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1 Introduction and summary

AdS/CFT correspondence provides a consistent non-perturbative definition of quantum
gravity in asymptotically AdS spacetimes [1]. The correspondence is expected to provide
a systematic way to understand microscopic physics of black holes, which are key research
objects in quantum gravity. One immediate and important application is to statistically
account for the Bekenstein-Hawking formula of the black hole entropy from the field theory.
After an early attempt using superconformal index in [2], it has long been believed that the
index cannot account for the exponentially growing behavior of the microstates of black
hole due to huge cancellation between bosonic/fermionic states. The situation began to
change after the works of [3, 4], where they obtained an exponentially growing behavior
from another type of BPS index called topologically twisted indices [4–6]. The exponential
growth at leading order in 1/N expansion nicely matches with the expected behavior from
Bekenstein-Hawing entropy formula of dyonic black holes. The holographic computation
was done using the AdS4/CFT3 associated to the M2-branes and after that the work was
extended to various types of AdS4/CFT3 examples. Finally, the entropies of electrically
charged rotating AdS black holes were also reproduced [7–10] from a large N limit on super-
conformal index of dual field theory by revisiting the computation in [2]. More recently, it
was shown that one can study not only the absolute degeneracy saturating the Bekenstein-
Hawking entropy from the superconformal index but also the sign oscillation of the index
through the complex conjugate pair of large N saddle points of the Legendre transfor-
mation of the free energy [11]. In the dual gravity side, these conjugate large N saddles
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correspond to the complex conjugate pair of the Euclidean solutions, which are the Wick
rotated version of the electrically charged rotating AdS5 BPS black hole solutions [12, 13].

In this paper, we study the sign oscillation of (2+1)D topologically twisted indices,
which holographically count, with sign, microstates of magnetically charged AdS4 black
holes. For the purpose, we study a particular class of AdS4/CFT3 correspondence arising
from N M5-branes wrapped on a compact hyperbolic 3-manifold M . The superconformal
field theories are often called 3D theories of class R. One nice feature of these 3D super-
conformal field theories is that we can use the 3D-3D correspondence to compute various
supersymmetric quantities from SL(N,C) Chern-Simons theory invariants of M [14–16].
In [17], using the 3D-3D correspondence, the large N limit of the topologically twisted
index Ig on Riemann surface Σg of genus g > 1 was computed and its large N exponential
growth was shown to agree with the Bekenstein-Hawking entropy of magnetic BPS black
holes in the AdS4 dual with AdS2 × Σg near-horizon geometry [18, 19]. Standard lore is
that bosonic states always dominate in the microstates of the magnetic BPS black holes
and thus the twisted indices are always positive at sufficiently large N [20]. In contrast,
we will see that there exists sign oscillation in the twisted indices of class R theories at
large N . The sign oscillation can be studied in two independent ways. First, using the
3D-3D correspondence, we demonstrate that the large N limit of the twisted index receives
contributions from a pair of the equally dominant complex conjugate saddles, exhibiting
the sign oscillation as N or g varies. Such sign oscillation is governed by the Chern-Simons
invariant of the hyperbolic 3-manifold M , cs(M), as following:

Ig[TN [M ]] ∼ exp
(

(g − 1)vol(M) + i cs(M)
3π N3 +O(N)

)
+ (c.c.)

= exp
(

(g − 1)vol(M)
3π N3 +O(N)

)
cos

(
(g − 1)cs(M)

3π N3 +O(N)
)
.

(1.1)

Here, vol(M) is the hyperbolic volume. The exponentially growing factor equals the
Bekenstein-Hawking entropy of the magnetically charged BPS black holes in the AdS4
dual, i.e. SBH = (g − 1)vol(M)

3π N3 [21]. Next, we compute the (regularized) Euclidean on-
shell action in the AdS4 gravity dual. After the Wick rotation of the magnetic BPS black
hole, the Euclidean solutions come in a pair; the Bolt± solutions with p = 0 and g > 1 [22].
While Bolt± solutions are purely real, we show that their contributions to the Euclidean
on-shell action are complex conjugate to each other. The imaginary part of the on-shell
action comes from the topological θ-term in 4D N = 2 minimal gauged supergravity whose
bosonic action in the Euclidean signature reads

S = − 1
16πG4

∫
d4x
√
g

(
R+ 6

L2 − FµνF
µν
)

+ i
θ

4π2L2

∫
F ∧ F , (1.2)

where G4 is the 4D Newton’s constant and L is the AdS4 radius. Such purely imaginary
θ-term is often overlooked in the literature. The above 4D action can be derived from the
consistent KK truncation of 7D maximal gauged supergravity on M [23–25]. Also, the 7D
gauged supergravity can be uplifted to 11D supergravity on a squashed 4-sphere S̃4 [26–
28]. As the 3D class R theory is holographically dual to the M-theory on AdS4 ×M × S̃4,
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such successive embedding relates the macroscopic parameters L, G4, θ to the microscopic
parameters N, vol(M), cs(M) as following:

L2

G4
= N3 +O(N)

6
4 vol(M)

π2 , θ = −N
3 +O(N)

6
2 cs(M)

π
. (1.3)

Here, O(N) refers to a quantum shift, which is difficult to determine from the supergravity
analysis. With these relations and appropriate counterterms needed for the holographic
renormalization [20, 22], the Euclidean on-shell action evaluated on Bolt± with p = 0 are
given by

S[Bolt±] = (1− g)N
3 +O(N)

6
2
π

(vol(M)± i cs(M)) , (1.4)

which is consistent with the field theory computation (1.1) at the leading N3 order. Here,
vol(M) ± i cs(M) is the complex volume, which is the holomorphic topological invariant
of the hyperbolic 3-manifold M [29]. The invariant is well-defined only modulo iπ2. For
the exponentiated classical action e−S[Bolt±] to be well-defined, the undetermined quantum
shift O(N) should satisfy following condition:

N3 +O(N)
6 ∈ Z . (1.5)

Note that the θ-term in (1.2) does not appear from the consistent truncation of 11D
supergravity on the Sasaki-Einstein 7-manifold (SE7). That is the reason why we did not
have to consider such term when we analyze the black holes in AdS4 × SE7 dual to M2-
brane SCFTs [22]. Also, the on-shell value of the θ-term vanishes if there is no topological
twist on AdS4, so it does not affect the on-shell action of the electrically charged rotating
BPS black holes in AdS4 regardless of embedding in 11D supergravity [13].

The rest of this paper is organized as follows. In section 2, we review complex saddles
and sign oscillation of 4D superconformal index in the large N limit. In section 3, we study
the sign oscillation in the large N twisted indices of 3D class R theories from both of 3D-3D
dual complex Chern-Simons theory and holographic dual supergrvity. As a byproduct of
the analysis, we propose a concrete mathematical conjecture in (3.21), which is numerically
confirmed in appendix B.

2 Large N complex saddles in AdS/CFT

In this section, we briefly review basic ideas about the large N complex saddle points [7, 10–
13, 30] associated to the electrically charged rotating AdS black holes. In the dual conformal
field theory side, the microstates of black holes correspond to the local operators with fixed
macroscopic charges.

2.1 Conformal Field Theory side

Following [11], our concrete example is the superconformal index [2, 31] of 4D N = 4
supersymmetric-Yang-Mills theory with U(N) gauge group, which is dual to the type IIB
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string theory on AdS5 × S5. The (unrefined) superconformal index is defined as

Z = TrHrad(S3)[(−1)Fx3(R+2J)] =
∞∑
j=0

Ωjx
j , (2.1)

where R is the superconformal R-charge, J = J1+J2
2 with Ji’s being two angular momenta

on S3, and j ≡ 3(R + 2J). The trace is taken over the radially quantized Hilbert space
Hrad(S3) on S3 × R whose states correspond to local operators on R4. The above index
receives contributions only from the BPS states with j ≥ 0 and Ωj counts the (−1)F -
weighted number of BPS states with the charge j. In the large N limit, one may compute
the free energy logZ ∼ O(N2) using the saddle point approximation, where the large
N saddle points are supposed to correspond to the black hole saddle points in the AdS5
gravity dual. In order to extract the entropy from the large N free energy, one should
perform the Legendre transformation to the microcanonical ensemble, which is the saddle
point approximation of the inverse Laplace transformation

Ωj = 1
2πi

∮
dx

x
x−jZ(x) (2.2)

at macroscopic charge j ∼ O(N2). A known fact is that the dominant saddle point values
x∗ of x are complex at real positive charge j. Naively, this yields the complex entropy S(j)
at real charge. However, as pointed out in [9, 11], the unitarity of our QFT guarantees that
there always exists a complex conjugate saddle point for any such complex saddle point.
Then, adding two equivalently dominant contributions from the complex conjugate pair of
saddle points, we obtain

Ωj ∼ eS(j) + eS(j) ∼ exp[Re(S(j)) + · · · ] cos[Im(S(j)) + · · · ] , (2.3)

where · · · denote possible subleading corrections in the large N expansion. In [11, 32],
they numerically studied the index of N = 4 SYM, and in [11] it was shown that the above
formula is matched very nicely by the numerically computed index at reasonably large N
and j. The first macroscopic exponential factor captures the Bekenstein-Hawking entropy
of electrically charged rotating BPS black holes in AdS5×S5 [33–36], i.e. Re(S(j)) = SBH.
The second oscillating cosine factor accounts for the sign oscillation of Ωj as j varies due
to the (−1)F factor [11].

In the above example, the complex conjugate pair of saddle points of the Legendre
transformation is to imitate the sign oscillation of Ωj of the index by the cosine function.
This structure is universal and should be realized in any supersymmetric index onMD−1×
S1 of the D-dimensional unitary QFT, if the index exhibits overall sign oscillation. In
particular, one can easily check that the superconformal indices of SCFTs in D = 3 [9, 37–
39], D = 4 [7, 8, 40, 41], D = 5 [10, 42], and D = 6 [7, 43] exhibit such complex saddle
points of the Legendre transformation at large N . (There have been many works on this
subject in the recent years. Please refer to the references of the above for further details.)

2.2 AdS gravity side

One may want to interpret the above large N complex saddle points and the phase of the
entropy in the dual gravity side. Obviously, in the Lorentzian black hole solution, there are
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no such complex quantities. The Bekenstein-Hawking entropy is just given by the horizon
area of the black hole, and the chemical potentials are the electrostatic potentials and
the angular velocities at the horizon. So they are all genuinely physical observables. In
order to obtain complex quantities, one should Wick rotate the BPS black hole solution,
and study the (regularized) Euclidean on-shell action. In [12, 13], it was shown that the
electrically charged rotating BPS black hole solutions in AdSD+1=4,5,6,7 become complex as
we Wick rotate them to the Euclidean solutions. Furthermore, there are always a complex
conjugate pair of Euclidean solutions corresponding to one rotating Lorentzian BPS black
hole solution. This conjugate pair of the Euclidean solutions naturally corresponds to the
conjugate pair of the Legendre transform saddle points of the CFT index in the large N
limit. The extremized chemical potentials, free energy, and the entropy, which are complex,
are precisely matched between each solution of the conjugate pair [13].

3 Complex saddles in 3D-3D correspondence

In this section, we consider the universal magnetically charged AdS4 BPS black holes in 4D
minimal N = 2 gauged supergravity [18, 19]. Its bosonic action in the Euclidean signature
is given in (1.2). There are two well-known ways of embedding this low energy effective
supergravity into a full fledged quantum gravity theory, M-theory. One is using multiple
M2-branes probing a cone over Sasaki-Einstein 7-manifold Y7, and the other is using mul-
tiple M5-branes wrapped on a compact 3-manifold M . The macroscopic constants, G4
and θ, in the 4D supergravity are determined by the microscopic data, N (the number of
branes) and geometric quantities of the internal manifold (Y7 or M). The θ-term turns out
to vanish, i.e. θ = 0, for the 4D supergravity from multiple M2-branes, while it does not
vanish for the case of multiple M5-branes. The θ-term has been usually overlooked in the
literature, but here we point out that the θ-term naturally appears in the consistent KK
truncation of the chiral 7D maximal gauged supergravity [23–25], which is holographically
dual to the 6D (2,0)-theory living on the M5-branes, to the 4D minimal gauged supergrav-
ity. Moreover, we demonstrate that the θ-angle is proportional to a topological invariant
called the ‘Chern-Simons invariant’, cs(M), of the internal 3-manifold.

The non-trivial θ-term has interesting implications in the large N analysis of the
twisted indices of the dual 3D N = 2 superconformal field theory. It determines the
sign oscillatory behavior of the twisted indices at large N . After the Wick rotation, the
magnetically charged black holes in AdS4 become a pair of Euclidean saddle points called
Bolt± with p = 0 and g > 1 [22]. The θ-term contributes as an imaginary part to the Eu-
clidean action and the on-shell actions for Bolt± are complex and conjugate to each other.
At large N , the Bolt± solutions give the most dominant contributions to the path integral
of the AdS4 quantum gravity with an asymptotic boundary condition associated to the
twisted indices. Then, the imaginary part of their on-shell action determine the oscillatory
phases factor of the twisted indices at large N . See (2.3) for the similar oscillatory phase
factor for electrically charged black holes and superconformal indices [11].

The supergravity computation of θ-term also has interesting mathematical implica-
tions. Combining the holographic principle and 3D-3D relation for twisted indices, the Eu-

– 5 –



J
H
E
P
0
6
(
2
0
2
1
)
0
7
8

clidean saddles Bolt± are mapped to two canonical SL(N,C) flat connections, Ageom
N and

Ageom
N , on the internal hyperbolic 3-manifold M . The on-shell values of θ-term for Bolt±

determine the large N behavior of the phase factor of a topological invariant called the
adjoint Reidemeister-Ray-Singer torsion associated to the two SL(N,C) flat connections.

3.1 3D theory TN [M ] from wrapped M5-branes

Here, we briefly review the 3D TN [M ] theory geometrically constructed from wrapped N
M5-branes on the compact 3-manifold M [14, 16, 44, 45]. The theory can be obtained from
a twisted compactification of 6D AN−1 (2,0)-theory, which is the world-volume theory of
N M5-branes:

6D AN−1 (2,0)-theory on R1,2 ×M size(M)→0−−−−−−−−−−−−−−→ 3D TN [M ] theory on R1,2 .

(3.1)
In the compactification, we perform a partial topological twisting along the compact 3-
manifold M to preserve some supersymmetries. In the topological twisting, we use the
SO(3) subgroup of 6D SO(5) R-symmetry and the twisting preserves 4 supercharges out
of 16. Thus, the resulting TN [M ] theory has 3D N = 2 supersymmetry. Field theoretic
construction of the TN [M ] theory is given in [16, 44, 45]. From the explict construction,
one can confirm that the TN [M ] only has U(1) R-symmetry and no other flavor symmetry
at sufficiently large N for hyperbolic M . The U(1) R-symmetry originates from the SO(2)
subgroup of 6D SO(5) R-symmetry and thus the R-charge is integer-quantized:

R(O) ∈ Z , for all local operators O in TN [M ] theory . (3.2)

Since there is no flavor symmetry to mix, the U(1) R-symmetry is identical to the IR
superconformal R-symmetry.

3.2 3D-3D relations for twisted indices

One nice feature of the 3D TN [M ] theory is that the supersymmetric partition functions of
the theory can be written in terms of invariants of SL(N,C) Chern-Simons theory on M .
The simplest 3D-3D relation is the one for twisted indices. The twisted indices of TN [M ]
theory on genus g Riemann surface Σg is defined as

Ig[TN [M ]] := TrH(Σg)(−1)R , where
H(Σg) := Topologically twisted Hilbert-space on Σg .

(3.3)

Along Σg, we perform a topological twisting using the compact U(1) R-symmetry. The
twisting is possible only when the following Dirac quantization is satisfied:

R(O)× (g − 1) ∈ Z , for all local operators O . (3.4)

The condition is always satisfied for TN [M ] theory thanks to the equation (3.2). The 3D-3D
relation for the twisted indices is [17, 21]

Ig[TN [M ]] =
∑

ρ∈χirred(M ;N)
(NTorAdj (ρα; SL(N,C)))g−1 . (3.5)
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The above 3D-3D relation holds only for 3-manifold with trivial H1(M,ZN ). For 3-manifold
with non-trivial H1(M,ZN ), the 3D-3D relation should be modified [39, 46]. But the
modification only affects the logN corrections at large N . Here χirred(M ;N) is the set of
irreducible SL(N,C) flat connections on M

χirred(M ;N) = {ρ ∈ Hom (π1M → SL(N,C)) : ρ is irreducible}
(conjugation) . (3.6)

The flat connections are classical solutions of SL(N,C) Chern-Simons theory on M . Con-
ventionally, a G flat connection is defined as gauge field configuration A of group G with
vanishing field strength, i.e. dA+A ∧A = 0. A G flat connection A induces a homomor-
phism ρ : π1M → G via a holonomy matrix ρ(a) := P exp (

∮
aA). The holonomy matrices

fully characterize the flat connection and thus we can identify a flat connection A with its
induced homomorphism ρ. Using the identification, the symbols A and ρ are interchange-
ably used throughout this paper. A homomorphism ρ ∈ Hom(π1M → SL(N,C)) is called
irreducible if its stabilizer subgroup Stab(ρ) ⊂ SL(N,C) defined in the following way is
zero-dimensional.

Stab(ρ) := {h ∈ SL(N,C) : [h, ρ(a)] = 0 ∀a ∈ π1M} . (3.7)

TorAdj (ρα; SL(N,C)) is a mathematical invariant called the adjoint Reidemeister-Ray-
Singer torsion [47–49] associated to the flat connection ρα. The invariant in general repre-
sentation R ∈ Hom[GC → GL(VR)] can be defined as follows

TorR[Aα;GC] := [det′∆1(R,Aα)]1/2

[det′∆0(R,Aα)]3/2
. (3.8)

Here ∆n(R,Aα) is a Laplacian acting on VR-valued n-form twisted by a flat connection Aα
and det′ is the zeta function regularized determinant. In the definition, we need to choose
a metric structure on M but the final TorR turns out to be independent of the choice.
When R = (Adj) (adjoint representation), the invariant is related to the perturbative 1-
loop expansion of the complex Chern-Simons theory around the flat connection Aα in the
following way∫ [d(δA)]

(gauge) exp
(
− 1

2~

∫
M

Tr
(
AdA+ 2

3A
3
)) ∣∣∣∣

A=Aα+δA
~→0−−−−−−→ 1√

TorAdj (ρα; SL(N,C))
exp

(
− 1

2~

∫
M

Tr
(
AαdAα + 2

3A
3
α

)
+O(~)

)
.

(3.9)

As a non-trivial consistency check of the 3D-3D relation, the integrality of the twisted
indices in (3.5) were checked for various examples in [17, 39, 46].

3.3 Two dominant SL(N,C) flat connections at large N

Here, we focus on the case where M is a closed hyperbolic 3-manifold. At large N , the
dominant contributions to the twisted index in (3.5) with g > 1 come from the two irre-
ducible flat connections, ρgeom

N and ρgeom
N , related to each other by complex conjugation.

The flat connections are defined as follows

Ageom
N := τN · (ω + ie) , Ageom

N := τN · (ω − ie) . (3.10)
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Here ω and e are spin-connection and dreibein for the unique hyperbolic metric on M nor-
malized as Rµν = −2gµν . They can be regarded as so(3)-valued 1-form onM and their com-
plex combinations (ω ± ie) define a complex conjugate pair of SL(2,C) connections.1 The
hyperbolicity, Rµν = −2gµν , implies that the connections are actually flat. Via the principal
embedding τN : SU(2) → SU(N), the SL(2,C) flat connections are mapped to a complex
conjugate pair of SL(N,C) connections, Ageom

N and Ageom
N . At large N , the two flat connec-

tions give the most dominant contributions to the twisted indices in (3.5) with g > 1, i.e.

Ig>1[TN [M ]] N→∞−−−−−−−→ (NTorAdj(ρgeom
N ; SL(N,C)))g−1 + (c.c)

+ (exponentially smaller terms) .
(3.11)

We now study the large N limit of the adjoint torsion TorAdj(ρgeom
N ; SL(N,C)). First, from

the following branching rule

(Adjoint representation of SU(N)) =
(
N−1⊕
n=1

τ2n+1 of SU(2)
)
, (3.12)

we have

logTorAdj (ρgeom
N ; SL(N,C)) =

N−1∑
n=1

logTorτ2n+1 (ρgeom
N=2 ; SL(2,C)) . (3.13)

In the above, the SU(2) is embedded into SU(N) via the principal embedding τN and
τ2n+1 is the (2n + 1)-dimensional irreducible representation of SU(2). Torτ (ρ; SL(2,C))
is the Reidemeister-Ray-Singer torsion associated to the SL(2,C) flat connection ρ in the
representation τ . Using Selberg’s trace formula, it is mathematically proven that

Theorem [50]: (3.14)

Re
(
logTorτ2n+1(ρgeom

N=2 , SL(2,C))
)

= 1
π
vol(M)

(
n2 + n+ 1

6

)
+ Re

∑
γ

∞∑
k=n+1

log(1− qkγ) .

Here vol(M) is the hyperbolic volume, volume measured using the unique hyperbolic met-
ric normalized as Rµν = −2gµν . In the last term, the summation is over geodesics γ in M
and qγ := e−`C(γ) where `C(γ) is the complex length of γ. The complex length is defined as

Tr(ρgeom
N=2 (γ)) = 2 cosh

(
`C(γ)

2

)
, Re(`C) > 0 . (3.15)

Combining (3.13) and (3.14), we have the following large N behavior of the adjoint tor-
sion [17].

TorAdj(ρgeom
N ; SL(N,C))

= eiϕ(N,M) exp

vol(M)
6π (2N3 −N − 1) + Re

∑
[γ]

logP.E.
[
qN+1
γ − q2

γ

(1− qγ)2

] .
(3.16)

1More precisely, they are PSL(2,C) flat connections, which can always be uplifted to SL(2,C) flat
connections.
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Here P.E. denotes the plethystic exponential,

P.E.[f(q)] := exp
( ∞∑
n=1

1
n
f(qn)

)
. (3.17)

Then, using (3.11), we finally have following large N behavior

Ig[TN [M ]]∼ exp
(

(g−1)vol(M)
6π (2N3−N)+ i(g−1)ϕ(N,M)+o(N)

)
+(c.c.)

= exp
(

(g−1)vol(M)
6π (2N3−N)+o(N)

)
×
(
2cos((g−1)ϕ(N,M))

)
.

(3.18)

The exponential growth of Ig[TN [M ]] at large N nicely matches with the Bekenstein-
Hawking entropy of the corresponding magnetically charged black hole in the gravity dual
including subleading corrections [17, 21, 39, 51, 52].

In this paper, we focus on the oscillatory factor, 2 cos ((g − 1)ϕ(N,M)), of the large
N twisted indices. As the main result, from holographic dual computation in the next
section, we propose that

ϕ(N,M) N→∞−−−−−−−→
(
cs(M)

3π N3 +O(N)
)

(mod 2π) . (3.19)

Here, cs(M) is the so-called Chern-Simons invariant of the hyperbolic 3-manifold M , which
is defined as follows

i

2

∫
M

Tr
(
Ageom
N=2 ∧ dA

geom
N=2 + 2

3A
geom
N=2 ∧ A

geom
N=2 ∧ A

geom
N=2

)
= vol(M) + ics(M) . (3.20)

The invariant cs(M) is defined only modulo π2. The above holographic prediction combined
with the 3D-3D relation (3.5) implies the following non-trivial mathematical conjecture

Conjecture : (3.21)

Im
(
logTorτ2n+1(ρgeom

N=2 , SL(2,C))
) n→∞−−−−−−−→ 1

π
cs(M)(n2 + n) +O(n0) (mod 2π) .

Combined with the formula in (3.13), the conjecture implies the proposal in (3.19). We
will confirm numerically the conjecture with an explicit example in appendix B.

The phase factor eiϕ(N,M) determines the sign oscillatory behavior of the twisted indice
Ig[TN [M ]] as g or N varies. See figure 1 for the explicit example with M = (S3\41)P/Q=5.

3.4 Supergravity analysis

The holographic dual of TN [M ] for a closed hyperbolic 3-manifoldM is proposed in [24]. At
low energy, the gravity theory is described by the 4D minimal N = 2 gauged supergravity
whose Euclidean action is given in (1.2) with

L2/G4 = 2(N3 +O(N))vol(M)
3π2 . (3.22)
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Cos[(g-1)φ(N,M)]

Sign of Ig[TN [M]]
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g

-1.0

-0.5

0.5

1.0

N=20, M=(S3∖41)5

Cos[(g-1)φ(N,M)]

Sign of Ig[TN [M]]

Figure 1. Sign oscillation of Ig[TN [M ]] with M = (S3\41)P/Q=5 as N varies with fixed g = 10
(Left) or g varies with fixed N = 20 (Right). The blue triangle is the sign of Ig[TN [M ]], i.e.
Ig [TN [M ]]

|Ig [TN [M ]]| , while the red circle is cos ((g − 1)ϕ(N,M)). From the graph, one can see that twos
have always the same sign. The Ig[TN [M ]] is computed using the formula in (3.11) combined
with (3.13) and the adjoint torsion computation summarized in appendix B. ϕ(N,M) is given
in (3.19) with cs(M) = 1.52067 [54]. The undetermined O(N) part is numerically fitted and we
obtain ϕ(N,M) = cs(M)

3π N3 + 0.453N + 5.01 +O(1/N).

The 4D supergravity action can be obtained from a consistent KK truncation of 7D maximal
gauged supergravity [23] on the 3-manifold M . In the consistently truncated 4D super-
gravity, there is a following topological term, which has been overlooked in the literature

Sθ-term = −iN
3 +O(N)

6 × cs(M)
2π3L2 ×

∫
F ∧ F , i.e. θ = −N

3 +O(N)
3

cs(M)
π

. (3.23)

Note that cs(M) is only defined modulo π2 and
∫
F ∧F ∈ 4π2L2Z.2 For the exp (−Sθ-term)

to be well-defined, we require that

N3 +O(N)
6 ∈ Z . (3.24)

This gives a non-trivial consistency condition for the O(N1) correction in θ. One natural
guess is

θ = −N
3 −N

3
cs(M)
π

. (3.25)

We are going to evaluate the topological θ-term on the Bolt± solutions with g > 1 and
p = 0. They are Euclidean supergravity saddles obtained after Wick rotating the magnet-
ically charged AdS4 black holes [22]. Topologically, the Euclidean solutions satisfy

MBolt±
4 ∼ Σg ×D2 ,

FBolt± ∼ L

2 (vol(Σg)∓ vol(D2)) .
(3.26)

Refer to appendix A for details. Here, the volume form are normalized as∫
Σg

vol(Σg) = 4π(1− g) ,∫
S2=D2

⋃
D2

vol(D2) = 2×
∫
D2

vol(D2) = 4π.
(3.27)

2The bulk gauge field A is normalized as A = iLACFT, where ACFT is the background gauge field for the
compact U(1) R-symmetry in the conformal field theory at the boundary. In our convention, the boundary
ACFT is purely imaginary. The R-symmetry is normalized so that R(Q) = ±1 for supercharges Q.
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At the boundary ∂(MBolt±
4 ) = Σg × S1, the gauge field configuration is given by

F
Bolt±
CFT = 1

2ivol(Σg)∓
1
2ivol(D2) .

The first term is compatible with the fact that there is topological twisting on Σg and the
second term is compatible with the factor (−1)R in the definition of the twisted index (3.3)
since

exp
(∮

S1
A

Bolt±
CFT

)
= exp

(∫
D2
F

Bolt±
CFT

)
= exp(±iπ) = −1 . (3.28)

In the Euclidean path integral of the twisted index, we impose anti-periodic boundary
condition for fermionic fields, which is also compatible with the shrinking of the S1-cycle
in the bulk.

Using (3.26), we finally obtain

Sθ-term[Bolt±] = −iN
3 +O(N)

6 × cs(M)
2π3L2 × 2×

(∫
Σg

L

2 vol(Σg)
)
×
(
∓L2

∫
D2

vol(D2)
)

= ±iN
3 +O(N)

3π (1− g)× cs(M) .
(3.29)

The above computation then holographically implies the proposal in (3.19).
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A Global structure of Bolt± solutions

For the computation of the topological θ-term in (3.23), we consider a non-supersymmetric
deformation of the Bolt± solutions with p = 0, where the topological structure becomes
more manifest. The deformed Euclidean background for g > 1 is given as follows [22, 52]

ds2/L2 = λ(ρ) (dτ − 2s cosh θdφ)2 + dρ2

λ(ρ) + (ρ2 − s2)ds2(Σg) ,

Aτ = L

2s
P (ρ2 + s2)− 2sQρ

ρ2 − s2 , Aφ = −LP (ρ2 + s2)− 2sQρ
ρ2 − s2 cosh θ .

(A.1)

Here we define

λ(ρ) := (ρ2 − s2)2 + (−1− 4s2)(ρ2 + s2)− 2Mρ+ P 2 −Q2

ρ2 − s2 . (A.2)

– 11 –



J
H
E
P
0
6
(
2
0
2
1
)
0
7
8

The supersymmetric Bolt± solutions with p = 0 correspond to

P = −2s2 − 1
2 , M = 2sQ± , Q = Q± ,

with Q± = ∓16s2√(16s2)2 + 128s2

128s2 .

(A.3)

We consider the deformed geometry with s = ε,M = 0, P = −1
2 with small ε > 0. When

ε → 0 and Q → ∓0, the deformed geometries approach to the Bolt± geometries. In the
limit, the deformed geometry simplified as

λ(ρ) = ρ2 − 1 +
1
4 −Q

2

ρ2 + o(ε2) , Fρτ = LQ

ρ2 + o(ε) , FΣg = L

2 vol(Σg) + o(ε) . (A.4)

Note that ρ ≥ ρ0 :=
√

1+2|Q|√
2 . To avoid conical singularity at ρ = ρ0, τ should be periodic

with the following periodicity

∆τ = 4π
|λ′(ρ0)| =

π
√
|Q|+ 1

2
|Q|

. (A.5)

So the topology of the deformed geometry isMBolt±
4 ∼ D2×Σg, where ρ parametrizes the

radial direction of D2. Along the Σg, magnetic flux vol(Σg) is turned on. To measure the
flux along D2, we compute

∫
D2
F =

(∫ ∞
ρ0

LQ

ρ2

)
×∆τ = LQ√

|Q|+ 1
2

×
π
√
|Q|+ 1

2
|Q|

= ∓πL . (A.6)

Due to the topological property of the integral, the computation is exact in ε. Thus, it
implies that FD2 ∼ ∓L

2 vol(D2).

B Numerical verification of the conjecture (3.21) with M = (S3\41)P/Q

Let (S3\41)P/Q be a 3-manifold obtained by a Dehn surgery along the figure-eight knot
(denoted by 41) with a slope P/Q ∈ Q. The manifold is hyperbolic except P/Q ∈
{0,±1,±2,±3,±4}. Fundamental group of the manifold is given as follows

π1M = 〈a,b,m, l : ab−1a−1ba= bab−1a−1b, m = a, l = ab−1aba−2bab−1a−1, mP lQ = 1〉 .

For a given irreducible SL(2,C) flat connection ρ ∈ Hom(π1M → SL(2,C)), its Ray-Singer-
Reidemeister torsion Torτ2n+1 (ρ, SL(2,C)) can be computed as follows [53]

Torτ2n+1 (ρ,SL(2,C)) (B.1)

=
(

P (`− 1
` )m

4

(m4−1)(4−2m2 +4m4) +Q

)
limt→1(t−1)−1∆(t;τ2n+1,ρ)∏n

a=1(1−m2aR`2aS)(1−m−2aR`−2aS) ,

with ∆(t;τ2n+1,ρ) := det(I2n+1− t−1AnB
−1
n A−1

n +AnB
−1
n A−1

n Bn− tBn+BnAnB
−1
n A−1

n )
det(tI2n+1−Bn) .
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Here An := τ2n+1(ρ(a)), Bn := τ2n+1(ρ(b)) and I2n+1 is the identity matrix of (2n+ 1). m
and ` are defined in the following relation

(
ρ(m), ρ(l)

)
∼conj

((
m ∗
0 m−1

)
,

(
` ∗
0 `−1

))
. (B.2)

Here, two integers R and S are chosen such that PS −QR = 1.

M = (S3\41)P/Q=5 case The holonomy matrices for the flat connection ρgeom
N=2 are3

ρgeom
N=2 (a) =

(
0.58480 + 0.37948i 0

−1 1.2033− 0.7808i

)
,

ρgeom
N=2 (b) =

(
0.58480 + 0.37948i −0.99245 + 0.51312i

0 1.2033− 0.7808i

)
.

(B.3)

Then, its Ray-Singer-Reidemeister torsions are

{logTorτ2n+1 [ρgeom
N=2 ]}15

n=1 (mod 2πi)
= {1.66019− 2.42623i, 2.47618 + 1.40108i, 4.36609− 2.48725i, 6.81514 + 1.25657i,

9.90447− 0.16483i, 13.75025− 0.61606i, 18.0928− 0.1422i, 23.0814 + 1.3424i}
28.7128− 2.5184i, 34.9561 + 0.8746i, 41.8289− 1.0394i, 49.3278− 1.9892i,
57.4486− 1.9708i, 66.1951− 0.9834i, 75.5668 + 0.9714i} . (B.4)

The above numerical values are compatible with the theorem in (3.14) and the conjecture
in (3.21) since the following series well converges:

{
logTorτ2n+1 [ρgeom

N=2 ]− vol(M)
π

(
n2 + n+ 1

6

)
− ics(M)

π

(
n2 + n

)}15

n=1
(mod 2πi)

= {0.983369 + 2.88886i, 0.549836 + 4.77999i, 0.56547 + 4.27058i, 0.515488 + 4.14204i,
0.481026 + 4.16337i, 0.578252 + 4.18678i, 0.547515 + 4.16725i, 0.538042 + 4.19027i}
0.546595 + 4.18297i, 0.542266 + 4.17826i, 0.542725 + 4.18166i, 0.544512 + 4.18118i,
0.543498 + 4.18071i, 0.543412 + 4.18129i, 0.543708 + 4.18107i} . (B.5)

Here we used the fact that vol(M) = 0.98137 and cs(M) = 1.52067 [54].
In the same way, we also numerically confirmed the conjecture for other examples of

hyperbolic M = (S3\41)P/Q.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

3There are only 4 irreducible SL(2,C) flat connections on the 3-manifold. Two of them are real, i.e.
trace of all holonomy matrices are real, and the other twos correspond to Ageom

N=2 and Ageom
N=2 . The notion of

being Ageom
N=2 or Ageom

N=2 depends on the orientation choice of M and we in particular choose one choice.
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