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1 Introduction

Supergravity and strings models typically contain hidden sectors with gauge groups includ-
ing U(1) gauge group factors. These hidden sectors with U(1) gauge groups can interact
feebly with the visible sector and interact feebly or with normal strength with each other.
The fields in the visible and hidden sectors in general will reside in different heat baths
and the universe in this case will be a multi-temperature universe. The multi-temperature
nature of the universe becomes a relevant issue if the observables in the visible sector are
functions of the visible and the hidden sector heat baths. Such is the situation if dark
matter (DM) resides in the hidden sector but interacts feebly with the visible sector. In
this case an accurate computation of the relic density requires thermal averaging of cross
sections and decay widths which depend on temperatures of both the visible and the hidden
sector heat baths. In this work we develop a theoretical formalism which can correlate the
evolution of temperatures of the hidden sector and of the visible sectors (for the specific
case of two hidden sectors) in an accurate way.

The formalism noted above is used in the investigation of a dark photon and dark
fermions of hidden sectors as possible DM candidates. There exists a considerable literature
in the study of dark photons [1–18] (for review see [19–21]) to which the interested reader
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is directed. While axions and dark photons in the light to ultralight mass region (from
keV to 10−22 eV) have been investigated [11, 13, 22–26], the sub-MeV dark photon mass
range appears difficult to realize. The problem arises in part because with the visible
sector interacting with a hidden sector via kinetic mixing, the twin constraints that the
dark photon has a lifetime larger than the age of the universe, and also produce a sufficient
amount of DM to populate the universe are difficult to satisfy. In addition to the relic
density constraint there is also the constraint on dark photon lifetime which needs to be
larger than the age of the universe as well as a constraint from BBN on the light degrees
of freedom. For the case of one hidden sector, these constraints are difficult to satisfy.
Specifically, ∆Neff at BBN time depends on the ratio (Thid/Tγ)4. The BBN temperature
is typically ∼ 0.1MeV and, as will be seen later, for the case of one hidden sector the ratio
(Thid/Tγ)4 ∼ 1 which gives a contribution to ∆Neff at BBN time in excess of the current
experimental constraint which from the combined data from BBN, BAO and CMB [27]
is ∆Neff < 0.214. On the other hand, for the case of two hidden sectors it is possible to
satisfy all the current experimental constraints and for that reason we will focus on the
two hidden sector model which is the minimal extension of one hidden sector model as
discussed below.

In this study we show that a sub-MeV dark photon as DM can indeed be realized in a
simple extension of the Standard Model (SM) where the hidden sector is constituted of two
sectors X1 and X2 where the sector X1 has kinetic mixing with the visible sector while the
sector X2 has kinetic and mass mixings only with sector X1, cf., figure 1. We assume that
the hidden sector X1 has a dark fermion D and its gauge boson Z ′ decays before the BBN
while the hidden sector X2 has only a dark photon γ′ which has a lifetime larger than the
age of the Universe. This set up is theoretically more complex because here one has three
heat baths and the computation of the relic density thus depends on three temperatures,
i.e., the temperature T of the visible sector, the temperature T1 of the hidden sector X1
and the temperature T2 of the hidden sector X2. In the following we develop a formalism
that allows one to compute temperatures of all three heat baths in terms of one common
temperature, which can be chosen to be T , T1 or T2. In the analysis below it is found
convenient to choose the reference temperature to be T1. The outline of the rest of the
paper is as follows: in section 2 we discuss the particle physics model used for our multi-
temperature universe and in sections 3 and 4 we write the coupled Boltzmann equations
with three temperatures and derive the temperature evolution of T and T2 relative to T1.
Thermalization between the different sectors and dark freeze-out are explained in section 5
with a numerical analysis and a discussion of the astrophysical constraints. Conclusions
are given in section 6. Further analytical results are given in appendices A through D.

2 A model for a multi-temperature universe

As mentioned in the introduction, supergravity and string models contain hidden sectors.
These hidden sectors in general would have both abelian and non-abelian gauge groups and
some of them could interact feebly with the visible sector while others may interact with
each other as shown in figure 2. Thus, for example, in D-brane models one gets U(N) gauge
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D,Z ′ γ ′
δ1 δ2

Standard Model

Visible sector

Dark sector X1 Dark sector X2

Figure 1. The exhibition of the model we consider in the paper. The standard model has a direct
coupling with hidden sector X1 with strength proportional to δ1, whereas hidden sector X2 only
interacts directly with X1 with strength proportional to δ2, and thus X2 interacts with the standard
model only indirectly.

groups where U(N)→ SU(N)×U(1). These extra U(1) factors in general can acquire ki-
netic mixing with the U(1)Y of the visible sector. Further, the gauge bosons of the extra
U(1)’s can acquire mass via the Stueckelberg mechanism and also have Stueckelberg mass
mixings with the hypercharge gauge boson. Additionally if there are several hidden sector
U(1)’s they can have also gauge and Stueckelberg mass mixings among themselves. Inter-
estingly, the possible existence of these hidden sectors can have significant effect on model
building in the visible sector. As an example one phenomenon which is deeply affected by
the existence of hidden sectors is dark matter which we discuss in further detail below.

In general the dark sectors with a gauge symmetry will contain gauge fields as well
as matter, but, as noted, typically they will have feeble interactions with the SM particles
and likely also with the inflaton. This means that these particles would not be thermally
produced in the reheat period after inflation but would then acquire their relic density
via annihilation and decay of the SM particles. Thus in general the temperatures of the
visible and the hidden sectors will be different from the visible sector as well as from
each other. This means that their relic densities will be governed by a set of coupled
Boltzmann equations which depend on different temperatures, i.e., temperature of the
visible sector and those for the hidden sectors. One of the central items in understanding
of how to deal with such coupled systems with sectors involving different temperatures
is to understand fully how the temperatures of the hidden sectors grow relative to the
visible sector temperature. The formalism of how to correlate the hidden and the visible
sector temperatures was worked out for the case of the visible sector interacting with one
hidden sector in [5]. However, a general framework does not exist. Here we discuss the case
where there are two hidden sectors X1 and X2 where the hidden sector X1 interacts with
the visible sector, while the hidden sector X2 interacts only with the hidden sector X1 as
shown in figure 1. In this case two functions η−1 = ξ = T1/T and ζ = T2/T1 enter in the
coupled Boltzmann equations and we derive differential equations for their evolution. The
above setup has a direct application in achieving a sub-MeV dark photon as dark matter
as we show later in this work. However, a consistent analysis of the coupled dynamics of
the visible sector and two hidden sectors is significantly more complex. This work develops
the necessary machinery to do so and which can be extended to multiple hidden sectors.
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V (T ) H1(T1) H3(T3) H5(T5) · · · · · · Hn(Tn)

Hidden sector

H2(T2) H4(T4) H6(T6) Ho(To)

Figure 2. A schematic diagram exhibiting the coupling of the visible sector with multiple dark
sectors and of the dark sectors among themselves. The visible sector may have direct couplings
with some of the dark sectors, or indirect couplings with others via interactions among the entire
hidden sector.

We assume that the two sectors X1 and X2 have U(1)X1 and U(1)X2 gauge symmetries
and that the field content of X1 is (Cµ, D) where Cµ is the gauge field and D is a dark
fermion, and the field content of X2 is the gauge field Dµ and there is no dark fermion
in the sector X2. We invoke a kinetic mixing [28, 29] between the hypercharge field Bµ
of SM and Cµ and a kinetic mixing between Cµ and Dµ as well as a Stueckelberg mass
growth [30–34] for all the gauge fields as well as a Stueckelberg mass mixing between the
fields Cµ and Dµ. The extended part of the Lagrangian including both the kinetic and
mass mixings is

L = LSM + Lkin + Lmass + gXJ
µ
X1
Cµ, (2.1)

where LSM contains the SM terms and the kinetic part is given by

Lkin = −1
4C

µνCµν −
1
4D

µνDµν −
δ1
2 B

µνCµν −
δ2
2 C

µνDµν , (2.2)

and in the unitary gauge the mass Lagrangian is given by

Lmass = −1
2(M1Cµ +M2Bµ)2 − 1

2(M3Cµ +M4Dµ)2 −mDD̄D. (2.3)

The D fermion is assumed charged under U(1)X1 with interaction gXD̄γµDCµ. Canonical
normalization of eqs. (2.2) and (2.3) is carried out in appendix A which gives the mass
eigenstates γ′, Z ′, Z, γ. The neutral current Lagrangian contained in LSM for the mass
eigenstates γ′, Z ′, Z, γ describing the couplings between the vector bosons γ′, Z ′, Z, γ with
the visible sector fermions is given by

Lv
NC = g2

2 cos θw
f̄γµ[(vf − afγ5)Zµ + (v′f − a′fγ5)Z ′µ + (v′′f − a′′fγ5)Aγ′

µ ]f

+ ef̄γµQfA
γ
µf. (2.4)

Here θw is the weak angle and e is defined as

1
e2 = 1

g2
2

+ 1 + ε21 − 2ε1δ1 + ε21ε
2
2 − 2ε21ε2δ2

g2
Y

, (2.5)
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where ε1 = M2/M1 and ε2 = M3/M4. As seen from eqs. (2.1)–(2.3), the framework of the
model allows for the inclusion of both kinetic and mass mixing between the hidden and
visible sectors. However, in the analysis presented in this work we will only take kinetic
mixing between the visible and the hidden sectors, so that M2 = 0. This is done because
in this case the 4×4 neutral vector boson mass square matrix factors into a block diagonal
form consisting of two 2×2 matrices as shown in eq. (A.4). In this case we can carry out a
set of eight GL(2,R) transformations to put the kinetic energy of the visible and the hidden
sectors in a canonical form and at the same time to lowest order the mass matrix is also
in a canonical form. This allows us to use perturbation theory around stable minima of
the standard model mass matrix and therefore to deduce the couplings between the hidden
sectors and the SM particles as given in tables 2 and 3. As seen in appendix A, the analysis
is rather non-trivial and significantly more involved than for the case of one hidden sector.
With the inclusion of M2, the analysis becomes analytically intractable and an exhibition
of results corresponding to those of tables 2 and 3 is difficult. However, we note that even
with M2 = 0, we still have both kinetic and mass mixing in the hidden sector. Thus δ2
takes account of kinetic mixing and M3 takes account of mass mixing between the hidden
sectors 1 and 2. So in summary in this model the visible sector has only kinetic mixing
with the hidden sector 1 while the hidden sector 1 has both kinetic and mass mixing with
hidden sector 2. It is seen that the mass mixing from M3 does have significant effect on
the model predictions, e.g., on the mass of the dark photon and on the relic density as seen
in model point (d) in table 1.

WithM2 = 0, the neutral current Lagrangian for coupling to the hidden sector fermion
is given by

Lh
NC =

(
cγ′Aγ

′
µ + cZZµ + cZ′Z ′µ + cγA

γ
µ

)
D̄γµD, (2.6)

where

cγ′ ' gX
m2
γ′

m2
Z′ −m2

γ′
δ2, cZ ' gXδ1 sin θw(1 + ε2z), (2.7)

cZ′ ' gX , cγ ' −gXδ1δ2

(
mγ′

mZ′

)2
sin β cos θw, (2.8)

tan 2β = 2M3M4
M2

4 −M2
1 −M2

3
, εz = mZ′/mZ . (2.9)

The vector and axial-vector couplings with SM fermions appearing in eq. (2.4) are given
by eqs. (B.1)–(B.6). Those couplings along with the ones in eq. (2.7) and eq. (2.8) are
calculated after a proper diagonalization and normalization of the kinetic and mass square
matrices. The complete analysis is given in appendix A.

3 Boltzmann equations for yields with three bath temperatures

The relic densities of the dark photon and of the dark fermion arise in part from a freeze-in
mechanism [35–39]. In general the visible sector and the dark sectors will have different
temperatures [40–45] (a similar setup has been considered in ref. [45] but with a different
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particle content, couplings and no explicit multi-temperature evolution. Also the DM
candidate was not the dark photon as in our case). As mentioned above, we consider three
different temperatures corresponding to the temperatures of the visible sector T and of
the two hidden sectors, T1 for X1 and T2 for X2. Defining the yield Y = n/s, where n is
the number density and s is the entropy density, and the bath functions η and ζ so that
T = ηT1 and T2 = ζT1, we write the Boltzmann equations for the yields as

dYD
dT1

= −dρ/dT1
4Hρ sJD, (3.1)

dYZ′

dT1
= −dρ/dT1

4Hρ sJZ′ , (3.2)

dYγ′

dT1
= −dρ/dT1

4Hρ sJγ′ , (3.3)

where H is the Hubble parameter given by

H2 = 8πGN
3 (ρv + ρ1 + ρ2), (3.4)

with ρ = ρv + ρ1 + ρ2 and s being the energy and entropy densities given by

ρ = π2

30
(
gveffT

3 + g1effT
3
1 + g2effT

3
2

)
, (3.5)

s = 2π2

45
(
hveffT

3 + h1effT
3
1 + h2effT

3
2

)
, (3.6)

and the quantities JD, JZ′ and Jγ′ are defined in terms of the collision terms as

JD = CD
s2 , JZ′ = CZ′

s2 , Jγ′ = Cγ′

s2 . (3.7)

The collision terms CD, CZ′ and Cγ′ are given by eqs. (C.7)–(C.9) which allow us to write
JD,JZ′ and Jγ′ in terms of the yield as

JD = 〈σv〉īi→DD̄(ηT1)Y 2
i (ηT1)− 1

2〈σv〉DD̄→īi(T1)Y 2
D + 〈σv〉Z′Z′→DD̄(T1)Y 2

Z′

− 1
2〈σv〉DD̄→Z′Z′(T1)Y 2

D −
1
2〈σv〉DD̄→γ′γ′(T1)Y 2

D + 〈σv〉γ′γ′→DD̄(ζT1)Y 2
γ′

− 1
2〈σv〉DD̄→Z′γ′(T1)Y 2

D + 〈σv〉Z′γ′→DD̄(T1, ζT1)YZ′Yγ′ , (3.8)

JZ′ = 〈σv〉īi→Z′Z′(ηT1)Y 2
i (ηT1)− 〈σv〉Z′Z′→īi(T1)Y 2

Z′ − 〈σv〉Z′Z′→DD̄(T1)Y 2
Z′

+ 〈σv〉īi→Z′(ηT1)Y 2
i (ηT1) + 1

2〈σv〉DD̄→Z′Z′(T1)Y 2
D + 1

2〈σv〉DD̄→Z′γ′(T1)Y 2
D

− 〈σv〉Z′γ′→DD̄(T1, ζT1)YZ′Yγ′ − 1
s
〈ΓZ′→īi〉(T1)YZ′ , (3.9)

Jγ′ = 1
2〈σv〉DD̄→γ′γ′(T1)Y 2

D − 〈σv〉γ′γ′→DD̄(ζT1)Y 2
γ′ + 〈σv〉īi→γ′(ηT1)Y 2

i (ηT1)

+ 〈σv〉īi→γ′γ′(ηT1)Y 2
i (ηT1)− 〈σv〉γ′γ′→īi(ζT1)Y 2

γ′ −
1
s
〈Γγ′→īi〉(ζT1)Yγ′

+ 1
2〈σv〉DD̄→Z′γ′(T1)Y 2

D − 〈σv〉Z′γ′→DD̄(T1, ζT1)YZ′Yγ′ . (3.10)
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The thermally averaged cross sections are calculated using eq. (C.11) for a single initial
state temperature and with eq. (C.12) in the case of two different initial state temperatures,
while the thermal averaging of the width is given by eq. (C.10). Note that the SM effective
energy and entropy degrees of freedom (gveff and hveff) are read from tabulated values [46, 47],
while those pertaining to the hidden sectors (g1eff , g2eff , h1eff , h2eff) are calculated using
eqs. (C.16), (C.17) and (C.18). Since the above Boltzmann equations are dependent on
the parameters η and ζ, then one must consider the evolution of those parameters with
temperature. We discuss the formalism in the next section.

4 Temperature evolution in the dark sectors versus in the visible sector

In this section we derive the evolution equations for temperatures T1 and T2 in the dark
sectors and T in the visible sector, i.e., T/T1 and T2/T1 as a function of T . However,
for numerical integration purposes it is found more convenient to use T1 as the reference
temperature. Thus we are interested in deriving the evolution equations for dη/dT1 and
dζ/dT1 where we recall that η and ζ are defined so that

T ≡ ηT1, T2 ≡ ζT1. (4.1)

To this end we look at the equations for the energy densities in the visible and the hidden
sectors. In the analysis, we encounter the quantity dρ/dT1. The main difficulty in com-
puting the quantity dρ/dT1 is that ρ is constituted of three parts, ρ = ρv + ρ1 + ρ2 which
depends on three temperatures i.e., ρv is controlled by T , ρ1 is controlled by T1 and ρ2
is controlled by T2. Thus we need to express dρv/dT1 in terms of dρv/dT and dρ2/dT1 in
terms of dρ2/dT2. Using the definitions of η and ζ we can write

dρv
dT1

=
(
η + T1

dη

dT1

)
dρv
dT

, and dρ2
dT1

=
(
ζ + T1

dζ

dT1

)
dρ2
dT

. (4.2)

This means that a determination of dρv/dT1 and dρ2/dT1 requires dη/dT1 and dζ/dT2.
Next, we derive the evolution equations for these quantities.

We note that ρv, ρ1, ρ2 satisfy the following evolution equations

dρv
dt

+ 4ρvH = jv,

dρ1
dt

+ 4ρ1H = j1,

dρ2
dt

+ 4ρ2H = j2,

(4.3)

where jv, j1, j2 are the corresponding sources. Instead of time we will use temperature
so we will need to convert derivatives with respect to time to derivatives with respect
to temperature. We note now that for any given temperatures Ti the time derivative of
temperature is given by

dTi
dt

= −4Hρ
dρ
dTi

. (4.4)
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As discussed above, we choose T1 to be the reference temperature and the evolution equa-
tion for ρv in this case can be written as

jv − 4ρvH = −4Hρ
dρ
dT1

dρv
dT1

. (4.5)

From eq. (4.5) we can deduce that
dρv
dT1

= 4ρvH − jv
4H(ρ1 + ρ2) + jv

(
dρ1
dT1

+ dρ2
dT1

)
. (4.6)

In a similar fashion starting with the equation for dρ2/dt we can deduce
dρ2
dT1

= 4ρ2H − j2
4H(ρ1 + ρv) + j2

(
dρ1
dT1

+ dρv
dT1

)
. (4.7)

Eqs. (4.6) and (4.7) are two coupled equations involving dρv/dT1 and dρ2/dT1 which give
the solution

dρv
dT1

= (AB +A)
(1−AB)

dρ1
dT1

, and dρ2
dT1

= (AB +B)
(1−AB)

dρ1
dT1

, (4.8)

where
A = 4ρvH − jv

4H(ρ1 + ρ2) + jv
, B = 4ρ2H − j2

4H(ρv + ρ1) + j2
. (4.9)

Using eqs. (4.2) and (4.8) one can then obtain the relations

dη

dT1
= − η

T1
+ (AB +A)

(1−AB)
dρ1/dT1

T1
dρv
dT

, and dζ

dT1
= − ζ

T1
+ (AB +B)

(1−AB)
dρ1/dT1

T1
dρ2
dT2

, (4.10)

where
dρ

dT1
=
( 4Hρ

4Hρ1 − j1

)
dρ1
dT1

,
dρv
dT

= π2

30

(
dgveff
dT

η4T 4
1 + 4gveffη

3T 3
1

)
, (4.11)

dρ1
dT1

= π2

30

(
dg1eff
dT1

T 4
1 + 4g1effT

3
1

)
,

dρ2
dT2

= π2

30

(
dg2eff
dT2

ζ4T 4
1 + 4g2effζ

3T 3
1

)
. (4.12)

Using the fact that jv + j1 + j2 = 0, eliminating jv in favor of j1 and j2 and inserting
eq. (4.9) in eq. (4.10), one can further simplify eq. (4.10) to cast dη/dT1 and dζ/dT1 in
their final form as

dη

dT1
= − η

T1
+
(4Hρv + j1 + j2

4Hρ1 − j1

)
dρ1/dT1

T1
dρv
dT

, (4.13)

dζ

dT1
= − ζ

T1
+
(4Hρ2 − j2

4Hρ1 − j1

)
dρ1/dT1

T1
dρ2
dT2

. (4.14)

The source terms j1 and j2 are given by

j1 =
∑
i

[
2Yi(T )2J(īi→ DD̄)(T ) + 2Yi(T )2J(īi→ Z ′Z ′)(T ) + Yi(T )2J(īi→ Z ′)(T )

+ 2Y 2
γ′J(γ′γ′ → DD̄)(T2)− 1

2Y
2
DJ(DD̄ → γ′γ′)(T1)− 1

2Y
2
DJ(DD̄ → Z ′γ′)(T1)

+ YZ′Yγ′J(Z ′γ′ → DD̄)(T1, T2)
]
s2 − YZ′J(Z ′ → īi)(T1)s, (4.15)
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Model mD M1 M3 M4 δ1 δ2 mZ′ mγ′ Ωh2

(a) 1.00 4.50 0.0 0.43 4.0× 10−10 0.40 4.90 0.43 0.124
(b) 0.50 4.50 0.0 0.47 6.5× 10−11 0.40 4.90 0.47 0.103
(c) 0.05 4.50 0.0 0.45 5.6× 10−12 0.40 4.91 0.45 0.102
(d) 0.62 4.50 -5.0 0.45 4.0× 10−10 0.05 6.76 0.30 0.108

Table 1. Benchmarks used in this analysis where gX = 0.95 and masses are in MeV except
mD which is in GeV. In the analysis of this table and in the rest of the numerical analysis we
choose M2 = 0.

j2 =
∑
i

[
Yi(T )2J(īi→ γ′)(T ) + Y 2

DJ(DD̄ → γ′γ′)(T1)− Y 2
γ′J(γ′γ′ → DD̄)(T2)

+ 2Yi(T )2J(īi→ γ′γ′)(T )− Y 2
γ′J(γ′γ′ → īi)(T2) + 1

2Y
2
DJ(DD̄ → Z ′γ′)(T1)

− YZ′Yγ′J(Z ′γ′ → DD̄)(T1, T2)
]
s2 − Yγ′J(γ′ → νν̄)(T2)s, (4.16)

with

ni(T )2J(īi→DD̄)(T ) = T

32π4

∫ ∞
4m2

D

ds σDD̄→īis(s−si)K2(
√
s/T ), (4.17)

ni(T )2J(īi→Z ′)(T ) = T

32π4

∫ ∞
4m2

i

ds σīi→γ′s(s−si)K2(
√
s/T ), (4.18)

nD(T1)2J(DD̄→ γ′γ′)(T1) = nD(T1)2

8m4
DT1K2

2 (mD/T1)

∫ ∞
4m2

D

ds σDD̄→γ′γ′s(s−4m2
D)K2(

√
s/T ),

(4.19)

nZ′J(Z ′→ īi)(T1) = nZ′mZ′ΓZ′→īi . (4.20)

One should not confuse the variable s in eqs. (4.15) and (4.16) with the one in eq. (4.20).
The former is the entropy density while the latter corresponds to the Mandelstam variable.

5 Thermalization and dark freeze-out

In the analysis we make certain that the relic density of the dark relics is consistent with
the Planck data [27],

Ωh2 = 0.1198± 0.0012, (5.1)

along with a 2σ corridor from theoretical calculations. Contribution to the relic density
arise from γ′ and D while Z ′ decays before BBN and is removed from the spectrum. In
table 1 we present four benchmarks which satisfy all the experimental constraints.

The relic density shown is that of γ′ while that of D is only O(10−6) or less and thus
negligible. We note here that in addition to the particle physics interactions generating
the dark photon relic density, one could have in addition gravitational production [16–18].
However, such a production is highly dependent on the reheat temperature which is model
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dependent. From eq. (46) of ref. [16], for the case when the dark photon mass is ∼ 1MeV,
one finds that the gravitational production of dark photon would be suppressed when the
reheat temperature HI < 1011 GeV. So one may think of our model being valid for this
restricted class of inflationary models.

The dark photon is long-lived with a decay width to two neutrinos given by

Γγ′→νν̄ =
g2

2δ
2
1(δ2 − sin β)2ε4γ′

8π mγ′ tan2 θw , (5.2)

where εγ′ = mγ′/mZ , and the partial decay width of γ′ to three photons reads [23, 48]

Γγ′→3γ = 17α3α′

273653π3
m9
γ′

m8
e

≈ 4.70× 10−8α3α′
m9
γ′

m8
e

, (5.3)

where α = e2/4π, α′ = (ke)2/4π and k = −δ1(δ2−sin β) cos θw. The dark photon’s lifetime
is larger than the age of the universe and this is illustrated by model point (d) which gives
τγ′→νν̄ ∼ 8.4× 1021 yrs and τγ′→3γ ∼ 5.3× 1015 yrs.

Calculation of the relic density requires determining the yields by numerically solving
the five stiff coupled equations, eqs. (3.1)–(3.3), (4.13) and (4.14). The resulting yields
for D, Z ′ and γ′ as a function of the hidden sector temperature T1 are shown in figure 3
for benchmarks (a) and (b). As the universe cools, the number densities of D, Z ′ and
γ′ increase gradually. At around T1 = 100GeV, the dark fermions D start to freeze-out,
and the blue curve becomes flat around T1 = 0.1GeV. After the dark fermion decouples,
the dynamics of Z ′ and γ′ is affected mainly by SM particles freeze-in processes after
T1 = 0.1GeV. However, since Z ′ is unstable its density depletes to zero at T1 ∼ 10−4 GeV.
The only particles that contribute to the relic density then are D (blue curve) and γ′ (yellow
curve). As noted the analysis gives dark photon as the dominant component of DM. We
note that the number changing processes in hidden sector 1 are driven by DD̄ ←→ Z ′Z ′

owing to the sizable value of the coupling gX . Since mZ′ � mD, the reaction Z ′Z ′ → DD̄

shuts off early on as the temperature drops while the reverse reaction remains active. This
causes a significant drop in YD and as a consequence YZ′ rises sharply as shown in figure 3.
This is followed by a dramatic drop in YZ′ due to the decay of Z ′ to SM fermions.

The upper panel of figure 4 gives the evolution of ξ = T1/T as a function of T1 which
shows that ξ rises until it thermalizes with the visible sector, i.e., ξ ∼ 1. The middle panel
of this figure gives the evolution ζ = T2/T1 as a function of T1 while the bottom panel
of figure 4 gives the evolution of κ = T2/T as function of T . We note that X2 does not
thermalize with X1. This happens because the energy injection from X1 into X2 is not
efficient enough. Consequently T2/T � 1 which also has implications for ∆Neff as we
explain later.

We note in passing that even though hidden sector 1 thermalizes with the visible sector,
there is a distinction between how that happens for the case of the hidden sector versus the
visible sector. In the presence of a coupling induced either by kinetic mixing or by mass
mixing, the visible sector and the hidden sectors will eventually thermalize as long as the
sectors do not thermally decouple according to the second law of thermodynamics. This
is what happens in the top left panel of figure 4. However, we note that the speed with
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Figure 3. The yields for the dark fermion D and the dark bosons Z ′ and γ′ as a function of
the hidden sector temperature T1 for benchmarks (a) (upper panel) and (b) (bottom panel). The
horizontal dashed line corresponds to the observed relic density which matches the freeze-out yield
of γ′. Note that at dark freeze-out YD � Yγ′ .

10
-4

10
-2

10
0

10
2

10
4

10
6

10
-2

10
-1

10
0

10
-4

10
-2

10
0

10
2

10
4

10
-2

10
-1

10
-4

10
-2

10
0

10
2

10
4

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4. Evolution of ξ (upper panel) and κ (bottom panel) as a function of the visible sector
temperature T and that of ζ (middle panel) as a function of T1 for three benchmarks (a), (b) and
(c) of table 1.
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Figure 5. Left panel: a plot of n〈σv〉 for the dominant processes in the hidden sector along with
the Hubble parameter and the thermally averaged decay width of Z ′. Right panel: the temperature
of kinetic decoupling of γ′ for benchmarks (a) and (d). The dark photon temperature traces that
of the thermal bath before decoupling at around 10 keV.

which a dark photon thermalizes is much slower relative to a visible sector particle such
as a quark which has almost instantaneous thermalization with the photon background.
Further, the thermalization will cease once the particles in the hidden sector fully decouple
from the visible sector or from each other as seen in the right top panel of figure 4. This
is the case for hidden sector 2.

In the left panel of figure 5 we show n〈σv〉 and the thermally averaged Z ′ decay width
as a function of T1 for benchmark (a). Also shown is the Hubble parameter H(T1). As
evident, while Z ′ can enter into equilibrium with the visible sector for a period of time, the
dark photon barely does so. We indicate by arrows the point at which the dark freeze-out
of D and γ′ occurs. The dark photons decouple earlier followed by the dark fermions which
is also evident in figure 3. We note that 〈ΓZ′〉 overtakes H(T1) at lower temperatures
contributing to the depletion of Z ′ number density. It is of interest to ask how thermal
equilibrium of dark photons occurs once they are produced. Such an equilibrium can
be achieved in our model by considering a massless complex scalar field φ in the second
hidden sector with interactions with the dark photon of the type (κφ†∂µφAγ′

µ + h.c.).
Elastic scattering between γ′ and φ, γ′φ→ γ′φ, can keep the dark photon in local thermal
equilibrium. We follow the method of ref. [49] to determine the temperature of kinetic
decoupling of dark photons. For κ ∼ 10−4, we find that kinetic decoupling occurs at 10 keV
which is much later than chemical decoupling which happens around 0.1GeV. The right
panel of figure 5 shows the temperature of kinetic decoupling. It is to be noted that the
small value of κ has a minimal effect on the relic density of γ′.

We note that the parameter space of Z ′ and γ′ is constrained by experiments such
as BaBar, CHARM and other beam-dump experiments as well as by astrophysical data
from Supernova SN1987A and stellar cooling. Those limits become even stronger when
the dark photon is assumed to be the dark matter particle. Thus, measurements of heat-
ing rates of the Galactic center cold gas clouds [50], the temperature of the diffuse X-ray
background [51] as well as that of the intergalactic medium at the time of He++ reioniza-
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tion [52–54] are affected by early γ′ → 3γ decays. Further constraints can be derived from
energy injection during the dark ages [55] and spectral distortion of the CMB [54]. The
presence of a long-lived sub-MeV particle species can contribute to the relativistic number
of degrees of freedom ∆Neff during BBN and recombination [56]. All those constraints can
exclude a sub-MeV dark photon down to a kinetic mixing coefficient O(10−13).

In the model discussed here, the dark photon resides in a hidden sector X2 that does
not interact directly with the visible sector. Instead, the direct interaction is between the
two hidden sectors X1 and X2 via kinetic and mass mixings. Since X1 mixes kinetically
with the visible sector, the interaction between X2 and the visible sector becomes doubly
suppressed and all coupling will be proportional to δ1(δ2− sin β). The quantity sin β is due
to the mass mixing between the hidden sector and such a term can impart millicharges to
the D fermions. However, the coupling between the photon and the D fermions is not only
suppressed by δ1δ2 sin β but also by the mass ratio as evident from the expression of cγ
in eq. (2.8). Therefore even for a modest value of sin β ∼ 10−2, the millicharges are very
small and do not constitute a significant constraint on the model. This doubly suppressed
coupling between the dark photon and the SM can alleviate the present constraints mainly
from γ′ → 3γ as seen in figure 6, which still removes a part of the parameter space of our
model. This constraint is derived from measurements of the intergalactic diffuse photon
background. Another decay channel for the dark photon is to two neutrinos. This leads to
a possible neutrino flux but experiments have not reached the required sensitivity to probe
masses in the sub-MeV region. Experiments such as IceCube [57] have constrained only
very heavy dark matter decays. The region of the parameter space which would produce
a dark photon relic density within 2σ of the experimental value is shown in both panels
of figure 6 and labeled ‘Freeze-in’. For the case when a dominant component of the relic
density arises from gravitational production, the parameter space of our model will be
enlarged. The enlarged regions which are represented by the hatched area in figure 6. This
area accommodates for a dark photon relic density down to ∼ 10−4.

It is argued in ref. [51] that a dark photon with direct kinetic mixing with the SM can
only give a subdominant contribution to the relic density and that such an observation
can be dismissed if another production mechanism is in effect. The model discussed here
presents exactly this counter argument required to produce a dominant dark photon dark
matter. The main production mechanism for the dark photon in the current analysis is
not via the freeze-in mechanism from the visible sector, īi → γ′ and īi → γ′γ′, because
of the doubly suppressed coupling (see left panel of figure 7) but rather from interactions
between the hidden sector particles. Thus, processes such as DD̄ → γ′γ′ have cross-sections
proportional to gXδ2. As shown in figure 6, the sizes of gX and δ2 are in the required
ranges to produce a dark photon relic density which dominates that of D. A smaller value
of gX will reduce the dark photon yield as expected (see right panel of figure 7). We note
in passing that the gauge coupling gX is constrained by the main annihilation channel
DD̄ → Z ′Z ′ → 4e from the Planck experiment [58, 59] and for mD < 1GeV, gX > 0.1 is
excluded. However, this constraint does not exist for our model since the relic abundance
of our D fermions is negligible. The effect of the forward process DD̄ → γ′γ′ can be clearly
seen in figure 3 where the drop in the D fermions yield at a certain temperature is followed
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Figure 6. Exclusion limits from terrestrial and astrophysical experiments on dark photon which
has kinetic mixings with the SM sector. Excluded regions are due to constraints from experiments
which include electron and muon g−2 [60], BaBar [61], CHARM [62, 63], NA48 [64], E137 [65, 66],
NA64 [67, 68], E141 [69] and ν-CAL [63, 70, 71]. The limits are obtained from darkcast [72].
The strongest constraints on a dark photon (mass less than 1MeV) come from Supernova SN1987A
(including a robustly excluded region and systematic uncertainties) [73], stellar cooling [74] and from
decay to 3γ on cosmological timescales [51, 75]. The islands in pink are constraints from BBN. The
region where the freeze-in relic density is satisfied within 2σ of the experimental constraint is shown
in different shades of blue corresponding to different choices of mD. The hatched area represents
an enlargement to the 2σ region allowing a relic density as low as ∼ 10−4. In the upper panel,
mZ′ = (5− 20)mγ′ and δ2 = 0.4 while in the lower panel mZ′ = 3MeV and δ2 = 0.01.

by a rise in the yield of γ′. It is worth mentioning that the reverse process γ′γ′ → DD̄

works on reducing the number density of γ′ on the expense of D, but this process shuts
off early on as shown in figure 7 allowing DD̄ → γ′γ′ to completely take over for lower
temperatures.

Finally, we check the number of relativistic degrees of freedom generated by the dark
photon (and possibly a complex scalar) at BBN time. The SM gives Neff = 3.046. The
dark photon contribution is given by

∆Neff '
12
7

(11
4

) 4
3
(
T2
Tγ

)4

, (5.4)

where Tγ = T . Using the ratio of the temperatures T2/T < 0.1 from figure 4, one finds
that ∆Neff from dark photons is O(10−4) which makes a negligible contribution to the SM
Neff . With the inclusion of a complex scalar, the model has now five new bosonic degrees of
freedom but this still gives a small contribution and does not violate the bound on ∆Neff .
We note that the suppressed value of T2/T which arises from the non-thermalization of
sectors 1 and 2 is due to the low density of dark fermions in sector 1. This can be seen by
the yield for the dark fermion in figure 3.
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Figure 7. Left panel: a plot of n〈σv〉 for the processes contributing to the dark photon number
density as a function of T1. Right panel: the yields of the hidden sector particles showing a
diminishing Yγ′ due to a smaller gX for benchmark (d).

6 Conclusions

In this work we discussed the possibility that DM in the universe is constituted of sub-MeV
dark photons which reside in the hidden sector. In this case a proper analysis of the relic
density requires a solution to coupled Boltzmann equations which depend on multiple bath
temperatures including the bath temperature for the visible sector and those for all the
hidden sectors that are feebly coupled with the visible sector. In this work we discussed a
model where the visible sector couples with two hidden sectors X1 and X2 and where the
particles in the hidden sector consist of a dark fermion, a dark Z ′ and a dark photon. The
dark Z ′ decays and disappears from the spectrum while the dark photon is a long lived
relic. We show that the relic density of the dark photon depends critically on temperatures
of both the visible and the hidden sectors. We present exclusion plots where a sub-MeV
dark photon can exist consistent with all the current experimental constraints. We also
show that the existence of a dark photon is consistent with the constraints on Neff from
BBN. Thus a sub-MeV dark photon is a viable candidate for DM within a constrained
parameter space of mass and kinetic couplings. The formalism developed here of correlated
evolution of bath temperatures in the visible and hidden sectors may find application for
a wider class of phenomena involving hidden sectors.

The research of AA was supported by the BMBF under contract 05H18PMCC1. The
research of WZF was supported in part by the National Natural Science Foundation of
China under Grant No. 11905158 and No. 11935009. The research of PN and ZYW was
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A Canonical normalization of extended GSM ×U(1)X1 ×U(1)X2

Lagrangian with kinetic and Stueckelberg mass mixings

Consider the Lagrangian

L = −1
4V

T
µνKEV

µν − 1
2V

TM2V, (A.1)
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where V = (V1, V2, V3, V4)T which we choose to be (D,C,B,A3). This Lagrangian can
be put in the canonical form by appropriate transformations on KE and M2. For the
case when there is one dark sector it was done analytically in [33] and the basic reason
which allows that to happen is that one of the eigenvalues of M2 is zero corresponding
to the photon which effectively reduces the analysis to two massive modes which can be
handled analytically. In the present case since we have two hidden sectors, we have a 4× 4
matrix, and while one of the eigenvalues corresponding to the photon is zero, one still has to
deal with a cubic equation which, although possible to solve analytically, quickly becomes
intractable in the presence of both kinetic and Stueckelberg mass mixing. However, because
the kinetic mixings are typically small, it is possible to get accurate results by expanding
couplings of the dark particles with the SM particles in powers of the kinetic mixings.
In this case the relevant couplings can be recovered easily. However, such an expansion
must occur around stable minima. This means that we must first diagonalize the SM mass
squared matrix for the gauge bosons, and compute the kinetic mixing in this basis. We
can then put the kinetic term in the canonical form. This step requires several GL(2,R)
transformations because of several mixings of the hidden sector with the visible sector and
the mixing of the two hidden sectors. After the kinetic energy is put in the canonical form,
we must write the mass square matrix of the gauge bosons in the same basis which then
undiagonalizes the said matrix. However, because of the smallness of the kinetic mixings,
we can carry out a perturbation expansion of the mass square matrix where the zeroth
order mass square matrix is diagonal and the perturbations are proportional to the kinetic
mixings and are small. We make this analysis concrete in the formalism below.

Let us consider an orthogonal transformation V = RV (1) such that RTM2R = M2
D

where M2
D is a diagonal matrix. In the V (1) basis the kinetic energy has the form K ′E =

RTKER. Next, let us make a transformation K such that V (1) = KV (n), which could be
a product of several sub-transformations, such that the kinetic energy is in the canonical
form, i.e.,

KTK ′EK = 1. (A.2)

In our case we will have n = 8 (as discussed below). In the V (8) basis, while the kinetic
energy is in the canonical form, the mass matrix M2 = KTM2

DK is not. However, as
explained above since the kinetic mixings are small we can expand M2 around δ1 = 0 = δ2
so that

KTM2
DK = M2

D + ∆M2. (A.3)

Now since the kinetic mixing is supposed to be small, K differs from a unit matrix only by
a small amount and thus ∆M2 is small relative to M2

D and one may carry out perturbation
expansion in ∆M2 to arrive at the kinetic and mass mixing effects in the physical processes.
To compute ∆M2 we need K defined by eq. (A.2). The computation of K is significantly
more complicated than for the case of one hidden sector. Below we give its computation
in some detail.
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While the procedure outlined above is general we will discuss the specific case where
M2 is block diagonal so that

M2 =


M2

4 M3M4 0 0
M3M4 M

2
3 +M2

1 0 0
0 0 1

4g
2
Y v

2 −1
4gY g2v

2

0 0 −1
4gY g2v

2 1
4g

2
2v

2

 , (A.4)

where the upper right 2× 2 matrix is for the hidden sector and the lower left 2× 2 matrix
is for the case of the standard model in the basis V T = (Dµ, Cµ, Bµ, A3µ). M2 can be
diagonalized by R where

R =
(
Rβ 0
0 Rw

)
, Rβ =

(
cosβ − sin β
sin β cosβ

)
, Rw =

(
cos θw − sin θw
sin θw cos θw

)
, (A.5)

with θw being the weak mixing angle. Here Rβ diagonalizes the hidden sector mass squared
matrix while Rw diagonalizes the standard model mass squared matrix, and the diagonal-
ization gives

RTM2R = M2
D ≡ diag(m2

γ′ ,m2
Z′ , 0,m2

Z). (A.6)

Since the mass square matrix is now diagonal, it is a good starting point to diagonalize
and normalize the kinetic energy matrix. This is a bit non-trivial and requires several steps
which we outline below. In the basis (D,C,B,A3), the kinetic Lagrangian is given by

LKE = −1
4(D2 + C2 +B2 +A2

3)− 1
4(2δ1BC + 2δ2CD), (A.7)

where we use an abbreviated notation so that B2 = BµνB
µν , BC = BµνC

µν , etc. Next we
write LKE in the basis (D(1), C(1), B(0), A

(0)
3 ) in which the mass square matrix of the gauge

bosons is diagonal. Thus, using(
D

C

)
= Rβ

(
D(1)

C(1)

)
,

(
B

A3

)
= Rw

(
B(0)

A
(0)
3

)
, (A.8)

allows us to write LKE as

LKE =− 1
4
(
D(1)2 + C(1)2 +B(0)2 +A

(0)2
3

)
− 1

2δ1
(
B(0) cos θw −A(0)

3 sin θw
) (
D(1) sin β + C(1) cosβ

)
− 1

2δ2
(
D(1) sin β + C(1) cosβ

) (
D(1) cosβ − C(1) sin β

)
.

(A.9)

The diagonal kinetic terms for D(1) and C(1) have the form

− 1
4D

(1)2(1 + δ2 sin 2β)− 1
4C

(1)2(1− δ2 sin 2β). (A.10)
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To normalize them to unity we make a transformation from the basis V (1)T = (D(1), C(1),
B(0), A

(0)
3 ) to V (2)T = (D(2), C(2), B(0), A

(0)
3 ) so that

V (1) = K1V
(2), K1 =


1√

1+δ2 sin 2β
0 0 0

0 1√
1−δ2 sin 2β

0 0

0 0 1 0
0 0 0 1

 , (A.11)

where
δ̄2 = δ2 cos 2β√

1− δ2
2 sin2 2β

. (A.12)

After the transformation, LKE in the V (2) basis has the form

LKE = −1
4
(
D(2)2 + C(2)2 +B(0)2 +A

(0)2

3

)
− 1

2 δ̄2C
(2)D(2)

− 1
2
(
δ+

1 D
(2) + δ−1 C

(2)
) (
B(0) cos θw −A(0)

3 sin θw
)
,

(A.13)

where
δ+

1 = δ1 sin β√
1 + δ2 sin 2β

, δ−1 = δ1 cosβ√
1− δ2 sin 2β

. (A.14)

We now note that there is a C(2)D(2) mixing term in eq. (A.13) which can be re-
moved by a GL(2,R) transformation. We do this by going from the basis V (2) to V (3)T =
(D(3), C(3), B(0), A

(0)
3 ) so that

V (2) = K2V
(3), K2 =


1 −sδ̄2

0 0
0 cδ̄2

0 0
0 0 1 0
0 0 0 1

 , (A.15)

where
sδ̄2

= δ̄2√
1− δ̄2

2
, cδ̄2

= 1√
1− δ̄2

2
. (A.16)

In the V (3) basis, LKE becomes

LKE = −1
4
(
D(3)2 + C(3)2 +B(0)2 +A

(0)2

3

)
− 1

2δ
−
1 C

(3)
(
B(0) cos θw −A(0)

3 sin θw
)

− 1
2δ
′D(3)

(
B(0) cos θw −A(0)

3 sin θw
)
,
(A.17)

where

δ′ ≡ δ+
1 cδ̄2

− δ−1 sδ̄2
. (A.18)

We note that while there are no kinetic mixing terms between C(3) and D(3), there are
kinetic mixing terms between them and the fields B(0) and A(0)

3 . The mixing term between
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D(3) and B(0) can be removed by the transformation

V (3) = K3V
(4), K3 =


1 0 −sδ3 0
0 1 0 0
0 0 cδ3 0
0 0 0 1

 , (A.19)

where V (4)T = (D(4), C(3), B(1), A
(0)
3 ), sδ3 and cδ3 are defined similar to eq. (A.16) and δ3

is defined by
δ3 ≡ δ′ cos θw . (A.20)

In the V (4) basis the Lagrangian takes the form

LKE =− 1
4
(
D(4)2 +C(3)2 +B(1)2 +A

(0)2

3

)
− 1

2δ
−
1 C

(3)
(
B(1)cδ3 cosθw−A(0)

3 sinθw
)

− 1
2δ
′D(4)

(
B(1)cδ2 cosθw−A(0)

3 sinθw
)

+ 1
2δ
′sδ3B

(1)
(
−B(1)sδ3 cosθw−A(0)

3 sinθw
)
.

(A.21)
A mixing term between D(4) and A(0)

3 exists which can be removed by the transforma-
tion

V (4) = K4V
(5), K4 =


1 0 0 −sδ4

0 1 0 0
0 0 1 0
0 0 0 cδ4

 , (A.22)

where V (5) is given by V (5)T = (D(5), C(3), B(1), A
(1)
3 ) and where sδ4 and cδ4 are defined as

in eq. (A.16) and
δ4 ≡ −δ′ sin θw . (A.23)

In the V (5) basis, LKE takes the form

LKE = −1
4
(
D(5)2 + C(3)2 +B(1)2 +A

(1)2

3

)
− 1

2
(
B(1)cδ3 cos θw −A(1)

3 cδ4 sin θw
)
δ−1 C

(3)

− 1
2 sin θwδ′δ3cδ4A

(1)
3 B(1). (A.24)

Next we look at the kinetic mixing of (C(3), B(1)). This mixing can be removed by the
transformation

V (5) = K5V
6, K5 =


1 0 0 0
0 1 −sδ5 0
0 0 cδ5 0
0 0 0 1

 . (A.25)

Here V (6)T = (D(5), C(4), B(2), A
(1)
3 ) and

δ5 = δ−1 cδ3 cos θw , (A.26)
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where sδ5 and cδ5 are defined as in eq. (A.16). After the transformation the kinetic energy
Lagrangian in the V (5) basis has the form

LKE =− 1
4
(
D(5)2 + C(4)2 +B(2)2 +A

(1)2

3

)
+ 1

2 sin θwδ−1 cδ4A
(1)
3

(
C(4) − sδ5B

(2)
)

− 1
2 sin θwδ′δ3cδ4cδ5A

(1)
3 B(2).

(A.27)

Next we examine the kinetic mixing of the fields (C(4), A
(1)
3 ). This mixing term can be

eliminated by the transformation

V (6) = K6V
(7), K6 =


1 0 0 0
0 1 0 −sδ6

0 0 1 0
0 0 0 cδ6

 , (A.28)

where V (7)T = (D(5), C(5), B(2), A
(2)
3 ) and where δ6 is defined by

δ6 = −δ−1 cδ4 sin θw, (A.29)

and sδ6 and cδ6 are defined as usual.
After the transformation the kinetic energy Lagrangian in the V (7) basis has the form

LKE = −1
4
(
D(5)2 + C(5)2 +B(2)2 +A

(2)2

3

)
+ 1

2δ7B
(2)A

(2)
3 , (A.30)

where
δ7 = sin θwδ−1 cδ4cδ6sδ5 + sin θwδ′cδ4cδ6cδ5sδ3 . (A.31)

We are now left with the last kinetic mixing term involving the fields B(2) and A(2)
3 .

To eliminate this mixing we make the final transformation

V (7) = K7V
(8), K7 =


1 0 0 0
0 1 0 0
0 0 1 −sδ7

0 0 0 cδ7

 , (A.32)

where V (8)T = (D(5), C(5), B(3), A
(3)
3 ). In the basis V (8) the kinetic energy for all the gauge

fields is in the canonical form so that

LKE = −1
4
(
D(5)2 + C(5)2 +B(3)2 +A

(3)2

3

)
. (A.33)

The free Lagrangian in the V (8) basis is then

L = −1
4V

(8)T V (8) − 1
2V

(8)TKTM2
DKV

(8), (A.34)

with
K ≡ K1K2K3K4K5K6K7. (A.35)
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As discussed in the beginning of this section we now make the expansion of eq. (A.3).
Below we exhibit K and ∆M2 in the limit δ1, δ2 � 1. In this case sδ1 ∼ δ1, cδ1 ∼ 1, etc.
and K and ∆M2 have the following form

K ∼


1 −δ̄2 −δ3 −δ4
0 1 −δ5 −δ6
0 0 1 −δ7
0 0 0 1

 , ∆M2 =


0 −m2

γ′ δ̄2 −m2
γ′δ3 −m2

γ′δ4
−m2

γ′ δ̄2 0 −m2
Z′δ5 −m2

γ′δ6
−m2

γ′δ3 −m2
Z′δ5 0 0

−m2
γ′δ4 −m2

γ′δ6 0 0

 . (A.36)

The interactions relevant for our computation arise from ∆M2 and the relation

V (1) = KV (8). (A.37)

Eqs. (A.36) and (A.37) and non-degenerate perturbation theory is utilized in the compu-
tation of couplings of the visible sector with the hidden sector. This is discussed in the
next section.

B Dark photon γ′ and dark Z ′ couplings with Standard Model particles

The couplings of the dark photon and Z ′ to the SM particles are given by the Lagrangian
eq. (2.4). To compute the couplings proportional to δ1 and δ2 that arise due to the kinetic
and Stueckelberg mass mixings, we use first order non-degenerate perturbation theory using
∆M2 given in eq. (A.36) as the perturbation. Thus, to first order perturbation in ∆M2,
the neutral currents of eq. (2.4) which involve the vector and axial-vector couplings of the
dark photon, the dark Z ′ and the SM gauge bosons are given by

vf = T3f − 2Qf sin2 θw, (B.1)
af = T3f , (B.2)

v′f = −Qf sin 2θw cos θw(1 + ε2z)δ1

[
1−

(
1− T3f

2Q

)
m2
Z′

m2
W

]
, (B.3)

a′f = −δ1T3f sin θwε2z(1 + ε2z), (B.4)

v′′f = Qf sin 2θw cos θw(1 + ε2γ′)
[
1−

(
1− T3f

2Q

) m2
γ′

m2
W

]
δ1(δ2 − sin β), (B.5)

a′′f = T3f sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sin β), (B.6)

where εz = mZ′/mZ and εγ′ = mγ′/mZ . The relevant couplings with the visible sector are
summarized in tables 2 and 3. Thus table 2 gives the couplings of Z and Z ′ to the visible
sector fermions ff̄ and table 3. gives the coupling of γ′ to ff̄ .

The triple gauge boson couplings of γ′, Z ′, Z are given by are

WWγ′ : − ig2 cos θw sin θw(1 + ε2γ′)δ1(δ2 − sin β). (B.7)
WWZ ′ : ig2 cos θw sin θw(1 + ε2z)δ1, (B.8)
WWZ : − ig2 cos θw. (B.9)
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f Qf vf af v′f a′f

νe, νµ, ντ 0 1
2

1
2 −1

2 sin θwε2z(1 + ε2z)δ1 −1
2 sin θwε2z(1 + ε2z)δ1

e, µ, τ −1 −1
2 + 2 sin2 θw −1

2 sin 2θw cos θw
(

1− 3m2
Z′

4m2
W

)
(1 + ε2z)δ1

1
2 sin θwε2z(1 + ε2z)δ1

u, c, t 2
3

1
2 −

4
3 sin2 θw

1
2 −2

3 sin 2θw cos θw
(

1− 5m2
Z′

8m2
W

)
(1 + ε2z)δ1 −1

2 sin θwε2z(1 + ε2z)δ1

d, s, b −1
3 −1

2 + 2
3 sin2 θw −1

2
1
3 sin 2θw cos θw

(
1− m2

Z′
4m2

W

)
(1 + ε2z)δ1

1
2 sin θwε2z(1 + ε2z)δ1

Table 2. The Z → ff̄ and Z ′ → ff̄ vertices. In the above, εz = mZ′/mZ and mW is the W boson
mass.

f Qf v′′f a′′f

νe, νµ, ντ 0 1
2 sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sβ) 1

2 sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sβ)

e, µ, τ −1 sin 2θw cos θw
(

1−
3m2

γ′

4m2
W

)
(1 + ε2γ′)δ1(sβ − δ2) −1

2 sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sβ)

u, c, t 2
3

2
3 sin 2θw cos θw

(
1−

5m2
γ′

8m2
W

)
(1 + ε2γ′)δ1(δ2 − sβ) 1

2 sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sβ)

d, s, b −1
3

1
3 sin 2θw cos θw

(
1−

m2
γ′

4m2
W

)
(1 + ε2γ′)δ1(sβ − δ2) −1

2 sin θwε2γ′(1 + ε2γ′)δ1(δ2 − sβ)

Table 3. The γ′ → ff̄ vertices. In the above, εγ′ = mγ′/mZ .

Couplings in the limit of large δ2. Some of the processes such as the lifetime of the
dark photon require only that the product δ1δ2 be small which could be achieved by δ1
being small while δ2 is O(1) size. Thus we list below the vector and axial-vector couplings
in the limit of small δ1 and β while δ2 is not necessarily small

vf =T3f−2Qf sin2 θw+Qfδ1δ2 sinθw sin2θw(δ2−sinβ+δ2
2 sinβ)√

1−δ2
2

, (B.10)

af =T3f , (B.11)

v′f =−Qf sin2θw cosθw(1+ε2z+ε2γ′δ2
2)δ1

[
m2
Z′

m2
Z′ +m2

γ′δ2
2
−
(

1− T3f
2Qf

)
m2
Z′

m2
W

]

×

(1+δ2 sinβ)+
m2
γ′

m2
Z′

δ2
2(1+δ2 sinβ)−δ2 sinβ√

1−δ2
2

 , (B.12)

a′f =−δ1T3f sinθw(1+ε2z+δ2
2ε

2
γ′)

ε2z(1+δ2 sinβ)+ε2γ′
δ2

2(1+δ2 sinβ)−δ2 sinβ√
1−δ2

2

 , (B.13)

v′′f =Qf sin2θw cosθw(1+ε2γ′)
[
1−
(

1− T3f
2Qf

)
m2
γ′

m2
W

]
δ1(δ2−sinβ+δ2

2 sinβ)√
1−δ2

2

, (B.14)

a′′f =T3f sinθwε2γ′(1+ε2γ′)
δ1(δ2−sinβ+δ2

2 sinβ)√
1−δ2

2

. (B.15)
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The couplings with the D fermions become

γ′DD̄ : gX
m2
γ′δ2

m2
Z′−m2

γ′(1−δ2
2)
, (B.16)

Z ′DD̄ : gX , (B.17)

γDD̄ : −gX
m2
γ′δ1δ2 cosθw
m2
Z′ +m2

γ′δ2
2

δ2(1+βδ2)+β−δ2−βδ2
2√

1−δ2
2

 , (B.18)

ZDD̄ : gXδ1 sinθw(1+ε2z+δ2
2ε

2
γ′)

(1+βδ2)(1+δ2
2ε

2
γ′)+

δ2ε
2
γ′√

1−δ2
2

(β−δ2−βδ2
2)

 , (B.19)

and the triple gauge boson couplings take the form

WWγ′ : −ig2 cosθw sinθw(1+ε2γ′)
δ1(δ2−sβ+βδ2

2)√
1−δ2

2

, (B.20)

WWZ ′ : ig2 cosθw sinθw
δ1(1+ε2z+ε2γ′δ2

2)
m2
Z′ +m2

γ′δ2
2

m2
Z′(1+δ2β)+

m2
γ′δ2(βδ2

2 +δ2−β)√
1−δ2

2

 , (B.21)

WWZ : −ig2 cosθw

1+ sinθw tanθwδ1δ2(βδ2
2 +δ2−β)√

1−δ2
2

 . (B.22)

C Deduction of three temperature Boltzmann equations

Next we give a deduction of the Boltzmann equations for the case of three heat baths.
We will use T1 as the reference temperature. Let us consider a generic number density ni.
In this case niR3 is conserved during the expansion if there is no injection and we have
d(niR3)

dt = 0 where R is the scale factor, while in the presence of injection one has

dni
dt

+ 3Hni = Ci , (C.1)

where Ci represent the integrated collision terms. Next, if S = sR3 is the total entropy, it
is conserved which implies that

ds

dt
+ 3Hs = 0. (C.2)

Using eqs. (C.1) and (C.2), and the fact that ni = sYi, one finds

dYi
dt

= 1
s
Ci . (C.3)

We can convert this equation to one that uses temperature T1 rather than time which gives

dYi
dT1

= −dρ/dT1
4Hρ

1
s
Ci , (C.4)

– 23 –



J
H
E
P
0
6
(
2
0
2
1
)
0
8
6

where dρ/dT1 is given by

dρ

dT1
= (η + T1η

′)dρv
dT

+ dρ1
dT1

+ (ζ + T1ζ
′)dρ2
dT2

. (C.5)

The Boltzmann equations for YD, YZ′ , Yγ′ may now be written as

dYD
dT1

= −dρ/dT1
4Hρ

1
s
CD,

dYZ′

dT1
= −dρ/dT1

4Hρ
1
s
CZ′ ,

dYγ′

dT1
= −dρ/dT1

4Hρ
1
s
Cγ′ ,

(C.6)

where CD, CZ′ and Cγ′ are given by

CD = n2
i (T )〈σv〉īi→DD̄(T ) + n2

Z′〈σv〉Z′Z′→DD̄(T1)− 1
2n

2
D〈σv〉DD̄→īi(T1)

− 1
2n

2
D〈σv〉DD̄→Z′Z′(T1)− 1

2n
2
D〈σv〉DD̄→γ′γ′(T1) + n2

γ′〈σv〉γ′γ′→DD̄(T2)

− 1
2n

2
D〈σv〉DD̄→Z′γ′(T1) + nZ′nγ′〈σv〉Z′γ′→DD̄(T1, T2), (C.7)

CZ′ = n2
i (T )〈σv〉īi→Z′(T ) + n2

i (T )〈σv〉īi→Z′Z′(T ) + 1
2n

2
D〈σv〉DD̄→Z′Z′(T1)

− n2
Z′〈σv〉Z′Z′→īi(T1)− n2

Z′〈σv〉Z′Z′→DD̄(T1)− 1
2n

2
D〈σv〉DD̄→Z′γ′(T1)

− nZ′nγ′〈σv〉Z′γ′→DD̄(T1, T2)− nZ′〈ΓZ′→īi〉(T1), (C.8)

Cγ′ = n2
i (T )〈σv〉īi→γ′(T ) + 1

2n
2
D〈σv〉DD̄→γ′γ′(T1)− nγ′〈Γγ′→īi〉(T2)− n2

γ′〈σv〉γ′γ′→DD̄(T2)

+ n2
i (T )〈σv〉īi→γ′γ′(T )− n2

γ′〈σv〉γ′γ′→īi(T2) + 1
2n

2
D〈σv〉DD̄→Z′γ′(T1)

− nZ′nγ′〈σv〉Z′γ′→DD̄(T1, T2). (C.9)

In eqs. (C.7), (C.8) and (C.9) one encounters thermally averaged decay width and
thermally averaged cross sections. The thermally averaged decay width is given by

〈Γa→bc〉 = Γa→bc
K1(ma/T )
K2(ma/T ) , (C.10)

and the thermally averaged cross-section is given by

〈σv〉aā→bc(T ) = 1
8m4

aTK
2
2 (ma/T )

∫ ∞
4m2

a

ds σ(s)
√
s (s− 4m2

a)K1(
√
s/T ). (C.11)

K1 and K2 are the modified Bessel functions of the second kind and degrees one and two,
respectively. For the case when the annihilating particles have different masses m1 and m2
and are at different temperatures T1 and T2, the thermally averaged cross-section becomes

〈σv〉12→34(T1,T2) = 1
4m2

1m
2
2K2(m1/T1)K2(m2/T2)

∫ ∞
(m1+m2)2

dsσ(s)
√
s(s−(m1+m2)2)I(s),

(C.12)
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where

I(s) = 1
T1 − T2

∫ ∞
√
s
dx e−a+x/2 sinh

a−
2

√
1− (m1 +m2)2

s

√
x2 − s

 , (C.13)

and where
a+ = T1 + T2

T1T2
, a− = T1 − T2

T1T2
. (C.14)

Note that in the limit T1 → T2, I(s) →
√
s− (m1 +m2)2

2T K1(
√
s/T ) which for m1 = m2

allows us to recover eq. (C.11) using eq. (C.12). The equilibrium yield of species i is given by

Yi = neq
i

s
= gi

2π2s
m2
iTK2(mi/T ). (C.15)

The hidden sectors degrees of freedom is given by

g1eff = gZ
′

eff + 7
8g

D
eff , and h1eff = hZ

′
eff + 7

8h
D
eff , (C.16)

g2eff = gγ
′

eff , and h2eff = hγ
′

eff , (C.17)

where

gVeff = 45
π4

∫ ∞
xV

√
x2 − x2

V

ex − 1 x2dx, and hVeff = 45
4π4

∫ ∞
xV

√
x2 − x2

V

ex − 1 (4x2 − x2
V )dx,

gDeff = 60
π4

∫ ∞
xD

√
x2 − x2

D

ex + 1 x2dx, and hDeff = 15
π4

∫ ∞
xD

√
x2 − x2

D

ex + 1 (4x2 − x2
D)dx.

(C.18)

In eq. (C.18), V = Z ′, γ′ and we take gγ′ = gZ′ = 3 and gD = 4.

D Dark photon and dark fermion scattering cross sections and Z ′ decay
width

The calculation of the relic densities of the dark photon and dark fermion require solving
the coupled Boltzmann equations which contain a variety of cross sections involving the
standard model and dark sector particles. We list these below.

1. Processes: DD̄ → Z,Z ′, γ′ → ff̄

σDD̄→ff̄ (s) = g2
Xg

2
2Nc

12π cos2 θw

(
1+ 2m2

D

s

)√√√√ s−4m2
f

s−4m2
D

{
[a′′2f (s−4m2

f )+v′′2f (s+2m2
f )]δ2

2
κ2[(s−m2

γ′)2 +m2
γ′Γ2

γ′ ]

+
a′2f (s−4m2

f )+v′2f (s+2m2
f )

(s−m2
Z′)2 +m2

Z′Γ2
Z′

+
[a2
f (s−4m2

f )+v2
f (s+2m2

f )]δ2
1 sin2 θw

(s−m2
Z)2 +m2

ZΓ2
Z

+
2δ2[a′fa′′f (s−4m2

f )+v′fv
′′
f (s+2m2

f )]
κ[(s−m2

Z′)2 +m2
Z′Γ2

Z′ ][(s−m2
γ′)2 +m2

γ′Γ2
γ′ ]
G(s,mZ′ ,mγ′)

+
2δ1δ2[afa′′f (s−4m2

f )+vfv
′′
f (s+2m2

f )] sinθw
κ[(s−m2

Z)2 +m2
ZΓ2

Z ][(s−m2
γ′)2 +m2

γ′Γ2
γ′ ]

G(s,mZ ,mγ′)

+
2δ1[afa′f (s−4m2

f )+vfv
′
f (s+2m2

f )] sinθw
[(s−m2

Z′)2 +m2
Z′Γ2

Z′ ][(s−m2
Z)2 +m2

ZΓ2
Z ]
G(s,mZ ,mZ′)

}
. (D.1)
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Here s is the Mandelstam variable which gives the square of the total energy in the CM
system. Further, the notation used above is as follows: f = e, µ, τ : T3f = −1/2 and
Qf = −1 and for f = u, c, t: T 3

f = 1/2 and Qf = 2/3 and for f = d, s, b: T 3
f = −1/2

and Qf = −1/3, Nc is the color number and

κ = −(1−m2
Z′/m2

γ′), (D.2)
G(s,m1,m2) = (s−m2

1)(s−m2
2) + Γ1Γ2m1m2. (D.3)

2. Processes: DD̄ → Z,Z ′, γ′ → νν̄

σDD̄→νν̄(s) =g2
Xg

2
2δ

2
1

8π
(s+4m2

D)tan2 θw
(1−4m2

D/s)1/2

[
A

(s−m2
Z′)(s−m2

γ′)
− 1

(s−m2
Z)

]2

, (D.4)

where

A = ε2z(s−m2
γ′) +

δ2ε
2
γ′(s−m2

Z′)(δ2 − sin β)
1−m2

Z′/m2
γ′

. (D.5)

3. Processes: ff̄ → Z,Z ′, γ′ → DD̄

(s− 4m2
D)σDD̄→ff̄ (s) = N2

c (s− 4m2
f )σff̄→DD̄(s). (D.6)

4. Processes: νν̄ → Z,Z ′, γ′ → DD̄

σνν̄→DD̄(s) = 4
(

1− 4m2
D

s

)
σDD̄→νν̄(s). (D.7)

5. Process: DD̄ → Z ′Z ′

σDD̄→Z
′Z′(s) = g4

X

8πs

{
−
√
s− 4m2

Z′

s− 4m2
D

[
m2
Ds+ 2m4

Z′ + 4m4
D

(s− 4m2
Z′)m2

D +m4
Z′

]

+ s2 + 4m2
D(s− 2m2

Z′) + 4m4
Z′ − 8m4

D

(s− 2m2
Z′)(s− 4m2

D)
logB

}
, (D.8)

where

B =
s− 2m2

Z′ +
√

(s− 4m2
Z′)(s− 4m2

D)

s− 2m2
Z′ −

√
(s− 4m2

Z′)(s− 4m2
D)
. (D.9)

6. Process: DD̄ → γ′γ′

σDD̄→γ
′γ′(s) =

(
δ2M

2
γ′

M2
Z′ −M2

γ′

)4

σDD̄→Z
′Z′(s)

∣∣∣
mZ′←→mγ′

. (D.10)

7. Processes: DD̄ → V V with V = Z ′, γ′

8(s− 4m2
D)σDD̄→V V (s) = 9(s− 4m2

V )σV V→DD̄(s).
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8. Processes DD̄ → Z ′γ′

σDD̄→Z
′γ′(s) =

δ2
2g

4
Xm

4
γ′

4π(m2
Z′−m2

γ′)s(s−4m2
D)

×
{ 4m4

Ds−2mZ′mγ′s+m2
D

[
(m2

Z′−m2
γ′)2+s2

]
m2
Z′m2

γ′s+m2
D

[
m4
γ′ +(s−m2

Z′)2−2m2
γ′(s+m2

Z′)
]E

+
[
−8m4

D+(m2
Z′ +m2

γ′)2−4m2
D(m2

Z′−m2
γ′−s)+s2

]
logF

}
, (D.11)

where

E =

√√√√(1− 4m2
D

s

)[
m4
γ′ + (s−m2

Z′)2 − 2m2
γ′(s+m2

Z′)
]
, (D.12)

F =
m2
γ′ +m2

Z′ − s+ E

m2
γ′ +m2

Z′ − s− E
. (D.13)

9. Processes Z ′γ′ → DD̄

σZ
′γ′→DD̄(s) = 4s(s− 4m2

D)
9[(m2

γ′ +m2
Z′ − s)2]− 4m2

γ′m2
Z′
σDD̄→Z

′γ′(s) (D.14)

10. Processes: V V → ff̄ with V = Z ′, γ′

σV V→ff̄ (s) = g4
2Nc

9πm4
V s(s− 4m2

V ) cos4 θw

{√(s− 4m2
f )(s− 4m2

V )
m4
V +m2

f (s− 4m2
V )

×
(
c4
A[−2m8

V +m2
fm

4
V (s+ 4m2

V ) + 2m4
f (8m4

V − 8m2
V s+ s2)]

+ 2c2
Ac

2
Vm

4
V [8m4

f − 6m4
V +m2

f (22m2
V − 7s)]

−m4
V (4m4

f + 2m4
V +m2

fs)c4
V

)
+ logC

(s− 2m2
V )

(
c4
A[4m4

f (4m2
V − s)s+m4

V (4m4
V + s2)

+ 4m2
fm

2
V (−4m4

V − 3m2
V s+ s2)] + 2c2

Am
2
V [16m4

fm
2
V

+ 3m2
V (s2 + 4m4

V ) + 2m2
f (s2 − 10m2

V s− 10m4
V )]c2

V

+m4
V [s2 + 4m2

f (s− 2m2
V )− 8m4

f + 4m4
V ]c4

V

)}
, (D.15)

where

C =
s− 2m2

V +
√

(s− 4m2
V )(s− 4m2

f )

s− 2m2
V −

√
(s− 4m2

V )(s− 4m2
f )
, (D.16)

and cA = a′f , cV = v′f for V = Z ′ and cA = a′′f , cV = v′′f for V = γ′.

– 27 –



J
H
E
P
0
6
(
2
0
2
1
)
0
8
6

11. Process: V V → νν̄ with V = Z ′, γ′

σV V→νν̄(s) = g4
2δ

4
1

6πs tan4 θw

[
s2 + 4m4

V

(s− 4m2
V )(s− 2m2

V )
logD − 2

(
1− 4m2

V

s

)−1/2 ]

×

ε8z, for V = Z ′

(δ2 − sin β)4ε8γ′ , for V = γ′
, (D.17)

where

D =
s− 2m2

V +
√
s(s− 4m2

V )

s− 2m2
V −

√
s(s− 4m2

V )
. (D.18)

12. Processes ff̄ , ν, ν̄ → V V with V = Z ′, γ′

9(s− 4m2
V )σV V→ff̄ = 8(s− 4m2

f )σff̄→V V , (D.19)
9(s− 4m2

V )σV V→νν̄ = 2s σνν̄→V V . (D.20)

13. Process: ff̄ → Z ′

σff̄→Z
′(s) = πg2

2δ
2
1m

2
Z′

2s
√
s− 4m2

fNc

[(
1 +

2m2
f

m2
Z′

)(
Qf + m2

Z′

2m2
W

(T3f − 2Qf )
)2

sin2 2θw

+
(

1−
4m2

f

m2
Z′

)
ε4zT

2
3f tan2 θw

]
δ(
√
s−mZ′). (D.21)

14. Process: νν̄ → Z ′

σνν̄→Z
′(s) = 3πg2

2δ
2
1ε

4
zm

2
Z′

s3/2 tan2 θw δ(
√
s−mZ′). (D.22)

15. Process: ff̄ , νν̄ → γ′

σff̄→γ
′(s) = (δ2 − sin β)2 σff̄→Z

′(s)
∣∣∣
mZ′←→mγ′

. (D.23)

Same applies to σνν̄→γ′(s).

16. Process: Z ′ → ff̄ , νν̄

The decay width of Z ′ to SM fermions is given by

ΓZ′→ff̄ = g2
2δ

2
1Nc

12π mZ′

√
1−

(2mf

mZ′

)2
[(

1−
4m2

f

m2
Z′

)
T 2

3f ε
4
z tan2 θw

+
(

1 +
2m2

f

m2
Z′

)(
Qf + m2

Z′

2m2
W

(T3f − 2Qf )
)2

sin2 2θw

]
, (D.24)

and its invisible decay is

ΓZ′→νν̄ = g2
2δ

2
1ε

4
z

8π mZ′ tan2 θw. (D.25)
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