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1 Introduction

Thermodynamic properties of a single system at temperature T can be determined from
the knowledge of its thermal partition function Z(T ) = Tr e−H/T . For instance, the entropy
is given by the derivative of the free energy F (T ) ≡ −T logZ(T ),

S(T ) = −∂TF (T ) . (1.1)

However, if we are dealing with an ensemble of disordered systems, then knowledge of the
disordered average 〈Z(T )〉 is insufficient to determine 〈S(T )〉. Instead we need to know
the quenched free energy [1]

Fq(T ) ≡ −T 〈logZ(T )〉 . (1.2)

Typically, large groups of energy levels contribute collectively at high temperature and the
distinction between various members of the ensemble smears out. In this limit the annealed
free energy,

Fa(T ) ≡ −T log 〈Z(T )〉 , (1.3)

is a good approximation to Fq(T ). The distinction between the annealed and quenched
free energies is noticeable at low temperature.

This subtlety appears to have some relevance to gravitational physics [2]. Euclidean
wormhole contributions to the gravitational path integral have led to novel holographic
dualities in which gravity computes ensemble averages of boundary observables. In partic-
ular, a 2D model of gravity on negatively curved spacetime, known as Jackiw-Teitelboim
or JT gravity [3, 4], has been shown to be dual to the double-scaling limit of a unitary
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ensemble [5]. That is, the JT path integral with n boundaries of lengths T−1
1 , T−1

2 , · · · , T−1
n

is shown to give
PJT(T−1

1 , T−1
2 , · · · ) = 〈Z(T1)Z(T2) · · ·〉DS , (1.4)

where the expectation on the right is over an ensemble of random N×N Hermitian matrices

〈Z(T1)Z(T2) · · ·〉 =
∫

dH e−N TrV (H) Tr e−H/T1 Tr e−H/T2 · · · , (1.5)

and the subscript DS stands for the double-scaling limit. It corresponds to sending N →∞
while rescaling the parameters of V (H) in a particular fashion, and focusing one’s attention
to the edge of the spectrum (as will be discussed further in section 2). Several variants of
this duality have been proposed in [6].

At low temperature, when the boundary lengths grow, it becomes more favorable to
connect the boundaries via wormholes. This transition has been identified in [7–10]. As
expected for disordered systems, in this limit the non-factorization of 〈Z(T )n〉 becomes
significant and Fa(T ) and Fq(T ) deviate from one another. The recent work [2] made the
interesting observation that the annealed free energy in JT is so off at low temperature
that it predicts negative entropy. It would be interesting to find a prescription that directly
computes Fq on the gravity side — one that applies to any gravitational theory that can
be interpreted as a disordered average. See [2] for further comments.

Here we instead focus on the particular example of JT gravity and its cousins with
known ensemble duals to analyze the low-temperature behavior of Fq(T ) on the matrix
model side. Earlier works in this direction include [11–13]. What underlies our analysis is
the observation that, at sufficiently low temperature, Fq is dominated by the distribution of
the smallest eigenvalues of H [12]. In section 3, we see how this fixes the low-temperature
scaling of 〈S(T )〉 for the ensemble dual to JT, as well as all other ensembles considered in [6].

Matrix ensembles are known to have universal behaviors in the bulk and near the edge
of the collective eigenvalue density (for an overview see [14]). In the case of JT, the edge
region is controlled by the well-known Airy kernel of unitary ensembles (corresponding
to the Dyson index β = 2), and much is known about the distribution of the smallest
eigenvalue [15], as well as its distance to the next eigenvalue [16, 17]. Using these results,
in section 4, we calculate

FAiry
q (T ) = (1.77 · · · )× 2−1/3e−2S0/3 − 7π4

360e
2S0T 4 +O(T 6) , (1.6)

where e−2S0 is the genus counting parameter of JT. In section 5 we estimate the differ-
ence between the JT and Airy results, concluding that the relative corrections are doubly
exponentially suppressed in S0.

2 Review of JT gravity and its matrix dual

JT gravity is a simple dilaton-gravity model in two spacetime dimensions [3, 4]. Its bulk
action with an appropriately rescaled negative cosmological constant is

IJT = −1
2

∫
d2x
√
gφ(R+ 2)− S0

4π

∫
d2x
√
gR , (2.1)
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where R is the scalar curvature of the metric. The Einstein-Hilbert term (together with
the appropriate Gibbons-Hawking boundary term) is topological in 2D, equal to the Euler
characteristic of the manifold, and leads to a suppression of geometries with higher genus
and with more boundaries. Hence, the partition function with n boundaries can be formally
expanded as Zn =

∑
g≥0 e

(2−2g−n)S0Zg,n. In particular, the disk partition function is given
by [18, 19]

Z0,1(T ) = T 3/2e2π2T

√
2π

, (2.2)

which defines a genus-zero “density of states” via Z0,1(T ) =
∫∞

0 dEρ0(E)e−E/T ,

ρ0(E) ≡ 1
2π2 sinh(2π

√
2E) , E > 0 . (2.3)

The matrix model dual to JT gravity is uniquely fixed (at the perturbative level) by this
data [5]. Below, we will summarize some of its key properties (a review on matrix models
can be found in [20]).

The first hint for the duality comes from the fact that matrix integrals of the form (1.5)
also admit a genus expansion, in 1/N , upon using the double-line formalism [21, 22]. For
analytic potentials V (H) and observables such as Z(T ), which depend only on traces of
powers of H, the integrand is solely a function of the eigenvalues of H after diagonaliza-
tion. The Jacobian of the transformation H = U †diag(λ1, λ2, · · · )U is a Vandermonde
determinant, giving the following partition function for the matrix eigenvalues

Z =
∫
{dλi}

∏
i<j

(λi − λj)2∏
i

e−NV (λi) , −∞ < λi <∞ . (2.4)

As reviewed in [6], if the random Hamiltonians are invariant under a time-reversal T, then
depending on whether T2 = 1 or −1, we will have instead a Jacobian

∏
i<j |λi − λj |β with

β = 1 or 4. The variants of JT gravity considered in [6] cover all these choices of β (known
as Dyson ensembles [23]), as well as the seven Altland-Zirnbauer (AZ) ensembles [24], that
are defined on semi-infinite intervals, and have an additional parameter α ∈ {0, 1, 2, 3}

ZAZ =
∫
{dλi}

∏
i<j

|λi − λj |β
∏
i

λ
α−1

2
i e−NV (λi), λi > 0 . (2.5)

As we will see, the structure of the low-temperature expansion of the quenched free energy
is fixed in terms of β (and α), but our computation of the coefficients is restricted to the
Dyson ensemble with β = 2.

The Vandermonde determinant acts as a repulsive force among the eigenvalues. This
manifests itself in the expectation value of the eigenvalue density

ρtotal(λ) =
∑
i

δ(λ− λi) , (2.6)

where the superscript total means that this density times dλ gives the actual num-
ber of eigenvalues in that interval. For instance, in a Gaussian unitary ensemble with
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V (H) = 2
a2H

2, the leading perturbative answer for the expected value of ρtotal at large N ,
ρtotal

0 , is the famous Wigner semicircle〈
ρtotal(λ)

〉
= 2N
πa2

√
a2 − λ2 +O(N−1) , |λ| < a , (2.7)

which extends well beyond the width of the Gaussian factor a/
√
N in (2.4) because of the

eigenvalue repulsion. Other choices of V would lead to different genus-zero or “global”
densities, so one could take ρtotal

0 rather than V as the definition of the model. However,
unless the potential is fine-tuned, the behavior near the edge of the distribution is universal
in the N → ∞ limit. To focus on this region, one takes the double-scaling limit. In the
Gaussian example, we take

λ = a+ x , a,N →∞ with N

(2
a

)3/2
= 1 , (2.8)

to obtain the genus-zero density in the allowed region x < 0

ρtotal
0 (x) = 1

π

√
−x . (2.9)

(There is a reflection symmetry between the upper edge and the lower edge of (2.7). It
would be more physical to focus on the lower edge, i.e. on the low-energy spectrum, but to
comply with the math literature we focus on the upper edge and apply the reflection when
comparing with JT.)

The universality of (2.9) is a consequence of the fact that unless the relative scaling
of various terms in V are fine-tuned as N → ∞, the nontrivial features of ρ0 are sent
to infinity. Several exact results are known in this limit, using the method of orthogonal
polynomials and the resulting Airy kernel.

In the case of JT gravity, we see that its genus-zero total density eS0ρ0(E) ap-
proaches (2.9) if we identify

x = −21/3e2S0/3E , (2.10)
and take E � 1. Put differently, there is an “Airy limit” of JT gravity corresponding to
eS0 →∞ with x kept finite. The deviation between (2.3) and (2.9) at finite S0 results from
a carefully designed potential V when taking the double-scaling limit. The explicit form
of this potential is not needed. The knowledge of ρ0 (or the closely related spectral curve)
is enough to set up the matrix model genus expansion, and this was shown in [5] to match
the genus expansion of JT gravity.

3 Low-temperature free energy in matrix models

In terms of the joint probability distribution p(λ0, λ1, · · · ) of the matrix eigenvalues, which
we order λ0 < λ1 < · · · , the quenched free energy is given by

Fq(T ) = −T
∫
{dλi} p({λi}) log

∑
j≥0

e−λj/T


[10pt] = −T

∫
{dλi} p({λi})

−λ0
T

+ log

1 +
∑
j≥1

e−∆j0/T

 , (3.1)
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where ∆ij ≡ λi − λj . Suppose we lower the temperature well below the typical spacing
of eigenvalues near the edge of distribution. In JT gravity, this typical distance can be
inferred from (2.3),

ρtotal
0 (∆typ)∆typ ≈ 1⇒ ∆typ ≈ e−2S0/3 . (3.2)

Then the jth term inside the log in (3.1) is suppressed unless λ1, λ2, · · · , λj are all squeezed
closer than ∆typ to λ0. As a result, in Dyson ensembles with parameter β〈

e−∆j0/T
〉
∝
T→0

T j(1+β
2 (j+1)) , (3.3)

which can be verified as follows. First, changing the integration variables {λ1, · · · , λj} →
{∆10, · · · ,∆j0} gives

〈
e−∆j0/T

〉
=
∫ ∞
−∞

dλ0

 j∏
i=1

∫ ∞
∆i−1 0

d∆i0

 N−1∏
k=j+1

∫ ∞
λk−1

dλk

 e−∆j0/T p({λi}) , (3.4)

where ∆00 ≡ 0. Then rescaling ∆i0 → Txi gives j factors of T from the measure, while
(defining x0 ≡ 0) the Vandermonde determinant contains a factor

|∆mn|β = Tβ|xm − xn|β (3.5)

for each pair in {0, 1, · · · , j}. This gives βj(j + 1)/2 factors of T . Setting T = 0 elsewhere
results in a convergent integral. So the leading term as T → 0 is as written in (3.3).

In AZ ensembles with α = 0, there is an extra contribution since after the same change
of variables the λ0 integral becomes

∫ ∞
0

dλ0 λ
− 1

2
0

 j∏
i=1

(λ0 + Txi)−
1
2

× (finite at λ0 = 0). (3.6)

In the T → 0 limit, this diverges as T 1−(j+1)/2 when j > 1 and logarithmically when j = 1.
So the result for AZ ensembles with any α can be written as

〈
e−∆j0/T

〉
∝
T→0

T j(1+β
2 (j+1)) ×


Tmin(0,1+(j+1)(α−1)/2) j > 1

1 + δα0 log ∆typ
T j = 1 .

(3.7)

Using these estimates, we can write (3.1) at low temperature as

Fq(T ) = 〈λ0〉 − T
〈

log
(
1 + e−∆10/T

)〉
+


O(T 3(1+β)) Dyson & AZ with α 6= 0

O(T 3(1+β)− 1
2 ) AZ with α = 0.

(3.8)
The low-temperature scaling of the second term on the r.h.s. is the same as (3.3) or (3.7)
with j = 1, from which follows

〈S(T )〉 ∼
T→0

κT 1+β

[
× log ∆typ

T
in AZ with α = 0

]
(3.9)
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with κ > 0 an ensemble-dependent constant. This equation and eq. (3.8) generalize the
result of [12] to all Dyson and AZ ensembles.

We see that the quenched free energy is guaranteed to give a positive averaged entropy.
To explicitly calculate Fq(0) and κ, we need to know the distribution of the smallest eigen-
value p(λ0), and the distribution of the first gap pgap(∆10), or more precisely, the leading
coefficient in its expansion pgap(∆10) ∼

∆10→0
γ(∆10)β (accordingly, γ(∆10)β log(∆typ/∆10)

in AZ ensembles with α = 0). This last number γ is not known in a generic ensemble.
However, it is known exactly in the Airy limit, which applies at the edge of the spectrum
in the β = 2 Dyson ensembles (i.e. of the type (2.4)). Below we will first use these results
to compute FAiry

q (0) and κAiry, and then discuss how well they approximate JT gravity.

4 The Airy limit

Consider a unitary (β = 2) Dyson ensemble with genus-zero density given by (2.9). The
average density of eigenvalues in such an ensemble is given exactly by〈

ρtotal(x)
〉

= Ai′(x)2 − xAi(x)2 . (4.1)

In particular, there is a nonzero but small probability of finding eigenvalues beyond the
classical edge, i.e. x > 0. The distribution of the largest eigenvalue in this ensemble has
been found by Tracy and Widom [15] (a simple derivation can be found in [25]). The
probability that λmax < s is

F2(s) = exp
(
−
∫ ∞
s

(u− s)q2(u)du
)
, (4.2)

where q is the solution to the following Painlevé II equation

q′′(s) = 2q3(s) + s q(s) , with q(s) ∼
s→∞

Ai(s) . (4.3)

The PDF of λmax is given by

pTW(s) = F ′2(s) = R(s)F2(s) , R(s) ≡
∫ ∞
s

q2(u)du . (4.4)

Asymptotically [15, 26]

pTW(s) ∼


1

8πse
− 4

3 s
3/2
, s→∞

τ2
4 (−s)15/8es

3/12 , s→ −∞
, (4.5)

where τ2 = 21/24eζ
′(−1) (ζ is the Riemann zeta function). The right asymptotic, i.e. far

in the forbidden region, coincides with the asymptotic behavior of the Airy density (4.1).
This is because an eigenvalue found in the forbidden region is exponentially more likely
to be the largest eigenvalue than any other one. The left asymptotic s → −∞ is steeper,
which can be understood from the fact that O(|s|3/2) eigenvalues have to be significantly
displaced.
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The mean of pTW can be evaluated numerically, 〈λmax〉β=2 = −1.77 · · · . It determines
the intercept Fq(0), i.e the leading term in (3.8), in the Airy limit. In the orthogonal and
symplectic ensembles, β = 1, 4 respectively, the distribution of the largest (or smallest)
eigenvalue can be written in terms of pTW [27], and there we have 〈λmax〉β=1 = −1.21 · · · ,
〈λmax〉β=4 = −2.31 · · · . We comment on the Altland-Zirnbauer ensembles in section 5.

Calculating the subleading term in (3.8) requires knowledge of the distribution of the
gap between the smallest two eigenvalues (the largest two in terms of the variable x).
This distribution and importantly its asymptotic limits have been calculated by Perret
and Schehr [17] in the Airy case. Denoting this gap by r̃ > 0, combining equations (92)
and (93) of [17] yields

pPS(r̃) =
∫ ∞
−∞

pgap(r̃|s) pTW(s)ds , (4.6)

pgap(r̃|s) =
∫ ∞
s

f2(−r̃, u)du− 1
R(s)

(∫ ∞
s

f(−r̃, u)q(u)du
)2

, (4.7)

where f is the solution to

∂2
yf(x, y)− [y + 2q2(y)]f(x, y) = −xf(x, y), f(x, y) ∼

y→∞
Ai(y − x) . (4.8)

pgap(r̃|s) can be thought of as describing the distribution of the largest eigenvalue in a new
ensemble whose potential is related to the original potential by (see appendix A.2)

Ṽ (x) = V (x)− 1
N

log(s− x)2 , x < s . (4.9)

In the low-temperature limit, we are sensitive to the small r̃ behavior of the distribu-
tion (4.6). This is derived in [17] to be

pPS(r̃) = c2r̃
2 +O(r̃4) , (4.10)

where c2 = 1/2 and the coefficients of the higher order terms (only even powers appear)
may be found algorithmically. Using this result and taking into account the rescaling (2.10),
we find in the Airy limit

FAiry
q (T ) = −2−1/3e−2S0/3〈λmax〉TW − T

∫ ∞
0

dr̃ pPS(r̃) log
(
1 + e−r̃/T̃

)
+O(T 9)

= (1.77 · · · )× 2−1/3e−2S0/3 − 7π4

360e
2S0T 4 +O(T 6) , (4.11)

where in the first line we defined T̃ = 21/3e2S0/3T (the combination that remains fixed in the
Airy limit), and in the second line kept just the leading term in the small r̃ expansion (4.10).
In β = 1, 4 ensembles the first subleading term would be of order T 3 and T 6 respectively,
but we could not calculate the coefficients in these cases because the analog of eq. (4.10)
is not known there to our knowledge.

Before moving on to the comparison with JT, it is worth considering the asymptotics
of pgap(r̃|s). Expanding at small r̃ gives

pgap(r̃|s) = d2(s)r̃2 +O(r̃3) as r̃ → 0 . (4.12)
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We will find in the appendix that

d2(s) ∼


1

128πs3 e
− 4

3 s
3/2
, s→∞ ,

1
768s

6 , s→ −∞ .
(4.13)

We will also show how the WKB approximation in the potential (4.9) reproduces the
s→∞ behavior, and verify that unlike pPS(r̃) the conditional probability pgap(r̃|s) is not
an even function of r̃.

5 Discussion

We have seen that the low-temperature behavior of the free energy in matrix ensembles
is fixed in terms of β (and α) parameters. We expect the Airy result (4.11) to provide
an approximation for JT gravity at finite but large S0 since both are matrix models with
β = 2 and a similar density near the edge of the distribution. Below we will give a heuristic
estimate of the size of the corrections.

First consider the distribution of the smallest eigenvalue pJT(λ0). After the change
of variable (2.10), we expect this to agree well with pTW(s) near s = 0 but to deviate
significantly for |s| � s∗, with s∗ → ∞ as S0 → ∞. The thicker tail of pTW(s), i.e
s→∞ in (4.5), is expected to be more relevant for the estimate of the error. As discussed
below (4.5), this tail of the distribution coincides with

〈
ρtotal(x)

〉
, which can in turn be

evaluated using the WKB approximation. The WKB exponent is

log 〈ρWKB(s)〉 ≈ 2N
∫ s

0
y(x)dx , (5.1)

where y(x) is the spectral curve obtained by the analytic continuation of iπρ0(x) to positive
x (for a derivation see e.g. [5]). In the double-scaling limit, ρtotal

0 = Nρ0 is kept finite.
Noting that for JT gravity after the change of variable (2.10)

ρtotal
0 (x) = 1

π

√
−x+ 25/3π

3 e−2S0/3|x|3/2 + · · · , (5.2)

the first correction to the WKB exponent (5.1) becomes O(1) when1

s∗ = O(e4S0/15) . (5.3)

At this point 〈ρWKB(s)〉 and hence the Tracy-Widom distribution is suppressed by

pTW(s∗) = O(e−#e2S0/5) . (5.4)

We don’t know how pJT behaves far beyond this point. Assuming that it continues to decay
(under a reasonable nonperturbative completion of the model) the error in approximating
F JT
q (0) with FAiry

q (0) would be of the same order as (5.4).
As for the coefficient of the T 4 term in (4.11), difference between JT and the Airy limit

prediction can only result from the fact that the coefficient c2 in (4.10) is not exactly 1/2
1We thank Douglas Stanford for the argument leading to this estimate.
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in JT. As we saw, c2 can be obtained by integrating d2(s) against the distribution of the
largest eigenvalue, where d2(s) is the coefficient of the small gap expansion (4.12) of the
conditional probability distribution pgap(r̃|s). Since d2(s) in the Airy limit grows at most
like a power of s at large |s| while pTW(s) decays exponentially, we expect cJT

2 − 1
2 to be of

the same order as (5.4). Hence our prediction for the JT entropy is

〈S(T )〉JT = 7π4

90 e
2S0T 3

(
1 +O(e−#e2S0/5)

)
+O(T 5) as T → 0 . (5.5)

It is interesting to contrast the Airy limit approximation for the JT free energy and entropy,
which as we argued remain valid at arbitrarily small T , with its prediction for 〈Z(T )〉. In
the latter case the Airy approximation breaks down for exponentially small T < T∗. This
can be seen by first noting that in the small T limit

〈Z(T )〉 =
∫ ∞
−∞

dE 〈ρ(E)〉 e−E/T (5.6)

is dominated by the small probability of finding an eigenvalue in the forbidden
region. Approximating ρ(E) deep in the forbidden region by the Airy density
ρ(E) ∝ exp(−4

√
2

3 eS0 |E|3/2), we obtain the saddle point Ē ∝ −T−2e−2S0 . However, once
Ē ∼ −e−2S0/5 (which is equivalent to (5.3)) the JT corrections to the WKB exponent in
ρ(E) become important. This leads to T∗ = O(e−4S0/5). This breakdown can alternatively
be inferred from the rearrangement of the JT genus expansion as an expansion in powers
of T whose leading term is the Airy limit [8].

Finally, it is worth mentioning that there is an analog of the Airy limit for the Altland-
Zirnbauer ensembles, where the Airy kernel is replaced by the Bessel kernel [28]. There exist
analytic results for the distributions of the smallest eigenvalue [29] and the first gap [30]
(at least when β = 2) in this case as well. It would be interesting to use these results to
compute Fq(0) and 〈S(T )〉 for JT supergravities that are nonperturbatively well-defined.

Acknowledgments
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A Asymptotic behavior of the gap distribution

A.1 Perret-Schehr distribution

In order to obtain the small r̃ behavior of pgap(r̃|s) whose exact form is given in (4.7), we
use the expansion [17]

f(r̃, s) = f(0, s)− r̃f1(s) + r̃2f2(s) +O(r̃3) , (A.1)

where the first two coefficients are

f(0, s) = q(s), f1(s) = q′(s) + q(s)R(s) , (A.2)
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and q,R were defined in eqs. (4.3)–(4.4). It follows from the form of (4.7) that f2(s) is
not needed for the r̃2 term in pgap. After some partial integrations, the coefficient d2(s)
defined in (4.12) is given by

d2(s) = 1
R(s)

(1
3R

4(s)− q2(s)R2(s) +R(s)
∫ ∞
s

(q′2(u) + q4(u))du− 1
4(R2(s)− q2(s))2

)
.

(A.3)
Our interest is in the asymptotic behavior of d2(s). In the limit s� 1

q(s) = e−2s3/2/3

2
√
πs1/4

(
1 +O(s−3/2)

)
,

R(s) = e−4s3/2/3

8πs
(
1 +O(s−3/2)

)
,

(A.4)

from which we get

d2(s) ≈ 1
R(s)

[∫ ∞
s

q2(u)du
∫ ∞
s

q′2(u)du−
(∫ ∞

s
q(u)q′(u)du

)2
]

= e−4s3/2/3

128πs3

(
1 +O(s−3/2)

)
, s→∞ . (A.5)

Note that even though the power corrections in (A.4) are naively relevant, they cancel in
the leading term of d2(s).

In the opposite extreme, we can use the asymptotic behavior [15]

R(s) = 1
4s

2 +O(s−1) , (A.6)

and R′(s) = −q2(s) to conclude that

d2(s) = s6

768 +O(s3) , s→ −∞ . (A.7)

A.2 WKB approximation

Exponentiating the Vandermonde determinant, the effective action for the eigenvalues of
a unitary ensemble with potential V (H) is

I = N
∑
i

V (λi)−
∑
i<j

log(λi − λj)2 . (A.8)

Suppose the classical upper edge of this distribution is at a. If the largest eigenvalue is
fixed at λmax = a + s, the smaller eigenvalues can be thought of as eigenvalues of a new
ensemble with potential

Ṽ (λ) = V (λ)− 1
N

log(a+ s− λ)2 , −∞ < λ < a+ s , (A.9)

up to corrections that become irrelevant in the N →∞ limit. Therefore, finding pgap(r̃|s)
is equivalent to finding the distribution of the largest eigenvalue in this potential. While
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this is hard in general, far in the forbidden region, i.e. s � 1, we can approximate the
distribution of the largest eigenvalue by the collective density of eigenvalues at fixed s,
ρ(x|s). This is in turn calculable via a WKB approximation (see [5] for a derivation):

ρWKB(x|s) = 1
8πx exp

(
2N

∫ x

0
dx′y(x′)

)
, (A.10)

where y is the spectral curve, given in terms of the tree level resolvent R0,1(X)≡ 1
N

〈
1

X−H

〉(0)

by
y(x) = R0,1(X(x))− 1

2 Ṽ
′(X(x)), X(x) = a+ + x , (A.11)

and a+ is the upper edge of the classical spectrum in Ṽ .
We follow the standard procedure for finding R0,1 and the classical edges. First, the

saddle-point equation gives

R0,1(X + iε) +R0,1(X − iε) = Ṽ ′(X|s) . (A.12)

In a convex potential, one can use Cauchy’s theorem to derive the following expression for
R0,1 as an integral along a single cut between the two classical edges of the spectrum a±:

R0,1(X) =
∫ a+

a−

dλ
2πi

Ṽ ′(λ)
λ−X

√
σ(X)
σ(λ) (A.13)

where
σ(X) = (X − a+)(X − a−) . (A.14)

The endpoints are fixed by∫ a+

a−

dλ Ṽ ′(λ)√
σ(λ)

= 0 ,
∫ a+

a−

dλ
iπ

λ Ṽ ′(λ)√
σ(λ)

= −2 . (A.15)

Note that in order to regard R(X) as a complex function and apply the above manipula-
tions, it is necessary to map the upper limit of λ in (A.9) to∞, so that we have a potential
that is defined on the entire real axis. This can be done via the change of variable

X∗ = X −X0 log a+ s−X
X1

, (A.16)

for any positive X0 and X1. Since X0 is arbitrary, by taking it to be much smaller than
any relevant scale, we can work with the original variable X as long as we are computing
quantities that do not diverge as X → a+ s.

The Airy limit, with spectral curve
√
x, can be obtained by taking the original potential

to be a Gaussian, with a particular scaling of the width with N . With this choice

Ṽ ′(X) = 4
a2X + 2

N(λmax −X) , a = 2N2/3 . (A.17)

We are keeping s finite as N and a are sent to infinity. Keeping terms that remain finite
in this limit, we obtain from (A.15)

a− = −a , (A.18)
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and the relation
δ − 2√

δ
= s, δ ≡ a+ s− a+ . (A.19)

In the limit s� 1 (corresponding to λmax moving far in the forbidden region of the original
potential), a+ relaxes to a:

δ = s+ 2√
s

+O(s−2) , s� 1 . (A.20)

On the other hand, when s� −1 we have δ � 1, implying that the classical edge is pushed
close to λmax.

Next we calculate R0,1 for the specific potential (A.17) using (A.13). There are two
contributions, one from the original potential and the other from the repulsion of λmax.
They respectively are proportional to∫ a+

a−
dλ λ

(λ−X)
√

(λ− a−)(a+ − λ)
= π

(
1− X√

σ(X)

)
, (A.21)

and∫ a+

a−

dλ
(λ−X)(λ−λmax)

√
(λ−a−)(a+−λ)

= π

λmax−X

(
1√
σ(X)

− 1√
σ(λmax)

)
. (A.22)

They result in

R0,1(X) = 2
a2 (X −

√
σ(X)) + 1

N(λmax −X)

(
1−

√
σ(X)
σ(λmax)

)
. (A.23)

Substituting this solution in (A.11), and taking the double-scaling limit, gives

Ny(x) = −
√
x− 1

δ − x
+ 1
δ +
√
δx

, (A.24)

from which we obtain

ρWKB(x|s) = 1
8πx

(
1− x

δ

)2
exp

(
−4

3x
3/2 + 4

(√
x/δ − log(1 +

√
x/δ)

))
, (A.25)

where δ(s), the distance between λmax and a+ is determined from (A.19). As argued
above, when x → δ we are approaching λmax and the density of the N − 1 eigenvalues
with λmax fixed, ρ(x|s), is a good approximation to pgap(r̃|s), where r̃ = δ − x. The
WKB approximation to ρ(x|s) is good when s → ∞, as can be seen by noticing that
loop corrections to the resolvent lead to an expansion in inverse powers of x and δ in the
WKB exponent. It follows from (A.19) that neglecting those corrections is justified when
s � 1. Substituting (A.20) in (A.25), expanding to O(r̃3) and focusing on the leading
large-s behavior, we get

ρWKB(r̃|s) =
r̃→0

e−
4
3 s

3/2

128πs3 r̃
2
(
1 + 2s1/2r̃ +O(r̃2)

)
, (A.26)

which agrees with (A.5). It also shows that pgap(r̃|s) is not even in r̃.
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