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Abstract: For a general Hb → Hcτ ν̄τ decay we analyze the role of the τ polarization
vector Pµ in the context of lepton flavor universality violation studies. We use a gen-
eral phenomenological approach that includes, in addition to the Standard Model (SM)
contribution, vector, axial, scalar, pseudoscalar and tensor new physics (NP) terms which
strength is governed by, complex in general, Wilson coefficients. We show that both in the
laboratory frame, where the initial hadron is at rest, and in the center of mass of the two
final leptons, a ~P component perpendicular to the plane defined by the three-momenta of
the final hadron and the τ lepton is only possible for complex Wilson coefficients, being a
clear signal for physics beyond the SM as well as time reversal (or CP-symmetry) viola-
tion. We make specific evaluations of the different polarization vector components for the
Λb → Λc, B̄c → ηc, J/ψ and B̄ → D(∗) semileptonic decays, and describe NP effects in
the complete two-dimensional space associated with the independent kinematic variables
on which the polarization vector depends. We find that the detailed study of Pµ has great
potential to discriminate between different NP scenarios for 0− → 0− decays, but also for
Λb → Λc transitions. For this latter reaction, we pay special attention to corrections to the
SM predictions derived from complex Wilson coefficients contributions.
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1 Introduction

The tension between the Standard Model (SM) predictions and experimental data in
semileptonic decays involving the third quark and lepton generations points to the possible
existence of new physics (NP) affecting those decays. The strongest evidence for this lepton
flavor universality violation (LFUV) is in the ratios (` = e, µ)

RD = Γ(B̄ → Dτν̄τ )

Γ(B̄ → D`ν̄`)
= 0.340± 0.027± 0.013,

RD∗ = Γ(B̄ → D∗τ ν̄τ )
Γ(B̄ → D∗`ν̄`)

= 0.295± 0.011± 0.008,

RJ/ψ = Γ(B̄c → J/ψτ ν̄τ )
Γ(B̄c → J/ψµν̄µ)

= 0.71± 0.17± 0.18. (1.1)

The RD(∗) values have been obtained by the Heavy Flavor Averaging Group (HFLAV) [1],
combining different experimental data by the BaBar [2, 3], Belle [4–7] and LHCb [8, 9]
collaborations. The corresponding SM results given in ref. [1], RD = 0.299 ± 0.003 and
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RD∗ = 0.258± 0.05, are obtained from the SM predictions in refs. [10–14]. Similar results
are obtained in ref. [15] using the heavy quark effective theory parameterization of the
form factors with up to O(1/m2

c) corrections. The tension with the SM is at the level
of 3.1σ, although it will reduce to just 0.8σ if only the latest Belle results from ref. [7]
were considered. In this respect, in refs. [16, 17] it is argued that the inclusion of the new
Belle data heavily restricts the number of allowed NP solutions, claiming that a precise
measurement of the B̄c → τ ν̄τ branching ratio can distinguish among them. The important
constraints, on new-physics interpretations of the anomalies observed in B̄ → D(∗)τ ν̄τ
decays, derived from the lifetime of the B̄c meson were firstly pointed out in [18], and they
have commonly be considered in all subsequent analyses.

The ratioRJ/ψ has been recently measured by the LHCb collaboration [19] and it shows
a 1.8σ discrepancy with SM results, which are in the range RSM

J/ψ ∼ 0.25− 0.28 [20–32]. B̄c
decays induced by the c→ s, d transition at the quark level are also being investigated as a
possible source of information on NP [33], taking advantage of the recent results of ref. [34].
In this latter work, the possibilities of extracting constraints on NP by using the current
data on the leptonic and semileptonic decays of pseudoscalar mesons, not only driven by
the b→ c transition, have been exhaustively discussed.

NP effects on RD(∗) and RJ/ψ are studied in a phenomenological way including scalar,
pseudoscalar and tensor b→ cτ ν̄τ effective operators, as well as NP corrections to the SM
vector and axial ones. NP terms are governed by Wilson coefficients which are complex
in general and should be fitted to data. As a result of this fitting procedure, different NP
scenarios actually lead to an equally good reproduction of the above ratios in eq. (1.1) (see
for instance refs. [35–37]1). Then, other observables are needed to constrain and determine
the most plausible NP extension of the SM. Typically, the τ -forward-backward (AFB)
and τ -polarization (Aλτ ) asymmetries have also been considered. A greater discriminating
power can be reached by analyzing the four-body B̄ → D∗(Dπ,Dγ)τ ν̄τ [39–42] and the
full five-body B̄ → D∗(DY )τ(Xντ )ν̄τ [43, 44] angular distributions.

Another test of this non-universality can be obtained from the analog semileptonic
RΛc ratio, which has been predicted within the SM in several works [45–47]. In ref. [47],
the result from a solid calculation including leading and sub-leading heavy quark spin
symmetry (HQSS) Isgur-Wise (IW) functions, which were simultaneously fitted to LQCD
results and LHCb data, was provided. The effects of different NP scenarios have been also
examined in refs. [36, 48–57]. We note that the case of a polarized decaying Λb baryon has
also been addressed in ref. [58].

In refs. [59–61], we have analyzed the relevant role that different contributions to
the differential decay widths d2Γ/(dωd cos θτ ) and d2Γ/(dωdEτ ) could play to the NP
search, both for unpolarized and helicity-polarized final τ -lepton. Here, ω is the product
of the two hadron four-velocities, θτ is the angle made by the tau lepton and final hadron
three-momenta in the center of mass of the final two-lepton pair (CM), and Eτ is the
final tau energy in the laboratory frame (LAB), where the initial hadron is at rest. In

1The latest measurements of RD(∗) reported by Belle [7] have a strong influence in the admissible
extensions of the SM [37], strongly disfavoring, for instance, large pure tensor NP scenarios which were
possible [35] with the 2018 HFLAV averages [38].
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refs. [59, 60], we give a general description of our formalism, based on the use of general
hadron tensors parameterized in terms of Lorentz scalar functions. It is an alternative to
the helicity amplitude scheme, and becomes very useful to describe processes where all
hadron polarizations are summed up and/or averaged. In these two works, we presented
results for the Λb → Λcτ ν̄τ decay and showed that the helicity-polarized distributions in
the LAB frame provide additional information about the NP contributions, which cannot
be accessed only by analyzing the CM differential decay widths, as is commonly proposed
in the literature. In ref. [61] we extended the study to B̄c → ηcτ ν̄τ , B̄c → J/ψτν̄τ as well
as the B̄ → D(∗)τ ν̄τ decays. What we have found is that the discriminating power between
different NP scenarios was better for 0− → 0− and 1/2+ → 1/2+ decays than for 0− → 1−
reactions.

In this work, we present our results in a different way by looking at the τ polarization
vector Pµ. Furthermore, the transverse (referred to the direction of the τ) components of
Pµ allows us to evaluate new observables, which do not appear in the study of LAB and
CM helicity-polarized decays. The possibility of searching for NP signatures in different
τ -polarization related contributions was suggested already twenty five years ago in ref. [62]
for B̄ → D(∗)-decays, in the context of SM extensions with charged Higgs bosons. The idea
has been further developed in more recent works [52, 63–67], and in particular, a complete
framework to obtain the maximum information with polarized τ leptons and unpolarized
D(∗) mesons is discussed in ref. [67], where the full decay chain down to the detectable
particles stemming from the τ is considered. As mentioned above, we use here a technique
different to the usual helicity-amplitude method, and we also show results for the Λb and
B̄c decays, for which such exhaustive analyses are not available yet.

We provide an overview of the spin density matrix formalism for semileptonic decay
reactions, including NP operators, and discuss how Pµ is defined in that context. As
we shall show, for a given configuration of the momenta of the involved particles, the
polarization vector components (projections of Pµ onto some spatial-like unit four-vectors)
depend on two variables (ω, cos θτ ) or equivalently (ω,Eτ ), and they can be used as extra
observables in the search for NP. To our knowledge, this is the first time that such a study
has been performed in the context of LFU anomalies. For fixed ω, the dependence on
cos θτ (or Eτ ) of these observables could be inferred from the general results of ref. [60],
since the polarization components turn out to be ratios of linear or quadratic functions of
the product of the initial hadron and final ν̄τ (or τ) four-momenta.2 The denominators of
these aforementioned ratios are determined by the unpolarized differential decay widths,
which can be straightforward seen in our previous works of refs. [60, 61]. Thus, we will
show here results for the coefficients of the polynomials that appear in the numerators of
these ratios for Λb → Λcτ ν̄τ and B̄ → D(∗)τ ν̄τ decays.

Certain CM angular averages of these components,3 also addressed in this work, and
that might be experimentally accessed through measurements of subsequent hadronic τ -

2For B̄ meson semileptonic decays, the dependence on the CM variable cos θτ should be also deduced
from the partial wave expansion of the leptonic amplitude within the helicity formalism [64, 68, 69].

3We refer to observables additional to the CM longitudinal τ -polarization asymmetry, Aλτ , which is
often presented in the literature.
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decays, have already been discussed in refs. [64–67], [28] and [49, 50] for the B̄ → D(∗)τ ν̄τ ,
B̄c → J/ψτν̄τ and Λb → Λcτ ν̄τ decays, respectively.

Here we will present results for all the semileptonic decays mentioned above, keeping
in mind that a combined analysis of all them can better restrict the possible extensions of
NP. We will pay special attention to the Λb → Λcτ ν̄τ reaction, as there are good prospects
that LHCb can measure it in the near future, given the large number of Λb baryons which
are produced at the LHC. Indeed, the shape of the Λb → Λcµν̄µ differential decay rate
was already reported by LHCb in 2017 [70]. Any measurement for the tau mode will be
extremely valuable, since the evidences for SM anomalies in b→ c semileptonic decays are
currently restricted to the meson sector, and the sensitivity of Λb-decay observables to NP
operators would likely be different.

The work is organized as follows. In section 2 we introduce the general theory on the
spin-density matrix and the polarization vector Pµ for a Hb → Hcτ ν̄τ decay. Analytical
expressions for Pµ including NP terms are then given in section 3, and a detailed analysis
of parity and time-reversal violation in the decay is presented in section 3.1. The results
are presented and discussed in section 4. In appendix A we give useful information on the
kinematics in the CM and LAB frames and in appendix B we give some angular averages
of the Pµ-components in the CM and LAB frames.

2 Spin-density matrix and polarization vector in semileptonic decays

We obtain in this section general results valid for any baryon/meson semileptonic decay for
unpolarized hadrons, though we refer explicitly to those induced by the b→ c transition.

2.1 Spin-density operator

Let us consider a Hb → Hcτ ν̄τ semileptonic decay of a bottomed hadron (Hb) of mass
M into a charmed one (Hc) with mass M ′. For a given momentum configuration of all
the particles involved, and when the polarizations of all particles except the τ lepton are
being summed up (averaged or sum over polarizations of the initial or final particles,
respectively),4 the modulus squared of the invariant amplitude for the production of a final
τ -lepton in a u(k′) state5 can always be written as∑

rr′

|M|2 = ū(k′)Ou(k′), (2.1)

with k′ the four-momentum of the final τ -lepton and r, r′ hadron polarization indexes. The
differential decay rate is given by [71]

d2Γ
ds23ds13

= G2
F |Vcb|2M ′

16π3M2

∑
rr′

|M|2, (2.2)

where GF = 1.166×10−5 GeV−2 is the Fermi coupling constant and s23 (s13) is the invariant
mass squared of the outgoing τ ν̄τ (Hcτ) pair.

4This is equivalent to say that we only measure the spin state of the τ -lepton.
5We use Dirac spinors with square root mass dimensions.

– 4 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
8

The operator O, which depends on the momenta of all particles, is determined by the
physics that governs the Hb → Hcτ ν̄τ transition and satisfies

O† = γ0Oγ0. (2.3)

Note that
ρ̄ = ( /k′ +mτ )O( /k′ +mτ )

Tr [( /k′ +mτ )O( /k′ +mτ )]
(2.4)

defines a trace-one hermitian operator (ρ̄† = ρ̄) in the two-dimensional Hilbert space
spanned by the spin states of the τ particle.6 A general polarization basis (covariant spin)
for the τ states with four-momentum k′, can be constructed as follows. For the τ at rest,
we take the two states u~n±1(mτ ,~0 ) corresponding to spin ±1/2 along the direction defined
by a normalized three vector ~n, then apply to these states a boost of velocity ~k ′/k′0. The
resulting uN±1(k′) spinors are eigenstates, with corresponding eigenvalues ±1, of the γ5 /N

operator, where Nµ is the transformed of the four-vector (0, ~n) by the boost [72]. The pro-
jectors onto the uN±1(k′) states are given by PN±1 = 1

2(1±γ5 /N). Notice that N2 = −~n 2 = −1
and that N · k′ = 0. Helicity is a particular case of covariant spin where ~n = k̂′ = ~k ′/|~k ′|
and Nµ ≡ s̃µ = (|~k ′|, k′0k̂′)/mτ .

For the given configuration of momenta, the spin-density operator ρ̄ encodes all infor-
mation that can be obtained on the spin of the τ leptons produced in the Hb → Hcτ ν̄τ
decay when no other particle spin state is measured. Actually, the matrix elements of
ρ̄ read

ρ̄S±1 = 1
2mτ

ūS±1(k′)ρ̄ uS±1(k′) = ūS±1(k′)OuS±1(k′)
Tr[( /k′ +mτ )O]

= ūS±1(k′)OuS±1(k′)∑
h=±1 ū

S
h(k′)OuSh(k′)

= P [uS±1(k′)] (2.5)

and give the probability that in an actual measurement the τ is found in the uS±1(k′) state,
as follows from eq. (2.1).

2.2 Polarization vector: definition and properties

Since ρ̄ is hermitian, it can be diagonalized, and there exists a polarization basis uN ′±1(k′)
for which the corresponding matrix elements satisfy

ρ̄N
′

hh′ = 1
2mτ

ūN
′

h′ (k′)ρ̄ uN ′h (k′) = ρ̄′hδhh′ , (2.6)

where the eigenvalues, ρ̄′h, are positive real numbers, as they are just the probabilities of
finding the τ in the uN ′±1(k′) states. In this basis of eigenstates, the spin-density matrix can
be written as

ρ̄ = 1
2mτ

[
ρ̄′+1 u

N ′
+1(k′)ūN ′+1(k′) + ρ̄′−1 u

N ′
−1(k′)ūN ′−1(k′)

]
= 1

2mτ

[
ρ̄′+1

∑
r=±1

uN
′

r (k′)ūN ′r (k′)PN ′+1 + ρ̄′−1
∑
r=±1

uN
′

r (k′)ūN ′r (k′)PN ′−1

]
6The formalism for antiparticles runs in parallel to the one that will be discussed below, with the obvious

replacements of ( /k′ +mτ ) by ( /k′ −mτ ) and of Dirac u-spinors by v-spinors. Besides, O will also change.
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=
/k′ +mτ

2mτ

(
ρ̄′+1P

N ′
+1 + ρ̄′−1P

N ′
−1

)
=

/k′ +mτ

4mτ

[
I − γ5

(
ρ̄′−1 − ρ̄′+1

)
/N ′
]

=
/k′ +mτ

4mτ

[
I − γ5 /P

]
, (2.7)

where we have defined the polarization vector Pµ as

Pµ =
(
ρ̄′−1 − ρ̄′+1

)
N ′µ. (2.8)

The four-vector Pµ depends on the dynamics that governs the Hb → Hcτ ν̄τ decay, through
the operator O, and it trivially satisfies

Pµ∗ = Pµ , k′ · P = 0 , Pµ = Tr[ρ̄γ5γ
µ] = Tr[( /k′ +mτ )O( /k′ +mτ )γ5γ

µ]
Tr[( /k′ +mτ )O( /k′ +mτ )]

. (2.9)

Note that, for a given momentum configuration of all the particles involved, Pµ depends
only on three independent quantities.7 In the present context, it seems natural to take
those quantities as one of the two eigenvalues of ρ̄ and the two angles that fix the privileged
direction ~n ′ in the τ rest frame, which gives rise to the polarization eigenbasis uN ′±1(k′). All
three are determined by the dynamics of the transition, which enters through the operator
O introduced in eq. (2.1).

The information on the spin of the produced τ is solely contained in the polarization
vector Pµ. Thus, the probability of measuring a τ in a state uSh(k′), with h = ±1, is
given by

P [uSh(k′)] = 1
2mτ

ūSh(k′)ρ̄ uSh(k′) = 1
4mτ

ūSh(k′)(I − γ5 /P)uSh(k′)

= 1
2

[
1− 1

2mτ
ūSh(k′)γ5 /PuSh(k′)

]
= 1

2(1 + hP · S), (2.10)

where we have used that ūSh(k′)γ5 /PuSh(k′) = −2mτhP · S.8 The same result also leads to

∑
rr′

|M|2 = ūSh(k′)OuSh(k′) = ūSh(k′)O
/k′ +mτ

2mτ
uSh(k′)

= 1
2mτ

∑
h′=±1

ūSh′(k′)O( /k′ +mτ )
(

1 + hγ5/S

2

)
uSh′(k′)

= 1
2mτ

Tr
[
( /k′ +mτ )O( /k′ +mτ )

(
1 + hγ5/S

2

)]

= 1
2Tr

[
( /k′ +mτ )O

] (
1 + hTr[ρ̄γ5/S]

)
= 1

2Tr
[
( /k′ +mτ )O

]
(1 + hP · S) . (2.11)

7This follows trivially considering that ρ̄ is a hermitian operator with trace one in a two-dimensional
Hilbert space.

8It is obtained by replacing ūSh(k′) and uSh(k′) by h ūSh(k′)γ5/S and h γ5/Su
S
h(k′) respectively.
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Moreover, since ρ̄ ′+1, ρ̄
′
−1 ≥ 0 and Tr[ρ̄] = (ρ̄ ′+1 + ρ̄ ′−1) = 1, we have that P2 is then limited

to the interval
− 1 ≤ P2 = −(ρ̄ ′−1 − ρ̄ ′+1)2 ≤ 0. (2.12)

The case P2 = 0 implies Pµ = 0 and it corresponds to the physical situation in which the
emitted τ is unpolarized, i.e., the probability of measuring any polarization state is the same
and equal to 1

2 . The case P2 = −1 corresponds to a fully polarized τ , and either ρ̄ ′−1 = 0
or ρ̄ ′+1 = 0, and the τ is produced in the uN ′+1(k′) or the uN ′−1(k′) eigenstates, respectively.
The case with −1 < P2 < 0 corresponds to a partial polarization scenario, in which the τ
is produced in an admixture of the uN ′+1(k′) and uN ′−1(k′) states, with probabilities given by
ρ̄ ′+1 and ρ̄ ′−1 respectively. This latter interpretation is substantiated by the following result

P [u(k′)] = 1
2mτ

ū(k′) ρ̄ u(k′) = ρ̄ ′+1

∣∣∣∣ ū(k′)uN ′+1(k′)
2mτ

∣∣∣∣2 + ρ̄ ′−1

∣∣∣∣ ū(k′)uN ′−1(k′)
2mτ

∣∣∣∣2, (2.13)

that gives the probability of finding the τ in a u(k′) state as a sum over the probabilities
that the τ is produced in the uN ′±1(k′) states times the probabilities that, upon measurement,
the latter are found in the u(k′) state.

3 Tau polarization vector for Hb → Hcτ
−ν̄τ decays in the presence of NP

We shall consider the general effective Hamiltonian

Heff = 4GFVcb√
2

[(1 + CVL)OVL + CVROVR + CSLOSL + CSROSR + CTOT ] (3.1)

that is discussed in detail for instance in ref. [36]. The fermionic operators involve only
neutrino left-handed currents, while the, complex in general, Wilson coefficients Ci pa-
rameterize possible deviations from the SM, the latter given by the 4GFVcbOVL/

√
2 term.

The Wilson coefficients could be lepton and flavor dependent, though normally they are
assumed to be present only for the third quark and lepton generations, where anomalies
have been seen.

In terms of the above effective Hamiltonian the invariant amplitude for the Hb → Hcτ ν̄τ
process is written as [60]

M = JαHJ
L
α + JHJ

L + JαβH JLαβ . (3.2)

The lepton currents are given by

JL(αβ)(k, k′;h) = 1√
8
ūSh(k′)Γ(αβ)(1− γ5)vντ (k) , Γ(αβ) = 1, γα, σαβ (3.3)

with k the final antineutrino four-momentum and where h = ±1 stands for the two possible
τ lepton polarizations (covariant spin) along a certain four vector Sµ that we choose to
measure in the experiment. The dimensionless hadron currents read (here c(x) and b(x)
are Dirac fields in coordinate space),

J
(αβ)
Hrr′(p, p

′) = 〈Hc; p′, r′|c̄(0)O(αβ)
H b(0)|Hb; p, r〉,

OH = CS − CPγ5, O
α
H = γα(CV − CAγ5), OαβH = CTσαβ(1− γ5), (3.4)
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with CV,A = (1 + CVL ± CVR), CS,P = (CSL ± CSR) and hadron states normalized as
〈~p ′, r′|~p, r〉 = (2π)3(E/M)δ3(~p− ~p ′)δrr′ , with r, r′ polarization indexes. In addition, p and
p′ are the four-momenta of the initial and final hadrons, respectively.

Summing/averaging over the final/initial hadron polarizations one can identify the O
operator in eq. (2.1) to be

O = 1
4
∑
(αβ)

∑
(ρλ)

Γ(αβ)(1− γ5)/kγ0Γ†(ρλ)γ
0
[∑
rr′

J
(αβ)
Hrr′(p, p

′)J (ρλ)†
Hrr′ (p, p

′)
]
. (3.5)

While this can be used to obtain the τ polarization vector Pµ through eq. (2.4) and the
last of eq. (2.9), in fact this work was already done in ref. [60], where it was found that for
a final τ with well defined helicity h one has9

2
M2

∑
rr′

|M|2 = N (ω, p · k) + h

{
(p · s̃)
M

NH1(ω, p · k) + (q · s̃)
M

NH2(ω, p · k)

+εs̃k
′qp

M3 NH3(ω, p · k)
}
, (3.6)

where q = p − p′ = k + k′ is the four-momentum transferred and ω is the product of
the initial and final hadron four-velocities (related to the invariant mass squared of the
outgoing τ ν̄τ pair via q2 = M2 + M ′2 − 2MM ′ω), which varies from 1 to ωmax = (M2 +
M ′2 −m2

τ )/(2MM ′). We note that the term in NH3(ω, p · k) was not explicitly shown in
ref. [60] since for the CM and LAB frames considered in that work one has εs̃k′qp = 0 for
s̃µ = (|~k ′|, k′0k̂′)/mτ . The N and NH123 scalar functions are given by

N (ω, k · p) = 1
M2 Tr

[
( /k′ +mτ )O

]
= 1

2

[
A(ω) + B(ω)(k · p)

M2 + C(ω)(k · p)2

M4

]
,

NH1(ω, k · p) = AH(ω) + CH(ω)(k · p)
M2 ,

NH2(ω, k · p) = BH(ω) +DH(ω)(k · p)
M2 + EH(ω)(k · p)2

M4 ,

NH3(ω, k · p) = FH(ω) + GH(ω)(k · p)
M2 . (3.7)

The ten functions, A,B, C, AH,BH, CH,DH, EH, FH and GH, above are linear combinations
of the 16 Lorentz scalar structure functions (SFs) introduced in ref. [60], and denoted as
W̃ ′s in that work. These W̃ ′s SFs describe the hadron input to the decay, and they
are constructed out of the NP complex Wilson coefficients (C ′s) and the genuine hadronic
responses (W ′s). The latter are expressed in terms of the form-factors used to parameterize
the matrix elements of the hadron operators. Symbolically, we have W̃ = CW . The
functions A,B, C and AH,BH, CH,DH, EH in eq. (3.7) are given in appendix D of ref. [60].

9We use the notation εs̃k
′qp = εµναβ s̃µk

′
νqαpβ , and take ε0123 = +1.
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As for FH and GH they read

FH(ω) = 4 Im
[
W̃I1

4 + mτ

M
W̃I3 + p · q

M2 W̃I4 + m2
τ

M2 W̃I5 − W̃I6

]
,

GH(ω) = −8 Im
[
W̃I4

]
, (3.8)

where the involved W̃Ii SFs are also defined in ref. [60]. Now, from eqs. (3.6) and (2.11)
(or equivalently eq. (2.10)), the latter particularized for S = s̃, one immediately gets

Pµ = 1
N (ω, k · p)

[
pµ⊥
M
NH1(ω, k · p) + qµ⊥

M
NH2(ω, k · p) + εµk

′qp

M3 NH3(ω, k · p)
]
, (3.9)

with `⊥ = [` − (` · k′/m2
τ )k′] (` = p, q), which appears because we have removed the

projection of p and q along k′ since Pµ is orthogonal to k′µ.
As can be seen from the general results of ref. [60], the W̃ SFs present in NH3 are

generated from the interference of vector-axial with scalar-pseudoscalar terms (W̃I1), scalar-
pseudoscalar with tensor terms (W̃I3), and vector-axial with tensor terms (W̃I4,I5,I6). Since
the vector-axial terms are already present in the SM, at least one of the CS , CP , CT Wilson
coefficients must be nonzero for NH3 to be nonzero. Besides, NH3 is proportional to
the imaginary part of SFs, which requires complex Wilson coefficients, thus incorporating
violation of the CP symmetry in the NP effective Hamiltonian. This feature makes the
study of such contribution to the polarization vector of special relevance and it has been
discussed before in the context of B̄ → D(∗) decays [62, 65]. Moreover for B̄ → D∗, some
CP-odd observables, defined using angular distributions involving the kinematics of the
products of the D∗ decay, have been also presented [39, 40, 43, 44]. These are known
as the CP violating triple product asymmetries, which should be sensitive to the relative
phases of the Wilson coefficients, as the FH and GH scalar functions are.

We note that the knowledge of the ten functions A,B, C, AH,BH, CH,DH, EH, FH and
GH fully determines∑rr′ |M|2, obtained after summing/averaging all spin third components
of all particles except the τ lepton. These functions contain then the maximum information
on NP that can be inferred by analyzing the Hb → Hcτ ν̄τ decay. As discussed in ref. [60],
for a fixed value of ω, A(ω),B(ω) and C(ω) can be indistinctly obtained by looking at
the dependence on cos θ` or on E` of the CM d2Γ/(dωd cos θ`) or the LAB d2Γ(dωdE`)
unpolarized differential decay widths, respectively. To obtain all the rest of CP-conserving
AH,BH, CH,DH and EH functions, it is however necessary to simultaneously use the cos θ`
and E` dependencies of the τ -helicity polarized CM and LAB distributions, which provide
complementary information. Since those two distributions do not depend on FH(ω) and
GH(ω), further measurements are needed to obtain these two latter CP odd quantities.

3.1 Parity and time-reversal violations in the decay width

Note that, in the most general case reflected in eq. (3.9), Pµ contains both vectors and
pseudovectors and then it does not have well defined properties under parity and time
reversal transformations.10 This will give rise to parity and time-reversal violating contri-

10The different terms of Pµ in eq. (3.9) behave under these symmetries as deduced from their momentum
content and taking into account that for both type of transformations `µ → `µ, with ` = p, q or k′.
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butions to the probability P [uSh(k′)] ∝ (1 + hP · S) or equivalently in the decay width. To
see that we also need to know how hSµ transforms under parity ([hS]Pµ) and time reversal
([hS]Tµ). By using γ5(h/S)uSh(k′) = uSh(k′), we find [73]

[uSh(k′)]P = γ0uSh(k′) = γ0γ5γµ(hSµ)uSh(k′) = γ5γ
µ(−hSµ)γ0uSh(k′)

= γ5[h/S]P [uSh(k′)]P , (3.10)
[uSh(k′)]T = τ [uSh(k′)]∗ = τγ∗5γ

∗
µ(hSµ)[uSh(k′)]∗ = γ5γ

µ(hSµ)τ [uSh(k′)]∗

= γ5(h/S)T [uSh(k′)]T , τ = iγ5C = γ5γ
0γ2, (3.11)

where we have ignored possible overall phases, that do not affect the transformation prop-
erties of hSµ, and we have used that γ0γµγ

0 = γµ and τγ∗5γ
∗
µτ
−1 = γ5γ

µ. Finally, we
deduce

[hS]Pµ = −hSµ , [hS]Tµ = hSµ. (3.12)

We conclude that the quantity (1 + hP · S), and hence the polarized differential decay
width, is not invariant under parity due to the presence of the pµ⊥ and qµ⊥ terms in Pµ.
Similarly, (1 +hP ·S) is not invariant under time reversal due to the presence of the εµk′qp
contribution in Pµ. This latter result is expected since, as noted above, the very existence
of the εµk′qp term in Pµ relies on some of the Wilson coefficients not being real.11

3.2 Different components of the polarization vector

In this section we are interested in giving a decomposition of the polarization vector in the
CM and LAB reference systems in which either the final pair of two leptons (CM) or the
initial hadron (LAB) are at rest. For both frames, we choose as an orthogonal basis of the
four-vector Minkowski space

Nµ
0 = k′µ

mτ
, Nµ

L = s̃µ =
(
|~k ′|
mτ

,
k′0~k ′

mτ |~k ′|

)
,

Nµ
T =

(
0, (~k ′ × ~p ′)× ~k ′

|(~k ′ × ~p ′)× ~k ′|

)
, Nµ

TT =
(

0,
~k ′ × ~p ′

|~k ′ × ~p ′|

)
, (3.13)

where the vectors used in their construction are understood to be measured in the cor-
responding frame. Note that Nµ

L , N
µ
T and Nµ

TT define polarization states corresponding
to ~nL = ~k ′/|~k ′|, ~nT = [(~k ′ × ~p ′) × ~k ′]/|(~k ′ × ~p ′) × ~k ′| and ~nTT = (~k ′ × ~p ′)/|~k ′ × ~p ′|,
respectively. Since P · k′ = 0, we will have that in a given reference system

Pµ = PLNµ
L + PT Nµ

T + PTT Nµ
TT , Pa = −(P ·Na), a = L, T, TT . (3.14)

Note that the quantity
P2 = −(P2

T + P2
TT + P2

L), (3.15)

which gives the degree of polarization of the τ , is a true scalar under Lorentz transforma-
tions as can be inferred from eq. (3.9). However, the PL and PT components are different

11Strictly speaking, what one needs is that not all of them are relatively real.

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
8

in the two frames. This derives from the fact that NCMµ
L,T 6= ΛµνNLAB ν

L,T , with Λ the boost
which takes four-momenta from the LAB system to the CM one. This is so because the
corresponding auxiliary three vectors ~nLAB,CM

L,T depend on the reference frame. On the
other hand, PTT is the same in the two systems since it is a component perpendicular
to the velocity ~p ′LAB/(M − M ′ω) defining the LAB-to-CM boost. Indeed, in this case
~nCM
TT = ~nLAB

TT , because ~p ′CM = M~p ′LAB/
√
q2 and the components of ~k ′ orthogonal to the

direction ~p ′CM/|~p ′CM | = ~p ′LAB/|~p ′LAB | are unaltered by the boost.12

What is true is that

PCM
a = −PLAB

L

[
(ΛNLAB

L ) ·NCM
a

]
+ PLAB

T

[
(ΛNLAB

T ) ·NCM
a

]
, a = L, T, (3.16)

which trivially follows from

PCMµ = Λµ· νPLAB ν = Λµ· ν [PLNν
L + PT Nν

T + PTT Nν
TT ]LAB . (3.17)

As a consequence, for a given tau kinematics determined by a pair (ω,Eτ ) or (ω, cos θτ ), one
can express the PLAB

L,T (ω,Eτ ) as linear combinations of PCM
L (ω, cos θτ ) and PCM

T (ω, cos θτ ),13

and thus the LAB and CM PL,T,TT components carry the same information. Note however
that this equivalence is lost for the averages 〈PLAB,CM

a 〉(ω) that we discuss below.
In any of the CM or LAB frames, PCM ,LAB

L is given by

PL = −P ·NL = − 1
N (ω, k · p)

[
p ·NL

M
NH1(ω, k · p) + q ·NL

M
NH2(ω, k · p)

]
, (3.19)

where the appropriate CM or LAB four-vectors should be used in each case. As previously
mentioned, Nµ

L corresponds to well defined helicity and, thus, PL is related to the helicity
asymmetry via (see eq. (2.11))

PL = −P ·NL =
∑
rr′ |M(h = −1)|2 −∑rr′ |M(h = +1)|2∑
rr′ |M(h = −1)|2 +∑

rr′ |M(h = +1)|2
, (3.20)

where here h stands for the τ helicity measured in the CM or the LAB frames. From
eq. (2.2), it is then clear that PCM ,LAB

L can be obtained from the experimental asymmetries

PCM
L =

dΓ(hCM=−1)
dωd cos θτ − dΓ(hCM=+1)

dωd cos θτ
dΓ(hCM=−1)
dωd cos θτ + dΓ(hCM=+1)

dωd cos θτ

, PLAB
L =

dΓ(hLAB=−1)
dωdEτ

− dΓ(hLAB=+1)
dωdEτ

dΓ(hLAB=−1)
dωdEτ

+ dΓ(hLAB=+1)
dωdEτ

, (3.21)

where, as already mentioned, cos θτ is the cosine of the angle made by the CM three-
momenta of the final hadron and τ lepton, and Eτ is the energy of the τ lepton in the LAB

12I.e., (~k ′LAB × ~p ′LAB)/|~p ′LAB| = (~k ′CM × ~p ′CM)/|~p ′CM|.
13Note that the (ΛNLAB

b ) ·NCM
a products are fully determined by the pair of variables (ω,Eτ ) or equiv-

alently by (ω, cos θτ ) with Eτ and cos θτ related via

M (Mω − Eτ ) = k · p = M

2

(
1− m2

τ

q2

)(
Mω +M ′

√
ω2 − 1 cos θτ

)
, (3.18)

with Mω = M −M ′ω.
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frame. While the CM angle θτ is not restricted, the LAB energy Eτ is limited, for a given
ω value, to the interval defined by

E±τ (ω) = Mω(q2 +m2
τ )±M ′

√
ω2 − 1(q2 −m2

τ )
2q2 . (3.22)

Similarly, for the CM or LAB systems, one further has

PT = −P ·NT = −1
N (ω, k · p)

[
p ·NT

M
NH1(ω, k · p) + q ·NT

M
NH2(ω, k · p)

]
, (3.23)

PTT = −P ·NTT = εk
′q pNTT

M3
NH3(ω, k · p)
N (ω, k · p) . (3.24)

Note that both PT and PTT can also be obtained from asymmetries of the decay distribu-
tions, as in eq. (3.21), for polarizations along Nµ

T and Nµ
TT respectively.

From the discussion above, a nonzero PTT component in the LAB or CM frames is a
signal for time-reversal violation that originates from the presence of non-real Wilson coef-
ficients in the NP effective Hamiltonian. Since Nµ

TT does not have a zero component, PTT
comes from a non vanishing projection of the τ -polarization three-vector in the orthogonal
direction to the plane defined by the outgoing hadron and τ three-momenta.

Further details on the vector products appearing in the evaluation of PL, PT and PTT
are given in appendix A.

In ref. [65], the name polarization vector components is used for what actually are
averages. Here, we will denote those averages as 〈Pa〉(ω), a = L, T, TT and, within our
scheme, they are given by the expressions14

〈PCM
a 〉(ω) = 1

Nθ(ω)

∫ +1

−1
d cos θτ N (ω, k · p)PCM

a (ω, k · p),

〈PLAB
a 〉(ω) = 1

NE(ω)

∫ E+
τ (ω)

E−τ (ω)
dEτ N (ω, k · p)PLAB

a (ω, k · p),

Nθ(ω) =
∫ +1

−1
d cos θτ N (ω, k · p), NE(ω) =

∫ E+
τ (ω)

E−τ (ω)
dEτ N (ω, k · p) (3.25)

with the normalizations related by NE = (E+
τ − E−τ )Nθ/2, and Nθ explicitly given in

eq. (B.2). These averages correspond to the, easier to measure, experimental asymmetries

〈PCM,LAB
a 〉(ω) =

dΓ(hCM,LAB
a =−1)

dω − dΓ(hCM,LAB
a =+1)

dω

dΓ(hCM,LAB
a =−1)

dω + dΓ(hCM,LAB
a =+1)

dω

, (3.26)

where hCM ,LAB
a = ±1 stand for positive/negative polarization along Nµ

a in the CM or
LAB system, as appropriate. In particular, 〈PCM ,LAB

L 〉 is nothing but the τ polarization
asymmetry ACM ,LAB

λτ
also used in the literature and evaluated for instance in refs. [61, 74].

14Note that, apart from some differences in the notation, there is a sign change in the definition we
provide here. Besides we extend it to the LAB frame.
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In appendix B we give expressions for the 〈PCM
a 〉(ω) and 〈P LAB

a 〉(ω) averages in terms
of the scalar functions in eq. (3.7). The equivalence between LAB and CM values present
for the two-dimensional PL,T , and represented by eq. (3.16), is now lost for the averages
〈PL,T 〉, as can be easily be inferred from the expressions in appendix B. The reason is
that the coefficients of the linear combinations that relate CM and LAB PL,T components
depend on the variable (cos θτ or Eτ ) which is integrated to obtain the averages.

Therefore, if only the averages 〈PL,T 〉(ω) are measured, CM and LAB values give
complementary information, as we already mentioned above for the case of tau helicity-
polarized differential decay distributions.

One can also define the average 〈P2〉(ω). In this case, it is the same in the CM and
LAB frames as a consequence of both P2(ω, k · p) and N (ω, k · p) being scalars. Actually,
〈P2〉(ω) is a Lorentz invariant and in any reference system, for a given ω, is given by

〈P2〉(ω) =
∫ +1

−1

d cos θτ
Nθ(ω) N (ω, k · p)P2(ω, k · p) =

∫ E+
τ (ω)

E−τ (ω)

dEτ
NE(ω) N (ω, k · p)P2(ω, k · p)

=
∫ (k·p)+

(k·p)−

d(k · p)
N (ω) N (ω, k · p)P2(ω, k · p), (3.27)

where (k · p)± = M (Mω − E∓τ (ω)) and N (ω) is given by

N (ω) =
∫ (k·p)+

(k·p)−
d(k · p)N (ω, k · p) = MNE(ω) = M(E+

τ − E−τ )Nθ(ω)
2 . (3.28)

We conclude the section with the trivial remark

〈P2〉(ω) ≡ −〈P2
L + P2

T + P2
TT 〉(ω) 6= −

∑
a=L,T,TT

[〈Pa〉(ω)]2 ≡ −|~P (ω)|2, (3.29)

with |~P | defined for instance in ref. [65] for the CM frame, and which is not even a Lorentz
scalar.

4 Numerical results

In this section we present the results for PL, PT and PTT , evaluated for the Λb → Λc and
B̄ → D(∗) semileptonic decays. The averages introduced in eq. (3.25) will be presented for
the above reactions as well as for the B̄c → ηc, J/ψ decays. We studied those decays in
refs. [59, 60] (Λb → Λc) and [61] (B̄c → ηc, J/ψ and B̄ → D(∗)), where we analyzed different
observables related to the unpolarized and helicity-polarized CM d2Γ/dωd cos θτ and LAB
d2Γ/dωdEτ distributions, and their possible role in distinguishing between different NP
scenarios. In this work, we shall show results for observables mentioned above, evaluated
both in the CM and LAB frames, and within the SM and with the NP Wilson coefficients
corresponding to Fits 6 and 7 of ref. [36].

For the particular case of the Λb → Λc decay, and in order to illustrate the effect
of complex Wilson coefficients, we will also show results for one more NP scenario from
ref. [37]. It corresponds to a R2 leptoquark mediator model that only gives contributions
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to the CSL and CT Wilson coefficients and that was first analyzed for complex values of
those coefficients in ref. [75].

For the Λb → Λc decay we use form factors that are directly obtained (see appendix E
of ref. [60]) from those calculated in the lattice quantum Chromodynamics (LQCD) simu-
lations of refs. [76] (vector and axial ones) and [51] (tensor NP form factors) using 2 + 1
flavors of dynamical domain-wall fermions. The NP scalar and pseudoscalar form factors
are directly related to the vector and axial ones and we use eqs. (2.12) and (2.13) of ref. [51]
to evaluate them. We use errors and the statistical correlation-matrices, provided in the
LQCD papers, to Monte Carlo transport the form-factor uncertainties to the different
observables shown in this work.

For the case of B̄ → D(∗) decays, the form factors are calculated using a parame-
terization, based on heavy quark effective theory, that includes corrections of order αs,
ΛQCD/mb,c and partly (ΛQCD/mc)2 [14]. In this case there exist also some experimental
q2-shape information [3, 4], which is used to further constrain some matrix elements. In-
puts from LQCD [77–80], light-cone [81] and QCD sum rules [82–84] are also available.
Here, we use the set of form factors and Wilson coefficients found in [36], since in that
work, not only the Wilson coefficients, but also the 1/mb,c and 1/m2

c corrections to the
form factors were simultaneously fitted to experimental data. In this way for these decays,
we can also consistently estimate theoretical uncertainties, since we shall use statistical
samples of Wilson coefficients and form factors, selected such that the χ2-merit function
computed in [36] changes at most by one unit from its value at the fit minimum.

For the B̄c → ηc, J/ψ transitions, there exist no systematic LQCD calculations, except
for the very recent work of the HPQCD collaboration [85] where the SM vector and axial
form factors of the B̄c → J/ψ decay have been determined. Here we use the form factors
obtained within the non-relativistic quark model scheme of ref. [22]. It has the advantage
of consistency, since all the form factors needed can be evaluated within the model. These
form factors are consistent with heavy quark spin symmetry and its expected pattern of
breaking corrections. In addition, in ref. [22], five different inter-quark potentials were
considered allowing us to provide an estimate of the theoretical uncertainties. We expect
the systematic errors present in the NRQM evaluation of the form factors should largely
cancel out in ratios.15

We should mention that in our previous works of refs. [60, 61], we discussed in great
detail, for all these decays, the helicity differential distributions obtained in the SM and
NP Fits 6 and 7 of ref. [36]. Thus, the analysis presented below for the longitudinal PL
projection shows, using a different language, the same physical content, with the exception
of the results related to the NP tensor R2 leptoquark model fit of ref. [37], which were not
considered in [60, 61].

However, the study of the transverse component PTT carried out here is novel, and it
directly provides independent physics information (FH and GH SFs in eqs. (3.8) and (3.9))
to that inferred from our previous works. In what respects to PT , this projection is deter-

15In ref. [61] we found a remarkable agreement for RJ/ψ = Γ(B̄c → J/ψτν̄τ )/Γ(B̄c → J/ψµν̄µ) between
our SM results and the ones obtained in the lattice calculation of ref. [74].
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mined by the scalar functions A, B, C, AH, BH, CH, DH and EH (see eq. (3.9)), as it occurs
with PL. As described in detail in [60], all these eight functions can be extracted from
the combined study of the CM d2Γ/(dωd cos θτ ) and LAB d2Γ/(dωdEτ ) helicity-polarized
distributions. Therefore, though PT (ω, k · p) can be indirectly obtained from the results
shown in refs. [60, 61], this polarization projection was not explicitly discussed in any of
these works.

4.1 CM and LAB two-dimensional distributions

Two-dimensional (2D) distributions of the Pµ projections provide observables that can also
be used to distinguish between different types of NP. In this subsection, we discuss results
obtained within the SM and the NP scenarios corresponding to Fits 6 and 7 of ref. [36].
Since in this latter work, all Wilson coefficients are real, the PTT component comes out
identically zero.

First in figures 1, 2 and 3, we show CM 2D distributions for PL, PT and P2 and the
Λb → Λc, B̄ → D and B̄ → D∗ decays, respectively, and obtained with the central values
for the Wilson coefficients and form factors. In all cases, predictions from Fit 6 are closer to
the SM results, and we clearly observe, except for the B̄ → D∗ decay, different 2D patterns
for Fits 6 and 7, which would certainly allow to distinguish between both NP scenarios.

The transverse component PT is always negative for Λb → Λc and B̄ → D∗ decays,
with a cos θτ -dependence that becomes flatter as ω decreases from ωmax to the vicinity of
zero recoil (ω = 1), where PT reaches, in modulus, its minimum value. Large negative
values of PT , which can reach −0.9, are found for ω > 1.2 and intermediate values of cos θτ
far from the ±1 limits. For these two decays, the longitudinal polarization shows a large
variation, going from PL ∼ 0.9 for angles close to π to values in the (−0.9,−0.8) range in
the forward direction, where the dependence on ω is significantly more pronounced than at
backward angles. Moreover, we see regions close to zero recoil, and in the forward direction,
where the τ -lepton is produced largely unpolarized (P2 ∼ −0.2), with |P2 | growing as both
θτ and ω increases, reaching values in the interval (−0.95,−0.9) for ω in the vicinity of ωmax
(see the 2D−P2 distributions in the bottom panels). The exception is found for NP Fit 7
in the baryon decay, for which the τ is produced almost polarized, P2 < −0.95 at forward
angles and close to ωmax (right-top corner), with a large PT polarization component, around
−0.9. However, in this case for backward angles, P2 does not become so close to −1 as ω
approaches ωmax.

The discussion for the B̄ → D transition should take into account that for this decay
P2 = −1, implying that the τ emitted is always fully polarized. In ref. [61], it was already
pointed out that for 0− → 0− transitions at zero recoil and θτ = 0 or π, angular momentum
conservation forces the τ helicity to equal that of the antineutrino which is positive, thus
PL = −1 (see eq. (3.20) or (3.21)), which implies P2 = −P2

L = −1 and PT = 0.
Indeed, we see in the bottom panels of figure 2 that P2 = −1 in the whole (ω, cos θτ )

phase-space, and not only for θτ = 0 or π at zero recoil. Therefore, longitudinal and
transverse polarizations are not independent for non-CP violating physical scenarios, and
in the full phase-space both components satisfy the relation P2

L +P2
T = 1. As in the other

decays, Fit 7 predictions differ from SM ones significantly more than those obtained in the
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Figure 1. CM PT (first row), PL (second row) and P2 (third row) polarization observables for
the Λb → Λcτ ν̄τ decay evaluated within the SM (left column) and with the NP Wilson coefficients
from Fits 6 (middle column) and 7 (right column) of ref. [36]. We display the 2D distributions as
a function of the (ω, cos θτ ) variables. In all cases, central values for the form factors and Wilson
coefficients have been used.

NP Fit 6, with PL exhibiting a pronounced dependence on cos θτ , when ω departs from the
zero recoil point. While PL takes negative and positive values within the SM and both Fits
6 and 7 of ref. [36], we observe that PT is negative for SM and Fit 6, while for the NP Fit
7, this transverse component also takes positive and negative values, and even it vanishes
along a (ω, cos θτ )-curve, for which PL = +1. As we will see below, for the kinematics
encoded in this curve, the τ -lepton is produced in a negative-helicity state.

The reason why the τ is always fully polarized for a general 0− → 0− transition is the
following. Since, in the massless limit, the ν̄τ is fully polarized, we have that the invariant
amplitude M, apart from momenta, only depends on the τ spin degrees of freedom. If
we have M(h), where here h = ±1 represents the τ helicity, one can always define two
coefficients

a±1 = ±M(h = ∓1)[∑
h′=±1 |M(h′)|2

] 1
2

(4.1)
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Figure 2. The same as in figure 1, but for the B̄ → Dτν̄τ decay.

such that ∑h=±1 |ah|2 = 1 and satisfy∑
h=±1

ahM(h) = 0. (4.2)

What this result tells us is that the probability to produce a τ in the state a∗+1u
s̃
+1(k′) +

a∗−1u
s̃
−1(k′) is identically zero. Thus, the probability to produce a τ in the orthogonal

state, a−1u
s̃
+1(k′) − a+1u

s̃
−1(k′), should be one. The τ is then fully polarized. Apart from

irrelevant phases these two polarization states correspond to

a∗+1u
s̃
+1(k′) + a∗−1u

s̃
−1(k′) ≡ uP+1(k′), a−1u

s̃
+1(k′)− a+1u

s̃
−1(k′) ≡ uP−1(k′), (4.3)

i.e., they are the two spin-covariant eigenstates associated to the four-vector16 Nµ = Pµ.
For a given k′, these states depend on the pair of variables (ω, cos θτ ) or (ω,Eτ ) that

16From eq. (2.10), the probability of measuring the τ in a state uPh (k′), eigenstate of the operator γ5 /P
with eigenvalue h, is given by (1 − h)/2 since P2 = −1 for B̄ → D decays. Therefore, we assign the state
uP−1(k′) to the produced polarized tau. This result is consistent with Pµ[ω = 1, cos θτ = ±1] = −s̃µ[ω =
1, cos θτ = ±1], since for these two CM kinematics PL = −1.
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Figure 3. The same as in figure 1, but for the B̄ → D∗τ ν̄τ decay.

determine all Pµ components (or equivalentlyM) in the CM or LAB frames respectively.
The above argumentation fails as soon asM depends on the spin variable of the hadrons
involved in the decay. This is so since, in general, it is not possible to find a±1 such that∑

h=±1
ahMλ(h) = 0, (4.4)

for all λ ≡ (r, r′) values, where different λ values represent different hadronic spin config-
urations. Note however that for a fixed λ (corresponding to fixed r/r′ polarization of the
initial/final hadron) eq. (4.4) has always a solution. Thus, for fixed λ, the τ is also fully
polarized but with a polarization state that depends on λ. This is in agreement with the
results obtained in ref. [62] for B̄ → D(∗) decays.

As noted above, for the rest of the transitions, P2 approaches −1 at maximum recoil
(ωmax), with the exception of Fit 7 for the Λb → Λc decay in the cos θτ < 0 region. This is
better understood by looking at the polarization projections in the laboratory frame.

In figures 4–6, we present the LAB PL and PT 2D distributions for the same NP
scenarios and decays discussed previously in figures 1–3. In the LAB plots, we have
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Figure 4. LAB PT (first row) and PL (second row) polarization observables for the Λb → Λcτ ν̄τ
decay evaluated within the SM (left column) and with the NP Wilson coefficients from Fits 6
(middle column) and 7 (right column) of ref. [36]. We display the 2D distributions as a function of
the (ω, cos θτ ) variables, and use eq. (3.18) to compute the cos θτ for fixed ω and a given Eτ LAB
energy. In all cases, central values for the form factors and Wilson coefficients have been used.

made use of the relation in eq. (3.18) to represent the polarization observables as a func-
tion of (ω, cos θτ ) instead of (ω,Eτ ). On the other hand, since P2 is a scalar [and thus
P2

LAB(ω,Eτ (ω, cos θτ )) = P2
CM(ω, cos θτ ) ] we will no show it again.

Though the LAB PL and PT 2D distributions shown in figures 4–6 can be obtained
from the CM ones depicted above in figures 1–3, we stress that the coefficients of the linear
combinations (eq. (3.16)) depend on ω and cos θτ . Moreover, the longitudinal or transverse
character is not preserved, which also makes interesting a short discussion of the main
features of the LAB polarization components. In the LAB frame, the τ ’s are mainly being
emitted with negative helicity (PLAB

L ≈ 1) in the high ω-region close to ωmax, as can be
seen in the second row of plots in figures 4–6. The explanation for this behavior, at least
in part, is that close to maximum recoil, the τ momentum in the LAB is large and hence
positive helicity is suppressed by the dominant contribution that selects negative chirality
for the final charged lepton.17 As mentioned in ref. [61], only the OSL,SR and OT NP terms
select positive chirality. Looking at the values for the corresponding Wilson coefficients
(see table 6 of ref. [36]) one expects larger deviations from the above behavior for Fit 7.

To finish this subsection, we recall here that for fixed ω, the polarization components
turn out to be ratios of linear or quadratic functions of (p · k), as inferred from eqs. (3.19)
and (3.23). Restricting the discussion to CM observables, the denominator of these ra-
tios, N (ω, p · k), is proportional to pN (ω, cos θτ ) = a0(ω) + a1(ω) cos θτ + a2(ω) cos2 θτ ,

17At very large momentum helicity almost equals chirality.
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Figure 5. The same as in figure 4, but for the B̄ → Dτν̄τ decay.

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

-0
.3-0.

2
-0.1

0.0

PT SM (LAB)

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

-0
.5-0.

4-0.3

-0.2

-0.1

PT Fit 6 (LAB)

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

-0.
6

-0.
5-0.4

-0.3
-0.2

-0.1

0.0

PT Fit 7 (LAB)

−1.0

−0.5

0.0

0.5

1.0

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

0.
20

0.
40

0.
600.
80

0.
90

0.
95

PL SM (LAB)

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

0.
20

0.
40

0.
60

0.
80

0.9
0

0.95

PL Fit 6 (LAB)

-1 -0.5 0 0.5 1
cos θτ

1.0

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ω

0.
20

0.
400.

60

0.80
0.90

0.95

PL Fit 7 (LAB)

−1.0

−0.5

0.0

0.5

1.0

Figure 6. The same as in figure 4, but for the B̄ → D∗τ ν̄τ decay.
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with the coefficients ai(ω) appearing in the angular decomposition of the tau-unpolarized
d2Γ/(dωd cos θτ ) differential decay width. We have already presented results for them in
our previous works [60, 61], and we will not make any further comment here. On the other
hand, taking into account the dependence of (p · k), (p · NCM

L,T ) and (q · NCM
L,T ) on cos θτ ,

we find

PCM
L (ω, cos θτ ) = p0(ω) + p1(ω) cos θτ + p2(ω) cos2 θτ

a0(ω) + a1(ω) cos θτ + a2(ω) cos2 θτ
,

PCM
T (ω, cos θτ ) = sin θτ

p′0(ω) + p′1(ω) cos θτ
a0(ω) + a1(ω) cos θτ + a2(ω) cos2 θτ

, (4.5)

with the five coefficients, p0, p1, p2, p
′
0 and p′1, of the numerator polynomials being lin-

ear combination of the five AH(ω),BH(ω), CH(ω),DH and EH(ω) functions, introduced in
eqs. (3.7) and (3.9) to generally describe the decay with polarized taus in the final state. We
observe that PCM

L and PCM
T are not just polynomials in cos θτ and that the simultaneous

knowledge/measure of both of them, in conjunction with the unpolarized d2Γ/(dωd cos θτ )
distribution, provide the maximum information which can be obtained from the decay with
polarized taus.18 In addition, the longitudinal component, or equivalently the CM tau-
helicity d2Γ/(dωd cos θτ ) double differential decay width, provides only three independent
conditions (p0, p1 and p2) and it is not enough to determine all undetermined AH, · · · EH
functions. This was already pointed out in ref. [60], where it is also shown that all these
functions can be obtained using also input from the LAB tau-helicity d2Γ/(dωdEτ ) dis-
tribution (or equivalently PLAB

L ), as expected from the discussion in eq. (3.16) since this
brings in some information of PCM

T . This is another way to point out that the CM and
LAB tau-helicity differential distributions provide complementary results.

Thus, we show results for AH(ω),BH(ω), CH(ω),DH and EH(ω), since this is another,
more simple, way of presenting the physical information contained in the above 2D polar-
ization observables. This is done in figure 7 for the Λb → Λcτ ν̄τ and B̄ → D(∗)τ ν̄τ decays.
We note that these functions could also be reconstructed from the exhaustive results in-
cluded in refs. [60, 61] on the tau CM angular and LAB energy dependencies of the helicity
d2Γ/(dωd cos θτ ) and d2Γ/(dωdEτ ) distributions, but that they have never been directly
shown. In most cases we see the capability of these observables to distinguish the SM and
ref. [36] Fits 6 and 7 predictions, with the latter deviating more from the SM results. One
can have direct access to these functions by measuring the τ polarization in the decay or,
indirectly, through the measuring of the polarization vectors components PL,T . The latter
can be obtained for instance from the analysis of the subsequent τ decay. Both methods
require however to be able to measure the τ momentum (in the first case also its polariza-
tion), something that it is extremely difficult, since the decay products of the tau include
an undetected neutrino.

In this sense, we should comment that the framework presented in refs. [66, 67] for
B̄-decays, where so-called visible distributions of detectable particles from the τ -decay are
analyzed, aims to determine the AH, · · · EH functions without having to measure the τ

18Non-conserving CP contributions, FH and GH(ω), related to PTT are not considered in this discussion.
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Figure 7. AH(ω),BH(ω), CH(ω),DH and EH(ω) functions (eqs. (3.7) and (3.9)) for the Λb → Λc
(bluish), B̄ → D (reddish) and B̄ → D∗ (greenish) decays evaluated for the SM (solid), Fit 6
(dotted) and Fit 7 (dashed) of ref. [36]. Error bands take into account the uncertainties associated
to the Wilson coefficients and form factors, and they are calculated as explained in refs. [60, 61].
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momentum. Indeed, it is integrated out in these works, and the proposed (visible) kine-
matical variables are referred to the initial B̄ and outgoing D(∗) three-momenta. Further
and complementary constrains, within this scheme of visible kinematics, can also be ob-
tained from different angular asymmetries that can be constructed using the products of
the final hadron decay (D∗ → Dπ) [44].

4.2 One-dimensional polarization averages

Some of the features discussed above in the presentation of the PL,T results are easier
to observe in the one dimensional plots displayed in figures 8 and 9. There, we now
show the CM and LAB 〈PL〉(ω), 〈PT 〉(ω) and 〈P2〉(ω) averages, the latter given by
〈P2〉(ω) = −〈P2

L + P2
T + P2

TT 〉(ω), as introduced in eqs. (3.25) and (3.27). As discussed in
subsection 3.2, these averages are related to the CM/LAB tau polarization asymmetries
obtained from dΓ/dω, whose measurement require the detection of the momentum and
spin-state of the τ . Equivalently, these averages can be obtained from the analysis of the
full angular distribution of the pion or rho mesons, originated in the subsequent hadron
decay of the tau, measured in the τ -rest frame [65]. Following the discussion at the end
of the previous subsection, these observables seem more difficult to access experimentally
than those proposed in refs. [66, 67], which do not require the detection of the tau lepton
and that we will study elsewhere.

In figures 8 and 9, only NP Fits 6 and 7 of ref. [36] are still considered, where all Wilson
coefficients are real and therefore the PTT component vanishes. Additionally, we also show
results for the B̄c → ηcτ ν̄τ and B̄c → J/ψτ ν̄τ decays, not presented for the 2D distributions
and the AH, · · · EH functions discussed in the previous subsection. We include, in all cases,
68% confident-level (CL) error bands that take into account the uncertainties associated
to the Wilson coefficients and form factors, as explained in refs. [60, 61].

The ω-shape patterns for the B̄ → D and B̄c → ηc or the B̄ → D∗ and B̄c →
J/ψ reactions are qualitatively similar, while those obtained from the Λb → Λc decay
show some resemblances with the 0− → 1− ones. A good number of the distributions
depicted in figures 8 and 9 can be used to disentangle between SM and the two NP cases
considered there. In particular, Fit 7 leads to results clearly distinctive, even taking into
account theoretical uncertainties bands, while SM and Fit 6 predictions are more difficult
to separate. Nevertheless, from the results of figures 8 and 9 one can safely conclude that,
with the exception of the B̄c → J/ψ, and to a lesser extent B̄ → D∗, the observables shown
could theoretically tell apart Fit 6 from Fit 7.

We note that the averages of the LAB longitudinal and transverse projections
〈PLAB

L,T 〉(ω) can not be obtained as linear combinations of the 〈PCM
L,T 〉(ω) with known kine-

matical coefficients. They provide thus complementary information. This is easily seen
in the expressions collected in appendix B. In addition to A,B and C, which could be
extracted from either the unpolarized CM d2Γ/(dωd cos θτ ) or the LAB d2Γ/(dωdEτ ) dif-
ferential decay widths [60], we observe that 〈PCM

T 〉(ω) depends on AH and CH while, in
〈PCM

L 〉(ω), the scalar ω-functions BH, DH and EH also appear. In turn, 〈PLAB
T 〉 provides an

independent linear combination of BH, DH and EH, and the expression for 〈PLAB
L 〉(ω) in-

volves all the AH, BH, CH, DH and EH functions. Another consequence of this discussion is
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Figure 8. Polarization 〈PCM
T 〉, 〈PCM

L 〉 and 〈P2〉 averages, defined in the CM system and calculated
for the SM and the NP Fits 6 and 7 of ref. [36], as a function of ω. In addition, for the B̄ → D

decay, the gray curves stand for the SM (solid), Fit 6 (dotted) and Fit 7 (dashed) results obtained
for −|~PCM|2 (eq. (3.29)). Error bands take into account the uncertainties associated to the Wilson
coefficients and form factors, and they are calculated as explained in refs. [60, 61].
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Figure 9. The same as in figure 8, but for projections defined in the LAB system.

that for a given decay, all former five ω-functions cannot be determined only from the four
averages 〈PCM

L,T 〉(ω) and 〈PLAB
L,T 〉(ω), and it would be necessary to have additional informa-

tion, as for example the two-dimensional dependencies of the different polarization compo-
nents discussed in the previous subsection. Alternatively, as noted above, all these scalars
(AH, · · · EH) can also be obtained from the combined study of the CM d2Γ/(dωd cos θτ )
and LAB d2Γ/(dωdEτ ) helicity-polarized distributions [60].
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Figure 10. Polarization averages 〈PCM
T 〉(ω), 〈PCM

L 〉(ω), 〈PCM
TT 〉(ω) and 〈P2〉(ω) defined in the

CM system and calculated for the SM (black) and the NP Wilson coefficients from Fit 7 (red) of
ref. [36] and the R2 leptoquark model fit (green) of ref. [37] (see text for details). Error bands take
into account the uncertainties associated to the Wilson coefficients and form factors, and they are
calculated as explained in the main text for the R2 leptoquark model fit, and in ref. [60] for the SM
and Fit 7.

However, it is clear that the combined use of all averages, for the five decays, shown
in figures 8 and 9 will greatly restrict the characteristics of possible extensions of the SM,
and certainly in a more efficient way than if only one particular decay is considered.

Finally, for the B̄ → D decay, we also show (gray curves and bands) the frame depen-
dent quantity −|~P |2 (see eq. (3.29)), introduced in ref. [65]. Clearly, −|~P |2 fails to convey
the information on the degree of polarization of the τ . For the B̄ → D decay, and except at
zero recoil, for which −|~P |2 = −〈PL〉2 = 〈P2〉 = −1, its value is never exactly minus one.
We also test that while 〈P2〉 is a scalar and leads to the same LAB and CM ω-distributions,
−|~P |2 depends on the reference system where it has been defined. We observe that in the
high ω-region, −|~P |2 in LAB is closer to −1 than when it is calculated in CM, being in
the first frame almost indistinguishable from −1 for the SM and Fit 6 cases. This follows
from the discussion above of the LAB 2D distributions, where we pointed out that PL
approaches 1 at maximum recoil, as a consequence of an approximate negative-helicity
selection by the dominant operators in that ω region (large τ LAB momentum).

4.2.1 Complex Wilson coefficients

For the particular case of the Λb → Λc transition, we also show in figure 10 results for
the R2 leptoquark model fit of ref. [37]. This fit is particularly interesting since the two
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nonzero Wilson coefficients, CSL and CT , are complex giving rise to a nonzero 〈PCM
TT 〉(ω)

value. For this particular model CSL and CT at the bottom mass scale, appropriate for the
present calculation, are given in terms of just the value of ĈT at the scale of 1TeV, with
ĈSL(1 TeV) = 4 ĈT(1 TeV), and the corresponding evolution matrix (see ref. [37]). The
right panel of figure 4 of ref. [37] shows the constraints on the complex CSL plane, with
best fit point at CSL = −0.08±0.30 i. As we have done in figures 8 and 9, the error on the
observables inherited from the form-factor uncertainties is evaluated and propagated via
Monte Carlo, taking into account statistical correlations between the different parameters.
It is shown as an inner error band that accounts for 68% CL intervals. The uncertainty
induced by the fitted Wilson coefficients is determined using different 1σ Wilson coefficients
configurations provided by the authors of ref. [37]. The two sets of errors are then added
in quadrature giving rise to the larger uncertainty band that can be seen in the figure.

In figure 10, and for the sake of comparison, we also include the polarization observables
obtained with the SM and Fit 7 of ref. [36]. We do not show in the figure any result for
Fit 6 of [36], because this latter NP fit leads to predictions close to the SM ones.

The results for 〈PL,T 〉 obtained with the R2 fit of ref. [37] are closer to the SM ones than
the ones obtained from Fit 7 of ref. [36]. This is particularly true for 〈PL〉 where the SM
result is contained in the error band of the R2-model prediction. Things change for 〈PTT 〉.
As mentioned above, the complex CSL and CT Wilson coefficients of the R2 fit of ref. [37]
generate a nonzero average-polarization 〈PTT 〉(ω), which is shown in the lower-left panel
of figure 10. The nonzero-result for 〈PTT 〉 comes from the interference of SM vector-axial
with the NP terms, as well as the interference between the NP terms themselves. While
for the R2 model most observables are quadratic in the imaginary part of ĈT (1 TeV), like
〈PCM

L,T 〉 here but also the RD(∗) , RΛc ,RJ/ψ ratios, and the τ (Aλτ ) and the longitudinal D∗
(FD∗L ) polarization asymmetries, 〈PTT 〉 is indeed linear in the imaginary part of ĈT (1 TeV).
This allows to break the degeneracy present in the other observables with respect to the
sign of Im [ĈT (1 TeV)].

As discussed above, the projection PTT is invariant under co-linear boost transforma-
tions, and as a consequence the LAB average 〈PTT 〉(ω) would be identical to that shown
in figure 10, and evaluated in the CM frame. This average can be used to determine the
linear combination of the functions FH and GH given in eq. (B.1) of the appendix. However,
additional information on the CM angular dependence of the PTT projection would be re-
quired to separately extract the time-reversal odd functions FH and GH. The experimental
finding of signatures of non-zero tau polarization in a direction perpendicular to the plane
formed by the CM (or LAB) three momenta of the outgoing hadron and the τ would be a
clear indication, not only of NP beyond the SM, but also of CP (or time reversal) violation.

The results for RΛc are collected in table 1. The result obtained with the R2 fit of
ref. [37] is not far from to the SM one. Part of the reason for this behavior could be in
the use, in ref. [37], of B → D(∗) form factors evaluated in the heavy quark limit. The use
of the improved form factors obtained in ref. [36], which included sub-leading corrections,
in the R2 fit gives rise to a larger Im [ĈT (1 TeV)] value that results in RΛc being larger
around ∼ 0.385.
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SM Fit 7 [36] R2 [37]
Γe(µ)/

(
10× |Vcb|2ps−1) 2.15± 0.08 — —

Γτ/
(
10× |Vcb|2ps−1) 0.715± 0.015 0.89± 0.05 0.75± 0.02
RΛc 0.332± 0.007 0.41± 0.02 0.350± 0.010

Table 1. Total decay widths Γτ = Γ (Λb → Λcτ ν̄τ ) and Γe(µ) = Γ
(
Λb → Λc e(µ)ν̄e(µ)

)
and ratios

RΛc = Γ (Λb → Λcτ ν̄τ ) /Γ
(
Λb → Λc e(µ)ν̄e(µ)

)
obtained in the SM and in the NP scenarios corre-

sponding to Fit 7 of ref. [36] and the R2 leptoquark model fit of ref. [37] (see text for details).

5 Summary

For a given configuration of the momenta of all particles involved, we have introduced the
tau spin-density matrix ρ̄ and the polarization vector Pµ associated to a general Hb →
Hcτ ν̄τ decay. These two quantities contain all the information on the spin state of the τ
provided no other particle spin is measured. For different semileptonic decays, we have
evaluated Pµ in the LAB and CM frames including the effects of NP. We have seen that
the independent components PL, PT and PTT provide useful information to distinguish
between different NP scenarios. This is specially true for the meson 0− → 0− and also
for the baryon Λb → Λc reactions analyzed in this work. For this latter reaction, we have
presented results for an extension of the SM that contains complex Wilson coefficients.

The LAB and CM helicity-polarized differential decay widths do not allow access to
observables related to PTT , which is the component of the polarization vector orthogonal
to the plane defined by the final hadron and tau three-momenta. Moreover, PT , which is
the projection of ~P contained in the former plane and perpendicular to the τ -momentum,
can only be obtained indirectly from these helicity-distributions, provided that results from
both reference systems are analyzed simultaneously. The transverse polarization PTT is
of special interest, since it is only possible for complex Wilson coefficients. Measuring a
non-zero PTT value in any of the two frames will be a clear indication of physics beyond
the SM and of time reversal (or CP) violation. For the NP scenarios corresponding to Fits
6 and 7 of ref. [36] the Wilson coefficients are real and thus PTT is identically zero. In such
a case, ~P is contained in the hadron-lepton plane. The R2 fit of ref. [37], which contains
CSL and CT complex Wilson coefficients generates, however, a nonzero PTT value.

The NP effective Hamiltonian in eq. (3.1) contains five Wilson coefficients, in general
complex, although one of them can always be taken to be real. Therefore, nine free param-
eters should be determined from data. Even assuming that the form factors are known,
and therefore the genuinely hadronic part (W ) of the W̃ SFs, it is difficult to determine
all NP parameters from a unique type of decay, since the experimental measurement of
the required polarization observables is an extremely difficult task. It is therefore essen-
tial to simultaneously analyze data from various types of semileptonic decays, as we have
done in this work. We have used state of the art form-factors for all reactions, and the
results presented in this work nicely complement those presented in our previous works of
refs. [60, 61], and all together can be efficiently employed to disentangle among different
NP scenarios.
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Finally, we would like to draw the attention to the hadron-tensor method used in
this work, previously derived in [60], which has shown to be a particularly suited tool to
study processes where all final/initial hadron polarizations have been summed up. The
scheme leads to compact expressions, valid for any baryon/meson semileptonic decay for
unpolarized hadrons in the presence of NP and it clearly is an alternative to the helicity
amplitude framework commonly used in the literature. Subsequent decays of the produced
τ , after the b→ cτ ν̄τ transition,

Hb → Hc τ
− ν̄τ

ë ντµ
−ν̄µ, ντπ

−, ντρ
− · · · (5.1)

can be straightforwardly studied within this hadron-tensor scheme and they will be pre-
sented elsewhere.
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A CM and LAB kinematics

In this appendix we collect the different vector products needed to evaluate the PL, PT
and PTT polarization vector components in the CM and LAB reference frames. We have

p2 = M2, k2 = 0, k′2 = m2
τ , p·q = MMω, k·k′ = q·k = q2 −m2

τ

2 , q·k′ = q2 +m2
τ

2 , (A.1)

with Mω = M − M ′ω. In addition, the scalar products that depend explicitly on the
charged lepton variables used in the differential decay widths read

LAB: in this case, pµ = (M,~0 ), qµ =
(
Mω, M

′√ω2 − 1 q̂LAB
)
and

k · p = M(Mω −Eτ ), p ·NL = M
√
E2
τ −m2

τ

mτ
, p ·NT = 0,

q ·NL = Mω

√
E2
τ −m2

τ

mτ
+ Eτ M

′√ω2− 1
mτ

cos θLAB
τ , q ·NT = M ′

√
ω2− 1 sin θLAB

τ ,

εk
′q pNTT = −MM ′

√
ω2− 1

√
E2
τ −m2

τ sin θLAB
τ ,

(A.2)
with θLAB

τ the angle made by the final hadron and τ lepton LAB three-momenta,
which is fixed, once Eτ and ω are known, by the relation

cos θLAB
τ = q2 +m2

τ − 2MωEτ

2M ′
√
ω2 − 1

√
E2
τ −m2

τ

. (A.3)
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For a given ω, the fact that | cos θLAB
τ | ≤ 1 limits the possible Eτ energies to the

interval
Eτ ∈ [E−τ (ω), E+

τ (ω)], (A.4)

with E−τ and E+
τ given in eq. (3.22). In terms of E±τ (ω) one also can write

sin θLAB
τ =

√
q2
√[
Eτ − E−τ (ω)

][
E+
τ (ω)− Eτ

]
M ′
√
ω2 − 1

√
E2
τ −m2

τ

. (A.5)

CM : now qµ = (
√
q2,~0 ) and pµ = 1√

q2

(
MMω, −MM ′

√
ω2 − 1 q̂LAB

)
, and in addition

k · p = M

2

(
1− m

2
τ

q2

)(
Mω +M ′

√
ω2− 1 cos θτ

)
, q ·NL = q2−m2

τ

2mτ
, q ·NT = 0,

p ·NL = MMω(q2−m2
τ )−MM ′

√
ω2− 1 (q2 +m2

τ ) cos θτ
2mτq2 ,

p ·NT = −MM ′
√
ω2− 1√
q2 sin θτ ,

εk
′q pNTT = −MM ′

√
ω2− 1 q

2−m2
τ

2
√
q2 sin θτ .

(A.6)

Note that, since the three-vector components transverse to the velocity defining a boost
do not change, we obtain√

E2
τ −m2

τ sin θLAB
τ = |~k ′ |LAB sin θLAB

τ = |~k ′ |CM sin θτ = q2 −m2
τ

2
√
q2 sin θτ (A.7)

and then εk
′q pNTT

∣∣
LAB = εk

′q pNTT
∣∣
CM, which shows that PLAB

TT = PCM
TT , since the other

factor NH3(ω, k · p)/N (ω, k · p) in eq. (3.24) is a Lorentz scalar.

B Expressions for 〈PCM
L,T,TT 〉(ω) and 〈PLAB

L,T,TT 〉(ω)

In this appendix we give expressions for 〈PCM,LAB
L,T,TT 〉(ω) in terms of the ten scalar functions,

A,B, C, AH,BH, CH,DH, EH, FH and GH, introduced in eq. (3.7). One has

〈PCM
L 〉(ω) = − 1

mτ

1
MNθ(ω)

(
1− m2

τ

q2

)[
MMωAH(ω) + q2BH(ω) + Mω

(
q2 −m2

τ

)
2M DH(ω)

+ CH(ω)
6

(
q2 +m2

τ + 2M2
ω −

4m2
τM

2
ω

q2

)
−
(
q2 −m2

τ

)2
12M2q2

(
q2 − 4M2

ω

)
EH(ω)

]
,

〈PCM
T 〉(ω) = πM ′

Nθ(ω)

√
ω2 − 1
4
√
q2

[
2AH(ω) + Mω

M

(
1− m2

τ

q2

)
CH(ω)

]
,

〈PCM
TT 〉(ω) = − πM ′

Nθ(ω)

√
ω2 − 1
8
√
q2

(
1− m2

τ

q2

)[
2q2

M2FH(ω) + Mω(q2 −m2
τ )

M3 GH(ω)
]
, (B.1)
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with

Nθ(ω) = A(ω) +
(

1− m2
τ

q2

)[
Mω

2M B(ω) +
(

1− m2
τ

q2

)(
4M2

ω − q2

12M2

)
C(ω)

]
. (B.2)

Note that from eq. (3.26), 〈PCM
L 〉(ω) can be written as

〈PCM
L 〉(ω) =

[a0(ω, h = −1)− a0(ω, h = 1)] + 1
3 [a2(ω, h = −1)− a2(ω, h = 1)]

a0(ω) + 1
3a2(ω)

, (B.3)

where the a0,2(ω) and a0,2(ω, h = ±1) functions are given in eqs. (18) and (25) of ref. [60]
in terms of the eight A(ω), B(ω), C(ω),AH(ω),BH(ω), CH(ω),DH(ω) and CH(ω) ones.

In the LAB frame one has that,

〈PLAB
L 〉(ω) = 1(

E+
τ − E−τ

)
Nθ(ω)

×
{
Mĉ0(ω) ln

(
E+
τ + p+

τ

E−τ + p−τ

)
+ (c0(ω) + ĉ1(ω))

(
p+
τ − p−τ

)

+c1(ω) + ĉ2(ω)
2M

[
E+
τ p

+
τ − E−τ p−τ +m2

τ ln
(
E+
τ + p+

τ

E−τ + p−τ

)]

+ c2(ω) + ĉ3(ω)
3M2

[(
E+ 2
τ + 2m2

τ

)
p+
τ −

(
E− 2
τ + 2m2

τ

)
p−τ

]}
, (B.4)

with p±τ (ω) =
√[

E±τ (ω)
]2
−m2

τ and where ĉ0(ω), (c0(ω) + ĉ1(ω)), (c1(ω) + ĉ2(ω)) and
(c2(ω) + ĉ3(ω)) are given in eq. (27) of ref. [60] in terms of the AH(ω), BH(ω), CH(ω),DH(ω)
and EH(ω) functions. Besides,

〈PLAB
T 〉(ω) = − π

√
q2M ′

√
ω2 − 1

4Nθ(ω)M2
(
1− m2

τ
q2

) [( 4I0(ω)Mω

Mω +
√
q2 − I1(ω)

)
DH(ω)+

4I0(ω)M
Mω +

√
q2BH(ω) +

(
8I0(ω)Mω

Mω +
√
q2 + I2(ω)− 4I1(ω)

)
Mω

2M EH(ω)
]
,

〈PLAB
TT 〉(ω) = 〈PCM

TT 〉(ω), (B.5)

where we have introduced the (kinematical) functions I0,1,2(ω),

In(ω) = 1
Kn

∫ E+
τ (ω)

E−τ (ω)

dEτ E
n
τ√

E2
τ −m2

τ

√(
E+
τ (ω)− Eτ

) (
Eτ − E−τ (ω)

)
, n = 0, 1, 2

K0 = π

2

(
Mω −

√
q2
)
, K1 = π

8
(
M2
ω − q2

)
, K2 = πMω

16
(
M2
ω − q2

)
(B.6)

which are normalized such that I0 = I1 = I2 = 1 in the mτ → 0 limit.
The formulae are general and they can be also used for muon or electron decay modes,

taking appropriate values for the NP Wilson coefficients.
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