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1 Introduction

There is a large body of well-known arguments pointing to a fundamental limitation in the
localization resolution any conceivable experiment can achieve. At an elementary level, this
first arises when taking onto account the fact that, in any localization measurement, both
the probe and the probed particle carry energy and hence gravitate. This effect, normally
utterly negligible for the derivation of the standard uncertainty relations by the familiar
physical considerations (‘Heisenberg microscope’), becomes dominant when it comes to lo-
calization within scales of the order of Planck length. Even for optimal probes (photons),
avoidance of formation of a horizon sets a fundamental limit in resolution of the order of
some fundamental scale (Planck length). Arguments of this type go, remarkably, back to
the 1930s. In more recent decades, this lack of resolution, or ‘UV opaqueness’, has been
discussed from several field- and string-theoretic points of view and explored in calcula-
tions of scattering at trans-Planckian energies. For a review, including some of the early
interesting history, and extensive references see [1].

Such a limitation implies that all interaction vertices must acquire some nonlocality
characterized by this fundamental scale. Nonlocal vertices occur in a variety of field theory
models and in string field theory. Such nonlocal field theories, both in their own right or
as models of string field theory Feynman rules, have recently been studied, in particular,
with respect to unitarity, analyticity and causality properties of their amplitudes [2–4]. In
these theories interactions within a fundamental scale become smeared and ‘soft’ (rapidly
decaying along the Euclidean directions) with resulting loss of resolution.

This paper presents a framework within field theory for incorporating loss of resolution
inside some scale ` in a natural manner. This framework is based on wavelet decomposition
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of fields. The theory of wavelets may be viewed in the wider context of the development,
in recent decades, of the subject of ‘atomic decompositions’, the decomposition of function
spaces in ‘atoms’ or ‘molecules’, cf., e.g., [5]. Wavelets, more specifically, implement a
Multi-Resolution Analysis (MRA) of function spaces [5, 6].1 This consists of decomposing
a function space, say L2, in subspaces, each of which refers to a certain resolution range (in
time, space, spacetime, or any other ‘length’ variables characteristic to the system at hand).
The precise definition of MRA and the basic properties of the resulting wavelet expansions
are given in appendix A. Briefly, a wavelet expansion of a field φ in Rd is of the form

φ(x) =
∑
n

φnσn(x) +
∑
A

φAυA(x) . (1.1)

Here σn(x) are the set of scaling fields obtained by dilation to the scale ` and discrete
translations n ∈ Zd of a mother scaling function σ(x) (cf. (2.2) below). The wavelets υA,
enumerated by the multi-index A = (m,n, q), are obtained by dilation to length scales `m,
m ∈ Z+, and discrete translations n ∈ Zd of the mother wavelet υ(x) associated with σ(x);
there must be 2d − 1 such wavelets for each m,n enumerated by q (cf. (2.3)–(2.4) below).
The scaling part represents resolution at all length scales from infinity to `; whereas, the
wavelet parts provide successively finer resolution from ` down to arbitrarily small scales.
It may be noted that the scaling part itself may be expanded in wavelets pertaining to
longer length scales up to some `′ > ` (including `′ → ∞, cf. appendix A); but, except
for some special purposes, (1.1) is the standard expansion for some ` appropriate to the
system under consideration.

The set {σn, υA} is a complete, orthonormal basis for the function space, which is
decomposed in a direct sum of the subspaces spanned by the corresponding elements of
this set (cf. appendix A). This implies that working with particular subsets of components
φn, φA can be done by using suitable projection operators acting on the full field φ. This is
very convenient for setting up a formalism suitable for weak coupling perturbation theory
as will be seen in the following sections.

The fact that such separation of length scales can be achieved in an orthogonal decom-
position is astonishing and the existence of such orthonormal wavelet bases mathematically
highly non-trivial. It was the explicit construction of such sets in the 1980s that led to the
subsequent explosive development and application of wavelets.2

Though by now wavelets are ubiquitous in all fields of engineering and many physical
and medical science areas and beyond, their use in field theory has been quite limited.

1The literature on wavelets is by now vast. [6], however, remains the classic presentation of the mathe-
matical theory of wavelets. Another authoritative text, at a somewhat higher level, is [5].

2Orthogonal wavelet decompositions are a very non-trivial special case of the more general mathematical
theory of frames [6]. Frames, roughly speaking, are redundant (over-complete) sets of linearly dependent
vectors used to expand vectors in (the concept is more subtle for infinite dimensional spaces). The extreme
case of a frame is the continuous wavelet transform, which replaces the discrete n, m in (1.1) by continuous
variables resulting in an infinite-degenerate representation of functions: every component is linearly depen-
dent on all the others. Such redundant descriptions can be very useful in engineering in assuring robustness
of, say, reconstruction of a signal; but they appear very ill-suited for unambiguously re-expressing the path
integral in field theory.
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This is somewhat surprising since they would appear to be tailor-made for real space
renormalization group application. Wilsonian RG was, in fact, one of several precursor
body of ideas that led to wavelets.3 This limited use has indeed been mostly in RG and
lattice gauge theory within a constructive approach [7], or a more general lattice field
framework [8, 9], or numerical and MC implementation [10–12]. More recently, the use of
wavelets in field theory has been advocated in [13, 14].

In this paper, the wavelet framework of separating length scales is used to implement
sequestering of scales smaller than a length `. The basic, simple idea is that, given a field
theory Lagrangian L(ϕ) with local interactions, the fact that the fields ϕ, or any observable
constructed out of them, cannot actually be resolved beyond a fundamental scale `, im-
plies that their wavelet decomposition cannot contain wavelet components probing lengths
shorter than `. Since we can always adjust the decomposition to have ` as the characteristic
length of the scaling space, this means that ϕ is expandable in only scaling components.
This has a number of implications whose derivation follows in a straightforward and math-
ematically well-defined manner. Regions of length order ` become UV opaque, i.e., suffer
loss of resolution, implying a resulting delocalization of interactions. The opaque regions
appear as Euclidean spacetime ‘atoms’ mediating this delocalization. They can emit and
absorb momenta in discrete units of 1/` as a consequence of the translation invariance of
the theory. It must be stressed here that no explicit cutoffs of any type are employed.
Fields are defined for all x ∈ Rd; and, correspondingly, momenta vary unrestricted up to
infinity. The formulation is in Euclidean field theory within an overall S-matrix approach.
Minkowski amplitudes must be defined by analytic continuation of external momenta of
the Euclidean amplitudes.

Only global symmetries are considered in this paper. The extension of the formalism
required to accommodate local symmetries will be considered in a separate treatment.

An outline of the paper is as follows. The wavelet expansion of fields in Euclidean
space Rd is detailed in section 2. Additional mathematical background related to such
expansions is included in appendix A, where the general framework of MRA is presented.

In section 3 the basic formalism of field theory models with fields expandable in only
scaling components is developed. The crucial requirements here is that scale and wavelet
mother functions possess Fourier transforms of sufficiently rapid decay along the Euclidean
axis and be entire functions on Cd. The resulting delocalized vertices are then given by
entire functions in momentum space. This ensures perturbative unitarity and appropriate
singularity structure as discussed in detail in [2, 3]. Furthermore, these delocalized vertices
imply UV finiteness for a wide variety of interactions.

In section 4, abstracting from the construction in the preceding sections, another for-
mulation is developed, which, though wavelet-inspired, no longer relies on having a com-
plete MRA and, therefore, on any specific wavelet realization. The only elements retained
is a projection operator onto a subspace of the ‘coarse’ part of fields, of limited resolution
within a scale `, and the orthogonal complement onto the rest of the field function space.
This provides a wider and more flexible framework, which evades certain technical issues

3The ‘Wilson basis’ is frequently referred to in the mathematical literature leading to wavelets.
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with higher dimensional wavelets as described in the text, and allows implementation in
essentially any physically sensible field theory model. The resulting Feynman rules are of
the type encountered in string field theory.

Section 5 contains some concluding further remarks and discussion of open issues.
We use standard mathematical notations. In particular, f̂ stands for the Fourier

transform of f ; and 〈f, g〉 =
∫
ddx f̄(x)g(x) for scalar products with the bar denoting

complex conjugation.

2 Wavelet decomposition of fields

2.1 The general wavelet expansion

We fix some UV length scale `, which here may be naturally taken to be of the order of
Planck length or some unification scale. With ˆ̀denoting this scale in dimensionless units,4

we set
ˆ̀= 2−l̂ (2.1)

with integer l̂. A Multi-Resolution Analysis consists of a sequence of orthogonal spaces of
increasingly finer resolution starting with the scaling space referring to a given scale (see
appendix A). So here we take the scaling space, denoted Vl̂, to refer to the scale `. This
means that, given a mother scaling function σ(x) and corresponding 2d−1 mother wavelet
functions υq(x) on Rd, the basis set is given by

σl̂n(x) = 2dl̂/2σ(2l̂x− bn) (2.2)

υqmn(x) = 2dm/2υq(2mx− bn) (2.3)
with x ∈ Rd , n ∈ Zd , l̂ ≤ m ∈ Z , 1 ≤ q ≤ 2d − 1 0 < b ∈ R+ . (2.4)

b is the translation parameter. The scaling set σl̂n(x) constitute a basis in Vl̂, whereas, for
each m, the set υqmn(x) constitute a basis for the m-th resolution space Wm. The spaces
are mutually orthogonal and one has the orthogonality relations:∫

ddx σ l̂n(x)σl̂k(x) = δnk (2.5)∫
ddx σ l̂n(x)υqmk(x) = 0 , m ≥ l̂ (2.6)∫
υqmn(x)υq

′

m′k(x) = δmm′δnkδqq′ . (2.7)

The mother functions σ(x) and υ(x) are generally well-localized around the origin within
a length of order `; they may, in particular, be of compact support. Physical requirements
dictate that the FT σ̂(k) be of sufficiently rapid decay along the Euclidean momentum axis
and an entire function on Cd.

4We could, of course, by choice of units, set ` = 1, and l̂ = 0, thus simplifying notations, but it is
preferable to keep reference to this UV scale explicit. Expressing ` in powers of 2 is the standard practice
in wavelet theory.
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A field configuration φ(x) on Rd has the wavelet expansion

φ(x) =
∑
n

φnσl̂n(x) +
∑
q,m,n

φqmnυ
q
mn(x) , (2.8)

with
φn = 〈σl̂n, φ〉 , φqmn = 〈υqmn, φ〉 (2.9)

and summations over n,m, q as specified in (2.4).
As explained in appendix A, (2.8) is a decomposition in successively finer resolutions.

The scaling field part
∑
n φnσl̂n(x) may be viewed as the ‘coarse’ part of the field, which is

insensitive to (smeared over) regions of scale `. It thus represents all features of φ down to
scale `. The wavelet parts probe inside such regions down to arbitrarily small scales with
successively finer resolution: the υqmn wavelets terms probe scales of order `m, m ≥ 1. The
remarkable, and very nontrivial, fact here is that this separation of scales is accomplished
in an orthogonal exact decomposition.

The basis (2.2)–(2.3), being orthonormal and complete, provides a complete resolution
of the identity. The set of coefficients {φn, φqmn} gives then a discrete representation of
φ(x) with the coefficients as the dynamical degrees of freedom. This representation, with
integration over φ replaced by integration over the infinite set {φn, φqmn} in the functional
integral, is the natural one in applications such as real space renormalization group [7, 13].
For our purposes here, however, it will be often more convenient to revert to use of φ(x)
as dynamical variable. The connection is simply provided by the projection operators onto
the subspaces Vl̂ and Wm of the decomposition (2.8) given by the d-dimensional version
of (A.20) and (A.21), i.e.,

Pl̂(x, y) =
∑
n

σl̂n(x)σ l̂n(y) (2.10)

Qm(x, y) =
∑
q,n

υqmn(x)υqmn(y) . (2.11)

In terms of these (2.8) assumes the form

φ(x) =
∫
ddy Pl̂ (x, y)φ(y) +

∑
m

∫
ddy Qm(x, y)φ(y) (2.12)

= (Pl̂ φ)(x) +
∑
m

(Qmφ)(x) . (2.13)

Introducing the projection to the direct sum of all Wm subspaces

Ql̂ (x, y) =
∑
m≥l̂

Qm(x, y) (2.14)

one has
Pl̂ +Ql̂ = 1 (2.15)

and, by the orthogonality relations (2.5)–(2.7), one indeed has (P 2
l̂

)(x, y) = Pl̂(x, y),
(Q2

l̂
)(x, y) = Ql̂(x, y), and (Pl̂Ql̂)(x, y) = 0. The projections Pl̂ and Ql̂ = 1 − Pl̂ then
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decompose the space of field configurations S into two orthogonal subspaces: the subspace
Vl̂ of fields representing features down to scale `; and the subspace Wl̂ =

⊕
m≥l̂Wm of

fields that can represent features from ` down to arbitrarily small length scales. Thus,
from (2.13):

φ(x) = (Pl̂ φ)(x) + (Ql̂ φ)(x) . (2.16)

In (2.8) φ is a scalar field and the wavelet basis functions σ(x), υ(x) are assigned scalar
transformation properties under SO(d) transformation. For tensor fields φα, where α is a
generic tensorial index, the tensorial properties are carried by the expansion coefficients.
Thus, under an SO(d) rotation Λ one has

φ′α(x) = D(Λ)αβ φβ(Λ−1x)

=
∑
n

D(Λ)αβ φβnσl̂n(Λ−1x) +
∑
q,m,n

D(Λ)αβ φqβmnυqmn(Λ−1x) , (2.17)

where D(Λ) denotes the transformation matrix in the appropriate tensor representation.

2.2 Basis functions

To implement this general framework in actual computations we need an explicit realization
of the basis functions σn(x) and υqmn(x). In practice, the only widely available way to do
this in d > 1 is to form the d-dimensional basis as the tensor product of 1-dimensional
bases (see remarks in appendix A).

Denoting the scaling and wavelet functions in d = 1 by s(x) and w(x), the 1-dimensional
basis is given by the d = 1 version of (2.2)–(2.4) (cf. appendix A). If we now take our
orthonormal Euclidean d-dimensional basis (2.2)–(2.4) to be a tensor product basis formed
out of 1-dimensional bases, it can be conveniently expressed as follows. Let E denote the
set of 2d − 1 sequences {q1, q2, . . . , qd} of 0s and 1s excluding the sequence {0, 0, . . . , 0} of
only zeroes. Let

w(qµ)(x) ≡ w(x) if qµ = 1 ; w(qµ)(x) ≡ s(x) if qµ = 0 . (2.18)

Then the tensor product realization of the d-dimensional basis (2.2)–(2.4) is:

σl̂n(x) =
d∏

µ=1
sl̂nµ(xµ) = 2d l̂/2

d∏
µ=1

s
(
2l̂xµ − bnµ

)
, nµ ∈ Z (2.19)

υqmn(x) = 2dm/2
d∏

µ=1
w(qµ)(2mxµ − bnµ) , m ≥ l̂ , m, nµ ∈ Z , q ∈ E . (2.20)

Note that the tensor product realization makes it obvious why we need 2d − 1 different
wavelets for a given scale m in d-dimensions. But this holds in general, i.e., when ba-
sis (2.2)–(2.4) is not necessarily a tensor product basis.5

5For the existence proof of the general basis (2.2)–(2.4) see [5], Ch. 3.
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Scaling and wavelet functions are generically constructed to be well localized, though
not necessarily of compact support. To be definite, we may employ ‘minimal’ Daubechies
wavelets (sometimes denoted by Ns(x), Nw(x)), which are of compact support [6]. They
are characterized by a positive integer N .6 N = 1 gives the Haar wavelet. Both s(x) and
the mother wavelet w(x) have compact support on the interval [0, (2N −1)], hence support
width (2N−1). Hence sl̂n(x) has support on x ∈ [2−l̂bn, 2−l̂(bn+2N−1)]; and wmn(x) has
support on x ∈ [2−mbn, 2−m(bn + 2N − 1)], i.e., support width 2−m(2N − 1) with m ≥ l̂,
thus providing successively finer resolution.

With s(x) and w(x) being functions of compact support, their Fourier transforms ŝ(ξ)
and ŵ(ξ) are C∞ functions, and, in fact, entire functions for ξ ∈ C. This is a fundamental
requirement for application to quantum field theory. For real (Euclidean) ξ, ŝ(ξ) has the
asymptotic decay ([6], chapter 7):

| ŝ(ξ)| ≤ C(1 + |ξ|)−1−(N−1)r , (2.21)

where r = (1− ln 3
2 ln 2) ' 0.21.

From (2.19)–(2.20) we see that the d-dimensional σl̂n(x) has support on x ∈
∏
µ[2−l̂bnµ,

2−l̂(bnµ+2N−1)], i.e., within a d-dim box of side length (2N−1)2−l̂; whereas the wavelets
υqmn(x) have support in d-dim boxes with some sides of length (2N − 1)2−l̂ and some of
length 2−m(2N − 1), with m ≥ l̂. When qµ = 1 for all µ all sides have the latter length.
The part of the field expanded in the scaling fields σl̂n represents all features of φ down to
scales (2N − 1)2−l̂. Features down to scale (2N − 1)2−(l̂+1) that cannot be represented on
scale (2N − 1)2−l̂ are represented by the wavelets υqmn terms with m = l̂; features at scale
(2N −1)2−(l̂+2) that cannot be represented on scale (2N −1)2−(l̂+1) are represented by the
wavelets υqmn terms with m = l̂ + 1, and so on. In the following, as it is customary, we set
the translation parameter b equal to one.

The use of a tensor product basis formed from 1-dimensional basis functions, however,
presents a technical problem for applications in field theory as envisioned here. Such a
basis selects a particular frame so that manifest SO(d) invariance is lost. One would
like to have radial MRA basis functions, i.e., start from radial scale and wavelets mother
functions σ(x) = σ(|x|), υ(x) = υ(|x|), where |x| denotes the usual Euclidean norm in Rd,
so that basis functions are manifestly rotationally invariant. Radial MRA wavelets have
been constructed for d = 3 [15, 16], though such construction are rather involved. There
are apparently no such constructions available for d ≥ 4 though. One may use general
radial basis theory to construct some wavelets systems [17], so this remains an open issue.
The field theory models in the next section are constructed for any general d-dimensional
basis (2.2)–(2.4); but explicit use of a specific MRA basis faces this technical issue. The
generalized formulation in section 4, on the other hand, by going outside a complete MRA,
allows use of radial functions from the outset.

6There is no explicit analytic formula for Daubechies wavelets; their existence and construction to
arbitrary accuracy is obtained through the ‘cascade algorithm’. N refers to the fact that the mother scaling
field s(x) has 2N nonvanishing filter coefficients, cf. [6].
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3 Field theory model with limited UV resolution

As alluded to in the introduction the basic idea is very simple. Wavelet decomposition
like (2.8) allows one to accommodate different spatial resolution levels.

Consider the simplest case of real scalar fields. Let

ϕ(x) =
∑
n

ϕnσl̂n(x) . (3.1)

and
χ(x) =

∑
q,m,n

χqmnυ
q
mn(x) . (3.2)

The sets {ϕn}, {χqmn} are the dynamical degrees of freedom. ϕ εVl̂ is insensitive to (com-
pact) regions of scale `, whereas χ(x)εWl̂ is built of wavelets probing all scales shorter than
`. We then define the model given by the Euclidean action

S =
∫
ddx

(1
2ϕKϕ+ LI(ϕ)

)
, (3.3)

where LI is some local interaction Lagrangian and

K(∂) =
(
−∆ +m2) (3.4)

with ∆ = δµν∂µ∂ν . This implements the idea that regions of length scale ` become ‘opaque’
and cannot be probed by interactions so as to achieve finer resolution. Here these regions
are the support of the scaling fields σl̂n, assumed to be well-localized around 2−l̂n.

Quantization is performed via the Euclidean path integral:

Z[J ] =
∫

[Dϕ] exp
{
−
∫ (1

2ϕKϕ+ LI(ϕ) + Jϕ

)}
. (3.5)

It is important to note that working with ϕ and χ, as, e.g., in the purely ϕ-dependent
action (3.3), means that ϕn and χqmn are the independent degrees of freedom. Integration
over ϕ and χ is defined with measures [Dϕ] and [Dχ], where

[Dϕ] ≡
∏
n

dϕn (3.6)

[Dχ] ≡
∏
q,m,n

dχqmn , (3.7)

and the action expressed in terms of {ϕn, χqmn}; e.g., for the ϕ kinetic term in (3.3):

1
2ϕKϕ = 1

2
∑
n,n′

ϕnKnnϕn′ , Knn′ = 〈σl̂n,Kσl̂n′〉 , (3.8)

and so on for the other terms in the action.
In general, as already noted, working with the wavelet decomposition coefficients

{ϕn, χqmn}, though natural in the context of Wilsonian RG (block spinning) and similar
nonperturbative constructions, cf. [7, 13], is not well-suited for perturbation considerations.
To be able to conveniently work with (3.3)–(3.5) within weak coupling perturbation theory
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we first include in (3.5) also integration over the fields χ ∈ Wl̂ ; the fields χ do not appear
in the action and are thus decoupled. Now, ϕ and χ are independent, in fact orthogonal,
fields. We may add them to form a field φ containing components at all length scales
(cf. (2.8)):

φ = ϕ+ χ , Pl̂ φ = ϕ , Ql̂ φ = χ (3.9)

with components
φn = 〈σl̂n, φ〉 = ϕn , φqm,n = 〈υqmn, φ〉 = χqmn . (3.10)

Thus the [Dϕ] measure in (3.5) is extended to:

[Dϕ][Dχ] = [Dφ] =
∏
x

dφ(x) , (3.11)

i.e., the usual formal functional measure over φ. In terms of φ the action (3.3) assumes the
form: ∫

ddx

(1
2φP

†
l̂
KPl̂ φ+ LI(Pl̂ φ)

)
. (3.12)

It should be noted that the action, in the form (3.3), is local in terms of the coarse field ϕ,
but, in the form (3.12), is nonlocal in terms of φ.7 We next rewrite the quadratic kinetic
term by inserting

ϕ = Pl̂ φ = φ− χ = φ−Ql̂ φ . (3.13)

One obtains

S =
∫
ddx

(1
2φKφ− φKQl̂ φ+ 1

2φQ
†
l̂
KQl̂ φ+ LI(Pl̂ φ) + JPl̂ φ

)
. (3.14)

We now treat the first term in (3.14) as defining the propagator and all others as inter-
actions. Thus, in addition to the original interaction vertices from LI(Pl̂ φ) and external
source vertices JPl̂ φ, we have the 2-point interaction vertices KQl̂ and Q†

l̂
KQl̂ as shown

in figure 1(a). All contributions from these additional 2-point vertices, however, cancel by
the two simple mechanisms depicted in figure 1(b)–(c): (i) The propagator K−1 connected
to an insertion of a 2-point vertex KQl̂ in a line in a graph ends at a vertex from LI or
an external source (figure 1(b)). This generates the structure

Pl̂K
−1KQl̂K

−1 = Pl̂Ql̂K
−1 = 0 ,

since Pl̂ and Ql̂ are orthogonal projections. (ii) Insertion of two KQ vertices connected as
shown in figure 1(c) in a line in a graph is cancelled by the insertion of one Q†KQ vertex
in the same line in an otherwise identical graph, since

K−1[Q†KK−1KQ+ (−Q†KQ)
]
K−1 = 0 .

7Though an elementary point, it is still perhaps worth remarking that (3.12) is certainly not a field
redefinition of the usual local action ∫

ddx
(1

2φKφ+ LI(φ)
)
.

Indeed, φ→ Pφ = ϕ would not be a legitimate change of variables in the functional measure since DetP = 0
as P , being a projection, has nontrivial null space. The point is, of course, obvious in terms of the orthogonal
compliments ϕ and χ.
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+ = 0

(c)

−Q†KQ

(a)

(b)

KQ

(e)

(d)

Figure 1. (a) The two 2-point vertices in (3.14); (b)–(c) the two basic cancelation mechanisms; (d)
an example of cancelation via (c) in a generic loop graph; (e) residual vacuum graphs — see text.

It is easily seen that (i) and (ii) are present no matter how many insertions, and in what
order, of the 2-point vertices of figure 1(a) occur in any line of a (tree or loop) graph: either
orthogonality with a LI vertex, or cancellation via figure 1(c) in pairs of otherwise identical
graphs, ensure cancelation of all contributions from 2-point vertices in any amplitude or
expectation. An example is shown in figure 1(d). Among vacuum graphs, however, there is
one exception. There is no cancelation for vacuum graphs of the type shown in figure 1(e).
These, however, being disconnected vacuum graphs, cancel in any expectation; or, equiv-
alently, they may be cancelled by a redefinition of the functional measure by a constant
(field independent) factor.8 There is, of course, no surprise here since these cancellations
simply reflect the fact that the χ fields are decoupled in (3.3). In the computation of any
amplitude then one may simply drop the 2-point vertices in the action (3.14). The resulting
effective rules for the action (3.14), now with measure (3.11) in (3.5), are thus the same as
the Feynman rules as for the action:

S =
∫
ddx

(1
2φKφ+ LI(Pl̂ φ)

)
+ JPl̂ φ . (3.15)

The form of the action (3.15) is well-suited for weak coupling perturbation theory. In (3.15)
8Similar cancellations of the type in figure 1(b)-(c) are exhibited for general (nonlocal) changes of

variables in [18]. The additional element used here is the orthogonality projections in the interaction
vertices, which is special to the theories considered here.
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k2

k3

k4

l2

l3

l4

l1

k1

Figure 2. The vertex given by eq. (3.18)–(3.19) depicted for N = 4. The shaded blobs represent
the opaque regions.

one has the normal free kinetic part but the vertices involve the projection kernels in
(Pφ)(x) and, thus, are nonlocal. (3.15) is, in fact, precisely of the general ‘canonical’ form
that has recently been studied in models of nonlocal field and string field theory Feynman
rules. That is, one has the usual (Euclidean) propagator

∆(k) = K−1(k) = 1
k2 +m2 (3.16)

and nonlocal vertices. Here, however, the structure of the nonlocal vertices arises in a
definite way as a result of the projection onto the scaling part of the wavelet decomposition.

Consider an interaction term in (3.3), respectively in (3.12), (3.15) of N fields:

SN = 1
N !

∫
ddx ϕ(x)N = 1

N !

∫
ddx (Pl̂ φ)N (x) . (3.17)

In terms of φ, this represents the local interaction, at the point x, of N delocalized fields
(Pφ)(x). (3.17), written in momentum space, is seen after a short computation using (2.10)
to be given by:

SN =
∫ N∏

i=1

ddki
(2π)d

∑
l1,...,lN

(2π)δ(d)

 N∑
j=1

(
kj + 2l̂2πlj

)
· 1
N ! V

(l̂)
N (k1, . . . , kN , l1, . . . , lN ) φ(k1) · · ·φ(kN ) , (3.18)

with vertex factor

V
(l̂)
N (k1, . . . , kN , l1, . . . , lN ) =

N∏
i=1

σ̂
(
2−l̂ki + 2πli

)
σ̂
(
2−l̂ki

)
. (3.19)

Here σ̂(q) denotes the FT of the mother scaling function σ(x). The summation in (3.18)
is over integer component vectors li = (li1, . . . , lid) ∈ Zd.

The vertex (3.18)–(3.19) (figure 2) has an interesting structure. It represents the
interaction of N ‘boxes’ (regions of size of the support of σl̂n(x), i.e., of linear size of order
`, as described in section 2), interacting at the spacetime point x by (3.17). They may be
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viewed as Euclidean spacetime ‘atoms’. There are N incoming external particle momenta
{ki}. The boxes (atoms) can emit or absorb momentum in discrete units of 2l̂2π. This is a
consequence of the MRA discretization of the translation operation on the scaling function
(cf. (2.2)). This translation fixes the location of the box and, upon quantization, acts as
a collective coordinate with conjugate momentum. This restores translation invariance,
hence overall momentum conservation. This conservation must, of course, be there since
the theory, in particular, the interaction (3.17), is translation invariant. The vertex (3.19)
is depicted in figure 1.

The gap to the first (lµ = 1) box excitation is 2l̂2π, so it becomes relevant only
for scattering at momenta of order 1/`. Recall in this connection that we have set the
translation parameter b to unity. With general b, the box excitations come in units of
b−12l̂2π. So the gap between them, in particular the gap to the first one, lµ = 1, becomes
arbitrarily large for sufficiently small b > 0. But, in the present context, it would not make
much physical sense to take b different from order unity. Indeed, the whole idea here is that
we cannot probe length scales smaller than of order `; hence we cannot fix the location of
the opaque UV regions, i.e., the boxes, with precision greater than of order 2−l̂.

The sum over {li} is rapidly converging and dominated by the first, liµ = 0, term, i.e.,
the range of momenta from zero to the fundamental scale 2π/` (or 2l̂2π in dimensionless
units). For such ‘low’ momenta (i.e., low compared to 1/`) the vertex (3.19) becomes
indistinguishable from that of the local φN interaction. For momenta of order or larger
than 2l̂2π, the function σ̂(k) is very rapidly decreasing. By (A.23), (2.19), σ̂(0) = 1,
whereas σ̂(k) = 0 if any component kµ = 2l̂2πlµ with lµ 6= 0. Thus, as seen from (3.19),
the vertex kernel is in fact exactly zero if any of the momenta ki has components exactly
tuned to a 2π multiple of 1/`.

As already note above we must impose the requirement that the FT σ̂(k) of the scaling
field must be entire function in each of its arguments kµ. This ensures (perturbative)
unitarity provided the operator K in the quadratic part of the action is such as to give
ordinary particle propagators (no ghosts) [2, 3]. This requirement is automatically satisfied
for mother σ(x), υ(x) of compact support (e.g., Daubechies wavelets) by the Paley-Wiener
theorem.

It is important to note here that there are no momentum cutoffs present. Integration
is over all momenta up to infinity. The interactions though become soft at momenta at and
beyond the nonlocality scale 1/`. The rapid decay of the vertices (cf. (2.21) for Debauchies
wavelets) ensures UV finiteness for a wide variety of interactions.

As noted at the end of the previous section, using a tensor wavelet basis results in
loss of manifest SO(d) rotational invariance. This technical issue, present for d ≥ 4, will
not be further discussed here, since it does not arise in the more general wavelet-inspired
framework considered next in section 4.

4 A more general formulation

Abstracting from the construction of the model in the previous section 3, its essential
element is seen to be an orthogonal projection Pl̂ separating the coarser from the finer
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resolution parts of field space relative to a length scale `. Now, given such a Pl̂ , the
orthogonal compliment can be defined by

Ql̂ ≡ 1− Pl̂ . (4.1)

Then, Pl̂ being a projection, we have

Pl̂
2 = Pl̂ , hence Ql̂

2 = Ql̂ , Pl̂Ql̂ = Ql̂ Pl̂ = 0 . (4.2)

In the preceding sections we constructed Pl̂ from the scaling field of a MRA via (2.10) and,
correspondingly, Ql̂ via (2.11) from the associated wavelets of the MRA. We now consider
a generalization where a projection Pl̂ is constructed from functions σ(x) smearing over
scales `, but which do not necessarily constitute the scaling field of a complete MRA.

Let σ(x) be a function on Rd normalized so that

〈σ, σ〉 =
∫
ddx|σ(x)|2 = 1 . (4.3)

Let, furthermore, σ(x) = σ(|x|) so that manifest SO(d) invariance is ensured. The function
σ(x) is assumed to be well localized around the origin but need not be of compact support.
It may, for example, be a Gaussian or some other real analytic rapidly decaying function
of |x|. It is required that its FT σ̂(k) be an entire function of k ∈ Cd. In fact, one may
define σ(x) by specifying σ̂(k) so that this property is fulfilled; e.g.,

σ̂(k) = exp(−P (k2)) , (4.4)

where P (k2) is a polynomial with positive highest order term coefficient.
We again define (cf. (2.2):

σl̂n(x) ≡ 2d l̂/2σ
(
2l̂x− n

)
, n ∈ Zd . (4.5)

Given the set of independent functions σl̂n(x), we may construct an orthonormal set σ̃l̂n(x)
by orthogonalization, specifically, by symmetric (Löwdin) orthogonalization, which treats
all elements of the independent set on an equal footing.9 It, furthermore, has the prop-
erty of being, among all orthogonalizations, the closest (in the L2 sense) to the original
independent set.

Let Sn,n′ = 〈σl̂ n, σl̂ n′〉 be the overlap matrix. S is hermitian and, as easily shown,
a positive definite matrix. Note that, since each σl̂n(x) is well-localized around 2−l̂n, the
overlap between σl̂n and σl̂n′ becomes rapidly negligible with increasing |n − n′|, so that
only a few neighboring σl̂n′ contribute to any extent in the matrix elements of S. The set

σ̃l̂n(x) =
∑
n′∈Zd

σl̂n′S
−1/2
n′n (4.6)

9The perhaps more familiar Gram-Schmidt orthogonalization procedure is sequential and not suitable
here. The Lödin basis was first introduced in quantum chemistry, where it is widely used.
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then constitute the Löwdin orthonormal basis; as easily verified, the functions σ̃l̂n(x) satisfy
the orthogonality relations (cf. (2.5)):∫

ddx σ̃ l̂n(x)σ̃l̂k(x) = δnk . (4.7)

For the special case of σ(x) of compact support contained in the closed ball B1 ∈ Rd of
unit diameter centered at the origin, the functions (4.5) have support on the ball B` ∈ Rd

of diameter ` centered at x = 2−l̂n. The balls touch but do not overlap, and so we simply
have σl̂n = σ̃l̂n. We may in fact more generally replace the hypercubic lattice Zd by the
lattice Λd achieving closest packing of spheres in d dimensions. Thus Λ3 ∼= A3 ∼= D3 is
the fcc lattice, Λ4 = D4, etc.10 In any case, the formalism in this section accommodates
such different choices of Λd. The Fourier transform of such functions of compact support
are necessarily entire functions. A prototype example of such functions are the C∞ ‘bump’
functions:

σl̂n(x) =

N exp
[
− `2

`2 − 4|2l̂x− n|2

]
|x| ≤ |2−l̂(n± 1

2`)|

0 |x| ≥ |2−l̂(n± 1
2`)|

, (4.8)

where N such that (4.3) is satisfied.
One should note that the functions {σ̃l̂n(x)} defined here do not necessarily constitute

a set of scaling functions of a full MRA. Since, however, they satisfy the orthogonality
relations (4.7), they still define a projection operator in the same manner as (2.10), i.e.,

Pl̂ (x, y) =
∑
n

σ̃l̂n(x)σ̃ l̂n(y) (4.9)

so that the relations (4.2) are satisfied. The configuration space S of a general field φ is
thus decomposed in the orthogonal subspaces Vl̂ and Wl̂ :

ϕ = Pl̂ φ , χ = Ql̂ φ = (1− Pl̂ )φ . (4.10)

In particular, (4.10) implies that ϕ can be written as linear combination of σ̃l̂n, and thus,
ultimately, of the σl̂n. As just noted, the orthogonal compliment subspace Wl̂ is no longer
assumed to be necessarily spanned by an associated complete wavelet set.11

We now proceed to define field theories exactly as in sections 3. Thus, we introduce
interactions for the fields ϕ with action (3.3); include χ as free fields so as to rewrite the
theory in terms of φ; and, proceeding exactly as in section 3, end up with the same effective
Feynman rules. These consist of ordinary propagators and nonlocal vertices of type (3.19),
which, however, now arise from the insertion of (4.9) in terms of the functions σ̃l̂n. As
in the previous section then, interactions become smeared over distance scale ` and thus
insensitive to details at scales < `. With the symmetric orthogonalization σ̃l̂n given by (4.6)
a computation of a N -point vertex again yields (3.18) but now with vertex factor

V
(l̂)
N (k1, . . . , kN , l1, . . . , lN ) =

N∏
i=1

σ̂
(
2−l̂ki + 2πli

)
σ̂
(
2−l̂ki

) ∣∣t (2−l̂ki
) ∣∣2 . (4.11)

10Lattice optimal packings are known for all d up to d = 8, all by laminated lattices [19].
11It is, however, always possible to have a frame decomposition of Wl̂.
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In (4.11) t(k) is given by the trigonometric series

t(k) =
∑
j∈Zd

cje
ikj , (4.12)

where the coefficients
cj = S

−1/2
(n−j)n (4.13)

are in fact n-independent by virtue of the fact that all σl̂n(x) are obtained from the same
function σ(x) by translation and by the translation invariance of Zd. The series is rapidly
converging with c0 ∼ 1 and rapidly decreasing |cj 6=0| due to the small overlaps.

Though still wavelet-inspired, the procedure in this section does away with the need
of having the full machinery of a d-dimensional MRA. The advantage of this is that
manifest global SO(d) invariance can be incorporated at the outset. Furthermore, we
can, in particular, demand exponential fall-off of interaction vertices in momentum space
along the Euclidean direction. This is satisfied, e.g., by (4.4), (4.8). UV finiteness and
perturbative unitarity obtain exactly as before. The resulting Feynman rules are of the
type also encountered in string field theory.

5 Concluding discussion

In summary, a general scheme was developed for incorporating the physical requirement of
loss of resolution inside some fundamental length scale ` in a mathematically well-defined
and natural way. The formalism is based on the mathematics of wavelets, which allows sep-
aration of length scales in orthogonal decompositions. In section 3 decompositions within
a complete MRA were employed. The more general formulation of section 4, however,
relies only on the construction of a projection operator built from scaling fields that do not
necessarily constitute those of a full MRA.

This wavelet-inspired formalism can be applied within any field theory. It results in the
nonlocality of interactions implicit in any such loss of resolution within a scale `. This delo-
calization of interactions occurs over regions of extent of order `. These regions (Euclidean
spacetime ‘atoms’), though not assigned any particular structure, acquire an excitation
spectrum in units of 1/`. This is in fact a consequence of the underlying translation in-
variance of the theory. Interactions inside these regions fall rapidly along the Euclidean
directions controlling UV behavior. These features are dictated by the formalism in a
straightforward and natural way.

The resulting delocalization of interactions would generally be expected to lead to some
acausal effects. Such effects can be estimated to be (exponentially) small outside regions
of size of order `. We leave the detailed derivation and discussion of such estimates to a
separate treatment. We only remark here that, contrary to being unwelcome, such small
acausal effects might in fact result in novel interesting features of trans-Planckian physics.

There are some open issues. One is that, as discussed at the end of section 2, within a
complete MRA the use of a tensor basis built from 1-dim bases results in loss of manifest
SO(d) invariance. One possible way of dealing with this is the introduction of rotational
collective coordinates for the ‘atoms’ (‘boxes’), essentially summing over their orientation,
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which picks a frame. It would be much preferable to start with radial mother functions at
the outset, but one lacks such constructions for d ≥ 4. This appears to be a technical issue
that may be resolved in the future as briefly discussed in section 2. The wavelet-inspired
generalized formulation of section 4 evades the problem by going outside the framework of
a complete MRA.

Another issue is that of the asymptotic behavior of amplitudes in the external momenta
after their continuation to Minkowski signature. This is a general issue common to all
Feynman rules with nonlocal vertices, including those of string field theory. Vertices rapidly
decaying along the Euclidean direction may not do so along the Minkowski axis. This is of
course related to their being entire functions, which implies that the usual Wick rotation
(closing contours at infinity) is generally not possible, cf. [2, 3]. The simple Gausssian
exp(−k2) provides a standard example. One possibility is that such diverging large external
momenta behavior is canceled in physical amplitudes by adding the contribution of different
interaction vertices. This is what is expected in string field theory, where such Gaussian-
type vertices occur; but this apparently has so far not been explicitly verified even in
the simplest case of tree level 2-2 scattering, let alone to all orders. Alternatively, for a
general field theory, one may impose convergent large external momenta behavior along
both Euclidean and Minskowski directions as a requirement on the vertices (e.g., in the
specification of P (k2) in (4.4)). This may then be added to the list of physical requirements
restricting the possible interactions [4]. These matters are best discussed in the context of
the explicit construction of particular models.

Finally, field theories with local symmetries have not been considered in this paper.
The inclusion of gauge interactions requires an extension of the present formalism and will
be treated elsewhere.

A Multi-resolution analysis and wavelet decompositions

In this appendix we review some basics of wavelet decompositions starting in d = 1. The
standard theory is developed for L2(R) but it can be extended to other spaces, including
classes of distributions suitable for Euclidean path integral fields (cf. below). An orthogonal
wavelet decomposition is based on a multi-resolution analysis of L2(R).

A multi-resolution analysis (MRA) of a Hilbert space H consists of the following
elements:

(i) A sequence of nested subspaces

· · ·V−3 ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · (A.1)

with ⋃
j∈Z

Vj = H ,
⋂
j∈Z

Vj = {0} . (A.2)

(ii) The requirement
f(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj ; , (A.3)
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i.e., that the spaces Vj are scaled versions of one of the spaces, which is conventionally
taken to be V0.

(iii) V0 is required to be invariant under integer translations, i.e.,

f(x) ∈ V0 ⇒ f(x− n) ∈ V0 all n ∈ Z ; (A.4)

(iv) There exists an element s ∈ V0 such that the set

{s0,n | n ∈ Z} is an orthonormal basis in V0 . (A.5)

Here the notation
sjn(x) = 2j/2s(2jx− n) , j, n ∈ Z (A.6)

is used.

There are two important immediate implications. (A.4) together with (A.3) imply that

f(x) ∈ Vj ⇒ f(x− 2−jn) ∈ Vj , all n ∈ Z ; (A.7)

and (A.5) together with (A.3) imply that

{sj,n | n ∈ Z} is an orthonormal basis in Vj for all j ∈ Z . (A.8)

It is also worth noting that there may be many subspace ladders that satisfy (A.1)–(A.2)
but do not constitute a MRA without the additional crucial requirements (ii)–(iii).

For each j ∈ Z one now defines the space Wj to be the orthogonal compliment of Vj
in Vj+1:

Vj+1 = Vj ⊕Wj . (A.9)

Note that it follows that Wj ⊥ Wj′ for j 6= j′, since, if, e.g., j > j′, one has Wj′ ⊂ Vj and
Vj ⊥Wj . Furthermore, as it is easily seen, the spaces Wj inherit the scaling property (A.3)
of the Vj spaces, so that

f ∈W0 ⇐⇒ f(2jx) ∈Wj . (A.10)

Suppose now that there is an element w ∈ W0 such that the set {w0,n | n ∈ Z} is an
orthonormal basis for W0, where we defined

wjn(x) = 2j/2w(2jx− n) , j, n ∈ Z . (A.11)

(A.10) then ensures that {wjn |n ∈ Z} will be an orthonormal basis in Wj . The function
s(x) = s00(x) is called the scaling field and w(x) = w00 is the mother wavelet. Correspond-
ingly, we have the set of scaling fields sjn and wavelets wjn.

Iterating (A.9) starting from any j ∈ Z, (A.2) implies the orthogonal decomposition

H = Vj ⊕Wj ⊕Wj+1 ⊕Wj+2 ⊕ · · ·

= Vj
⊕
j′≥j

Wj′ . (A.12)
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Similarly, going the other way,

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1

=
⊕
j′<j

Wj′ . (A.13)

By (A.2) then we have
H =

⊕
j∈Z

Wj . (A.14)

Hence, by (A.14) and (A.2) the set {wjn |j, n ∈ Z} is an orthonormal basis for H. Corre-
sponding to these decompositions we have the orthogonality relations:∫

sjnsjm = δnm (A.15)∫
sjnwj′m = 0 , j′ = j + k , 0 ≤ k ∈ Z (A.16)∫

wjnwj′m = δjj′δnm (A.17)

Note that scaling functions sjn with different values of j are not orthonormal. Similarly,
wavelets wmn with m < j are not orthogonal to sjn and are not members of the basis
in (A.12).

By (A.12) we have the representation

f =
∑
n∈Z

< sjn, f > sjn +
∑
k,n∈Z
k≥j

< wkn, f > wkn (A.18)

for any f ∈ H. The decomposition (A.12) of H is an orthogonal decomposition in succes-
sively finer resolutions. In the resulting expansion (A.18) the basis in Vj allows represen-
tation of features of f down to scale 1/2j , the Wj basis represents features down to scale
1/2j+1 that cannot be represented at scale 1/2j , the Wj+1 basis represents features down
to scale 1/2j+2 that cannot be represented on the coarser 1/2j+1 scale, and so on.

By (A.13)–(A.14) this is equivalent to the alternative expansion

f =
∑
j,n∈Z

< wjn, f > wjn . (A.19)

It should be pointed out though that one must be rather careful in using (A.19) [6]. This
is because it makes sense only in L2(R) and apparent inconsistencies may arise in various
manipulations if, for example, one does not note that it does not converge in the L1(R)
sense. No such ‘paradoxes’ occur with (A.18), which holds in most reasonable spaces (cf.
below). In any event (A.19) is practically never used since the need for such decomposition
(to infinitely long scales) never arises in physical applications. (A.18) is indeed the sole
basis of all the discussion in the main text.
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The quantity
Pj(x, y) =

∑
n∈Z

sjn(x)sjn(y) (A.20)

is the orthogonal projection to the subspace Vj . Each subspaces Vj is in fact a self-
reproducing Hilbert space with Pj as the self-reproducing kernel. Similarly, the orthogonal
projection to Wj , the orthogonal compliment of Vj in Vj+1, is given by

Qj(x, y) =
∑
n∈Z

wjn(x)wjn(y) ; (A.21)

and each Wj is a self-reproducing Hilbert space with (A.21) as its self-reproducing kernel.
One then has

Pj +Qj = Pj+1 . (A.22)

These properties follow directly from the orthonormality relations (A.15)–(A.17) and (A.9),
(A.18).

To implement this framework one needs to construct the appropriate scaling field
and associated orthogonal mother wavelet satisfying all the above requirements. It is far
from obvious that such a MRA actually exists.12 The surprising explicit construction of
such orthonormal wavelet bases with good localization properties in the 1980’s led to the
subsequent explosive development of the subject and its wide range of applications.

If the mother scaling and wavelet defining a MRA are Cr(R) functions with bounded
derivatives up to order r and appropriate decay properties13 they satisfy several basic
properties. For the scaling field:14

ŝ(2πl) = δ0l , l ∈ Z (A.23)∑
n∈Z

s0n(x) =
∑
n∈Z

s(x− n) = 1 (A.24)∫
Pm(x, y)ykdy = xk , 0 ≤ k ≤ r , m ∈ Z . (A.25)

(A.24) shows that s(x) gives a partition of unity. For the mother wavelet:∫
dxxlw(x) = 0 , l = 0, 1, . . . , r . (A.26)

Note that this implies:
ŵ(l)(0) = 0 , l = 0, 1, . . . , r . (A.27)

An easy corollary of this, e.g., [6], is that w cannot be C∞ and have exponential or faster
decay. Thus compact wavelets necessarily have bounded regularity (finite r).

Equations (A.6) and (A.11) are special cases of the general expressions

sjn(x) = apjs(ajx− bn) , j, n ∈ Z (A.28)
12An exception is the Haar wavelet, the simplest example of a wavelet, which had been known since the

early 1900’s, though, of course, not formulated within the modern MRA framework.
13For compactly supported wavelets such decay properties are of course trivially satisfied.
14In (A.23)–(A.25) the constant c =

∫
s(x)dx is normalized to unity for brevity; c 6= 1 can of course be

trivially restored.
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and
wjn(x) = apjw(ajx− bn) , j, n ∈ Z (A.29)

with general dilation (scale) parameter a and translation parameter b > 0. In the above
the theory was outlined with the standard choices a = 2 and b = 1. The normalization
parameter p is irrelevant to the basic theory and usually conveniently chosen to preserve
a particular norm under changes of the scale factor; the common choice p = 1/2, which
we adopt here, preserves L2 norms. The choice of a for obtaining an orthonormal wavelet
bases, on the other hand, is restricted. One has to have rational a > 1. The standard
choice a = 2 is adopted also here, there being no reason to consider any other value. The
translation parameter is not thus restricted. If (A.6), (A.11), with scaling and wavelet
functions now renamed s̃, w̃, give an orthonormal basis, then so do (A.28), (A.29) with

s(x) = b−1/2s̃(x/b) , w(x) = b−1/2w̃(x/b) . (A.30)

The above theory for d = 1 can be extended to multi-dimensional wavelet decompo-
sitions. This can be done in three ways [5, 6]. The most immediate way is to take the
tensor basis of the 1-dimensional bases sjn, wj′n, j′ ≥ j. This results in d different di-
lation indices m. A better, and in fact the standard way is to take the tensor product
of 1-dimensional MRAs, which gives the tensor product basis (2.19) and (2.20) with one
dilation index m ∈ Z. The third and most general way is to define a MRA directly in
d-dimensions, i.e., without each space Vj being assumed to be a direct product of lower
dimensional spaces [5]. This then gives the general d-dimensional basis (2.2)–(2.4).

As already pointed out, wavelet basis decompositions hold in many other spaces than
L2 [5]. In particular the above theory gives unconditional bases for all Lp(R), (1 < p <

∞).15 The same holds for the Sobolev spaces W s(R). For application to Euclidean path
integral fields extension to classes of tempered distributions is appropriate. The space Sr
consists of all Cr(R) functions f of rapid decay, i.e.,

|f (k)| ≤ C(1 + |x|)−p , 0 ≤ k ≤ r , all p ∈ Z+ (A.31)

for some k, p -dependent constant C. Compact Cr scaling fields and wavelets are then in
Sr. The space of tempered distributions S ′r is defined as the dual space (space of continuous
linear functionals) to Sr. It can then be proved that with s ∈ Sr there exist a MRA whose
union is dense in S ′r. As a result (A.18) holds and converges to f in the sense of S ′r, i.e.,
in the distributional sense [20]. It is worth noticing that, in contrast, the expansion (A.19)
generally does not necessarily similarly converge to f [20].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

15As it is well-known, L1 does not admit unconditional bases; so wavelet expansions cannot of course
provide one, but still generally do better than Fourier series [5].
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