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1 Introduction

A new non-perturbative approach for the computation of the correlation functions of single-
trace operators in the N = 4 supersymmetric Yang-Mills theory has been developed in
the past five years [1–6]. The method, mostly referred to as hexagonalisation, is based
on the world-sheet integrability of N = 4 SYM [7]. The hexagonalisation prescribes to
decompose the correlation function into elementary blocks called hexagon form factors,
or shortly hexagons, which are almost uniquely determined by the huge symmetry of the
theory. Being formulated in terms if infinite-volume form factors, the prescription involves
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divergencies and, in spite of some important progress [8], it still awaits an appropriate
regularisation procedure.

Remarkably, a class of four-point functions of half-BPS operators with large R-charges
and specially tuned polarisations, discovered in [9, 10], are free of divergencies and can
be evaluated exactly for any value of the ’t Hooft coupling. In these correlation functions
the hexagons couple only pairwise. The composite form factors representing two paired
hexagons, named octagons, completely factorise. The factorisation was shown to take place
in all orders of the 1/Nc expansion [11]. If there are ` propagators sandwiched between the
two hexagons, one speaks of octagon with bridge `.

The two constituent hexagons are bound by exchanging virtual particles in the mirror
channel. In [12, 13], the octagon was represented as a Fredholm pfaffian and was also given
a more tractable representation as the pfaffian of a discrete kernel K representing a complex
semi-infinite anti-symmetric matrix Km,n with m,n ≥ 0. It was also conjectured that the
octagon kernel can be rotated to a simplified kernel

◦
K which is a real half-sparse matrix

and as such can be split into two equivalent diagonal blocks. Based on this conjecture,
the pfaffian was expressed as the determinant of one of the blocks. The simplified kernel
◦
K was defined in [13] by its perturbative series and then non-perturbatively in [14–16].
This second representation of the octagon allowed the authors of [14–16] to reformulate
the latter as Fredholm determinant of a generalised Bessel kernel, for which powerful math-
ematical methods have been developed previously. However the existence of a similarity
transformation turning K into

◦
K has not been established. One of the goals of this paper

is to construct explicitly such a transformation.1

The octagon is the simplest of a family of computable observables in N = 4 SYM, such
as the cusp anomalous dimension [17] and the MHV six-gluon amplitude in the collinear [18]
and close-to-the origin [19] limits. As emphasised in [19], these objects exhibit similar
mathematical structures involving semi-infinite matrices.

In this paper we propose an operator description for the octagon based on a pair
of complex fermionic fields, ψ(x) and ψ∗(x), with the holomorphic variable x being the
Zhukovsky parametrisation of the rapidities of the virtual particles. Similar descriptions
exist for all observables mentioned above. Below we present, for reader’s convenience, a
short summary of our main results.

The operator formalism proposed here is a Fock space realisation of the description
with real fermions presented in [13]. The Fock space for the complex fermions is a direct
sum of sectors characterised by the U(1) charge of the vacuum or, in other words, by the
level of filling of the Dirac sea. The octagon with bridge ` is constructed as the expectation
value of a product of exponential operators in the sector of charge `,

O` = 〈 `| exp
[1

2ψKψ

]
exp

[
−1

2ψ
∗Cψ∗

]
|` 〉, (1.1)

1While we were working on this manuscript, we learned that Andrey Belitsky and Gregory Korchemsky
found another solution for the similarity transformation, to be published as appendix to v2 of [16]. We
comment on their solution in our appendix B. The two solutions are related by a transformation which
leaves the kernel K invariant.

– 2 –



J
H
E
P
0
6
(
2
0
2
1
)
0
9
8

K is the octagon kernel and C is a standard quasi-diagonal symplectic matrix. The right
exponential imposes non-trivial correlation of the modes of ψ and resembles the operators
of boundary states in CFT, hence the notation

| ` 〉〉 def= exp
[
−1

2ψ
∗Cψ∗

]
|` 〉. (1.2)

As the two exponents contain either two creation operators, or two annihilation opera-
tors, the U(1) charge is not preserved and the expectation value is given by a Fredholm
pfaffian [13].

The Fock-space realisation (1.1) gives a nice interpretation of the bridge as an operator
composed of the ` lowest fermion oscillator modes. Based on this we show that the octagon
with non-zero bridge ` is obtained by multiplying the octagon with ` = 0 by a pfaffian of
a 2`× 2` matrix of fermionic correlators.

We give an explicit solution for the similarity transformation mentioned above and
explore its consequences for the fermionic oscillator model. For any ` ≥ 0, the similarity
transformation acts only on the oscillators ψn, ψ∗n above the Fermi level, n ≥ `, by a
semi-infinite matrix U`,

ψ̃j =
∑
k≥`

[U`]jk ψk, ψ̃∗j =
∑
k≥`

[U−1]kjψ∗k , j ≥ ` . (1.3)

The canonical transformation (1.3) preserves the matrix C and transforms the octagon
kernel K into the simplified kernel

◦
K. We will give its explicit formula for any `, but what

is important is the very fact of its existence. The operator expression for the octagon then
takes the form

O` = 〈 `| exp
[1

2ψ
◦
Kψ

]
exp

[
−1

2ψ
∗Cψ∗

]
|` 〉. (1.4)

Here we replaced {ψ̃, ψ̃∗} by {ψ,ψ∗}, as the existence of a transformation (1.3) for any
` then guarantees that the vacuum states have the same form for the original and the
transformed fermions.

Both the simplified kernel
◦
K and the matrix C relate only modes of different parity.

Thanks to this property, half of the modes in (1.4) can be eliminated and the resulting
operator expression is exponential of a fermion bilinear which, unlike the exponential oper-
ators in (1.4), preserves the U(1) charge. This leads to the Fredholm determinant formula
for the octagon and to finite determinant relations between octagons with different bridges.

For even/odd bridge we expressed the octagon as an expectation value in the Fock
space built on the odd/even oscillators, ψe

j = ψ2j , ψ
∗e
j = ψ∗2j and ψo

j = ψ2j+1, ψ
∗o = ψ∗2j+1,

O` =

〈m, o| e−ψ
oKooψ∗o |m, o 〉 = det[(1−Koo)≥m] if ` = 2m,

〈m, e|e−ψe Keeψ∗e |m, e 〉 = det[(1−Kee)≥m] if ` = 2m− 1.
(1.5)

The vacuum states |m, o 〉 and |m, e > in (1.5) are the standard vacuum vectors of charge
m respectively for the ensembles of odd and the even oscillator modes. By Kee and Koo we
denoted respectively the even-even and the odd-odd blocks of the block diagonal product
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◦
KC = Kee ⊕Koo and 1 stays for the identity matrix. Finally, for any semi-infinite matrix
A = {Ai,j}i,j≥0, the symbol (A)≥m denotes the semi-infinite matrix obtained by deleting
the first m rowes and columns, (A)≥m = {Ai,j}i,j≥m. The determinants in (1.5) are
equivalent to those formulated in [13, 14], only the matrix elements are indexed differently.

The operator representations in the form (1.5) give rise tom×m determinant identities,
presented in section 4, which relate the octagons with finite bridge ` = 2m− 1 or ` = 2m
to the octagon with zero bridge. Hence the ratio O2m and O0 as an m×m determinant,

O2m
O0

= det [(1 + Roo)<m] , O2m−1
O0

= det
[
(1 + Ree)<m

]
, (1.6)

where Rαα are the even (α = e) and odd (α = o) resolvent matrices

Ree = Kee

1−Kee , Roo = Koo

1−Koo , (1.7)

and the symbol (A)<m denotes the m × m diagonal block {Ai,j}0≤i,j≤m−1 of the semi-
infinite matrix A. For example,

O2
O0

= 1 + Roo
0,0,

O1
O0

= 1 + Ree
0,0,

O3
O0

= (1 + Ree
0,0)(1 + Ree

1,1)− Ree
0,1Ree

1,0,

O4
O0

= (1 + Roo
0,0)(1 + Roo

1,1)− Roo
0,1Roo

1,0.

(1.8)

The organisation of the paper is as follows. In section 2 we derive, starting from the
expression of the octagon as a sum over virtual particles, the operator representation in
terms of fermion oscillators. From the fermionic representation we re-derive the expression
for the octagon as semi-infinite pfaffian found in [13] as well as new finite pfaffian formulas
relating octagons with different bridges. In section 3 we give an explicit expression for the
similarity transformation U` relating the original and the improved octagon kernels for
any `. The details of the proof are relegated to appendices A and C. For ` = 0, we give an
alternative exponential expression for the similarity transformation, the derivation of which
is presented in appendix D. In section 4 we derive the operator representations (1.5) and
the finite determinant formulas that follow from them. Section 5 contains some comments
on the results.

2 The octagon from free fermions

2.1 The sum over virtual particles as a Coulomb gas

The role of this subsection is to remind the notations and make the presentation self-
consistent. The octagon O` = O`(z, z̄, α, ᾱ) is characterised by four points x1, . . . , x4 in the
Euclidean space and four polarisations y1, . . . , y4, as well as by the length ` of the bridge
separating the two hexagons which should be crossed by the virtual particles. The bridge
summarises the effect of a stack of ` tree-level propagators connecting the operators O1 and
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O4. The octagon is also a function of the ’t Hooft coupling g. The trivial dependence of the
(large) R-charges of the four half-BPS operators is factored out. Thanks to the conformal
symmetry, the dependence on xi, yi is only through the cross ratios in the coordinate and
in the flavour spaces

zz̄ = x2
12x

2
34

x2
13x

2
24
, (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
,

αᾱ = y2
12y

2
34

y2
13y

2
24
, (1− α)(1− ᾱ) = y2

14y
2
23

y2
13y

2
24
.

(2.1)

where x2
ij = (xi − xj)2, y2

ij = (yi − yj)2 and y2
i = 0. For the cross ratios in the Euclidean

space we adopt the exponential parametrisation

z = e−ξ+iφ, z̄ = e−ξ−iφ, α = eϕ−ξ+iθ, ᾱ = eϕ−ξ−iθ. (2.2)

The parameters φ and ξ, respectively ϕ and θ, characterise the rotation aligning the two
hexagons in the Euclidean, respectively flavour, space. We consider Euclidean metric where
the angle φ is real. In Minkowski space the angle φ should be taken complex, φ = π + iy

with y real.
The octagon represents two hexagons glued together by inserting a complete set of

virtual states in the Hilbert space associated with the common mirror edge. An n-particle
virtual state is characterised by the rapidities ui and the bound-state numbers ai of its par-
ticles. The contribution of such virtual state factorises into one-particle factors Waj (uj)
and two-particle interactions Waj ,ak(uj , uk) accounting for the hexagon weights. The oc-
tagon thus is expanded as a series of multiple integrals with integrand given by a product
of local and bi-local weights [9]

O` = 1
2
∑
±

∞∑
n=0

1
n!

∑
a1,...,an≥1

∫ n∏
j=1

duj
2πi W

±
aj (uj)

n∏
j<k

Waj ,ak(uj , uk). (2.3)

Bi-local weights. The bi-local weights are defined in terms of a single function

W (u, v) = x(u)− x(v)
x(u)x(v)− 1 (2.4)

where the function x(u) is defined by the Zhukovsky map

u/g = x+ 1/x (2.5)

transforming the physical sheet in the rapidity plane into the exterior of the unit circle.
Namely

Wa,b(u,v) =W

(
u+ i

2a,v+ i

2b
)
W

(
u+ i

2a,v−
i

2b
)
W

(
u− i2a,v+ i

2b
)
W

(
u− i2a,v−

i

2b
)
.

(2.6)
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Local weights. The one-particle factors are

W±a (u, ξ) = 1
g

(−1)a χ±a Ω`

(
u+ i

2a, ξ
)

Ω`

(
u− i

2a, ξ
)
×W

(
u+ i

2a, u−
i

2a
)
. (2.7)

where

Ω`(u, ξ) = 1
x`

eigξ [x−1/x]

x− 1/x = g
eigξ [x−1/x]

x`
d log x
du

, (2.8)

χ±a is essentially the character of the a-th antisymmetric representation of psu(2|2)

χ±a (φ, ϕ, θ) = (−1)a sin(aφ)
sinφ [2 cosφ− 2 cosh(ϕ± iθ)] . (2.9)

For simplicity we will assume that θ = 0. The function Ω`(u, ξ) reflects the form of the
momentum and the energy of the mirror magnons as functions of the rapidity u,

p̃a(u) = 1
2g
(
x− 1

x

)
u+ia/2

+ 1
2g
(
x− 1

x

)
u−ia/2

,

Ẽa(u) = log x|u+ia/2 + log x|u−ia/2.
(2.10)

The psu(2|2) characters are determined by the generating function

W(t) = 1 +
∞∑
a=1

(−1)aχa e−at = 1− coshϕ− cosφ
cosh t− cosφ . (2.11)

2.2 Free complex fermions

The fermionic representation we give here was sketched in [20]. Let us first give our
conventions, mostly following the conventions of [21], with ψhere = ψ∗there, ψ∗here = ψthere.
The pair of fermionic fields is defined as

ψ(x) =
∑
n∈Z

ψnx
−n, ψ∗(x) =

∑
n∈Z

ψ∗n x
n,

[ψm, ψ∗n]+ = δm,n, m, n ∈ Z.
(2.12)

The operators ψn, ψ∗n act in the standard fermionic Fock space H, which splits as a sum of
Fock spaces with given U(1) charge `,

H = ⊕
`∈Z
H`. (2.13)

The Fock space H` is built on the highest-weight state |` 〉 and its dual 〈`|, constructed for
` ≥ 0 as

〈`| = 〈0|
`−1∏
n=0

ψn, |`〉 =
`−1∏
n=0

ψ∗n|0〉. (2.14)

The two vacua satisfy
ψ∗n|`〉 = 0, 〈`|ψn = 0 (n < `),
〈`|ψ∗n = 0, ψn|`〉 = 0 (n ≥ `).

(2.15)
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The non-vanishing correlators are

〈`|ψmψ∗n|`〉 =

δm,n if m ≥ `,
0 if m < `

(2.16)

and the two-point function is

G(x, y) ≡ 〈`|ψ(x) ψ∗(y)|`〉|y|<|x| = (y/x)`

1− y/x. (2.17)

The correlation function of a product of fermions is given by the determinant of the two-
point correlators.

In [13], the bi-local weights in the expansion (2.3) of section 1 were expressed in terms
of the two-point function of the field ψ(x) whose form was postulated. On the present
interpretation the two-point function of the field ψ results from replacing the right vacuum
by a coherent state2

| ` 〉〉 def= e−
1
2ψ
∗Cψ∗ |` 〉, ψ∗Cψ∗ =

∑
m,n≥0

ψ∗mCmnψ
∗
n (2.18)

where C is the skew-symmetric matrix with elements

Cm,n = δm+1,n − δm,n+1 (m,n ≥ 0). (2.19)

For the action of the fermionic oscillators ψn on the coherent state one obtains

(ψm + [Cψ∗]m) | ` 〉〉 = 0 , m ≥ ` . (2.20)

With the ket vacuum replaced by the coherent state, the ψ-oscillators have a non-vanishing
correlation

〈 `|ψmψn| ` 〉〉 = Cm,n (2.21)

and their two-point function takes the desired form in the x-representation3

〈`| ψ(x)ψ(y)| ` 〉〉 =
∑
m,n≥`

Cmn x
−my−n = (xy)−` x− y

xy − 1 . (2.22)

As in any ensemble of fermions, the 2n-point correlator is the pfaffian of the matrix of the
two-point correlators:

〈 ` |ψ(x1) . . . ψ(x2n)| ` 〉〉 = Pf

[ 1
(xjxk)`

xj − xk
xjxk − 1

]2n

i,j=1

 =
2n∏
i=1

1
x`i

2n∏
j<k

xj − xk
xjxk − 1 . (2.23)

2I.K. is obliged to Y. Matsuo for a discussion on this way to introduce fermions.
3eq. (2.18) gives a fermionic operator realisation of the twisted vertex operators introduced in [13],

〈`| ψ(x)ψ(y)| ` 〉〉 = 1
(xy)`

x− y
xy − 1 = 〈0| : eφ(x) :: eφ(y) : e− √̀2

q̂|0〉.

The r.h.s. represents an expectation on the bosonic vacuum, with φ(x) = 1√
2 (ϕ(x) − ϕ(1/x)), where

ϕ(x) being the standard bosonic oscillator with mode expansion ϕ(x) = q̂ + p̂ log x −
∑

n 6=0
Jn
n
x−n with

[Jn, Jm] = nδn+m,0, [p̂, q̂] = 1, and the action of the bosonic oscillators on the bosonic vacua is
〈 0|Jn<0 = 〈 0|q̂ = J>0|0 〉 = p̂|0 〉 = 0.

– 7 –
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Applying (2.23), we can sum up the expansion (2.3). For that we take the fermion in
the rapidity plane by replacing x→ x(u) in the expansion (2.12). A virtual particle of type
a is represented by the fermion pair ψ[x(u + ia/2)]ψ[x(u − ia/2)]. Its expectation value
yields the last factor in local weights (2.7). All the bi-local weights are nicely reproduced
by the correlation functions of these fermion pairs and the expansion takes the form

O` =
∞∑
n=0

g−n

n!
∑

a1,...,an≥1

∫ n∏
j=1

duj
2πi (−1)aj χaj Ω0

(
uj + 1

2 iaj , ξ
)

Ω0

(
uj −

1
2 iaj , ξ

)

× 〈 ` |
n∏
j=1

ψ

[
x

(
uj + 1

2 iaj
)]

ψ

[
x

(
uj −

1
2 iaj

)]
| ` 〉〉.

(2.24)

The series (2.24) sums up into an exponential,

O` = 〈 ` |e
1
2ψKψ| ` 〉〉,

ψKψ = 2
g

∑
a≥1

(−1)aχa(φ, ϕ, θ)
∫
R

du

2πi [Ω0ψ]u+ia/2[Ω0ψ]u−ia/2.
(2.25)

By Fourier transformation the summation in a is separated and gives the generating func-
tion (2.11) as a function of the Fourier variable t. The Fourier transforms of the two factors
in (2.25) are given by integrals over real variables u and v running below and above the
real axis respectively. They are transformed into contour integrals in Zhukovsky variables
x(u) and y(v) which can be deformed to integrals on the unit circle imposing a bound from
below on the t-integration

O` = 〈 ` | exp
(1

2
1

(2πi)2

∮
dx

x

∮
dy

y
ψ(x)K(x, y)ψ(y)

)
|` 〉〉,

K(x, y) = 2 eigξ (x− 1
x

+y− 1
y

)
g

∫ ∞
|ξ|

dt sin
[
gt

(
x+ 1

x
− y − 1

y

)]
X(t) ,

X(t) = cosφ− cosh ξ
cosφ− cosh t .

(2.26)

In terms of the fermionic oscillators the quadratic form is represented by the semi-infinite
matrix K = {Km,n}m,n≥0. Using the integration formula

1
2πi

∮
dx

x
x−n eigξ(x−1/x)±igt(x+1/x) =

(
i

√
t+ ξ

t− ξ

)±n
Jn

(
2g
√
t2 − ξ2

)
θ(t± ξ). (2.27)

where the contour integration goes along the unit circle, the discrete kernel K can be
expressed in terms of Bessel finctions,

O` = 〈 ` | exp

1
2
∑

m,n≥0
ψmKm,nψn

 |` 〉〉, (2.28)

Km,n = g

i

∫ ∞
|ξ|

dt X(t)

(i√ t+ ξ

t− ξ

)m−n
−
(
i

√
t+ ξ

t− ξ

)n−m
× Jm

(
2g
√
t2 − ξ2

)
Jn

(
2g
√
t2 − ξ2

)
, (2.29)

For vacuum states of charge `, the sum in the exponential in (2.28) is effectively restricted
to m,n ≥ `.
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2.3 Pfaffian formula for the octagon

The computation of the expectation value (2.28) is straightworward and reproduces the
pfaffian formula of [13],

O` = Pf
(

C≥` 1
−1 −K≥`

)
= exp

(1
2Tr log

[
1−C≥`K≥`

])
. (2.30)

In this expression the semi-infinite matrices C≥` and K≥` are obtained from C and K
by deleting the first ` rows and columns.4 For example, K≥` = {Km,n}m,n≥`. The r.h.s.
of (2.30) is defined rigorously by first truncating the semi-infinite matrices C≥` and ,K≥`
to N × N matrices5 and then taking the limit N → ∞. The limit is convergent for any
finite g because Km,n decay exponentially when m,n → ∞. A more direct derivation of
the pfaffian is based on the formulation of the expectation value as an integral over the
Grassmann variables [22],

O` =
∫ ∏

m≥`
dζmdζ

∗
m eS(ζ,ζ∗),

S(ζ, ζ∗) = −1
2
∑
m,n≥`

ζmCm,nζn +
∑
n≥`

ζ∗nζn + 1
2
∑
m,n≥`

ζ∗mKm,nζ
∗
n.

(2.31)

2.4 Finite pfaffian relations

Take the operator representation of the octagon with bridge `, eq. (2.28) and consider the
right and left vacua as the result of the action of the ` lowest fermion oscillators as in
eq. (2.14),

O` = 〈 0|ψ1 . . . ψ`−1 e
1
2ψKψ e−

1
2ψ
∗Cψ∗ ψ∗`−1 . . . ψ

∗
0|0 〉. (2.32)

Hence one can obtain O` by inserting in the expectation value for O0 an operator creating
` pairs of fermions,

O` = 〈 0|e
1
2ψKψ B` | 0 〉〉, B` = ψ1 . . . ψ`−1ψ

∗
`−1 . . . ψ

∗
0. (2.33)

This can be used to derive an expression for the octagon with bridge ` in terms of the
expectation value of the operator B`,

O`

O0
= 〈B` 〉, (2.34)

where the expectation value of an operator O is defined as

〈O 〉 def= 〈 0|e
1
2ψKψ O |0 〉〉

〈 0|e
1
2ψKψ |0 〉〉

. (2.35)

4Of course C≥`
and C are identical as matrices, but considered as functions of two discrete variables

they are related by a shift by ` in both arguments.
5If the semi-infinite matrix is truncated to a N × N -dimensional matrix, there will be an extra sign

factor (−1)N(N−1)/2 multiplying the pfaffian.
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As any expectation value of free fermions, 〈B`〉 is equal to the pfaffian of the two-point
correlation functions of the fermions involved. A direct calculation gives, for
j, k = 0, 1, 2, . . .,

〈ψ∗jψ∗k 〉 = −[K(1 + R)]j,k,
〈ψjψ∗k 〉 = [1 + R]j,k,
〈ψ∗jψk 〉 = −[1 + R]k,j ,
〈ψjψk 〉 = [(1 + R)C]j,k

(2.36)

where
R = CK

1−CK . (2.37)

The matrix of all correlators is the inverse of the quadratic form in the representation as
integral over grassman variables, as it should,(

(1 + R)C 1 + R
−(1 + R)T −K(1 + R)

)
=
(
−K −I
I C

)−1

. (2.38)

Now we can express the ratio O`/O0 as an 2`× 2` pfaffian

O`

O0
= (−1)

`(`−1)
2 Pf

[(
(1 + R)C 1 + R
−(1 + R)T −K(1 + R)

)
<`

]
. (2.39)

Here we introduced the symbol X<` which represents the truncation of the semi-infinite
matrix X to an ` × ` matrix {Xm,n}0≤m,n<`. The truncation is applied to all four blocks
of the matrix.

We have checked the finite pfaffian relation (2.39) for ` ≤ 4 up to g16. As another-
consistency check let us consider the limit ` → ∞ where O` → 1. Then after taking into
account (2.38), the identity (2.39) reproduces the original pfaffian formula (2.30) for ` = 0.

An obvious generalisation of (2.39) relates two octagons with bridges ` < `1,

O`1

O`
= (−1)

(`1−`)(`1−`−1)
2 Pf


 (1 + R≥`)C≥` 1 + R≥`

−1−RT
≥`

−K≥`(1 + R≥`)


<`1

 . (2.40)

In particular, the octagons with bridges ` and `+ 1 are related as

O`+1
O`

=
[

1
1−C≥`K≥`

]
`,`

(2.41)

which provides a factorised form for the relation (2.39).

3 The similarity transformation

3.1 The original and the simplified octagon kernels

In this section we give explicit expression for the similarity transformation relating the
original and the simplified octagon kernels, which corresponds to the canonical transfor-
mation (1.3) of the fermion oscillators. The operator representation based on the new set
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of oscillators has the advantage that it preserves the U(1) charge and therefore leads to a
determinant instead of a pfaffian.

In this subsection we remind the definition of the two kernels. It is convenient to
change the variables in (2.29) as

ξ ≡ σ

g
, t ≡ 1

g

√
τ2 + σ2. (3.1)

so that the integration now spreads on the whole positive real axis and the dependence on
the ’t Hooft coupling is carried only by the weight function X. In the new variables, the
weight function takes the form

χ(τ, σ) ≡ X
(√

τ2 + σ2

g

)
= cosφ− coshϕ

cosφ− cosh
√
τ2+σ2

g

(3.2)

and the integral formula for the matrix elements (2.29) becomes

Km,n = 2
∫ ∞

0
dτ χ(τ, σ) Km,n(τ ;σ) (m,n ≥ 0), (3.3)

with

Km,n(σ, τ) = Πm−n(σ/τ) Jm(2τ) Jn(2τ), (3.4)

Πn(z) def=
in
(√

z2 + 1 + z
)n
− i−n

(√
z2 + 1− z

)n
2i
√
z2 + 1

= −Π−n(z). (3.5)

Importantly, Πn is a polynomial,

Π0(z) = 0, Π1(z) = 1,Π2(z) = 2iz, Π3(z) = −1− 4z2, etc. (3.6)

It equals the (n − 1)-th Chebyshev polynomial of second kind with imaginary argument.
We give the explicit expression for the coefficients of this polynomial, which will be needed
in the following,

Πn(z) = Un−1(iz) =
n−1∑
p=0

sin π n−p2 A(p)
n

(−iz)p

p! (n ≥ 1) (3.7)

with

A(p)
n = (−2)p

Γ
[

1
2(n+ 1 + p)

]
Γ
[

1
2(n+ 1− p)

] . (3.8)

Summarising, the integrand in (3.3) is given by a sum of products of Bessel functions,

Km,n(τ ;σ) =
|m−n|−1∑
j=0

1− (−1)m−n−j

2 A
(j)
m−n

(iσ)j

j!
im−n−1+j Jm(2τ) Jn(2τ)

τ j
. (3.9)

The octagon kernel (3.3) depends on the cross ratios of the spacetime coordinates (the
parameters σ and φ) through the weight function χ and also through the polynomials
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Πm−n(σ/τ). It was noticed [13] that the second dependence is redundant in the sense that
only the constant terms Πm−n(0) = sin(m−n2 π) of these polynomials contribute. Based on
this observation, it was conjectured that in the pfaffian formula (2.30), the kernel K can be
replaced with a simplified kernel whose matrix elements

◦
Km,n are real and vanish if m and

n have the same parity. The last property implies that the pfaffian (2.30) can be written
as a determinant. The simplified kernel was found as a perturbative series in [13] and in
integral form in [15],

◦
Km,n = 2

∫ ∞
0

dτ χ(τ, σ)
◦
Km,n(τ) (m,n ≥ 0)

◦
Km,n(τ) = sin

(
m− n

2 π

)
Jm(2τ) Jn(2τ),

(3.10)

where χ(τ, σ) is the weight function defined in (3.2).
The conjecture of [13] states, with the interpretation of the bridge we adopted here, that

for any ` ≥ 0, the matrices C≥`K≥` and C≥`
◦
K≥` are related by a similarity transformation.

(We remind that X≥` denotes the matrix X with its first ` rows and columns deleted.) This
is equivalent to claiming that there exists a symplectic transformation preserving C and
relating K≥` and

◦
K≥` ,

C≥`K≥` = U−1
` C≥`

◦
K≥`U` ⇔

K≥` = UT
`

◦
K≥`U`,

C≥` = U`C≥`UT
` .

(3.11)

In terms of the ensemble of fermions, the above statements mean, first, that the operators
in the expectation values (1.1) and (1.4) are related by the canonical transformation (1.3),
and second, that the canonical transformation in question leaves the bra and ket vacua of
charge ` invariant.

3.2 Explicit solution for the similarity transformation as a power series

The solution for the matrix U` in (3.11) is not unique. We found a particular solution of
the first equation (3.11) in the form of a power series in σ,

U` =
∞∑
p=0

(−iσ)p

p!
(
C≥`M≥`

)p
Q(p)
` (3.12)

where the diagonal matrices M≥` and Q(p)
` are defined as6

M≥` = diag
{ 1
n

}
n≥`

= diag
{1
`
,

1
`+ 1 ,

1
`+ 2 , . . .

}
(3.13)

Q(p)
` = diag

{
θn+1−p−`

(
αn−`−p A

(p)
n−` + αn−1−`−p(−1)p B(p)

n−`

)}
n≥`

. (3.14)

Here

αk ≡
1
2(1− (−1)k), θk =

0 if k ≤ 0,
1 if k > 0

(3.15)

6The lowest matrix element [M≥`
]`,` is singular for ` = 0, but it does not appear neither in (3.12) nor

in the matrix relations further on.
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the coefficients A(p)
n are defined above in (3.8), and the coefficients B(p)

m are given by

B(p)
m = m(−1)p−1A(p−1)

m =
2p−1mΓ

(
1
2(m+ p)

)
Γ
(

1
2(m+ 2− p)

) . (3.16)

These coefficients appear in the Taylor expansions(√
z2 + 1− z

)m
√
z2 + 1

=
∑
p≥0

A(p)
m

zp

p! ,
(√

z2 + 1 + z
)m

=
∑
p≥0

B(p)
m

zp

p! .
(3.17)

For fixed m,n ≥ `, the matrix element (U`)m,n is a polynomial in σ of degree n − `
for m − ` even, or of degree n − 1 − ` for m − ` odd. The coefficients of this polynomial
depend explicitly on the bridge length `. The lowest matrix elements ` ≤ m,n ≤ `+ 3 are

U` =



1 iσ
`+1 − 2σ2

(`+1)(`+2) − 4iσ3

(`+1)(`+2)(`+3) ∗
0 1 2iσ

`+2 − 4σ2

(`+2)(`+3) ∗

0 − iσ
`+1 1 + 4σ2

(`+1)(`+3)
3iσ(`+1)(`+4)+12iσ2

(`+1)(`+3)(`+4) ∗
0 0 − 2iσ

`+2 1 + 8σ2

(`+2)(`+4) ∗

0 0 − 2σ2

(`+2)(`+3) −3iσ(4σ2+`(`+7)+10)
(`+2)(`+3)(`+5) ∗

0 0 0 ∗ ∗


. (3.18)

We give the idea of the derivation of the symplectic transformation in appendix C. The
proof is based on a linear relation between K≥` and

◦
K≥` ,

Km,n =
m−n−1∑
k=0

(iσ)k

k! αm−n−k A
(k)
m−n[(MC)kK◦]m,n (m > n)

Km,n = −
n−m−1∑
k=0

(−iσ)k

k! αm−n−k A
(k)
n−m[(K◦(CM)k]m,n (m < n),

(3.19)

which follows from the expansion (3.9) and the recurrence relation for the Bessel functions

Jm+1(2τ) + Jm−1(2τ) = m
Jm(2τ)
τ

, (3.20)

see appendix A. Concerning the second relation in (3.11), we checked that it is satisfied
by the series (3.12) for the first several orders in σ, but we do not know how to prove it
analytically in general. In the next subsection we give another form of the solution (3.12)
for ` = 0, for which this property comes out naturally.

As we mentioned before, the similarity transformation is not unique, and another
solution was independently obtained by Belitsky and Korchemsky [16]. In appendix B
we re-derive their result as a solution of an ordinary differential equation describing the
operator flow connecting K and

◦
K.
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3.3 Exponential form of the solution for ` = 0

When ` = 0, the solution (3.12) for the similarity transformation can be written in a quasi
exponential form,

U`=0 =
∞∑
j=0

[(
Pe e

− 1
2σ

2CMS + Po e
− 1

2σ
2SCM

)
eiσC

]
j
P(j). (3.21)

Here [. . .]j denotes the coefficient of the power σj in the expansion of the expression in the
brackets, M ≡M`=0 is given by (3.13), the matrix S is defined as

Sm,n = δm+1,n + δm,n+1 (m,n ≥ 0) , (3.22)

P(j) is as in (3.14) the projector to the matrices with the first j columns vanishing,

P(j) = diag{θn+1−j}n≥0 , (3.23)

and Pe and Po are the projectors respectively to the even and odd subsets,

Pe = diag{αm+1}m≥0 , Po = diag{αm}m≥0 (3.24)

with αk given by (3.15).
To get some intuition on the origin of the two exponential factors in (3.21), let us write

the simplified kernel for ` = 0 in x-representation,

◦
K(x, y) =

∑
m,n∈Z

xmyn
◦
Km,n = 2

∫ ∞
0

dτ χ(τ, σ) sin
[(
x+ 1

x
− y − 1

y

)
τ

]
, (3.25)

and compare it with the original kernel (2.26), written in terms of the variables (3.1),

K(x,y) = 2 eiσ (x− 1
x

+y− 1
y

)
∫ ∞

0
dτ χ(τ,σ) τ√

τ2+σ2
sin
[(
x+ 1

x
−y− 1

y

)√
τ2+σ2

]
. (3.26)

The first expression is obtained from the second by setting σ = 0 everywhere but in
the factor χ(τ, σ). In (3.21), the right exponential factor eiσC accounts for the factor
eiσ (x−1/x+y−1/y) in (3.26). Indeed, in x-representation, the operator C acts as a multipli-
cation by x − 1/x. The second factor in (3.26) originates from the σ2-dependence of the
integrand of (3.26). The latter expands as a series in σ2, with the constant term given by
the integrand of (3.25).

4 Determinant identities

Since in the simplified kernel (3.10) the matrix elements with the same parity vanish, the
2`× 2` pfaffians in the finite pfaffian formulas obtained in section 2.4 can now be written
as ` × ` determinants. It turns out that these determinants can be simplified further and
written as determinants of approximately twice less size. More precisely, for ` = 2m − 1
and ` = 2m, the ratio O`/O0 is an m×m determinant.
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To obtain the reduced determinant identities, we first notice that in the Fock space
representation (1.4) the exponents are bilinear forms of the even and odd modes,

O` = 〈 ` | exp

∑
j,k≥0

ψ2j+1
◦
K2j+1,2k ψ2k

 exp

− ∑
j,k≥0

ψ∗2jC2j,2k+1 ψ
∗
2k+1

 |` 〉. (4.1)

We will show that, depending on the parity of `, one can eliminate either the even or the
odd modes from the expectation value taking into account the identification (2.20).

4.1 Even bridge

Let us assume that the length of the bridge is even, ` = 2m. In the operator expression (4.1),
we can commute all the even modes of ψ∗ to the left and all the even modes of ψ to the
right until they both are annihilated by the corresponding vacua. As a result we obtain an
operator expression only in terms of the odd modes,

O`=2m =
∞∑
n=0

(−1)n

n!
∑

j1,...,jn≥m
k1,...,nn≥m

〈 ` |
n∏
a=1

ψ2ja+1

n∏
a,b=1

Koo
ja,kb

n∏
b=1

ψ∗2kb+1|` 〉

= 〈 `| ◦◦ exp

− ∑
k,j≥0

ψ2j+1 Koo
j,k ψ

∗
2k+1

 ◦◦ |` 〉.
(4.2)

In the last line ◦◦ ◦◦ denotes the anti-normal ordering where all ψ∗ are on the right of all ψ.
By Koo we denoted odd-odd diagonal block of the matrix

◦
KC,

Koo
j,k

def= [
◦
KC]2j+1,2k+1 , (4.3)

whose matrix elements are given explicitly by

Koo
i,j = 2(2j + 1) (−1)i−j

∫ ∞
0

dτ χ(τ, σ) J2i+1(2τ) J2j+1(2τ)
τ

(i, j ≥ 0). (4.4)

To obtain the r.h.s. of (4.2) we used the identity( ◦
K≥`C≥`

)
2j+1,2k+1

=
(
[
◦
KC]≥`

)
2j+1,2k+1

(` = 2m) (4.5)

which follows from the fact that the matrix C is quasi-diagonal. Evaluating the expectation
value with the correlators (2.16), we obtain the determinant formula for the octagon

O`=2m = det
[
(1−Koo)≥m

]
. (4.6)

Now we would like to evaluate the ratio of the octagons with ` = 2m and ` = 0 as
an expectation value, as in section 2.4. The identity (4.5) also guarantees that the even
fermion modes in the vacuum states can be removed without altering the result,

|` 〉 → ψ∗2m−1ψ
∗
2m−3 · · ·ψ∗1|0 〉 ≡ |m, o 〉,

〈 `| → 〈 0|ψ1ψ3 · · ·ψ2m−1 ≡ 〈m, o|
(` = 2m, m ≥ 1). (4.7)
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We express the octagon with bridge ` = 2m as the result of the insertion of m pairs of
odd fermionic modes, and divide by the octagon with bridge zero,

O2m
O0

=
〈 0|ψ1ψ3 · · ·ψ2m−1 ◦◦e

ψKooψ∗◦
◦ ψ∗2m−1ψ

∗
2m−3 · · ·ψ∗1|0 〉

〈 0|◦◦eψKooψ∗◦◦ |0 〉

≡ 〈
m−1∏
j=0

ψ2j+1

m−1∏
j=0

ψ∗2j+1 〉.
(4.8)

The expectation value is equal to the determinant of the two-point correlators

〈ψ2j+1ψ
∗
2k+1 〉 = δj,k + Roo

j,k, (4.9)

where the semi-infinite matrix Roo is related to Koo by

(1 + Roo)(1−Koo) = 1. (4.10)

Hence the ratio O2m and O0 is an m×m determinant,

O2m
O0

= det [(1 + Roo)<m] . (4.11)

Since O` → 1 when ` → ∞, eq. (4.11) reproduces in the large ` limit the determinant
formula for the octagon with zero bridge,

1
O0

= det [1 + Roo] = 1
det[1−Koo] . (4.12)

Since we never used the specific form of Koo, the identity (4.11) is in fact an identity
in the linear algebra.7 Namely, for any non-singular matrix A,

det [A≥k]
detA = det

[
{(A−1)i,j}i,j=0,...,k−1

]
, A = {Ai,j}i,j=0,...,k−1 . (4.13)

Indeed, the octagon with bridge 2m is given by the determinant of the kernel Koo with the
first m rows and columns deleted,

O`=2m = 〈m, o|◦◦e−ψK
ooψ∗◦

◦ |m, o 〉 = det
[
(1−Koo)≥m

]
, (4.14)

and (1.6) follows from the general identity (4.13).

4.2 Odd bridge

In a similar way, in the case ` = 2m − 1 one can eliminate all odd modes in (4.1). As a
result we obtain an operator expression only in terms of the even modes,

O`=2m−1 =
∞∑
n=0

(−1)n

n!
∑

j1,...,jn≥m
k1,...,nn≥m

〈 ` |
n∏
a=1

ψ2ja

n∏
a,b=1

Kee
ja,kb

n∏
b=1

ψ∗2kb |` 〉

= 〈 `| ◦◦ exp

− ∑
k,j≥0

ψ2j Kee
j,k ψ

∗
2k

 ◦◦ |` 〉.
(4.15)

7We thank G. Korchemsky for making this point.
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The matrix elements of
Kee
i,j ≡ [

◦
KC]2j,2k (4.16)

are given explicitly by (j, k ≥ 0)

Kee
i,j = 2

∫ ∞
0

dτ χ(τ, σ)
[
(1− δj,0)(−1)i−j2j J2i(2τ)J2j(2τ)

τ
+ δj,0(−1)jJ2iJ1

]
. (4.17)

Thanks to the identity [
◦
K≥`C≥` ]2j,2k = [[

◦
KC]≥` ]2j,2k for ` odd, we can eliminate the odd

modes also from the left and the right vacuum and formulate the octagon as an expectation
value in the ensemble of the even oscillators,

O`=2m−1 = 〈m, e|◦◦e−ψ
e Keeψ∗e◦

◦ |m, e 〉 = det
[
(1−Kee)≥m

]
(m ≥ 1). (4.18)

The bra and ket vacuum states here are the m-charged vacua for the even modes,

|m, e 〉 = ψ∗2m−2ψ
∗
2m−4 · · ·ψ∗0|0 >, 〈m, e| = 〈 0|ψ0ψ2 · · ·ψ2m−2. (4.19)

Again, the ratio O2m−1/O0 can be computed as an expectation value of m fermion
pairs which gives an m×m determinant

O2m−1
O0

= 〈
m−1∏
j=0

ψe
2jψ
∗e
2j 〉 = det

[
(1 + Ree)<m

]
, (4.20)

where the two-point correlator 〈ψe
jψ
∗e
k 〉 = δj,k + Ree

j,k is related to the even-even ker-
nel (4.17) by8

(1 + Ree)(1−Kee) = 1. (4.21)

Taking the large ` limit of (4.20), we reproduce the determinant formula for the octagon
with zero bridge in terms of the even kernel. Thus the octagon with zero bridge can be
expressed as a determinant in either of the sectors

O0 = det (1−Koo) = det (1−Kee) . (4.22)

We have checked that the finite determinant identities obtained in this section are
fulfilled within the weak coupling expansion of the octagon. Let us stress that although
the expressions (4.6) and (4.18) look differently, they are both identical to the determinant
of the odd block which was the starting point for the studies in [14–16]. The difference is
in the interpretation: in [13–16] the bridge appeared as a parameter while here it is the
effect of truncating the semi-infinite matrix.

4.3 The octagon as a Fredholm determinant of a holomorphic kernel

We will show that the operator representation with the simplified kernel (1.4) can be ex-
pressed as the expectation value of an exponential operator which commutes with the U(1)
charge. For that we will represent the ordered exponentials in the expectation values (4.2)

8The relation with the full resolvent is Re,e
j,k = [C

◦
K/(1−C

◦
K]2j,2k and Roo

j,k = [C
◦
K/(1−C

◦
K]2j+1,2k+1.
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and (4.15) as ordinary exponentials. This can be done at the expense of extending the sum
in the exponents to all possible modes, positive and negative, after having extended the
semi-infinite matrix Kαα to a doubly infinite matrix.

Let us choose an even bridge ` = 2m so that α = o. The expectation value (4.2) can
be expressed as that of an ordinary exponential as

O`=2m = 〈 `| exp

− ∑
j,k≥0

Kαα
j,k (ψ2j+1 + ψ−2j−1)

(
ψ∗2k+1 − ψ∗−2k−1

) |` 〉
= 〈 `| exp

− ∑
j,k∈Z

Kαα
j,k ψ2j+1 ψ

∗
2k+1

 |` 〉,
(4.23)

where in the second line the octagon kernel is extended to negative values of the indices
by the symmetries Koo

j,k = Koo
−j−1,k = −Koo

j,−k−1. To illustrate why the negative modes are
necessary, compare the quadratic terms in the expansion of (4.23) with that of (4.2),

(4.23)⇒ =
∑
j,k≥0

∑
i,r≥0

(Koo
i,jKoo

k,r 〈 0|ψ2i+1ψ
∗
2j+1ψ2k+1ψ

∗
2r+1|0 〉

+ Koo
i,−j−1Koo

−k−1,r 〈 0|ψ2i+1ψ
∗
−2j−1ψ−2k−1ψ

∗
2r+1|0 〉)

=
∑
i,j≥0

Koo
i,iKoo

j,j +
∑
i,j≥0

Koo
i,−j−1Koo

−j−1,i

=
∑
i,j≥0

Koo
i,iKoo

j,j −
∑
i,j≥0

Koo
i,jKoo

j,i ⇐ (4.2).

(4.24)

By rewriting the exponent in (4.23) as a double contour integral, we get

O`=2m = 〈 `| exp
(
− 1

4π2

∮
C

dx

x

∮
C∗

dy

y
ψ(x)Koo(x, y)ψ∗(y)

)
|` 〉, (4.25)

where the contour C∗ contains the origin and is contained in the contour C, and the holo-
morphic kernel is given by

K
oo(x, y) =

∑
i,j∈Z

Koo
i,j x

2i+1y−2j−1

= −2
(
y − 1

y

)∫ ∞
0

dτχ(τ, σ) sin
[
τ

(
x+ 1

x

)]
cos

[
τ

(
y + 1

y

)]
= −2

∫ ∞
0

dτ

τ
χ(τ, σ) sin

[
τ

(
x+ 1

x

)]
y∂y sin

[
τ

(
y + 1

y

)]
.

(4.26)

In a similar way, for ` odd we can write

O`=2m−1 = 〈 `| exp
(
−
∮
C

dx

2πix

∮
C∗

dy

2πiyψ(x)Kee(x, y)ψ∗(y)
)
|` 〉, (4.27)

K
ee(x, y) =

∑
i,j∈Z

Kee
i,j x

2iy−2j

= 2
(
y − 1

y

)∫ ∞
0

dτχ(τ, σ) cos
[
τ

(
x+ 1

x

)]
sin
[
τ

(
y + 1

y

)]
= 2

∫ ∞
0

dτ

τ
χ(τ, σ) cos

[
τ

(
x+ 1

x

)]
y∂y cos

[
τ

(
y + 1

y

)]
. (4.28)
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The sum of two kernels, (4.26) and (4.28), gives the x-representation of the full operator
K ≡

◦
KC = Kee⊗Koo. The factor y− 1/y results from the action of the operator C which

diagonalises in the x-space, and the rest reproduces the r.h.s. of (3.25).
The operator representaton of the octagon in x-space, eqs. (4.25)–(4.26), was derived

for even bridge ` = 2m. It is possible to extend each of the representations, (4.25)–(4.26)
and (4.27)–(4.28), to any value of the bridge length, odd and even.9 Thus we have, for any
`, two operator representations of the octagon,

O` = 〈 `| exp
(
− 1

4π2

∮
C

dx

x

∮
C∗

dy

y
ψ(x)Kαα(x, y)ψ∗(y)

)
|` 〉 (α = o, e) (4.29)

with Kαα given by (4.26) for α = o and by (4.28) for α = e. The expectation values (4.25)
and (4.27) are evaluated by the series

O` =
∞∑
N=0

(−1)N

N !
1

(2π)2N

N∏
k=1

∮
C

dxk
xk

∮
C∗

dyk
yk

(
yj
xj

)`
K
αα(xj , yj) det

jk

xj
xj − yk

(4.30)

The series (4.30) is the expansion of the Fredholm determinant of the operator Koo acting
in the space of the functions, odd for α = o and even for α = e, which are analytic inside
the unit circle,

O2m = Det (1−Kαα) , [Kααf ](x) =
∮

dy

2πiyK
αα(x, y)f(y). (4.31)

The x-representation (4.29) simplifies a lot in the strong coupling limit, where the
leading order of the strong coupling expansion can be evaluated using the clustering
method [23], but it is not known how to obtain the subleading orders. In this respect
the τ -representation is more efficient because it allowed the authers of [15, 16] to obtain
the whole strong coupling expansion. On the other hand, the x-representation allows one
to find the strong coupling limit in the case of more general local weights.

5 Conclusion

In this paper we completed the study of the octagon form factor started in [12, 13] in the
following two aspects. First, we gave a precise Fock space description of the fermionic
representation outlined there, in which the length of the bridge determines the level of
the Dirac sea. Second, we found explicitly the similarity transformation conjectured there,
which leads, by simplifying the octagon kernel, to the determinant formula for the octagon.
Such similarity transformation is not unique and, as we already mentioned, another solution
has been found independently by Belitsky and Korchemsky [16]. The interpretation we
found for the bridge length allowed us to express the ratio of two octagons with different
bridges as a determinant of finite size involving the resolvent of the octagon kernel.

The free fermions proposed here as a device to handle the diagonal symmetric part of
the weights of the virtual particles might be useful for studying other observables which

9The derivation of (4.25) for odd bridge and of (4.27) for even bridge is slightly more complicated because
the discrete octagon kernel should be modified by a term similar to the last term in (4.17).
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can take the form (4.29), that is, a vacuum expectation value of an element of GL(∞).
Such objects can be deformed by an infinite set of commuting flows associated with the
modes of the fermion current, following the recipe of [21], turning them into τ -functions of
the Toda lattice hierarchy. Half of these flows can be associated with the conserved charges
in the spin chain description of N = 4 SYM.

In the case of the octagon, the kinematical parameters ξ and φ can be associated,
at least in the light-like limit, with the “times” coupled to the modes J±1 of the fermion
current. Indeed, it was shown in [16] that certain scaling in the light-like limit the octagon
satisfies the radial 2D Toda lattice equation. Slightly generalising, we can consider the
scaling limit

φ = π + i
s

g
, ξ = σ

g
, g → 0 (s > σ) (5.1)

where their solution takes the form

O` = e−ŝ
2 det [Ij−k(2ŝ)]j,k=1,...,` , (5.2)

where In are modified Bessel functions and ŝ =
√
s2 − σ2. The octagon in this limit satisfies

the full 2D Toda lattice equation with time variable s and space variable σ,

1
4
(
∂2
s − ∂2

σ

)
Φ` + eΦ`+1−Φ` − eΦ`−Φ`−1 = 0 , Φ` = log O`+1

O`
, ` ≥ 1 . (5.3)

A clue about the general validity of (5.3) would be a direct proof using the fermion repre-
sentation, which is still to be found.

Finally, let us mention two intriguing recent observations which suggest to look for a
unified formalism working both for the BMN and the GKP vacua. First, in the null square
limit, the authors of [14] noticed that the anomalous dimension characterising the light-like
octagon has an alternative representation similar to the cusp anomalous dimension. By
still unclear reasons, the light-like limit of the octagon can also be obtained by choosing
as a weight function χ(τ) = 2/(eτ/g − 1). Second, it was shown in [19] that the six-gluon
amplitude in certain kinematical limit can be expressed in terms of the so called tilted
BES kernel which becomes the BES kernel or the (light-like) octagon kernel for particular
values of the tilting angle. The tilted kernel by angle α is obtained by replacing in (2.29)
i → i e−iα which leads to (3.10) with sin [(m− n)π/2] replaced by sin [(m− n)(π/2− α)].
The fermionic representation and the subsequent analysis (except for section 4 which is
relevant only to the case α = 0) can be generalised to a generic angle α. In particular, we
checked that the flow equation obtained in appendix B holds for the tilted kernel as well.
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A Proof of the linear relation (3.19) between the original and the
simplified kernels

We will show that the linear relation (3.9) holding at the level of the integrands (3.3), (3.10),
leads to the relation (3.19) for the integral kernels. Consider the bilinear of Bessel functions

Jm,n(τ) = im−n−1Jm(2τ)Jn(2τ) . (A.1)

With this normalization the functional relation (3.20) for the Bessel function is rewritten
with the help of the matrix C in (2.19) and Mm,n = 1

mδm,n as

i
Jm,n(τ)

τ
= (MC)m,m′Jm′,n(τ) = Jm,n′(τ)(CM)n′,n , m, n 6= 0 . (A.2)

Repeated for an arbitrary power of τ this gives, in matrix notations,(
i

τ

)j
J(τ) = (MC)jJ(τ) , (A.3)

where the explicit expressions for the matrix powers of MC are[
(MC)2s

]
m,m′

=
s∑

r=−s

(
2s

s−|r|

)
Γ(m−s+r)(m+2r)

Γ(m+s+r+1) (−1)r−sδm+2r,m′ ,

[
(MC)2s+1

]
m,m′

=
s∑

r=−s

(
2s

s−|r|

)
Γ(m−s+r)

Γ(m+s+r+1)(−1)r−s(δm+2r+1,m′−δm+2r−1,m′).
(A.4)

The expression (A.4) is defined for positive integer m with the power j of the matrix (MC)
restricted to

j ≤ m. (A.5)

The second m′ index in (A.4) runs between m− j and m+ j (mod 2) . For the even power
j= 2s, the formula (A.4) has sense for j = 0, reproducing the identity [(MC)0]m,m′= δm,m′ .
Furthermore in this case the formula extends for m = 0, taking into account (A.5), i.e.,
[(MC)2s]0,m′ = δs,0δ0,m′ . The powers of CM are obtained by transposition,

[(CM)j ]n′,n = (−1)j [(MC)j ]n,n′ . (A.6)

Next we observe that for odd values j +m− n, eq. (A.3) turns into(
i

τ

)j
Jm,n(τ) = [(MC)j ]m,m′

◦
K(τ)]m′,n (j +m = n− 1 (mod 2)) , (A.7)

where
◦
K(τ)m,n = 1−(−1)m−n

2 Jm,n (3.10) . Inserting (A.7) in (3.9) we obtain after integra-
tion (3.19)

Km,n =
∑

j=0,...,m−n−1
j+m+n=odd

(iσ)j

j! A
(j)
m−n

[
(MC)j

◦
K
]
m,n

(m > n)

=
∑

j=0,...,n−m−1
j+m+n=odd

(−iσ)j

j! A
(j)
n−m

[ ◦
K(CM)j

]
m,n

(n > m)
(A.8)
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The inequality (A.5) is fulfilled in (A.8). In our problem the indices of the Bessel functions
Jm take values m ≥ `. This implies that the power j of the matrices (M≥`C≥`) (cf. (3.13))
is restricted to

j ≤ m− ` , (A.9)

[(M≥`C≥`)2s]`,m′ = δs,0δ`,m′ . The relation (A.8) then holds with M,C replaced by
M≥` ,C≥` . The restriction of the indices of the kernel Km,n given by (A.8) to m,n ≥ `

projects, taking into account the upper bound (A.9), the second index of [(MC)j ]m,m′ in
the r.h.s. to m′ ≥ `.

B Flow equation

The matrix elements Km,n satisfy the following differential equation and its conjugate,

m∂σKm,n − iσ∂σ (Km+1,n + Km−1,n) + i(m− n) (Km+1,n −Km−1,n) = 0 , (B.1)

for any m,n ≥ 0. Here the weight function χ is treated as a functional parameter and the
derivative in σ does not act on it. The equations follow straightforwardly from (3.19) using
the relations for the coefficients

Aj+1
m−n = −(m− n∓ j)Ajm±1−n, Am−nm+1−n = 0. (B.2)

Introducing the diagonal matrix Nm,n = n δm,n ,m, n ≥ 0 the equation (B.1) and its
conjugate can be cast in a matrix form

(N− iσS)∂σK + i[N,CK] = 0

∂σK (N− iσS) + i[N,KC] = 0.
(B.3)

The flow equation (B.3) determines the evolution of the full kernel K which char-
acterises the octagon with zero bridge. The equation for non-zero bridge is obtained by
replacing the kernel and the matrices involved with K≥` ,N≥` ,S≥` ,C≥` .

Remark. After substituting K≥` → UT
`

◦
K≥`U`, the equation (B.1) turns into an equation

for the similarity operator U`. In general, it is not straightforward to integrate it. Since
there is a continuum of solutions, one can impose additional conditions on the solution.
Belitsky and Korchemsky imposed [16] the condition that the semi-infinite similarity matrix
Ω = {Ωi,k}k,j≥0 acts trivially on the first two columns,

Ωk,0 = δk,0 ,Ωk,1 = δk,1 . (B.4)

In our conventions their matrix Ω corresponds to a matrix Ũ` with elements

[Ũ`]k+`,j+` = [Ω]k,j . (B.5)

Under these conditions [Ũ`]k+`,` = δk,0 and [Ũ`]k+`,1+` = δk,1 one obtains

Km+`,` = [ŨT
`

◦
K]m+`,` , Km+`,1+` = [ŨT

`

◦
K]m+`,1+` (m ≥ 0). (B.6)
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In this way the differential equation (B.1) reduces to an equation for Ũ`. Accordingly the
first/second relation (B.6) determines the matrix elements of ΩT with odd/even first index
directly from (3.19)

Ω2k+1,n =
∑

j=0,...,n−1
j−n= odd

(−iσ)j

j! [(CM)j ]2k+1+`,n+`A
(j)
n = [U`]2k+1+`,n+`

Ω2k,n = δn,0δk,0 +
∑

j=0,...,n−2
j−n= even

(−iσ)j

j! [(CM)j ]2k+`,n+`A
(j)
|n−1|

= δn,0δk,0 + [U`+1]2k−1+(`+1),n−1+(`+1) .

(B.7)

The last equality relates the matrix elements of Ω to a different projection of the solution
[U`]n′,n (3.12) to odd n′ − `.

C Proof of the similarity transformation (3.11)–(3.12)

In this appendix we will omit the index ` in U` and M` in order to avoid ugly formulas.
We will show that the linear transformation (3.19) can be written as adjoint action matrix
relation (3.11)

Km+`,n+` =
∑

m′,n′≥0
n′−m′=odd

UT
m+`,m′+`

◦
Km′+`,n′+`Un′+`,n+` . (C.1)

The matrix elements of U = U` in (3.12) read more explicitly

U2k+1+`,n+` =
∑

j=0,...,n−1
j−n=odd

(−iσ)j

j! A(j)
n [(CM)j ]2k+1+`,n+`

U2k+`,n+` =
∑

j=0,...,n
j−n=even

(iσ)j

j! B(j)
n [(CM)j ]2k+`,n+` .

(C.2)

They satisfy the relations

Uk+`,` = δk,0 , U2k+1+`,1+` = δk,0 , (C.3)

which differ from (B.4) since U2k+`,1+` = iσ(δk,0 − δk,1). Note that the zeros of the co-
efficients A(j)

n and B
(j)
n in (3.16) compensate the poles in the expressions (A.4) for the

matrix powers (CM)jn′+`,n+` and one can write regularised closed expressions for the op-
erators (C.2). For example10

U2m+`,2n+` = δm,0 σ
2n(22n−1(−1)n (1− δn,0) + δn,0) Γ(1 + `)

Γ(2n+ `+ 1)

+ θm

n∑
s=0

(2σ)2s(−1)m+n(2m+ `)nΓ(n+ s)
∏m+`−1
k=1 (n− s+ k)

Γ(s−m+ n+ 1)Γ(s+m− n+ 1)Γ(n+m+ `+ s+ 1) .
(C.4)

10This expression does not change if the upper bound of the summation is extended to s ≤ n+m+ `− 1.
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We want to prove (C.1) with the operators given in (C.2). The key ingredient of the
proof is the intertwining relation

[(MC)j
◦
K]m+`,n+` = [(MC)j−p

◦
K(CM)p]m+`,n+` (j ≤ m, p ≤ n). (C.5)

The latter allows to redistribute the matrix powers in (A.8) on both sides of
◦
K. E.g.,

−A(1)
m−n[MC

◦
K]m,n = (m−n)[MC

◦
K]m,n = [mMC

◦
K)−n

◦
KCM]m,n

A
(2)
m−n[(MC)2 ◦K]m,n = [m2(MC)2 ◦K−2m(MC)

◦
K(CM)n+(n2−1)

◦
K(CM)2]m,n .

(C.6)

In what follows we assume, for the sake of simplicity of the presentation, that ` = 0.
To illustrate the general procedure, consider the matrix element K1,n . We can split the
coefficient in (3.19) as

A
(j)
n−1 =

j∑
p=0

(
j

p

)
B

(p)
1 A(j−p)

n = j B
(1)
1 A(j−1)

n + (−1)jB(j)
n A

(0)
1 (C.7)

taking into account that B(2s+1)
1 = 0 for s ≥ 1, while the contributions of B(2s)

1 , s ≥ 0
sum to the second term in the r.h.s. Next we distribute accordingly the matrix powers in
agreement with the inequality (A.5)

K1,n =
◦
K1,n′

∑
j=0,...,n−2
j−n=even

(−iσ)j

j! [(CM)j ]n′,nA
(j)
|n−1| (C.8)

=
∑

j=0,...,n−2
j−n=even

(−iσ)j

j!
(
j B

(1)
1 [(MC)

◦
K(CM)(j−1)]1,nA(j−1)

n + (−1)j [
◦
K(CM)(j)]1,nB(j)

n

)
.

This is almost (C.1) in this particular case, with odd intermediate summation index n′ in
the first term in the r.h.s. of (C.8) and n′- even in the second. The two terms reproduce the
corresponding expressions for the operators in (C.2) up to the upper bounds. In fact the
upper bound in (C.8) extends from n− 2 to n. In the first line this is so due the vanishing
of A(n)

n−1 = 0. Equivalently for j = n the two terms in (C.7) and their contributions to (C.8)
compensate each other due to the relation (3.16). Hence, taking into account (C.3) which
implies UT

1,2k+1 = δk,0, we reproduce (C.1) for this particular example

K1,n = [UT ◦KU]1,n =
∑

n′− odd
UT

1,m′
◦
Km′,n′Un′,n +

∑
n′− even

UT
1,m′

◦
Km′,n′Un′,n . (C.9)

The generalization of (C.7) for m < n reads

A
(j)
n−m =

∑
s=0,...,m
s−m=even

(
j

s

)
B(s)
m A(j−s)

n + (−1)j
∑

s=0,...,m−1
s−m=odd

(
j

s

)
A(s)
m B(j−s)

n . (C.10)

For general Km,n one proceeds as in the example K1,n considered above, distributing
accordingly the matrix powers to the left and right of

◦
K. The last step is to ensure the
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upper bounds as in (C.2). E.g., for odd m the upper bound in the initial expression (A.8)
can be lifted to n adding m + 1 terms without violating (A.5) exploiting the vanishing of
the coefficients A(j)

n−m for j ≥ n−m+ 1 + 2k , k ∈ Z+. Moreover, the upper bound can be
extended further to n+m−1 moving to the left the additional matrix powers of (CM), so
that to comply with the inequalities (A.5). In the process, some zeros may appear also in
each of the two terms in (C.10). Altogether this ensures the correct upper bounds of the
operators U in the transformed expresssion obtained using (C.10).

D Proof of the exponential representation for ` = 0

Here we show that the matrix U defined in (3.12) is given by the series (3.21) for ` = 0.
The matrix U and its transposed UT factorise as

U = ÛP, Û =
(
Pe e

− 1
2σ

2CMS + Po e
− 1

2σ
2SCM

)
eiσC =

∑
j≥0

[Û]jσj ; (D.1)

UT = P ÛT, ÛT = e−iσC
(
e

1
2σ

2SMCPe + e
1
2σ

2MCS Po
)

=
∑
j≥0

[ÛT]jσj , (D.2)

where P is the projector restricting the power j of σ of the matrix element [Û]n′,n to n or
n− 1 as in (3.21).

We will give the idea of the proof for the transposed matrix ÛT, restricting ourselves
to the piece acting in the even sector. The coefficients X(j) = [ÛT]jPe in the expansion of
the first term in (D.2) read

j!X(j) = j!
[ j2 ]∑
k=0

βjkC
j−2k(SMC)k , βjk = (−1)k

2k(j − 2k)!k! . (D.3)

On the other hand, the piece of the transposed matrix (3.12) restricted to the even sector,
UT

e = UTPe , is expanded as

[UT
e ]m,m′ =

∑
j=0,...,m
j−m=even

(−iσ)j

j! B(j)
m [(MC)j ]m,m′ , m′ − even. (D.4)

We have to show that
B(j)
m [(MC)j ]m,m′ = j!X(j)

m,m′ . (D.5)

Let us see how this works with the lowest coefficients j = 1, 2. By the expression (3.17) for
the coefficients B(j)

m , for j = 1, 2 we have

B(1)
m (MC)m,m′ = m(MC)m,m′ = Cm,m′ ,

B(2)
m [(MC)2]m,m′ = m2[(MC)2]m,m′ = m

∑
±
±[MC]m±1,m′ (D.6)

=
∑
±
± ((m± 1)∓ 1) [MC]m±1,m′ = [C2 − SMC]m,m′ .
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We see that the computation for j = 2 in the last line of (D.6) is reduced to that for j = 1.
The general proof of (D.5) can be done by induction. For that we will use the following
recursive formula for B(j)

m

B(j+1)
m = (−1)jmA(j)

m±1∓1 = m

B(j)
m±1 ±

∑
p=1,...,j
p=odd

(
j

p

)
B

(j−p)
m±1 A

(p)
1



= m

B(j)
m±1 ∓

∑
p=1,...,j
p=odd

(
j

p

) p−1
2∏

s=0
(1− (2s)2)B(j−p)

m±1


(D.7)

derived from the expansion

A
(j)
m−n = (−1)j

j∑
p=0

(
j

p

)
B(p)
m A(j−p)

n (m > n) (D.8)

and we have taken into account that A(p)
−1 = −A(p)

1 and A(2p)
1 = δp,0. From (D.7) we obtain

a recursive formula for the corresponding matrices,

B(j+1)
m ((MC)j+1)m,n =

∑
±
±(B(j)

m±1[(MC)j ]m±1,n (D.9)

−
∑

p=1,...,j
p=odd

(
j

p

) p−1
2∏

s=0
(1− (2s)2)

∑
±

(B(j−p)
m±1 [(MC)j−p(MC)p]m±1,n

If we assume the relation (D.5), then (D.9) implies that the coefficients X(j) satisfy the
recurrence relation (D.9) which takes the form

(j + 1)! X(j+1) = j!CX(j) − j(j − 1)! X(j−1)(SMC)1 +A, (D.10)

where we wrote explicitly only the first two terms. If we can prove independently that (D.10)
is satisfied, this would imply (D.5). To do that, let us first notice that the l.h.s. of (D.10)
equals the sum of the first two terms in the r.h.s. This follows from the explicit form of
X(j), eq. (D.3). Therefore to prove (D.5) it is sufficient to show that A = 0. One can
check, after tedious algebra, that this is indeed the case. Let us only write down a basic
commutator used:

[S, (SMC)k] = −
k−1∑
r=0

akr (SMC)k−r(MC)2r+1 ,

akr =
r∏
s=1

(2s− 1)
(

k

r + 1

)
, ak0 = k.

(D.11)

One of the nice features of the exponential form (D.1) is that it renders the symplectic
property C = UCUT almost obvious,

UCUT =
(
Pe e

− 1
2σ

2CMS + Po e
− 1

2σ
2CSM

)
PCP

(
e

1
2σ

2SMCPe + e
1
2σ

2MCS Po
)

= Pe e
− 1

2σ
2CMS P e

1
2σ

2CMSC + Po e
− 1

2σ
2CSM P e

1
2σ

2CSMC
= (Pe + Po)PC = C.

(D.12)
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