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1 Introduction

The BMS group [1–5] is the symmetry group of four-dimensional asymptotically flat space-
times at null infinity. The precise form of this group changes when one replaces the celestial
sphere by a different Riemann surface [6, 7]. Whereas unitary irreducible representations
of the BMS group are directly relevant for the quantum theory [8–10], the coadjoint repre-
sentation is intimately connected to classical solution space through the momentum map.
Unitary irreducible representations come later, after the classification of coadjoint orbits,
via geometric quantization.

In this paper, we provide the detailed construction of the coadjoint representation of
the BMS group and of the algebra on the celestial sphere and the punctured plane. In the
case of the sphere, we explicitly identify the coadjoint representation in the gravitational
data of non-radiative spacetimes.

In order to set the stage, we start in section 2 by providing the (corrected) commutation
relations of the bms4 algebra on the celestial sphere. Since the structure of the BMS group is
the same as that of the Poincaré group in the sense that both are semi-direct product groups
with an abelian ideal, we recall in section 3 the structure of the coadjoint representation
of such groups and algebras [11].

In a next step in section 4, we provide a description of the coadjoint representation
of the BMS group in four dimensions in terms of suitably weighted functions on a two-
dimensional surface by focussing on local aspects. For the presentation, after some generic
considerations based on [12, 13], we will use a Weyl covariant derivative instead of the stan-
dard “eth” operator [5, 14, 15]. Note that our conventions for these derivatives differ some-
what from those originally introduced in [16–18] for related reasons. The description applies
both to the “global” and “local” versions of the algebra [19–22], which are studied explicitly
in sections 5 and 6, respectively. In the former section, we use extensively results of sections
4.14 and 4.15 of [17]. Besides the standard choice of rotation and boost generators as used
originally in [3], we also provide explicit commutation relations adapted to the sl(2,R) ×
sl(2,R) decomposition of the Lorentz algebra. In the latter section, our expansions follow
the standard conventions used in the context of two-dimensional conformal field theories.

In section 7, we briefly comment the case of the cylinder. Finally, in the case of the
sphere and for non-radiative asymptotically flat spacetimes, we explicitly construct the
equivariant map from the free gravitational data at I + to the coadjoint representation in
section 8.

The coadjoint representation of the BMS group in three dimensions [23] (see also [24,
25]) has been investigated in [26]. In that case, the abelian factor can be identified with
the Lie algebra of the non abelian factor acted upon by the adjoint representation, which
simplifies the classification of coadjoint orbits considerably. Furthermore, central exten-
sions are the familiar ones directly related to the Virasoro group and algebra. Neither of
these simplifications occur in four dimensions. As a consequence, we will not discuss the
classification of coadjoint orbits in this paper. Also, central extensions that are relevant in
the gravitational context are of a different nature [27], and will not be considered here.
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2 Poincaré and BMS algebras on the celestial sphere

The structure constants of the bms4 algebra on the celestial sphere have been worked out
in [3] (see also [28] for corrections, and [29, 30] for reviews). More details on the geometric
interpretation can be found in [5, 15] (see also [17, 18, 31–33]). In this section, we start
by providing the standard commutation relations of the bms4 algebra in terms of rotation
and boost generators.

Let xa, a = 0, . . . 3, be Cartesian coordinates on Minkowski spacetime where ηab =
diag(1,−1,−1,−1) and its inverse ηab are used to lower and raise indices. The starting
point is the Poincaré algebra with generators

Lab = L[ab] = −
(
xa

∂

∂xb
− xb ∂

∂xa

)
, P a = ∂

∂xa
, (2.1)

satisfying

[Lab, Lcd] = −(ηbcLad − ηacLbd − ηbdLac + ηadLbc),
[P a, Lbc] = −(ηabP c − ηacP b).

(2.2)

When splitting into suitable combinations of rotation and boost generators and of trans-
lation generators,

Lz = L12, L± = ±iL23 + L13, Kz = L30, K± = ∓iL20 − L10,

H = P 0, Pz = −1
2P

3, P± = 1
2(iP 2 ± P 1),

(2.3)

the non-vanishing commutation relations of the Poincaré algebra become

[L+, L−] = 2iLz, [Lz, L±] = ±iL±, [K+,K−] = −2iLz,
[Kz,K

±] = L±, [L+,K−] = 2Kz, [L−,K+] = 2Kz,

[Lz,K±] = ±iK±, [L±,Kz] = −K±,

[Kz, H] = 2Pz, [K±, H] = ±2P±, [L±, Pz] = ∓P±, [Kz, Pz] = 1
2H,

[Lz, P±] = ±iP±, [L+, P−] = −2Pz = −[L−, P+],
[K+, P−] = −H = −[K−, P+]. (2.4)

In terms of spherical coordinates and a retarded time coordinate,

r =
√

(x1)2 + (x2)2 + (x3)2, u = x0 − r, r cos θ = x3, r sin θeiφ = x1 + ix2, (2.5)

– 3 –
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the Poincaré generators read

Lz = ∂φ,

L± = −e±iφ
[
∂θ ± i cot θ∂φ

]
,

Kz = −
(

1 + u

r

)
cos θ(r∂r) + cos θ(u∂u) +

(
1 + u

r

)
sin θ∂θ,

K± = e±iφ
[(

1 + u

r

)
sin θ(r∂r)− sin θ(u∂u) +

(
1 + u

r

)
cos θ∂θ ±

(
1 + u

r

)
i

sin θ∂φ
]
,

H = ∂u,

−2Pz = cos θ(−∂r + ∂u) + 1
r

sin θ∂θ,

±2P± = e±iφ
[

sin θ(∂r − ∂u) + 1
r

cos θ∂θ ±
1

r sin θ∂φ
]
. (2.6)

As may be shown on general grounds or explicitly checked, the Poincaré algebra in the
form (2.4) may also be represented in terms of these generators restricted to the surface
r = cte→∞,

Lz = ∂φ, L± = −e±iφ
[
∂θ ± i cot θ∂φ

]
,

Kz = cos θ(u∂u) + sin θ∂θ, K± = e±iφ
[
− sin θ(u∂u) + cos θ∂θ ±

i

sin θ∂φ
]
,

H = ∂u, −2Pz = cos θ∂u, ±2P± = −e±iφ sin θ∂u.

(2.7)

The next step is to represent the Poincaré algebra at u = 0. This can be done by simply
restricting the Lorentz generators to that surface, and by representing the translation
generators by suitable functions on that surface,

Lz = ∂φ, L± = −e±iφ
[
∂θ ± i cot θ∂φ

]
,

Kz = sin θ∂θ, K± = e±iφ
[

cos θ∂θ ±
i

sin θ∂φ
]
,

H = 1 = 0Z0,0, Pz = −1
2 cos θ = 0Z1,0, P± = ∓1

2e
±iφ sin θ = 0Z1,±1,

(2.8)

while in addition, defining for any function f on the sphere,

[Lz, f ] = Lz(f), [L±, f ] = L±(f),
[Kz, f ] = Kz(f)− cos θf, [K±, f ] = K±(f) + e±iφ sin θf.

(2.9)

When applied to the four functions in the last line of (2.8), this reproduces the commutation
relations of the Lorentz with the translation generators in the Poincaré algebra, i.e., the
last two lines of (2.4). The general expression for the unnormalized spherical harmonics
sZj,m are explicitly given in appendix A.

How the Poincaré algebra is enhanced to the bms4 algebra in the context of asymp-
totically flat spacetimes at null infinity is discussed in the references at the beginning of
this section. Besides the original reference [3], we also refer to the re-derivation in [20] for
more details.

– 4 –
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In the bms4 algebra, the commutation relations for the Lorentz sub-algebra are un-
changed and given in the first three lines of (2.4). The commutation relations for the bms4
algebra are then completed by choosing a basis for functions on the sphere. Whatever basis
is chosen, the supertranslation generators T GA commute,

[T GA , T GA′ ] = 0. (2.10)

To get explicit structure constants for the commutators involving Lorentz and supertrans-
lation generators, one may start with an unnormalized basis involving associated Legendre
functions,

T Uj,m = Pmj (cos θ)eimφ, Pmj (x) = (−1)m(1− x2)
m
2
dm

dxm
Pj(x). (2.11)

The action of the Lorentz generators on the T Uj,m is then worked out according to (2.9) by
using suitable properties of associated Legendre functions (see e.g. 8.733 and 8.735 of [34]),

[Lz, T Uj,m] = imT Uj,m, (2.12)
[L+, T Uj,m] = −T Uj,m+1, (2.13)
[L−, T Uj,m] = (j −m+ 1)(j +m)T Uj,m−1, (2.14)

[Kz, T Uj,m] = (j − 1)(j −m+ 1)
2j + 1 T Uj+1,m −

(j + 2)(j +m)
2j + 1 T Uj−1,m, (2.15)

[K+, T Uj,m] = j − 1
2j + 1T

U
j+1,m+1 + j + 2

2j + 1T
U
j−1,m+1, (2.16)

[K−, T Uj,m] = −(j − 1)(j −m+ 1)(j −m+ 2)
2j + 1 T Uj+1,m−1

− (j + 2)(j +m)(j +m− 1)
2j + 1 T Uj−1,m−1. (2.17)

For a normalized basis in terms of standard spherical harmonics,

T Sj,m = 0Yj,m =
√

(2l + 1)(l −m)!
4π(l +m)! Pmj (cos θ)eimφ, (2.18)

one finds instead

[Lz, T Sj,m] = imT Sj,m, (2.19)

[L±, T Sj,m] = ∓
√

(j ∓m)(j ±m+ 1)T Sj,m±1, (2.20)

[Kz, T Sj,m] = (j − 1)
√

(j +m+ 1)(j −m+ 1)
(2j + 1)(2j + 3) T Sj+1,m (2.21)

− (j + 2)
√

(j +m)(j −m)
(2j − 1)(2j + 1)T

S
j−1,m, (2.22)

[K±, T Sj,m] = ±(j − 1)
√

(j ±m+ 2)(j ±m+ 1)
(2j + 1)(2j + 3) T Sj+1,m±1

± (j + 2)
√

(j ∓m)(j ∓m− 1)
(2j − 1)(2j + 1) T

S
j−1,m±1. (2.23)
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This is the form under which the commutation relations between Lorentz and supertrans-
lation generators usually appear in the literature (with due care devoted to various con-
ventions and correction of misprints).

3 Coadjoint representations of semi-direct product groups and algebras

For a semi-direct product group of the form Gnσ A, with G a Lie group and A an abelian
Lie group seen as a vector space with the addition, the group law is given by

(f, α) · (g, β) = (f · g, α+ σf (β)), (3.1)

while σ is a representation of G on A. The associated Lie algebra is g iΣ A, the Lie algebra
of A being identified with A itself, and

[(X,α), (Y, β)] = ([X,Y ],ΣXβ − ΣY α), (3.2)

where Σ is the differential of σ. The adjoint actions of the group and the algebra are then
given by

Ad(f,α)(X,β) = (AdfX,σfβ − ΣAdfXα), (3.3)
ad(X,α)(Y, β) = ([X,Y ],ΣXβ − ΣY α). (3.4)

The dual space to the Lie algebra is given by g∗⊕A∗, with non-degenerate pairing denoted
by

〈(j, p), (X,α)〉 = 〈j,X〉+ 〈p, α〉, (3.5)

and coadjoint actions

〈Ad∗(f,α)(j, p), (Y, β)〉 = 〈(j, p),Ad(f,α)−1(Y, β)〉, (3.6)

〈ad∗(X,α)(j, p), (Y, β)〉 = 〈(j, p),−ad(X,α)(Y, β)〉. (3.7)

Defining × : A⊕A∗ → g∗ by
〈α× p,X〉 = 〈p,ΣXα〉, (3.8)

and σ∗ to be the dual representation associated with σ, σ∗ : G×A∗ → A∗,

〈σ∗fp, α〉 = 〈p, σf−1α〉, (3.9)

the coadjoint representations are given by

Ad∗(f,α)(j, p) = (Ad∗f j + α× σ∗fp, σ∗fp), (3.10)

ad∗(X,α)(j, p) = (ad∗Xj + α× p,Σ∗Xp). (3.11)

In terms of generators, (eA, eα) of g iΣ A, with (eA∗ , eα∗ ) the associated dual basis of g∗⊕A∗,

[eA, eB] = fCABeC , [eA, eα] = fβAαeβ , [eα, eβ ] = 0, (3.12)

the coadjoint representation of the algebra (3.11) becomes

ad∗eAe
B
∗ = −fBACeC∗ , ad∗eαe

B
∗ = 0, ad∗eAe

β
∗ = −fβAγe

γ
∗ , ad∗eαe

β
∗ = −fβαCe

C
∗ . (3.13)

– 6 –
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4 General structure of the coadjoint representation of BMS4

4.1 Background structure

4.1.1 Extended conformal transformations

Consider an n-dimensional Riemannian manifold with coordinates xα and metric gαβ(x)
which transforms under invertible coordinate transformations x′α = x′α(x) as

g′γδ(x′) = gαβ(x) ∂x
α

∂x′γ
∂xβ

∂x′δ
. (4.1)

Conformal coordinate transformations are such invertible coordinate transformations for
which

g′γδ(x′) = gγδ(x′)Ω2(x′). (4.2)

Consider then a two-dimensional surface S with coordinates xα = (ξ, ξ̄) and a conformally
flat metric

ds2 = gαβdx
αdxβ = −2(PP̄ )−1dξdξ̄, (4.3)

for some nowhere vanishing P (x). In this case, coordinate transformations of the form

ξ′ = ξ′(ξ), ξ̄′ = ξ̄′(ξ̄) (4.4)

are conformal coordinate transformations with

Ω(x′) =
[

(PP̄ )(x′)
(PP̄ )(x)

J

] 1
2

, J = ∂ξ

∂ξ′
∂ξ̄

∂ξ̄′
. (4.5)

For such conformal transformations, the transformation law

P ′(x′) = P (x)∂ξ
′

∂ξ
, P̄ ′(x′) = P̄ (x)∂ξ̄

′

∂ξ̄
, (4.6)

induces the transformation (4.2) of the metric components. The more general transforma-
tion law

P ′(x′) = P (x)∂ξ
′

∂ξ
e−E(x′), P̄ ′(x′) = P̄ (x)∂ξ̄

′

∂ξ̄
e−Ē(x′), (4.7)

with E a complex scalar field can be understood as follows. Writing the metric with suitable
zweibeins as,

ds2 = eAαdx
αηABe

B
βdx

β , ηAB =

 0 −1
−1 0

 , e1
α∂α = P∂, e2

α∂α = P̄ ∂̄, (4.8)

they correspond to the transformations of the zweibeins under conformal coordinate trans-
formations. At the same time, the imaginary part iEI produces a local rotation of the
zweibeins while the real part of ER generates the Weyl rescaling of the metric. The asso-
ciated conformal factor is

Ω(x′) =
[

(PP̄ )(x′)
(PP̄ )(x)

J

] 1
2

eER(x′). (4.9)

Three relevant subclasses of the extended transformations (4.7) are

– 7 –
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(i) Conformal coordinate transformation. taking E = 0 = Ē in (4.7) leads back
to (4.6), and thus, when applied to the metric components, to the same transforma-
tions (4.2) as those coming from the conformal coordinate transformation applied to the
metric tensor.

(ii) Complex Weyl rescaling. taking ξ′ = ξ, ξ̄′ = ξ̄ in (4.7) gives

P ′(x) = P (x)e−E(x), P̄ ′(x) = P̄ (x)e−Ē(x). (4.10)

This induces a real local Weyl rescaling on the metric,

g′αβ(x) = e2ERgαβ(x). (4.11)

When the real part ER = 0, the metric is unchanged.

(iii) Fixed conformal factor. fixing as in [5, 15] the conformal factor to be a prescribed
function of its arguments, P (x) = PF (x), P̄ (x) = P̄F (x) and P ′(x′) = PF (x′), P̄ ′(x′) =
P̄F (x′) in (4.7), implies that complex Weyl rescalings are frozen to

eE(x′) = PF (x)
PF (x′)

∂ξ′

∂ξ
⇐⇒


eER(x′) = J−

1
2
[

(PF P̄F )(x)
(PF P̄F )(x′)

] 1
2
,

eiEI(x′) =
[

(PF /P̄F )(x)
(PF /P̄F )(x′)

(
∂ξ′/∂ξ
∂ξ̄′/∂ξ̄

)] 1
2
,

(4.12)

where E = ER + iEI . We will mostly be interested in 2 particular cases below. The
first is when S is a 2-sphere of radius R with metric ds2 = −R2(dθ2 + sin2 θdφ2) and
ξ = ζ̄ = cot θ2e−iφ, so that

PS = 1 + ξξ̄

R
√

2
= P̄S , (4.13)

see [17] section 4.15 for details.
The second is the punctured complex plane, the complex plane with the origin removed

C0 = C− {0}, with standard metric ds2 = −2dzdz̄ so that

P = 1 = P̄ . (4.14)

4.1.2 Conformal fields and weighted scalars

Under conformal coordinate transformations and complex Weyl rescalings, fields φλ,λ̄
h,h̄

of
conformal dimensions (h, h̄) and Weyl weights (λ, λ̄) transform as

φ′
λ,λ̄

h,h̄
(x′) = eλE(x′)eλ̄Ē(x′)

(
∂ξ

∂ξ′

)h( ∂ξ̄
∂ξ̄′

)h̄
φλ,λ̄
h,h̄

(x). (4.15)

It follows from (4.7) that the conformal dimensions and Weyl weights of P are both (−1, 0)
whereas those of P̄ are both (0,−1). These quantities can be used to map the fields φλ,λ̄

h,h̄

into scalars ηs,w

ηs,w = P hP̄ h̄φλ,λ̄
h,h̄
, (4.16)

– 8 –
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of spin and conformal weights [s, w],

s = (h− h̄)− (λ− λ̄), w = −(h+ h̄) + (λ+ λ̄), (4.17)

which transform under conformal coordinate transformations and complex Weyl rescalings
as

η′s,w(x′) = ewER(x′)e−isEI(x′)ηs,w(x). (4.18)

4.1.3 Derivative operators

The only non-vanishing components of the Levi-Civita connection associated with (4.3) are

Γξξξ = −∂ ln(PP̄ ), Γξ̄
ξ̄ξ̄

= −∂̄ ln(PP̄ ), (4.19)

where ∂ = ∂ξ, ∂̄ = ∂ξ̄. Equation (4.7) induces their transformation law under conformal
coordinate transformations combined with Weyl rescalings,

Γ′ξ
′

ξ′ξ′(x
′) = Γξξξ(x) ∂ξ

∂ξ′
+ ∂ξ′

∂ξ

∂2ξ

∂ξ′∂ξ′
+ 2∂′ER(x′), (4.20)

with a similar transformation law for Γξ̄
ξ̄ξ̄
. In addition to the conformally flat metric (4.3),

one supposes that S is endowed with a Weyl connection (W, W̄ ) (see e.g. [12]) that trans-
forms as

W ′(x′) =
(
∂ξ

∂ξ′

)
W (x) + 2∂′ER(x′), W̄ ′(x′) =

(
∂ξ̄

∂ξ̄′

)
W̄ (x) + 2∂̄′ER(x′). (4.21)

Using P , P̄ , W , W̄ , one can define

K = 1
2(∂ lnµ− Γξξξ) +W = ∂ ln P̄ +W, O = 1

2(Γξξξ − ∂ lnµ) = −∂ ln P̄

K̄ = 1
2(∂̄ ln µ̄− Γξ̄

ξ̄ξ̄
) + W̄ = ∂̄ lnP + W̄ , Ō = 1

2(Γξ̄
ξ̄ξ̄
− ∂̄ ln µ̄) = −∂̄ lnP,

(4.22)

where µ = P̄
P is a Beltrami differential. These objects transform as

K ′(x′) =
(
∂ξ

∂ξ′

)
K(x) + ∂′E(x′), O′(x′) =

(
∂ξ

∂ξ′

)
O(x) + ∂′Ē(x′),

K̄ ′(x′) =
(
∂ξ̄

∂ξ̄′

)
K̄(x) + ∂̄′Ē(x′), Ō′(x′) =

(
∂ξ̄

∂ξ̄′

)
Ō(x) + ∂̄′E(x′).

(4.23)

The Weyl covariant derivative can then be defined as

Dφλ,λ̄
h,h̄

= [∇+ (h− λ)K + (h− λ̄)O]φλ,λ̄
h,h̄
,

D̄φλ,λ̄
h,h̄

= [∇̄+ (h̄− λ̄)K̄ + (h̄− λ)Ō]φλ,λ̄
h,h̄
,

(4.24)

where ∇ ≡ ∇ξ and ∇̄ ≡ ∇ξ̄ are the components of the covariant derivative associated to the
Levi-Civita connection (4.19). Notice that the field P (P̄ ) of Weyl weights (λ, λ̄) = (−1, 0)
(resp. (λ, λ̄) = (0,−1)) and conformal dimensions (h, h̄) = (−1, 0) (resp. (h, h̄) = (0,−1))

– 9 –
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are holomorphic (resp. anti-holomorphic) with respect to the Weyl covariant derivative,
namely D̄P = 0 (resp. DP̄ = 0). Under conformal coordinate transformations and complex
Weyl rescalings, we have

(Dφλ,λ̄
h,h̄

)′(x′) = eλE(x′)eλ̄Ē(x′)
(
∂ξ

∂ξ′

)h+1( ∂ξ̄
∂ξ̄′

)h̄
(Dφλ,λ̄

h,h̄
)(x),

(Dφλ,λ̄
h,h̄

)′(x′) = eλE(x′)eλ̄Ē(x′)
(
∂ξ

∂ξ′

)h( ∂ξ̄
∂ξ̄′

)h̄+1
(D̄φλ,λ̄

h,h̄
)(x).

(4.25)

Therefore, the operator D (D̄) acts on fields of Weyl weights (λ, λ̄) and conformal dimen-
sions (h, h̄) to produce fields of Weyl weights (λ, λ̄) and conformal dimensions (h + 1, h̄)
(resp. (h, h̄+ 1)).

In the following we will assume that the only fields carrying non-vanishing Weyl weights
are P, P̄ . All other fields are thus of the form φ0,0

h,h̄
with associated scalars ηs,w = P hP̄ h̄φ0,0

h,h̄

so that
s = h− h̄, w = −(h+ h̄), h = s− w

2 , h̄ = −s+ w

2 . (4.26)

If
ðηs,w = P h+1P̄ h̄(∇φ0,0

h,h̄
), ð̄ηs,w = P hP̄ h̄+1(∇̄φ0,0

h,h̄
), (4.27)

then
ðηs,w = PP̄−s∂(P̄ sηs,w) = P (∂ − sO)ηs,w,
ð̄ηs,w = P̄P s∂̄(P−sηs,w) = P̄ (∂̄ + sŌ)ηs,w.

(4.28)

in agreement with expressions (4.14.34) and (4.14.33) of [17]. Under conformal coordinate
transformations and complex Weyl rescalings,

(ðηs,w)′(x′) = e(w−1)ER(x′)e−i(s+1)EI(x′)[ð + (w − s)P∂ER(x′(x))
]
ηs,w(x),

(ð̄ηs,w)′(x′) = e(w−1)ER(x′)e−i(s−1)EI(x′)[ð̄ + (w + s)P̄ ∂̄ER(x′(x))
]
ηs,w(x).

(4.29)

Hence, the scalars ðηs,w and ð̄ηs,w transform as scalars of weights [s+1, w−1] respectively
[s − 1, w − 1] only if w = s ⇐⇒ h = 0 respectively w = −s ⇐⇒ h̄ = 0. Alternatively,
one may limit oneself to complex Weyl rescalings with ER = 0 so that only rotations of the
zweibeins are allowed, with no Weyl rescaling of the metric. In this case, only spin weight
s is relevant.

When using the Weyl covariant derivative D instead of the covariant derivative ∇
associated to the Christoffel connection, this issue does not arise. Denoting Dηs,w and
D̄ηs,w the images under the mapping (4.16) of Dφλ,λ̄

h,h̄
and of D̄φλ,λ̄

h,h̄
, respectively, we have

Dηs,w =
[
ð +

(
s− w

2

)
(O +K)

]
ηs,w = P

[
∂ − s

2(O −K)− w

2 (O +K)
]
ηs,w,

D̄ηs,w =
[
ð̄−

(
w + s

2

)
(Ō + K̄)

]
ηs,w = P̄

[
∂̄ + s

2(Ō − K̄)− w

2 (Ō + K̄)
]
ηs,w,

(4.30)

whereO = PO, K = PK, Ō = P̄ Ō, K̄ = P̄ K̄. Under conformal coordinate transformations
and complex Weyl rescalings, we now have

(Dηs,w)′(x′) = e(w−1)ER(x′)e−i(s+1)EI(x′)(Dηs,w)(x),
(D̄ηs,w)′(x′) = e(w−1)ER(x′)e−i(s−1)EI(x′)(D̄ηs,w)(x).

(4.31)
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Therefore, the operator D (D̄) acts on weighted scalars [s, w] to produce weighted scalars
[s+ 1, w − 1] (resp. [s− 1, w − 1]). The following property holds:

[D, D̄]ηs,w = −PP̄
(
s∂∂̄ ln(PP̄ ) + s− w

2 ∂̄W + s+ w

2 ∂W̄

)
ηs,w. (4.32)

Note that R = −2PP̄∂∂̄ ln(PP̄ ) is the scalar curvature of S.

4.1.4 Ingredients
In the considerations below, all fields except for P, P̄ have Weyl weights (0, 0). We need
the following ingredients:

(i) Supertranslation field. a real conformal field T̃ of dimensions (−1
2 ,−

1
2) and its

assocated weighted scalar T under the map (4.16) of weights [0, 1].

(ii) Superrotation field. a conformal field Ỹ of dimensions (−1, 0), its associated
weighted scalar Y of weights [−1, 1], and the complex conjugates ¯̃Y and Ȳ. These fields
satisfy the conformal Killing equation which becomes

D̄Y = 0 ⇐⇒ D̄Ỹ = 0, (4.33)

together with the complex conjugate relations. Locally, the solutions are simply Ỹ = Ỹ(ξ)
and Y = P−1Ỹ(ξ), with Ỹ(ξ) arbitrary. This will not be the case when taking global
restrictions into account. Note also that, because s = −w for Y, it follows from the second
of (4.30) that the first of (4.33) can also be written using ð̄ instead of D̄.

(iii) Supermomentum. a real conformal field P̃ of dimensions (3
2 ,

3
2) and its associated

weighted scalar P of weights [0,−3].

(iv) Super angular momentum. a conformal field J̃ of dimensions (1, 2) and its as-
sociated weighted scalar J of weights [−1,−3], together with the complex conjugates ¯̃J
and J̄ . We consider equivalence classes [J ] such that J ∼ J + DL with L characterized
by the weights [−2,−2] and their complex conjugates. In this case, it follows from the first
of (4.30) that, since s = w for L, one may also write ðL in the equivalence relation. Simi-
larly, we consider equivalence classes [J̃ ] such that J̃ ∼ J̃ +DL̃ with L̃ characterized by
the conformal dimensions (0, 2) and their complex conjugates). These equivalence classes
may be called super angular momenta.

The conformal dimensions, the Weyl weights, and the spin and conformal weights of
the different ingredients are summarized in the tables 1 below. The objects d̃µ, dµ represent
the integration measure (see below).

Under complex conjugation, (h, h̄) = (h̄, h), (λ, λ̄) = (λ̄, λ), [s, w] = [−s, w].

4.2 Coadjoint representation of the algebra

4.2.1 Weighted scalars
In terms of above ingredients, the bms4 algebra may be defined by triplets s = (Y, Ȳ, T )
with the commutation relations

[(Y1, Ȳ1, T1), (Y2, Ȳ2, T2)] = (Ŷ, ˆ̄Y, T̂ ), (4.34)
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φh,h̄ T̃ Ỹ P̃ J̃ d̃µ P D

h −1
2 −1 3

2 1 −1 −1 1
h̄ −1

2 0 3
2 2 −1 0 0

λ 0 0 0 0 0 −1 0
λ̄ 0 0 0 0 0 0 0

ηs,w T Y P J dµ D
s 0 −1 0 −1 0 1
w 1 1 −3 −3 2 −1

Table 1. Dimensions and weights.

where 
Ŷ = Y1DY2 − Y2DY1 ,

T̂ = Y1DT2 −
1
2DY1T2 − (1↔ 2) + c.c. .

(4.35)

Elements of the type (Y, Ȳ, 0) form a sub-algebra g. As usual, we identify the individual
entries of the triplets/doublets with the triplets/doublets where all other entries are zero.
For weighted scalar ηs,w, a representation of g is defined by

Y · ηs,w = YDηs,w + s− w
2 DYηs,w, Ȳ · ηs,w = ȲD̄ηs,w − s+ w

2 D̄Ȳηs,w. (4.36)

At this stage, we note that this representation, and also the bms4 algebra above and the
coadjoint representation below, may also be written with ð, ð̄ instead of D, D̄ because the
additional terms cancel.

In the notation of section 3, we thus have X = (Y, Ȳ), α = T , and

ΣXα = (Y, Ȳ) · T = YDT − 1
2DYT + c.c. . (4.37)

Elements of bms∗4 are denoted by triplets ([J ], [J̄ ],P) where the pairing is given by

〈([J ], [J̄ ],P), (Y, Ȳ, T )〉 =
∫
S
dµ [J̄ Y + J Ȳ + PT ]. (4.38)

The measure
dµ(ξ, ξ̄) = iC

P P̄
dξ ∧ dξ̄, (4.39)

for some normalization constant C, has dimensions (0, 0) and weights [0, 2]. At this stage,
we assume that the integral annihilates total D and D̄ derivatives. Furthermore, we require
the pairing to be non-degenerate, which can only be the case when taking quotients with
respect to the equivalence relations J ∼ J +DL and J̄ ∼ J̄ + D̄L̄. Concrete realizations
where these assumptions hold will be discussed below.

From the definition of the coadjoint representation (3.7), it then follows that

ad∗(Y,Ȳ,T )J = ȲD̄J + 2D̄ȲJ +D(YJ ) + 1
2T D̄P + 3

2D̄T P ,

ad∗(Y,Ȳ,T )P = YDP + 3
2DYP + c.c. ,

(4.40)

where the third term in the first of the above equations does not appear but can be added
because it is equivalent to zero. This is useful in order to have a transformation law
consistent with the conformal dimensions of J .
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Remarks.

(i) The definition makes sense on the level of equivalence classes,

ad∗(Y,Ȳ,T )([0], [0], 0) = ([0], [0], 0), (4.41)

because
ȲD̄DL+ 2D̄ȲDL = D(ȲD̄L+ 2D̄ȲL). (4.42)

(ii) Since the inner product involves complex conjugation, we have

ad∗YJ = ȲD̄J + 2D̄ȲJ , ad∗ȲJ = D(YJ ) ∼ 0, ad∗YP = ȲD̄P + 3
2D̄ȲP , (4.43)

together with the complex conjugates of these relations.

(iii) In the notation of section 3, j = ([J ], [J̄ ]), p = P and

Σ∗Xp = YDP + 3
2DYP + c.c. ,

α× p =
([1

2T D̄P + 3
2D̄T P

]
,

[1
2T DP + 3

2DT P
])

.
(4.44)

This relation encodes the change of super angular momentum under an infinitesimal
supertranslation, which depends linearly on supermomentum. Note also that when
using a vector T which is not real, the contribution of α× p to J is 1

2 T̄ D̄P + 3
2D̄T̄ P .

(iv) On the level of integrands, if we define

J us = J̄ Y + J Ȳ + PT , (4.45)

equation (3.7) reads

ad∗s1J
u
s2 = −J u[s1,s2] +DLs1,s2 + D̄L̄s1,s2 , (4.46)

where
Ls1,s2 = J̄ Y1Y2 + (JY1Ȳ2) + PY1T2 + 1

2PT1Y2. (4.47)

(v) In the case when there is no non-degenerate pairing, it is still true that the vector
space of elements ([J ], [J̄ ],P) forms a representation under bms4. This representa-
tion ρ(Y,Ȳ,T ), which is no longer the coadjoint representation, is defined by replacing
ad∗(Y,Ȳ,T ) by ρ(Y,Ȳ,T ) in the left hand side of (4.40).

4.2.2 Conformal fields

The above definitions are expressed in terms of weighted scalars. The analogous definitions
in terms of the associated conformal fields are obtained by a direct rewriting that consists
in adding tilde’s on all the scalars and replacing D by D and D̄ by D̄.

In particular, under the mapping (4.16), the representation (4.36) becomes

Ỹ · φh,h̄ = ỸDφh,h̄ + hDỸφh,h̄,
˜̄Y · φh,h̄ = ˜̄YD̄φh,h̄ + h̄D̄ ˜̄Yφh,h̄. (4.48)
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The Weyl covariant derivatives D, D̄ may again be replaced by the ordinary derivatives
∂, ∂̄ in these representations because the additional terms cancel.

The pairing is given by

〈([J̃ ], [ ˜̄J ], P̃), (Ỹ, ˜̄Y, T̃ )〉̃ =
∫
S
d̃µ [ ˜̄J Ỹ + J̃ ˜̄Y + P̃T̃ ], (4.49)

where the measure has conformal dimensions (−1,−1), Weyl weights (0, 0) and is associated
to the measure (4.39) through dµ = (PP̄ )−1d̃µ, so that

d̃µ = iCdξ ∧ dξ̄. (4.50)

4.3 Coadjoint representation of the group

4.3.1 Conformal fields

Consider conformal coordinate transformations, (ξ′(ξ), ξ̄′(ξ̄)) = (g(ξ), ḡ(ξ̄)), such that ∂g
∂ξ >

0, ∂ḡ
∂ξ̄

> 0. They form a group G under composition. For a conformal field φh,h̄(x) of
dimensions (h, h̄) (and vanishing Weyl weights), a representation of G is defined through

(
(g, ḡ) · φh,h̄

)
(x′) =

(
∂ξ

∂ξ′

)h( ∂ξ̄
∂ξ̄′

)h̄
φh,h̄(x). (4.51)

The BMS4 group is determined by elements (g, ḡ, T̃ ) with multiplication

(g1, ḡ1, T̃1) · (g2, ḡ2, T̃2) =
(
g1 ◦ g2, ḡ1 ◦ ḡ2, T̃1 + (g1, ḡ1) · T̃2

)
. (4.52)

Elements of the form (g, ḡ, 0) form a subgroup isomorphic to G. In the notation of section 3,
we thus have f = (g, ḡ), X = (Ỹ, ˜̄Y) and α = T̃ with

(
σf (α)

)
(x′) =

(
(g, ḡ) · T̃

)
(x′) =

(
∂ξ

∂ξ′

)− 1
2
(
∂ξ̄

∂ξ̄′

)− 1
2
T̃ (x). (4.53)

For the adjoint action, defined in equation (3.3), we get

(
AdfX

)
(x′) =

(
(g, ḡ) · (Y, Ȳ)

)
(x′) =

((
∂ξ

∂ξ′

)−1
Ỹ,
(
∂ξ̄

∂ξ̄′

)−1
˜̄Y
)

(x), (4.54)

(
ΣAdfXα

)
(x′) =

(
∂ξ

∂ξ′

)− 1
2
(
∂ξ̄

∂ξ̄′

)− 1
2
(
ỸDT̃ − 1

2DỸT̃ + c.c.
)

(x), (4.55)

whereas definition (3.10) for the coadjoint representation gives

(
Ad∗f J̃

)
(x′) =

(
∂ξ

∂ξ′

)(
∂ξ̄

∂ξ̄′

)2
J̃ (x), (4.56)

(
σ∗f P̃

)
(x′) =

(
∂ξ

∂ξ′

) 3
2
(
∂ξ̄

∂ξ̄′

) 3
2
P̃(x), (4.57)

(
T̃ × σ∗f P̃

)
(x′) =

((
∂ξ

∂ξ′

)(
∂ξ̄

∂ξ̄′

)2 (1
2 T̃ D̄P̃ + 3

2D̄T̃ P̃
)
, c.c.

)
(x), (4.58)

where c.c. denotes the complex conjugate of the expression to the left of the comma.
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Remarks

(i) As usual for diffeomorphisms, the adjoint and coadjoint representations of the algebra
discussed previously are the differentials of those of the group discussed in this section
up to an overall minus sign.

(ii) As usual in conformal field theory, on the level of the algebra, we will consider not
only the Lie algebra of the globally well-defined conformal transformations but also
the algebra of infinitesimal local conformal transformations.

(iii) The formulas for the group can also be used to understand how the coadjoint repre-
sentation behaves under conformal mappings. We briefly discuss the standard map
from the punctured plane to the cylinder below.

4.3.2 Weighted scalars

The description in terms of weighted scalars is very similar. As compared to the previous
section, one simply removes the tilde’s and replaces D, D̄ by D, D̄, while at the same time
replacing ( ∂ξ∂ξ′ )h( ∂ξ̄

∂ξ̄′
)h̄ by ewER(x′)e−isEI(x′) using table 1.

For future reference, let us nevertheless provide explicit formulas. In this case, the
BMS4 group is determined by elements (g, ḡ, T ) with multiplication

(g1, ḡ1, T1) · (g2, ḡ2, T2) =
(
g1 ◦ g2, ḡ1 ◦ ḡ2, T1 + (g1, ḡ1) · T2

)
, (4.59)

where the representation of G on a weighted scalar ηs,w is defined through

(
(g, ḡ) · ηs,w

)
(x′) = ewER(x′)e−isEI(x′)ηs,w(ξ, ξ̄). (4.60)

In the notation of section 3, we now have f = (g, ḡ), X = (Y, Ȳ), and α = T with

(
σf (α)

)
(x′) =

(
(g, ḡ) · T

)
(x′) = eER(x′)T (x). (4.61)

For the adjoint representation, we get

(
AdfX

)
(x′) =

(
(g, ḡ) · (Y, Ȳ)

)
(x′) =

(
eER(x′)eiEI(x′)Y(x), eER(x′)e−iEI(x′)Ȳ(x)

)
, (4.62)(

ΣAdfXα
)
(x′) = eER(x′)

(
YDT − 1

2DYT + c.c.
)

(x), (4.63)

whereas for the coadjoint representation, we get

(
Ad∗fJ

)
(x′) = e−3ER(x′)eiEI(x′)J (x), (4.64)(

σ∗fP
)
(x′) = e−3ER(x′)P(x), (4.65)(

T × σ∗fP
)
(x′) =

(
e−3ER(x′)eiEI(x′)

(1
2T D̄P + 3

2D̄T P
)

(x), c.c.
)
. (4.66)
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4.4 Weyl invariance

The structure described above is covariant with respect to conformal coordinate transfor-
mations combined with complex Weyl rescalings since it is defined in terms of suitable
covariant derivatives.

In particular, the above descriptions are valid for all conformal factors P and P̄ and all
two-dimensional surfaces S such that total D, D̄ derivatives are annihilated and the pairing
is non-degenerate. In the remainder of the paper, we mainly focus on two particular cases:
(i) the sphere S2 of radius R with PS = 1+ξξ̄

R
√

2 = P̄S , and (ii) the punctured complex plane
C− {0} = C0 with P = 1 = P̄ .

5 Realization on the sphere

5.1 Generalities

If ξ = cot θ2e−iφ, the standard metric on the sphere of radius R is

ds2 = −2(PSP̄S)−1dξdξ̄, PS = 1 + ξξ̄

R
√

2
. (5.1)

The globally well-defined conformal coordinate transformations for the sphere are the frac-
tional linear unimodular transformations

ξ′ = aξ + b

cξ + d
, ad− bc = 1, a, b, c, d ∈ C. (5.2)

In particular,
∂ξ

∂ξ′
= (cξ + d)2. (5.3)

Under combined conformal coordinate transformations and Weyl rescalings, the metric
takes the standard form in the new coordinates if one freezes the Weyl transformations as
in equation (4.12). For PF = PS , we have [5, 15]

eE(x′) = PS(x)
PS(x′)

∂ξ′

∂ξ
⇐⇒ eER(x′) = 1 + ξξ̄

|aξ + b|2 + |cξ + d|2
, eiEI(x′) = c̄ξ̄ + d̄

cξ + d
. (5.4)

In this context, w is referred to as the boost weight.
The derivative operators (4.28) now take the explicit form (cf. section 4.15 of [17])

ðηs,w = P 1−s
S ∂(P sSηs,w), ð̄ηs,w = P 1+s

S ∂̄(P−sS ηs,w). (5.5)

The pairing on the sphere is defined between scalars ηs,w of weights [s, w] and κs,−w−2 of
weights [s,−w − 2] as follows,

〈κs,−w−2, ηs,w〉 = 1
4πR2

∫
S2

idξ ∧ dξ̄
PSP̄S

κs,−w−2ηs,w, (5.6)

where the normalization C = (4πR2)−1 is chosen so that

1
4πR2

∫
S2

idξ ∧ dξ̄
PSP̄S

= 1
2π

∫
S2

idξ ∧ dξ̄
(1 + ξξ̄)2 = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ = 1. (5.7)
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When compared to (4.38), we thus have

〈([J ], [J̄ ],P), (Y, Ȳ, T )〉 = 〈J ,Y〉+ 〈J̄ , Ȳ〉+ 〈P , T 〉, dµ(ξ, ξ̄) = idξ ∧ dξ̄
4πR2PSP̄S

. (5.8)

This pairing has all the required properties.

5.2 Adjoint and coadjoint representations of the group

In terms of spin-weighted scalars, the (co)adjoint representation of the BMS4 group on
the sphere is described by the general formulas established in subsection 4.3.2, where now
f = (g, ḡ) are given by general linear fractional transformations of (5.2) (and the associated
transformation of the complex conjugate variable) and the factors eER(x′) and eiEI(x′) are
given in (5.4). Let us write them out explicitly, with x = ξ, ξ̄.

For the adjoint representation, under a combined transformation f and a supertrans-
lation α with which one acts and a supertranslation β on which one acts, (where α, β are
two different supertranslation fields with the same weights than T ),

Y ′(x′) = eER(x′)eiEI(x′)Y(x),
Ȳ ′(x′) = eER(x′)e−iEI(x′)Ȳ(x),

β′(x′) = eER(x′)
(
β −

(
Yðα− 1

2αðY + c.c.
))

(x).
(5.9)

For the coadjoint representation, if we denote by T instead of α the supertranslation
with which one acts,

J ′(x′) = e−3ER(x′)eiEI(x′)
(
J +

(1
2T ð̄P + 3

2 ð̄T P
))

(x)

J̄ ′(x′) = e−3ER(x′)e−iEI(x′)
(
J̄ +

(1
2T ðP + 3

2ðT P
))

(x)

P ′(x′) = e−3ER(x′)P(x).

(5.10)

Not surprisingly, when using the associated conformal fields, these transformations
simplify. The formulas of section 4.3.1 apply. The Jacobians ∂ξ/∂ξ′, ∂ξ̄/∂ξ̄′ are explicitly
given by (5.3) and its complex conjugate. In this case, the integration measure is

d̃µ = idξ ∧ dξ̄
4πR2 , (5.11)

and

Ỹ ′(ξ′) = (cξ + d)−2Ỹ(ξ),
˜̄Y ′(ξ̄′) = (c̄ξ̄ + d̄)−2 ˜̄Y(ξ), (5.12)

β̃′(x′) = (cξ + d)−1(c̄ξ̄ + d̄)−1
(
β̃ −

(
Ỹ∂α̃− 1

2 α̃∂Ỹ + c.c.
))

(x).

J̃ ′(x′) = (cξ + d)2(c̄ξ̄ + d̄)4
(
J̃ (x) +

(1
2 T̃ ∂̄P̃ + 3

2 ∂̄T̃ P̃
))

(x)

J̄ ′(x′) = (cξ + d)4(c̄ξ̄ + d̄)2
(

˜̄J +
(1

2 T̃ ∂P̃ + 3
2∂T̃ P̃

))
(x) (5.13)

P̃ ′(x′) = (cξ + d)3(c̄ξ̄ + d̄)3P̃(x).
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5.3 Expansions

5.3.1 Spin-weighted spherical harmonics

We now decompose the relevant spin-weighted scalars in terms of spin-weighted spherical
harmonics (see appendix A for conventions).

For the bms4 Lie algebra, we have D̄Y = ð̄Y = 0 with Y of weights [−1, 1]. It follows
from array (4.15.60) of [17] that Y belongs to the three-dimensional vector space of spherical
harmonics with spin weight s = −1 and j = 1. Hence, defining

Ym = −R
√

2 −1Z1,m, m = −1, 0, 1, (5.14)

gives rise to the decomposition

ð̄Y = 0 ⇐⇒ Y =
1∑

m=−1
ymYm. (5.15)

In the same way,

Ȳm = (−1)mR
√

2 1Z1,−m =⇒ Ȳ =
1∑

m=−1
ȳmȲm, (5.16)

while
Tj,m = 0Zj,m =⇒ T =

∑
j,|m|≤j

tj,mTj,m, (5.17)

where we impose t̄j,m = (−1)mtj,−m since T is real.
When taking into account the pairing (5.6) and the normalization of the sZjm in (A.4),

this choice of basis for the algebra implies the following choice for the associated dual basis
of the coadjoint representation,

Ym∗ = −6
R
√

2(1 +m)!(1−m)! −1Z1,m,

Ȳm∗ = (−1)m6
R
√

2(1 +m)!(1−m)! 1Z1,−m,

T j,m∗ = (2j + 1)!(2j)!
j!j!(j +m)!(j −m)! 0Zj,m,

(5.18)

and thus also the following expansions,

J =
1∑

m=−1
jmYm∗ , J̄ =

1∑
m=−1

j̄mȲm∗ , P =
∑

j,|m|≤j
pj,mT j,m∗ , (5.19)

where p̄j,m = (−1)mpj,−m since P is real.
Note that the explicit expressions for −1Z1,m in (A.2) gives

Ỹm = YmPS = ξ1−m, ˜̄Ym = ȲmP̄S = ξ̄1−m. (5.20)
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Remarks.

(i) From the discussion of the behavior of spin-weighted spherical harmonics under
Lorentz transformations in section 4.15 of [17], it follows that, if w ≥ |s| then
ðw−s+1ηs,w, ð̄w+s+1ηs,w have definite spin and boosts weights given by [w + 1, s− 1]
and [−w − 1,−s− 1] respectively. This is the case for

ðȲ, ð̄Y, ð3Y, ð̄3Ȳ. (5.21)

As shown there, the equations ð̄Y = 0 and ð3Y = 0 on the one hand, and ðȲ = 0 and
ð̄3Ȳ = 0 on the other, define the same Lorentz invariant three-dimensional subspaces
described above.

For the dual situation where w ≤ −|s| − 2, ðs−w−1κw+1,s−1 and ð̄−s−w−1κ−w−1,−s−1

have definite spin and boost weights [s, w], it is shown that equivalence classes
[ηs,w], ηs,w ∼ ηs,w + ðs−w−1κw+1,s−1 or ηs,w ∼ ηs,w + ð̄−s−w−1κ−w−1,−s−1 define
Lorentz invariant subspaces. This is the case for

J̄ ∼ J̄ + ð̄L̄, J̄ ∼ J̄ + ð3M, (5.22)

where L̄ : [2,−2] andM : [−2, 0] and both equivalence classes define the same three-
dimensional Lorentz invariant subspaces. Similarly, by complex conjugation

J ∼ J + ðL, J ∼ J + ð̄3M̄ (5.23)

where L̄ : [−2,−2] and M̄ : [2, 0].

(ii) The (well-known) coadjoint representation of the Poincaré group may be discussed
from the perspective developed here by imposing in addition the conditions ð2T =
0 = ð̄2T reducing super to ordinary translations. Again, these equations define a
four-dimensional Lorentz invariant subspace because T has the required weights. At
the same time, one should consider equivalence classes P ∼ P + ð2N + ð̄2N̄ , where
N : [−2,−1], N̄ : [2,−1] have the required weights and which also defines a Lorentz
invariant four-dimensional subspace.

5.3.2 Overcomplete set of functions

The representation of the generators Ym, Ȳm of the Lorentz algebra on weighted scalars
ηs,w is explicitly given by

Ym · ηs,w = ξ−m
(
ξ∂ηs,w +

(
s− w

2 (1−m) + w
ξξ̄

1 + ξξ̄

)
ηs,w

)
,

Ȳm · ηs,w = ξ̄−m
(
ξ̄∂̄ηs,w +

(
−s+ w

2 (1−m) + w
ξξ̄

1 + ξξ̄

)
ηs,w

)
.

(5.24)

This follows from using (4.36) written in terms of ð and ð̄ together with (5.20).
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For the associated conformal field φh,h̄ = PwS η
s,w, this simplifies to

Ỹm · φh,h̄ = ξ−m
(
ξ∂φh,h̄ + h(1−m)φh,h̄

)
,

˜̄Ym · φh,h̄ = ξ̄−m
(
ξ̄∂̄φh,h̄ + h̄(1−m)φh,h̄

)
,

(5.25)

where s = h− h̄, w = −h− h̄.
Rather than expanding the spin-weighted scalar ηs,w in terms of (unnormalized) spin-

weighted spherical harmonics, one may also work with suitable sets of over-complete func-
tions. We follow [14], section 4.C (up to conventions). Let |s| ≤ L. For a fixed L ∈ N,
there is an invertible matrix that relates the spin-weighted spherical harmonics sYj,m with
j ≤ L to the functions

sZ
L
m1,m2 = (1 + ξξ̄)−LξL−s−m1 ξ̄L+s−m2 , 0 ≤ m1 ≤ L− s, 0 ≤ m2 ≤ L+ s. (5.26)

Depending on the conformal weight w, one may label these same functions as

h,h̄Z
L̃
k,l = P−wS h,h̄Z̃

L̃
k,l, h,h̄Z̃

L̃
k,l = (R

√
2)h+h̄(1 + ξξ̄)−L̃ξL̃−h−kξ̄L̃−h̄−l, (5.27)

where

L̃ = L+ h+ h̄, k = m1 + h, l = m2 + h̄, h ≤ k ≤ L̃− h, h̄ ≤ l ≤ L̃− h̄. (5.28)

In particular, if h, h̄ are half-integer, so are k, l.
When taking for ηs,w one of the functions s,wZL̃k,l, it follows that

Ym · h,h̄Z
L̃
k,l = −(hm+ k)h,h̄Z

L̃+1
k+m,l + (L̃− (hm+ k))h,h̄Z

L̃+1
k+m+1,l+1,

Ȳm · h,h̄Z
L̃
k,l = −(h̄m+ l)h,h̄Z

L̃+1
k,l+m + (L̃− (h̄m+ l))h,h̄Z

L̃+1
k+1,l+m+1,

(5.29)

where the following (elementary) relations have been used,

h,h̄Z
L̃
k,l = h,h̄Z

L̃+1
k,l + h,h̄Z

L̃+1
k+1,l+1. (5.30)

By construction, when taking for the conformal fields φh,h̄ the functions h,h̄Z̃
L̃
k,l, the rela-

tions (5.29) hold with the substitutions Ym → Ỹm, Ȳm → ˜̄Ym, h,h̄ZL̃k,l → h,h̄Z̃
L̃
k,l.

When taking into account that

ξ = cot θ2e
−iφ, µ = cos θ, ξξ̄ = 1 + µ

1− µ = cot2 θ

2 , 1 + ξξ̄ = 2
1− µ, (5.31)

it follows that

〈sZLm′1,m′2 , sZ
L
m1,m2〉 = δ

m1+m′2
m δ

m′1+m2
m

1
2

∫ 1

−1
dµ

(1− µ
2

)2L (1 + µ

1− µ

)2L−m

= δ
m1+m′2
m δ

m′1+m2
m

m!(2L−m)!
(2L+ 1)!

= δ
m1+m′2
m δ

m′1+m2
m β(m+ 1, 2L−m+ 1),

(5.32)
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where 0 ≤ m ≤ 2L. Instead of reverting to angular variables for the integrals, they may
also be worked out directly in complex coordinates:

〈sZLm′1,m′2 , sZ
L
m1,m2〉 = i

2π

∫
dξ ∧ dξ̄ (1 + ξξ̄)−2L−2ξ2L−m1−m′2 ξ̄2L−m′1−m2 (5.33)

= 1
2L+ 1

1
2πi

∫
dξ ∧ dξ̄ ∂

(
(1 + ξξ̄)−2L−1ξ̄2L−m′1−m2−1)ξ2L−m1−m′2 ,

where 0 ≤ m′1 + m2 ≤ 2L, 0 ≤ m1 + m′2 ≤ 2L. If m1 + m′2 = 2L, one then proceeds by
using Stokes’ theorem together with a kind of Cauchy residue theorem for the remaining
line integral (see for instance [35] in the current context). If m1 + m′2 < 2L, one makes
an integration by parts to lower the degree of ξ, and applies the same reasoning for all
integrals that involve a total ∂ with expressions that have poles in ξ̄.

Because of the weights [s, w] and [s,−w− 2] of the spin-weighted spherical harmonics
involved in (5.6), the relevant integrals pair h,h̄ZL̃k,l on the right with h′,h̄′Z

L̃′
k′,l′ on the left,

where h′ = −h̄+ 1, h̄′ = −h+ 1 and L̃′ = L̃− 2h− 2h̄+ 2,

〈−h̄+1,−h+1Z
L̃−2h−2h̄+2
k′,l′ , h,h̄Z

L̃
k,l〉 = δk+l′−1

m δk
′+l−1
m β(m+ 1, 2(L̃− h− h̄)−m+ 1). (5.34)

By construction, the associated conformal fields h,h̄Z̃
L̃
k,l have the same integrals when

using the measure d̃µ given in (5.11),

〈−h̄+1,−h+1Z̃
L̃−2h−2h̄+2
k′,l′ , h,h̄Z̃

L̃
k,l〉̃ = δk+l′−1

m δk
′+l−1
m β(m+ 1, 2(L̃− h− h̄)−m+ 1). (5.35)

5.4 Structure constants

When taking as generators for supertranslations the unnormalized spherical harmon-
ics (5.17), one can now work out the structure constants of the bms4 algebra (4.34)–(4.35)
by using properties (A.7) and (A.10). For the first part of the algebra, they can be read
off from the commutation relations

[Ym,Yn] = (m− n)Ym+n, [Ȳm, Ȳn] = (m− n)Ȳm+n, [Ym, Ȳn] = 0, (5.36)

while those involving supertranslation generators can be obtained from

[Y−1, Tj,m] = +(j + 2)(j +m)(j +m− 1)
4(2j + 1)(2j − 1) Tj−1,m−1 −

(j +m)
2 Tj,m−1

+ (j − 1)Tj+1,m−1, (5.37)

[Y0, Tj,m] = −(j + 2)(j +m)(j −m)
4(2j + 1)(2j − 1) Tj−1,m −

m

2 Tj,m + (j − 1)Tj+1,m, (5.38)

[Y1, Tj,m] = +(j + 2)(j −m)(j −m− 1)
4(2j + 1)(2j − 1) Tj−1,m+1 + (j −m)

2 Tj,m+1

+ (j − 1)Tj+1,m+1, (5.39)
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The commutation relations involving Ȳm and Tj,m may then be obtained by complex con-
jugation. They are explicitly given by

[Ȳ−1, Tj,m] = −(j + 2)(j −m)(j −m− 1)
4(2j + 1)(2j − 1) Tj−1,m+1 + (j −m)

2 Tj,m+1

− (j − 1)Tj+1,m+1, (5.40)

[Ȳ0, Tj,m] = −(j + 2)(j +m)(j −m)
4(2j + 1)(2j − 1) Tj−1,m + m

2 Tj,m + (j − 1)Tj+1,m, (5.41)

[Ȳ1, Tj,m] = −(j + 2)(j +m)(j +m− 1)
4(2j + 1)(2j − 1) Tj−1,m−1 −

(j +m)
2 Tj,m−1

− (j − 1)Tj+1,m−1. (5.42)

Finally, the supertranslations generators commute with each other,

[Tj,m, Tj′,m′ ] = 0. (5.43)

In order to establish the relation to the commutation relations of section 2, one defines

lm = Ỹm∂, l̄m = ˜̄Ym∂̄, (5.44)

and takes into account equation (5.20) together with ξ = cot θ2e−iφ. If one makes the
identification of the generators as in (2.8) at r →∞ and u = 0, it follows that

Lz = −i(l0 − l̄0) = −i(ξ∂ − ξ̄∂̄), Kz = −(l0 + l̄0) = −(ξ∂ + ξ̄∂̄),
L+ = +(l1 + l̄−1) = ∂ + ξ̄2∂̄, L− = +(l̄1 + l−1) = ∂̄ + ξ2∂, (5.45)
K+ = −(l̄−1 − l1) = ∂ − ξ̄2∂̄, K− = −(l−1 − l̄1) = ∂̄ − ξ2∂.

This allows one to explicitly relate the commutation relations for the Lorentz algebra
in (5.36) to those in (2.2), respectively to the first part of (2.4). The Poincaré generators
are represented by

H = 1, Pz = 1− ξξ̄
2(1 + ξξ̄)

, P+ = − ξ̄

1 + ξξ̄
, P− = ξ

1 + ξξ̄
. (5.46)

For functions f on the sphere, we now get instead of (2.9)

[Lz, f ] = Lz(f), [L±, f ] = L±(f), [Kz, f ] = Kz(f) + 1− ξξ̄
1 + ξξ̄

f,

[K+, f ] = K+(f) + 2ξ̄
1 + ξξ̄

f, [K−, f ] = K−(f) + 2ξ
1 + ξξ̄

f.

(5.47)

When applied to the four Poincaré generators in (5.46), this reproduces the second part
of (2.4).

In order to relate the action of the Lorentz generators on the supertranslation gener-
ators (5.17) given in (5.37)–(5.42) to the more standard form (2.19)–(2.23), we may start
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from the (first equality in the) relations (5.45) and use (5.37)–(5.42) to show that

[Lz, Tj,m] = imTj,m, [L±, Tj,m] = ±(j ∓m)Tj,m±1,

[Kz, Tj,m] = −2(j − 1)Tj+1,m + (j + 2)(j +m)(j −m)
2(2j + 1)(2j − 1) Tj−1,m,

[K±, Tj,m] = ±2(j − 1)Tj+1,m±1 ±
(j + 2)(j ∓m)(j ∓m− 1)

2(2j + 1)(2j − 1) Tj−1,m±1.

(5.48)

When taking the normalization (A.3) into account, we then recover the commutation rela-
tions (2.19)–(2.23). Note that the commutation relations of Lz with the supertranslations
generators are particularly simple since the latter are expressed in terms of (unnormalized)
spherical harmonics.

The choice of basis for the Lorentz algebra in (5.36) is adapted to the sl(2,R) ×
sl(2,R) decomposition. It is thus useful to organize the supertranslation generators, or
more generally, the functions on the sphere, accordingly. This will also allow us to compare
directly with the realization on the punctured complex plane to be discussed below. Hence,
instead of providing the commutation relation between the Lorentz and supertranslation
generators, one may replace the latter by the overcomplete set of functions adapted to T
of weights [0, 1],

T L̃k,l = − 1
2 ,−

1
2
ZL̃k,l. (5.49)

One then finds

[Ym, T L̃k,l] =
(
m

2 − k
)
T L̃+1
k+m,l +

(
L̃+ m

2 − k
)
T L̃+1
k+m+1,l+1,

[Ȳm, T L̃k,l] =
(
m

2 − l
)
T L̃+1
k,l+m +

(
L̃+ m

2 − l
)
T L̃+1
k+1,l+m+1, (5.50)

[T L̃k,l, T L̃k′,l′ ] = 0. (5.51)

5.5 Coadjoint representation of the algebra

The coadjoint representation may now be written explicitly using (3.13). Alternatively, it
can be derived using the results of subsection 4.2 together with (A.7) and (A.10). One
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finds,

ad∗YmY
n
∗ = (−2m+n)Yn−m∗ , ad∗YmȲ

n
∗ = 0, (5.52)

ad∗ȲmȲ
n
∗ = (−2m+n)Ȳn−m∗ , ad∗ȲmY

n
∗ = 0, (5.53)

ad∗Y−1T
j,m
∗ =−(j+3)(j+m+2)(j+m+1)

4(2j+3)(2j+1) T j+1,m+1
∗

+ (j+m+1)
2 T j,m+1

∗ −(j−2)T j−1,m+1
∗ , (5.54)

ad∗Y0T
j,m
∗ = (j+3)(j+m+1)(j−m+1)

4(2j+3)(2j+1) T j+1,m
∗ +m

2 T
j,m
∗ −(j−2)T j−1,m

∗ , (5.55)

ad∗Y1T
j,m
∗ =−(j+3)(j−m+2)(j−m+1)

4(2j+3)(2j+1) T j+1,m−1
∗

− (j−m+1)
2 T j,m−1

∗ −(j−2)T j−1,m−1
∗ , (5.56)

ad∗Ȳ−1
T j,m∗ = +(j+3)(j−m+2)(j−m+1)

4(2j+3)(2j+1) T j+1,m−1
∗

− (j−m+1)
2 T j,m−1

∗ +(j−2)T j−1,m−1
∗ , (5.57)

ad∗Ȳ0
T j,m∗ = +(j+3)(j+m+1)(j−m+1)

4(2j+3)(2j+1) T j+1,m
∗ −m2 T

j,m
∗ −(j−2)T j−1,m

∗ , (5.58)

ad∗Ȳ1
T j,m∗ = +(j+3)(j+m+2)(j+m+1)

4(2j+3)(2j+1) T j+1,m+1
∗

+ (j+m+1)
2 T j,m+1

∗ +(j−2)T j−1,m+1
∗ , (5.59)

ad∗Tj,mY
p
∗ = 0 = ad∗Tj,mȲ

p
∗ , (5.60)

ad∗Tj,mT
j′,m′
∗ =

(
− (j+2)(j+m)(j+m−1)

4(2j+1)(2j−1) δj
′

j−1 + (j+m)
2 δj

′

j −(j−1)δj
′

j+1

)
δm
′

m−1Y−1
∗

+
(
− (j+2)(j+m)(j−m)

4(2j+1)(2j−1) δj
′

j−1−
m

2 δ
j′

j +(j−1)δj
′

j+1

)
δm
′

m Y0
∗

+
(
− (j+2)(j−m)(j−m−1)

4(2j+1)(2j−1) δj
′

j−1−
(j−m)

2 δj
′

j −(j−1)δj
′

j+1

)
δm
′

m+1Y1
∗

+
(

+ (j+2)(j−m)(j−m−1)
4(2j+1)(2j−1) δj

′

j−1−
(j−m)

2 δj
′

j +(j−1)δj
′

j+1

)
δm
′

m+1Ȳ−1
∗

+
(
− (j+2)(j+m)(j−m)

4(2j+1)(2j−1) δj
′

j−1 +m

2 δ
j′

j +(j−1)δj
′

j+1

)
δm
′

m Ȳ0
∗ (5.61)

+
(

+ (j+2)(j+m)(j+m−1)
4(2j+1)(2j−1) δj

′

j−1 + (j+m)
2 δj

′

j +(j−1)δj
′

j+1

)
δm
′

m−1Ȳ1
∗ .

In terms of the overcomplete sets of functions, if one uses 3
2 ,

3
2
ZL̃+4
k,l rather than T j,m∗

for the expansion of P, one may use (5.29) to replace equations (5.54)–(5.59) through

Ym · 3
2 ,

3
2
ZL̃+4
k,l = −

(3
2m+ k

)
3
2 ,

3
2
ZL̃+5
k+m,l +

(
L̃+ 4−

(3
2m+ k

))
3
2 ,

3
2
ZL̃+5
k+m+1,l+1,

Ȳm · 3
2 ,

3
2
ZL̃+4
k,l = −

(3
2m+ l

)
3
2 ,

3
2
ZL̃+5
k,l+m +

(
L̃+ 4−

(3
2m+ l

))
3
2 ,

3
2
ZL̃+5
k+1,l+m+1,

(5.62)
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while equations (5.60) become

ad∗T L̃
k,l

Yp∗ = 0 = ad∗T L̃
k,l

Ȳp∗ . (5.63)

Finally, it also follows from

〈 3
2 ,

3
2
ZL̃+4
k′,l′ , T

L̃
k,l〉 = δk

′+l−1
m δk+l′−1

m β(m+ 1, 2L̃+ 3−m), (5.64)

the commutation relations (5.50), (5.51) and the definition of the coadjoint representation
that

ad∗T L̃
k,l

3
2 ,

3
2
ZL̃+5
k′,l′ =

(
k′ − 3k + l − l′

2 β(k′ + l, 2L̃+ 6− k′ − l) (5.65)

+
(
L̃+ k′ − 3k + l − l′

2

)
β(k′ + l + 1, 2L̃+ 5− k′ − l)

)
Yk′−k+l−l′
∗

+
(
l′ − 3l + k − k′

2 β(l′ + k, 2L̃+ 6− l′ − k)

+
(
L̃+ l′ − 3l + k − k′

2

)
β(l′ + k + 1, 2L̃+ 5− l′ − k)

)
Ȳ l′−l+k−k′∗ .

6 Realization on the punctured complex plane

6.1 Generalities

Since the whole structure is Weyl invariant, one may start from the sphere with radius R
and perform a Weyl rescaling as in (4.10) with

e−E(ξ,ξ̄) =
√

2
1 + ξξ̄

, (6.1)

followed by the (conformal) coordinate transformations that consists of a simple rescaling
ξ = R−1z, ξ̄ = R−1z̄, so that the metric becomes

ds2 = −2dzdz̄. (6.2)

The next step is to remove the points at infinity and at the origin to go to the 1-
punctured complex plane C0. This changes the allowed space of functions. Conformal
coordinate transformations are of the form

z′ = z′(z), z̄′ = z̄′(z̄), (6.3)

where the globally well-defined ones that are connected to the identity are z′ = az, a ∈
C, a 6= 0. The derivative operators ð and ð̄ defined in (4.28) simply become ∂ and ∂̄,
respectively. There is no difference between conformal fields and weighted scalars. Indeed,
freezing the conformal factor as in (4.12) with PF = 1 = P̄F yields

eE(x′) = ∂z′

∂z
⇐⇒ eER(x′) =

(
∂z′

∂z

∂z̄′

∂z̄

) 1
2
, eiEI(x′) =

(
∂z′/∂z

∂z̄′/∂z̄

) 1
2
, (6.4)
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which implies that conformal fields (of vanishing Weyl weights) and their associated
weighted scalars through the map (4.16) are equal and transform in the same way (com-
pare (4.15) and (4.18) by taking (6.4) into account). In the following, we use the notation
for conformal fields φh,h̄.

We assume here that conformal fields on the punctured complex plane may be expanded
in series as

φh,h̄(z, z̄) =
∑
k,l

ak,l h,h̄Z̃k,l, h,h̄Z̃k,l = z−h−kz̄−h̄−l, (6.5)

where the coefficients ak,l ∈ C and satisfy suitable conditions that we will not discuss in
detail here (see e.g. [36] for more details). We also assume that h, h̄ are either integer or
half-integer. In the former case k, l ∈ Z, whereas in the latter case k, l ∈ 1

2 + Z. Other
choices are also possible. The reason we are choosing Neveu-Schwarz conditions here is
that, up to factors of (1 + zz̄), the functions that appear here then include those that have
appeared naturally in the case of the sphere.

Residues with respect to z and z̄ are defined as

Resz[φh,h̄](z̄) =
∑
l

a1−h,lz̄
−h̄−l, Resz̄[φh,h̄](z) =

∑
k

ak,1−h̄z
−h−k. (6.6)

This allows one to define pairing

〈ψ−h̄+1,−h+1, φh,h̄〉̃ = ReszResz̄[ψ−h̄+1,−h+1φh,h̄]. (6.7)

This pairing is non-degenerate, and since Resz[∂φ] = 0 = Resz̄[∂̄φ], it annihilates total
derivatives ∂ and ∂̄, as it should. The pairing can then be defined as

〈([J̃ ], [ ˜̄J ], P̃), (Ỹ, ˜̄Y, T̃ )〉̃ = 〈J̃ , Ỹ 〉̃+ 〈 ˜̄J , ˜̄Y〉̃+ 〈P̃, T̃ 〉̃. (6.8)

6.2 Adjoint and coadjoint representations of the group

The formulas for the adjoint and coadjoint representations of the group are the same than
those for the conformal fields on the sphere, except for the general Jacobians ∂z/∂z′, ∂z̄/∂z̄′,

Ỹ ′(z′) =
(
∂z

∂z′

)−1
Ỹ(z),

˜̄Y ′(z̄′) =
(
∂z̄

∂z̄′

)−1
˜̄Y(z), (6.9)

β̃′(x′) =
(
∂z

∂z′

)− 1
2
(
∂z̄

∂z̄′

)− 1
2
(
β̃ −

(
Ỹ∂α̃− 1

2 α̃∂Ỹ + c.c.
))

(x),

J̃ ′(x′) =
(
∂z

∂z′

)1( ∂z̄
∂z̄′

)2(
J̃ +

(1
2 T̃ ∂̄P̃ + 3

2 ∂̄T̃ P̃
))

(x)

˜̄J ′(x′) =
(
∂z

∂z′

)2( ∂z̄
∂z̄′

)1(
˜̄J +

(1
2 T̃ ∂P̃ + 3

2∂T̃ P̃
))

(x) (6.10)

P̃ ′(x′) =
(
∂z

∂z′

) 3
2
(
∂z̄

∂z̄′

) 3
2
P̃(x).
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6.3 Expansions

In terms of the basis functions defined in (6.5),

〈−h̄+1,−h+1Z̃k′,l′ , h,h̄Z̃k,l〉̃ = δ0
l′+kδ

0
k′+l. (6.11)

In particular, the dual becomes

(h,h̄Z̃k,l)
∗ = −h̄+1,−h+1Z̃−l,−k ⇐⇒ (z−h−kz̄−h̄−l)∗ = zh̄−1+lz̄h−1+k. (6.12)

The basis for the conformal fields relevant for the algebra is

Ỹm = −1,0Z̃m,0 = z1−m, ˜̄Ym = 0,−1Z̃0,m = z̄1−m, T̃k,l = − 1
2 ,−

1
2
Z̃k,l = z

1
2−kz̄

1
2−l, (6.13)

where m, k + 1
2 , l + 1

2 ∈ Z. We have

Ỹ =
∑
m∈Z

ỹmỸm, ˜̄Y =
∑
m∈Z

˜̄ym ˜̄Ym, T̃ =
∑

k,l∈ 1
2 +Z

t̃k,lT̃k,l, (6.14)

where ¯̃tk,l = t̃l,k since T̃ is real. For the coadjoint representation, one finds from (6.12) (or
from the definition with equivalence classes when taking into account that z−1, z̄−1 are not
equivalent to zero because they are not the derivative of a monomial but of the logarithm),

Ỹm∗ = z−1z̄−2+m, ˜̄Ym∗ = z−2+mz̄−1, T̃k,l∗ = z−
3
2 +lz̄−

3
2 +k, (6.15)

we have
J̃ =

∑
m∈Z

j̃mỸm∗ ,
˜̄J =

∑
m∈Z

˜̄jm ˜̄Ym∗ , P̃ =
∑

k,l∈ 1
2 +Z

p̃k,lT̃
k,l
∗ , (6.16)

where ¯̃pk,l = pl,k since P̃ is real.
In terms of basis elements, the representation (4.48) becomes

Ỹm · h,h̄Z̃k,l = −(hm+ k) h,h̄Z̃k+m,l,
˜̄Ym · h,h̄Z̃k,l = −(h̄m+ l) h,h̄Z̃k,l+m, (6.17)

while
Ỹm · (h,h̄Z̃k,l)

∗ = [(h̄− 1)m+ l] (h,h̄Z̃k,l−m)∗,
˜̄Ym · (h,h̄Z̃k,l)

∗ = [(h− 1)m+ k] (h,h̄Z̃k−m,l)
∗.

(6.18)

6.4 Structure constants

As discussed in subsection 4.2, all the results stated there can be readily expressed in terms
of conformal fields. In particular, the bms4 algebra (4.34)–(4.35) simplifies to

[(Ỹ1,
˜̄Y1, T̃1), (Ỹ2,

˜̄Y2, T̃2)] = ( ˆ̃Y, ˆ̄̃Y, ˆ̃T ), (6.19)

where 
ˆ̃Y = Ỹ1∂Ỹ2 − Ỹ2∂Ỹ1 ,

ˆ̃T = Ỹ1∂T̃2 −
1
2∂Ỹ1T̃2 − (1↔ 2) + c.c. .

(6.20)

In the basis (6.13), the commutation relations become

[Ỹm, Ỹn] = (m− n)Ỹm+n, [ ˜̄Ym, ˜̄Yn] = (m− n) ˜̄Ym+n,

[Ỹm, T̃k,l] =
(1

2m− k
)
T̃m+k,l, [ ˜̄Ym, T̃k,l] =

(1
2m− l

)
T̃k,m+l

[Ỹm, ˜̄Yn] = 0 = [T̃k,l, T̃r,s].

(6.21)
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6.5 Coadjoint representation of the algebra

The coadjoint representation in the basis (6.15) may be obtained from the structure con-
stants of the algebra contained in (6.21) using (3.13). Alternatively, it can be derived using
the results of subsection 4.2 together with the explicit expressions of the generators and
their duals (6.15), and also from (6.18). Explicitly,

ad∗ỸmỸ
n
∗ = (−2m+n)Ỹn−m∗ , ad∗˜̄Ym

˜̄Yn∗ = (−2m+n) ˜̄Yn−m∗ ,

ad∗Ỹm T̃
k,l
∗ =

(
−3

2m+k

)
T̃k−m,l∗ , ad∗˜̄Ym T̃

k,l
∗ =

(
−3

2m+ l

)
T̃k,l−m∗ ,

ad∗
T̃k,l

T̃r,s∗ =
(
r−3k

2

)
δsl Ỹr−k∗ +

(
s−3l

2

)
δrk

˜̄Ys−l∗ ,

ad∗Ỹm
˜̄Yn∗ = 0 = ad∗˜̄YmỸ

n
∗ , ad∗

T̃k,l
Ỹm∗ = 0 = ad∗

T̃k,l

˜̄Ym∗ .

(6.22)

7 Comments on the cylinder

The mapping from the punctured plane to the vertical cylinder is standard in the context
of conformal field theory. It is defined through

z = e
−i 2π

L1
w
, w = w1 + iw2, w1 ∼ w1 + L1. (7.1)

According to (4.51), conformal fields on the cylinder are related to those on the punctured
plane through

φCV
h,h̄

(w, w̄) =
(
− i2π

L1
z

)h(
i
2π
L1
z̄

)h̄
φh,h̄(z, z̄). (7.2)

When naively substituting the expansion adapted to the punctured plane (6.5), the asso-
ciated expansion on the cylinder is

φCV
h,h̄

(w, w̄) =
∑
k,l

ak,l h,h̄Z
CV
k,l , h,h̄Z

CV
k,l = ih̄−h

(2π
L1

)h+h̄
e
i 2π
L1
kw

e
−i 2π

L1
lw̄
, (7.3)

with k, l semi-integer when h, h̄ are semi-integer. As usual for Neveu-Schwarz bound-
ary conditions, it follows that for half-integer conformal weights, holomorphic or anti-
holomorphic fields on the cylinder are anti-periodic.

The generators (6.13) of the bms4 algebra become

YCVm = i

(2π
L1

)−1
e
i 2π
L1
mw

, ȲCVm = −i
(2π
L1

)−1
e
−i 2π

L1
mw̄

, T CVk,l =
(2π
L1

)−1
e
i 2π
L1
kw
e
−i 2π

L1
lw̄
,

(7.4)
while those of the coadjoint representation (6.15) become

YmCV ∗ = i

(2π
L1

)3
e
i 2π
L1
mw̄

, ȲmCV ∗ = −i
(2π
L1

)3
e
−i 2π

L1
mw

, T k,lCV ∗ =
(2π
L1

)3
e
−i 2π

L1
lw
e
i 2π
L1
kw̄
. (7.5)

By construction, the commutation relations of the elements in (7.4) are unchanged: they
are obtained from (6.21) by adding a superscript CV to the generators.
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For the coadjoint representation, matters are more subtle. It remains true that the
vector space generated by the elements of (7.5) is a representation of bms4 in the sense of
Remark (v) of section 4.2, which is explicitly given by adding a superscript, respectively
subscript, CV to the generators of (6.22). This is not however the coadjoint representation
since there are issues with the pairing on the infinite cylinder. Indeed,

〈ψCV−h̄+1,−h+1, φ
CV
h,h̄
〉CV ≡

1
8π2

∫
idw ∧ dw̄

[
ψCV−h̄+1,−h+1 φ

CV
h,h̄

]
= 1

4π2

∫ L1

0
dw1

∫ ∞
−∞

dw2
[
ψCV−h̄+1,−h+1 φ

CV
h,h̄

]
, (7.6)

and in particular,

〈−h̄+1,−h+1Z
CV
k′,l′ , h,h̄Z

CV
k,l 〉CV = 1

L1
δk+l′
m δk

′+l
m

∫ +∞

−∞
dw2 e

− 4π
L1
w2m

= 1
2δ

k+l′
m δk

′+l
m

∫ +∞

−∞

dκ

2π e
κm. (7.7)

The remaining integral does not impose m = 0, as in (6.11) in the context of the coadjoint
representation on the punctured plane. For the infinite vertical cylinder, the functions

h,h̄Z
CV
k,l = ih̄−h

(2π
L1

)h+h̄
e
i 2π
L1

(k−l)w1 e
− 2π
L1

(k+l)w2 , (7.8)

are not appropriate for expansions. One should rather use

φCV
h,h̄

(w, w̄) =
∑
m

∫ +∞

−∞
dκ am(κ)ZCVm (κ), ZCVm (κ) = ih̄−h

(2π
L1

)h+h̄
e
i 2π
L1
mw1e

i 2π
L1
κw2 , (7.9)

which satisfy
〈−h̄+1,−h+1Z

CV
m′ (κ′), h,h̄Z

CV
m (κ)〉CV = δm

′
m δ(κ′ − κ). (7.10)

8 Identification in non-radiative asymptotically flat spacetimes

We limit ourselves in this section to the case of the sphere. Asymptotically flat space-
times in the Newman-Penrose-Unti sense are for instance defined in [18], end of section 9.8.
Here we consider the case with the Maxwell field turned off, ϕ1 = 0 = ϕ2. Non-radiative
spacetimes correspond to the subset of solutions with u-independent asymptotic part of
the shear,

∂uσ
0 = 0, (8.1)

(as well as its complex conjugate and all higher order u derivatives), so that the news and
also Ψ0

3,Ψ0
4 vanish. It follows that

Ψ0
2 − Ψ̄0

2 = ð̄2σ0 − ð2σ̄0, (8.2)

while the evolution equations imply that

∂uΨ0
2 = 0, Ψ0

1 = Ψ0
1(ξ, ξ̄) + uðΨ0

2. (8.3)
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Such non-radiative space-times are completely characterized by specifying, at the cut u = 0
of I +, the free data

Ψ0
2 + Ψ̄0

2,Ψ0
1, σ

0, (8.4)

together with the different orders Ψn
0 in a 1/r expansion of Ψ0,

Ψ0 =
∑
n≥0

Ψn
0 (ξ, ξ̄) r−5−n (8.5)

Besides the linear dependence u dependence of Ψ0
1 in (8.3), there are also evolution equa-

tions that govern the u-dependence of Ψn
0 which do not concern us here.

The transformation of this data under BMS symmetries has been worked out in differ-
ent ways and under various assumptions in [22, 37–39]1 In the case of the sphere, P = PS
and the scalar curvature is RS = 2. Furthermore, the solutions Y, Ȳ to the conformal
Killing equation on the sphere are given by (5.15) and (5.16). This implies in particular that

ð3Y = 0 ðRS = 0, (8.6)

together with the complex conjugate relations.2 In the non-radiating case and at u = 0,
the infinitesimal transformations reduce to3

δsΨ0
2 =

[
Yð + Ȳð̄ + 3

2ðY + 3
2 ð̄Ȳ

]
Ψ0

2,

δsΨ0
1 =

[
Yð + Ȳð̄ + 2ðY + ð̄Ȳ

]
Ψ0

1 + T ðΨ0
2 + 3ðT Ψ0

2,

δsσ
0 =

[
Yð + Ȳð̄ + 3

2ðY −
1
2 ð̄Ȳ

]
σ0 − ð2T ,

δsΨ0
0 =

[
Yð + Ȳð̄ + 5

2ðY + 1
2 ð̄Ȳ

]
Ψ0

0 + T ðΨ0
1 + 3T σ0Ψ0

2 + 4ðT Ψ0
1,

δsΨ1
0 =

[
Yð + Ȳð̄ + 3ðY + ð̄Ȳ

]
Ψ1

0 − ð
[
5ðT Ψ0

0 + T ðΨ0
0 + 4T Ψ0

1σ
0].

(8.7)

There are increasingly complicated transformations laws for the higher Ψn
0 , n ≥ 2, that

are not relevant for our purpose here.
When expressing the first two of the equations in (8.7) in terms of the free data by

taking the constraint (8.2) into account, one finds (trivially) that

δs(Ψ0
2 + Ψ̄0

2) = [Yð + Ȳð̄ + 3
2ðY + 3

2 ð̄Ȳ](Ψ0
2 + Ψ̄0

2), (8.8)

and

δsΨ0
1 = [Yð + Ȳð̄ + 2ðY + ð̄Ȳ]Ψ0

1 + 1
2T ð(Ψ0

2 + Ψ̄0
2 + ð̄2σ0 − ð2σ̄0)

+ 3
2ðT (Ψ0

2 + Ψ̄0
2 + ð̄2σ0 − ð2σ̄0). (8.9)

1The arxiv version of the last reference is preferable to the published one on account of typesetting issues
in the latter.

2Note that in the considerations below the value of RS = 2 on the sphere is never needed, only the
second of (8.6) is used.

3Up to a conventional overall sign that we have changed here.
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Following the analysis in three dimensions, one fixes the normalization by computing the
surface charge algebra, directly related to linear super momentum and angular momentum
of the system. In the non-radiating case, this has been discussed for instance in section 4.2
of [38] (see also [39]). Let us summarize the relevant part of those results in the notation
and conventions adopted here. Let

f = T + 1
2u(ðY + ð̄Ȳ), (8.10)

and consider the 2-form

Js = i

R2
[
(PSP̄S)−1J us dξ ∧ dξ̄ + P−1

S J
ξ̄
s du ∧ dξ − P̄−1

S J
ξ
s du ∧ dξ̄], (8.11)

with J ξs = Js, J ξ̄ = J̄ and

J us = − 1
8πG

[
(Ψ0

2 + Ψ̄0
2)f + Ψ0

1J̄Y + Ψ̄0
1J̄ Ȳ

]
,

Js = 1
8πG

[
Ψ0

2Y + 1
2ðσ̄

0(ðY − ð̄Ȳ)− 1
2 σ̄

0ð(ðY − ð̄Ȳ)
]
,

Ψ0
1J̄ = Ψ0

1 + σ0ðσ̄0 + 1
2ð(σ0σ̄0).

(8.12)

The transformation law of Ψ0
1J̄ turns out to be

δsΨ0
1J̄ = [Yð+2ðY]Ψ0

1J̄ + ð̄(ȲΨ0
1J̄)+ 1

2T ð(Ψ0
2 +Ψ̄0

2)+ 3
2ðT (Ψ0

2 +Ψ̄0
2) (8.13)

+ 1
2 ð̄
(
T ð̄ðσ0− ð̄T ðσ0 +3ðT ð̄σ0−3ð̄ðT σ0− 3

2RST σ
0
)
− 1

2ð
3(T σ̄0),

where the terms on the second line are irrelevant when multiplied by Y and integrated over
the sphere (cf. Remark (i) in section 5.3.1).

When taking the retarded time-dependence of Ψ0
1 in (8.3) and the constraint (8.2) into

account, this 2-form is closed,

dJs = 0 ⇐⇒ ∂uJ us + ðJs + ð̄J̄s = 0. (8.14)

Furthermore,
δs1J us2 = −J u[s1,s2] + ðLs2,s1 + ð̄Ls2,s1 , (8.15)

where the concrete expression for Ls2,s1 is not needed here. This transformation law is in
line with (4.46). The charges defined by

Qs =
∫
S2,u=u0

Jus , (8.16)

with u0 constant, are conserved in the sense that they do not depend on u and

δs1Qs2 = −Q[s1,s2]. (8.17)
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More precisely, the polynomial algebra F generated by the free data Ψ0
2 +

Ψ̄0
2,Ψ0

1, σ
0, Ψ̄0

1, σ̄
0 carries a representation δs of the BMS4 algebra. It then follows from

the identification at u = 0,

Qs = 〈([J ], [J̄ ],P), (Y, Ȳ, T )〉, (8.18)

that the pre-moment map µ : F → bms∗4 defined by

µ

(
− 1

2G [Ψ0
2 + Ψ̄0

2]
)

= P, µ

(
− 1

2GΨ0
1J̄

)
= [J̄ ], µ

(
− 1

2G
¯Ψ0
1
J̄

)
= [J ], (8.19)

is compatible with the representation,

µ ◦ δs = ad∗s ◦ µ. (8.20)

The transformation law of the asymptotic part of the shear implies in particular that

δs(ð̄2σ0 − ð2σ̄0) =
[
Yð + Ȳð̄ + 3

2ðY + 3
2 ð̄Ȳ

]
(ð̄2σ0 − ð2σ̄0). (8.21)

This means that constraining the asymptotic part of the shear to be electric [5],

ð̄2σ0
e = ð2σ̄0

e , (8.22)

is a BMS invariant condition. In this case, the transformation law (8.9) simplifies and
suggests

µ

(
− 1

2GΨ0
1

)
= J̄ ∼ Ψ0

1, µ

(
− 1

2GΨ̄0
1

)
= J . (8.23)

That this is compatible with the previous identification can be seen as follows. The electric
condition is solved by a real field χe = χ̄e with the same weights s = 0, w = 1 than T ,

σ0
e = ð2χe, σ̄0 = ð̄2χe,

δsχe =
[
Yð + Ȳð̄− 1

2ðY −
1
2 ð̄Ȳ

]
χe − T +

∑
j≤1,m

λjm0Zj,m, (8.24)

where λjm ∈ R. Inserting this solution into Ψ0
1J̄ one finds that it indeed agrees with Ψ0

1 up
to terms that are projected to zero by the map,

Ψ0
1J̄ = Ψ0

1 + 1
2 ð̄
(
ð3χeð̄χe + 3ð2χeðð̄χe −

3
4RSðχeðχe

)
− 1

4ð
3(ð̄χeð̄χe). (8.25)

Relevant formulas for the group can be found in [22] and will not be repeated here. On
the punctured plane, in order to have room for the Witt algebra, one cannot limit oneself
to non-radiative spacetimes since turning off the news requires ∂3Ỹ = 0 = ∂̄3 ¯̃Y. In the
presence of news, currents are no longer conserved. Current algebra is broken both by flux
terms and by a field dependent central extension discussed in more details in [27]. In this
case, the last term in (8.13) is no longer trivial and becomes the associated (field-dependent)
Souriau cocyle.
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9 Discussion and perspectives

For the generalized BMS group on the sphere introduced in [40] (see also [41–44] for fur-
ther considerations), the coadjoint representation is obtained from the approach developed
here simply by removing the conformal Killing equation on infinitesimal superrotations
ð̄Y = 0 = ðȲ and the associated equivalence relations on super-angular momentum J , J̄ .
All fields should then simply be expanded in terms of spin-weighted spherical harmonics
according to their weights.

A detailed recent study of the coadjoint representation of closely related semi-direct
product groups involving diffeomeorphisms on the sphere, along the lines of our analysis
in three dimensions [25, 26] (see also [45] for a review), has recently appeared in [46].

For the bms4 algebra on the punctured plane, a discussion of central extensions can be
found in [21], whereas deformations have been studied in detail in [47].

After having set up the basics in this paper, the next steps are to classify the coadjoint
orbits, to re-discuss unitary irreducible representations [10, 48–52] from the viewpoint of
the orbit method [53] and to construct the associated geometric actions [54, 55], as in the
three dimensional case [56] (see [57] in this context). One could also explore whether some
aspects of positive energy theorems for the Bondi mass [58–64] might be understood from
such a perspective, again as in three dimensions [65].

The most interesting question is to understand in detail how such effective actions for
the sector captured by the coadjoint representation interacts with the radiative degrees of
freedom, as described in [66, 67] and more recently in [68], see also [69, 70] in this context.

Another more technical question is to extend the considerations in section 8 to a full-
fledged momentum map at null infinity, as recently constructed at spatial infinity [71, 72],
by starting from [73] and also [74].

In the case of celestial scattering amplitudes and soft theorems, the relevant surface
is neither the (Riemann) sphere nor the plane, but rather two Riemann spheres with
punctures related by an antipodal map. On each of these surfaces, the superrotation part of
the extended algebra is given by the Witt algebra only if there are two particles/punctures.
In this context, complementary aspects of the BMS group have been discussed in [75–93].

In this exposition here, we have followed the general relativity route from the sphere
to the punctured plane. In conformal field theory, one travels in the opposite direction.
For more punctures, the appropriate algebra should presumably be Krichever-Novikov
algebras [94, 95].
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A Spin-weighted spherical harmonics

We follow the conventions of [17], section 4.15. Instructive alternative presentations and
perspectives can be found in [96–99], section 1.10, [100, 101].

Let α β

γ δ

 = i√
1 + ξξ̄

−1 ξ
ξ̄ 1

 . (A.1)

Let also s be integer or half-integer, j ± s ∈ N, j ±m ∈ N, |m| ≤ j, |s| ≤ j, and consider

sZj,m =
∑
r

(j +m)!(j −m)!(j + s)!(j − s)!αrβj−m−rγj+s−rδr+m−s
(2j)!r!(j −m− r)!(j + s− r)!(r +m− s)! , (A.2)

where the summation extends over integer values of r in the range max(0, s −m) ≤ r ≤
min(j −m, j + s).

The spin-weighted spherical harmonics sYj,m are then defined by

sYj,m = (−1)j+m sZj,m

√
(2j + 1)!(2j)!

4π(j + s)!(j − s)!(j +m)!(j −m)! . (A.3)

For s = 0, one recovers the usual spherical harmonics functions, i.e., 0Yj,m. The following
properties hold:

• For each s, the sZj,m form an orthogonal basis for the spin-weighted scalars ηs on
the sphere with

〈sZj′,m′ , sZj,m〉 = (j + s)!(j − s)!(j +m)!(j −m)!
(2j + 1)!(2j)! δjj′δmm′ , (A.4)

for the pairing (5.6). The sYj,m form an orthonormal basis with

4π〈sYj′,m′ , sYj,m〉 = δjj′δmm′ . (A.5)

• The behavior under complex conjugation is

sZj,m = (−1)m+s
−sZj,−m, sYj,m = (−1)3m+s

−sYj,−m. (A.6)

• The action of the operators ð and ð̄ defined in (5.5) is explicitly given by

ð sZj,m = −
(
j − s
R
√

2

)
s+1Zj,m, ð̄ sZj,m =

(
j + s

R
√

2

)
s−1Zj,m. (A.7)

ð sYj,m = −

√
(j + s+ 1)(j − s)

2R2 s+1Yj,m,

ð̄ sYj,m =

√
(j − s+ 1)(j + s)

2R2 s−1Yj,m. (A.8)

• The sZj,m and sYj,m are eigenfunctions of the operator ð̄ð:

ð̄ðsZj,m = −(j+s+1)(j−s)1
2 sZj,m, ð̄ðsYj,m = −(j+s+1)(j−s)1

2 sYj,m. (A.9)
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• Products of spin-weighted spherical harmonics can be decomposed as

s1Zj1,m1 s2Zj2,m2 =
√

(j1 +s1)!(j1−s1)!(j1 +m1)!(j1−m1)!
(2j1)!(2j1)! (A.10)

×
√

(j2 +s2)!(j2−s2)!(j2 +m2)!(j2−m2)!
(2j2)!(2j2)!

×
∑
j

(−1)j1+j2+j
(s1+s2)Zj,(m1+m2)

×
√

(2j)!(2j)!
(j+s1 +s2)!(j−s1−s2)!(j+m1 +m2)!(j−m1−m2)!

×〈j1,s1;j2,s2|j,(s1 +s2)〉 〈j1,m1;j2,m2|j,(m1 +m2)〉,

or

s1Yj1,m1 s2Yj2,m2 =
∑
j

√
(2j1 + 1)(2j2 + 1)

4π(2j + 1) (s1+s2)Yj,(m1+m2)

× 〈j1, s1; j2, s2|j, (s1 + s2)〉 〈j1,m1; j2,m2|j, (m1 +m2)〉,
(A.11)

where the summation extends over integer values of j in the range max(|j1−j2|, |s1 +
s2|, |m1 + m2|) ≤ j ≤ j1 + j2, and where 〈j1,m1; j2,m2|j, (m1 + m2)〉 is a Clebsch-
Gordan coefficient of the rotation group (see e.g. [15, 100] in this context).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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