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ABSTRACT: We study the renormalization of Entanglement Entropy in holographic CFTs
dual to Lovelock gravity. It is known that the holographic EE in Lovelock gravity is given
by the Jacobson-Myers (JM) functional. As usual, due to the divergent Weyl factor in the
Fefferman-Graham expansion of the boundary metric for Asymptotically AdS spaces, this
entropy functional is infinite. By considering the Kounterterm renormalization procedure,
which utilizes extrinsic boundary counterterms in order to renormalize the on-shell Lovelock
gravity action for AAdS spacetimes, we propose a new renormalization prescription for the
Jacobson-Myers functional. We then explicitly show the cancellation of divergences in
the EE up to next-to-leading order in the holographic radial coordinate, for the case of
spherical entangling surfaces. Using this new renormalization prescription, we directly find
the C—function candidates for odd and even dimensional CFTs dual to Lovelock gravity.
Our results illustrate the notable improvement that the Kounterterm method affords over
other approaches, as it is non-perturbative and does not require that the Lovelock theory
has limiting Einstein behavior.
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1 Introduction

Entanglement entropy has played an significant role in advancing our understanding of
holography. The Ryu-Takayanagi (RT) prescription [1] allows one to compute the entan-
glement entropy for a region A in a conformal field theory (CFT) dual to Einstein gravity
(and additional matter fields) in terms of the area A(X4) of a surface ¥ 4 of minimal area
in the bulk that is homologous to A

A(X4)

See(A) = e

(1.1)



known as the Holographic Entanglement Entropy (HEE) formula, where G is the gravita-
tional constant.

Higher curvature terms likewise enrich our understanding of holography. They appear
as quantum (or stringy) corrections to Einstein gravity [2, 3] and in general have holographic
duals that are not equivalent to those defind from Einstein gravity [4]. They have been
used to investigate interesting CFT physics [5-10] that in some cases is quite universal,
applicable to very general CFTs [11-20].

Higher-curvature terms generalize both boundary terms of the action functional [21-
24] and the Bekenstein- Hawking black hole entropy-area relation [25, 26] in terms of the
Wald formula [27, 28], and it is natural to expect they will modify the entanglement en-
tropy formula in (1.1). However employing the expected Wald functional fails [29] because
the extrinsic curvature(s) of the generalized bulk surface must be taken into account. This
was first carried out for quadratic gravity [30], and then a general formula was obtained for
theories whose actions have arbitrary contractions of the Riemann tensor [31-34]. However
this formula involved taking a weighted sum over trace anomaly charges whose evaluation,
beyond quadratic order, entails a theory-dependent splitting of the Riemann tensor com-
ponents that is somewhat complicated. This shortcoming was recently circumvented [35]
in terms of a general formula obtained in terms of implicit derivatives of a Euclidean higher
curvature action with respect to projections of the Riemann tensor and extrinsic curvature
tensors associated with the RT surface Y 4.

We obtain in this paper the renormalization of the HEE formula, suitable for any
Lovelock theory of gravity [36], which is

d+1
ren Cd \‘ 2 J
StEe(A) = Sy [Ea] + TR /Bd727 (1.2)
ox

where ¥ 4 is the codimension-2 surface that extremizes the Jacobson-Myers (JM) functional
Sy [2] [37], ¢q is a dimension-dependent constant and By is an extrinsic boundary coun-
terterm (both given below in egs. (3.2) and (3.3)) and |z] is the usual floor function. We
obtain this by making use of the Kounterterm renormalization procedure [38-40]. This
procedure has been successfully applied to computations for holographic CFTs dual to
Einstein-AdS gravity [41-44]. It was recently used to obtain an expression for the conserved
charges of solutions having k-fold degenerate vacua in Lovelock AdS gravity, making man-
ifest a link between the degeneracy of a given vacuum and the nonlinearity of the energy
formula [45, 46].

The prescription (1.2) exploits the replica formula, whose holographic implemen-
tation [47, 48] generalized the minimal area prescription (1.1) beyond the spherically-
symmetric case [49]. The entanglement entropy in the saddle-point approximation of
AdS/CFT is given by

Spp = — lim 0.1 [Méﬂ} : (1.3)

where Ig {M éiﬂ is the Euclidean on-shell action for the bulk, evaluated on a suitably

constructed (d 4+ 1) —dimensional conically singular orbifold M C(ﬁr)l (with angular deficit



given by 27 (1 — «v)). In the case of Einstein-AdS [31], M Cgi)l is the backreacted manifold

(1-a)
4G

geometry through the Nambu-Goto (NG) action. In the @ — 1 tensionless limit, the NG
action decouples from the ambient geometry and the extremal codimension-2 surface that

sourced by a codimension-2 cosmic brane with tension 7' = coupled to the ambient

represents the on-shell location of the brane becomes the usual RT surface.

The computation of HEE is therefore directly related to the evaluation of on-shell
gravity actions, such that the divergences in the former are entirely due to the divergences
in the latter. It then becomes evident that if one considers the renormalized on-shell action,
the entropies thus computed will be renormalized as well.

In the Kounterterm approach, renormalization of the on-shell Einstein-AdS action is
carried out by considering extrinsic boundary counterterms (Kounterterms) [38, 39]. The
usual asymptotic charges and thermodynamic behavior of asymptotically AdS (AAdS)
black-hole solutions are correctly recovered. Furthermore, the agreement of this extrinsic
counterterm renormalization procedure with the standard Holographic Renormalization
scheme [50] has been demonstrated for a large class of AAdS spaces [51]. The Kounterterm-
renormalized action has been evaluated on M C(li)l orbifolds [43], based on the work of
Fursaev, Patrushev and Solodukhin [30]. In doing so, via eq. (1.3), the renormalized HEE
was readily computed.

We are interested here in holographic CFTs that are dual to Lovelock gravity. In order
to compute the holographic EE in this case, we note that eq. (1.3) is independent of the par-
ticular type of dual gravity theory. This is because (1.3) assumes only that the AdS/CFT
correspondence holds, namely that the gravitational theory of choice is the correct dual of
the CFT under study. This, in turn, implies that the saddle-point approximation is valid,
such that the partition function of the CFT is given by the exponential of (minus) the
Euclidean on-shell gravity action of the dual bulk manifold. Then, one need only evaluate
Ig {M Cgi)l} for the corresponding gravity theory and (1.3) still applies. We thereby obtain
eq. (1.2) using logic similar to that in Einstein-AdS gravity, employing the renormaliza-
tion of the on-shell Lovelock gravity action developed in refs. [40, 52], and applying it to
conically singular manifolds [43].

We consider even and odd dimensional CFTs separately. For odd dimensional CFTs,
the renormalized HEE in eq. (1.2) can be rewritten in terms of the intrinsic AdS curvature
F of the minimal surface ¥4 (defined below in eq. (6.5)) and the Euler characteristic of ¥ 4.
For spherical entangling surfaces only the topological number contributes (as we will show
in section 7). In both odd and even dimensional CFTs, the HEE counterterm given by the
By term in eq. (1.2) is explicitly shown to cancel the leading order divergence coming
from the JM functional. It also cancels the next-to-leading order divergence in the case of
spherical entangling surfaces in conformally flat AdS boundaries. The renormalized EE ob-
tained here corresponds to the finite part for odd-dimensional CFTs and the logarithmically
divergent part for even-dimensional CFTs. In both cases these quantities are universal, as
they are related to the holographic C'—function candidate of the CFT, which for the odd-d
case is the a* charge [53] and for the even-d case is the type-A anomaly coefficient [31, 32].



Our paper is organized as follows. In section 2, we review the Lovelock-AdS gravity
theory, emphasizing the equation of motion (EOM) and its factorization in terms of the
different maximally-symmetric configurations for the vacua of the theory. In section 3 we
revisit the renormalized Lovelock-AdS action [40], and in the case of even-dimensional bulk
manifolds, we rewrite the action in terms of a polynomial P (F) in the AdS curvature with
respect to a chosen vacuum [54]. In section 4, we evaluate the renormalized Lovelock-AdS
action on the replica orbifold, in order to obtain the contribution of the co-dimension 2
extremal surface to the action, and from there, the renormalized HEE. We also review the
derivation of the Euler-Lagrange equation for the extremal surface of the JM functional,
which defines the co-dimension 2 surface whose JM entropy gives the HEE. We show how
to write this equation in a new factorized form. In section 5, we exhibit the explicit
cancellation of leading and next-to-leading order divergences in the renormalized HEE. In
section 6, we consider odd-dimensional holographic CFTs dual to Lovelock theory and we
decompose the HEE into a geometric part written as a polynomial on the AdS curvature
F of the intrinsic metric of the extremal surface 3, and a purely topological part that
depends on the Euler characteristic of 3. In section 7, we consider the example of ball-
shaped entangling regions in the CFT and we compute the renormalized HEE for both
odd-dimensional and even-dimensional CFTs, relating the resulting universal part to the
a* charge (or generalized F' quantity) and type-A anomaly coefficient respectively, both of
which are C—function candidates. In section 8, we summarize our results for the HEE and
relate them to the holographic properties of the CFT. We also give some general conclusions
based on our results and discuss possible future avenues of research.

2 Preliminaries: Lovelock gravity and factorized equations of motion

Lovelock gravity is the most general pure gravity action such that it has second order
differential equations for the dynamical variable, i.e., the metric [36]. The Lovelock action

is given by
) 3]
Iy, [Md—i-l] = m / dd+1£L‘ZC¥pL2p, (21)
Mgy p=0

where the Lovelock densities Lo, are defined by

1 _
L2p = 2—p\/—795Z1‘..Z222R“1“2V1,,2 e lep IMQPVQp_UOpa (22)
S is the generalized Kronecker-delta, and |z] is the integer floor of z. We note that
Einstein-AdS gravity is a particular case of the Lovelock action defined in eq. (2.1), for

which
d(d-1)

2

and a; = 0 for 4 > 1. The Lovelock theories we shall consider are higher-curvature correc-

ap = —2A = o] — 1, (23)

tions to Einstein-AdS gravity and therefore, unless otherwise stated, the values of oy and
o are always given as in eq. (2.3).



The Lovelock EOM is given by [36, 46]

2]

2

«a

v _ D VY1 V2p pugpe ... pHep—1H2p —

BY = EO: SO, R, o R vap_1vay =0, (2.4)
p=

and using the values of ap and «a; given in eq. (2.3), it can be rewritten as

1
R~ S (R—20)8% = HY, (2:5)
1£] O
Hﬁ = Z 21742:')1 55#1"'M22;;RM1M2V1V2 T Ru2p71#2p’/2p—1”2p ’ (2'6)
p=2

where H# is the Lanczos-Lovelock tensor.
As usual, by considering the maximally-symmetric (constant curvature) ansatz for the
Riemann curvature tensor in AdS, given by

RH1H2 — _igﬂlﬂz (2'7)

viv2 £2 vz o
eff

and inserting it into the EOM (2.4), we obtain a condition for Ze_f?

of. =2 (—1)P (d—2)lay, (1)°
A () e 5 >(d_<2p)!) (%) o, (2.8)

p=0

given in terms of the characteristic polynomial of the theory [46]. Thus, the roots of
A (f}?) = 0 give the possible effective AdS radii for the vacua of the Lovelock theory
characterized by the set of {a,} couplings.

It is easy to see that the roots obtained from eq. (2.8) may have algebraic multiplicity
higher than one, which in turn implies that the vacua of the corresponding Lovelock
theory are degenerate. By simple algebra considerations, the k—th degeneracy condition
is defined as

A _ L A i (—1)P" (d — 2)!pley, ( 1 )”"“ _o, (2.9)

k!, (ge_ﬁ?)k owar? k! (p— k)l (d —2p)! \
in agreement with ref. [46]. A theory is (k — 1) —degenerate if the largest algebraic
multiplicity of its vacua is k, which in turn means that all A@ for ¢ < k are zero. Note
that the normalization of the degeneracy conditions as considered in eq. (2.9) is such that
the value of A(M for Einstein-AdS gravity is equal to one.

As shown in appendix B, the EOM (2.4) can be rewritten in factorized form as

aN 1 1
Eg = 42N+1 65:}222% (R/huzl/ly? + gQH(l) 5511#22> v <RM2N—1M2NV2N_1V2N + EQH(N) (5522]1\\77_—11122]\1]\1)
€ €
=0, (2.10)



where N < {%J is the order (in powers of the Riemann curvature) of the Lovelock La-

grangian and {Eeﬁc(i)} are the effective AdS radii of the theory, given by the solutions of the
characteristic polynomial of eq. (2.8) [54]. When the theory has (k — 1) —degenerate vacua,
the term corresponding to the i—th degenerate vacuum is repeated k times in the product.

Having reviewed the equations of motion for Lovelock gravity theories, we proceed in
the next section with their renormalization. Especially in the case of even-dimensional
bulks, a useful rewriting of the renormalized action in terms of a polynomial on the AdS
curvature of the manifold is obtained, which is a generalization of the renormalized volume
formula proposed for Einstein-AdS [43].

3 Renormalized Lovelock-AdS action

We consider the renormalized Lovelock-AdS action, given by [40]

5]
Iien [Md+1] 16 G / ZO{pLQp 16 G / dd$Bd, (31)
My, P=0 OMatq

where the Ly, Lovelock densities are defined in eq. (2.2), and the coupling cq is defined by

d—l

op G _
d+1 Z % (fefr)(d—s_1 2p) for odd d
= : (3.2)
2 (d=1)! ap(—1) 2Jr d—2
d Qdfg[(Q_l)] ] Z L pd+1 2p)! (geff)( 2 for even d

Here, £.g is the effective AdS radius of the branch under consideration. Also, the boundary
Kounterterm is given by

S J1-+dd 1711 [ 1pioi 2 172 1% 1td—1td 2 1-td—1 7.1
—(d+1) fdt621 ldK 1(27?’2 3j2j3_t KJEKJ§>(§R jdfljd_t KJd 1Kd)
L for odd d
— J1] 1 121 2
Bu= V=R a8 (ﬂwmm—t KRKD 44 5;;5;g> ,
1>td—2td—1 2 7-td—2 7-td— Ly id—2 ¢td—1
<2R Jd—23d—1 —t K]d 2K.]d 1 5.7d 25jd 1)

for even d

(3.3)

where K7 ¢ is the extrinsic curvature of the foliation with respect to the radial coordinate p
and 7'\’,“22 j1j» 18 the Riemann curvature of the intrinsic metric h in the foliation [40, 52]. We
emphasize that feg in eq. (3.2) is the effective AdS radius of the vacuum (maximally sym-
metric) solution about which the action is renormalized. In other words, the renormalized
action evaluated in that vacuum is zero, and for solutions that are continuously connected
to that vacuum (by the value of the corresponding black hole charges) it measures the free
energy with respect to said vacuum. The action defined in eq. (3.1) has a finite value as
well as a well-defined variational principle for a large class of solutions including black holes

with rotation and electromagnetic charges [40].



3.1 The P (F) formulation for even-dimensional AAdS manifolds

The renormalized volume of an even-dimensional A AdS-Einstein manifold can be defined
as a polynomial in totally antisymmetric contractions of the tensor [43]
1

fllltlllgz — R#1M2V1V2 + ﬁ6511122' (3‘4)
It can be checked that this definition matches the standard definition of renormalized
volume in D = 4 (for generic Poincaré-Einstein manifolds) and 6 (only for asymptotically
conformally flat manifolds) as found in the mathematical literature [55-59]. In this section,
we find the analogous P (F) polynomial corresponding to the Kounterterm-renormalized

bulk Lovelock action in even-dimensional AAdS manifolds.
The Euler theorem states that for odd d

B~ [ dtaa= am (T2 ), (3.5)
M oM

where Eg.1 is the Euler density of the (d + 1) —dimensional bulk, By is the boundary
Chern form defined in eq. (3.3) and x (M) is the Euler characteristic of the bulk manifold.
In this case we can rewrite the renormalized Lovelock-AdS action (3.1) as

d—1
T 1 T
ILen [M] = 167TG/ ZapLZD + CdEd+1 + Tax (M) ) (36)
M \p=0
where i+l
Cd d+1 +
= — 4m) 2 I, .
= - ot am) 5 (457 (3.7)
Upon defining the following quantities as
Qag1 = Cd, Lit1 = Eay, (3.8)
we have that
d+1
1 2
I (M] = —— / > apLop + Tax (M) (3.9)
167TGM =0

One may rewrite the latter expression using eq. (3.4) such that

I =167G (I77" [M] — mqx (M)) (3.10)
d+1
d+1 & Qp cv1-vgp H1 42 1 K12 H2p—1/2p L ooy
= [d"x —92276u1---u2p ‘Fuluz - E(sml/z e Vap—1V2p E(;V?P*IVZP
M p=0 e e
4 P—J
2 (=P pl(d+1-2j)la o o
- /ddﬂ:C _QZZ P . 2(;:—]’) 5#11“.“22?]_—#1%2 o l/f;j_fﬁ] ’
I p=0j=0273"(p — 7)1 (d + 1 — 2p)ls

upon using the delta identities given in appendix A.



We now proceed to show that the coefficients of the F* and F! terms are zero. The
coefficient of the F° term is given by

i P
Z Pd+Dlay (1
d F1-2p) \ 2

m%
Ho

d—1

2 (=P d+ Dy (1 [ &S (=DP(d+ Dy, [ 2p 1"
(d+1—2p)! <£2ff> N pZ (d+1—2p)! <d+1) <e2ff>

0

I
9

Y

gl( 1P dloy, (1 '
< (d—2p)! \ 2

(d—1)A(5gﬁ2) =0, (3.11)

I I
L M

using egs. (3.2) and (3.8). The last line follows from the definition of (any one of) the
effective AdS radii given by the characteristic polynomial A (E;HQ) = 0 of the Lovelock

theory as defined in eq. (2.8), noting that {%J = [d%lJ for odd d. Turning to the coefficient

of the F! term, we have
1P~ ( - 1)'%

(-

2(d

( —Dloy (=D (=)" p(d- 1)!%)
2(d+1—2p)2F Y 2(d+1—2p)2P Y

M\+

Ccl1 =
p
d

I
=

I
OﬁM\

(3.12)

considering again eqs. (3.2) and (3.8) and noting that (—1)% = —1.

Thus to lowest order in the AdS curvature, the integrand P (F) in eq. (3.10) is of
quadratic and higher order in F, which (as discussed in appendix B) also implies that
the Noether prepotential is proportional to F at the normalizable order (assuming a non-
degenerate theory). We then have that

1
I (M) = —— / A2/ =GP gs1) oy (F) + 7ax (M), (3.13)
M

for the Kounterterm-renormalized Lovelock-AdS action for odd d, where

d+1

PIpl(d4+1—=2)ap o
Py 1) P shytie pupe ]:/‘23 1:“2J7
entent 7 }22]222]] (p D(d+1—2ppezp) T e
(3.14)

and with 74 given in terms of the Euler characteristic of the bulk manifold Mgy, from (3.7).
We note that sometimes it is more convenient to write

a1
sUTY2 H25—1 125
P(d+1 {Ocp} ZCJ M1 szg]:mm ‘FVQjJ—lVQjJ7 (3'15)

vz



in order to immediately identify the coefficient ¢; of the F/ term as

d+1

o 22: (—1)P 7 pl(d+1 = 25)lay,

a5 2031 (p— A+ 1 —2p) 2P

(3.16)

In the Einstein-AdS case, where ag and o are given in (2.3), with a,~1 = 0, the expres-
sion (3.15) matches that obtained previously for the definition of renormalized volume [43].
We show in appendix C that

k
Ck+1 = Zp(kJrl,i)A(l) ) (3.17)
i=1

for some coefficients p(;11 ;) (given in eq. (C.8)), in agreement with the previous results for
Lovelock gravity with k-fold degenerate vacua [45]. We can explicitly write the first three

factors as
ls W
27 2%0(d - 2) (a),
P Lo NG T (3.18)
253! (d — 2) (d — 4) (d—3) 0% ’
lo 4 24
— A A2 A® |
T A (d—2)(d—4) ([d—0) < a3 Ta-3 a5,
Also, the generic factor is given by
(1) 2 1) 4 2)
= — e A A 1
G T (d—2) (d—4)- - (d 12— 20) CED (3:.19)
24 2(=1)41 ,
+ ABG) L AG=D |
(d—3)(d—5) Ly 2 (A= 3) (d—5) - (d + 3 — 2i)
Taking advantage of eq. (3.17) we can write
Grj-1
Pastyfopy (F) = 20 (payAD) G Flisge - FLISY (3:20)
j=2i=1

thereby relating P (F) to the degeneracy conditions (2.9).

For a k-fold degenerate vacuum, all the degeneracy conditions up to (and including)
A®) are zero as seen from their definition in eq. (2.9). Thus, the lowest order in F of
the P (F) that encodes the renormalized action of a k-degenerate theory (normalized with
respect to the k-degenerate vacuum) is F**2. Furthermore the Plas1),{ap} (F) can always
be written as

d+1
2
_ VI Vak43 pipe | TH2k+3H2k+4 SVLV2) g pH2i-102;
P(d—i-l),{ap} (F) = Ck+25ul"'uzk+4}—u1u2 Vok4sVoksa T Z CJ(SM'-'MQJ'}—VWQ Voj—1V25 »
j=k+3
(3.21)



where
Chy2 = P(prappny AT (3.22)
is proportional to the A**1) degeneracy condition and D(k+2,k+1) 18 given by

(1) (d— 1 2)!
p(k}+2,k‘+1) - 2k+2 (k + 1) (d _ 2)| 9

(3.23)

in a k-degenerate theory.

Thus, the rewriting of the coefficients in terms of the degeneracy conditions indicates
that the Noether prepotential of a k-degenerate theory is of order F**1 at the normalizable
order, in accordance to ref. [45]. For more information, see appendix D.

In the next section, we consider the Kounterterm-renormalized Lovelock-AdS action
discussed here, together with the Lewkowycz-Maldacena (LM) procedure [47], in order to
compute the renormalized HEE by evaluating the action on the replica orbifold.

4 Renormalized Lovelock-AdS action on the replica orbifold and HEE

Our next task is to evaluate the renormalized (Euclidean) Lovelock-AdS action on the
conically-singular orbifold M (gi)l. The Lovelock densities evaluated on the replica orbifold
decompose into the sum of the regular bulk part and a co-dimension 2 Lovelock density
localized at the extremal surface ¥ which corresponds to the fixed-point set of the replica
symmetry [30, 44, 60]. In particular

/ d™eVGLYY) = / A zVGLY) + dmp (1 / Ay ALy, (4.1)

(o) M,
]\4{1_~_1 d+1

where Lo, o is an intrinsic Lovelock density evaluated on the co-dimension 2 surface ¥
with induced metric . Therefore, the bulk part of the Lovelock action, when evaluated on
the orbifold, decomposes as

Ibulk [ MO(H)J

Zap / A VGLY) + (1 - a) Syn 5],
p=0 Mgy
14]
Sy [E 4Gzapp/dd yv/TLapz (4.2)

16G

where Sy [X] is precisely the Jacobson-Myers (JM) functional [29, 61]. Thus, in analogy

with the Einstein-AdS case, the action on the orbifold is interpreted as the bulk contribution

(1-a)
Tt

the JM functional, which has the form of a co-dimension 2 Lovelock Lagrangian evaluated

plus the action of a brane with tension T' = but coupled to the bulk geometry through

on the intrinsic metric of the brane.

To evaluate the boundary Kounterterm on the orbifold, we consider the self-replicating
property of the By (defined in eq. (3.3)), for both the odd and even d cases [44]. In

~10 -



particular, one writes

r d+1 _
/ d?eBY = / d®zBY) + 4x {;J 1-a) / A2y By_,. (4.3)
o, o, ”

Then, the evaluation of the counterterm results in

4!
16 G / dd B(T) + T (1 — Oé) /dd_Qde,Q, (44)

(@) 10>
oM,

12 3] =

where the coupling ¢4 is given in eq. (3.2). Combining eqs. (4.2) and (4.4), we have

E

e {M(a)}:il / A aVGLY) + e / d’zB{"

d+1 167G 0
= Md+1 8M(§j»)1
¢y {d+1J
_ Lz J d—2y
+(1-a) [ Sou 2]+ 2= [dB. s ) (4.5)
%

what is the renormalized Lovelock-AdS action evaluated on the replica orbifold.

From this expression, we compute the renormalized HEE using the replica formula
of the LM prescription, given in eq. (1.3). Starting from the action on M c(li)h given by
eq. (4.5), we obtain

st = - oudge” M) | = o [9] + VH

/ d2yBy = S (S], (4.6)
what defines the renormalized JM functional. Note that Sy [YX] is the JM functional
evaluated on the extremal surface X that minimizes it. We then have that the renormalized
HEE, which directly corresponds to its universal part, is given by the renormalized JM
functional.

The extremal surface minimizing this new functional is not affected by the countert-
erms, since it’s only a boundary term that does not affect the dynamics. In the tensionless
limit (o« — 1), there is no back-reaction of the extremal surface on the bulk geometry, as
seen by the fact that the contribution to the action from the surface (given by the JM
functional in eq. (4.5)) vanishes. Thus, the extremal surface is found by finding determined
by the global minimum of Sy by itself. The resulting Euler-Lagrange equations, given in
ref. [62], obtain the form below

2],

+1
EJM — 2&% Z Q(p+1) (p )65(511 gz;;Ralag

5 02p—102 _
0 op+1 BBz R p52p7152p =0, (4'7)
p:

where ICg is the extrinsic curvature of the surface with respect to the normal direction that

is not along the time coordinate, and Rore 8.8y 18 the intrinsic Riemann curvature of the
surface.
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The form of the EOM in eq. (4.7) is very similar to that in eq. (2.4) for Lovelock
gravity, but with a very important difference. The co-dimension 2 Lanczos-Lovelock tensor
is contracted with the extrinsic curvature of the minimal surface, which comes from the
variation of the induced metric. Following the same factorization procedure discussed in
appendix B, the eq. (4.7) can be rewritten as

aNN ap1-Bon o (5 5
Eyn = K:g oN—-1 50‘0‘11“'0‘22]1\]\7—22 (Ra1a251ﬁ2 + )‘(1)6311522) (Ra3a453ﬁ4 + )‘(2)63;543)
) (7/?\/052N73042N72

BaN—3B2N—2 BaN-3B2N—2

+ A1) 0N 252 =0, (4.8)

where N < {%J and A(;) are the roots of the polynomial

def Nz: (=17 (d - 2)lapy (p+1) AP = 0. (4.9)

(d—2p—2)!

Note that the ;) solutions are different from the roots of A (Egé), which define the vacua
of the gravity theory.

Finally, it is easy to check that for a ball-shaped entangling region in a pure AdS bulk
(dual to the ground state of a CFT in Minkowski spacetime), the extremal surface of the
JM functional is the same as the RT minimal surface (i.e., a spherical hemisphere). We
show this in detail in appendix E.

Having obtained the renormalized HEE functional for Lovelock-AdS gravity, we pro-
ceed in the next section to show the explicit cancellation of leading order and next-to-
leading order divergencies of said renormalized HEE.

5 Renormalized HEE divergence cancellation in Lovelock-AdS

In what follows, we check the cancellation of divergences in the renormalized HEE S%p

given in eq. (4.6), for both even and odd dimensional manifolds, up to the next-to-leading
order in the holographic radial coordinate p. The S%p consists of the sum of the JM
functional (4.2) and the co-dimension 2 Kounterterm, both evaluated on the extremal
surface ¥. The induced metric 7,4 of this extremal surface > has an FG-like expansion

ds3 = Yapdydy® = N* (p) dp? + Fapdy" dy”, (5.1)
02 p£2ﬁia/€ib Tab
]\f2 = — 1+7a b+ s ~a:7aa
Oap = o0 + p0(2) + ... o¥ = 28 p— L/{Z%i
a ab ab ’ ab a (d _ 2) c "aby

where k!, is the extrinsic curvature of the boundary of the extremal surface 9% along the
i direction (normal to the radial coordinate p) and 74 is the induced metric on 9% [44,
63, 64]. Furthermore, 7,, has an FG-like expansion whose leading and next-to-leading
order coefficients are given by ¢(® and (2, where ¢ depends on the Schouten tensor
S,y of the CFT metric gi(;-)) evaluated with the indices on 9X. Note that the Greek letters

- 12 —



denote directions along the world-volume of 3, whereas the lower case Latin letters denote
directions along 0%.

Decomposing the Riemann curvature tensor along and orthogonal to the holographic
radial foliation, we obtain

S5 pa 1 a ar.c

R’ pb — Napkb - kckba

~ 2 ~

R’apbc - Nv[bk ] Rabcp = ZNV[aka}7

ﬁabcd = Rabcd - th[:akz]7 (52)

using the Gauss-Codazzi relations [65], where kj is the extrinsic curvature of 9% along the
radial direction d,, and V, is the covariant derivative with respect to 74,. In order to avoid
confusion, we denote the Riemann tensor of v,5 with a hat (Ro‘lo‘z 5 52), and that of g

without a hat (Ra1a2 blbz)' Finally, the FG-like expansion of the co-dimension 3 curvatures
(Riemannian curvature and extrinsic curvature along d,) at the boundary 0% is given by

- k= (k“”):—+;n(k@))2—%..w

id
OV _ Lo (p@) — _ L |( @), Lenrera
(k )b feﬂéb’ (k )b Eeff ( ) + (d 2) 5b ’ (53)
where we note that the (0)-quantities are computed with respect to the intrinsic metric 0((12)
on the entangling surface in the CFT [44]. Although the FG-like expansions in egs. (5.1)
and (5.3) were used in ref. [44], they are also valid for Lovelock-AdS.

ala aia a1a2
R ! 2l)1b2 = pR ! 2b1b2 [U] =p (R(O)>

We now define
AGSEE = 1jm + Ik,
| 2]
d—1 d+1 d—2
Iy = [d™ 'Yy Y oy (p+ 1) Ly, Ixkr=cq 2| s d“ "yBg-2,
p=0

B1--p Saop_1o
L2p 50{1 QQQZ;RalazﬂLB2 . R 2t 2p,82p—162p’ (54)

with cg4 given in eq. (3.2), and proceed with the computation of Iy and Ixp.

In order to isolate the divergences coming from the bulk term at X, we first expand
the Iy of eq. (5.4) in the radial foliation. Using the antisymmetry of the generalized
Kronecker delta, Iys can be expanded as

L= ﬂ“+ﬁ%+é%,

I(” /dd YT Z (p+Dpopi1) PR IR,J;,I Rbabs b2tz

op— T o9p—2 b1 bop_1 al azag agp_2a2p_1"

=]

(2) d—1 (p+1)(p 1)Pa(p+1) ay...azp_1.75pb Sbab Sbab bop_2bap_1
/d Y E : p—2 551 b2pp 1 R a2R ’ SpasR ! 5a4a5mR ! ; azp_nazp_1’
L¥J (p+1)a(p1) bop_1b
3 d—1 z : +1) ¢ay...a b1b Sbop—
I‘g]\l[:/d yﬁ 2p = 6b11 b;:R ! 2a1a2'”R et 2pa2p_1a2p7 (5'5)
b)) —
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where we have separated the indices of all the possible terms into those corresponding to
coordinates along the worldvolume of 9% (denoted by the Latin lowercase letters a, b) and
the radial coordinate p. Each of these terms can be simplified using egs. (5.1)—(5.3); as
shown in appendix F, the result is

d
N 1) (d —1)!
Iy = /d‘“ Z e D@ Doy (5.6)

521“ (d—1—2p)!
>, (a, (b
X <1 — m |?(d— 3) (tT‘ [0'(2)} + %) +‘€gﬂ‘R[ ]‘|> + h.o..

Employing the FG-like expansion

—~I|S

Vo (D)a, ()b
Lofr (2) Capra " Ky 2
— 1+ o\?| + +0 ; 5.7
Vi=" ( 2([ [+ =l (v?) (5.7)
of \/7 and decomposing the volume element on ¥ into its radial and transverse components,
we obtain
d-20/o@ L2 (“1)P 1) (d—1)!
IJM—C1+/d ylvo (-1 (p+1) (d— Do)
d—2 2
& (d—2)ez o0 (d—1—2p)lk
€ @, d=3)(d—4p) +2] [ (9
X[H(dl><d4)<pm * 2 tr|o®]
d—1_2p d—3 DNa ,.(2)b
[ Q(d_;) U0 kY )} TR (5.8)

after performing the radial integration up to the cutoff scale p = €. In this expression, Cy
is the constant part, which for odd d is universal but for even d depends on the choice of
the cutoff e.

Consider next the Kounterterm contribution Ixp in eq. (5.4). We show in appendix F
that

da—3
(d—2)eT = (d—1—2p)e

_ e ©) 4 = (2) efft  (i)a, (1)b
><<1 el2(d_4)73 +2tr(a )+2(d—2)/€a Ky

>+-~, (5.9)

in both even and odd d.
Finally we compute S} using the expressions for I, and I in egs. (5.8) and (5.9).
It is evident that the leading O ( ) divergences from [ ;s and Ixr cancel each other
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in full generality. After some algebra, we obtain

gren Ijv + Ikt

o (T Er e+ 1) @-200m

St Sait + - 5.10
4G pzo (d—2— o)1 i (5.10)
where

1 A 2ylegV o © (1 (d—3)C¢ e ()

Suifr = — / (22RO 4 (@ = 3)tr [0@] 4 LC 2 et i, )
4G (d—2)(d—4)e5 \2" (@=3)r [o] 2(d—2) ’
ox

(5.11)

which can be rewritten as

1 d?=243.\/50) ab e oy kD Da
Sais = 75 / % Peif = lagag (W) - (4} p@d _Bd e ) (519)
(o))

—2)(d—4)e z
b
where (W(0)>a is the Weyl tensor computed from the metric agz) [44]. Sgig vanishes for
C
AAdS manifolds with conformally flat boundaries and for ball-shaped entangling regions,
thus explicitly verifying the cancellation of divergences up to next-to-leading order in this
case.

6 Topological reinterpretation of HEE in odd-dimensional CFTs

Having obtained the renormalized HEE for CFTs dual to Lovelock-AdS gravity in arbitrary
dimension, we now focus on the odd-d case. In this case, we present a reinterpretation of
the S in terms of the sum of a topological term, proportional to the Euler characteristic
of 3, and a piece that is given by a polynomial of the AdS curvature of 3, analogous to
the bulk P (F) in eq. (3.15).

We start by considering Sip and Sy [X] as given in egs. (4.6) and (4.2),respectively.
Using the Euler theorem (3.5), we have

[ [a2y By = a0 (L7 (). (6.1)
>

ox

relating the Euler density F;_1 of the extremal surface ¥ and the Chern form By s at its
boundary. The topological number 7; is defined as

1 (d+1) a1 (d—1Y,
Td——E 5 Cd(47T) 2 ( 5 )., (6.2)
yielding
d—1
2
def. ren ~

594G (SR~ 7x (2) = [ g 0+ D) Iy 1] (6.3)

5 p=0
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upon exchanging By_o in favor of E4_1 in eq. (4.6), and where we have renamed

L d+3
pa 1)y = 7°? _
Qa1 =Cq = o z:: pJ(r 1 z 2p)! (o) TT172P) Lo1[Y]=FEq1. (6.4)

2

Recalling the eq. (5.4) and noting that
~ 1
(o5 e% QL] O (o5 §e%
R™ 2/31/32 }—511622 675/311/322’ (6.5)
relates the Riemann tensor R®12 5,5, t0 the AdS curvature Fg'g® on ¥, we can write

/dd_lyﬁp(d—l)(F>

by

d—1
2
] ) (PH)
- / e s 008 ) Fll - oty
p=0 eff

/dd 1nyZ PHA1=2) (=) (pr1)a Hpt) gor-o2 phfa.. pha-1fa
m0i=0  J'(p—4)129(d—1—2p)1t ] 2(p—j) 1By T anog T 025102,

_/dd ly\fzcj Oél gzijfaﬁigg ]:555 1152;’ (66)

where the simplification proceeds in a manner analogous to that of the bulk P (F) in
section 3.1, and where

—1-25)!(— 1)p_j (p+1) ap)
= - )1 (d— 1 - 2p) ey

M

(6.7)

is the coefficient of the 77 term.
Note that the co-dimension 2 ¢; coefficients of S can be directly related to the bulk
coeflicients c; of the bulk P (F) given in eq. (3.16). In particular, we have

—2(j+ 1) i, (6.8)

and therefore

d

Jd* APy (F / a*- 1y\FZ2 J Vel G PR Pl (69)
since ¢y = 2¢; = 0, as shown in (3.12). Hence we finally obtain
SER = 1 / Ay APy (F) +Fax (5) (6.10)

for the renormalized HEE.
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The reinterpretation of S%7 given in eq. (6.10) extends the results previously obtained

for Einstein-AdS, in refs. [41, 42], to the entire Lovelock class. Namely, the rewriting of the
universal part of the HEE in terms of a topological invariant and a curvature-dependent
term is a general feature.

Also, the co-dimension 2 P (F) obtained in eq. (6.9) has some noteworthy properties.
For instance, comparing this object with the corresponding one coming from the bulk as
given in eq. (3.14), we notice that P (F) has the expected self-replicating property when
going to co-dimension 2, in analogy with the Einstein-AdS case [43]. However, one not
only has to replace d by (d —2) but also oy, by (p+ 1) apt1, which comes from the fact
that the JM functional has the form of a derivarive with respect to the Riemann curvature
of the Lovelock Lagrangian, but evaluated intrinsically on the extremal surface.

For the degenerate cases it is trivial to relate the ¢; to the degeneracy conditions using
eq. (6.8). In particular, from egs. (C.1) and (C.2) in appendix C, we have

s

G=te=mry 2)A<1> (67)
2, 1 2
Gy =6c3 = — A®) 4 el A() 6.11
2= (d—2)(d 4)23 ((d 5= Ty ’ (6.11)
and in the general case
j .
=20+ ej1 =20+ 1) pyrr AY, (6.12)
i=1

from eq. (3.17) for some coefficients p(;11 ;) (given in eq. (C.8)). In a k—fold degenerate
theory, the lowest order in F of the co-dimension 2 polynomial Pg_) (F) will be F k41 in
an analogous manner to the Noether prepotential discussed in appendix D. Therefore we
can write

2 ]
F) =320 +1) (pgernAD) 051 50 F - Flzmia (6.13)
j=li=1

in terms of the degeneracy conditions A%,

Note that in a k-degenerate theory, the co-dimension 2 polynomial P(4_1) (F) can be
written as

Pl (F) = Ck:+15a1 Q2kt2 TP faﬂgllzﬂgziﬁ 4 Z C] sor a21]:51/32, ]'—o%j 1527

Bokyo ¥ a1z araz
j=k+2

(6.14)
where
Char = 2 (k + 2) pesogorny AFTY, (6.15)

for p(r42,k+1) as defined in eq. (3.23).
We close this section by commenting that S5 for degenerate theories exhibits an
interesting robustness property under shape deformations of the entangling region. What
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occurs is that, as for the Einstein-AdS case (in d = 3) [66], the topological part of the
renormalized HEE is unchanged under such deformations, whereas the P_1) (F) part
changes as €2 to lowest order in the deformation parameter . This is a result of the fact F
is second order in ¢ and that Pyy_;) (F) is of order F 1. However, for a k—fold degenerate
Lovelock theory, P41y (F) is of order F k+1 and higher, and therefore P41y (F) changes

2k+2 to the leading order in .

as €

This means that the renormalized EE of a CFT dual to a degenerate theory is robust
under shape deformations, and increasingly so the higher its degeneracy. It is interesting
to conjecture that this robustness of Si 7 under such deformations for degenerate Lovelock
theories could constrain higher-order correlators in the dual CFT. However, the study of

shape deformations falls outside the scope of this work and will be pursued in a future paper.

7 Renormalized HEE for ball-shaped regions and C-function candidates

We now proceed to compute the renormalized HEE for ball-shaped entangling surfaces.
This case is important as the universal part of the HEE, which is equal to the renormalized
value, is directly related to the C-function candidate of the CFT [44]. The extremal
surface X of the JM functional in this geometry is the hemisphere in the bulk, as discussed
in appendix E. We analyze the odd-d and even-d cases separately, as the expressions for
Stp are different.

We start with odd-dimensional CFTs. In this case ¥ (as defined in eq. (E.2) in ap-
pendix E) is a constant-curvature surface, topologically equivalent to a ball. It therefore
has vanishing AdS curvature Faqs and Euler characteristic x (X) = 1. Using eq. (6.10) we
directly obtain

Sren

||
w‘& &\D

)5 d=1)
(> "e ) ( 2 )pap (bogr) @129
4GN (d+1—2p)! ¢

~—

T
I

—(-)F & (p+ 1) aper (d— DI (—1)7 ( )
_( 1) Z (d_p1_2p)'€zg 4GN(d ‘ ,

(7.1)
p=0

using the definitions of 7; and ¢4 given in egs. (6.2) and (3.2). This factorized form is
in accord with previous results for the Einstein-AdS case [41, 42]. Indeed, for Einstein
gravity, the first factor in the last expression is identically equal to one. This first prefactor
corresponds to the usual constant encountered in the linearization of Lovelock gravity.

Note that the result of eq. (7.1) implies that the coefficient 7, of the topological term
in eq. (6.10) can be written as

Ta = (—1)%FL = (_1)%QLFEH7 (7.2)
where
Mﬂ% (%y d—1 e (p+1)apyr (d— 1)1 (=1)P
Fru mﬁeﬁ , QL= 1,2:6 (d—1- 2p)!£§§ , (7.3)
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so that Frp is the usual generalized F—quantity (C'—function candidate) for odd dimen-
sional CFTs dual to Einstein-AdS gravity. The quantity @y, is the prefactor that depends
on the Lovelock couplings. Thus, it is natural to conjecture that the C'—function candidate
for odd-d CFTs dual to Lovelock-AdS gravity is given directly by Fp.

For even-d CFTs, dual to odd-D Lovelock-AdS gravity, the universal part of the HEE
corresponds to the coefficient of the logarithmically divergent part, which is proportional
to the type-A anomaly coefficient of the CFT. To compute the universal part we start from

ren

the expression (4.6) for S%J, and note that for a spherical hemisphere in the bulk (the X
of eq. (E.2)) its induced metric (E.4) satisfies
~ 1
aja - Q1o
R 25152 - g 6511522’ (7.4)

since it is a constant curvature manifold. Using the definition of the Lo, Lovelock densities
in eq. (2.2) and the delta identities of appendix A, we obtain

(d nto(=1”
—2p)! 2

L 2\ e
L2p[71=2p<—€25> AV Vi-o (1)

Therefore, the JM functional becomes

(d—2)/2 p
d-1 (d— nro(=D
1

(d 2/2 (d—1)! (=1)"\ Area (%)

=| 2 @+ 2 - (7.6)
( = (d—1—2p)! e 4G
On the other hand, the contribution to the entropy from the Kounterterms is given by
d Cd d—2
SEE == 5@6 d de_2 y (77)
b

where ¢4 is defined in eq. (3.2). The universal part of the HEE is thus given by

Uni KT
SeE" =SiM+SEE

(d=2)/2 d—1)! (=1)?\ Area(X
= (( > ey (p+1) (d(—l—)2p)!(£2p) ) 4G( )

p=0 eff
a—2 d
L (d—1)! i:(p+1)%+1(—1)§_p 0y (d=20-2) /B
aal(d_1\11%| & (d—1—2p)! off =2
p [( 1)} =0

_ é )@=2)
i p—i—l apy1 (d— 1)2( 1)? Area(z)_ﬂ (—1)2 /Bd )
4G (d—1—2p)lh 2 Qd_gd

72
Z (p+1)aps1 (d—1!(=1)P | Areaypiy (2)
o (d—1—2p)1e2h AG
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where

d
e d| (=1)2 (beg)™?
Areaypiy (X) 4 Area (%) — B (=1)2 (dﬁ) 5 /dd_Qy By_o (7.9)
(4T
Areaypiv(2)

is independent of any Lovelock factors.

In the Einstein-AdS case the universal part of the HEE is precisely equal to —;#~=>,
such that Areayyiy exactly matches the universal (logarithmically divergent) part of the
area for the minimal (RT) surface [44]. In other words

d—1_4 1
M In (L> , (7.10)
3G (§-1)! 0

where § is a cutoff scale in the Poincaré coordinate z = ¢\/p, which scales as a length
and L is the radius of the entangling region in the CFT. We see from eq. (7.8) that this
quantity likewise governs the universal part of the HEE in Lovelock gravity, so that

d—1_2-1
ti ' ]111 (g) RENCA,
8G (4 -1)!

for ball-shaped entangling regions in even-d CFTs. We recognize that the factor with

Areagpiy (%)

_ ()51
TR A

d—2
p=0 (d—1—2p)e

the sum is again the usual factor Qr (as given in eq. (7.3)) that appears in solutions
to Lovelock gravity. This is identically equal to one in the case of Einstein-AdS gravity,
recovering previous results in the Einstein-AdS case [44].

Note that eq. (7.11) can be rewritten as

Synv — (_1)%+1 4Ar51n ({;) : (7.12)
such that
Ed—lﬂ_ifl
AL = QLAEH, Apm = eﬂrdiy (7.13)
(]

with Agp being the type-A anomaly coefficient (C'— function candidate) of even-d CFTs
dual to Einstein-AdS. Therefore, it is natural to conjecture that for even-d CFTs dual to
Lovelock-AdS, the type-A anomaly coefficient is given directly by Ay.!

8 Conclusions

We have shown how the renormalization of HEE for CFTs dual to Lovelock gravity can be
carried out using the Kounterterm procedure. The computation takes advantage of the self-
replicating property of Lovelock densities Lg, [60] and the one of the extrinsic counterterms
By [44], when evaluated on squashed cones. In particular, when evaluated on a cone, both

!The C-function candidate for generic £(Riemann) theories has been previously written, in ref. [15], as
proportional to the Lagrangian evaluated on the AdS vacuum with effective radius feg. It can be shown
that our expression matches said results.
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Lo, and the By split into a regular contribution and the corresponding co-dimension 2
term localized at the conical singularity. This allows us to cast the renormalized HEE
into the form (4.6), in agreement with the result of ref. [29] for the bulk term of the JM
entropy functional. Furthermore, our result shows that the co-dimension 2 Kounterterm
added at the boundary 9% of the extremal surface is the structure that renormalizes the
entanglement entropy.

In studying the renormalization of the gravity theory, we were able to write the Love-
lock Lagrangian £ for even-dimensional bulk manifolds as a polynomial of the AdS curva-
ture F (3.14). This form is convenient as the coefficients of the different powers of F are lin-
ear combinations of the degeneracy conditions (3.19), extending the analysis of ref. [45] for
the Noether prepotential used in the computation of asymptotic charges. Indeed, writing
the Lagrangian in terms of the degeneracy conditions makes it clear that any variation of £
and, therefore, the Noether prepotential, will inherit the same property. Furthermore, the
relation between the degeneracy conditions and the coefficients of powers of F is also valid
for the renormalized JM functional for odd-dimensional CFTs dual to Lovelock gravity.

It is evident from (6.10) that the finite entanglement entropy contains a topological
contribution proportional to the Euler characteristic of the extremal surface. The propor-
tionality constant corresponds to the generalized F-quantity of the theory. Furthermore,
a purely geometric term arises at finite order, which can be expressed as a polynomial
in . This extends the known relation between the finite part of the HEE for spherical
entangling regions in Einstein gravity and the F-quantity to different shapes and higher
Lovelock densities.

For generic Lovelock gravity dual to CFTs of both even and odd dimensions, we have
shown the finiteness of our renormalized HEE functional (5.10) . Our analysis applies to
Lovelock densities of arbitrary degree in the curvature, and the cancellation of the leading-
order term was shown in full generality. The cancellation of the next-to-leading order
divergence was verified in the case of manifolds with conformally flat boundaries and for
spherical entangling regions.

Our results demonstrate that the Kounterterm scheme efficiently isolates the universal
part of the HEE, for both even and odd-dimensional cases. This universal part, for spherical
entangling regions, corresponds to the C-function candidate. For odd-dimensional CFTs,
this candidate is the F-quantity (proportional to the CFT partition function evaluated on
a sphere), whereas for even-dimensional CFTs it is the type-A anomaly coefficient. We
obtained explicit formulas for both quantities in eqs. (7.3) and (7.13), respectively, where
we note that the C-function candidate is always proportional to the one for Einstein-AdS
gravity, with a coupling-dependent factor, commensurate with the recent literature [35, 67].

We emphasize that Kounterterm method constitutes a notable improvement over other
approaches as it is non-perturbative, neither assuming that the Lovelock couplings are
small, nor that the Lovelock theory has an Einstein behavior. An example of the latter
is given by degenerate Lovelock theories, where the method is still applicable for isolating
the universal part of the HEE. It is interesting to note (as mentioned in eq. (6.14)) that
the resulting renormalized JM functional for odd-dimensional CFTs is more robust under
deformations of the entangling region in the degenerate cases. The reason for this is that
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the leading power (in F) of the polynomial form of the JM functional depends on the
degeneracy condition; for a k-degenerate theory it is F*T1. Since the topological part is
not affected by continuous deformations of the entangling surface, the resulting effect will
enter only through the change in F, which to leading order is quadratic in the deformation
parameter. It would be interesting to explore the consequences of this feature, but an
analysis of shape deformations falls outside the scope of the present paper.
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A  Generalized Kronecker delta identities

In the main text, we use three identities involving the generalized Kronecker delta. The
most important one is

(r—k+p)!
N

prepg V=P SR
6V1"'Vk 6“k—p+1 5Mk -

Shrt (A1)
which allows to lower its rank by contracting it with a sequence of rank-1 Kronecker deltas.
In the expression above, r is the range of the indices, k is the rank of the generalized
Kronecker delta, and p is the number of rank-1 deltas present in the sequence.
The second identity is

Sl AT G = 20 8L (4.2)
which is simply a consequence of the antisymmetry of the rank-2 delta and of the overall
contaction implemented by the rank-k delta.

The third identity follows directly from the previous two identities. It states that

d
N=|-|, r=d+1,
5 "
1
ity = m%ﬁf---ﬁﬁv Opizprpimpra =+ Ol TN (A.3)

In the previous expression, |z] is the integer floor of x and d + 1 is the range of the indices
of the deltas. The proof of this identity has to be done separately for odd and even d, but
it is straightforward.
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B Factorization of the Lovelock equation of motion

We begin by noting that the Lovelock EOM can be written as

N
EY— § : Qp 1 vVl UaN 6/"2P+1/"2P+2_..6H2N—1N2NR/LLU‘2 .‘.Rﬂ2p71,“2p =0
w 9op+1 2N_p(d—2p)' B phon YV2p+1V2p+2 VoN-1V2N vivy Vop—1V2p — U+

(B.1)
We have rewritten 6,7, of eq. (2.4) using the delta identity of eq. (A.3). We now define

p=0

N

ayd! _
ALY = Y R R SR R (B2)
p=0 Py
and thus, the EOM can be rewritten as
1
SVVLVaN AHLUH2N — () (B.3)

K12 N d!2N+1 ViVaN

The tensor A can then be factorized in a straightforward manner

N

|
1o N Oépd. pipe | H2p—182p ) K2p+1H2p+2 ) poN_1foN (B 4)
VisVaN z : (d _ 2p)| 1282} Vap—1Vap Yraprivopia VoN_1VaN .

p=0
by writing
papz def ppipn papz deE s
140%) vivo ) 140 %) 1402
Then, A , as a polynomial, can be decomposed into its roots as

B1p2 HaN—1H2N
Hi-H2N — | H1p2 H2N—1H2N __
AL = and! (xvll@ (x(l))yluz > (IV2N1V2N (x(N)>V2N71V2N > )

25 —1 24 ) .
(x(i)) — _)‘(i) 25 —1 124 (B.5)

Yugi_qvo; 0
V2i—1V2; ¢ ¢

where {A(i)} are the solutions of

N ad!

As a consequence, the equations of motion (B.1) can be cast as

EY — §vviven aN (Ru1uzyly2 +)\(1)6u1u2) (RNQN—lNQN

T Y 2N IN+1 128%) +)\(N)(SM2N_1M2N) =0

VaN—-1V2N
(B.7)

V2aN—-1V2N

where A(;) is solution of

Noqd!
Zm (1PN = —d(d—1)A(N) =0, (B.8)
p=0 '

and the polynomial A ()) is defined in eq. (2.8).
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Hence, the EOM (B.7) in factorized form is

v aN vvy-V2N 12 1 H1p2 H2N—1H2N 1 H2N—1H2N —
EN 2N+15Hu1 W2 N R viva 52 51/1112 B VaN—1V2N 52 6V2N 1V2N =0,
eff(1) eff(N)
(B.9)

where the Kgﬁ(i) are the effective AdS radii corresponding to the vacua of the theory. If
the i—th vacuum is (k; — 1) — degenerate, the corresponding factor will appear k; terms
in the factorization such that k; is its algebraic multiplicity, and the sum of all algebraic
multiplicities is equal to N.

B.1 EGB case

In the particular case of EGB theory, ap and «; are given in eq. (2.3), and of the higher
curvature couplings, only as # 0. Thus, we have

AN = iM (1Pt

0 (d - 2]?)'
1
=-—g+tA-(d-2) (d—3)a)? =0, (B.10)
yielding
—1j:\/1 d3) 1$\/1 4(d2d3
= = B.11
—2(d—2)(d—- 3) —-2)(d— 3) ' ( )
from which we have
) d— 3) (%)
G = 2(d (d T (B.12)
15 /1 - A3
Thus, the EOM factorizes as
BH — a2 gHvivavsva | puaije 1 SHp RH3Ha 1 SH3H4 B.13
v 273 V2 3 4 viv2 52 viv2 v3v4 + 52 v3v4 : ( . )
eff(—) eff(+)
The degenerate case corresponds to
52 5 52
and so
a2 VivU3v. 2 2
Ellj - 2735511}#22#33/:14 (RM1M2V1V2 525511#21> (RM3M4V3V4 5255??%14> =0. (B'15)

C P(F) and degeneracy conditions

We now study how the degeneracy conditions introduced in eq. (2.9) appear in the co-
efficients of P(F). Recalling (3.2) and (3.8), from eq. (3.15), the F? coefficient is given
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d+1
_ 22: (—1)P2p! (d — 3)a,
722221 (p— 2)! (d+1 — 2p) o™

d—1

< (=1)P"2p!(d — 3)ay
2552221 (p— 2)1 (d + 1 — 2p) 2P
)2 (d41 a1 a8
(_1)( 2 ) (—)'(d—?))' 2 2 pOép (_1) 2 p (g )(d+172p)
229 ((ﬁ) _mec(f(i)*?) d+14 (d+1—2p)

(VP (d=3pa, (. (d=1 o :
(() (-1 (55))) g

[S)

(( D (d— 3)'pozp>
24 (d — 2p)12F~?)

_2)

¥
L

I
a3
it
[ )

V]

S
I

Ca (1) (-2
Therefore, F? term is proportional to the first degeneracy condition. Consequently —for
degenerate points— the Noether prepotential is not linear but of higher order in F, such
that it is of normalizable order (in agreement with the results of ref. [45].

Now, we consider the coefficient of the 73 term, which is given by

d+1
- (—1)"* (d - 5)'play
@ 2(p—3)
p=3 2331 (p = 3)!1(d + 1 — 2p)l
d—1
2 -3
2 (=1’ (d — 5)!pla,

=3 2331 (p—3)1(d+1— zp)!ﬁ(pfs)

d+3
-p
d+1 2p

(-1)F (d— 5)!("3))! <
" 2331(4 %) 10" d+1; d+1—2p)

- Z —1)"(d = 5)'play (d+1—2p)(d+2p—5)
=3 233! (p — 3) (d+1—2p)0™3  Ap—1)(p—2)

+(d—5)!(d—1)(d—3) (_ W ga-1 202 - 3)
233!4zgf;5 (d— 1) (d 3)!eft
d d—1
2 1pl 2. 1P (d = 5)p!
_ Z P(d—5)p! (d — 3() ai)fefﬁ 3 (=1)? (d 5).p.a,;( _2)425
=1 —1)!(d—2p)1e2P o2 243! (p — 2)! (d — 2p) !y
e 4
_ c A A®@ 2
2531 (d — 2) (d—4)< a3y ) (C.2)
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which we see is proportional to a linear combination of the first and second degeneracy
conditions. Then, we consider the coefficient of the F* term, which is given by
o 4
L (—1 A=),
ca=) 2(p—4)
p—a 244 (p—)!(d+1—-2p) g

d—1

& T, CDEENET 2 D) 0y gy
_p;244!(p—4)!(d+1—2p)!e§§fp4)+ 244|(d+1 )lgd 7 d+1Z (d+1—2p)! e
& (), (d—1)(d—3)(d—5)
TR [l (1) (0—2)(p— J
_ (d—1)(d—3)(d—b) 3 (—1)P~4pl(d—T)ey,

2 z>z::1244!(p—1).(d+1—2p)‘€2(p g (©3)

eff

The square bracket expression in the last equality can be written as

_ (d=1)(d=3)(d=5) _ (d—2p+1)(d® —10d + 33 + 4p> + 2dp — 22p) (C.4)
2B(p-1)(p-2)(p—3) 2(p—-1)(p—2)(p—3) P

which upon substituted into the previous expression, one gets

1
274'(d —2)(d—4)(d—6)

1
Z p+1p!(d—2)'ap d? — 10d + 33 + 4p% + 2dp — 22p
- L(d—2p)1PH (p = 1) (p—2) (p—3) (d—3) (d - 5)
23: erlp'(d la, d—1

- I(d — Q)ug(l’ Dd+1-2p

Cq4 =

1
- 274'(d - 2) (d—4)(d—6)

d—1
l Z 1t <d 2oy, | Al & ()P pl(d -2
o o0 a8 20— o (- 22

d—1

. 4wzﬂ f (-1 pl (A~ 2)la, ]
(d— 3) 5) =43 (p — 3)! (d — 2p)12F )

4 24
AD L =A@ AB | (C.
l Tamye” Tuonu-sas | @Y

We infer from the previous coefficients that the generic term is given by

(d
Lo
(d

T 2TAI(d—2) (d—4) (d - 6)

(-1 e W, 210! 0)
i1 "i]:[I 1) AW+ 1:22 ) - A (C.6)
v J m]ll (d—1-=2m) | b

Ci>3 =

J=1
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which explicitly reproduces the coefficients up to and including c¢4. Using Mathematica,
for arbitrary ¢; we have verified (C.6) for the particular Lovelock Unique Vacuum theories
considered in ref. [54]. Finally, since

i—1
Ci = Zp(i,l)A(l)a (C.7)
=1

we have
Eg 1) p2i—2
Py = m DPi>3,1=1) = ) (1 izl (eﬁ )
’ 22— T (d — 25

Jj=1

(—1) 2D ot=2iyy
P(i>3,1>2) = P < = )
il (H (d—2j)> ( M (d-—1- 2m)>

j=1 m=1

(C.8)

D Noether prepotential from P(F)

The Noether prepotential can be obtained by computing the on-shell variation of the bulk
gravity action. This prepotential is important for computing the asymptotic charges of
the theory [40, 45], as it is a covariant charge density that has to be integrated over co-
dimension 2 surfaces at infinity.

Starting from the bulk P (F) defined in eq. (3.15)
d+1
2
Plas)foy) (F) = D ¢j 0 Flivgee . Flm 0 (D.1)

where ¢; is given in eq. (3.16), we have

1
fn= W/ddﬂxmp(dm{ap} (F) + 7ax (M), (D.2)
M
for the renormalized Lovelock-AdS action (for odd d). Its on-shell variation is
%
1 d ; k k 111 197312/
001 = m/d 1’\/th (_2jcj 111 12% 1]:k11k22' "Fkéjj—zlzgjfz
oM Jj=2
251 ] igj—
X <(h 15h) K, + 25Kk22§11> , (D.3)

neglecting boundary terms at the AdS boundary. Therefore, in the case of non-degenerate
theories, assuming asymptotic conformal flatness [44] and considering that F has the fall-off
of the normalizable mode, we have that at the normalizable order

/ Ao/ (—deg) 53728 FI (1o 15h) L,

J1J233% 112

ol = 16G

/dd F( 1662)5;1 (h—léh)j, (D.4)

167TG eff
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where we have taken just the leading order in the FG expansion of the extrinsic curvature
KJL3 = 5;3 /leg, the electric part of the Weyl tensor 5} = (—W;ll) and the fact that W ~ F
up to the normalizable order.

Finally, noting from eq. (C.1) that

d+1
< —1)?p! (d — 3)! 2

=) U= 9) 04p2( —2) T o4 A (ge_ﬂ?)7 (D.5)
228 (p—2)!(d+1—2p)ery 24(d—2)

with A() defined as in eq. (2.9), we have

_geffu)z/d i (1))
o=~ gra = (eeﬁ)aMdm\/ ner(hlon)’ (D.6)

from which we can directly read the Noether prepotential T;

1, :
Iy, = / dzv/—h (QT;) (h—lah)j , (D.7)
oM
such that /
g et ) (p2) g
T I (D-8)

in agreement with ref. [45]. As A() (fgf?) = 1 for Einstein-AdS, this reproduces the known
result for the Noether prepotential in this case.

D.1 Degenerate case

In the first-degenerate case, we have that A®) (ng?) = 0, implying ¢ = 0, and

AF>1) (Ee_fEQ) # 0. From eq. (C.2)

Cq = — egﬁ 1 A(Q) + %A(l)
BT @-2)d—213\ (d-3) 4
2
- _ e AP (2 D.
T s nzsd? () (D-9)

and so the eq. (D.3) can be written to the lowest order as

6€eﬂA(2) E;HZ . L 3 s
o= (167rG (d—2)(d —<3) (21 Y 243)3 é A/ =R FLLFL (hen)
(D.10)
Here, it is clear that the Noether prepotential is proportional to an antisymmetric contrac-
tion along boundary indices of 2. This is in agreement with ref. [45], where the asymptotic
fall-off of said contraction was shown to be precisely the normalizable mode, making the
Noether prepotential finite.
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In the k—degenerate case, we have A=K = o AW@>F) —£ 0 and because Cqg =
q—1 )
Zp(qyi)A(Z) for some p(, ;) coefficients (as shown in eq. (C.8)), we have that c,<py1 = 0
i=1

and cgyo = p(kw’kH)A(k“). Thus, to lowest order we get

5IL:<_2(I€+2)C’“+2) /ddx\/—ha?l“'m”f?ljz...f?’%ﬂm“ (b=t oh)7 (D.11)
M

1671-G€eff J1J2k+37 112 12k4122k+2 12k43

-2
_ (2(k+2)p(k1+627,rkG+Z:(kH)(geﬂ )> / Ay RyL T FI e ()
oM

Note that the Noether prepotential is proportional to an antisymmetric contraction along
boundary indices of F**1 in agreement with ref. [45]. There it is shown that the eq. (D.11)
falls-off asymptotically as the normalizable mode, thus rendering it finite. Direct compar-
ison with ref. [45] fixes the p(;42x41) coefficient to be that in eq. (3.23), such that for a
k-degenerate theory, the lowest order coefficient in the bulk P (F) is given by

Chaa = Dpropeny AT (ee_f?) : (D.12)
E JM extremal surface for ball-shaped entangling region

We proceed to verify that the spherical hemisphere is indeed the extremal surface of the JM
functional for the case of ball-shaped entangling regions in pure AdS (dual to the ground
state of a CFT in Minkowski spacetime). In order to see this, we consider that the bulk
metric of the Poincaré patch of pure AdS (for a particular vacuum characterized by Egﬁ),

is written in the FG gauge as
dp? N —dt? + dr? 4+ r2dQ?_,
4,02 p2 ’
dQ%_, = db? 4 sin® 01d03 + - - +sin? 0 - - -sin? 03_5d67_,. (E.1)

dsg = Gpdatds” =

Consider the spherical hemisphere

PO {t =const. ; 7 =/R? — Egﬁcp} , (E.2)

with {y*} = {p, b1, ...,04—2} being the worldvolume coordinates of ¥. The intrinsic metric

oz dz¥

a = A5 ~ A A3 Vs E.3
Yap aya ayﬁ M ( )

on X is then

le léap (B? — €qp)
ds? = Yapdy“dy’ = < | 1 o dp® o205 . E.4
55 = Yapdy“dy 4p2<+R2—£§ﬂp p°+ P d—2 (E.4)

In order to check that the ansatz (E.2) for the surface ¥ indeed minimizes the JM functional,
we evaluate the corresponding equations of motion (4.7). Since ¥ is a constant curvature

surface, we have

5‘110{2

RU%2 5 5,01 = AT (E.5)
[S)
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for its Riemann curvature tensor. From eq. (4.7) we have

a—2
L 2 J (_l)p a(p+1) (p + l)p(s“/l""YQerl ’C,Bl 65253 - 6,82;0,82p+1

EJM = 2p£2p B1Bapt1” Y1 7273 V2pV2p+1
eff

2] p
= - (_1)p Y(p+1) (p + 1) ST 2p+1 651 C. 5/82101032104—1
- £2p B1-Papt+1 M Y2p "M V2p+1

B |52 (=1)P(d—2)! (p+ 1) 1) tr[K] (E.6)
= (d—2 - 2p)\% | |

p=0

using egs. (A.2) and (A.1) from appendix A. Now, as shown in refs. [62, 66], the spherical
hemisphere trivially satisfies tr [C] = 0 as it is a minimal surface in the mathematical sense
that it minimizes the area functional. In turn, this is equivalent to the statement that the
RT surface is the correct one for the computation of HEE in Einstein-AdS gravity). Thus,
the spherical hemisphere also satisfies Ejys [X] = 0, and therefore it is the correct surface
that minimizes the JM functional for the case of a ball-shaped entangling region in the CFT.

F Evaluation of the JM functional and co-dimension 2 Kounterterm

Here we evaluate the JM functional (5.6) and the co-dimension 2 Kounterterm used in the
cancelation of divergences for the HEE. From eq. (5.5), the JM functional can be written
as the sum of three terms, such that
def. 1 2 3
AGS i = Iy = 5134 + IL(H\Z + ISA)47
that we now proceed to evaluate. In order to simplify these terms, we employ the radial
decomposition of the Riemann tensor of 7,5 given in eq. (5.2), and the FG-like expan-
sions (5.1) and (5.3).
We start simplifying 1511\)4, where we have

|45
) _ [ d-1 (PP 1) carocazpr (1 o by 161 e
1 —/d YV Zl oz Oby oy 1 | 3y OrFar —Re KG,
by p=
> (Rb2b3 _okbe kbg) (Rb2p72b2p71

a2a3 az’'"a3

bap—2 5 bop—
a2p—2a2p—1 —2]’6@22_2 kazzl)’—ll)

L dere om0 9me2)1(d-2p+8) ey
S LA CD 3D DD Dl
4 2m=Im!sl(p—1—m)!(2p—2m—2—s)!(d—1-2p)!035

p=1 m=0 s=0

2p—m—s—2 £01-A2p—s—2. 15 b1 b bam—1bam 2)) b2m+1
xpPTmTe 61(7111"4;122;757227% ' 2a1a2[0]mR e a2m71a2m[0] (k( )>02m+1“.
bop_s—
X (k(2)) 2p 2+...7 (Fl)
a2p—s—2

where the ellipsis indicates higher order terms and R*'** , [o] indicates the Riemann ten-
sor of the o4, metric. Finally, we isolate the leading and next-to-leading order divergences,
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to obtain

2] C1pa ot pa . .
o /¢1y¢§§: d@f;;F””(Mﬁfﬂ+2@—mpi§ix”V@ﬂ

» eff eff
(d—4)!
—(p—Dp—z=Rlo] |+ (F2)
Eeﬁ
Considering the next term 1521\)4, we can write
() d—1 = 2J (D (P—D)PA(p11) car..azp—1.561p Sbabs  babs Sbap_zbap_1
I /d yf Z 9p—2 6171 bop_1 R alazR asPR a4¢l5mR agp—202p—1
5 p=2
=]
(p+1)(p—1)pa
/dd ly\/» Z p _4)1p (p+1) 51;1 (l2p 1va1k(lgvb2kb3 (Rb4b5a4a5 72]{:21]{720)
)
e (Rhgpaler = ~2klze =2 klee =t ). (F.3)
From the expansion of the extrinsic curvature kg, in eq. (5.3), the term Vg, k% is
1"%a2
O (p), and V*2k% is O (p?). Hence V,, k2 VP2k%S is already O (p?), implying IL(H\)/I does not

contribute up to the next-to-leading divergence in p and so can be neglected.

Finally, using egs. (5.1)—(5.3) we can simplify 153}\)4 as

2
3) _ [ jd-1 (P‘H)O‘(pﬂ §01--a2p (bib by 1.b bap-1b2p bp 1 Jb2p
IJM_/d yﬁ Z g bll b22p (R ' 2041112 kallka;) (R ’ ;257104217 k ; 1ka22 )
p=0

|22 [F2 ] 200-m)
) —m (pHD)ape1)p!(2p—2m)(d—2—2p+s5)!
/dd Yy Z Z Z om s m'(p+m')8'(2p 2m—s)!(d—2—2p)!

m=0 p=m s=0

b2m 41 b2p—s
xp2p m— 35011 1?22:71 Rb1b2a1a2[0]...Rb2m;;l::i"1a2m[0] (k(2)> ! (k(Q)) ’ +- (F4)

a2m+1 azp—s

Isolating the leading and next-to-leading orders in p yields

19 = [gat p P+ Dagy ((d=2)! ((d—4)
/ a7y z ot S (g R
(i)a, ()b
(d — 3)‘ (2) EQH‘KG/ K:b
p R A Zeffra T .. (F.
+ ezg tr{a }—i— 20d—2) + , (F.5)

while implementing eq. (F.2) along with (F.5) results in eq. (5.6) for the JM functional
Iy = I‘(Ilj\)/[ +1I 5%\)/[ up to the next-to-leading divergent order.
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Now, we focus on the analysis of the Kounterterm Ix7. For odd d, we have

O (o) d+1 —
i = aesilt = | e [ aumacs

1
d+1 _ _ a1-Gg_ 1
- ( 5 >cd(— (d—1)) / d2%y\/5 / dtoy kD <2Rb2b3a2a3 —~ t%ﬁgkﬁg)
(o)) 0

1
.. (Rbd3bd2 _ t2k233k333> (F.6)

2 ad—3ad—2

where the parametric integral (PI) can be expanded as

2 aq—-304—2 ad—3 "Ad—2

1
PI:/dt(;al“.ad_zkbl <1Rb2b3 7t2kb2 kb3>"‘<1Rbd_3bd_2 7t2kbd_3 kbd_2>

—3
2 (d73)| _1)%—m b b
_ 2 /) d—3—2m Q1°ad—2.45b1 b2 L b2m—102m bamt1 ... 1.ba—2
- Z m!(d—?) 7m)!2m /dtt 6171"'1)(172 R aiaz R a27n—1a2m,ka2mr+1 kadfz
m= 0

5 d—2—2m (—1)¥_m(@)!(d—S—Qm)!Gd_Q_m/_s

2 a1-ad—2—s

m!(d—;B—m)!(d—Q—Qm—s)QmE:ff bueba—z—s

b m ba— -s
xRz (5] Rbam-1bam [o](k:@)) : “...(;g(Z)) R (F.7)

aipaz a2m—1a2m
a2m+1 Ad—2—s

using the FG-like expansions for the curvatures of 0% evaluated at the cutoff radius p = e.
Up to the next-to-leading order, we then have

s 1 R(0) 1 02, i (a (Db
PI=(-1)2 (d—=3)! — (2)| 4 Zeft™@ b .

(F.8)

Noting that

we then obtain

%
d—3
— _/dd—2y A = (D (1) (d = Dl
L -2 S (d-1-2p)y!
e | teff  p(0) 4 = ) o __feff  _(i)a, ()b
><<1 6[2(d—4)7€ —|—2tr(a )+2(d—2)ﬁa Ky )—i— , (F.10)

for odd d.
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For even d, the expression for the Kounterterm is

even even d+1 -
IR =AGSEr' = {ZJ Cd/dd *yBg_»

0%
d 1 t
(5 Jest-ta-v) [ a2 [ [assyizze ont (F.11)
ox 0 0
o [ Lybats _tkagkb3+i5b25b3 o Lpbacabas _t2kbd,4kbd,3+iébd,45bd,3
9 asas as'Vas [2 azx”as 9 Ag—4aq—3 ad—4 'Ad—3 62 ad—4-ad-3 |’
eff eff

where for this case, the boundary term [d?2yBy_, was evaluated in ref. [44], and the
computational procedure is analogous to the odd d case. Hence I}){d:,g = IZF, and the
Kounterterm g7 has the same form for both odd and even d as given in eq. (5.9) of the

main text.
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