukawas, masses and trilinear couplings

β
(1)
Yψ

= 1
2
(
3YψY †ψYψ + YψY

†
e Ye

)
+ Yψ

[
− 9

20
(
5g2

2 + g2
1

)
+ Tr

(
YψY

†
ψ

)]
, (D.10)

β(1)
mψ

= mψY
∗
ψY

T
ψ + YψY

†
ψmψ , (D.11)

β(1)
κ = − 9

10g
2
1κ−

9
2g

2
2κ+ 2κλHΦ,1 + 4κλHΦ,2 + 6κλHΦ,3 + 2κλHϕ + 2κλΦϕ + 3κTr
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YdY

†
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YeY

†
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)
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H
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10g

2
1µ

2
H −

9
2g

2
2µ

2
H + 12λHµ2
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2
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HTr
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d
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HTr
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YeY

†
e
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HTr
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β
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m2

Φ
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2
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2
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2
1m

2
Φ −

9
2g

2
2m

2
Φ + 12λΦm

2
Φ + λΦϕm

2
ϕ

+ 2m2
ΦTr

(
YψY

†
ψ

)
− 4Tr

(
mψYψY

†
ψmψ

)
, (D.14)

β
(1)
m2
ϕ

= 8κ2 − 4λHϕµ2
H + 4λΦϕm

2
Φ + 6λϕm2

ϕ . (D.15)

Note that in our convention, µ2
H > 0. As we can see from the last two equations, for real

values of κ, it contributes positively to the running of the bare squared-masses of the Z2
odd scalars, but negatively to the Higgs doublet bare squared-mass term.
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