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1 Introduction

The study of particle production in cosmology is, in a sense, the study of the origin of mat-
ter itself. Arguably, the most natural choice of the initial state of the universe is the one in
which strict spatial homogeneity is maintained, if space is to retain its physical meaning at
all. Such a perfectly homogeneous state must also be devoid of any ordinary matter, which
we view as a collection of fundamental particles. In addition, on the classical level, this
strict homogeneity will be kept throughout the cosmic evolution if the Lagrangian respects
translational symmetry. This would naively suggest a dull universe with no matter but
zero modes only. However, this is not the whole story. The dynamics of the background
spacetime can bring the vacuum fluctuations to reality, breaking the spatial homogeneity
on a quantum level. This spontaneous breaking of spatial translational invariance is accom-
panied with the appearance of perturbative modes in spacetime, which upon quantization,
become real particles.

– 1 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
9

Such is the scenario for the paradigm of inflation [1–4]. The initial condition of the
inflationary universe is chosen as a Bunch-Davis (BD) vacuum, i.e., a coherent state of the
inflaton field that is annihilated by the positive-frequency part of all fields with non-zero
momenta. However, the expansion of the spacetime stretches the wavelength of different
modes φk and produces a squeezed state with occupation number |β(k)|2 6= 0. For φ
being the inflaton or the graviton, this occupation number is exponentially large so that
these particles decohere and become essentially classical waves, which source the primor-
dial inhomogeneity for the later cosmic evolutions. For φ being heavier degrees of freedom,
the occupation number is finite and typically suppressed by an exponentially small factor
|β(k)|2 ∝ e−2πm/H , where H . 1013GeV is the Hubble parameter during inflation. These
gravitationally produced particles are the very first matter emergent from the BD vacuum
in the inflationary universe and their interactions leave characteristic non-Gaussian im-
prints on the Cosmic Microwave Background (CMB) as well as the Large Scale Structure
(LSS). This recently thriving field known as cosmological collider physics [5–10] thus has
an intimate relation with the phenomenon of particle production from the vacuum. For
example, the signal strength is directly proportional to the square root of the production
amount, S ∝ |β(k)|. Thus heavy particles with m� H are extremely difficult to probe if
they are produced in the purely gravitational way.

This problem motivates several proposals where the exponential suppression can be
alleviated. One possibility is to consider special inflation models. For instance, in axion-
monodromy inflation [11, 12], time-dependent mass terms violate adiabaticity and lead to a
dramatic amplification of particle number density and thus the size of non-Gaussianity [13].
In warm inflation [14, 15], thermally produced heavy particles are Boltzmann-suppressed by
an alternative temperature much higher than the Hubble scale, also giving rise to enhanced
cosmological collider signals [16].

Alternatively, one can consider the interesting possibility of introducing a chemical
potential. This can be naturally achieved via a rolling scalar field φ coupled to massive
fields through operators of the form ∂µφJ

µ, where Jµ is a certain current made from massive
fields. For massive spin-1 particles, choosing the Chern-Simons current JCS results in an
enhanced production of vector boson [17–21]. For massive spin-1/2 fermions, choosing
the chiral current J5 leads to a natural amplification of fermion production rate [22–25].
Similar amplification is also found for charged scalar particles if we generalize the chemical
potential operator to κµJ

µ, and reinterpret the chemical potential κµ as a background
gauge field creating Schwinger pairs [26–28]. These mechanisms of chemical-potential-
assisted particle production typically break parity or rotational invariance, hence leaving
sizable and distinctive signatures in cosmological observables.

In addition to physics during inflation, chemical potential can also play a role in the
late universe. The aforementioned chemical potential introduced by a rolling Axion-Like
Particle (ALP) generates a tachyonic instability in the gauge boson sector. This can, for ex-
ample, efficiently convert the ALP to Dark Photon Dark Matter (DPDM) [29], and produce
chiral gravitational waves [30–32]. In the fermion sector, chemical potential also sources the
helicity asymmetry of fermion numbers, which can be important for baryogenesis [22, 33].
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Thus, chemical-potential-assisted particle production is a generic phenomenon that
appears in many different contexts and setups. A general and systematic investigation of
particle production in the presence of chemical potential is necessary.

In this work, we re-derive Berry’s uniformly smoothed Stokes-line method [34–37] and
apply it to analyze the fine-grained production history of particles of mass m with chemical
potential κ. By fine-grained production history, we mean the production amount, time and
width (duration) exact to the leading order in the super-adiabatic expansion. We found
that for a constant chemical potential κ = const, spin-1/2 fermions and spin-1 vector bosons
share a similar production history, with a simple yet subtle replacement rule m2 ↔ m2+κ2.
We also derive analytic/semi-analytic formulae for the production history in five common
FRW spacetimes.

We note that there are many past studies in the literature that utilize the Stokes phe-
nomenon to study particle production. For example, it is applied to the Sauter-Schwinger
effect [38–43], to Hawking radiation [44], to the adiabatic particle number in global de
Sitter (dS) spacetime [45–47], to dark matter production at the end of inflation [48], to
preheating [49, 50], and to particle production triggered by vacuum decay [51]. An ex-
cellent review is recently given in [52]. However, we point out that most of them (with
the exception of [40, 47, 51]) focus on the asymptotic production amount far away from
the Stokes line. To our knowledge, the analytic calculation of production time and width
presented in this work is a new ingredient in this area, with or without chemical potential.
Understanding these fine production details is useful, for example, in the loop-level estima-
tion of cosmological collider signals, or in estimation of backreaction time scales. We hope
this work also serves to demonstrate the application of the uniformly smoothed Stokes-line
method applied to cosmology.

This paper is organized as follows. In section 2, we first discuss the generalities of
chemical potential and define the model we work with. Then in section 3, we re-derive the
uniformly smoothed Stokes phenomenon for both bosonic and fermionic systems and justify
its validity for the case with significant particle production. In section 4, we move on to
work out the production details for spin-1,1/2 particles in five common FRW spacetimes.
At last, we summarize and give outlooks in section 5. For readers who wish to skip the
detailed analysis to directly look up the results, we assemble our formulae into a checklist
in appendix A.

2 Chemical potential: generalities and dS solutions

In this section, loosely following [53], we give some general discussions on chemical po-
tential in cosmology. In thermodynamics, chemical potential is originally introduced by
Gibbs to describe the change of internal energy of a system with respect to the change of
particle numbers when the entropy and volume are held fixed. More formally in statistical
mechanics, it is identified with the Lagrange multiplier κ of total particle number when the
systems in a grand canonical ensemble are allowed to exchange particles with each other.
Starting from the partition function for a grand canonical ensemble, Z = e−(H−κN)/T , we
can straightforwardly generalize it to the field theory context as a path integral in the
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phase space of a field φ,

Z =
∫
DφDπe−i

∫
dt(H[φ,π]−κN [φ,π]) , (2.1)

where H is the Hamiltonian and N is the particle number operator associated with a
certain symmetry (which may or may not be exact). Throughout this work, we will assume
a spatially flat FRW spacetime background with ds2 = −dt2 + a(t)2dx2. Going into the
field configuration space and write the chemical potential term as the integral over a local
density, we have

Z =
∫
Dφei

∫
dtd3x
√
|g|(L(φ,∂φ)+κJ0(φ,∂φ)) , (2.2)

where N ≡
∫
d3xa3J0. Now we can turn on the spacetime dependence of κ and interpret

it as the zeroth component of a local vector field κµ(t,x). Thus the general form of a
chemical potential as a background field coupled to the matter field is

∆Lchem ≡ κµ(x)Jµ(x) . (2.3)

Now if one inspects the effect of introducing such a chemical potential term into the
matter Lagrangian, the result will depend on two aspects. First, in the absence of κµ, if the
matter current is derived from an exact symmetry, it is conserved as an operator identity,
i.e., 〈∇µJµ〉 = 0, where ∇ is a covariant derivative with respect to the metric g. Then one
can always consistently gauge this symmetry by minimally coupling the conserved current
to a vector potential. We are free to choose κµ(x) to be such a background gauge field.
If the chemical potential κ = κµdx

µ is closed in the 1-form sense, dDκ = dκ + κ ∧ κ = 0,
where D is compatible with the gauge field connection κ, the background gauge field then
has no field strength and is gauge-equivalent to vacuum. Thus we can perform a gauge
transformation to eliminate κ locally. Such is the case if κ = κ(t) is Abelian and spatially
homogeneous. However, we point out that the elimination of the chemical potential term is
not completely trivial in the scalar case, as we will see below, since it shifts the scalar mass
in a quadratic way. The second possibility is that if the matter current is not built from an
exact symmetry and is hence not conserved. This suggests that there is no consistent way
of coupling it to a background gauge field and thus interpreting it as the chemical potential.
In summary, we give the following necessary condition of a chemical potential term that
has physical effects other than quadratically shifting the mass of the matter particle,

either dDκ = dκ+ κ ∧ κ 6= 0, or ∇ · J 6= 0 . (2.4)

In the following discussion, we provide several examples that satisfy the above criterion
and have interesting particle production features. We will start the general discussions
in flat FRW spacetime and retreat to exact dS spacetime when solving the Equations of
Motion (EoMs). The general FRW EoMs will be discussed in later sections.

2.1 Spin-0

Consider a complex scalar field σ, the only non-trivial chemical potential term we can
find at quadratic level is with Jµ = i(σ∗∂µσ − σ∂µσ∗). If the original Lagrangian is U(1)-
symmetric, this current is conserved. Therefore, according to (2.4), we have to go for the
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first possibility.1 We can write the following action in the FRW background,

S0 =
∫
d4x
√
−g

[
−gµν∂µσ∗∂νσ −m2σ∗σ + κµJ

µ
]
, (2.5)

where gµν ≡ a(τ)2ηµν using comoving coordinates. Absorbing this chemical potential term
into the derivative term and shifting the mass term accordingly, we have

S0 =
∫
d4x
√
−g

[
−gµν(∂µ − iκµ)σ∗(∂ν + iκν)σ − (m2 − κµκµ)σ∗σ

]
. (2.6)

As mentioned above, if κµ=κ0(τ)δ0
µ, the whole system can be considered as a charged scalar

moving in the vacuum with a new mass M2(τ) ≡ m2 − κ0(τ)2

a(τ)2 . There is no enhancement
of particle production unless M2(τ) becomes negative or its time dependence violates
adiabatic condition.

If the first criterion is satisfied, then there is a non-zero field strength Fµν = ∂µκν −
∂νκµ. For instance, with κ0 = 0, κi = κi(τ), there is a uniform (time-dependent) electric
field Fi0 = −κ′i(τ), where prime denotes a derivative with respect to the conformal time
τ . The enhancement of particle production is exactly the Schwinger effect of this electric
field [28]. The EoM of σ in momentum space reads

(aσk)′′ +
[
k2 − 2k · κa+m2a2 − a′′

a

]
(aσk) = 0 , (2.7)

where κ ≡ κi
a êi. Clearly the second term in the square bracket breaks rotational symmetry

and stands for the effect of the background electric field. It introduces an angular depen-
dence in the effective mass of different modes. Those with lighter effective mass tend to get
produced more easily, especially for the mode traveling at the same direction as κ. We shall
see that this term linear in momentum is typical in the presence of chemical potentials.
They represent the bias on the effective mass of different modes introduced by the chemical
potential. For large enough |κ|, there is even a tachyonic instability and the pair creation
rate becomes exponentially large. To be more quantitative, we set |κ| = const and limit
ourselves to dS by taking a = − 1

Hτ . Then the solution to the EoM is given by

σk = − eπk̂·κ̃/2
√

2kHτ
W−ik̂·κ̃,iµ(2ikτ) , µ ≡

√
m̃2 − 9

4 , (2.8)

where k̂ = k
|k| , κ̃ ≡ κ

H , m̃ ≡ m
H andW is the Whittaker function that matches the BD initial

condition at τ → −∞. The late-time expansion reveals an angular-dependent production
amount

|β(k)|2 = e2π(µ+k̂·κ̃) + 1
e4πµ − 1 . (2.9)

1In fact, even if the U(1) symmetry is explicitly broken with ∇ · J 6= 0, it can be shown that there is
only a quadratic mass-shift and no enhancement particle production is present [53]. This is why (2.4) is
only a necessary condition, rather than being sufficient. However, we note that a different opinion is given
in [54], where it is argued that a scalar chemical potential can also bring isotropic enhancement to particle
production.
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To gain an intuitive understanding of the enhancement, we can go to the large mass limit
m� H. Then the leading order particle number is

|β(k)|2 µ�1−−−→ e−2π(µ−k̂·κ̃) . (2.10)

Therefore, the direct consequence of a chemical potential is a linear and biased (rather
than quadratic and un-biased) shift of the effective mass of the particle modes, making
them easier or harder to produce.2

2.2 Spin-1
2

In the massive spin- 1
2 case, the second possibility of (2.4) can be satisfied by choosing

the axial current Jµ5 = eµaΨ̄γaγ5Ψ. Hence a time-like chemical potential κµ(τ) ∝ δ0
µ has

no interpretation as a trivial background pure-gauge and can become physically relevant.
To illustrate how it assists gravitational particle production, we and choose a Majorana
fermion model [23] written in a Weyl basis Ψ =

(
ψ

ψ†

)
. The Dirac fermion case can be

obtained by combing two Majorana fermions with analogous behaviors. The action of a
Majorana fermion with chemical potential reads

S1/2 =
∫
d4x
√
−g

[
iψ†σ̄aeµaDµψ −

1
2m(ψψ + ψ†ψ†) + κµe

µ
aψ
†σ̄aψ

]
, (2.11)

where Dµ ≡ ∂µ − i
4ωµabσ

ab, ωµab = eνb∇µe c
ν ηac. This chemical potential term can arise

from, for instance, a dimension-5 coupling to a rolling scalar,

∆Lchem = −∂µφJ
µ
5

2Λ = κµe
µ
aψ
†σ̄aψ, κµ ≡

∂µφ

Λ . (2.12)

After choosing a tetrad e a
µ = a(τ)δaµ, eµa = a(τ)−1δµa and κµ = a(τ)κδ0

µ with κ = φ̇
Λ = const,

the action simplifies to

S1/2 =
∫
dτd3x

[
iψ†σ̄aδµa∂µψ −

1
2am(ψψ + ψ†ψ†) + aκψ†σ̄0ψ

]
, (2.13)

where for simplicity, we have rescaled ψ → a−3/2ψ. In momentum space, we can perform
a standard decomposition into helicity eigenmodes,

ψ(τ,x) =
∫

d3k

(2π)3

∑
s=±

[
hs(k̂)us(τ, k)eik·xbsk + iσ2hs∗(k̂)vs(τ, k)∗e−ik·xbs†k

]
, (2.14)

where σ · k̂hs(k̂) = shs(k̂). The EoM reads

iu′± = (∓k − aκ)u± + amv±

iv′± = amu± + (±k + aκ)v± . (2.15)

2See an alternative understanding of chemical potential as a non-trivial modification of dispersion relation
in [53].
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This set of equations is exactly solvable in dS. With a BD initial condition, the mode
functions take the form

u+(τ, k) = m̃e−πκ̃/2√
−2kτ

W− 1
2 +iκ̃, i

√
m̃2+κ̃2(2ikτ), u−(τ, k) = eπκ̃/2√

−2kτ
W 1

2−iκ̃, i
√
m̃2+κ̃2(2ikτ)

v+(τ, k) = e−πκ̃/2√
−2kτ

W 1
2 +iκ̃, i

√
m̃2+κ̃2(2ikτ), v−(τ, k) = m̃eπκ̃/2√

−2kτ
W− 1

2−iκ̃, i
√
m̃2+κ̃2(2ikτ) ,

(2.16)

where m̃ ≡ m
H and κ̃ = κ

H . Similar to the scalar case, performing an IR expansion at
τ = 0 and matching the Bogoliubov coefficients, one can arrive at the production amount
formula [22]

|β±(k)|2 = e2π(√m̃2+κ̃2∓κ̃) − 1
e4π
√
m̃2+κ̃2 − 1

. (2.17)

When the mass is large and chemical potential is small, the leading order particle number
again takes the form of a Boltzmann factor with linearly biased effective mass,

|β±(k)|2 m̃�|κ̃|, m̃�1−−−−−−−−→ e−2π(m̃±κ̃) . (2.18)

For a positive chemical potential, the negative-helicity mode gets amplified whereas the
positive-helicity mode is suppressed. However, when the chemical potential is larger than
the mass scale, the enhancement in the negative-helicity particle production begins to
saturate,

|β−(k)|2 κ̃�m̃�1−−−−−→ e−2π(
√
m̃2+κ̃2−κ̃) ≈ e−πm̃2/κ̃ = e−

πm2
κH . (2.19)

This is essentially the Pauli blocking phenomenon generic to all fermionic systems. The
exclusion principle forbids any mode being occupied more than once.

Actually, fermion production with constant chemical potential in general FRW space-
times can be understood in an elegant way. In terms of the physical time t, the EoM is
essentially a two-state system evolving according to a Schrödinger equation

i
∂

∂t

(
u±
v±

)
=
(
∓k
a − κ m

m ±k
a + κ

)(
u±
v±

)
. (2.20)

Without loss of generality, let us consider the negative helicity mode with s = − (the
s = + helicity mode is obtained by k → −k). The unitary evolution governed by a
Schrödinger equation (2.20) preserves the normalization |u−|2 + |v−|2 = 1. The BD initial
condition selects the positive frequency mode u− in the early time limit t → −∞. If
κ > 0, there can be a time when the physical wavelength k

a of the mode is comparable to
the chemical potential scale κ. In the language of quantum physics, we have an avoided
crossing. Namely when the diagonal elements of the Hamiltonian vanish, its instantaneous
eigenvalues approach each other, but a complete degeneracy is avoided due to the off-
diagonal terms. If this process occurs adiabatically, according to the adiabatic theorem,
the state smoothly maintains its positive-frequency trajectory and there is not much particle
production. However, if κ is large, the avoided crossing becomes a non-adiabatic one, with
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almost all positive-frequency crossed into negative-frequency part and thus nearly maximal
particle production. Viewed in this way, Pauli exclusion principle is a built-in feature of
fermions such that the evolution of (u, v) is unitary, as opposed to the symplectic evolution
of bosons (σ, σ̇), which can be unbounded from above and exponentiating (e.g., if κ � m

in (2.10)).
Interestingly, the large-chemical potential limit in the spin-1/2 fermion case enjoys a

universal behavior in general FRW spacetimes. To see this more explicitly, we can assume
κ� m and expand around the crossing time t∗, where κ = k/a(t∗),

i
∂

∂t

(
u−
v−

)
≈
(
κH(t∗)(t− t∗) m

m −κH(t∗)(t− t∗)

)(
u−
v−

)
. (2.21)

This is none other than a Landau-Zener (LZ) model with η = m and γ = 2κH(t∗) [55,
56]. The corresponding LZ parameter describing adiabaticity is z = η2

γ = m2

2κH(t∗) , where
z � 1 corresponds to adiabatic transitions and 0 < z � 1 corresponds to diabatic transi-
tions. See figure 1 for justification of approximation using an LZ transition in dS. Thus
the crossing probability is given by the exponential factor

|β−(k)|2 = e−2πz = e
− πm2
κH(t∗(k)) , (2.22)

in agreement with the exact dS result (2.19). Furthermore, we obtain the production time
t∗ as the solution to the equation κ = k

a(t∗) . Naively, we would expect the production width
to be the time scale at which the LZ resonance happen, i.e., 4η

γ = 2m
κH(t∗) . However, we

shall see in section 3.2 that this is not the case. The actual particle production width is
∆t∗ =

√
2π
γ = 1√

κH(t∗)/π
, which is typically shorter than the LZ time scale [36].

2.3 Spin-1

One can also easily find a non-conserved current in the Abelian massive vector boson case,
namely the Chern-Simons current JµCS = EµνρσAνFρσ = 1√

−g ε
µνρσAνFρσ. The chemical

potential term looks like

∆Lchem = 1
2

∫
d4x
√
−gκµJµCS = 1

2

∫
dτd3xκµε

µνρσAνFρσ . (2.23)

For a choice of κµ = θ′(τ)δ0
µ ≡ a(τ)κδ0

µ, or κ ≡ θ̇ = const, an integration-by-part gives a
time-dependent θ-term (a rolling axion),

∆Lchem = 1
2

∫
d4x
√
−gκµJµCS = −1

4

∫
dτd3xθ(τ)εµνρσFµνFρσ . (2.24)

Thus the system is described by an axion electrodynamics Lagrangian [57]

S1 =
∫
d4x
√
−g

[
−1

4FµνF
µν + 1

2m
2AµA

µ − 1
4θ(τ)EµνρσFµνFρσ

]
. (2.25)

A massive vector boson has three degrees of freedom, two transverse modes and a longitu-
dinal mode, from which the time-like component is solved using the constraint ∇µAµ = 0.
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Figure 1. The instantaneous eigenvalues of the Hamiltonian in dS. Here we have chosen m = 15H,
κ = 60H, or, after translating to LZ model parameters, η = 15H, γ = 120H2. The gray band
corresponds to the naive time scale 4η

γ = 0.5H−1 while the red band corresponds to the actual

production width ∆t∗ =
√

2π
γ = 0.23H−1. As long as κ� m, the light pink band is narrow enough

so that the expansion of spacetime becomes irrelevant, and the instantaneous energy eigenvalues
approach to that of a LZ model.

Decomposing the spatial components into helicity eigenstates, we have

Ai(τ,x) =
∫

d3k

(2π)3 e
ik·x ∑

s=0,±
εsi (k̂)

[
fs(τ, k)ask + fs(τ, k)∗as†−k

]
. (2.26)

The EoM then reads

f ′′± +
(
k2 ± 2kκa+m2a2

)
f± = 0 , f ′′0 +

(
k2 +m2a2

)
f0 = 0 (2.27)

As a result, the transverse modes are affected by the chemical potential while the longitu-
dinal mode is not. Focusing on the transverse modes, we can solve the EoMs analogously
as (2.7),

f±(τ, k) = e∓πκ̃/2√
2k

W−iκ̃,iµ(2ikτ) , µ ≡
√
m̃2 − 1

4 . (2.28)

The transverse particle production amount is then

|β±(k)|2 = e2π(µ∓κ̃) + 1
e4πµ − 1 . (2.29)

In the large mass limit, the effect of chemical potential again simplifies to a linear bias over
the effective mass,

|β±(k)|2 µ�1−−−→ e−2π(µ±κ̃) . (2.30)
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Here, without the protection of the exclusion principle, the production amount starts to
become exponentially large if |κ̃| > µ. This is commonly recognized as a tachyonic insta-
bility in the study of axions. In this parameter regime, the backreaction to the rolling θ(τ)
must be taken into account.

3 The uniformly smoothed Stokes-line method

In this section, we derive the uniformly smoothed Stokes-line method for both spin-1 vector
bosons and spin-1/2 Majorana fermions, providing a framework to analyze the histories of
particle production with chemical potentials. Mathematically, the evolution of spin-1 vector
bosons (2.27) and spin-1/2 Majorana fermions (2.20) behave as second order differential
equations and the Schrödinger equation with two quantum states respectively, and such
systems can experience the emergence of negative-frequency part starting from an initial
positive-frequency solution, known as the Stokes phenomenon:

Ψ+(τ)→ α(τ)Ψ+(τ) + β(τ)Ψ−(τ) , (3.1)

where Ψ±(τ) are the positive/negative-frequency parts of either bosons or fermions, and the
two time-dependent functions α(τ) and β(τ) can be regarded as the Bogoliubov coefficients,
associated with the particle production. The Stokes phenomena in second order differential
equations [35, 40, 47, 48, 58, 59] and transitions between two quantum states [36, 37] have
been studied in many works with the assumption that the magnitude of the emergent part
|β(τ)| is exponentially small, and all of these works point out that the singulant

F (τ) = −2i
∫ τ

τc
ω(τ1)dτ1 , (3.2)

defined as the difference between the positive and negative phases accumulated from the
complex turning point τc satisfying ω(τc) = 0, are important to describe the details of the
Stokes phenomena. To be specific, when the systems evolve near the Stokes line, defined as
the line linking τc and τ∗c with ImF (τ) = 0, the negative-frequency part starts to produce,
and the production histories including the amounts and widths can be calculated from the
singulant F (τ), proved with the technique of optimally truncating the asymptotic series
solution of (3.1).

In the following subsections, we first follow previous studies to apply the optimally
truncated asymptotic series solution to calculate the particle production for vector bosons
and fermions respectively, and this framework works properly when the particle produc-
tion is exponentially small. We then analyze the situation when the exponential particle
production is significantly enhanced by the chemical potential, so that the optimal trun-
cation technique is not applicable, and the Borel summation technique should be applied
to obtain the particle production.

3.1 Bosonic case

Consider the mode expansion for the transverse component of a massive vector boson,

A⊥i =
∫

d3k

(2π)3 e
ik·x ∑

s=±
εsi (k̂)

[
fs(τ, k)ask + fs(τ, k)∗as†−k

]
. (3.3)
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The mode function satisfies a second order EoM of the general form

d2

dz2 f(z) + λ2w2(z)f(z) = 0 , w2 = 1 + 2sκa
k

+ m2a2

k2 , (3.4)

where we use the dimensionless variable3 z = kτ , and we denote ′ as the derivative with
respect to z starting from here. The helicity label s is also omitted for simplicity. The
asymptotic parameter λ, defined for later analysis of asymptotic series, is supposed to be
large, and we can choose λ = m if the mass is the largest parameter in the problem. (3.4)
has the same structure as the one-dimensional time-independent Schrödinger equation with
a barrier, and therefore we adopt the method of analyzing waves near Stokes lines [35] to
study the particle production. We can express the solution of (3.4) with the WKB form

f(z) = C√
2W (z)

e
−iλ

∫ z
zc
W (z1)dz1 , (3.5)

where C is a constant fixed by the initial and normalization conditions, zc is the complex
turning point defined by w(zc) = 0 and located at the lower-half complex plane, and the
function W (z) satisfies

W 2(z) = w2(z)− 1
λ2

[
W ′′(z)
2W (z) −

3
4

(
W ′(z)
W (z)

)2]
. (3.6)

In general, we cannot obtain the exact solution of W (z), but we can apply the iterative
adiabatic expansion to approximate it [40, 47]

W (n+1)(z) =

√√√√√w2(z)− 1
λ2

W ′′(n)(z)
2W (n)(z)

− 3
4

(
W ′(n)(z)
W (n)(z)

)2


=

√√√√√w2(z)−

√
W (n)(z)
λ2

d2

dz2

 1√
W (n)(z)

 , (3.7)

withW (0)(z) = w(z). Such an iterative relation can be used to derive the asymptotic series
solution of W (z)

W (z) = w(z)
∞∑
n=0

ϕ2n(z)
λ2n , (3.8)

and the series truncation at the O(λ−2n) is W (n) defined in (3.7). Applying (3.8) can
express the oscillating phase integral in (3.5) with the asymptotic series, and we will see
later in section 4.1 that this is important for obtaining the 1/4 correction to the vector

3In dS, it is more convenient to choose z = −kτ . Then the form of the singulant integral will differ by
a sign and the zc will be on the upper half complex plane. These convention differences do not change the
physical results and one can choose the convention that best-suit the problem. We follow the guideline that
ImF decreases as conformal time increases, and that the singulant integral always starts with the turning
point on the lower half conformal time plane.
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boson’s dS effective mass. On the other hand, it is well-known that the terms in the
asymptotic series (3.8) keep increasing when n is sufficiently large [35, 40, 47, 58]

ϕ2n
λ2n ≈ −

(2n− 1)!
πF 2n , (3.9)

where

F (z) = −2iλ
∫ z

zc
w(z1)dz1 , (3.10)

is Dingle’s singulant variable [59]. So we can truncate the series sum at a suitable order n
to approximate the solution (3.5).

The asymptotic series solution with an optimal truncation order n, f (n)(z) =
e
−iλ

∫ z
zc
W (n)(z1)z1/

√
2W (n)(z), cannot fully represent the WKB solution (3.5), but we can

choose to expand the exact solution with the super-adiabatic basis formed by f (n) and
f∗(n),

f(z) = α(z)e
−iλ

∫ zc
zi

W (n)(z1)dz1

√
λ

f (n)(z) + β(z)e
iλ
∫ zc
zi

W (n)(z1)dz1

√
λ

f∗(n)(z)

= α(z)e−iλ
∫ z
zi
W (n)(z1)dz1 + β(z)eiλ

∫ z
zi
W (n)(z1)dz1√

2λW (n)(z)

≡ α(z)g(z) + β(z)g∗(z) , (3.11)

where zi in the value of z at initial time and g(z) can be viewed as the instantaneous
positive-frequency solution. Now the vector field can be expanded in an alternative form
using g(z):

A⊥i =
∫

d3k

(2π)3 e
ik·x ∑

s=±
εsi (k̂)

[
gs(τ, k)bsk(τ) + gs(τ, k)∗bs†−k(τ)

]
, (3.12)

where the new annihilation operator acquires a time dependence through the Bogoliubov
transformation

bsk(z) ≡ αs(z)ask + βs(z)∗as†k . (3.13)

And the original vacuum annihilated by ask now contains a spectrum of particles,

〈nsk(τ)〉
V

=
〈bs†k bsk(τ)〉

V
= |βs(z)|2 . (3.14)

Thus our aim is to solve the time dependence of the Bogoliubov coefficients α(z), β(z).
The solution satisfies the initial and normalization (Wronskian) conditions as

f(zi)→
e
−iλ

∫ z
zi
W (n)(z1)dz1√

2λW (n)(z)
, ff∗′ − f∗f ′ = i . (3.15)
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As pointed out in [40, 47], the constant Wronskian implies a degree of freedom of defining
the derivative of f :

f ′(z) =
(
−iλW (n)(z)+V (z)

)
α(z)e

−iλ
∫ z
zi
W (n)(z1)dz1√

2λW (n)(z)
+
(
iλW (n)(z)+V (z)

)
β(z)e

iλ
∫ z
zi
W (n)(z1)dz1√

2λW (n)(z)
,

(3.16)

where V (z) is an arbitrary real function. Choosing the time-dependent function V (z)
decides the evolution of the Bogoliubov coefficients

d

dz

(
α(z)
β(z)

)
= δ(z)

 1
(

∆(z)
δ(z) + 1

)
e

2iλ
∫ z
zi
W (n)(z1)dz1(

∆(z)
δ(z) − 1

)
e
−2iλ

∫ z
zi
W (n)(z1)dz1 −1

(α(z)
β(z)

)
,

(3.17)

where

δ(z) = λ

2iW (n)(z)

[
w2(z)−(W (n)(z))2 + 1

λ2

(
V ′(z)+V 2(z)

)]
, ∆(z) = W ′(n)(z)

2W (n)(z)
+V (z) ,

(3.18)

and with the initial condition

α(zi) = αi , β(zi) = βi . (3.19)

Therefore, the appropriate choice of V (z) should minimize the change of the Bogoliubov
coefficients as we intends to minimize the difference between the basis function f (n) and
the exact solution, and such a choice is V (z) = −W ′(n)(z)

2W (n)(z) , as suggested in [35, 40] with
different reasons. With this choice, the evolution of the Bogoliubov coefficients satisfies

d

dz

(
α(z)
β(z)

)
=λ

(W (n+1)(z))2−(W (n)(z))2

2iW (n)(z)

 1 e
2iλ
∫ z
zi
W (n)(z1)dz1

−e−2iλ
∫ z
zi
W (n)(z1)dz1 −1

(α(z)
β(z)

)

= δ(z)

 1 e
2iλ
∫ z
zi
W (n)(z1)dz1

−e−2iλ
∫ z
zi
W (n)(z1)dz1 −1

(α(z)
β(z)

)
, (3.20)

and the diagonal term can be removed by defining variables

α(z) = e

∫ z
zi
δ(z1)dz1

S+(z) , β(z) = e
−
∫ z
zi
δ(z1)dz1

e
−2iλ

∫ zc
zi

W (n)(z1)dz1
S−(z) , (3.21)

implying that S± are the Stokes multipliers for the positive and negative modes respectively,
so the evolution equation is simplified as

dS±
dF

=± iδ(z)2λw exp
[
±2
(∫ z

zc
iλW (n)(z1)dz1−

∫ z

zi

δ(z1)dz1

)]
S∓

=±e
∓2
∫ z

zi
δ(z1)dz1

4wλ2
e
±iλ
∫ z

zc
W (n)(z1)dz1

√
W (n)

e
±iλ
∫ z

zc
W (n)(z1)dz1

√
W (n)

′′+λ2w2 e
±iλ
∫ z

zc
W (n)(z1)dz1

√
W (n)

S∓ .
(3.22)
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The term in the square bracket can be interpreted as the O(λ−2n−1) error when we ap-
proximate the EoM (3.4) with the 2n-th order partial sum of the asymptotic series, and
this can be calculated with the asymptotic series of the positive-frequency part f+

f+(z) = C
e
−iλ

∫ z
zc
w(z1)dz1√

2w(z)

∞∑
n=0

bn(z)
λn

. (3.23)

Substituting this series solution into the EoM (3.4) implies

b′n+1(z) = − i

2w(z)b
′′
n(z) + iw′(z)

2w2(z)b
′
n(z) + i

(
w′′(z)
4w2(z) −

3w′(z)2

8w3(z)

)
bn(z) . (3.24)

In all the scenarios that we study in section 4, w2(z) has a simple root at zc, so we
approximate w(z) as

w(z) = A(z − zc)
1
2 +O(|z − zc|

3
2 ) , (3.25)

and (3.24) is reduced to

b′n+1(z) ≈ − i

2A(z − zc)
1
2
b′′n(z) + iγ

4A(z − zc)
3
2
b′n(z)− 5i

32A(z − zc)
5
2
bn(z) , (3.26)

and the solution of this recurrence relation with b0 = 1 is

bn
λn
≈

2−2n−13n
(
i
A

)n
Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)
πΓ(n+ 1)(z − zc)

3n
2

≈
Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)
2πn!Fn . (3.27)

Applying the asymptotic series of f(z) (3.23), The term in the square bracket of (3.22) can
be calculated explicitlye−iλ

∫ z
zc
W (n)(z1)dz1

√
W (n)

′′ + λ2w2 e
−iλ

∫ z
zc
W (n)(z1)dz1

√
W (n)

e−iλ
∫ z
zc
W (n)(z1)dz1

√
W (n)

−1

=

e−iλ
∫ z
zc
w(z1)dz1

√
w

2n∑
j=0

bj
λj

′′ + λ2w2

e−iλ
∫ z
zc
w(z1)dz1

√
w

2n∑
j=0

bj
λj

e−iλ
∫ z
zc
w(z1)dz1

√
w

−1

,

(3.28)

implying that e−iλ
∫ z
zc
W (n)(z1)dz1

√
W (n)

′′ + λ2w2 e
−iλ

∫ z
zc
W (n)(z1)dz1

√
W (n)

= e
−iλ

∫ z
zc
W (n)(z1)dz1

λ2n
√
W (n)

[
b′′2n −

w′b′2n
w

+
(

3w′2

4w2 −
w′′

2w

)
b2n

]

= 2iwe
−iλ

∫ z
zc
W (n)(z1)dz1

λ2n
√
W (n)

b′2n+1 , (3.29)
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where (3.24) is applied to obtain the last line. Therefore, the evolution of S± (3.22) is
reduced to

d

dF

(
S+
S−

)
=

 0
[
d
dF

(
b2n+1
λ2n+1

)]∗
w

W (n) e
2iλ
∫ z
zc
W (n)(z1)dz1

− d
dF

(
b2n+1
λ2n+1

)
w

W (n) e
−2iλ

∫ z
zc
W (n)(z1)dz1 0

(S+
S−

)
+O(δ2(z))

=

 0
[
d
dF

(
b2n+1
λ2n+1

)]∗
e−F

− d
dF

(
b2n+1
λ2n+1

)
eF 0

(S+
S−

)
+O

( 1
λ2n+2

)
, (3.30)

where we keep only the term with O(λ−2n−1). It is clear that |dS+/dF | � |dS−/dF | as
there is an exponential suppression e−F for the former, so we can solve (3.30) perturbatively
starting from the initial values Si± = S

(0)
± , determined by αi and βi through (3.21), and the

leading-order change S− is an integral along the straight line with constant positive ReF
in the complex F plane:

S
(0)
− + S

(1)
− (F ) = Si− − Si+

∫ F

ReF+i∞

d

dF

(
b2n+1
λ2n+1

)
eFdF

= Si− + Si+
Rn
2π

∫ F

ReF+i∞

(2n+ 1)!
F 2n+2 eFdF

= Si− + Si+
Rn(2n+ 1)!

2π Γ̃(−1− 2n,−F ) , (3.31)

where the value of prefactor

Rn =
Γ
(
2n+ 7

6

)
Γ
(
2n+ 11

6

)
(2n+ 1)!Γ(2n+ 1) , (3.32)

and the function Γ̃(−1 − 2n,−F ) is the continuous version of the incomplete Gamma
function, defined as

Γ̃(−1−2n,−F ) =

Γ(−1−2n,−F ) ImF ≥ 0
Γ(−1−2n,−F )+limc→0+ [Γ(−1−2n,−ReF−ic)−Γ(−1−2n,−ReF+ic)] ImF < 0 .

(3.33)

The prefactor Rn → 1 when n� 0, implying that limF→ReF−i∞ S
(0)
− +S(1)

− (F ) = Si−−iSi+.
The incomplete Gamma function of (3.31) can oscillate dramatically for general n, and we
can choose an optimal truncation order n such that the phase is stationary at F = ReF ,
the moment when the integral receives dominant contribution(

d

dF

b2n+1
λ2n+1

)−1 d2

dF 2

(
b2n+1
λ2n+1

) ∣∣∣
F=ReF

+ 1 = 0 , (3.34)

and the solution is n = Int
(

ReF
2

)
− 1. It is noteworthy that the optimal truncation

order cannot be determined by the stationary-phase condition when ReF < 2, and we will
consider such a situation in the later part of this subsection. For simplifying the following
perturbative calculation, we set the initial condition as (αi, βi) ≈ (Si+, Si−) = (S(0)

+ , S
(0)
− ) =

(1, 0), and the cases with general initial conditions can be obtained easily based on (3.31).
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Assuming that the optimal truncation is applicable with ReF ≥ 2, we can thus approximate
the integrand as a Gaussian function around the point with stationary phase, and thus the
Stokes multiplier reduces to an error function.

S
(1)
− (F ) ≈ − iRn2

[
1 + Erf

(
− ImF√

2ReF

)]
. (3.35)

We are ready to calculate the first-order term of S+ by solving

dS
(1)
+

dF
=
[
d

dF

(
b2n+1
λ2n+1

)]∗ w

W (n) e
2iλ
∫ z
zc
W (n)(z1)dz1S

(1)
−

= e
4iλ
∫ z∗
zc

W (n)(z1)dz1
[
d

dF

(
b2n+1
λ2n+1

)
w

W (n) e
−2iλ

∫ z
zc
W (n)(z1)dz1

]∗
S

(1)
−

= e
4iλ
∫ z∗
zc

W (n)(z1)dz1 dS
(1)
−
∗

dF
S

(1)
− , (3.36)

where z∗ is the intersection between the Stokes line and the real z axis, and the phase
integral along the Stokes line e4iλ

∫ z∗
zc

W (n)(z1)dz1 is real. Such a relation between S
(1)
+ and

S
(1)
− implies a much simpler form of the magnitude of S(0)

+ + S
(1)
+∣∣∣S(0)

+ +S(1)
+

∣∣∣2≈ 1+S(1)
+ +S(1)

+
∗
+O

(
e

8iλ
∫ z∗
zc

W (n)(z1)dz1
)

= 1+e4iλ
∫ z∗
zc

W (n)(z1)dz1
∫ F

ReF+i∞

dS(1)
−
∗

dF
S

(1)
− +

dS
(1)
−

dF
S

(1)
−
∗
dF+O

(
e

8iλ
∫ z∗
zc

W (n)(z1)dz1
)

= 1+e4iλ
∫ z∗
zc

W (n)(z1)dz1
∣∣∣S(1)
− (F )

∣∣∣2+O
(
e

8iλ
∫ z∗
zc

W (n)(z1)dz1
)
, (3.37)

and the definition of S± (3.21) implies that the normalization of the Bogoliubov coefficients
preserves under the first-order perturbation.

For the situations with ReF < 2, we expect that higher-order perturbations are re-
quired to solve for (3.30), and the perturbation theory may break down when e−ReF → 1,
so we should analyze such situations carefully. In the cases with ReF < 2, we cannot choose
an optimal truncation because of the failure of the stationary phase condition (3.34) and
the magnitudes of the terms in the asymptotic series solution (3.23) bn increase, starting
from the first term. Such a divergent series defined by (3.27) behaves like the general-
ized hypergeometric function 2F0(a, b; ;F−1) which diverges everywhere from its original
definition, but it can be defined meaningfully by applying the Borel summation:

B(F ) =
∞∑
n=0

bn
λn

=
∫ +∞

0
e−t

∞∑
n=0

Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)
2π(n!)2Fn

tndt

=
∫ +∞

0
e−t 2F1

(1
6 ,

5
6; 1; t

F

)
dt

=
e−F/2

√
−FK 1

3

(
−F

2

)
√
π

, (3.38)
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where Ka(z) is the modified Bessel function. The function B(F ) is discontinuous when it
crosses the Stokes line with ImF = 0, implying that the exact solution after crossing the
Stokes line should depend on different set of linear combination:

f(z) =


αi

e
−iλ
∫ z
zi
w(z1)dz1

√
2λw(z)

B(F (z)) + βi
e
iλ
∫ z
zi
w(z1)dz1

√
2λw(z)

B∗(F (z)) ImF > 0

C1
e
−iλ
∫ z
zi
w(z1)dz1

√
2λw(z)

B(F (z)) + C2
e
iλ
∫ z
zi
w(z1)dz1

√
2λw(z)

B∗(F (z)) ImF < 0
, (3.39)

where the C1 and C2 are constants. After knowing the expression of f(z), the Bogoliubov
coefficients can be solved by combining (3.11) and (3.16), and the results can be fully
recorded by the singulant F

α(F ) =

αi
(
B(F ) + dB(F )

dF

)
− βie−F+ReF

(
dB(F )
dF

)∗
ImF > 0

C1
(
B(F ) + dB(F )

dF

)
− C2e

−F+ReF
(
dB(F )
dF

)∗
ImF < 0

, (3.40)

and

β(F ) =

−αie
F−ReF dB(F )

dF + βi
(
B(F ) + dB(F )

dF

)∗
ImF > 0

−C1e
F−ReF dB(F )

dF + C2
(
B(F ) + dB(F )

dF

)∗
ImF < 0

, (3.41)

and thus the constants C1 and C2 are chosen such that the Bogoliubov coefficients and
their derivatives are continuous at ImF = 0. To compare with the particle production
in dS spacetime, we set the initial condition as (αi, βi) = (1, 0). Since B(F ) → 1 when
ImF → ±∞, we can know that C1 and C2 are the final values of α(F ) and β(F ) respectively,
and numerical checking confirms the normalization condition |C1|2 − |C2|2 = 1. As shown
in figure 2, |C2| agrees with the tendency of e−ReF for the region with ReF & 0.5, but
large deviations appear when ReF → 0. Such deviations may be partly attributed to
the failure of the approximation of w(z) (3.25) when the two complex roots begin to
merge when ReF → 0, whereas part of the deviations are expected. For example, the
|β(k)| in dS spacetime (2.29) cannot be fully described as an exponential factor in some
parameter ranges, and thus the behavior of large |β(k)| depends on the details of scenarios.
The universal property is that it approaches to the exponential form e−ReF when |β(k)|
decreases, so we use the exponential form to describe the tendency of the production
amount but not its exact value for the cases with small ReF .

On the other hand, we also compare the Stokes multiplier Snum(F ) obtain from the
numerical result (3.41) with the approximations utilizing the incomplete gamma func-
tion SΓ(F ) with n = 0 from the first-order perturbation (3.31) and the error function
SErf(F ) (3.35) respectively, as shown in figure 3. It is clear that only the imaginary part of
β(k) remains non-zero after finishing the particle production, and different approximations
have significant errors of describing the real part of β(k) which vanishes rapidly after cross-
ing the Stokes line, but the error function can still describe the width of the production
process. After knowing how the production amount and width depends on the singulant
F (z), we can write down a simple form of β(z) which includes the tendencies of particle

– 17 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
9

Figure 2. The comparison between |C2| and e−ReF with 0 < ReF ≤ 2, and the vertical axis is in
logarithmic scale.

Figure 3. The comparison between Snum(F ), SΓ(F ) and SErf(F ), where all of them are normalized
such that the final value approaches −i and ReF = 0.5. The solid lines represent the imaginary
parts, whereas the dashed lines are the real parts.

production with vacuum initial condition when related parameters are changed:

β(z) ≈ − ie
−2i
∫ zc
zi

W (n)(z1)dz1

2

[
1 + Erf

(
− ImF (z)√

2ReF

)]
, (3.42)

where we replace λw → w in (3.4) for simplicity since λ and w(z) always appear together
in the final results, and the generalization to arbitrary initial conditions is straightforward
based on the results (3.31) and (3.41).

3.2 Fermionic case

The fermionic case is logically similar to the bosonic case, but with important differences
in the mathematical details. To be more specific, let us consider the action (2.13) for a
Majorana fermion with chemical potential in an FRW background. We will use the Van
der Waerden notation for two-component spinors and the conventions follow from [60].
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We begin by rewriting the mode expansion of ψα in the Van der Waerden notation,

ψα(τ,x) =
∫

d3k

(2π)3

∑
s=±

[
us(τ, k)eik·xhsα(k̂)bsk + vs(τ, k)∗e−ik·xεαβhs†γ̇ (k̂)σ̄0γ̇βbs†k

]
. (3.43)

Notice that it is sometimes customary to omit the zeroth Pauli matrix since it is an identity
matrix in component form. However, for the sake of balancing the indices, we will keep
them explicit here. The eigenvalue equation for the helicity basis can be written in a
number of different equivalent forms:

−k̂iσ0
αβ̇
σ̄iβ̇γhsγ(k̂) = shsα(k̂) (3.44a)

hs†γ̇ (k̂)σ̄0γ̇βσiβα̇k̂
i = shs†α̇ (k̂) . (3.44b)

It is sometimes useful to choose an explicit component form of the helicity basis,

h+
α (k̂) =

(
cos θ2
eiφ sin θ

2

)
α

, h−α (k̂) =
(
−e−iφ sin θ

2
cos θ2

)
α

, (3.45)

with k̂ pointing toward the (θ, φ) direction in spherical coordinates.
Substituting the mode expansion into the equation of ψα obtained from varying the

action (2.13), we obtain the EoM of the mode functions,

i
∂

∂τ

(
us
vs

)
=
(
−sk − aκ am

am sk + aκ

)(
us
vs

)
. (3.46)

This EoM preserves the combination |us|2 + |vs|2, with the normalization constant deter-
mined by the canonical quantization condition {ψα(τ,x), δS1/2

δ∂τψβ(τ,x′)} = iδβαδ
3(x−x′). After

plugging in the mode expansion, this is reduced to a c-number equation

δβα =
∑
s=±

(
|us|2hsαh

s†
β̇
σ̄0β̇β + |vs|2σ0

αβ̇
h−s†β̇h−sβ

)
. (3.47)

Taking the trace and the determinant of the above equation yields∑
s=±

(|us|2 + |vs|2) = 2 , and
∏
s=±

(|us|2 + |vs|2) = 1 , (3.48)

thus fixing the normalization condition |us|2 + |vs|2 = 1 separately for different helicities.
As mentioned in section 2.2, the EoM (3.46) can be interpreted as describing the

transition of a two-level system with a Hamiltonian

H(τ) =
(
Z(τ) X(τ)
X(τ) −Z(τ)

)
= E(τ)

(
C(τ) S(τ)
S(τ) −C(τ)

)
, (3.49)

where
E ≡

√
Z2 +X2 = k2 + 2sκa+ (m2 + κ2)a2 (3.50)

and C ≡ Z
E , S ≡

X
E . The instantaneous eigenstates of H(τ) are given by

H

(
C

S

)
= E

(
C

S

)
, H

(
S

−C

)
= −E

(
S

−C

)
. (3.51)
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Therefore, an ansatz of the solution of (3.46) can be constructed as(
us
vs

)
= αse

−i
∫
Esdτ

(
C̃s
S̃s

)
+ βse

i
∫
Esdτ

(
S̃∗s
−C̃∗s

)
, (3.52)

where C̃s, S̃s are slowly varying functions whose detailed form as a super-adiabatic basis
will be computed later. If we choose |C̃s|2 + |S̃s|2 = 1, the coefficient functions αs, βs
will satisfy the normalization |αs|2 + |βs|2 = 1, as required by the normalization of us, vs
and unitarity.

Now we can insert the ansatz back into the mode expansion of ψα,

ψα(τ,x) =
∫

d3k

(2π)3

∑
s=±

[(
αse
−i
∫
Esdτ C̃s+βsei

∫
Esdτ S̃∗s

)
eik·xhsα(k̂)bsk

+
(
α∗se

i
∫
Esdτ S̃∗s−β∗se−i

∫
Esdτ C̃s

)
e−ik·xεαβh

s†
γ̇ (k̂)σ̄0γ̇βbs†k

]
. (3.53)

The time-dependent creation/annihilation operators are selected according to the instan-
taneous negative/positive frequency parts of ψα. Therefore, we can regroup the terms
according to the dynamical phase e∓i

∫
Esdτ . First, we note the relation

εαβh
s†
γ̇ (−k̂)σ̄0γ̇β ≡ ηs(k̂)hsα(k̂) , (3.54)

where ηs(k̂) is a phase factor satisfying

ηs(−k̂) = −ηs(k̂) . (3.55)

This can be seen directly from left-multiplying (3.54) by hs†α̇ σ̄0α̇α and solving out ηs(k̂), or
from directly inspecting the component form (3.45). After applying (3.54), we arrive at an
alternative expansion,

ψα(τ,x) =
∫

d3k

(2π)3

∑
s=±

[
C̃se

−i
∫
Esdτeik·xhsα(k̂)dsk + S̃∗se

i
∫
Esdτe−ik·xεαβh

s†
γ̇ (k̂)σ̄0γ̇βds†k

]
,

(3.56)
where the new time-dependent annihilation operator is obtained as a Bogoliubov transfor-
mation [22, 61],

dsk(τ) ≡ αs(τ, k)bsk − β∗s (τ, k)ηs(k̂)bs†k . (3.57)

The anti-commutation relation is preserved:

{dsk, d
s′†
k′ } =

(
|αs|2 + |βs|2

)
{bsk, b

s′†
k′ } = (2π)3δss

′
δ3(k− k′) . (3.58)

Therefore, the vacuum annihilated by the original operator bsk now contains a spectrum of
particles with comoving number density

〈nsk(τ)〉
V

=
〈ds†k dsk(τ)〉

V
= |βs(τ, k)|2 , (3.59)
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where V is the comoving volume. Here rotational symmetry demands the isotropy of
particle production spectrum, as βs only depends on the magnitude of the momentum.

The structure of the EoM of fermion (3.46) is similar to the two-state systems in
quantum mechanics, and thus we adopt the framework of analyzing the quantum transition
histories of such systems [36]. To calculate the particle production, it is convenient to use
the bra-ket notation. Similar to the case of boson, we rewrite the equation of motion with
the asymptotic parameter λ

i
d

dz
|ψ〉 = λH|ψ〉 , (3.60)

where we use ψ〉 to denote the two-component mode function, and z = kτ . For the
ansatz (3.52) in the bra-ket notation

|ψ〉 = αe
−iλ

∫ z
zi
E(z1)dz1 |ψα〉+ βe

iλ
∫ z
zi
E(z1)dz1 |ψβ〉 , (3.61)

the left hand side of (3.60) is

i
d

dz
|ψ〉= i

[
(α′−iλEα)|ψα〉+α|ψα〉′

]
e
−iλ
∫ z
zi
E(z1)dz1 +i

[
(β′+iλEβ)|ψβ〉+β|ψβ〉′

]
e
iλ
∫ z
zi
E(z1)dz1

,

(3.62)

whereas the right hand side is

λH|ψ〉 = λ

(
αe
−iλ

∫ z
zi
E(z1)dz1

H|ψα〉+ βe
iλ
∫ z
zi
E(z1)dz1

H|ψβ〉
)
. (3.63)

If |ψα〉 and |ψβ〉 are the two exact solutions, the positive and negative modes evolve inde-
pendently with constant α and β, implying that

−iλ(H − E)|ψα〉 − |ψα〉′ = 0
−iλ(H + E)|ψβ〉 − |ψβ〉′ = 0 . (3.64)

Similar to the case of boson, we approximate the solutions with the asymptotic series

|ψα〉 =
∞∑
j=0

cj(z)|ψ(0)
α 〉+ dj(z)|ψ(0)

β 〉
λj

|ψβ〉 = −
∞∑
j=0

d∗j (z)|ψ(0)
α 〉 − c∗j (z)|ψ(0)

β 〉
λj

, (3.65)

where |ψ(0)
α 〉 and |ψ(0)

β 〉 are the instantaneous eigenstates found in (3.51), and they satisfy

|ψ(0)
α 〉′ = −

θ′

2 |ψ
(0)
β 〉

|ψ(0)
β 〉
′ = θ′

2 |ψ
(0)
α 〉 , (3.66)
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where θ(z) = arctan
(
X(z)
Z(z)

)
, defined in (3.49). Substitute (3.65) and (3.66) to (3.64), we

have

c′j + dj
2 θ
′ = 0

2iE(z)dj+1 − d′j + cj
2 θ
′ = 0 . (3.67)

Similar to the case of boson, we solve for cj(z) and dj(z) near the complex root zc of
E2(z) = X2(z) + Z2(z) = 0. In all the scenarios that we study in section 4, zc is a
first-order root, implying that

X(z) ≈ Xc +X ′c(z − zc) +O(|z − zc|2)
Z(z) ≈ iXc + Z ′c(z − zc) +O(|z − zc|2) , (3.68)

with X2
c + Z2

c = 0, and

θ′(z) = Z2(z)
X2(z) + Z2(z)

(
X(z)
Z(z)

)′
≈ i

2(z − zc)
. (3.69)

With this approximation of θ′(z), we obtain the recurrence relation of cj from (3.67)

c′j+1(z) = − i

2A(z − zc)
1
2
c′′j (z)− i

2A(z − zc)
3
2
c′j(z) + i

32A(z − zc)
5
2
cj(z) , (3.70)

where A is defined by E ≈ A(z − zc)1/2, and the solutions of cj(z) and dj(z) with c0 = 1
and d0 = 0 are

cj(z)
λj

= −
3j−24−j−1

(
i
A

)j (5
6

)
j−1

(
7
6

)
j−1

Γ(j + 1)(z − zc)3j/2

= −

(
5
6

)
j−1

(
7
6

)
j−1

36Γ(j + 1)F j , (3.71)

and

dj(z)
λj

=
iΓ
(
j − 1

6

)
Γ
(
j + 1

6

)
2πΓ(j)F j , (3.72)

respectively, where (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol, and the singulant is

F (z) = −2i
∫ z

zc
E(z1)dz1 . (3.73)

Clearly cj(z) and dj(z) are divergent asymptotic series, and thus we truncate them at
the order of n and denote the partial sums of (3.65) as |ψ(n)

α 〉 and |ψ(n)
β 〉. Equating (3.62)
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and (3.63) with the truncated asymptotic series can derive the coupled differential equations
of α and β

d

dz

(
α(z)
β(z)

)

=

 iλE(z)−〈ψ(n)
α |ψ(n)

α 〉′−iλ〈ψ(n)
α |H|ψ(n)

α 〉 −
(
〈ψ(n)

α |ψ(n)
β 〉′+iλ〈ψ

(n)
α |H|ψ(n)

β 〉
)
e

2iλ
∫ z
zi
E(z1)dz1

−
(
〈ψ(n)

β |ψ
(n)
α 〉′+iλ〈ψ(n)

β |H|ψ
(n)
α 〉

)
e
−2iλ

∫ z
zi
E(z1)dz1 −iλE(z)−〈ψ(n)

β |ψ
(n)
β 〉′−iλ〈ψ

(n)
β |H|ψ

(n)
β 〉

(α(z)
β(z)

)
.

(3.74)

The values of matrix elements can be obtained by evaluating (3.64) with the truncated
series

−iλ(H − E)|ψ(n)
α 〉 − |ψ(n)

α 〉′ =
1
λn

(
cn(z)

2 θ′(z)− d′n(z)
)
|ψ(0)
β 〉

−iλ(H + E)|ψ(n)
β 〉 − |ψ

(n)
β 〉
′ = 1

λn

(
cn(z)

2 θ′(z)− d′n(z)
)∗
|ψ(0)
α 〉 , (3.75)

and thus

d

dz

(
α(z)
β(z)

)
=

 δ2(z) −∆∗2(z)e2iλ
∫ z
zi
E(z1)dz1

∆2(z)e−2iλ
∫ z
zi
E(z1)dz1

δ∗2(z)

(α(z)
β(z)

)
, (3.76)

where

δ2(z) = 1
λn

(
cn(z)

2 θ′(z)− d′n(z)
) n∑
j=1

d∗j (z)
λj

∆2(z) = 1
λn

(
cn(z)

2 θ′(z)− d′n(z)
) n∑
j=0

cj(z)
λj

(3.77)

which has the same structure as vector boson (3.20). We remove the diagonal term by
defining the Stokes multipliers

α(z) = e

∫ z
zi
δ2(z1)dz1

S+(z) , β(z) = e

∫ z
zi
δ∗2(z1)dz1

e
−2iλ

∫ zc
zi

E(z1)dz1
S−(z) , (3.78)

and

d

dF

(
S+
S−

)
=

 0 ∆∗2
2iλE e

−F+
∫ z
zi
δ∗(z1)−δ(z1)dz1

− ∆2
2iλE e

F+
∫ z
zi
δ(z1)−δ∗(z1)dz1 0

(S+
S−

)

=

 0 −iTn
(

n!
2πFn+1

)∗
e−F

iTn
n!

2πFn+1 e
F

(S+
S−

)
+O

( 1
λn+1

)
, (3.79)

where we only keep the O(λ−n) term, and the prefactor

Tn =
Γ
(
n+ 5

6

)
Γ
(
n+ 7

6

)
Γ(n+ 1)2 , (3.80)
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which converges to 1 for n → ∞. Similar to the bosonic case (3.30), (3.79) can be solved
perturbatively starting with the initial condition (Si+, Si−) = (S(0)

+ , S
(0)
− ):

S
(0)
− + S

(1)
− (F ) = Si− + iSi+Tn

∫ F

ReF+i∞

n!
2πFn+1 e

FdF

= Si− + Si+Tn
i(−1)n+1n!

2π Γ̃(−n,−F ) . (3.81)

By setting the vacuum initial condition (Si+, Si−) = (S(0)
+ , S

(0)
− ) = (1, 0), the first-order

perturbation of S+ implies that

∣∣∣S(0)
+ + S

(1)
+

∣∣∣2 = 1− e−2ReF
∫ F

ReF+i∞

dS
(1)
−
∗

dF
S

(1)
− +

dS
(1)
−

dF
S

(1)
−
∗
dF +O

(
e−4ReF

)
= 1− e−2ReF

∣∣∣S(1)
− (F )

∣∣∣2 +O
(
e−4ReF

)
, (3.82)

which agrees with the normalization of the Bogoliubov coefficients. By choosing the optimal
truncation order as n = ReF − 1, the integrand is stationary at F = ReF , and thus S(1)

−
can be approximated as

S
(1)
− (z) ≈ Tn

2

[
1 + Erf

(
− ImF (z)√

2ReF

)]
. (3.83)

Similar to the bosonic case, the situations with ReF < 1 implies the failure of choosing
an optimal truncation for the asymptotic series (3.65), and we may apply the Borel sum
to evaluate such divergent series:

I(F ) =
∞∑
j=0

cj
λj

=
U
(
−1

6 ,
2
3 ,−F

)
6√−F

,

J(F ) =
∞∑
j=0

dj
λj

= 6iF dI(F )
dF

, (3.84)

where U(a, b, z) is the confluent hypergeometric function, and the last line is obtained from
the relation between cj and dj (3.67). Since I(F ) and J(F ) are discontinuous at ImF = 0,
we rewrite the exact solution (3.61) into two parts:

|ψ〉 =



αie
−iλ

∫ z
zi
E(z1)dz1

(
I(F )|ψ(0)

α 〉+ J(F )|ψ(0)
β 〉

)
− βie

iλ
∫ z
zi
E(z1)dz1

(
J∗(F )|ψ(0)

α 〉 − I∗(F )|ψ(0)
β 〉

)
, ImF > 0

C1e
−iλ

∫ z
zi
E(z1)dz1

(
I(F )|ψ(0)

α 〉+ J(F )|ψ(0)
β 〉

)
+ C2e

iλ
∫ z
zi
E(z1)dz1

(
J∗(F )|ψ(0)

α 〉 − I∗(F )|ψ(0)
β 〉

)
, ImF < 0 ,

(3.85)
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Figure 4. The comparison between |C2| and e−ReF with 0 < ReF ≤ 1, and the vertical axis is in
logarithmic scale.

where αi and βi are the initial Bogoliubov coefficients, C1 and C2 are constants to let |ψ〉
and its derivative continuous at ImF = 0. The time-dependent Bogoliubov coefficients
defined with respect to the eigenstates |ψ(0)

α 〉 and |ψ(0)
β 〉 are thus:

α(F ) =

αiI(F )− βie−F+ReFJ∗(F ) , ImF > 0
C1I(F ) + C2e

−F+ReFJ∗(F ) , ImF < 0

β(F ) =

αieF−ReFJ(F ) + βiI
∗(F ) , ImF > 0

C1e
F−ReFJ(F )− C2I

∗(F ) , ImF < 0
. (3.86)

With the vacuum initial condition (αi, βi) = (1, 0), the two unknown constants are deter-
mined by matching the two parts. Since I(F ) → 1 and J(F ) → 0 for ImF → ±∞, it is
clear that C1 and −C2 are the final values of α(k) and β(k) respectively, and numerical
checking confirms the normalization |C1|2 + |C2|2 = 1. As shown in figure 4, the amount
of particle production fits the tendency of e−ReF for ReF & 0.2, but large deviations ap-
pear when ReF → 0, similar to the case of boson. We also compare the Stokes multiplier
Snum(F ) obtain from the numerical result (3.86) with the approximations utilizing the in-
complete gamma function SΓ(F ) with n = 0 from the first-order perturbation (3.81) and
the error function SErf(F ) (3.83) respectively, as shown in figure 5.

Similar to the bosonic case, the asymptotic parameter λ always appear with the in-
stantaneous eigenvalue E(z), so we may set λH → H in (3.60). We summarize a simple
form of β(z) which reflects the tendency of the particle production starting from vacuum
initial condition

β(z) ≈ e−F (zi)

2

[
1 + Erf

(
− ImF (z)√

2ReF

)]
, (3.87)

where it is noteworthy that there is no additional prefactor −i compared to the bosonic
case (3.42), and the generalization to arbitrary initial conditions can be easily done base
on (3.81) and (3.86).
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Figure 5. The comparison between Snum(F ), SΓ(F ) and SErf(F ), where all of them are normalized
such that the final value approaches 1 and ReF = 0.5. The solid lines represent the real parts,
whereas the dashed lines are the imaginary parts.

Note that the production histories solely depend on the singulant F , and the definition
of the singulant F in the fermion case is similar to the boson case, with

E(z) =

√
1 + 2sκa

k
+ (m2 + κ2)a2

k2 (3.88)

in replacement of

W (z) ≈ w(z) =

√
1 + 2sκa

k
+ m2a2

k2 . (3.89)

Therefore, combining this observation with (3.42) and (3.87), we arrive at a simple replace-
ment rule for the production histories (i.e., |β(z)|2) of vector bosons and fermions:

m2 ↔ m2 + κ2

(bosons) (fermions) . (3.90)

4 Analysis of particle production in various spacetimes

Armed with these powerful mathematical tools, we are now in a position to compute
the fine-grained particle production histories of both massive vector bosons and Majorana
fermions in various setups.

In this section, we have in mind that the chemical potential is provided as a external
source by, for instance, a rolling scalar field. The backreaction to the external field that
generates the chemical potential is also assumed to be negligible. In particular, we will
assume the chemical potential κ is a constant in spacetime. The reason for such a choice is
three-fold. First of all, this is indeed true in some cases. For example, the Hubble friction
during inflation drives a rolling scalar to an attractor phase with constant speed φ̇, which
corresponds to a constant κ when coupled to vectors or fermions. In a radiation/matter-
dominated universe, specifically chosen scalar potentials also give rise to constant rolling
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speeds. Second, physically speaking, for any slowly-varying κ(τ) 6= 0, a constant chemical
potential is always a leading order approximation. As long as the typical time scale of
κ(τ) is longer than the particle production time scale, this approximation will be valid.
Third, mathematically speaking, a constant κ leads to simple and analytical results that
already contain lots of information in the general cases, which can always be dealt with
using numerical methods.

We will focus on five familiar types of FRW spacetimes whose singulant integrals are
exactly computable. The resulting production amount, time and width are given explicitly
as analytical expressions. Some of these results are exact while others are approximate or
empirical with percent-level error in most parameter regimes. To distinguish them from
each other, we will use = when the result is exact. We use ' for results which are easily
computable to any desired precision but which are shown with finite accuracy. And ≈ will
be used for empirical results whose relative error is at percent-level.

Due to the replacement rule mentioned in section 3, we will only work out the spin-
1 case with |κ| < m, and obtain the spin-1/2 results for all parameter regions by simple
substitutions. Also because different helicities are related by a sign flip of κ, we will focus on
the negative helicity state, whose production is enhanced if κ is positive. Throughout this
section, we will be working in comoving coordinates and using conformal time rather than
cosmic time.4 Tilde variables will be used to define dimensionless parameters measured in
units of a certain Hubble scale, e.g., m̃ ≡ m

H , κ̃ ≡ κ
H , etc. And we will typically expand

quantities in powers of κ̃
m̃ = κ

m .

4.1 dS

In an exact dS spacetime, the scale factor has a time dependence a(τ) = − 1
Hτ = eHt. The

EoM for spin-1 particles with chemical potential can be written in terms of a dimensionless
variable z = −kτ = k

aH ,

d2f(z)
dz2 + w2(z)f(z) = 0 , w2(z) = 1− 2κ̃

z
+ m̃2

z2 . (4.1)

Notice that the variable z now runs from the right to the left, and the physical region is the
positive real axis z > 0. After analytical continuation, one can define w(z) on the whole
complex plane. The two roots of w2(z) = 0 lie at zc and z∗c , with

zc = κ̃+ i
√
m̃2 − κ̃2 . (4.2)

Notice that zc lies on the upper half complex plane since the original τc is on the lower half
complex plane and they differ by a sign. The absence of tachyonic instability requires m̃ >

|κ̃|. Therefore, the two complex turning points lie in a symmetric fashion across the real
axis. Starting from zc and z∗c are two branch cuts that meet their ends at the pole at z = 0.

In the z-domain, the singulant is evaluated as

F (z) = 2i
∫ z

zc
w(z)dz . (4.3)

4This choice has interesting implications for dS. See section 4.1 and appendix B for more details.
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Figure 6. The super-adiabatic singulant F (z) in dS for κ̃ = 5 (upper left panel) and κ̃ = 9.9 (upper
right panel), with the dS-corrected mass µ = 10. The hue represents the phase argF (z) while the
brightness represents the modulus |F (z)|. In both panels, the dark red line is the Stokes line joining
the complex turning points. The lower two panels show the Stokes multiplier S(z) corresponding
to the parameters chosen above.

Notice the sign change compared to (3.10). The phase integral is exactly solvable:

F (z) = 2i
[√

m̃2−2zκ̃+z2+m̃tanh−1
(

zκ̃−m̃2

m̃
√
m̃2−2zκ̃+z2

)
+κ̃tanh−1

(
κ̃−z√

m̃2+z (z−2κ̃)

)]
+π(m̃−κ̃) , (4.4)

where the first line is purely imaginary for z lying on the positive real axis. Its behavior
on the right-half z-plane as well as the Stokes lines are shown in figure 6.

• Production amount. The production amount is straightforwardly given by the formula

|β|2 = e−2ReF (zi) = e−2π(m̃−κ̃) , (4.5)

with zi � m̃ taken on the real axis.
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• Production time. The crossing time z∗ lies on the real axis, and therefore satisfies a
real-numbered equation:

0 =
√
m̃2−2z∗κ̃+z2

∗+m̃tanh−1
(

z∗κ̃−m̃2

m̃
√
m̃2−2z∗κ̃+z2

∗

)
+κ̃tanh−1

(
κ̃−z∗√

m̃2+z∗ (z∗−2κ̃)

)
.

(4.6)
This equation can be solved using a perturbative expansion in powers of κ̃. Plug in the
ansatz

z∗(m̃, κ̃) =
∞∑
n=0

bnκ̃
n

m̃n−1 (4.7)

into the equation (4.6) and collect the terms order-by-order in κ̃
m̃ , we are able to solve

the coefficients iteratively,

1 = 1√
1 + b20

tanh−1

 1√
1 + b20

 (4.8a)

b1 = b0√
1 + b20

tanh−1

 b0√
1 + b20

 (4.8b)

b2 = b1 + 2b1b20 − b20
2b0 + 2b30

(4.8c)

b3 =
(
b1 + b20

) (
−2b1 + 6b0b2 + b20 (2− 3b1) b1 + 6b30b2 + b40

)
6b20

(
1 + b20

) 2 (4.8d)

· · · .

In this way, we obtain the particle production time as

z∗(m̃, κ̃) ' 0.6627m̃+ 0.3435κ̃− 0.0102 κ̃
2

m̃
+ 0.0064 κ̃

3

m̃2 + · · · . (4.9)

Clearly, with a larger effective mass and a larger positive chemical potential, the pro-
duction time becomes earlier.

• Production width. The derivative of the singulant is none other than the frequency
itself:

ImF ′(z∗) = 2Rew(z∗) = 2
√

1− 2κ̃
z∗

+ m̃2

z2
∗
. (4.10)

Thus the production width in the z-domain is

∆z∗ = 2
√

2|ReF (z∗)|
|ImF ′(z∗)|

=
√√√√ 2π (m̃− κ̃)

1− 2κ̃
z∗(m̃,κ̃) + m̃2

z2
∗(m̃,κ̃)

. (4.11)

We can also translate the production width into the t-domain by ∆t∗ = ∆z∗
Hz∗

. Another
useful measure of production width is the e-folding numbers during which the production
is complete. In terms of a power series in κ̃/m̃, we have

∆N∗=H∆t∗= ∆z∗
z∗
' 2.0895√

m̃
− 0.4131κ̃

m̃3/2 + 0.1323κ̃2

m̃5/2 − 0.0523κ̃3

m̃7/2 +O
(

κ̃4

m̃9/2

)
. (4.12)
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Now the alert readers may find an inconsistency here. If one compares the produc-
tion amount (4.5) computed from the Stokes-line method with that of the exact result,
namely (2.29) or (2.30), one finds that there is a mismatch of mass: the true result should
contain the dS-corrected mass µ =

√
m̃2 − 1

4 instead of m̃ as given by the Stokes-line
method. This mismatch implies that the results obtained by the naive application of Stokes-
line method are subjected to a relative error O(m̃−2), which can be important if m̃ is small.

To trace the origin of this 1/4 puzzle, let us go back to the super-adiabatic basis for
the EoM (4.1),

f(z) = 1√
2W (z)

e
i
∫ z
zi
W (z′)dz′ − iS(z)e−F (zi)√

2W (z)
e
−i
∫ z
zi
W (z′)dz′

, (4.13)

where S(z) is the Stokes multiplier. W (z) is solved order-by-order as specified in section 3.1.
The leading order reads W (0)(z) = w(z) and

f (0)(z) = 1√
2w(z)

e
i
∫ z
zi
w(z′)dz′ − iS(z)e−F (zi)√

2w(z)
e
−i
∫ z
zi
w(z′)dz′

. (4.14)

This leading order solution is sometimes called WKB approximation. The late-time be-
havior of the frequency function is

W (0)(z) = w(z) z→0−−−→ m̃

z
+O(z0) . (4.15)

Upon integration over z, the phase of the positive-frequency mode becomes linearly in-
creasing with cosmic time t:∫ z

zi

w(z′)dz′ =
∫ z

zi

(
m̃

z′
+O(z′0)

)
dz′ = m̃ ln z + const = −mt+ const , (4.16)

where we have used z = −kτ = − k
H e
−Ht. Hence the late time behavior of the WKB basis

is f (0) ∼ e∓imt. This, however, corresponds to a wrong oscillation frequency for spin-1
vector particles. The correct frequency can be easily obtained by inspecting the late-time
behavior of the EoM itself. Namely we can plug in the ansatz f ∼ z∆−1 and expand (4.1)
to leading order in z,

((∆− 1)(∆− 2) + m̃)z∆−3 +O(z∆−2) = 0 . (4.17)

This gives ∆± = 3
2 ± iµ and the correct IR behavior f ∼ z(1/2±iµ)t ∝ e∓iµHt 6= e∓imt. As a

result, the leading order super-adiabatic solution does not capture the correct IR oscillation
frequency, which is dictated by dS symmetries. Particles in dS are classified according to
the unitary irreducible representation of the dS group [62, 63] and a massive spin-S particle
in the principal series has a conformal weight [10]

∆(S)
± = 3

2 ± iµS , µS =

√
m2

H2 −
(
S − 1

2

)2
, S > 1 . (4.18)

In other words, the geometry of dS modifies the effective mass of spinning particles in the IR
(small z), and this fact is not taken into account by the naive WKB approximation (4.14).
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Fortunately, the advantage of the smoothed Stokes-line method is that the higher-order
terms in the super-adiabatic basis can, and actually do, give essential corrections to the
leading order solution. The first order correction to W is

δW (1)(z) = 3w′(z)2 − 2w(z)w′′(z)
8w(z)3 = 6zm̃2 (κ̃− z)− m̃4 + z2κ̃ (4z − 3κ̃)

8 (z2 − 2κ̃z + m̃2)3

√
1− 2κ̃

z
+ m̃2

z2 .

(4.19)
This function has two third-order poles at zc and z∗c . The branch cuts brought by w(z) are
still present and they connect the third-order poles to a simple pole at z = 0,

δW (1)(z) = − 1
8m̃z +O(z0) , Re z > 0 . (4.20)

The effect of this pole at the origin is exactly to give an O(m̃−2) correction to the IR
oscillation frequency:

W (1)(z) = W (0)(z) + δW (1)(z) =
(
m̃− 1

8m̃

) 1
z

+O(z0) . (4.21)

Including the higher order corrections in the super-adiabatic series, we recover the correct
IR oscillation frequency,

W (z) = W (0)(z) + δW (1)(z) + δW (2)(z) + · · · =
(
m̃− 1

8m̃ −
1

128m̃3 + · · ·
) 1
z

+O(z0)

=
√
m̃2 − 1

4 ×
1
z

+O(z0) . (4.22)

Therefore, the 1/4 puzzle can be resolved by taking into account the full super-adiabatic
basis and resumming the higher-order corrections to the mass. We can recover the correct
production amount by redefining the singulant as an integral of W instead of W (0) =
w. Technically, since this integral is ill-defined around the complex turning points where
δW (n)(z) diverges, we need to manually impose a principal value prescription. We deform
the integration contour to lie along the branch cut and tour along a semi-circle around
the pole at origin (see figure 7 for illustration). Then by some arguments of complex
analysis, the only non-zero contribution comes from the semi-circle at the origin, where the
IR frequency correction is at work. Thus the corrected production amount can be written
as half of the residue of W (z) at z = 0+, subtracting half of the residue at z =∞,

ln |β2| = −2i
∫ z∗c

zc
W (z)dz = −2π (Res z→0+W (z)− Res z→∞W (z)) = −2π(µ− κ) . (4.23)

For a detailed mathematical discussion of these arguments, we refer the readers to
appendix B. In summary, the super-adiabatic corrections completely fix the mass mismatch
and we only need to replace m̃ → µ in (4.5), (4.9) and (4.12) to recover the true results.
We list them below for the sake of clarity.

• Production amount
|β|2 = e−2π(µ−κ̃) , (4.24)
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Figure 7. The integration contour can be deformed from along the Stokes line (C0) to along the
branch cut (C1 ∪ C2), collecting half of the residue at z = 0+. The black dashed line indicates the
branch cut.

• Production time

z∗(µ, κ̃) ' 0.6627µ+ 0.3435κ̃− 0.0102 κ̃
2

µ
+ 0.0064 κ̃

3

µ2 + · · · . (4.25)

• Production width

∆N∗=H∆t∗= ∆z∗
z∗
' 2.0895
√
µ
− 0.4131κ̃

µ3/2 + 0.1323κ̃2

µ5/2 − 0.0523κ̃3

µ7/2 +O
(
κ̃4

µ9/2

)
. (4.26)

For spin-1/2 fermions, however, there is no such a problem, since the leading order
WKB result already capture the correct IR behavior. The instantaneous eigenvalue of the
Hamiltonian for its EoM (2.20) written in z-domain is

E±(z) =

√
1± 2κ̃

z
+ m̃2 + κ̃2

z2 =
√
m̃2 + κ̃2

z
+O(z0) . (4.27)

Thus the mode functions behave as u, v ∼ e±i
∫
E±(z)dz ∼ e∓i

√
m̃2+κ̃2t. This oscillation

frequency indeed agrees with the late-time behavior of (2.20). Therefore, higher orders
in the super-adiabatic basis do not offer any O(m̃−n) corrections to the oscillation phase,
hence to the production history. The production amount, time and width can simply be
obtained by replacing µ →

√
m̃2 + κ̃2 in (4.24–4.26). Its Stokes lines are shown together

with spin-1 particles in figure 8.
Finally, we plot the parameter dependence of production histories for both bosons and

fermions in figure 9. From the plots, one can see that bosons and fermions share similar
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Figure 8. The Stokes lines for spin-1 bosons (left panel) and spin-1/2 fermions (right panel). In
both panels, the chemical potential ranges over κ̃ = −8,−6, · · · , 6, 8 (from left to right, and the
green lines correspond to the case without chemical potential), with spin-1 boson mass and spin-1/2
fermion mass µ = m̃ = 10. The gray region with Re z < 0 cannot be reached physically in dS.

Figure 9. The production histories in exact dS. Left panel: production amount as a function
of the dimensionless chemical potential for different particle masses. Middle panel: the z-domain
production time dependence on chemical potential and mass. Right panel: production width mea-
sured in e-folding numbers. In all three plots, solid lines represent spin-1 bosons while dashed lines
represent spin-1/2 fermions. Particles with different masses are distinguished by the colors of the
lines according to the legend in the left panel. For bosons, we limit the range of chemical potential
to be smaller than the mass, so that no tachyonic instability is induced. For fermions, the chemical
potential is not restricted and we allow it to take arbitrarily large values.

production histories when the chemical potential is small. However, they begin to depart
from each other as |κ̃| becomes large, and in the end their large chemical-potential limits
are drastically different: bosons enter the tachyonic regime, while fermions saturate and
approach an asymptotic limit where z∗ ∝ |κ| and ∆N∗ ∝ |κ|−1/2. Note that for bosons,
both z∗ and ∆N∗ are monotonic functions of the chemical potential, whereas neither are
monotonic for fermions.
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4.2 Deviation from dS of the ε-type

The exact and rigid dS spacetime is maximally symmetric with a simple time dependence
in the scale factor. The mode functions for free fields are exactly solvable, even though
knowing the production time and width still requires the technique of smoothed Stokes
phenomenon. However, dS only works as a leading order approximation to certain stages
of cosmic evolution such as inflation or dark-energy dominated era. The actual evolution
can deviate from that of dS in different ways, with distinctive impacts on the particle
production history that we are after. In this subsection and the next, we will focus on two
simplest ways to deform the dS geometry, namely with a constant ε parameter and with a
constant η parameter. We will call these deviations the ε-type and the η-type.

The simplest kind of deformation is to introduce a (small) constant ε parameter,

ε(τ) = − H ′(τ)
a(τ)H2(τ) = ε = const , H(τ) = a′(τ)

a2(τ) . (4.28)

Integrating over τ yields a scale factor

a(τ) = (−Hpτ)−
1

1−ε , (4.29)

where Hp ≡ H(τp) is the Hubble parameter evaluated at the time τp when the scale factor
is a(τp) = (1 − ε)−1/ε. Because the Hubble parameter is decreasing with conformal time
as a power-law, modes that exit the horizon experience a slightly different gravitational
background. This soft breaking of scale invariance, as we will see, manifests itself in the
scale dependence of production history.

Defining the dimensionless variable z = −kτ , the EoM of a massive spin-1 particle
reads

d2f(z)
dz2 + w2(z, k)f(z) = 0 , w2(z, k) = 1− 2κ̃p(k)

z
1

1−ε
+
m̃2
p(k)

z
2

1−ε
, (4.30)

where we have denoted the scale-dependent dimensionless mass and chemical potential as

κ̃p(k) = κ

Hp

(
k

Hp

) ε
1−ε

, m̃p(k) = m

Hp

(
k

Hp

) ε
1−ε

. (4.31)

The complex turning points lie at zc, z∗c , with

zc =
(
κ̃p + i

√
m̃2
p − κ̃2

p

)1−ε
. (4.32)

The phase integral is∫
w(z,k)dz

= (1−ε)
∫
dz′

z′ε

√
1− 2κ̃p

z′
+
m̃2
p

z′2

=−z(1−ε)
ε

√
1− 2κ̃p

z
1

1−ε
+

m̃2
p

z
2

1−ε
(4.33)

+ z

ε
F1

(
−1+ε; 1

2 ,
1
2; ε;z

1
−1+ε

(
κ̃p+ i

√
m̃2
p− κ̃2

p

)
, z

1
−1+ε

(
κ̃p− i

√
m̃2
p− κ̃2

p

))
+ z

ε
−1+ε (1−ε)κ̃p

ε2
F1

(
ε; 1

2 ,
1
2;1+ε;z

1
−1+ε

(
κ̃p+ i

√
m̃2
p− κ̃2

p

)
, z

1
−1+ε

(
κ̃p− i

√
m̃2
p− κ̃2

p

))
.
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Figure 10. The Stokes lines for spin-1 bosons (left panel) and spin-1/2 fermions (right panel)
in dS with ε-type deviation and ε = 0.1. In both panels, the momentum k is fixed to have a
dimensionless chemical potential ranging over κ̃p = −8,−6, · · · , 6, 8 (from left to right, and the
green lines correspond to the case without chemical potential), with spin-1 boson mass and spin-
1/2 fermion mass µp = m̃p = 10. The gray region with Re z < 0 cannot be reached physically.

Here F1(a; b1, b2; c;x, y) is the Appell hypergeometric function defined by the double series

F1(a; b1, b2; c;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)n
(c)m+n

xmyn

m!n! , (4.34)

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol. The Stokes lines are plotted in figure 10.

Comparing to figure 8, one finds that with a non-zero ε, the distribution of turning points
becomes asymmetric around the imaginary axis and the Stokes lines become more squeezed
with a larger positive chemical potential.

• Production amount. For zi lying on the real axis, the above integral is real, suggesting
no contribution to the particle production amount e−2ReF (zi), zi ∈ R. Therefore, the
particle production amount only receives contribution at the lower end zc. Converting
this to an integral along the whole Stokes line, we obtain

2ReF (zi) = 2i
∫ z∗c

zc
w(z,k)dz

=−2
√
π(1−ε)Γ(−ε)m̃1−2ε

p

×Im

(κ̃p+i
√
m̃2
p−κ̃2

p

)
ε

2F̃1

−1
2 ,−ε;

3
2−ε;−1+

2κ̃p
(
κ̃p−i

√
m̃2
p−κ̃2

p

)
m̃2
p

 .
(4.35)

For k
Hp

not far away from unity, a small dS-deformation parameter ε� 1 can be used as
an expansion parameter. After a further expansion in powers of κ̃p and resummation,
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we find

2ReF (zi) = 2π
[
m̃p − κ̃p + ε

(
(m̃p + κ̃p) ln m̃p + κ̃p

2 − 2m̃p ln m̃p

)
+O(ε2)

]
.

Therefore, the particle production amount is now scale dependent:

|β(k)|2 = e−2π
[
µp−κ̃p+ε

(
(m̃p+κ̃p) ln m̃p+κ̃p

2 −2m̃p lnm̃p+O(m̃−1
p )
)
+O(ε2)

]
= exp

− 2π
Hp

√m2−
H2
p

4 −κ

(1+ε ln k

m
+εm+κ

m−κ
lnm+κ

2m +O
(
εH2

p

m2 , ε
2
)) ,
(4.36)

where we have resummed the O(ε0) super-adiabatic corrections to the mass and replaced

m̃p(k)→ µp(k) =
√
m2

H2
p

− 1
4

(
k

Hp

) ε
1−ε

. (4.37)

The O(ε) order, however, cannot be treated in the same way as in (4.23), because of the
presence of a branch cut extending from the origin all the way to infinity. Therefore,
considering the fact that the adiabatic parameter is w′(z)

w(z)2 ∼ m̃−2
p , we expect that the

relative error of (4.36) is of order εH2
p

m2 , which is negligible if the mass m is large.

For a positive ε, the production amount necessarily drops with scale k, because the
effective mass in the Boltzmann factor is measured in units of the time-dependent Hubble
parameter, which is decreasing during inflation.

• Production time. This can only be solved numerically from ImF (z∗) = 0. However, by
an educated guess, we found an empirical formula that describes the O(ε) contribution
to z∗ very well, with an error of 2% on average (see figure 11 for example). Namely,

z∗(m̃p, κ̃p, ε)

≡ z(0)
∗ +z(1)

∗ +· · ·

≈ 0.6627µp+0.3435κ̃p−
0.0102κ̃2

p

µp
+

0.0064κ̃3
p

µ2
p

+· · ·

+ε
[
0.82m̃p−0.42κ̃p−0.32m̃p lnm̃p−(0.33m̃p+0.30κ̃p) ln(m̃p+κ̃p)+O

(
m̃−1
p

)]
+O(ε2) . (4.38)

Here the first line (z(0)
∗ ) has the same form as the exact solution found in dS spacetime

and the second line (z(1)
∗ ) represents the leading-order slow-roll correction as an empirical

formula, with an uncertainty due to the unresummed super-adiabatic corrections.

• Production width. The production width can also be expressed partially analyti-
cally. On the real axis, the singulant function accumulates no real parts and therefore
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Figure 11. The relative error of the O(ε) empirical formula (4.38) as compared to the numeric
result. The bright band cutting across the plot is where the O(ε) correction crosses zero, hence the
large relative error.

ReF (z∗) = ReF (zi). Plugging in the expression for ImF ′(z∗), we obtain

∆z∗ = 2
√

2|ReF (z∗)|
|ImF ′(z∗)|

=

√√√√√√2π
[
µp − κ̃p + ε

(
(m̃p + κ̃p) ln m̃p+κ̃p

2 − 2m̃p ln m̃p

)]
1− 2κ̃p

z
1

1−ε
∗

+ m̃2
p

z
2

1−ε
∗

.

(4.39)
When expressed in units of e-folding numbers and expanded into powers of κ

m , we have
the empirical expression

∆N∗(k;m,κ,ε)

= 1
1−ε

∆z∗
z∗

≡∆N (0)
∗ +∆N (1)

∗ +· · ·

≈ 1
(m2/H2

p−1/4)1/4

{
2.0895− 0.4131κ

(m2−H2
p/4)1/2 + 0.1323κ2

m2−H2
p/4
− 0.0523κ3

(m2−H2
p/4)3/2 +· · ·

+ε
[
−1

2 (2.0895−·· ·) ln k

m
+ 1.4κ

m
− 0.70κ2

m2 + 0.32κ3

m3 +O
(
H2
p

m2

)]

+O(ε2)
}
. (4.40)

Again, the first line (= ∆N (0)
∗ ) is exact while the second line (= ∆N (1)

∗ ) is approximate,
with the exception of the coefficient before the running term ln k

m , which inherits its
exactness from the first line.

The fermionic case is then easily obtained by applying the replacement µp, m̃p →√
m̃2
p + κ̃2

p to the above results. Since the zeroth order in ε is the same as the exact dS
result with a Hubble constant Hp, we focus on the O(ε) corrections due to the deformation
and plot them in figure 12. As shown in the plots, the behavior of bosons and fermions are
again different for large chemical potentials.
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Figure 12. The O(ε) corrections to production histories in deformed dS with ε = 0.1. Left panel:
production amount excluding zeroth-order contribution as a function of the dimensionless chemical
potential for different particle masses. Middle panel: the correction to z-domain production time
dependence on chemical potential and mass. Right panel: the correction to production width
measured in e-folding numbers. In all three plots, solid lines represent spin-1 bosons while dashed
lines represent spin-1/2 fermions. Particles with different masses are distinguished by the colors
of the lines according to the legend in the left panel. For bosons, we limit the range of chemical
potential to be smaller than the mass, so that no tachyonic instability is induced. For fermions, the
chemical potential is not restricted and we allow it to take arbitrarily large values.

Before ending this subsection, we note that the validity of our perturbative expansion is
actually controlled by ε ln max{m̃p, κ̃p} instead of just ε. Thus, for particles with extremely
large mass or chemical potential, i.e., m̃p, κ̃p & e1/ε, perturbation theory fails and one
would have to rely on the full result (4.35) for production amount and numerically solve
production time and width. For parameters chosen in figure 12, the corrections are small
compared to the zeroth order dS results, suggesting the perturbative expansion is valid.

4.3 Deviation from dS of the η-type

The second type of deformation of dS is obtained from introducing a weak time dependence
in ε(τ) described by a non-zero η parameter,

η(τ) = ε′(τ)
a(τ)H(τ)ε(τ) . (4.41)

A further simplification appears if ε(τ)� η(τ) for τ lying in the range of interest. We will
call this type of deviation the η-type. It is reasonable to analyze particle production in
such a scenario since for inflation, the Planck 2018 data [64] favors a smaller first slow-roll
parameter compared to the second slow-roll parameter.

To study η-type deviation from dS, we suppose the scale factor can be expressed as
a series with variable −Hiτ , where Hi has the dimension of Hubble. So the leading-order
deviation can be approximated as

a(τ) = − 1
Hiτ

+ 1
(−Hiτ)1+ηi

, ‘ (4.42)
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Figure 13. The Hubble parameter and slow-roll parameters of the hybrid model (4.42). Here we
have chosen ηi = 0.1 for illustration. Clearly, the hybrid model is separated into two stages, with
early time dominated by η-type and late time dominated by ε-type.

with ηi > 0 and τ < 0. With this scale factor, the Hubble parameter is

H(τ) = Hi(−Hiτ)ηi [1 + ηi + (−Hiτ)ηi ]
[1 + (−Hiτ)ηi ]2

, (4.43)

and therefore the physical meaning of Hi is the Hubble parameter at τ → −∞. On the
other hand, the first and second slow-roll parameters are

ε(τ) = ηi
1 + ηi + (1− ηi)(−Hiτ)ηi

[1 + ηi + (−Hiτ)ηi ]2

η(τ) = ηi
(−Hiτ)ηi [1 + (−Hiτ)ηi ]

[
(1 + ηi)2 + (1− ηi)(−Hiτ)ηi

]
[1 + ηi + (−Hiτ)ηi ]2 [1 + ηi + (1− ηi)(−Hiτ)ηi ]

. (4.44)

The asymptotic behaviors of the slow-roll parameters in the early-/late- time limit are

(ε(τ), η(τ))→

(0, ηi) , (−Hiτ)ηi � 1(
ηi

1+ηi , 0
)

, (−Hiτ)ηi � 1 .
(4.45)

Thus (4.42) describes a hybrid spacetime in which the deviation starts as η-type and then
becomes ε-type (see figure 13 for illustration). In this section, we will be interested in the
early stage where η-type deviation dominates.

We first evaluate the phase integrals in the limit with (−Hiτ)ηi � 1. With the variable
z ≡ −kτ , the time-dependent frequency is

w2(z, k) = 1− 2 κ̃
z

(
1 + c(k)

zηi

)
+ m̃2

z2

(
1 + c(k)

zηi

)2
, (4.46)

where κ̃ ≡ κ
Hi

, m̃ ≡ m
Hi

and c(k) ≡ ( k
Hi

)ηi . The phase integral with this frequency cannot
be evaluated analytically. However, for the modes which cross the horizon at z = −kτ ∼ 1
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early, when i.e., (−Hiτ)−ηi = c(k)z−ηi ∼ c(k) � 1, we can solve perturbatively. This
suggests expanding the frequency in the series of c(k),

w(z, k) =

√
1− 2κ̃

z
+ m̃2

z2 + c(k)z−ηi−1 (m̃2 − κ̃z
)√

m̃2 + z(z − 2κ̃)
+O

(
(c(k)z−ηi)2

)
. (4.47)

Thus the phase integral reads

∫
w(z, k)dz

=
√
m̃2 + z2 − 2κ̃z +m tanh−1

(
κ̃z − m̃2

m̃
√
m̃2 + z2 − 2κ̃z

)
+ κ̃ tanh−1

(
κ̃− z√

m̃2 + z(z − 2κ̃)

)

+ c(k)z−ηi
m̃

z
2F1

(
2− ηi; 1

2 ,
1
2 ; 3− ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi − 2

−
zκ̃F1

(
1− ηi; 1

2 ,
1
2 ; 2− ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi − 1

−
m̃2F1

(
−ηi;−1

2 ,−
1
2 ; 1− ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi


+O

(
c(k)2

)
. (4.48)

To calculate zc, we expand it in the order of c(k):

zc = z(0)
c + c(k)z(1)

c +O(c(k)2) , (4.49)

and the roots of (4.46) satisfy

1
zc

(
1 + c(k)

zηic

)
= κ̃2 − i

√
m̃2 − κ2

m̃2 , (4.50)

and thus

zc = κ̃+ i
√
m̃2 − κ2 + c(k)

(
κ̃+ i

√
m̃2 − κ2

)1−ηi +O(c(k)2) . (4.51)
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The singulant can now be solved up to the first order in c(k):

F (z) = 2i
[∫ z

z
(0)
c +c(k)z(1)

c

(
w(0)(z,k)+c(k)w(1)(z,k)

)
dz

]
+O(c(k)2)

= 2i
[∫ z

z
(0)
c

(
w(0)(z,k)+c(k)w(1)(z,k)

)
dz−w(0)(z(0)

c ,k)c(k)z(1)
c

]
+O(c(k)2)

= 2i


√
m̃2+z2−2κ̃z+mtanh−1

(
κ̃z−m̃2

m̃
√
m̃2+z2−2κ̃z

)
+κ̃tanh−1

(
κ̃−z√

m̃2+z(z−2κ̃)

)

+ c(k)z−ηi
m̃

z
2F1

(
2−ηi; 1

2 ,
1
2 ;3−ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi−2

−
zκ̃F1

(
1−ηi; 1

2 ,
1
2 ;2−ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi−1

−
m̃2F1

(
−ηi;−1

2 ,−
1
2 ;1−ηi;

z(κ̃+i
√
m̃2−κ̃2)
m̃2 ,

z(κ̃−i√m̃2−κ̃2)
m̃2

)
ηi



+

√
πc(k)m̃Γ(2−ηi)

(
κ̃+i
√
m̃2−κ̃2

)−ηi
2F̃1

(
−1

2 ,−ηi;
3
2−ηi;

(κ̃+i
√
m̃2−κ̃2)2

m̃2

)
2ηi

+π(m̃−κ̃)

+O(c(k)2) . (4.52)

The Stokes lines are shown in figure 14. The distribution of Stokes lines on the complex
plane is very similar to that of dS, except for a slightly decreased Hubble parameter.

• Production amount. The singulant evaluated at zi gives

2ReF (zi)

= 2i

∫ z∗
(0)
c +c(k)z∗(1)

c

z
(0)
c +c(k)z(1)

c

(
w(0)(z,k)+c(k)w(1)(z,k)

)
dz

+O(c(k)2)

= 2i

∫ z∗
(0)
c

z
(0)
c

(
w(0)(z,k)+c(k)w(1)(z,k)

)
dz+w(0)(z∗(0)

c ,k)c(k)z∗(1)
c −w(0)(z(0)

c ,k)c(k)z(1)
c


+O(c(k)2)

= 2π(m̃−κ̃)

− 2
√
πc(k)m̃Γ(2−ηi)

ηi
Im
[(
κ̃+i

√
m̃2−κ̃2

)
−ηi 2F̃1

(
−1

2 ,−ηi;
3
2−ηi;

(
κ̃+i
√
m̃2−κ̃2

)2

m̃2

)]
+O(c(k)2) . (4.53)

Thus, the production amount of particles that exit the horizon during the early η-phase
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Figure 14. The Stokes lines for spin-1 bosons (left panel) and spin-1/2 fermions (right panel)
in dS with η-type deviation and η = 0.1, c(k) = 0.05. In both panels, the dimensionless chemical
potential ranging over κ̃ = −8,−6, · · · , 6, 8 (from left to right, and the green lines correspond to the
case without chemical potential), with spin-1 boson mass and spin-1/2 fermion mass µ = m̃ = 10.
The gray region with Re z < 0 cannot be reached physically.

is computable to the linear order in c(k)� 1:

|β(k)|2

= exp

−2π

µ−κ̃− c(k)m̃Γ(2−ηi)√
πηi

Im
2F̃1

(
−1

2 ,−ηi;
3
2−ηi;

(κ̃+i
√
m̃2−κ̃2)2

m̃2

)
(
κ̃+i
√
m̃2−κ̃2

)ηi +O
(
c(k)
m̃

,c(k)2
)
 ,

(4.54)

where we have resummed the O(c(k)0) super-adiabatic corrections to the mass and
replaced

m̃→ µ =
√
m2

H2
i

− 1
4 . (4.55)

The O(c(k)1) super-adiabatic corrections are complicated by the branch cut from z = 0
to z = −∞ and we are not able to analyze them. Therefore, as in the ε-deviation case,
we have indicated in (4.54) the presence of an O(m̃−2) relative error.

• Production time. The equation ImF (z∗) = 0 can only be solved numerically. However,
as in the ε-type deviation case, we have found a useful empirical formula to the first
order in ηi, whose relative error is less than 2% within most parameter regions (see
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Figure 15. The relative error of the empirical formula (4.56) as compared to the numeric result.
The bright band cutting across the plot is where the z(1,1)

∗ crosses zero, hence the large relative error.

figure 15 for illustration). Up to O(c(k), ηi), we found

z∗(m̃, κ̃, ηi;k)

≡ z(0,0)
∗ +z

(1,0)
∗ +z

(1,1)
∗ + · · ·

≈ (1+c(k))
(

0.6627µ+0.3435κ̃− 0.0102κ̃2

µ
+ 0.0064κ̃3

µ2 + · · ·
)

+c(k)ηi
(
0.84m̃−0.37κ̃−(0.35m̃+0.33κ̃) ln (κ̃+m̃)−0.30m̃ ln m̃+O(m̃−1)

)
+O(c(k)η2

i , c(k)2) . (4.56)

Here the first line (= z
(0,0)
∗ + z

(1,0)
∗ ) is exact while the second line (= z

(1,1)
∗ ) is approxi-

mate.5

• Production width. Using the empirical formula (4.56), this can also be obtained ap-
proximately as a truncated power series,

∆z∗(m̃, κ̃, ηi; k)√
m̃

≈ 1.385 + 0.444κ̃
m̃

− 0.07554κ̃2

m̃2 + 0.02839κ̃3

m̃3 + · · ·

+ c(k)
{

1
2 (1.385 + · · · ) + ηi

[
0.34− 1.38κ̃

m̃
+ 0.19κ̃2

m̃2 − 0.05κ̃3

m̃3

+
(
−0.67− 0.21κ̃

m̃
+ 0.02κ̃2

m̃2

)
ln m̃

]

+O(η2
i )
}

+O(c(k)2) . (4.57)

5Note that in this subsection, we will denote X(m,n) as the O(c(k)mηni ) correction to a certain quantity
X. Since X(1,0) follows from an exact dS spacetime with a rescaled Hubble constant, it can always be
trivially obtained by rescaling Hi in X(0,0). In contrast, X(1,1) represents the leading order nontrivial
η-corrections.

– 43 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
9

In terms of e-folding numbers, the width is

∆N∗(m,κ,ηi;k)

≡∆N (0,0)
∗ +∆N (1,0)

∗ +∆N (1,1)
∗ +· · ·

≈∆z∗×
∣∣∣∣∣ ddz ln 1+c(k)z−ηi

z

∣∣∣∣∣
z=z∗

≈ 1
(m2

H2
i
− 1

4)1/4

(
2.089− 0.4131κ

(m2−H2
i /4)1/2 + 0.1323κ2

m2−H2
i /4
− 0.05226κ3

(m2−H2
i /4)3/2 · · ·

+c(k)
{
− 1

2 (2.089−·· ·)

+ηi

[
−0.04+ 1.4κ

m
− 0.68κ2

m2 + 0.30κ3

m3 +
(

1.0− 0.21κ
m

+ 0.08κ2

m2 − 0.04κ3

m3

)
ln m

Hi

]

+O
(
ηiH

2
i

m2 ,η2
i

)}

+O(c(k)2)
)
. (4.58)

Again, the first line (= ∆N (0,0)
∗ ) and the second line (= ∆N (1,0)

∗ ) are exact, whereas the
third line (= ∆N (1,1)

∗ ) is approximate.

The results for fermions are again obtained via the corresponding replacement. The
O(c(k)ηi) corrections to production histories in η-type deformed dS are plotted in figure 16.
Comparing to figure 12, one can see that the overall behavior is similar to that of ε-type
deformed dS. Indeed, if we choose ε ∼ c(k)ηi, the corrections roughly match in size. This
interesting fact will be discussed below. Nevertheless, we notice that there are important
differences in the scale dependence of various production history parameters.

Comparison between ε-type and η-type. Gravitational particle production histories
are crucially influenced by the Hubble parameter H(τ), as it directly enters the expression
of dimensionless mass and chemical potential. Two spacetimes with different H(τ) are
intrinsically different for any process that is non-local in time, including the smoothed
Stokes phenomenon. Thus to test this intrinsic difference of particle production for the
two types of dS deviations, we carefully select their Hubble parameters to be tangent to
each other at time τ0, so that both the Hubble and the first slow-roll parameter are equal,

H(ε)(τ0, Hp, ε) = H(η)(τ0, Hi, ηi) (4.59)

ε(ε)(τ0, Hp, ε) = ε(η)(τ0, Hi, ηi) (4.60)

For the purpose of demonstration, we will choose the following solution,

ε = 0.005 , Hp u 0.8204Hi , ηi = 0.1 , τ0 = −2.042× 1012H−1
i . (4.61)
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Figure 16. The O(c(k)ηi) corrections to production histories in deformed dS with c(k) = 0.05 and
ηi = 0.1. Left panel: production amount excluding O(η0

i ) contribution as a function of the dimen-
sionless chemical potential for different particle masses. Middle panel: the correction to z-domain
production time dependence on chemical potential and mass. Right panel: the correction to pro-
duction width measured in e-folding numbers. In all three plots, solid lines represent spin-1 bosons
while dashed lines represent spin-1/2 fermions. Particles with different masses are distinguished by
the colors of the lines according to the legend in the left panel. For bosons, we limit the range of
chemical potential to be smaller than the mass, so that no tachyonic instability is induced. For
fermions, the chemical potential is not restricted and we allow it to take arbitrarily large values.

Figure 17. The Hubble parameter for two spacetimes are chosen to be tangent to each other at
the time τ0, which is indicated by the vertical black line.

The Hubble parameter for the choice (4.61) is shown in figure 17. The production amount
and width can be computed using formula given above. Their scale dependence is shown in
figure 18. As shown in this figure, particles created near the tangent time τ0 approximately
have the same production amount and width, with mismatches of the same order as the
higher-order errors in (4.54) and (4.58).

As a result, one can approximate the η-deformed dS by a tangential ε-deformed dS
locally in time, and obtain the details of particles produced then, up to some higher-order
errors. However, this can only be done mode-by-mode, since the scale dependence for these
two types of deviations is different. Conversely, if we wish to observationally distinguish
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Figure 18. The scale dependence of production amount and width for the two spacetimes in
figure 17. The opaque bands stand for the higher-order errors present in (4.36), (4.40), (4.54)
and (4.58). Notice that the error band for ε-type is too thin to be observed. The vertical black line
indicates the mode k0 = −τ−1

0 . The other parameters are chosen to be m = 10Hi, κ = 9Hi.

the two scenarios, we can either accurately measure the production amount/width for a
single mode up to some higher orders (e.g., O(c(k)2)), or probe the scale dependence by
looking at different modes.

4.4 Radiation-domination era

Now we turn to other completely different FRW backgrounds, namely those describing the
post-inflationary evolution of the universe. Roughly speaking, the scale factor evolves as
a(τ) ∝ τ

2
3w+1 , where w is the equation of state of the dominating component. In this

section and the next, we will consider radiation domination era with w = 1
3 and matter

domination era with w = 0, respectively.
The radiation-dominated universe has a scale factor linearly dependent on the confor-

mal time, a(τ) = crτ , where cr > 0 and τ runs from 0 to +∞. The Hubble parameter is
H(τ) = 1

crτ2 . At the origin lies the Big Bang Singularity, H(0+) → ∞. This singularity
can be removed by continuously deforming the spacetime to other geometries such as that
of inflationary [1–4], ekpyrotic [65, 66], bouncing [67, 68] and string gas cosmology [69, 70].
These physical continuations provide a cutoff time τi > 0 with H(τi) � Mp. As we are
interested in particle production during the later stage of the radiation-dominated era, we
will limit ourselves to the modes with kτi � 1 and assume that they have a vacuum initial
condition at τ = τi ≈ 0+ prepared by the earlier evolution history.6 Thus for τ � τi,

6If the initial condition is non-trivial with a non-zero particle number density, one can model this
initial particle population by a non-zero βi. The phase of βi may be fixed if the initial particles are
prepared coherently, whereas it is random for thermally prepared particles. In such cases, one can return
to (3.31), (3.41), (3.81), (3.86), and add to β(τ) a term proportional to βi and then compute the change of
particle number by taking the square and performing an additional ensemble average over the phase of βi
if it is thermally prepared.
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any particle mode with comoving momentum k has a time-dependent physical momentum
k

a(τ) = k
crτ

. This scale is to be compared with H(τ), m and κ.
Defining z = kτ , the EoM now reads

d2f(z)
dz2 + w2(z, k)f(z) = 0 , w2(z, k) = 1− 2κ̃(k)z + m̃2(k)z2 , (4.62)

with scale-dependent effective chemical potential and mass

κ̃(k) = κcr
k2 , m̃(k) = mcr

k2 . (4.63)

Their physical meaning is the mass and chemical potential measured in units of Hubble
parameter at horizon re-entry. The lower zero of w(z; k) lies at

zc = κ̃− i
√
m̃2 − κ̃2

m̃2 . (4.64)

The singulant integral reads

F (z) =−2i
∫ z

zc
dz′w(z′;k)

= i

 κ̃−m̃2z

m̃2

√
1−2κ̃z+m̃2z2+ m̃2−κ̃2

m̃3 ln
√
m̃2−κ̃2

m̃
(√

1−2κ̃z+m̃2z2+zm̃
)
−κ̃

+π
(
m̃2−κ̃2)
2m̃3 .

(4.65)

The super-adiabatic corrections to W (z) yield no simple pole at the origin or at infinity:

δW (n)(z) z→0−−−→ O(z0) , δW (n)(z) z→∞−−−→ O(z1−4n), n > 1 . (4.66)

Therefore, unlike the case of dS in conformal time coordinates, there is no super-adiabatic
mass correction and hence no need for resummation. The behavior of the singulant as well
as the Stokes multiplier are shown in figure 19.

The details of particle production can be easily obtained as follows.

• Production amount. Taking the imaginary part of F on the real axis, we have

|β(k)|2 = e−
π
m̃3 (m̃2−κ̃2) = exp

[
− πk2

crm3

(
m2 − κ2

)]
. (4.67)

There are two interesting aspects in this formula. First, |β(k)|2 is symmetric under
the flip κ ↔ −κ (equivalent to a parity transformation that flips helicities), seemingly
suggesting an equal enhancement for both helicities. However, this turns out to be
superfluous as we will see from inspecting the production history below. Second, for a
given mode k, the production amount does not seem to increase with mass monotoni-
cally. This phenomenon may be somewhat counterintuitive, as heavier particles naively
should be more difficult to produce. This puzzle is resolved when one recalls that the
radiation-dominated universe does not have a constant background temperature like dS.
It effective “temperature” is likened to the decreasing Hubble parameter H(τ) = 1

crτ2 .
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Figure 19. The super-adiabatic singulant F (z) in radiation-dominated era for κ̃ = 0.05 (upper left
panel) and κ̃ = 0.099 (upper right panel), with the dimensionless mass m̃ = 0.1. The hue represents
the phase argF (z) while the brightness represents the modulus |F (z)|. In both panels, the dark red
line is the Stokes line joining the complex turning points. The lower two panels show the Stokes
multiplier S(z) corresponding to the parameters chosen above.

Raising the mass may lead to two competing effects, one being increasing the difficulty
of producing a real particle, the other being pushing the production time earlier, when
the effective “temperature” is higher. We will see later that for the radiation-dominated
universe, the first effect dominates the applicable range of our method and heavier
particles come with a smaller production amount. However, in the matter-dominated
universe, this is not the case. Finally, the production amount sharply drops to zero for
k &

√
2crm3

m2−κ2 , for which the “temperature” is too low to support any real particles.

• Production time. Since the Stokes lines are vertical lines on the complex plane (see
figure 20), the crossing time solved from ImF (z∗) = 0 is simply

z∗ = κ̃

m̃2 , or τ∗ = kκ

crm2 . (4.68)

Now let us recall that the physical time domain is 0 < z < +∞, with z = 0 being
the Big Bang singularity. The EoM (4.62) by itself, however, is regular at z = 0
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Figure 20. The Stokes lines for spin-1 bosons (left panel) and spin-1/2 fermions (right panel) in
radiation-dominated universe. In both panels, the mass is set to m̃ = 0.1, and the momentum k

is fixed to have a dimensionless chemical potential ranging over κ̃ = −0.08,−0.06, · · · , 0.06, 0.08
(from left to right, and the green lines correspond to the case without chemical potential). The
gray region with Re z < 0 cannot be reached physically. Solid lines represent scenarios where the
Ginzburg criterion (4.70) is fulfilled and vacuum initial condition is satisfied, while dotted lines can
only be understood in the analytically continued sense.

and admits a straightforward continuation to the unphysical region −∞ < z < 0. This
mathematically continued EoM enjoys a Z2 symmetry that is well-defined at the origin:7

κ↔ −κ, z ↔ −z. This is the cause of the apparent parity symmetry in |β(k)|2. In fact,
the production time z∗ is also in the unphysical region for κ < 0. Thus for negative κ,
both (4.67) and (4.68) must be understood in the analytically-continued sense. Namely,
only if the initial condition at z = 0+ is prepared so as to match the solution of the
analytically-continued EoM with Bunch-Davies initial condition at z → −∞, the Stokes-
line method results are valid. For κ > 0 and 0 < ∆z∗

2 . z∗, these results agree with
that of the usual vacuum initial condition at z = 0+ since the Stokes line is far right
to the origin and particles do not get produced until a late time. Otherwise, a direct
application of the Stokes-line method may be inaccurate. In that case, the particle
production history depends on the actual initial condition set at zi = kτi � 1 by an
earlier cosmic evolution, which is a physical continuation to the region z < 0.

• Production width. The production width in z-domain is simply calculated as

∆z∗ = 2
√

2|ReF (z∗)|
|ImF ′(z∗)|

=
√
π

m̃
, or ∆τ∗ =

√
π

crm
. (4.69)

7In the dS case, this Z2 symmetry is also present in the EoM, but then it is not well-defined at the dS
boundary z = 0, which is a singularity for the EoM (not a singularity for the spacetime). The lack of a
smooth continuation to z < 0 breaks the Z2 symmetry spontaneously, and therefore leads to the parity
asymmetry in particle production.
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Figure 21. The parameter region where the Ginzburg criterion (4.70) is satisfied. The blue region
stands for spin-1 bosons while the yellow region stands for spin-1/2 fermions.

Interestingly, the production width in the z-domain for spin-1 boson does not depend on
the chemical potential κ. The parameter region where our continuation interpretation
matches that of the vacuum initial condition at z = 0+ is where the Ginzburg criterion
is satisfied,

0 < ∆z∗
2 . z∗ ⇒

√
π

2 m̃3/2 . κ̃ < m̃ , or
√
πcrm

3/2

2k . κ < m . (4.70)

These conditions actually limits m̃ < 4
π . The parameter region satisfying the Ginzburg

criterion is shown in figure 21, and one can see that both κ̃ and m̃ are bounded from
above, i.e., κ̃, m̃ . O(1). This suggests that the modes are still relativistic at horizon
re-entry, and becomes non-relativistic only after the production time z∗.

The fermion case is again obtained by a simple substitution m̃ →
√
m̃2 + κ̃2. Here

one useful check is to go to the large-chemical-potential limit with κ � m. There the
production amount of fermions reduces to

|β(k)|2 = e
− πm̃2

(m̃2+κ̃2)3/2 κ�m−−−→ e
−πk

2m2
crκ3 = e

− πm2
κH(τ∗(k)) , (4.71)

which is exactly what we expect from the LZ model (2.22).
The Ginzburg criterion must also be applied to fermions. Hence, unlike the previous

scenarios in dS and its deviations, the chemical potential of fermions is bounded from
above (as well as below) by the applicability of our method. We plot the production
histories in figure 22. In the valid parameter region, we found that the production amount
is monotonically decreasing with mass. Bosons are produced later with larger chemical
potential, while the production time of fermions first increase and then decrease with
chemical potential. The boson production width is independent of the chemical potential
whereas that of fermions decreases with chemical potential, since κ̃ enters the expression
for effective mass.
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Figure 22. The production histories in radiation-dominated era. Left panel: production amount
as a function of the dimensionless chemical potential for different particle masses. Middle panel:
the z-domain production time dependence on chemical potential and mass. Right panel: the z-
domain production width. In all three plots, solid lines represent spin-1 bosons while dashed lines
represent spin-1/2 fermions. Particles with different masses are distinguished by the colors of the
lines according to the legend in the left panel. The parameter range is chosen according to figure 21.
Due to the imposed constraint, the purple dashed line for fermions with m̃ = 0.5 is absent in all three
plots, since it would correspond to artificial initial conditions, as discussed in the main text above.

4.5 Matter-dominated era

Now we turn to the matter-dominated era with w = 0 and a scale factor quadratically
dependent on the conformal time, a(τ) = cmτ

2. The Hubble parameter is H(τ) = 2
cmτ3 .

Here cm > 0 and τ runs from 0 to +∞. The initial Big Bang singularity is understood to
be removed by attaching a period of radiation domination era and some former primordial
eras. A vacuum initial condition is still assumed, therefore we will still impose a Ginzburg
criterion so that the Stokes-line method gives physical results.

Defining z = kτ , the EoM of a massive vector boson reads

d2f(z)
dz2 + w2(z, k)f(z) = 0 , w2(z, k) = 1− 2κ̃(k)z2 + m̃2(k)z4 , (4.72)

with scale-dependent chemical potential and mass

κ̃(k) = κcm
k3 , m̃(k) = mcm

k3 . (4.73)

The w(z, k) in the matter-dominated universe has four simple zeros on the complex z-plane,
namely, ±zc and ±z∗c with

zc =
√
m̃+ κ̃− i

√
m̃− κ̃√

2m̃
. (4.74)

The zc-z∗c pair lies in the right-half plane with positive real parts. Therefore, they are
joined by a Stokes line that cross the real axis in the physical region (see the Stokes lines
in figure 23 and figure 24). On the other hand, the Stokes line joining −zc and −z∗c crosses
the real axis in the unphysical region, which can only be understood in the aforementioned
continuation sense.
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We are interested in the zc-z∗c pair since these determines the physical particle produc-
tion details. As κ approaches −m, the two pairs tend to merge into one, and an analysis
of the “physical” Stokes line alone seems insufficient. In our setup, however, this is not
a problem. The Ginzburg criterion keeps the production time late enough so that the
turning points at −zc,−z∗c do not have significant influence on the production history at
leading order.

The singulant integral takes a relatively complicated form,

F (z) =−2
3 iz
√

1−2κ̃z2+m̃2z4

+ 4
3m̃

√
m̃2−κ̃2

κ̃−i
√
m̃2−κ̃2

[
K

(
−m̃

2−2κ̃2+2iκ̃
√
m̃2−κ̃2

m̃2

)

−F
(

arcsin
(

zm̃√
κ̃−i
√
m̃2−κ̃2

)∣∣∣− m̃2−2κ̃2+2iκ̃
√
m̃2−κ̃2

m̃2

)]

+ 4iκ̃
√
κ̃+i
√
m̃2−κ̃2

3m̃2

[
E

(
−m̃

2−2κ̃2+2iκ̃
√
m̃2−κ̃2

m̃2

)

−E
(

arcsin
(

zm̃√
κ̃−i
√
m̃2−κ̃2

)∣∣∣− m̃2−2κ̃2+2iκ̃
√
m̃2−κ̃2

m̃2

)]
,

(4.75)

where K(M), E(M) and E(x|M), F (x|M) are the complete and incomplete elliptic
integrals.

• Production amount. Taking the real part gives |β(k)|2 = e−2ReF (zi) with

ReF (zi) = 4
3m̃2

[√
m̃2 − κ̃2Re

(√
κ̃+ i

√
m̃2 − κ̃2K

(
−m̃

2 − 2κ̃2 + 2iκ̃
√
m̃2 − κ̃2

m̃2

))

− κ̃Im
(√

κ̃+ i
√
m̃2 − κ̃2E

(
−m̃

2 − 2κ̃2 + 2iκ̃
√
m̃2 − κ̃2

m̃2

))]

=
Γ
(

5
4

)
Γ
(

7
4

)√ π

2m̃

1−
2Γ
(

3
4

)
Γ
(

7
4

)
κ̃

Γ
(

1
4

)
Γ
(

5
4

)
m̃
− 3κ̃2

8m̃2 +O
(
κ̃3

m̃3

) . (4.76)

In terms of the original parameters, we have

|β(k)|2 = exp

−Γ
(

5
4

)
Γ
(

7
4

)√2πk3

cmm

1−
2Γ
(

3
4

)
Γ
(

7
4

)
κ

Γ
(

1
4

)
Γ
(

5
4

)
m
− 3κ2

8m2 +O
(
κ3

m3

) . (4.77)

Thus in the matter-dominated era, the superficial degeneracy between κ > 0 and κ < 0
in the radiation-dominated era is explicitly broken, since there is no Z2 symmetry in
the EoM (4.72) now. This shows again that the degeneracy is unphysical. Not only the
z → −∞ phase before radiation domination (inflation, etc.) can break the degeneracy,
the z → +∞ stage after it (matter-domination) can do so, too. The production amount
drops to zero quickly for k � (cmm)1/3.

– 52 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
9

Figure 23. The super-adiabatic singulant F (z) in matter-dominated era for κ̃ = 0.05 (upper left
panel) and κ̃ = 0.099 (upper right panel), with the dimensionless mass m̃ = 0.1. The hue represents
the phase argF (z) while the brightness represents the modulus |F (z)|. In both panels, the dark red
line is the Stokes line joining the complex turning points. The lower two panels show the Stokes
multiplier S(z) corresponding to the parameters chosen above.

• Production time. The production time is solved from ImF (z∗) = 0. The result can be
expressed as a power series

z∗(m̃, κ̃) ' 1√
m̃

[
0.6098 + 0.4659κ̃

m̃
− 0.1011κ̃2

m̃2 + 0.03446κ̃3

m̃3 +O
(
κ̃4

m̃4

)]
. (4.78)

Although z∗ is always positive for |κ̃| < m̃, the Ginzburg criterion must still be imposed
to match the vacuum initial condition.

• Production width. This can also be obtained as a power series,

∆z∗(m̃, κ̃) ' 1
m̃1/4

[
1.474− 0.2971κ̃

m̃
+ 0.09144κ̃2

m̃2 − 0.06400κ̃3

m̃3 +O
(
κ̃4

m̃4

)]
. (4.79)
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Figure 24. The Stokes lines for spin-1 bosons (left panel) and spin-1/2 fermions (right panel) in
matter-dominated universe. In both panels, the mass is set to m̃ = 0.1, and the momentum k

is fixed to have a dimensionless chemical potential ranging over κ̃ = −0.08,−0.06, · · · , 0.06, 0.08
(from left to right, and the green lines correspond to the case without chemical potential). The
gray region with Re z < 0 cannot be reached physically. Solid lines represent scenarios where the
Ginzburg criterion (4.80) is fulfilled and vacuum initial condition is satisfied, while dotted lines can
only be understood in the analytically continued sense.

The Ginzburg criterion is now

0< ∆z∗
2 . z∗ , or

(
k3

cmm

)1/4

& 1.208×
1−0.2017 κ

m+0.06205 κ2

m2−0.04343 κ3

m3 +· · ·
1+0.7641 κ

m−0.1660 κ2

m2 +0.05652 κ3

m3 +· · ·
.

(4.80)
We plot this region in figure 25 for both bosons and fermions.

The generalization to fermions is the same as above. To check the large-chemical-
potential behavior, we set κ̃� m̃, and obtain

|β(k)|2 κ̃�m̃−−−→ e
− πm̃2

2κ̃5/2 = e
−πm

2
2κ

√
k3

cmκ3 = e
− πm2
κH(τ∗(k)) . (4.81)

This again agrees with the LZ model result (2.22). In fact, we can take advantage of
the LZ model and obtain some interesting sum rules for the numeric coefficients in (4.78)
and (4.79). According to the exact solution of LZ model, the κ̃� m̃ limit production time
becomes z∗

κ̃�m̃−−−→ κ̃−1/2. Matching this with (4.78) in the fermion case, we have

1 ' 0.6098 + 0.4659− 0.1011 + 0.03446 + · · · . (4.82)

The production width predicted by the LZ model is ∆z∗ =
√

π
2 κ̃
−1/4. Matching this

with (4.79), we have√
π

2 ' 1.474− 0.2971 + 0.09144− 0.06400 + · · · . (4.83)
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Figure 25. The parameter region where the Ginzburg criterion (4.80) is satisfied. The blue region
stands for spin-1 bosons while the yellow region stands for spin-1/2 fermions.

Figure 26. The production histories in matter-dominated era. Left panel: production amount
as a function of the dimensionless chemical potential for different particle masses. Middle panel:
the z-domain production time dependence on chemical potential and mass. Right panel: the z-
domain production width. In all three plots, solid lines represent spin-1 bosons while dashed lines
represent spin-1/2 fermions. Particles with different masses are distinguished by the colors of the
lines according to the legend in the left panel. The parameter range is chosen according to figure 25.

Another piece of information attainable from the LZ model is an upper bound on κ̃ due to
the Ginzburg criterion:

∆z∗
2 < z∗

κ̃�m̃−−−→ κ̃ <
64
π2 , (4.84)

in agreement with figure 25.
As before, we plot the production histories for both bosons and fermions in figure 26.

The left panel clearly demonstrates the seemingly counter-intuitive mass dependence men-
tioned previously. Here, the valid region covers the part where the production amount
increases with the mass. This shows the fact that production amount decreases with mass
in the radiation-domination era is just a coincidence, and that with a time-dependent Hub-
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ble parameter, there are two opposite effects competing against each other, in which case
the resulting mass dependence can be subtle. Another notable aspect is that the production
time can be either earlier or later than horizon re-entry.

5 Summary and outlook

Ranging from cosmological collider physics in the primordial era to baryogenesis in the
late universe, chemical potential plays an important role in the process of spontaneous
creation of particles. In this paper, we focused on the impact of chemical potential on
gravitational massive particle production. We first introduced the general form of chemical
potential term and gave a necessary condition for its physical effects. After reviewing the
chemical potential for particles with different spins, we extracted their essential features
and likened the corresponding Bogoliubov coefficients to the coefficients of instantaneous
positive/negative frequency solutions. Then the mathematical tools such as asymptotic
series, Berry’s smoothing techniques of Stokes-lines and Borel resummation were introduced
to solve the coefficients. Having checked the applicability of this method at |β|2 . 1,
we obtain the recipe of particle production histories for both spin-1 bosons and spin-
1/2 fermions, which are related by a simple replacement formula. At last, applying this
recipe to cosmology, we gave a fine-grained analysis of chemical-potential-assisted particle
production in five common FRW spacetimes. The production amount, time and width are
obtained as analytic/semi-analytical expressions, each with characteristic dependences on
chemical potential and mass.

In summary, our method demonstrates the application of uniformly smoothed Stokes-
line method to fine-grained particle production. In addition, our results serve as valu-
able theoretical data for future studies of chemical potential as well as general particle
production.

Despite the heavy mathematical machinery and the detailed analysis in this current
work, there are still many questions left unanswered which we hope to address in the future.
We list a few of them as outlooks below.

• Starting with vacuum initial condition, the introduction of chemical potential invites
the interesting possibility of significant particle production with |β|2 ∼ 1, even with
large masses. This mathematically corresponds to the failure of choosing an optimal
truncation order n (ReF < 2 for vector bosons and ReF < 1 for fermions) determined
by either the stationary phase condition of the first-order perturbation or the minimum
term in the asymptotic series solution, and we proposed to use the Borel summation
to evaluate the whole divergent asymptotic series, extending the workable parameter
regions to ReF & 0.5 for bosons and ReF & 0.2 for fermions respectively. However,
large errors in evaluating the particle production amount were still found when the
particle production is too large and runs outside the mentioned workable regions, and
part of the reason may be attributed to the failure of approximating w(z) or E(z) around
its complex root zc. Although we are currently unable to fully resolve the problem when
|β|2 ∼ 1, it is interesting to note that the result with |β|2 . 1, when naively extrapolated
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to the |β|2 ∼ 1 case, actually gives very accurate answers for the production amount
(e.g., in dS and radiation domination era). A systematic method of calculating particle
production which can link to the limit with |β|2 ∼ 1, the tachynonic instability for bosons
and the exact Landau-Zener model for fermions (2.21), may require new techniques, and
we leave it for future works.

• Throughout the analysis of particle production in section 4, we have assumed a chemical
potential constant in space and time. Although this can be justified as leading order
approximations, the full understanding can only be acquired by introducing appropriate
spacetime dependences according to different contexts.

• In dS and its two types of deviations, it is natural to assume a vacuum initial condition.
However, in radiation domination era and matter domination era, quantum fields do not
necessarily evolve from the vacuum. In fact, it is expected to have some initial particle
population produced in earlier stages of the universe such as inflation or (p)reheating.
Yet a non-vacuum initial condition is highly model-dependent. In this work, we choose
vacuum initial condition because we focus more on a model-independent analysis of par-
ticle production due to a later effect of chemical potential. The treatment of other initial
conditions is briefly described in section 4.4. However, it is worthwhile to note some in-
teresting behaviors. If the initial particles are thermally prepared, the interference term
in |β(z)|2 is averaged out by taking the ensemble average over the phase of βi. Thus
particle number generally increases due to chemical potential, as expected. In contrast,
if the initial particles are coherently prepared with a common phase of βi, chemical
potential can serve to produce or destroy particles, depending on the sign of the inter-
ference term. If the particle number decreases, one can understand it as the “decay” of
particles with energy injection into the background chemical potential sector. It would
be interesting to investigate these possibilities with concrete models in the future.

• The knowledge of the production time and width can be helpful in the estimation of
signal strength in cosmological collider physics. As mentioned before, the O(|β|) oscilla-
tory signatures on the cosmological collider originate from the interference between the
positive frequency part and the negative frequency part, whose presence is controlled by
the Stokes multiplier S(z). This fact can be useful when estimating the loop diagrams.
At loop level, the momentum integral receives contribution from the UV region with
z � 1. Usually, this UV divergent part can be regularized by a momentum cutoff at
Hubble scale, i.e., k

a < H. Then the signal strength follows from dimensional analy-
sis. This is convenient if the mass of the particle running the loop is close to Hubble
scale [23]. However, if the particle is much heavier, the dimensionless parameter µ > 1
can enter in complicated ways. Adding chemical potential introduces yet another dimen-
sionless parameter κ̃, thus invalidating the naive dimensional analysis [25]. However,
with the knowledge of particle production history, the momentum cutoff can be posed
more precisely at z∗. This is because physically speaking, the particles that generate the
signals do not get produced until their momentum drops below the production scale,
k
a < H(z∗ ± ∆z∗). This potentially offers a better way to estimation signal strength,
which deserves further explorations.
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• Aside from chemical potential, there are many other sophisticated mechanisms of cos-
mological particle production, to which the smoothed version of Stokes-line method can
be applied. For example, parametric resonance is widely used in models of preheat-
ing [71–73], generation of primordial black holes [74, 75] and primordial gravitational
waves [76, 77]. For a periodic effective frequency w(z), the turning points form periodic
pairs on the complex z-plane, joined by periodic Stokes lines. Then the resonance con-
dition can be viewed as the constructive interference of particle production amplitudes
when crossing each Stokes line. In the literature, there are already preliminary attempts
in this direction [50, 52], but using the traditional Stokes-line method without uniform
smoothing. This will be accurate if the Stokes lines are well-separated so that one can
apply the “dilute gas” approximation, treating each crossing separately as sudden jumps
in particle number. However, if the production widths are as wide as the separation be-
tween two neighboring Stokes lines, one may need to go to the fine-grained picture and
perform the analysis using the smoothed version of Stokes-line method. It is interesting
to compare this method with traditional ones such as the Floquet theory.
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A A checklist of results

In this appendix, we assemble our main results into a checklist in table 1. We have explicitly
spell out the schematic form of various quantities and given the full expressions/plots as
references jumping into the text.

B The 1/4 puzzle

As mentioned in section 4.1, the mismatch of the 1/4 term in the dS effective mass is
due to the non-vanishing correction to the IR frequency near z = 0+. These corrections
are hidden in the asymptotic series. In order to take them into account, we must use W
instead of W (0) = w and compute Dingle’s singulant F order-by-order. We first deform
the integration contour from C0 : ImF (z) = 0 to lie along the branch cut joining zc, 0 and
z∗c , which is defined by

argw2(z) = ±π . (B.1)

This is illustrated by the path C1 ∪ C2 in figure 27. All the super-adiabatic corrections
δW (n) are proportional to odd powers of w and therefore possess the same branch cut. It
is straightforward to check that 0, zc, z∗c and the branch cut are the only singularities for
δW (n) with n > 1.
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Amount Time Width Plot Valid region

dS

=(4.24) '(4.25) '(4.26)

e−2π(m−κ) 0.6m+ 0.3κ+ · · · 2.1√
m
− 0.4κ

m3/2 + · · · Fig. 9

ε-dS

=(4.36) ≈(4.38) ≈(4.40)

e−2π(m−κ)[1+ε(ln k+··· )] 0.6m+ 0.3κ+ · · · 2.1√
m
− 0.4κ

m3/2 + · · · Fig. 12 ε� 1
+ ε(0.8m+ · · · ) + ε√

m
(− ln k + · · · )

η-dS

=(4.54) ≈(4.56) ≈(4.58)

e−2π(m−κ)[1+c(k)(··· )] (1 + c(k)) (0.6m+ 0.3κ+ · · · )
(
1− c(k)

2

) (
2.1√
m
− 0.4κ

m3/2 + · · ·
)

Fig. 16 c(k), ηi � 1
+c(k)ηi (0.8m+ · · · ) + c(k)ηi√

m

(
ln m

Hi
+ · · ·

)

RD

=(4.67) =(4.68) =(4.69) Ginzburg
criterion:

e
− πk2
crm3 (m2−κ2) k2κ

crm2

√
πk2

crm
Fig. 22 (4.70)

MD

=(4.77) '(4.78) '(4.79) Ginzburg
criterion:

e
−1.0

√
2πk3
cmm

(1− 0.7κ
m

+··· ) √
k3

cmm

(
0.6 + 0.5κ

m + · · ·
) (

k3

cmm

)1/4 (
1.5− 0.3κ

m + · · ·
)

Fig. 26 (4.80)

Table 1. A checklist of results for spin-1 vector bosons. Here RD and MD stand for radiation
domination era and matter domination era, respectively. m is the mass while κ is the chemical
potential. The =, ', ≈ symbols are used to indicate whether the result is exact, numerically exact,
or empirical with 2% error. In the schematic expressions, to display the most salient features, we
have omitted the Hubble parameter and blurred the difference between m

H and µ =
√

m2

H2 − 1
4 in

dS. The widths in dS, ε-type dS and η-type dS are measured in e-folds, whereas the widths in
RD and MD are measured in z-domain. The results for spin-1/2 fermion is obtained via a simple
replacement rulem2 → m2+κ2. Setting κ = 0 also gives the purely gravitational production results.

Now consider a closed integration path C1 ∪ C2 ∪ C3 ∪ C4 that tours around the branch
cut. The integral can be converted to a residue at z →∞,∮

C1,2,3,4
W (z)dz =

∮
C′1,2,3,4

W (1/z′)dz
′

z′2
= −2πiRes z′→0

W (1/z′)
z′2

. (B.2)

Separating the full frequency into the zeroth order and higher orders, we have

Res z′→0
W (1/z′)
z′2

= Res z′→0

[
w(1/z′)
z′2

+
∞∑
n=1

δW (n)(1/z′)
z′2

]
= −κ̃ , (B.3)

where we have used the fact that δW (n)(z) drops as

δW (n)(z) z→∞−−−→ O
( 1
z2n+1

)
(B.4)

at infinity and therefore does not contribute to the residue.
Then we separate the closed contour into two parts,

2πiκ̃ =
∮
C1,2,3,4

W (z)dz =
∫
C1∪C3

W (z)dz +
∫
C2∪C4

W (z)dz . (B.5)
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Figure 27. The original integration contour C0 and its deformations. The black dashed line is the
branch cut. The angle θ at which C1 and C3 meet is chosen carefully according to a principal value
prescription.

Across the branch cut, the phase of W (z) jumps by π and its modulus remains continuous.
Therefore, along the branch cut, the integral on C1 and C3 gives the same result. The arcs
around zc and z∗c on C1 and C3, however, must be taken with a grain of salt. As these two
singularities are of high orders, the integral there is ill-defined when the radius of the arc
goes to zero. As a result, we need to manually impose a principal value prescription. By
symmetry, the function

H(θ) ≡ i
∫
C1(θ)

W (z)dz (B.6)

is always real. Hence when we adjust the meeting points of C1 and C3 by changing θ (see
figure 27), the integral varies from H(0+) to H(2π−). Then by the intermediate value
theorem of a continuous real function, there always exists an angle 0 < θm < 2π such that

H(θm) = H(0+) +H(2π−)
2 . (B.7)

If we choose θm to be the angle of the meeting point of C1 and C3, then the integrals along
them give the same result: ∫

C1(θm)
W (z)dz =

∫
C3(θm)

W (z)dz . (B.8)
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In addition, due to the sign flip across the branch cut, the integral along C2 and C4 are
related by ∫

C2
W (z)dz = −

∫
C4
W (z)dz = −πiRes z→0+W (z) = −iπµ . (B.9)

Thus (B.5) simplifies into ∫
C1(θm)

W (z)dz = iπκ̃ . (B.10)

Finally, we obtain the original integral as∫
C0
W (z)dz =

∫
C1(θm)∪C2

W (z)dz = −iπ(µ− κ) , (B.11)

which essentially gives the resummed production amount (4.23) in dS.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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