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1 Introduction

We introduce a convolution of tensor fields on group manifolds, which to the best of our
knowledge has not been treated in the literature to date. This is generalised to homoge-
neous spaces, extending the special case of S2 given in [1]. These convolutions are then
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applied to the notion of ‘gravity = gauge × gauge’. In particular, it is shown that the sym-
metric convolution of two gauge potentials yields a graviton. The gauge symmetry BRST
transformations generate via the convolution the diffeomorphism BRST transformations
of the graviton, to linear order. This allows us to apply the field theoretic ‘gravity =
gauge × gauge’ construction of [1–9] on curved spacetime backgrounds, such as the D = 4
spacetime dimensional Einstein universe. We also note that the convolution of tensor fields
on homogeneous spaces is of intrisic interest and may have broader applications, cf. for
example [10–12] and the references therein.

Gravity = gauge × gauge. Let us briefly review the theme of ‘gravity = gauge ×
gauge’. For details and more complete references see the reviews [13, 14]. From the
Kawai-Lewellen-Tye (KLT) relations of string theory [15], which relate closed string tree
amplitudes to the sums of products of open string tree amplitudes, we learn that the
tree amplitudes of perturbatively quantised N = 0 supergravity (Einstein-Hilbert grav-
ity, coupled to a dilaton ϕ and a Kalb-Ramond 2-form B) are the ‘square’ of Yang-Mills
amplitudes. While the KLT relations are intrinsically tree level, it was shown in certain
examples that this relation could be extended to low loop orders [16, 17]. This programme
was dramatically advanced with the Bern-Carrasco-Johansson colour/kinematic (CK) du-
ality conjecture [18]: the gluon amplitudes can be cast in a form such that their ‘kinematic
numerators’ (Lorentz invariant polynomials of momenta and polarisation tensors) obey
the same relations as their ‘colour numerators’ (polynomials of the gauge group structure
constants). CK duality has been shown to hold at tree level from a number of points of
view [19–27]. It remains conjectural at loop level where it quickly becomes difficult to
test [28, 29], although there are numerous highly non-trivial examples [29–46].

If CK duality is satisfied by a Yang-Mills amplitude integrand, then its double-copy
is an amplitude integrand of N = 0 supergravity [30, 47]. This suggests a fundamental
relationship between gauge theory and gravity, at least perturbatively, and reveals new
features and puzzles regarding the properties of perturbative quantum gravity [35, 37, 44].
This motivates some natural questions. Does CK duality and/or the double-copy hold to
all orders in perturbation theory; is the double-copy special to amplitudes; can it be taken
beyond perturbation theory; are there applications beyond the computation of gravity
amplitudes; what are implications for quantum gravity? There are many approaches that
one might take in addressing these challenges. For instance, there is an ambitwistor string
approach to CK duality and the double-copy, related to the scattering equation formalism
for the double-copy [48–51]. Beyond perturbation theory, for particular (e.g. Kerr-Schild)
spacetimes there is a non-perturbative classical double-copy of Yang-Mills solutions [52–
56], with an elegant variation relating the square of Yang-Mills field strengths to the Weyl
tensor [55, 57–60]. As to applications, there is a vigorous and promising programme to
bend amplitudes and the double-copy to the problem of classical black hole scattering in
the context of gravity wave astronomy [61–66]. CK duality and the double-copy even find
applications in fluid dynamics [67]. In [68], a double copy for asymptotic symmetries led to
the discovery of a new symmetry for self-dual YM at null infinity, identified as the single
copy of gravitational superrotations.
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Two ideas that are central to our present discussion are (i) that the double-copy can
be applied off-mass-shell to the fields of two gauge theories [2, 47] and (ii) that this should
be extended to all the fields of the BRST complex, including the longitudinal and ghost
modes [4]. Regarding (i), it was shown that CK duality for physical gluon tree-level ampli-
tudes can be made manifest order-by-order at the Lagrangian level [47, 69]. One can then
double-copy the CK dual Lagrangian itself, yielding a theory that produces the correct
tree level scattering amplitudes for N = 0 supergravity, as was shown to six points in [47].
In [2, 4] an a priori off-shell convolution product of the fields, including those of the BRST
complex, of two independent gauge theories was introduced. For two pure BRST Yang-
Mills theories in flat space this yields the BRST complex and linear BRST transformations
of perturbative N = 0 supergravity [4]. Combined with the Lagrangian double-copy [47]
the pure Einstein-Hilbert action to cubic order was derived from that of Yang-Mills theory
using the convolution product [6].1 The chief advantages of the convolution, including the
extra BRST fields, are that (i) the ghost sector allows the dilaton to be truncated without
imposing further constraints on the graviton [6, 71] and (ii) the Yang-Mills gauge choice
determines the N = 0 supergravity gauge choice to linear order, removing the ambiguities
inherent in, for example, the double-copy of gauge dependent solutions. In [72, 73] it was
shown that tree-level CK duality holds for amplitudes involving all states of the BRST Fock
space, including the unphysical longitudinal gluon and ghost modes, and that this can be
made manifest in a purely cubic Yang-Mills BRST-Lagrangian.2 It was then shown that its
Lagrangian double-copy yields a BRST-Lagrangian that is pertubatively quantum equiva-
lent to N = 0 supergravity to all orders, tree and loop [72, 73]. A direct corollary is that all
tree and loop Yang-Mills amplitude integrands can be written in a form that double-copies
correctly, i.e. yields a bona fide N = 0 supergravity amplitude. Let us emphasise that key
to all of the preceding discussion was the derivation of the linear BRST operator of the
double copy theory from the BRST operators of the gauge theory factors [4].

Curved backgrounds. Everything till now has assumed perturbation theory around
a flat spacetime (and gluon) background. It is natural to ask what of the double-copy
survives in curved spaces, or at least in some suitable class of curved spaces. There are
various possibilities. One could consider a flat gluon background on a curved spacetime,
a curved gluon background on flat spacetime or both non-trivial gluon and spacetime
backgrounds. For example, CK duality and the double-copy in a curved ‘sandwich’ plane-
wave gluon background was considered in [74, 75]. The Kerr-Schild version of the double
copy also admits a formulation on curved backgrounds [76, 77]. There have also been
generalisations to AdS and conformal correlators [78–82].

On the other hand, in [1] a convolution product for the BRST complexes of two gauge
theories on a spatial sphere (with trivial gluon background) was introduced. Trivially
including a time dimension, this provided a convolution product in the D = 3 Einstein

1See also [70] for the use of the convolution product to construct the N = 0 supergravity.
2Although tree-level CK duality holds for all states of the extended BRST Fock space, this does not

necessarily imply loop-level CK duality. However, the gluon loop amplitude integrands computed with
the Feynman diagrams of the manifest BRST-CK dual Yang-Mills action of [72, 73] provide ‘almost BCJ
numerators’ that double-copy correctly into the loop amplitude integrands of N = 0 supergravity [72, 73].
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universe. It was shown that the linear BRST transformations correctly double-copy to
those of perturbative N = 0 supergravity on an D = 3 Einstein universe background.

It was noted in [1] that the convolution of tensor fields on S2 relied on rather generic
properties of homogeneous spaces. Encouraged by this observation, in the present contri-
bution we consider the convolution product for tensor fields on general Riemannian ho-
mogeneous spaces. Trivially including a time dimension facilitates the double-copy of the
BRST transformations on a broad class of spacetimes such as the D = 4 Einstein universe.

Structure. We proceed as follows. In section 2.1 we recall the essentials of the BRST
formalism in the context of Yang-Mills theory and N = 0 supergravity. For complete
details, see [73]. In section 2.2 we summarise what is required of the convolution product
with respect to the goal of generating the linear diffeomorphism BRST transformations
from the product of the Yang-Mills BRST transformations. Specialising to ultra-static
spacetimes, reduces the problem to defining a convolution on Riemannian homogeneous
manifolds, as discussed in section 2.3.

Our construction of a tensor field convolution on homogeneous spaces relies upon a
simpler convolution on group manifolds G, which may be regarded as special class of ho-
mogeneous manifolds G ∼= (G × G)/G. Accordingly, we first formulate in section 3 the
tensor convolution on compact Lie groups. The features of group manifolds essential to
the formulation of our tensor field convolution are reviewed in section 3.1. The convolu-
tion is introduced in section 3.2 and its properties under differentiation are determined
in section 3.3. The convolution of functions on group manifolds is straightforward and
well-known. It essentially relies on the existence of a G-bi-invariant measure (the Haar
measure). The obvious obstruction to extending this construction to tensor fields is the
need to compare tensors at different points on G. However, a basic property of Lie groups
is that the left and right multiplication diffeomorphisms generate a set of left and right
invariant basis vectors on TgG fo all g ∈ G, starting from some choice of basis of vectors at
the identity TeG. Using this observation we introduce maps that generate left- and right-
invariant vector fields from any vector at any point. This allows us to translate any vector
field in a unique manner, facilitating a convolution of tensor fields as defined in section 3.2.
Having introduced the convolution, its properties are developed. In particular, it is shown
in section 3.3 that the symmetrised covariant derivative has the same properties as the
flat space derivative acting on the flat space convolution when act on the convolution of
functions with 1-forms. This implies that the BRST transformations of the graviton follow
from those of the Yang-Mills gauge potentials to linear order. Finally, the generalisation
of the familiar Convolution Theorem is given in section 3.4

Having treated the special case of Lie groups, we turn our attention to Riemannian
homogeneous manifolds M ∼= G/H. In section 4.1 we review the basics of homogeneous
spaces. The group manifold convolution is then lifted to one defined on any Riemannian
homogeneous space in section 4.2. The basic idea is to regard G as the fibre bundle
H → G → M , using the projection π : G → M to ‘pullback’ the convolution of p-form
fields on M to the convolution defined on G and then projecting back down to M . The
action of the symmetrised covariant derivative on the symmetrised convolution is considered
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in section 4.2.2 and shown to have the same properties as the group manifold case, implying
that the graviton BRST transformations are generated correctly.

2 Squaring BRST

2.1 BRST review

The ‘square’ of pure Yang-Mills theory

SYM = 1
2g2

YM

∫
trF ∧ ?F, F = DA := dA+A ∧A (2.1)

ought to correspond to the universal Neveu-Schwarz sector of the α′ → 0 limit of closed
string theories,

SN=0 = 1
2κ2

∫
?
(
R− (D − 2)e

4
D−2ϕΛ

)
− 1

(D − 2)dϕ ∧ ?dϕ−
1
2e
− 4
D−2ϕH ∧ ?H, (2.2)

where 2κ2 = 16πG(D)
N . Aside from the metric g and cosmological constant Λ, we have

the dilaton ϕ and the Kalb-Ramond (KR) 2-form B with field strength H = dB. This
is sometimes referred to as N = 0 supergravity, for short. For a Minkowski background
this follows from the relationship between the tree-level BCJ double-copy and the KLT
relations of string theory [15].

We shall be concerned with relating the linearised BRST transformations of Yang-
Mills theory to those N = 0 supergravity. So, let us briefly review the linearised BRST
formalism here. Of course, for free gauge and gravity theories, the ghosts decouple and
there is no need to pass through BRST. However, it is nonetheless important in the context
of squaring Yang-Mills theory [2, 4, 6, 72, 73].

Yang-Mills theory. The BRST complex consists of the ghost number gh = 0 gauge
potential A, its gh = 1 ghost c, and the trivial pair of the gh = 0 Nakanishi-Lautrup
auxiliary field b and gh = −1 antighost c̄. The linearised gh = 1 off-shell nilquadratic
Q2

YM = 0 BRST transformations are given by

QYMA = dc, (2.3a)
QYMc = 0, (2.3b)
QYMc̄ = b, (2.3c)
QYMb = 0. (2.3d)

The physical states are contained in the cohomology of QYM.
For a given gauge-fixing condition, the linearised QYM-invariant BRST action can

be written
Slin

YM, BRST = tr
∫ (1

2dA ∧ ?dA+QYMΨA

)
(2.4)

where ΨA is the ghost number −1 gauge-fixing fermion

ΨA = trc̄(G[A]− α

2 b) (2.5)
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for gauge-fixing function G[A] with Gaussian width α ∈ R. A typical choice of gauge-fixing
are the Rα-linear gauges G[A] = −d†A = divA. This yields

Slin
YM, BRST =

∫
tr
(1

2dA ∧ ?dA+ ?bG[A]− ?α2 b
2 − ?c̄G[dc]

)
, (2.6)

which upon eliminating b gives

Slin
YM, BRST =

∫
tr
(1

2dA ∧ ?dA+ ?
1

2αG[A]2 − ?c̄G[dc]
)
, (2.7)

with
QYMc̄ = 1

α
G[A]. (2.8)

N = 0 supergravity. We consider the linearisation around some arbitrary background
metric on a D = (d+ 1)-dimensional Lorentzian manifold M . More explicitly, we consider
a one-parameter family of metric and dilaton fluctuations,

g(κ) = g + κh+O(κ2), φ(κ) = φ0 + κϕ+O(κ2) (2.9)

where g and φ0 are a background metric and dilaton solving the Einstein and scalar equa-
tions of motion and for notational convenience we consider κ as our parameter. In fact,
we shall consider arbitrary background metrics through the inclusion of arbitrary sources,
but they will be treated only implicitly. Then

Slin
N=0 := lim

κ→0
SN=0(κ)

=
∫
dxD
√
−g

(
LFP −

1
(D − 2)dϕ ∧ ?dϕ−

1
2H ∧ ?H + L[g, φ0,Λ, ϕ, h]

)
,

(2.10)

where LFP is the Fierz-Pauli action quadratic in hµν and L[g, φ0,Λ, ϕ, h] is linear in the
fluctuations ϕ and h.

The Fierz-Pauli action has a gauge symmetry (the residue of diffeomorphism invariance
upon taking the limit (2.10)),

δh = ∇ξ, (2.11)

or in components
δhµν = 2∇(µξν), (2.12)

where ∇µ is the covariant derivative with respect to the Levi-Civita connection of the
background metric g.

Here we have introduced the coordinate independent symmetrised derivative ∇. For
any function f it is defined by ∇f := df ∈ T ∗M , where d is the exterior derivative, and
for any ω ∈ T ∗M we define it as

(∇ω)(X,Y ) := (∇Xω)(Y ) + (∇Y ω)(X) , (2.13)

for anyX,Y ∈ TM . Note that the symmetrised covariant derivative ∇ has the same symbol
as the usual covariant derivative ∇X with respect to X ∈ TM (Xµ∇µ in components), but

– 6 –
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any ambiguity between the two can be resolved by the fact that the symmetrised covariant
derivative does not take a subscript argument.

We work in Einstein frame so the dilaton is a scalar. The Fierz-Pauli BRST complex
consists of the ghost number gh = 0 gauge potential h, the 1-form diffeomorphism gh = 1
ghost ξ, and its accompanying 1-form trivial pair of the gh = 0 Nakanishi-Lautrup auxiliary
field π and gh = −1 diffeomorphism antighost ξ̄. The Kalb-Ramond 2-form has a reducible
gauge symmetry. In addition to the ghost number gh = 0 gauge potential B, there is the
1-form gh = 1 ghost Λ and the scalar gh = 2 ghost-for-ghost λ, and their accompanying
1-form W, Λ̄ and 0-form w, λ̄ trivial pairs and a final gh = 0 ghost η.

The linearised gh = 1 off-shell nilquadratic BRST transformations are given by

QN=0h = ∇ξ, (2.14a)
QN=0ξ = 0, (2.14b)
QN=0ξ̄ = π, (2.14c)
QN=0π = 0. (2.14d)

and QN=0φ = 0. For the Kalb-Ramond sector see for example [4]. The physical states are
contained in the cohomology of QN=0.

We focus on the Fierz-Pauli sector. For a given gauge-fixing condition, the linearised
QN=0-invariant BRST action can be written

Slin
FP,BRST =

∫
dxD
√
−g (LFP +QN=0Ψh) (2.15)

where Ψh is the ghost number −1 diffeo-gauge-fixing fermion

Ψh = ξ̄

(
G[h, ϕ]− ζ

2π
)

(2.16)

for gauge-fixing function G[h, ϕ] with Gaussian width ζ ∈ R. A typical choice of gauge-
fixing function is de Donder gauges G[A] = div(h− 1

2gtrh), where the trace is taken with
respect to the background metric g. This yields

Slin
FP,BRST =

∫
dxD
√
−g

(
LFP + π ∧ ?G[h, ϕ]− ?ζ2π

2 − ξ̄QN=0G[h, ϕ]
)
, (2.17)

which upon eliminating π gives

Slin
FP,BRST =

∫
dxD
√
−g

(
LFP + 1

2ζ G[h, ϕ] ∧ ?G[h, ϕ]− ξ̄QN=0G[h, ϕ]
)
, (2.18)

with
QN=0ξ̄ = 1

ζ
G[h, ϕ]. (2.19)

2.2 The goal: diffeomorphism BRST from Yang-Mills BRST

We would like to define a product ‘∗’ of fields (i.e. sections of bundles) and set3

h = A ∗ Ã, ξ = c ∗ Ã+A ∗ c̃. (2.20)
3We are ignoring here the bi-adjoint spectator scalar field Φ [2]. Since it is a scalar and BRST invariant

it can be straightforwardly included. However, since the convolution is not necessarily associative, cf.
appendix A, one must make a choice in defining the product, fixing which field is convoluted with the
spectator first. A natural choice is to regard the convolution as a left acting operation.

– 7 –
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Note that since h ∈ Sym(M), where Sym(M) denotes symmetric (0, 2)-tensor fields on M ,
the product of two 1-forms, A ∗ Ã, must output a symmetric tensor. In order to recover
the symmetries of linearised gravity, (2.14a) and (2.14b), using the symmetries of the two
gauge fields, we require

Q
(
A ∗ Ã

)
= ∇ξ , Q

(
c ∗ Ã+A ∗ c̃

)
= 0 , (2.21)

where Q denotes the double-copy transformation that acts either as QYM or QN=0, de-
pending on what fields it acts on.

Since QA = dc = ∇c, it suffices if the product ∗ satisfies

∇f ∗ g = ∇(f ∗ g) = f ∗ ∇g, ∇f ∗ ω = ∇(f ∗ ω), ω ∗ ∇f = ∇(ω ∗ f) , (2.22)

for any scalars f, g, and any 1-form ω. Assuming this we find

Q(A ∗ Ã) = QA ∗ Ã+A ∗QÃ
= ∇c ∗ Ã+A ∗ ∇c̃

= ∇
(
c ∗ Ã+A ∗ c̃

)
= ∇ξ , (2.23)

and

Q(c ∗ Ã+A ∗ c̃) = −c ∗QÃ+QA ∗ c̃
= −c ∗ ∇c̃+∇c ∗ c̃
= ∇ (−c ∗ c̃+ c ∗ c̃)
= 0 , (2.24)

as desired. Note, in the last derivation we have used Qc = Qc̃ = 0 and the anti-
commutativity of Q and the ghost fields.

One might also ask for the derivative rule

∇(f ∗ ω) = f ∗ ∇ω , (2.25)

for any scalar f and 1-form ω. Such a rule would enable the recovery of the dilaton
transformation [1]. Below we will see that this rule is more complicated than those in (2.22),
and hence we leave it as an open question for future investigations.

We also note that for the Kalb-Ramond 2-form we have

QN=0B = dΛ, (2.26)

where d is the exterior derivative. The requirement analogous to the function and 1-form
case of (2.22) is then

df ∗ w = d(f ∗ w), w ∗ df = d(w ∗ f). (2.27)
Surprisingly, this also proves to be less straightforward and is left for future work.

Equation (2.22) can be seen as the analog of the familiar Leibniz failure property
of convolutions on pseudo-Euclidean spaces ∂(X ∗ Y ) = ∂X ∗ Y = X ∗ ∂Y , but for the
symmetrized covariant derivative ∇ on M . (2.22) is the main goal, and the rest of the
paper will be dedicated to constructing a definition of ∗ satisfying (2.22) on a wide class
of spacetime geometries.
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2.3 From spacetime to space

Specifically, we shall be concerned with D = d + 1 ultrastatic spacetimes M̂ = R ×M ,
where the Riemannian geometry on M is held fixed over time. This essentially reduces the
problem to defining a spatial product on the d-dimensional Riemannian space M . Hence
we shall be concerned only with d-dimensional objects, and for notational convenience all
(d + 1)-dimensional objects will be hatted henceforth (this is the first and last time we
shall use this notation, for reasons we make clear momentarily). Similarly, we will hat the
product on M̂ , ∗ → ∗̂, and the symmetrised covariant derivative ∇ → ∇̂. Any occurrence of
the un-hatted ‘∗’ will denote an, as of yet, undefined product over the spatial manifold M ,
and any occurrence of the un-hatted ‘∇’ will refer to the symmetrised covariant derivative
for the Levi-Civita connection on M .

Given the ultrastatic nature of M̂ we can make the convenient time-space split of
any 1-form ω̂ ∈ Ω1(M̂), i.e. ω̂ = ω0 dt + ω1. Here ω0 is a function over M̂ , and as such
can vary in space as well as time. ω1 is spatially-directed 1-form, i.e. ω1(∂t) = 0, which
again can vary in space and time. In this way we can equivalently think of ω̂ as the pair
(ω0[·], ω1[·]) ∈ Ω0

R(M) ⊕ Ω1
R(M), where ω0[·] : R → Ω0(M) denotes a 1-parameter family

of functions on M , i.e. ω0[t] ∈ Ω0(M) for any t ∈ R, and ω1[·] : R → Ω1(M) denotes
a 1-parameter family of 1-forms on M , i.e. ω1[t] ∈ Ω1(M) for any t ∈ R. Here Ωp

R(M)
denotes the space of 1-parameter families of p-forms. We will write ωi[·] for the i = 0, 1
component of this pair. Note that one can go backwards and construct ω̂ given such a pair,
and hence this mapping between Ω1(M̂) and Ω0

R(M)⊕ Ω1
R(M) is a bijection.

We can connstruct similar bijections for all (0, p)-tensor fields. For functions is it
trivial. Given any f̂ ∈ Ω0(M̂), the corresponding 1-parameter family of functions on M ,
denoted f [·] ∈ Ω0

R(M), is simply f [t](x) = f̂(t, x) for any t ∈ R and x ∈ M . The other
relevant case for our purposes is the bijection for Sym(M̂). For any α̂ ∈ Sym(M̂), the
time-space split can be written in the form

α̂ = α0 dt ∨ dt+ 2α1 ∨ dt+ α2 , (2.28)

where ∨ denotes the symmetric tensor product, i.e. α∨β := α⊗β+β⊗α. Here α0 ∈ Ω0(M̂)
is a function on M̂ , α1 ∈ Ω1(M̂) is a spatially-directed 1-form on M̂ , i.e. α1(∂t) = 0,
and α2 ∈ Sym(M̂) is a spatially-directed symmetric (0, 2)-tensor on M̂ , i.e. α2(∂t, X) =
α2(X, ∂t) = 0 for any vector X ∈ TM̂ . It is then clear that α̂ is equivalent to the triple
(α0[·], α1[·], α2[·]) ∈ Ω0

R(M) ⊕ Ω1
R(M) ⊕ SymR(M), where SymR(M) denotes the space

of 1-parameter families of symmetric (0, 2)-tensor fields on M . We similarly write αi[·],
(i = 0, 1, 2) for the corresponding component of the triple.

We are now ready to define the spacetime product ∗̂ in terms of some, as of yet, unde-
fined spatial product ∗. For a pair of functions f̂ , ĝ ∈ Ω0(M̂) we first find the corresponding
1-parameter families f [·], g[·] ∈ Ω0

R(M). The spacetime product, f̂ ∗̂ ĝ ∈ Ω0(M̂), can then
be defined through a specification of the corresponding 1-parameter family (f̂ ∗̂ ĝ)[·] ∈
Ω0
R(M), which, for any t ∈ R, we define as

(f̂ ∗̂ ĝ)[t] :=
∫ ∞
−∞

dt′ f [t′] ∗ g[t− t′] , (2.29)

– 9 –
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where, by assumption, ∗ is defined between functions onM , and hence the integrand on the
r.h.s. is well-defined. Given the bijection between Ω0(M̂) and Ω0

R(M), this specification of
the 1-parameter family uniquely defines the product f̂ ∗̂ ĝ ∈ Ω0(M̂). Modulo the definition
of ∗, the above equation should be familiar to the reader as the usual Euclidean convolution
of functions.

Given two 1-forms α̂, β̂ ∈ Ω1(M̂), we wish to go further and define the spacetime
products f̂ ∗̂ α̂ ∈ Ω1(M̂) and α̂ ∗̂ β̂ ∈ Sym(M̂). Both can be uniquely defined by specifying
the corresponding tuples; a pair Ω0

R(M) ⊕ Ω1
R(M) for the former and a triple Ω0

R(M) ⊕
Ω1
R(M)⊕ SymR(M) for the latter. We first compute the components αi[·] and βj [·], where

i, j = 0, 1. We then define the components of the respective tuples, for all t ∈ R, as

(f̂ ∗̂ α̂)i[t] :=
∫ ∞
−∞

dt′ f [t′] ∗ αi[t− t′] , (2.30)

(α̂ ∗̂ β̂)i+j [t] :=
∫ ∞
−∞

dt′ α(i[t′] ∗ βj)[t− t′] , (2.31)

where the brackets denote the usual symmetrised sum: T(ab) = 1
2(Tab + Tba). Note that

the ∗ products in the integrands on the r.h.s.’s are between tensor fields on M , and hence
are well-defined by assumption. One can of course extend the above definition to higher
rank tensors, but the expressions becomes more complicated and will not be needed for
our purposes.

Given the above definition of ∗̂, we can now show that it satisfies (2.22) for ∇̂, assuming
the spatial product ∗ satisfies (2.22) for the spatial symmetrised covariant derivative ∇.
To see this we first need to know how ∇̂ acts on a function f̂ ∈ Ω0(M̂) and a 1-form
ω̂ ∈ Ω1(M̂) in terms of the components f [·] ∈ Ω0

R(M) and ωi[·] ∈ Ωi
R(M) (i = 0, 1).

Recall that ∇̂f̂ = d̂f̂ , where d̂ is the exterior derivative on M̂ . As d̂f̂ is a 1-form on
M̂ , it can be specified by a pair Ω0

R(M)⊕ Ω1
R(M). One can verify that (d̂f̂)0[t] = ∂t(f [t])

and (d̂f̂)1[t] = d(f [t]), for all t ∈ R, gives the correct specification, where d is the exterior
derivative on M . Note that we may write (d̂f̂)1[t] = ∇(f [t]), as ∇ ≡ d on Ω0(M). If we
define the pair of operators D0 := ∂t and D1 := ∇, we can write the components of ∇̂f̂
succinctly as

(∇̂f̂)i[t] = Da(f [t]) . (2.32)

Since ∇̂ω̂ is a symmetric (0, 2)-tensor field, it is uniquely specified by a triple Ω0
R(M)⊕

Ω1
R(M)⊕SymR(M), where the components are (∇̂ω̂)k[·] for k = 0, 1, 2. One can verify that

(∇̂ω̂)i+j [t] = D(i(ωj)[t]) , (2.33)

for t ∈ R and i, j = 0, 1, gives the correct specification of the components.
(2.22) can now be verified by direct computation. For two functions we have(

∇̂(f̂ ∗̂ ĝ)
)
i
[t] = Di

(
(f̂ ∗̂ ĝ)[t]

)
= Di

(∫ ∞
−∞

dt′ f [t′] ∗ g[t− t′]
)
. (2.34)

We then note that the Di can be moved onto either argument of the ∗ product in the
integrand. For i = 1 (D1 = ∇) this is true by linearity of the integral and by our assumption
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that ∗ satisfies (2.22) for ∇. For i = 0 (D0 = ∂t) it is obviously true for g[t− t′], as it is the
only part of the integrand that explicitly depends on t, and we have assumed bilinearity
of the ∗ product. To show that it can be moved onto f [t′] one can run the same argument
again following the change of integration variables, t′ → u = t− t′:∫ ∞

−∞
dt′ f [t′] ∗ g[t− t′] =

∫ ∞
−∞

du f [t− u] ∗ g[u] . (2.35)

We can now write(
∇̂(f̂ ∗̂ ĝ)

)
i
[t] =

∫ ∞
−∞

dt′Di(f [t′]) ∗ g[t− t′] =
∫ ∞
−∞

dt′ f [t′] ∗ Di(g[t− t′]) , (2.36)

where any time derivative (for i = 0) on the r.h.s. should be understood as a derivative
with respect to the time variable of the respective function, e.g. D0(f [t′]) = ∂t′(f [t′]). From
the definition (2.30), and (2.32) we then have(

∇̂(f̂ ∗̂ ĝ)
)
i
[t] =

(
(∇̂f̂) ∗̂ ĝ

)
i
[t] =

(
f̂ ∗̂ (∇̂ĝ)

)
i
[t] , (2.37)

which verifies the desired derivative rule for a product of functions. The ∇̂ derivative rule for
the ∗̂ product of a function and a 1-form on M̂ can be verified in a similar manner. Again,
one only requires ∗ to be bilinear and to satisfy the derivative rule for ∇. The question,
then, is whether such a ∗ product on M can be constructed. Explicitly, we want (2.22) for
functions and 1-formsm but on M instead of M̂ . From [1, 2, 4], the expectation is that ∗
should correspond to some kind of convolution. On a generic spatial manifold, M , this is
a difficult question, but on compact homogeneous spaces we are able to give a well defined
convolution satisfying (2.22). This is what we shall develop in the remaining sections.

3 Lie groups

3.1 Preliminaries

3.1.1 Definitions

Consider a compact Lie group G and the associated Lie algebra g ∼= TeG. For any g ∈ G
we denote the corresponding right and left action as Rg and Lg respectively, i.e. Rgg′ = g′g

and Lgg′ = gg′. Note that Rg and Lg are diffeomorphisms of G.
For any function f ∈ Ω0(G), the associated pull-backs, R∗gf, L∗gf ∈ Ω0(G), are de-

fined as

(R∗gf)(g′) := f(Rgg′) = f(g′g) (3.1)
(L∗gf)(g′) := f(Lgg′) = f(gg′) . (3.2)

For any vector, Xg ∈ TgG, we define the push-forward, Rg′∗ : TgG→ Tgg′G, as that which
satisfies

(Rg′∗Xg)gg′(f) := Xg(R∗g′f) (3.3)

for any function f ∈ Ω0(G). Similarly, for Lg′∗ : TgG→ Tg′gG, we have

(Lg′∗Xg)g′g(f) := Xg(L∗g′f) . (3.4)
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For any 1-form ω ∈ Ω1(G) we define the pull-back associated with Rg as

(R∗gω)(X) := ω(Rg∗X) , (3.5)

for any X ∈ TG, and similarly for the pull-back L∗g.
We can now define the subspace of vector fields, RG ⊂ TG, that are right-invariant.

For any X ∈ RG we have
(Rg′∗Xg)gg′ = Xgg′ , (3.6)

for any g, g′ ∈ G. Similarly, we define LG ⊂ TG as the subspace of left-invariant vector
fields which satisfy

(Lg′∗Xg)g′g = Xg′g . (3.7)

Using the pull-back we can similarly define right/left-invariant (0, p)-tensor fields. Given
that G is compact, there is a unique (up to a constant rescaling) bi-invariant (right- and
left-invariant) metric on G, cf. for example [83].

To any x ∈ g ∼= TeG we can associate a left-invariant vector field X ∈ LG by pushing
x forward from e to any g ∈ G with Lg∗. That is, Xg = Lg∗x. This sets up an isomorphism
between g and LG (and similarly for RG).

Recall that for any X,Y ∈ TG, and any push-forward f∗, we have f∗[X,Y ] =
[f∗X, f∗Y ]. This implies that for any two vector fields X,Y ∈ LG, the Lie bracket, [X,Y ],
is also left-invariant. The Lie bracket, and the isomorphism between g and LG, then defines
the usual Lie bracket on g.

Consider some orthonormal (with respect to the bi-invariant metric) basis of the Lie
algebra, {ea} (a = 1, . . . , dim(G)). In this basis the structure constants, f c

ab , satisfy

[ea, eb] = f c
ab ec . (3.8)

For any g ∈ G we have the map Adg : g → g, given by Adg := Lg∗Rg−1∗. We can then
decompose the vector Adgea in terms of the basis {ea} to get

Adgea = (Adg) ba eb , (3.9)

where the components of this decomposition, (Adg) ba , are the adjoint representation of G
in this basis.

Given the basis {ea} we can form the corresponding orthonormal right- and left-
invariant bases over G, denoted by ra and la respectively. At any g ∈ G these basis
vectors are given by

(ra)g := Rg∗ea (3.10a)
(la)g := Lg∗ea . (3.10b)

Given some coordinates, xµ, the basis vector field la can be decomposed as la(x) = lµa (x)∂µ,
and similarly for ra. In this way, la and ra can be thought of as vielbeins on G, with
respective components lµa (x) and rµa (x).
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One can then verify that the left and right bases are related to each other via

(la)g = (Adg) ba (rb)g , (3.11)

when evaluated at some point g ∈ G. The bi-invariance of the metric ensures that these
bases remain orthonormal, and the fact that LG is closed under the Lie bracket implies that

[la, lb] = f c
ab lc , [ra, rb] = f c

ab rc . (3.12)

We can use these left- and right-invariant bases to decompose any vector field X ∈ TG:

X = Xa
R ra = Xa

L la , (3.13)

where, for each index a, the components Xa
R and Xa

L are functions on G. We denote by ra

and la the dual basis 1-forms. With tensor products one can then expand any tensor field
using ra, la, ra, and la.

Given a vector at a point g ∈ G, say Xg ∈ TgG, we can generate the corresponding
left/right-invariant vector field by using the push-forward to move it to every other point
g′ ∈ G. We define maps,

l : G× TG→ LG; (g,X) 7→ lg(X)
r : G× TG→ RG; (g,X) 7→ rg(X) , (3.14)

that generate left- and right-invariant vector fields out of vectors at g.4 Explicitly, if we
evaluate the fields lg(X) and rg(X) at any point g′ ∈ G we have

lg(X)
∣∣
g′

:= (Lg′g−1∗Xg)g′

rg(X)
∣∣
g′

:= (Rg−1g′∗Xg)g′ . (3.15)

The right- and left-invariant basis fields clearly satisfy rg(ra) = ra and lg(la) = la.
For a 1-form ω ∈ Ω1(G), we define the maps lg(·) and rg(·) in an analogous way, but

with the pull-back instead:

lg(ω)
∣∣
g′

= (L∗gg′−1 ω)
∣∣
g′

rg(ω)
∣∣
g′

= (R∗g′−1g ω)
∣∣
g′
. (3.16)

We can then extend the definition of these maps to all (0, p)-tensor fields using the pull-back
in the obvious way. Note that, for any function f ∈ Ω0(G), lg(f) and rg(f) are constant
functions on G, and at any point g′ ∈ G they take the value f(g), i.e. (lg(f)) (g′) =
(rg(f)) (g′) = f(g).

Given any diffeomorphism f : G → G, and any h ∈ Ω0(G) and ω ∈ Ω1(G), the
pull-back f∗ satisfies

f∗ hω = (f∗h)(f∗ω) , (3.17)
4The map lg would usually be referred to as the Lie algebra valued Solder 1-form, θg : TgG→ LG (here

we have identified the Lie algebra with the left-invariant vector fields).
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where we recall that the pull-back of a function is defined as f∗h := h ◦ f . If we write
ω = (ωL)a la, we then have that

L∗g ω = L∗g ((ωL)a la)
= (L∗g (ωL)a) (L∗g la)
= (L∗g (ωL)a) la . (3.18)

In this basis L∗g simply acts as the pull-back on the component functions. Similarly we have

R∗g ω = (R∗g (ωR)a) ra . (3.19)

One can then verify that

lg(ω) = lg((ωL)a) la

rg(ω) = rg((ωR)a) ra . (3.20)

3.1.2 Derivatives

We will mostly be concerned with the covariant derivative, ∇, specifically the torsionless
connection that is compatible with the bi-invariant metric. Before discussing ∇ we briefly
comment on a useful property of the exterior derivative, d : Ωp(M)→ Ωp+1(M).

Using the bases (3.10) we can write

df = ra(f)ra = la(f)la , (3.21)

for any f ∈ Ω0(G). For higher degree forms the action of d in the left/right-invariant basis
is more complicated, but we will not need it in what follows.

Moving on to the covariant derivative, for any pair of left-invariant (or right-invariant)
basis vector fields la, lb ∈ LG, ∇ satisfies

∇la lb = 1
2[la, lb] = 1

2f
c

ab lc . (3.22)

For any two vector fields X,Y ∈ TG we can write them in the la basis as

X = Xa
L la , Y = Y a

L la . (3.23)

Using the algebraic properties of ∇, we have

∇XY = ∇X(Y a
L la)

= ∇X(Y a
L ) la + Y a

L∇X la

= X(Y a
L ) la + 1

2X
a
LY

b
Lf

c
ab lc , (3.24)

where the covariant derivative of a function f ∈ Ω0(G), with respect to some vector field
X ∈ TG, is defined as ∇Xf := X(f). The covariant derivative of some 1-form ω ∈ Ω1(G)
is defined as

(∇Xω)(Y ) := X(ω(Y ))− ω(∇XY ) , (3.25)
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for any X,Y ∈ TG. By writing ω = (ωL)a la we find

(∇Xω)(Y ) = Y a
LX((ωL)a)−

1
2X

a
LY

b
Lf

c
ab (ωL)c . (3.26)

The definition of the covariant derivative can be extended to any tensor field in the
usual way.

For any function f we define the symmetrised covariant derivative ∇f ∈ Ω1(G) as
∇f := df , and for any ω ∈ Ω1(G) we define it as

(∇ω)(X,Y ) := (∇Xω)(Y ) + (∇Y ω)(X) , (3.27)

for any X,Y ∈ TG. Note that the symmetrised covariant derivative has the same symbol
as the usual covariant derivative. Any ambiguity between the two can be resolved by the
fact that the symmetrised covariant derivative does not take a subscript argument, while
the usual covariant derivative does.

Using (3.26), and the anti-symmetry of f c
ab , we find

(∇ω)(X,Y ) = X((ωL)a)Y a
L + Y ((ωL)a)Xa

L . (3.28)

We also have that

(d((ωL)a) ∨ la) (X,Y ) = X((ωL)a)Y a
L + Y ((ωL)a)Xa

L , (3.29)

where ∨ denotes the symmetrised tensor product, i.e. α ∨ β := α ⊗ β + β ⊗ α. We can
therefore write

∇ω = d((ωL)a) ∨ la = d((ωR)a) ∨ ra , (3.30)

where the last equality follows from the fact that there is no distinction between the
properties of left and right fields. In other words, we could re-do the above derivation
entirely with right-invariant fields, and we would arrive at the same result. The fact
that the symmetrised covariant derivative has this simple form in terms of the left/right-
invariant basis will be extremely convenient for our purposes.

3.2 Convolution

3.2.1 Definition for functions

Consider the group R with addition. For any x, x′ ∈ R the group action is defined as
x′ · x := x+ x′. The usual convolution of two functions on R is

(f ∗ f̃)(x′) =
∫ ∞
−∞

dxf(x)f̃(x′ − x) =
∫
R
dxf(x)f̃(x−1 · x′) , (3.31)

where on the far right we have written it in a form that looks more generalisable to any
Lie group, provided the integration measure can be defined. In the above case the group
is abelian, so we can equivalently write the argument of f̃ as x′ · x−1 instead of x−1 · x′.

For a general group, that may be non-abelian, there are then two obvious choices for
the convolution of two functions.

– 15 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
7

Definition 3.1. For a compact Lie group G, we define the left and right convolution of
two functions f, f̃ ∈ Ω0(G) as

(f ∗L f̃)(g′) :=
∫
G
dg f(g)f̃(g−1g′) , (3.32)

(f ∗R f̃)(g′) :=
∫
G
dg f(g)f̃(g′g−1) , (3.33)

where dg is the Haar measure, normalised such that vol(G) = 1.

For compact groups the Haar measure is invariant under right and left action, and inversion.
Note that

(f ∗L f̃)(g′) =
∫
G
dg f(g)f̃(g−1g′)

=
∫
G
dg̃ f(g′g̃−1)f̃(g̃)

= (f̃ ∗R f)(g′) , (3.34)

where, from line 1 to line 2, we have changed integration variables from g to g̃ = g−1g′,
and used the fact that the integration measure is invariant.

We also note that in [84] they are able to define the above convolution for more than
just smooth functions.

3.2.2 Definition for tensor fields

Generalising from functions to tensor fields, we want to write the right and left convolu-
tion as

(S ⊗L T )
∣∣
g′

=
∫
G
dg S

∣∣
g
⊗ T

∣∣
g−1g′

(3.35)

(S ⊗R T )
∣∣
g′

=
∫
G
dg S

∣∣
g
⊗ T

∣∣
g′g−1 (3.36)

where S is a (0, p)-tensor field, T is a (0, q)-tensor field, and the convolution should be a
(0, p+q)-tensor field. Of course this does not work, as we cannot take tensor products of S
and T at different points in the integrand. Since we want the output to be a (0, p+q)-tensor
at point g′, we need some way of ‘shifting’ S from g to g′, and T from g−1g′, or g′g−1, to
g′. The right and left pull-back, and the maps lg and rg, enable us to do this in a way that
is consistent with the convolution on functions.

First, we note that we can re-write the right and left convolutions of two functions,
f, f̃ ∈ Ω0(G), as

f ∗L f̃ =
∫
G
dg rg(f)L∗g−1 f̃

f ∗R f̃ =
∫
G
dg lg(f)R∗g−1 f̃ .

(3.37)

One can verify this by evaluating the above at any point g′ ∈ G. Since the left convolution,
∗L, involves the map rg on the first argument, and L∗g−1 on the second, we will henceforth
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refer to is as the right-left convolution, or the RL-convolution, and denote it by ∗RL.
Likewise, the right convolution will be referred to as the left-right, or LR-convolution,
and will be written as ∗LR. One can also define the LL- and RR-convolutions, using the
respective maps, but since rg(f) = lg(f) for any function f ∈ Ω0(G), we have ∗LL = ∗RL
and ∗RR = ∗LR. Notably, this will not be the case for tensor fields.

Given that rg, lg, and the pull-backs are defined for any (0, p)-tensor field, we imme-
diately have our desired definitions for tensor fields:

Definition 3.2. For any S ∈ T0
pG and any T ∈ T0

qG, the RL- and LR-convolutions,
⊗RL,⊗LR : T0

pG× T0
qG→ T0

p+qG, are defined as

S ⊗RL T :=
∫
G
dg rg(S)⊗ L∗g−1T , (3.38)

S ⊗LR T :=
∫
G
dg lg(S)⊗R∗g−1T . (3.39)

Note, one can define the convolution on Tp0G tensors using the left/right push-forwards and
the corresponding l, r maps for vector fields (3.15).

In general, it is no longer true that ⊗LL = ⊗RL and ⊗RR = ⊗LR, as it was for the
convolution between functions. Indeed, these identities are only valid for functions and for
abelian groups where la = ra. Our choice of the ‘mixed’ convolutions, ⊗RL and ⊗LR, will
become more obvious when we discuss derivatives below.

In what follows we will sometimes write ∧AB and ∨AB instead of ⊗AB, where A,B =
R,L. In this case one should substitute ∧ and ∨ respectively for ⊗ in Def. 3.2.

Using the basis fields ra and la we can decompose two 1-forms ω, ω̃ ∈ Ω1(G) as

ω = (ωR)a ra = (ωL)a la

ω̃ = (ω̃R)a ra = (ω̃L)a la . (3.40)

Using (3.18), (3.19), and (3.20), the RL-convolution between ω and ω̃ then simplifies to

ω ⊗RL ω̃ =
∫
G
dg rg(ω)⊗ L∗g−1 ω̃

=
∫
G
dg rg((ωR)a) ra ⊗ (L∗g−1 (ω̃L)b) lb

=
(∫

G
dg rg((ωR)a) (L∗g−1 (ω̃L)b)

)
ra ⊗ lb

=
(
(ωR)a ∗RL (ω̃L)b

)
ra ⊗ lb , (3.41)

and similarly,
ω ⊗LR ω̃ =

(
(ωL)a ∗LR (ω̃R)b

)
la ⊗ rb . (3.42)

From this it is clear that the tensor convolutions we have defined amount to convolutions
of the component functions in the right- and left-invariant bases. This generalises to
convolutions between any (0, p)-tensor fields.
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We briefly note the following properties of the AB-convolutions:

Commutativity. Writing the convolution in terms of the right- and left-invariant bases it
is then clear that

ω ∨AB f = f ∨BA ω
ω ∨AB ω̃ = ω̃ ∨BA ω , (3.43)

for any f ∈ Ω0(G) and any ω, ω̃ ∈ Ω1(G). For any α ∈ Ωp(G), and any β ∈ Ωq(G), it is
also clear that

α ∧AB β = (−1)pqβ ∧BA α . (3.44)

Associativity. In appendix A we prove the following associativity property:

S ⊗AB (T ⊗AB U) = (S ⊗AB T )⊗AB U , (3.45)

for any S ∈ T0
pG, T ∈ T0

qG, and U ∈ T0
rG.

Of particular importance for our purposes is how the convolution acts under derivatives,
which we will now discuss.

3.3 Differentiation

3.3.1 Exterior differentiation

In this section we will be concerned with the wedge convolution on differential forms and
its action under the exterior derivative. First, we show the following

Proposition 3.1. For any pair of functions, f, f̃ ∈ Ω0(G), their AB-convolution (for
AB = RL,LR) satisfies

d(f ∗AB f̃) = df ⊗AB f̃ = f ⊗AB df̃ . (3.46)

Proof. To see this consider the RL-convolution between two functions, f∗RLf̃ . Using (3.21)
the exterior derivative of the resulting function can be written as

d(f ∗RL f̃) = la(f ∗RL f̃) la . (3.47)

Consider any left-invariant basis vector la. For any g′ ∈ G we then have

la(f ∗RL f̃)
∣∣
g′

= la

(∫
G
dg f(g)f̃(g−1g′)

) ∣∣∣
g′

= d

dλ

(∫
G
dg f(g)f̃(g−1γ(λ))

) ∣∣∣
λ=0

, (3.48)
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where the curve γ(λ) is a representative of la at g′, i.e. γ(λ) = g′ exp(λea) where exp : g→
G is the exponential map. Continuing on we have

la(f ∗RL f̃)
∣∣
g′

= d

dλ

(∫
G
dg f(g)f̃(g−1γ(λ))

) ∣∣∣
λ=0

=
∫
G
dg f(g) d

dλ

(
f̃(g−1γ(λ))

) ∣∣∣
λ=0

=
∫
G
dg f(g)la

(
L∗g−1 f̃

) ∣∣
g′

=
∫
G
dg f(g)(Lg−1∗la)g′(f̃)

=
∫
G
dg f(g)(la)g−1g′(f̃) , (3.49)

where the last line follows from the left-invariance of la. We have just shown that

la(f ∗RL f̃) = f ∗RL la(f̃) . (3.50)

Similarly, one can show that

ra(f ∗LR f̃) = f ∗LR ra(f̃) . (3.51)

Together with the commutativity of ∗AB we have

la(f ∗LR f̃) = la(f̃ ∗RL f) = f̃ ∗RL la(f) = la(f) ∗LR f̃ , (3.52)

and similarly
ra(f ∗RL f̃) = ra(f) ∗RL f̃ . (3.53)

We can now show that

f ⊗RL df̃ = f ⊗RL (la(f̃)la)

=
(
f ∗RL la(f̃)

)
la

= la
(
f ∗RL f̃

)
la

= d(f ∗RL f̃) , (3.54)

and that

df ⊗RL f̃ = (ra(f)ra)⊗RL f̃

=
(
ra(f) ∗RL f̃

)
ra

= ra
(
f ∗RL f̃

)
ra

= d(f ∗RL f̃) . (3.55)

Similarly, one can show that

d(f ∗LR f̃) = df ⊗LR f̃ = f ⊗LR df̃ . (3.56)
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This property under the exterior derivative is why the mixed convolutions, ⊗RL and
⊗LR, are more useful for our purposes. Unfortunately, this sort of derivative property does
not continue to higher degree forms. For example, for ω ∈ Ω1(G) we have

d(f ∧RL ω) = d(f ⊗RL ω)

= d
(
(f ∗RL (ωL)a) la

)
= d

(
f ∗RL (ωL)a

)
∧ la +

(
f ∗RL (ωL)a

)
dla , (3.57)

whereas

df ∧RL ω =
(
ra(f)ra

)
∧RL

(
(ωL)blb

)
=
(
ra(f) ∗RL (ωL)b

)
ra ∧ lb

= ra
(
f ∗RL (ωL)b

)
ra ∧ lb

= d
(
f ∗RL (ωL)b

)
∧ la , (3.58)

and so
d(f ∧RL ω) = df ∧RL ω +

(
f ∗RL (ωL)a

)
dla . (3.59)

Similarly, one can show that

d(ω ∧RL f) = −ω ∧RL df + ((ωR)a ∗RL f)dra . (3.60)

The extra term on the far right in both expressions spoils the distributivity of d that we
want for the convolution, and is the reason we cannot use our convolution, as defined,
to recover the linearised BRST symmetries of the 2-form field. On the other hand, the
symmetrised covariant derivative, ∇, does satisfy the desired distributivity property with
respect to our convolution.

3.3.2 Covariant differentiation

Here we show that the symmetrised covariant derivative, defined in (3.27) and also denoted
by ∇ (but with no subscript argument), satisfies the following

Proposition 3.2. For any f, f̃ ∈ Ω0(G) and any ω ∈ Ω1(G),

∇(f ∨AB f̃) = ∇f ∨AB f̃ = f ∨AB ∇f̃ , ∇ (f ∨AB ω) = ∇f ∨AB ω , (3.61)

where AB = RL,LR.

Proof. Recall that on functions the symmetric covariant derivative acts as ∇f = df . From
Prop. 3.1 we immediately have

∇(f ∨AB f̃) = ∇(f ∗AB f̃) = ∇f ∨AB f̃ = f ∨AB ∇f̃ , (3.62)
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for any two functions f, f̃ ∈ Ω0(G). For any 1-form ω ∈ Ω1(G) we have

∇f ∨RL ω = df ∨RL ω
= ra(f)ra ∨RL (ωL)blb

=
(
ra(f) ∗RL (ωL)b

)
ra ∨ lb

= ra
(
f ∗RL (ωL)b

)
ra ∨ lb

= d
(
f ∗RL (ωL)b

)
∨ lb . (3.63)

Recalling (3.30) we have

∇ (f ∨RL ω) = ∇
(
f ∨RL ((ωL)ala)

)
= ∇

((
f ∗RL (ωL)a

)
la
)

= d
(
f ∗RL (ωL)a

)
∨ la , (3.64)

as f ∗RL (ωL)a are the la components of f ∨RL ω. Comparing the previous two equations
we have our desired derivative property:

∇ (f ∨RL ω) = ∇f ∨RL ω . (3.65)

With a similar calculation one can verify the analogous property for ∨LR.

Not required in (2.22), but true nonetheless, is the following

Proposition 3.3. For any f ∈ Ω0(G) and any ω ∈ Ω1(G),

∇ (f ∨AB ω) = f ∨AB ∇ω , (3.66)

where AB = RL,LR.

Proof. Above we saw that

∇ (f ∨RL ω) = d
(
f ∗RL (ωL)a

)
∨ la , (3.67)

and from (3.30) we have

f ∨RL ∇ω = f ∨RL (d((ωL)a) ∨ la)

= f ∨RL
(
lb((ωL)a)lb ∨ la

)
= (f ∗RL lb((ωL)a)) lb ∨ la

= lb (f ∗RL (ωL)a) lb ∨ la

= d (f ∗RL (ωL)a) ∨ la . (3.68)

The same can be shown for ∨LR.
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3.4 Analogue of the convolution theorem

It is worth pausing to comment on the analogue of the Convolution Theorem, given the
above definition of a tensor field convolution on the compact Lie group G. The analogue
of the Convolution Theorem is well understood for the convolution of two functions on G,
and so the only generalisation we are providing here is an extension to tensor fields.

Recall that the Convolution Theorem on Euclidean space states that the Fourier co-
efficients of f ∗ f̃ (where f and f̃ are functions) are given by the pointwise product (in
Fourier space) of the Fourier coefficients of f and f̃ , up to some normalisation factor.

On a general Lie group G the situation is slightly more complicated, even for the
convolution of two functions. For any function, f ∈ Ω0(G), the Peter-Weyl Theorem [87]
tells us that we can decompose it as

f(g) =
∑

[ρ]∈Ĝ

dρ∑
i,j=1

f(ρ|i, j)
√
dρ φ

ρ
ij(g) . (3.69)

The first sum is over equivalence classes, [ρ], of irreducible unitary representations of G,
where the equivalence is up to isomorphism. Ĝ denotes the space of all such equivalence
classes. dρ is the dimension of the representation ρ, and f(ρ|i, j) denotes the corresponding
‘Fourier coefficient’ for the representation ρ and indices i, j = 1, . . . , dρ. Lastly, φρij(g)
denotes the (i, j)-th matrix element of the ρ representation of g ∈ G, in some orthonormal
basis of the vector space used in the representation, i.e. φρij(g) := 〈vi, ρ(g)vj〉 for some
orthonormal basis {vi}i=1,...,dρ . One can then verify that

φρij(g
−1) = φρji(g)∗

φρij(gh) =
dρ∑
k=1

φρik(g)φρkj(h)∫
G
dg φρij(g)∗φρ

′

i′j′(g) = d−1
ρ δ[ρ][ρ′]δii′δjj′ , (3.70)

where ·∗ denotes complex conjugation.
Now consider the convolution of two functions, f ∗AB f̃ . The analogue of the Convo-

lution Theorem on Euclidean space is then a relationship between the Fourier coefficients
of f ∗AB f̃ , i.e. (f ∗AB f̃)(ρ|i, j), and the Fourier coefficients f(ρ|i, j) and f̃(ρ|i, j). Using
the identities in (3.70), we find that f ∗RL f̃ evaluated at some g ∈ G simplifies to

(f ∗RL f̃)(g) =
∑

[ρ]∈Ĝ

dρ∑
i,j,k=1

f(ρ|i, k)f̃(ρ|k, j)φρij(g) , (3.71)

and hence

(f ∗RL f̃)(ρ|i, j) = 1√
dρ

dρ∑
k=1

f(ρ|i, k)f̃(ρ|k, j) . (3.72)

This can be written more succinctly if we let f(ρ) denote the dρ×dρ ‘Fourier matrix’ with
elements f(ρ|i, j). The above equation can then be written as

(f ∗RL f̃)(ρ) = 1√
dρ
f(ρ).f̃(ρ) , (3.73)
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where ‘.’ denotes matrix multiplication. The comparison to the Convolution Theorem is
now clear. Specifically, the Fourier matrix of the convolution is given by the pointwise5

matrix product of the Fourier matrices of the input functions. If the group G is abelian,
then the representations are all 1-dimensional, and this matrix product reduces to normal
multiplication. In this case one recovers the direct analogue of the Convolution Theorem
on Euclidean space. Similarly, for the LR-convolution one finds

(f ∗LR f̃)(ρ) = 1√
dρ
f̃(ρ).f(ρ) . (3.74)

Now that we have established the analogue of the Convolution Theorem for functions on
G, we turn our attention to the convolution of two tensor fields S ∈ T0

p(G) and T ∈ T0
q(G).

After expanding S and T in terms of the right and left bases repsectively, we can use (3.42)
to write S ⊗RL T as

S ⊗RL T =
(
(SR)a1...ap ∗RL (TL)b1...bq

)
ra1 ⊗ . . .⊗ rap ⊗ lb1 ⊗ . . .⊗ lbq . (3.75)

Since the components (SR)a1...ap and (TL)b1...bq are functions on G (for fixed indices
a1, . . . , bq), we can decompose them using the Peter-Weyl Theorem and find their corre-
sponding Fourier matrices (SR)a1...ap(ρ) and (TL)b1...bq(ρ). The Fourier matrix associated
to the convolution of the components, (SR)a1...ap ∗RL (TL)b1...bq , is then given by

(
(SR)a1...ap ∗RL (TL)b1...bq

)
(ρ) = 1√

dρ
(SR)a1...ap(ρ).(TL)b1...bq(ρ) , (3.76)

using (3.73) above. This gives us the tensor generalisation of the Convolution Theo-
rem. The first difference to the scalar case is that Fourier matrices, (SR)a1...ap(ρ) and
(TL)b1...bq(ρ), are constructed for each component of the tensors S and T , when expressed
in the relevant right and left bases. Second, the matrix multiplication of (SR)a1...ap(ρ) and
(TL)b1...bq(ρ) does not give the Fourier matrix of S⊗RL T directly. It only gives the Fourier
matrix of the components of S⊗RL T , as expressed in the right and left bases. Specifically,
if we expand S ⊗RL T as

S ⊗RL T = (S ⊗RL T )a1,...,bqr
a1 ⊗ . . .⊗ rap ⊗ lb1 ⊗ . . .⊗ lbq , (3.77)

then the Fourier matrix for the components (S ⊗RL T )a1,...,bq is given by (3.76).
Similarly, for the convolution S ⊗LR T we can expand it as

S ⊗LR T = (S ⊗LR T )a1,...,bq l
a1 ⊗ . . .⊗ lap ⊗ rb1 ⊗ . . .⊗ rbq . (3.78)

The Fourier matrices for the components (S ⊗LR T )a1,...,bq are then given by

(S ⊗LR T )a1,...,bq(ρ) = 1√
dρ

(TR)b1...bq(ρ).(SL)a1...ap(ρ) . (3.79)

5Pointwise in the space Ĝ.
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4 Homogeneous spaces

The convolution of functions on Riemannian homogeneous spaces G/H is reasonably well-
developed, cf. for example [85] and the references therein. Here we generalise to ten-
sor fields.

4.1 Preliminaries

4.1.1 Definitions

Consider a Riemannian manifoldM on which a compact Lie group G acts transitively. Pick
a base point η ∈ M and consider the subgroup H for which hη = η for all h ∈ H. Then
M ∼= G/H, and G can be thought of as a H-principal bundle over M with the projection
π : G→M , g → π(g) := gη.

Given some X ∈ TG, the push-forward gives the vector π∗X ∈ TM , which acts on a
function f ∈ Ω0(M), at the point gη ∈M , as

(π∗X)gη(f) = Xg(π∗f) = Xg(f ◦ π) . (4.1)

For any vector Xg ∈ TgG we can find a representative curve γ(λ), with γ(0) = g and
such that γ(λ) is tangent to Xg at g. Consider the special case where the vector Xg has a
representative curve of the form γ(λ) = gh(λ), where h(λ) ∈ H and where gh(0) = g e = g.
The action of the vector π∗Xg ∈ TgηM on any function f ∈ Ω0(M) is then

(π∗Xg)gη(f) = Xg(f ◦ π)

= d

dλ
[(f ◦ π)(gh(λ))]

∣∣∣
λ=0

= d

dλ
[f(gh(λ)η)]

∣∣∣
λ=0

= d

dλ
[f(gη)]

∣∣∣
λ=0

= 0 , (4.2)

and hence (π∗Xg)gη = 0. The vector Xg is then in the kernel of the push-forward π∗.
Furthermore, if Xg ∈ ker(π∗) then Lg′∗Xg and Rh∗Xg are also in the kernel for any g′ ∈ G
and any h ∈ H. This means that the kernel of π∗ is left-invariant and RH -invariant. We
call the kernel of π∗ the vertical subspace of TG, and denote it by VTG.

Using the bi-invariant metric on G we can find the subspace of TG that is orthogonal
to VTG. This is the horizontal subspace, denoted by HTG. From the bi-invariance of the
metric, and the left- and RH -invariance of VTG, one can see that HTG is also left- and
RH -invariant. We can now write TG = HTG⊕ VTG. For any X ∈ TG we have

X = HX + VX , (4.3)

where H (V) is the horizontal (vertical) projector.
Recall that g ∼= TeG. We now have the orthogonal decomposition g = m ⊕ h, where

m = HTeG and h = VTeG. One can also show that h is the Lie algebra of the subgroup H.
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Let us pick our basis, {ea}, of g, such that {ei} is a basis for m, where i = 1, . . . , dim(m),
and such that eA is a basis for h, where A = dim(m) + 1, . . . , dim(G). As HTG and VTG
are left-invariant, the left-invariant basis {la} also splits in a similar way, i.e. {li} is a basis
of HTG, and {lA} is a basis of VTG. Any vector field X ∈ TG can then be written as

X = HX + VX
= Xi

L li +XA
L lA . (4.4)

For any ω ∈ Ω1(G) we can decompose it using the dual basis:

ω = Hω + Vω
= (ωL)i li + (ωL)A lA , (4.5)

and similarly for any (p, q)-tensor field.
We note that

Rh∗ ◦ H = H ◦Rh∗ , (4.6)

for any h ∈ H. To see this, we first note that the vertical subspace is RH -invariant, which
means that Rh∗ lA (for any h ∈ H) can be expanded in terms of the lA basis only. From
the right-invariance of the metric we know that {Rh∗ lA} is an orthonormal set, and since
each vector Rh∗ lA lies in VTG, we know that {Rh∗ lA} is an orthonormal basis of VTG.
From the right-invariance of the metric we also know that Rh∗ li is orthogonal to each
Rh∗ lA, and hence Rh∗ li ∈ HTG. This means that Rh∗ li can be expanded in terms of the
li basis only. As the set {Rh∗ li} is orthonormal (from the right-invariance of the metric)
we then have that {Rh∗ li} is a basis of HTG. The preceeding argument shows that Rh∗
acts separately on the bases {lA} and {li}, and rotates them amongst themselves. This
means that Rh∗ and H commute as desired.

For any function f ∈ Ω0(M), recall that the pull-back π∗f ∈ Ω0(G) is defined as
π∗f := f ◦ π. It is then clear that π∗f is RH -invariant. That is, R∗hπ∗f = π∗f , which can
be verified by acting on any g ∈ G. For any ω ∈ Ω1(M) the pull-back π∗ω ∈ Ω1(G) is
defined via its action on any X ∈ TG:

(π∗ω)(X)
∣∣
g

:= ω(π∗X)
∣∣
gη
, (4.7)

for any g ∈ G.

Definition 4.1. Given some X ∈ TM , the horizontal lift, L(X) ∈ HTG, is the unique
horizontal vector field which satisfies

(π∗L(X)g)gη = Xgη , (4.8)

for any g ∈ G.

More simply, we can write π∗L(X) = X. Note that this condition implies that L(X) is
RH -invariant, as for any Yg ∈ TgG we have

(π∗(Rh∗ Yg)gh)gη = (π∗Yg)gη , (4.9)

for any h ∈ H.
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We note some basic identities that will be useful later. For any X ∈ TM , Yg ∈ TgG,
f ∈ Ω0(M), and ω ∈ Ω1(M),

π∗L(X) = X , (4.10)
L((π∗Yg)gη)g = HYg , (4.11)

(L(X))g(π∗f) = Xgη(f) , (4.12)
(π∗ω)(L(X))

∣∣
g

= ω(X)
∣∣
gη
. (4.13)

We will also need the following map that averages along the fiber H:

Definition 4.2. For any (0, p)-tensor field (including functions) we define the map, AH :
T0
pG→ T0

pG, that averages along the fiber H as

AH := 1
vol(H)

∫
H
dhR∗h , (4.14)

where dh is the Haar measure for the compact subgroup H.

Clearly, for any RH -invariant T ∈ T0
pG we have AHT = T . Note that, for any h′ ∈ H,

we have

R∗h′AH = AH , (4.15)

where we have used the invariance of dh under right action by H. For any T ∈ T0
pG, we

can then see that AHT is RH -invariant. For any f ∈ Ω0(G), the function AHf is constant
along the fibers of H, and its value along any fiber is the average of f along that fiber.

Given (4.6), we have
AH ◦ H = H ◦AH , (4.16)

where we recall that H projects onto the horizontal subspace.
Using π∗ we can push-forward any X ∈ TG to TM , and using π∗ we can pull-back

any T ∈ T0
pM . We can also lift any vector field X ∈ TM from TM to TG with L(·). We

now define the analogous map that takes some T ∈ T0
pG to a (0, p)-tensor field in T0

pM :

Definition 4.3. For any f ∈ Ω0(G), the πH-projected function πHf ∈ Ω0(M) is the unique
function on M that satisfies

π∗πHf = AHf . (4.17)

The value of πHf at any point gη ∈ M is then the average of f along the fiber above gη.
Similarly, we have:

Definition 4.4. For any T ∈ T0
pG, the πH-projected tensor field πHT ∈ T0

pM is the unique
tensor field on M that satisfies

π∗πHT = HAHT . (4.18)

It is straightforward to verify the uniqueness of πHT using the isomorphism between TM
and horizontal RH -invariant vector fields in TG.
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4.1.2 Covariant differentiation

Consider the Levi-Civita connection, ∇, on G. One can see that∇L(X)L(Y ) is RH -invariant
for any X,Y ∈ TM as follows:

Rh∗∇L(X)L(Y ) = ∇Rh∗ L(X)Rh∗ L(Y )
= ∇L(X)L(Y ) , (4.19)

where the first line follows from the fact that Rh is an isometry on G, and the second line
follows from the RH -invariance of L(X) and L(Y ). This allows us to make the following

Definition 4.5. For any two vector fields X,Y ∈ TM , we define the connection on M ,
also denoted by ∇, at a point gη ∈M , as

∇XY
∣∣
gη

:= π∗
(
∇L(X)L(Y )

∣∣
g

)
, (4.20)

where the r.h.s. is independent of the choice of g in the fiber from the previously established
RH-invariance of ∇L(X)L(Y ).

In appendix B we show that ∇, on M , is the Levi-Civita connection on M with respect
to the G-invariant metric induced on M via the bi-invariant metric on G. The covariant
derivative of any tensor field on M can then be defined in the usual way. We also define
the symmetrised covariant derivative on functions and 1-forms in the analogous way to the
definition, (3.27), on G.

From the above definition, it is straightforward to see that

L(∇XY ) = H∇L(X)L(Y ) . (4.21)

One can also show that π∗∇f = ∇π∗f for any f ∈ Ω0(M) as follows. For any X ∈ TG
we have

(π∗∇f)(X)
∣∣
g

= (∇f)(π∗X)
∣∣
gη

= (π∗X)gη(f)
= Xg(π∗f)
= (∇π∗f)(X)

∣∣
g
. (4.22)

As ∇f = df , this is simply the statement that the pull-back commutes with d.
For any ω ∈ Ω1(G), and any horizontal vector fields X,Y ∈ HTG, we have the identity

(∇ω)(X,Y ) = (∇Hω)(X,Y ) , (4.23)

which can be seen as follows. Recall that X = Xi
L li for any X ∈ HTG, and similarly

Hω = (ωL)i li for any ω ∈ Ω1(G). We have

(∇ω)(X,Y ) = X((ωL)i)Y i
L + Y ((ωL)i)Xi

L

= (∇Hω)(X,Y ) (4.24)

where we have used (3.28) in line 1.
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For any ω ∈ Ω1(M), the symmetrised covariant derivative on M also takes on a simple
form. To see this we first note that, for any X,Y ∈ TM ,

(∇Xω)(Y )
∣∣
gη

= X(ω(Y ))
∣∣
gη
− ω(∇XY )

∣∣
gη

= L(X) ((π∗ω)(L(Y )))
∣∣
g
− (π∗ω)

(
∇L(X)L(Y )

) ∣∣
g

= (∇L(X)π
∗ω)(L(Y ))

∣∣
g
, (4.25)

which means that, after symmetrising over any pair X,Y ∈ TM , we have

(∇ω)(X,Y )
∣∣
gη

= (∇(π∗ω)) (L(X),L(Y ))
∣∣
g
. (4.26)

We also have the following derivation:

(∇ω)(X,Y )
∣∣
gη

= (∇ω)(π∗L(X), π∗L(Y ))
∣∣
gη

= (π∗∇ω) (L(X),L(Y ))
∣∣
g
, (4.27)

which implies that
π∗∇ω = ∇π∗ω , (4.28)

when acting on lifted vector fields L(TM) ⊂ TG.

4.2 Convolution

4.2.1 Definition

Consider a compact manifold M on which a compact Lie group G acts transitively. We
make the following

Definition 4.6. For any S ∈ T0
pM and any T ∈ T0

qM , we define the convolution S⊗ABT ∈
T0
p+qM , for AB = RL,LR, as

S ⊗AB T := πH (π∗S ⊗AB π∗T ) , (4.29)

where the convolution π∗S⊗ABπ∗T on the r.h.s. is the convolution defined on G in Def. 3.2.

In words, the convolution of two fields onM consists of first pulling them back to the group
manifold G, convolving them on G, averaging over the fiber H, then projecting the result
back down to M .

Recall that the πH -projection involves averaging over the fiber and projecting onto
the horizontal component. In fact, the averaging is not necessary as π∗S ⊗AB π∗T is
RH -invariant. To see this, we focus on the ⊗RL and ⊗LR convolutions separately.

For any h ∈ H we have

R∗h(π∗S ⊗RL π∗T ) =
∫
G
dg R∗hrgπ

∗S ⊗R∗hL∗g−1π∗T

=
∫
G
dg rgπ

∗S ⊗ L∗g−1R∗hπ
∗T

=
∫
G
dg rgπ

∗S ⊗ L∗g−1π∗T

= π∗S ⊗RL π∗T , (4.30)
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where from line 1 to 2 we used the fact that R∗hrg = rg (as rg already creates a right-
invariant field), and the fact that right and left pull-backs commute. From line 2 to 3 we
used the fact that any pulled-back field, e.g. π∗T , is RH -invariant.

For the ⊗LR convolution we have

R∗h(π∗S ⊗LR π∗T ) =
∫
G
dg R∗hlgπ

∗S ⊗R∗hR∗g−1π∗T

=
∫
G
dg R∗hlgπ

∗S ⊗R∗hg−1π∗T , (4.31)

using the fact that R∗gR∗g′ = R∗gg′ . In order to proceed we need to determine how R∗h and
lg commute. Consider some ω ∈ Ω1(G), then R∗hlgω evaluated at g′ ∈ G is

(R∗hlgω)
∣∣
g′

= (R∗h(lgω)
∣∣
g′h

)
∣∣
g′

= (R∗h(L∗
gh−1g′−1ω)

∣∣
g′h

)
∣∣
g′

= (R∗hL∗gh−1g′−1ω)
∣∣
g′

= (L∗
gh−1g′−1(R∗hω))

∣∣
g′

= (lgh−1R∗hω)
∣∣
g′
, (4.32)

where from line 1 to 2 we used the definition of lg in (3.16). In summary, R∗hlg = lgh−1R∗h.
This then means that

R∗h(π∗S ⊗LR π∗T ) =
∫
G
dg lgh−1R∗hπ

∗S ⊗R∗hg−1π∗T

=
∫
G
dg̃ lg̃R

∗
hπ
∗S ⊗R∗g̃−1π∗T

= π∗S ⊗LR π∗T , (4.33)

where from line 1 to 2 we changed integration variables to g̃ = gh−1.
Now that we have established the RH invariance of π∗S ⊗AB π∗T , we get the follow-

ing simplification of the convolution S ⊗AB T on M , when acting on test vector fields
X1, X2, . . . ∈ TM :

(S ⊗AB T )(X1, . . .) = (S ⊗AB T )(π∗L(X1), . . .)
= (π∗(S ⊗AB T ))(L(X1), . . .)
= (π∗πH(π∗S ⊗AB π∗T ))(L(X1), . . .)
= (HAH(π∗S ⊗AB π∗T ))(L(X1), . . .)
= (π∗S ⊗AB π∗T )(L(X1), . . .) , (4.34)

where we have used (4.10) in line 1, Def. 4.6 of the convolution on M from line 2 to 3, and
Def. 4.4 of πH from line 3 to 4. To get the final line we used the fact that the horizontal
projection H can be removed as the tensor is already acting on horizontal lifted vector
fields, and the fact that AH acts trivially as π∗S ⊗AB π∗T is RH -invariant.

In words, we have just shown that the convolution of two tensors, S and T on M , acts
on vector fields on M as the convolution of the pulled-back tensors, π∗S and π∗T on G, on
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the corresponding lifted vector fields. For the convolution of a pair of functions, f ∨AB f̃ ,
this simplifies to the statement that the value of f ∨AB f̃ at the point gη ∈M is equal to
the value of π∗f ∨AB π∗f̃ at any point in the fiber above gη.

4.2.2 Differentiation

In this section we will be concerned with the symmetrised covariant derivative of the
symmetrised convolution ∨AB. For our purposes, we only need to consider the convolution
S ∨AB T , where S and T are either both functions, or one of them is a function and the
other is a 1-form. The symmetrised covariant derivative of the convolution, ∇(S ∨AB T ),
is then either a 1-form or a symmetric (0, 2)-tensor respectively, and hence acts on either
one or two vector fields. We write (∇(S ∨AB T ))(X1, . . .), where X1, . . . ∈ TM , to cover
both these cases.

We have

(∇(S ∨AB T ))(X1, . . .) = (∇(S ∨AB T ))(π∗L(X1), . . .)
= (π∗∇(S ∨AB T ))(L(X1), . . .)
= (∇π∗(S ∨AB T ))(L(X1), . . .)
= (∇π∗πH(π∗S ∨AB π∗T ))(L(X1), . . .)
= (∇HAH(π∗S ∨AB π∗T ))(L(X1), . . .)
= (∇(π∗S ∨AB π∗T ))(L(X1), . . .) , (4.35)

where from line 2 to 3 we have used the fact that, for any function or 1-form U on M ,
π∗∇U = ∇π∗U when acting on lifted vector fields (see (4.28)). From line 5 to 6 we have
used (4.23) to remove the horizontal projection H. We also removed AH as it acts trivially
on the RH -invariant π∗S ∨AB π∗T .

We can now utilise the derivative rules for the convolution on G (Prop. 3.2 and
Prop. 3.3) to write

∇(π∗S ∨AB π∗T ) = ∇π∗S ∨AB π∗T = π∗S ∨AB ∇π∗T . (4.36)

If S is a function, we can use the fact that π∗ and ∇ commute on functions to write

∇π∗S ∨AB π∗T = π∗∇S ∨AB π∗T , (4.37)

and hence

(∇(S ∨AB T ))(X1, . . .) = (π∗∇S ∨AB π∗T )(L(X1))
= (∇S ∨AB T )(X1, . . .) , (4.38)

using (4.34) to get the last line. For the same reason, ∇ can be moved onto T if T is a
function. This establishes the analogue of Prop. 3.2 for the convolution on M .

The analogue of Prop. 3.3 is more complicated. Following Prop. 3.3 we take S ∈
Ω0(M) and T ∈ Ω1(M). From (4.36) we then have

(∇(S ∨AB T ))(X1, . . .) = (π∗S ∨AB ∇π∗T )(L(X1), . . .)

=
∫
G
dg (π∗S)(g)(B∗g−1∇π∗T )(L(X1), . . .) . (4.39)
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If we take B = L, i.e. we are considering the ∨RL convolution, then

(L∗g−1∇π∗T )(L(X1), . . .) = (∇π∗T )(Lg−1∗L(X1), . . .)

= (π∗∇T )(Lg−1∗L(X1), . . .)
= (L∗g−1π∗∇T )(L(X1), . . .) . (4.40)

To go from line 1 to 2 we have used the fact that the left push-forward of a lifted vector
field is still a lifted vector field (that is, it is horizontal and RH -invariant), and hence we
can apply (4.28) to commute ∇ and π∗. This then means that

(∇(S ∨RL T ))(X1, . . .) =
∫
G
dg (π∗S)(g)(L∗g−1π∗∇T )(L(X1), . . .)

= (π∗S ∨RL π∗∇T )(L(X1), . . .)
= (S ∨RL ∇T )(X1, . . .) , (4.41)

which establishes the analogue of Prop. 3.3 for the ∨RL convolution on M . From the
symmetry of ∨AB, we also have∇(T∨LRS) = ∇T∨LRS, where S ∈ Ω0(M) and T ∈ Ω1(M).

If we take B = R, i.e. we are considering ∇(S∨LRT ) with S ∈ Ω0(M) and T ∈ Ω1(M),
we cannot make the same simplification, as the right push-forward of a lifted vector field
is not a lifted vector field. It is not clear then whether the derivative rule ∇(S ∨LR T ) =
S ∨LR ∇T is true when S ∈ Ω0(M) and T ∈ Ω1(M). This potential asymmetry between
the LR- and RL-convolutions may be expected for a homogeneous space, as the manifold
M is identified with the left coset space {gH | g ∈ G}.

5 Discussion

We introduced convolution products for tensor fields on group manifolds and homoge-
neous spaces and demonstrated that for symmetric convolutions of scalars and 1-forms
they satisfy the usual (non-Leibniz) derivative rule. This followed from the observation
that group manifolds, and homogeneous spaces, come with a natural path-independent
notion of transporting tensors in a manner compatible with the covariant derivative. This
allowed us to apply the convolutions to the construction of double copy field dictionaries
for the BRST complex of graviton theory, considered to linear order in perturbation theory
on these background manifolds. The robustness under BRST transformations was shown
to follow from the convolution properties. We extended the construction to static universe
backgrounds by the addition of a time direction.

It was shown that the spin-2 gauge transformations of the free graviton are repro-
duced correctly via the convolution. However, one can also generate the dilaton and 2-
form Kalb-Ramond field, in the latter case by taking the two Yang-Mills BRST complexes
to be different. Moreover, p-forms are expected to appear in more general double-copy
constructible theories, particularly in the presence of supersymmetry. We leave the con-
struction of a convolution which can adequately describe these types of fields to future
work. Encouragingly, this was shown to exist in the simple case of the 2-sphere in [1].
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Another natural question is whether one can formulate the convolution on backgrounds
of cosmological interest, such as de Sitter (perhaps making use of the fact that it is foliated
by spheres in global coordinates, for which we already know how to define double copy
dictionaries), or anti-de Sitter, which would allow us to explore potential links to holog-
raphy. While these spacetimes are homogeneous they are not ultrastatic, and hence the
time-space split part of our prescription needs to be generalised before tackling these cases.
Additionally, anti-de Sitter has non-compact spatial slices, which necessitates a further
generalisation of our tensor convolution. Both of these hurdles, however, seem surmount-
able. One other important extension would be to construct the gravitational theories
to higher orders perturbatively on these backgrounds, as was done for flat backgrounds
in [6, 72, 73, 86]. Here one could exploit recent developments extending color-kinematics
duality to these spaces [80, 81].
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A Associativity

We first note the identities

R∗g R
∗
h = R∗gh , L∗g L

∗
h = L∗hg , (A.1)

for any g, h ∈ G. From the definition of rg, we can also see that, for any T ∈ T0
pG,

(rg rh T )
∣∣
g′

= R∗
g′−1g (rh T )g

= R∗
g′−1g R

∗
g−1h Th

= R∗
g′−1h Th

= (rh T )
∣∣
g′
, (A.2)

for any g, h ∈ G. Similarly,

(lg lh T )
∣∣
g′

= L∗
gg′−1 (lh T )g

= L∗
gg′−1 L∗hg−1 Th

= L∗
hg′−1 Th

= (lh T )
∣∣
g′
. (A.3)

That is, have the identities
rg rh = rh , lg lh = lh . (A.4)

We will also need the following identity:

rh L
∗
g−1 = L∗g−1 rg−1h , (A.5)
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which can be seen by considering the action of both the left and right sides of the above
equation on some (0, p)-tensor T . Take the l.h.s.:

(rh L∗g−1 T )
∣∣
g′

= R∗
g′−1h(L∗g−1 T )

∣∣
h

= R∗
g′−1hL

∗
g−1 Tg−1h , (A.6)

and then the r.h.s.:

(L∗g−1 rg−1h T )
∣∣
g′

= L∗g−1(rg−1h T )
∣∣
g−1g′

= L∗g−1 R∗g′−1gg−1h Tg−1h

= R∗
g′−1gg−1h L

∗
g−1 Tg−1h

= R∗
g′−1h L

∗
g−1 Tg−1h . (A.7)

We are now ready to prove the associativity of ⊗RL.

Proof.

S ⊗RL (T ⊗RL U) =
∫
G
dg rgS ⊗ L∗g−1(T ⊗RL U)

=
∫
G
dg rgS ⊗ L∗g−1

(∫
G
dh rhT ⊗ L∗h−1U

)
=
∫
G×G

dg dh rgS ⊗ L∗g−1rhT ⊗ L∗g−1L∗h−1U

=
∫
G×G

dg dh rgS ⊗ L∗g−1rhT ⊗ L∗h−1g−1U , (A.8)

where we have used the fact that the pull-back distributes onto both sides of a tensor
product. If we change integration variables from h to h̃ = gh, we get

S ⊗RL (T ⊗RL U) =
∫
G×G

dg dh̃ rgS ⊗ L∗g−1rg−1h̃T ⊗ L
∗
h̃−1U

=
∫
G×G

dg dh̃ rgS ⊗ rh̃L
∗
g−1T ⊗ L∗h̃−1U

=
∫
G×G

dg dh̃ rh̃

(
rgS ⊗ L∗g−1T

)
⊗ L∗

h̃−1U

=
∫
G
dh̃ rh̃

(∫
G
dg rgS ⊗ L∗g−1T

)
⊗ L∗

h̃−1U

= (S ⊗RL T )⊗RL U . (A.9)

A similar calculation can be done to prove the associativity of ⊗LR.

B Levi-Civita connection on M

For clarity, in this appendix we denote the bi-invariant metric on G as g̃, and the cor-
responding Levi-Civita connection on G as ∇̃. Recall that bi-invariance of g̃ means that
L∗gg̃ = R∗g′ g̃ = g̃, for any g, g′ ∈ G.
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g̃ induces a metric, g, on the base spaceM in the following way. For any point gη ∈M ,
and any Xgη, Ygη ∈ TgηM , we find the horizontal lifts L(X)g,L(Y )g ∈ TgG, and define

g(Xgη, Ygη) := g̃(L(X)g,L(Y )g) . (B.1)

Crucially, the r.h.s. is independent of the point g in the fiber above gη. This follows from
the right-invariance of g̃ and the RH -invariance of the horizontal lifts.

The left action of G on M , σg : M → M , x → σg(x) = gx = gg′η (for any g′ ∈ G
such that g′η = x), is a diffeomorphism of M . Given the corresponding pull-back, σ∗g , we
say that g is G-invariant if σ∗gg = g for all g ∈ G. For completeness, we note the following

Proposition B.1. The induced metric, g, is G-invariant.

Proof. First, consider the pull-back σ∗g acting on a function f ∈ Ω0(M). For some point
g′η ∈M we have

(σ∗gf)(g′η) = f(σg(g′η))
= f(gg′η)
= (π∗f)(gg′)
= (L∗gπ∗f)(g′) . (B.2)

We also have
(σ∗gf)(g′η) = (π∗σ∗gf)(g′) , (B.3)

and hence
π∗σ∗gf = L∗gπ

∗f , (B.4)

for any g ∈ G and any function f ∈ Ω0(M). Following the definition of the push-forward
π∗ on a vector field X ∈ TG, one can verify that

σg∗π∗X = π∗Lg∗X . (B.5)

Similarly, for any T ∈ T0
pM , one finds

π∗σ∗gT = L∗gπ
∗T . (B.6)

Now, consider some g′ ∈ G, and two vectors Xg′η, Yg′η ∈ Tg′ηM . We have

(σ∗gg)(Xg′η, Yg′η) = (σ∗gg)((π∗L(Xg′η)g′)g′η, (π∗L(Yg′η)g′)g′η)

= (π∗σ∗gg)(L(Xg′η)g′ ,L(Yg′η)g′)

= (L∗gπ∗g)(L(Xg′η)g′ ,L(Yg′η)g′)

= (π∗g)((Lg∗L(Xg′η)g′)gg′ , (Lg∗L(Yg′η)g′)gg′) , (B.7)

where we have used (4.10) in line 1. We then note that Lg∗L(X) is horizontal for any
X ∈ TM , and that, for any horizontal X̃g, Ỹg ∈ HTgG,

(π∗g)(X̃g, Ỹg) = g̃(X̃g, Ỹg) , (B.8)
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which can be seen as follows:

(π∗g)(X̃g, Ỹg) = g(π∗X̃g, π∗Ỹg)
= g̃(L(π∗X̃g))g,L(π∗Ỹg))g)

= g̃(HX̃g,HỸg) ,
= g̃(X̃g, Ỹg) , (B.9)

where line 2 follows from the definition of g, and line 3 follows from (4.11), and line 4 follows
from the fact that X̃g and Ỹg are already horizontal. Following the last line in (B.7), this
implies that

(σ∗gg)(Xg′η, Yg′η) = g̃((Lg∗L(Xg′η)g′)gg′ , (Lg∗L(Yg′η)g′)gg′)

= g̃(L(Xg′η)g′ ,L(Yg′η)g′)

= g(Xg′η, Yg′η) , (B.10)

where line 2 follows from the left-invariance of g̃, and line 3 follows from the definition
of g.

∇̃ is torsionless and compatible with g̃. Respectively,

T̃ (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] = 0 , (B.11)
(∇̃X g̃)(Y, Z) = X

(
g̃(Y,Z)

)
− g̃(∇̃XY,Z)− g̃(Y, ∇̃XZ) = 0 , (B.12)

for any X,Y, Z ∈ TG. Using the above, and the definitions of g and ∇, we now show that

Proposition B.2. ∇ is torsionless. That is, for any X,Y ∈ TM ,

T (X,Y ) = ∇XY −∇YX − [X,Y ] = 0 . (B.13)

Proof. Take any g ∈ G and the corresponding base point gη ∈ M . Using the definition of
∇ we have

∇XY
∣∣
gη
−∇YX

∣∣
gη

= π∗
(
∇̃L(X)L(Y )

∣∣
g
− ∇̃L(Y )L(X)

∣∣
g

)
= π∗

(
[L(X),L(Y )]

∣∣
g

)
, (B.14)

where the last line follows from the torsionlessness of ∇̃. Given that π is a submersion,
the vector

[L(X),L(Y )]− L([X,Y ]) , (B.15)

is vertical [88] (Lemma 3.54 ), and hence it vanishes under π∗. This implies that

π∗
(
[L(X),L(Y )]

∣∣
g

)
= π∗L

(
[L(X),L(Y )]

)∣∣
gη

= [X,Y ]
∣∣
gη
, (B.16)

using (4.10) to get the last line. We have just shown that

∇XY
∣∣
gη
−∇YX

∣∣
gη

= [X,Y ]
∣∣
gη
, (B.17)

and hence T (X,Y ) = 0.

– 35 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
7

Next, we show that

Proposition B.3. ∇ is compatible with the metric g. That is, for any X,Y, Z ∈ TM ,

(∇Xg)(Y, Z) = X
(
g(Y,Z)

)
− g(∇XY, Z)− g(Y,∇XZ) = 0 . (B.18)

Proof. We first note that, for any g ∈ G, any X1, . . . , Xp ∈ TM , and any T ∈ T0
pM ,

π∗
(
T (X1, . . . , Xp)

)∣∣
gη

= (π∗T )(L(X1), . . . ,L(Xp))
∣∣
g
, (B.19)

where the l.h.s. is the pull-back of the function T (X1, . . . , Xp) on M . For any X,Y ∈ TM ,
we can then use (B.8) to write the pull-back of the function g(X,Y ) on M as

π∗
(
g(X,Y )

)∣∣
gη

= g̃(L(X),L(Y ))
∣∣
g
. (B.20)

In (B.18) we can then write

X(g(Y,Z))
∣∣
gη

= π∗L(X)(g(Y, Z))
∣∣
gη

= L(X)
(
π∗
(
g(Y, Z)

))∣∣∣
g

= L(X)
(
g̃(L(X),L(Y ))

)∣∣
g
. (B.21)

Focussing on the next term in (B.18) we have

g(∇XY,Z)
∣∣
gη

= g(π∗∇̃L(X)L(Y ), π∗L(Z))
∣∣
gη

= (π∗g)
(
H∇̃L(X)L(Y ),L(Z)

)∣∣
g

= g̃
(
H∇̃L(X)L(Y ),L(Z)

)∣∣
g

= g̃
(
∇̃L(X)L(Y ),L(Z)

)∣∣
g
, (B.22)

where to get line 1 we use the definition of ∇ and (4.10), to get line 3 we use (B.8), and to
get the last line we have used the fact that L(Z) is horizontal, and therefore is orthogonal
(with respect to the metric g̃) to any vertical component of ∇̃L(X)L(Y ). For the last term
in (B.18) we similarly find

g(Y,∇XZ)
∣∣
gη

= g̃
(
L(Y ), ∇̃L(X)L(Z)

)∣∣
g
. (B.23)

Putting it all together we find

(∇Xg)(Y,Z)
∣∣
gη

= X
(
g(Y,Z)

)∣∣
gη
− g(∇XY,Z)

∣∣
gη
− g(Y,∇XZ)

∣∣
gη

= L(X)
(
g̃(L(X),L(Y ))

)∣∣
g

− g̃
(
∇̃L(X)L(Y ),L(Z)

)∣∣
g
− g̃

(
L(Y ), ∇̃L(X)L(Z)

)∣∣
g

= (∇̃L(X)g̃)(L(Y ),L(Z))
∣∣
g

= 0 , (B.24)

by the compatibility of ∇̃ with g̃.
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