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1 Introduction

O(d, d) generalised geometry and double field theory [1–14] has been very useful in the
study of world-sheet string theory in features like non-abelian and Poisson-Lie T -duality or
classical world-sheet integrability [15–27]. In both cases arranging the degrees of freedom
O(d, d)-covariantly was advantageous. For instance, a Hamiltonian formulation of strings
in generic backgrounds is possible, using only input from generalised geometry: the gen-
eralised metric determines the Hamiltonian and the invariant O(d, d)-metric the Poisson
structure [25, 28]. In case of generalised parallelisable spaces, this formulation has been
called E-model and appeared first in the study of Poisson-Lie T -duality [15, 16, 29, 30].

At the same time, exceptional field theory and Ed(d) generalised geometry [31–41] has
been a powerful tool in organising compactifications of eleven-dimensional supergravity,
but not necessarily in understanding the underlying world-volume theories better. Addi-
tional complications in phrasing world-volume theories in an Ed(d)-invariant way are to
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be expected. That is, because U -duality acts, in general, non-perturbatively and maps
different world-volume theories to each other — in contrast to O(d, d) that maps a string
theory to a (not necessarily equivalent) string theory. For example, problems concerning
U -duality of the classical membrane have been studied in [42, 43].

The problem of Ed(d)-invariant world-volume formulations has, so far, mainly been
studied at the level of construction of actions [44–49]. In all of these proposals the intro-
duction of charges, describing the kind of object one works with, was necessary in order to
achieve duality covariance.

Success in the strive for an E-model like formulation has, by now, only been achieved
for the E3(3)-theory and partly the E4(4)-theory [32, 42, 43, 50–52]. Generalising [51], such
a formulation might — similar to Poisson-Lie T -duality as canonical transformation of
classical string theory — help to understand to which extent the recently discussed Poisson-
Lie U -duality, transformations of exceptional Drinfeld algebras or other interesting flux
configurations [51–63], can be understood as some kind of classical duality transformation
of world-volume theories in exceptional field theory.

The aim of this paper is to close that gap and propose an Ed(d)-covariant Hamiltonian
formulation of world-volume theories, building on previous attempts [50, 64, 65] and most
recently [66]. Besides the typical objects of Ed(d) generalised geometry an additional object,
the above mentioned charge, that specifies the type of world-volume, needs to be introduced
to ensure Ed(d)-covariance.

Before an overview over the results is given, the string and its Hamiltonian formulation
in terms of O(d, d) generalised geometry is presented, in order to clarify the key points one
might strive for in a generalisation to the Ed(d)-case.

1.1 The string case

The classical dynamics of a string coupling to the NS-NS part of an arbitrary supergravity
background can be described by the Hamiltonian

H = 1
2

∫
dσHIJ

(
G(x(σ)), B(x(σ))

)
EI(σ)EJ(σ), (1.1)

where the embedding of the string into target space x(σ) and the canonical momentum p(σ)
are collected in EM (σ) = (pµ(σ), ∂xµ(σ)), from now called current. σ is the spatial world-
volume coordinate, ∂ = ∂σ. H is the generalised metric, encoding the σ-model couplings,
metric G and the B-field, in the Hamiltonian and the indices I, J,K, . . . are raised and
lowered by the O(d, d)-metric η:

H =
(
G−BG−1B BG−1

−G−1B G−1

)
, η =

(
0 1

1 0

)
. (1.2)

The Virasoro constraints take the form HIJEIEJ = 0 = ηIJEIEJ .

Current algebra and generalised Lie brackets. For a Hamiltonian description we
still need to specify the Poisson brackets of the currents EI — the current algebra. In this
article, we often discuss two types of current algebra brackets, the Dorfman current algebra{

EI(σ),EJ(σ′)
}
D = ηIJ∂δ(σ − σ′) (1.3)
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and the Lie current algebra{
EI(σ),EJ(σ′)

}
L = ηIJ

1
2(∂ − ∂′)δ(σ − σ′) + ωIJ

1
2(∂ + ∂′)δ(σ − σ′) (1.4)

where ωIJ =
(

0 −1
1 0

)
. The difference between these current algebra brackets is a total

world-sheet derivative term
∫

dσ ∂(. . .). Depending on the boundary conditions on x(σ)
such total derivative terms could be neglected, they correspond to boundary contributions
for the open string and winding contributions for the closed string. They have been shown
to be important on the quantum level [67] and, on the level of action, the difference
between the O(d, d)-invariant version and the standard non-linear σ-model is a topological
term [2, 68, 69].

As functions on the phase space we consider functionals

φ[x] = −
∫

dσφI
(
x(σ)

)
EI(σ) ∈ (T ⊕ T ?)LM. (1.5)

The Poisson brackets of these reproduce the generalised Lie derivative of O(d, d) generalised
geometry for (1.3) respectively the canonical Lie bracket for (1.4):

{φ1, φ2}D = [v1, v2] + Lv1ξ2 − d(ιv2ξ1), {φ1, φ2}L = [v1, v2] + Lv1ξ2 − Lv2ξ1 (1.6)

with φi = vi + ξi ∈ (T ⊕ T ?)LM . A detailed discussion can be found in [25] and will be
revisited in section 3.1.

Deriving the current algebra. In a manifestly O(d, d)-covariant way, the current is
defined as EI = ηIJ∂X

J for extended coordinates XM = (xµ, x̃µ). The current algebra
can be obtained non-covariantly by the identification pµ = ∂x̃µ, as above, and applying
the canonical Poisson brackets{

pµ(σ), xν(σ′)
}

= −δνµδ(σ − σ′),
{
pµ(σ), pν(σ′)

}
=
{
xµ(σ), xν(σ′)

}
= 0. (1.7)

The O(d, d)-covariant way to derive the current algebra is as Dirac brackets [52, 70] for the
constraints

ΦI = PI −EI = PI − ηIJ∂XJ (1.8)
on an extended canonical phase space with{

PM (σ), XN (σ′)
}

= −cδNMδ(σ − σ′),
{
PM (σ),PN (σ′)

}
=
{
XM (σ), XN (σ′)

}
= 0.

(1.9)

The Dirac procedure is necessary, because the constraints ΦM are second class, i.e.{
ΦM (σ),ΦN (σ′)

}
= CMN (σ, σ′) = −2cηMN∂δ(σ − σ′) (1.10)

is invertible. The resulting Dirac brackets for the currents E are{
EM (σ),EN (σ′)

}
D.B. =−

∫
dσ′′

∫
dσ′′′

{
EM (σ),ΦK(σ′′)

}
(C−1)KL(σ′′,σ′′′)

{
ΦL(σ′′′),EN (σ′)

}
= c

2ηMNδδ(σ−σ′). (1.11){
EM (σ),XN (σ′)

}
D.B.

=− c2δ
N
Mδ(σ−σ′). (1.12)
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G O(d, d) SL(3)× SL(2) SL(5) SO(5, 5) E6(6) SL(p+ 3)
dim(M) d 3 4 5 6 p+ 2
object string miscellaneous p-brane

R1 2d (3̄,2) 10 16 27 (p+3)(p+2)(p+1)
3!

R2 1 (3,1) 5̄ 10 27 (p+4)(p+3)(p+2)(p+1)
4!

R3 (1,2) 5 16 78
R4 (3̄,1) 10 45 351
...

...
...

...
...

Table 1. The relevant representations of duality/generalised geometry groups G including the begin
of the tensor hierachy for the Ed(d) groups.

{EM (σ),EN (σ′)}D.B. coincides with (1.3) for c = 2. As will be important later, the Dirac
procedure naturally constructs a Lie bracket (skewsymmetric and satisfying Jacobi identity)
but the calculation seems to work only when neglecting total spatial world-sheet derivative
terms. Hence, for the string one can derive the Dorfman current algebra (1.3) as a Dirac
bracket up to such terms.

Generalised flux frame. A different choice of basis for the currents EA = EA
IEI with

EA
I ∈O(d, d) being a generalised vielbein, i.e. EAIEBJHIJ = δAB, leads to a diagonalisa-

tion of the Hamiltonian H = 1
2
∫

dσδABEA(σ)EB(σ) and a twist of the current algebra{
EA(σ),EB(σ′)

}
D = ηAB∂δ(σ − σ′)− FC

AB(σ)δ(σ − σ′) (1.13)

by the generalised fluxes FABC =
(
∂[AEB

I
)
EC]I with ∂A = EA

M∂M = EA
M (∂µ, 0). In

case of a generalised parallelisable background the FABC can be chosen to be constant.
Then, this Hamiltonian formulation takes the form of an E-model.

1.2 Summary of results

All of the above points for the string are generalised to some extend to objects in Ed(d),
and in part SL(d+ 1), generalised geometry. A duality invariant Hamiltonian formulation
of the 1

2 -BPS p-branes is proposed. For that we consider a generalised geometry to some
duality group G on a d-dimensional manifold M with coordinates xµ, including:

• two representations of G: R1 with indices K,L,M, . . . and R2 with indices K,L,M, . . ..
The R1-representation is the one of the generalised tangent bundle, e.g. (T ⊕∧2 T ?)M
for the (M-theory section) SL(5)-theory, and of the extended coordinates XM = (xµ, . . .)
that are used in exceptional field theory. The representations to the duality groups G,
relevant in that paper, are collected in table 1.

• η-symbols ηM,KL and ηM,KL — invariants of G: from these one can derive the Y -
tensor that defines the generalised Lie derivative, Y KL

MN = ηP,KLηP,MN , and the
section condition ηM,KL∂Kf∂Lg = 0 on functions f, g of the extended coordinates XM .

– 4 –



J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

• ω-symbols: defining a para-Hermitian generalised geometry (dicussed in section 3.1) and
characterising the difference of the standard Lie derivative on the generalised tangent
bundle to the generalised Lie derivative. Explicite expressions for η- and ω-symbols
(and their decomposition in M-theory and type IIb sections) in the conventions of this
paper can be found in appendix B.

• a generalised metric H

The fundamental objects of such a p-brane world-volume theory are currents Z ∈ R1 that
are spatial top-forms on the world-volumes, i.e. (spatial) world-volume p-forms:

ZK(σ) = 1
p
ηN ,KLQN ∧ dXL. (1.14)

σ = (σ1, . . . , σp) always denote the spatial coordinates of the p-brane world-volume,
∫

the integral of the p-dimensional spatial part of the world-volume and δ(σ − σ′) the
p-dimensional δ-distribution.

In terms of this current the proposed Hamiltonian and (reducible) set of spatial dif-
feomorphism constraints are:

H = 1
2

∫
ZK ∧ ?ZLHKL, 0 = ηM,KLZK ∧ ?ZL. (1.15)

The current Z is characterised by a (p− 1)-form charge Q ∈ R2 and is supposed to satisfy
the fundamental current algebra{

ZM (σ),ZN (σ′)
}
D = ηMN ∧ dδ(σ − σ′) = ηL,MNQL ∧ dδ(σ − σ′) (1.16)

such that the model exhibites G-invariance. Indeed, when applying this to functionals
φ = −

∫
φKZK one reproduces the generalised Lie derivative of G-generalised geometry, if

the charge fulfils the condition

QM ∧ dXN∂N = 1
p
ηM,NP ηK,LPQK ∧ dXL∂N . (1.17)

Alternatively, similar to the string, one could also consider the current algebra

{
ZM (σ),ZN (σ′)

}
L =QL∧

((
ηL,MN +ωL,(MN)

) 1
2
(
d−d′

)
+ωL,[MN ]

1
2
(
d+d′

))
δ(σ−σ′)

(1.18)

that is a Lie bracket and corresponds to the standard Lie derivative on the generalised
tangent bundle. For Ed(d) with d ≥ 5 the ω-symbols are not skewsymmetric anymore and,
hence, the standard and generalised Lie derivatives on the generalised tangent bundle are
not equivalent up to total derivative terms anymore.

As a result, it will turn out that current representation for the ‘Lie’ current alge-
bra (1.18) generically takes a form like:

ZM = (pµ , dxµ1 ∧ . . . ∧ dxµp) (1.19)
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from which one can even derive (1.18) by means of the canonical Poisson brackets for p
and x. In case of the p-brane in the SL(p + 3) theory this will be equivalent up to total
world-sheet derivative terms to (1.16). Then, one can even generalise a derivation by Dirac
brackets, as in the string case. This is demonstrated in section 3.3

For exceptional currents, in which we are really interested, such a derivation is not
possible — (1.19) does not form an Ed(d)-representation in general — and the currents
itself cannot be written in terms of canonical momenta p(σ) and field x(σ) alone. Solutions
to the charge condition (1.17) dictate, that current algebra representations of exceptional
symmetries must contain differentials of ‘non-geometric’ coordinates, i.e. those that are
not part of a section. These could be identified with momentum d.o.f.s of other objects
in the theory — for example for the M5-brane, the charge Q and the current Z seem to
contain a combination of geometric (xµ) and ‘non-geometric’ (x̃µν) coordinates, latter are
associated to the M2 momentum, i.e. schematically

ZM ∼ (pµ , dxµ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4 ∧ dx̃µ3µ4 , dxµ1 ∧ . . . ∧ dxµ5) . (1.20)

Alternatively, the non-geometric coordinates could be identified with gauge fields associated
to M2-branes ending on the M5-brane. The solutions are presented also for all the other
1
2 -BPS p-pranes in d ≤ 6 in detail in section 3.4.

For the membrane in SL(5), all of this is shown explicitly in section 2, revisiting partly
known results in the literature. It is observed that the key point of the string generalise:
derivation of the current algebra from the canonical Poisson brackets and the E-model like
form of the current algebra in the generalised flux frame (section 2.4). The introduction of
charges in section 2.2 achieves manifest SL(5)-invariance of the current algebra and together
with the known Hamiltonian in that case [50] motivates the form of the Hamiltonian (1.15)
and the current algebra (1.16) that is conjectured here to hold more generally.

2 Membranes in the SL(5)-theory

Let us consider the bosonic part of the standard Polyakov-type action of an M2-brane

S = T

∫
Σ

(1
2dxµ ∧ ?dxνGµν(x) + 1

3!dx
µ ∧ dxν ∧ dxρCµνρ(x) + 1

2 ? 1
)

(2.1)

with tension T and coupling to the space-time metric G and a three-form gauge potential
C. For the target space, we restrict ourselves to work only on the internal part of some
compactification on a four-dimensional manifold, so that κ, λ, µ, . . . = 1, . . . , d = 4 and work
on a three-dimensional world-volume Σ with coordinates ξ = (τ, σα) and a dynamical world-
volume metric. In the following we integrate out latter [71] and work in the Hamiltonian
formalism. It was shown that Hamiltonian and spatial diffeomorphism constraints take the
following form1 [50]:

H = 1
2

∫
ZK ∧ ?ZLHKL(G,C) (2.2)

0 = ηM,KLZK ∧ ?ZL ∼ εMKK
′LL′ZKK′ ∧ ?ZLL′ . (2.3)

1The a priori five diffeomorphism constraints (2.3) can indeed be reduced to two constraints, but only
in that redundant form the SL(5)-covariance is manifest.
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Let us explain the notation. From here on all the differential geometric expressions, like ∧,
?, ‘d’ or integrals, are to be understood on the (two-dimensional) spatial part of the mem-
brane world-volume.2 The indices K,L,M, . . . = 1, . . . , 5 denote (fundamental) R2-indices
and K,L,M, . . . R1 = 10-indices of SL(5), with decompositions into the four-dimensional
M-theory target space indices κ, λ, µ, . . . = 1, . . . , 4 as VM = 1√

2V
MM′ =

(
vµ, 1√

2vµµ
′

)
and

VM = (vµ, v5).3 HKL is the (inverse) generalised metric of SL(5) generalised geometry
first introduced in [42], parameterised for example as

HKL(G,C) = G−
1
3

(
Gκλ −GκµCµλλ′

−Cκκ′µGµλ 2Gκ[λGλ′]κ′ + Cκκ′µG
µµ′Cµ′λλ′

)
. (2.4)

The η-symbols ηM,KL

(
ηM,KL

)
are nothing else than the invariant tensor of SL(5)

ηM,KK′LL′ = εMKK
′LL′ , and can be used to define the Y -tensor and the section condition:

Y KL
MN = ηP,KLηP,MN ηM,KL∂K ⊗ ∂L = 0. (2.5)

The currents Z ∈ R1 are a collection of the canonical momenta p(σ) and differentials of
the fields x(σ):

ZK = 1√
2
ZKK′ =

(
pκ ? 1, 1√

2
dxκ ∧ dxκ′

)
(2.6)

in the form of spatial 2-forms on the M2-brane world-volume.

2.1 The SL(5) generalised Lie derivative on the membrane phase space

We revisit the study in [50] of the Poisson structure of the above ZM in the following, in
order to clarify the appearance of the generalised derivative in the sense of [25] by neglecting
a topological contribution. The aim is to see how the generalised Lie derivative

[φ1, φ2]KD = φL1 ∂Lφ
K
2 − φL2 ∂LφK1 − Y KL

MNφ
M
1 ∂Lφ

N
2 (2.7)

is encoded in the current algebra of an M2-brane. From the canonical (equal time) Poisson
brackets of the p(σ) and x(σ) one derives the current algebra4

{
ZK(σ),ZL(σ′)

}
= dxµ(σ)∧

(1
2(d−d′)δ(σ−σ′)εµKL+ 1

2(d+d′)δ(σ−σ′)ωµ,KL
)
. (2.8)

As in the string case we can consider the corresponding ‘Dorfman’ and ‘Courant’ brackets:
{
ZK(σ),ZL(σ′)

}
D = εµKLdxµ(σ) ∧ dδ(σ − σ′), (2.9){

ZK(σ),ZL(σ′)
}
C = εµKLdxµ(σ) ∧ 1

2
(
d− d′

)
δ(σ − σ′), (2.10)

2The original world-volume metric is integrated out already. A ?-operator w.r.t. to a flat metric on the
spatial world-sheet is introduced here to simplify the notation. Alternatively ZK ∧ ?ZL = ZKZ̄L = Z̄KZL,
where Z̄ denotes the scalar dual to the top-form Z.

3The general conventions for Ed(d) η-symbols are collected in appendix B.
4Using the conventions and identities from appendix A.
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the SL(5)-invariant contribution to (2.8), when neglecting total spatial derivatives. These
names are appropriate because, indeed, they lead to the generalised Lie derivative:

{φ1, φ2}D = −2
∫
φL[1∂Lφ

K
2] ZKεµKL +

∫
φK1 ∂µ′φ

L
2 dxµ ∧ dxµ′ (2.11)

δµν δ
µ′

ν′ dx
ν ∧ dxν′∂µ′ = 1

2ε
µµ′

νν′dxν ∧ dxν′∂µ′ = 1
4ε

µmm′nn′Znn′∂mm′ = εµMNZN∂M

⇒ {φ1, φ2}ND (σ) = φM1 ∂Mφ
N
2 − φM2 ∂Mφ

N
1 − YMN

KLφ
K
1 ∂Mφ

L
2 (2.12)

for local functionals φ = −
∫
φK(σ)ZK(σ), by use of the section condition ∂̃µµ

′
φ(X) = 0

and the canonical Poisson brackets in R1-indices,
{
ZK(σ), XL(σ′)

}
= −δLKδ(σ − σ′).

The second term in (2.8), including

ωµ,KL = 1
2

(
0 −εµκλλ

′

εµλ
κκ′ 0

)
, (2.13)

breakes the SL(5)-invariance of (2.8), but makes it a Lie bracket. In fact it will be, as in
the O(d, d) case, simply the canonical Lie bracket on (T ⊕∧2 T ?)M . To summarise

{φ1, φ2}D = [v1, v2] + Lv1ξ2 − d(ιv2ξ1), {φ1, φ2}L = [v1, v2] + Lv1ξ2 − Lv2ξ1 (2.14)

with φi = vi + ξi = −
∫
φKi ZK ∈ (T ⊕ ∧2 T ?)M . Again, as in the string case, the ω-term

corresponds to a boundary/topological contribution, i.e. treated as a distribution

ωµ,KL

∫
dxµ ∧ dϕ, (2.15)

giving rise to wrapping contributions ∼
∫

dxµ ∧ dxµ′ . So, the difference between Courant
and Dorfman bracket is of this form of a total differential under a spatial world volume
integral. This result is completely analogous to the string resp. O(d, d) case [25]. There
the winding contribution was equivalent to a topological term in the action, necessary for
its O(d, d)-invariance. The will be discussed further, also for other generalised geometries,
in section 3.1.

2.2 Charges and SL(5)-covariance

One can write the current algebra in a manifestly SL(5)-invariant way with the use of a
charge qM ∈ R2. E.g. the Dorfman current bracket can be written as

{
ZK(σ),ZL(σ′)

}
D = εMKLqM′dXMM

′(σ) ∧ dδ(σ − σ′) (2.16)

or with help of a 1-form valued (SL(5)-invariant) ‘metric’, that can be used to lower the
indices,

ηKL = εMKLqM′dXMM
′
, s.t. dη = 0, (2.17)

as {
ZK(σ),ZL(σ′)

}
D = ηKL ∧ dδ(σ − σ′). (2.18)
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Acting on local functionals φ = −
∫
φKZK this gives

{φ1, φ2}D = −
∫ (

2φJ[1∂JφI2] ZI − εMKLqM′φK1 ∂NφL2 dXMM′ ∧ dXN
)
. (2.19)

The generalised Lie derivative is reproduced if we identify

dXMM′∧dXNN ′qM′∂NN ′ = 3
2dX [M|M′∧dX |NN ′]qM′∂NN ′ = εMNN

′KZK∂NN ′ , (2.20)

with the consistency condition q[M∂NN ′] = 0, that was used in the first step. In that way
the charge qM was already introduced in [47].

In the string case we had that the currents EI = (pi, ∂xi) are related to the doubled
coordinates like EI = ηIJ∂X

J . This allowed to derive the (Dorfman, Courant, Lie) brackets
of the doubled coordinates XI(σ) and study non-geometric on the string phase space [25,
28, 70]. In a similar fashion the ‘extended coordinate fields’ XM of SL(5) exceptional
field theory are related to the membrane currents ZM by lowering the index with ηMN

and taking the spatial world-sheet differential, leading to the following objects and their
M-theory decompositions

0-forms (coordinates): XM =
(
xµ,

1√
2
x̃µµ′

)
1-forms: XM = ηMNX

N = εLMNqL′XLL
′dXN , ZM ≡ 1

2dXM

2-forms (currents): ZM = 1
2ηMN ∧ dXN = 1

2εKLMqK′dXKK
′ ∧ dXL (2.21)

=
(1

2dx̃µν ∧ dxν , 1√
2

dxµ ∧ dxµ′
)
,

when using the choice of charge q5 = 1 (with all other components vanishing) that corre-
sponds to the choice of M-theory section used before.5

2.3 Double reduction of membrane current algebra

As a consistency check for the logic behind identifying the current algebra with objects of
exceptional generalised geometry and exceptional field theory, we study the reduction of
the membrane to the type IIa string. For that, we perform the usual double dimensional
reduction [72]:

x4(σ1, σ2) = σ2, xµ(σ1, σ2) = xµ(σ1) ≡ xµ(σ), (2.22)

for κ, λ, . . . = 1, 2, 3. The membrane current (2.6) becomes

ZMM′ =
(
dxµ ∧ dxµ′ , dxµ ∧ dx4 , pµ , p4

)
=
(
0 , dxµ ∧ dσ2 , pµ , 0

)
(2.23)

5The last identification of ZM with dXK ∧ dXL is equivalent to (2.20):

εNRR
′KK′

ZKK′ = 1
4 ε
NRR′KK′

εMLL′KK′ qM′ dXMM
′
∧dXLL

′

= 1
4 2! 3! δN[MδRL δR

′

L′] qM′ dXMM
′
∧dXLL

′
= 3 qM′ dX [N|M′

∧dX |RR
′]
(

= 2 εNRR
′KZK

)
and then as above in (2.20). For that reason the extra factor 1

2 was needed in the definition of Z in (2.21).
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such that with ZMM′ → zMM′(σ1) ∧ dσ2

zMM′ =
(
εµµ

′νzµµ′ , zµ5︸ ︷︷ ︸
zm

, zµ4 , z45︸ ︷︷ ︸
zm̃

)
=
(
dxµ , pµ , 0 , 0

)
(2.24)

At the same time the membrane current algebra (2.8) reduces to{
zK(σ), zL(σ′)

}
L = ηKL

1
2(d− d′)δ(σ − σ′) + 1

2ωKL(d + d′)δ(σ − σ′) (2.25){
zK(σ), zL(σ′)

}
D = ηKLdδ(σ − σ′), (2.26)

with ηKL = ε4KL and ωKL = ω4,KL. The only non-vanishing components are:

ηµµ′ν5 = ην5µµ′ = ωµµ′ν5 = −ων5µµ′ = εµµ′ν (2.27)

or in the conventions of (2.24)

ηKL =
(
η
kl

0
0 0

)
, η =

(
0 13
13 0

)
; ωKL =

(
ωkl 0
0 0

)
, ω =

(
0 −13
13 0

)

which, restricted to the k, l, . . . = (κ, κ), (λ, λ), . . . indices, is the canonical O(3, 3) metric and
the components of the canonical symplectic form ω as expected from the string discussion.
T -duality transformations are defined by MM

N ∈SL(5) with MM
KMN

LηKL = ηMN .

String charges and SL(5)-covariance. The type IIa discussion above motivates{
zK(σ),zL(σ′)

}
= qM

(
ηM,KL

1
2(d−d′)δ(σ−σ′)+ 1

2ωM,KL(d+d′)δ(σ−σ′)
)

(2.28){
zK(σ),zL(σ′)

}
D = qMηM,KLdδ(σ−σ′), (2.29)

as the SL(5) string current algebra using the string charge qM ∈ R2, fulfilling
qM∂MM′ = 0 [47]. The SL(5)-invariant M→IIa reduction condition would be something
like

qMσ2 = qM′XMM
′
. (2.30)

Let us proceed in the same way as for the membrane current algebra, and try to reproduce
the generalised Lie derivative form the Dorfman current algebra (2.29)

{φ1, φ2} = −
∫ (

2φK[1∂KφL2]zL − qPηP,KLφK1 ∂MφL2 dXM
)

(2.31)

We need to make a similar identification as in the membrane case. Let us define
ηKL = 1

2qpεpKL in an SL(5)-invariant way. Then it is natural to define

zK = ηKLdXL = ηM,KLqMdXL, (2.32)

from which

εPMM
′NN ′zNN ′ =

1
4ε
PMM′NN ′qKεKLL′NN ′dXLL′= 1

43!2!q[PdXMM′] = 3q[PdXMM′]

3q[PdXMM′]∂MM′ = qPdXMM′∂MM′

follows, making use of the charge condition qM∂MM′ = 0. Then, as wished, (2.31) becomes

{φ1, φ2} = −
∫ (

2φK[1∂KφN2] − Y
MN

KLφ
K
1 ∂Mφ

L
2

)
zN . (2.33)
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2.4 Twist by generalised vielbein and the embedding tensor

In analogy to the string case [25], we aim to diagonalise the Hamiltonian and all the
constraints via ZA(σ) = EA

K(σ)ZK(σ) in order to characterise the model via a twist
of the current algebra and to bring the model into the form of an E-model. EA

K are
generalised frame fields6 of the SL(5)-theory. For the canonical (Lie) current algebra (2.8)
we have{

ZA(σ),ZB(σ′)
}
L = 1

2
(
jC(σ) ∧ dδ(σ − σ′)− jC(σ′) ∧ d′δ(σ − σ′)

)
ηC,AB (2.34)

+ jC ∧ 1
2(d + d′)δ(σ − σ′)ωC,AB(σ, σ′)

− FC
[AB](σ)ZC(σ)δ(σ − σ′).

The ε-symbol is SL(5)-invariant, whereas ωµ,AB(σ, σ′) = EA
K(σ)EBL(σ′)ωµ,KL is not

SL(5)-invariant but again necessary for (2.34) to be a Lie bracket. The twist is char-
acterised by the SL(5) generalised fluxes [73, 74] [EA, EB]D = FC

ABEC , i.e.

FC
AB = 2ENC∂[AEB]

N − Y CD
AEEN

E∂DEB
N . (2.35)

From this definition it is quite obvious to see, why they should appear generically in the
current algebra that reproduces the generalised Lie derivative. The twists can also be
defined for the Courant algebroid brackets{

ZA(σ),ZB(σ′)
}
D = jc(σ)∧dδ(σ−σ′)εcAB−FC

AB(σ)ZC(σ)δ(σ−σ′) (2.36){
ZA(σ),ZB(σ′)

}
C = jc(σ)∧ 1

2
(
d−d′

)
δ(σ−σ′)εcAB−FC

AB(σ)ZC(σ)δ(σ−σ′). (2.37)

Some kind of Courant algebroid conditions will put conditions on the FC
AB, corresponding

to a (dynamical) Bianchi identity of these fluxes.
The type of finite-dimensional algebras, as for example the recently discussed excep-

tional Drinfeld algebras [51, 52, 56–63], are contained in the current algebra as the algebra
of the zero modes zA = −

∫
ZA in case F is constant:

{zA, zB}D =
∫

FC
AB(σ)ZC(σ) = FC

ABzC

{zA, zB}C = FC
[AB]zC , (2.38)

{zA, zB} = FC
[AB]zC +

∫
ηE,CD∂D (ωE,AB) ZC .

6The SL(5)-vielbeine and their invariance conditions, used here, are:

’little’ vielbein: EA1
M1 . . . EA5

M5εA1...A5 = εM1...M5

’big’ vielbein: EA
K = 1

2EAA
′
KK′

= E[A
KEA′]

K′
, EA

KEB
LEM

CEN
DYMN

KL = Y CDAB .

In a frame, defined by such a vielbein, also the following object, a ‘little’ current, appears:

jC = ECµdxµ with d(ηC,ABjC) = d(εµKLEAKEBLdxµ) = −YMN
KL∂M (EAKEBL)ZN .

A,B, . . . are the flat (generalised flux frame) R2 SL(5)-indices and A = [AA′], . . . flat (generalised flux
frame) R1 SL(5)-indices.
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The boundary/winding contribution to the zero mode algebra ensures (similarly to [25] for
the string case) that this zero mode algebra in the last line is indeed a Lie algebra. The
{zA, zB}D bracket is the one appearing in the recent discussions on exceptional Drinfeld
algebras.

3 Canonical and exceptional currents

We aim to apply the same concepts as in section 2 to the world-volume theories of all the
1
2 -BPS objects in string and M-theory, and investigate how their current algebra can be
understood to incorporate generalised geometry structures.

There are two generalisations that we will be concerned with. Of course, the key
interest lies in an Ed(d)-invariant description of world-volume theories of objects in type II
string and M-theory. However, some features are shared by the simpler case of p-branes in
SL(p+ 3) generalised geometry, considered in [39, 75]. In all cases here, the Y -tensor can
be defined in terms of η-symbols

YMN
KL = ηP,MNηP,KL. (3.1)

R1-indices are denoted by K,L,M . . . and R2-indices by K,L,M, . . . , see table 1. Let us
first settle our conventions for the appearing duality groups, here.

SL(p + 3) generalised geometry is the geometry on the generalised tangent bundle
(T ⊕∧p T ?)M . The η-symbol and the corresponding ω-symbol, that will be used in the
following, are

ηκ1...κp−1,MN =

 0 δ
ν1...νp
κ1...κp−1µ√

p!
δ
µ1...µp
κ1...κp−1ν√

p! 0

 , ωκ1...κp−1,MN =

 0 −
δ
ν1...νp
κ1...κp−1µ√

p!
δ
µ1...µp
κ1...κp−1ν√

p! 0

 ,
(3.2)

where other components are supposed to vanish and the following decompositions of R1-
and R2-indices into spacetime indices κ, λ, µ = 1, . . . , d = p+ 2 are made:

XM =
(
xµ,

x̃µ1...µp√
p!

)
∈ R1, QM =

(
Qµ1...µp−1√

(p− 1)!
,
Qµ1µ2µ3µ4
√

4!

)
∈ R2.

R1 and R2 correspond to the three- resp. four-fold skewsymmetric representation of
SL(p+ 3). That generalises the p = 2-case, that is the membrane case from section 2. The
generalised Lie derivative [φ1, φ2]D takes the same form as for O(d, d) and SL(5) for all p:

[φ1, φ2]D = [v1, v2] + Lv1ξ2 − d(ιv2ξ1) (3.3)

with φi = vi + ξi ∈ (T ⊕∧p T ?)M .
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Ed(d) generalised geometry. The η-symbols and conventions for decomposition of the
R1- andR2-representation Ed(d) for d ≤ 6 in the type IIb and M-theory section are collected
in appendix B. The representations of the duality groups that will be revelant are collected
in table 1. Mainly the representations R1 and R2 will matter in the following, whereas the
higher representations of the tensor hierarchy will not appear in the following. For d ≤ 6
the generalised Lie derivative always takes the form (in the M-theory section):

[φ1, φ2]D = [v1, v2] + (Lv1ω2 − d(ιv2ω1)) + (Lv1ξ2 − d(ιv2ξ1) + ω1 ∧ dω2) (3.4)

with φi = vi + ωi + ξi ∈
(
T ⊕

∧2 T ? ⊕
∧5 T ?

)
M .

The general setup. The proposition of this section is a Hamiltonian formulation of
any p-brane object in a duality covariant way. The obvious conjecture, generalising the
membrane in SL(5), for the Hamiltonian and spatial diffeomorphism constraints is

H = 1
2

∫
ZK ∧ ?ZLHKL, 0 = ηM,KLZK ∧ ?ZL, (3.5)

for the generalised metric H and the η-symbols ηM,KL of that theory. The currents ZM
are spatial world-volume p-forms. In the following, these currents Z and their algebra will
be the main focus having two main questions in mind:

• How should the currents Z and a currents algebra look, such that they form some
kind of representation of the exceptional symmetry? I.e. how must the currents and
their algebra look, such that bracket of φ = −

∫
φMZM will reproduce generaslied

Lie brackets (3.3) or (3.4)?

• Can these currents be constructed by means of the canonical Poisson structure? I.e.
Will the currents be in generality derivatives of coordinate fields x(σ) and their canon-
ical momenta p(σ), arranged into representations of the duality group as in (2.21) for
the membrane?

3.1 Para-Hermitian generalised geometries

In order to answer the above questions we first go a step back, and reconsider why the
construction of the generalised Lie derivative from the canonical Poisson structure (up to
total derivative terms) worked for the string and the membrane.

In these constructions a non duality-invariant ω-symbol appeared, ensuring the Lie
bracket properties of the current algebra. Let us investigate how the invariants ηM,KL and
the ω-symbols combine to produce a Lie bracket. This is part of so-called para-Hermitian
geometry [76–81].

3.1.1 O(d, d)

We define the projector

PKLMN = 1
2
(
Y KL

MN + ΩKL
MN

)
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with Y KL
MN = ηKLηMN and ΩKL

MN = ηKLωMN for O(d, d) generalised geometry. This
notation is chosen in a way that it directly generalises to exceptional generalised geometry.
The projector has the following properties:

PKLMN = PLKMN , PKLMN∂K ⊗ ∂L = 0 (section condition)

Using this section condition, one can derive the identities:

PKLMNP
NP

RS∂P = PKLRS

(
0
∂̃m

)
≈ 0, (3.6)

PKLNMP
NP

RS∂P = PKLRS

(
∂m
0

)
≈ PKLRS∂M . (3.7)

In comparison to the standard Courant algebroid structure, there are now two total deriva-
tive7 bilinear objects:

((φ1, φ2))K = 1
2Y

KL
MN∂L

(
φM1 φN2

)
, [[φ1, φ2]]K = 1

2ΩKL
MN∂L

(
φM1 φN2

)
(3.8)

Besides the standard Dorfman bracket [φ1, φ2]KD , which is defined in terms of the Y -tensor,
one can define a bracket in terms of the projector P :

[φ1, φ2]KL = φL1 ∂Lφ
K
2 − φL1 ∂LφK2 + 2PKLMNφ

M
[1 ∂Lφ

N
2] (3.9)

By the identities (3.6) and (3.7) this is indeed a Lie bracket and in fact

[φ1, φ2]L = [v1, v2] + Lv1ξ2 − Lv2ξ1 = [φ[1, φ2]]D + [[φ1, φ2]] ≡ [φ1, φ2]C + [[φ1, φ2]] , (3.10)

the standard Lie derivative on (T ⊕ T ?)M with φi = vi+ξi ∈ (T ⊕ T ?)M . Also, [φ1, φ2]L ∼
[φ1, φ2]C up to total derivative terms in the O(d, d) case.

To summarise: the para-Hermitian geometry connected to the pair (η, ω) defines a
(standard) Lie algebroid over TM ⊕T ?M . Connected to that, Lie bracket by total deriva-
tive terms, are other algebraic entities with interesting properties, including the standard
Courant algebroid over M .

ω-term and the section. The crucial point of the ‘ω-geometry’ is that it, in contrast
to the standard approach to generalised geometry or double field theory, allows for a
reconstruction of the section from the choice of ω and vice versa.

7Contracting these with the O(d, d)-currents E makes it obvious that they correspond to total derivatives
under the spatial world-volume integrals:

((φ1, φ2)) =
∫

((φ1, φ2))K EK = 2ηMN

∫
d
(
φM1 φN2

)
= 2

∫
d (φ1 • φ2)

[[φ1, φ2]] =
∫

[[φ1, φ2]]K EK = 2ωMN

∫
d
(
φM1 φN2

)
= 2

∫
d (φ1 ◦ φ2) .
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We choose the PKLMN as the fundamental object obeying the identities (3.14) and
start with the standard section ∂N ≈ (∂n, 0). Then, as PKLMN = 1

2η
KL(ηMN +ωMN ), the

identities (3.14) imply

ω =
(

2B −1
1 0

)
(3.11)

for some skewsymmetric matrix B. If we took an arbitrary section ∂′M = MM
N∂N , ω

transforms as ω′ = M · ω ·MT , for M ∈ O(d, d). Up to a (constant) B-shift, the choice of
section determines the form of ω and vice versa. This B-shift symmetry is also a well-known
property of a Courant algebroid.

A conceptual consequence is that one can reconstruct the Lie algebroid structure of
the current algebra from the standard Courant algebroid plus a choice of section.

Para-Hermitian and para-Kähler geometries. The current algebra is characterised
by the pair (η, ω) and could be completed to a compatible triple (η, ω, I) by IMN =
ηMKωKN . If I is a real structure, I2 = 1, the geometry is called para-Hermitian, if dω = 0
para-Kähler [76, 78, 80].

In addition, a string model is defined by a generalised metric H in the Hamiltonian
formalism. Recently, Born geometry was introduced as para-Kähler geometry of the tripel
(η, ω,H), subject to the conditions [77]

η−1H = H−1η, ω−1H = −H−1ω. (3.12)

A central result of [77, 78] was that, following from this, there exists a frame in which all
the defining structures take a canonical form:

H = 1, ω =
(

0 −1
1 0

)
, η =

(
0 1

1 0

)
. (3.13)

The input that we obtain from the Hamiltonian formulation of the string is different,
though. In the generalised metric formulation, in which we worked so far, — meaning
canonical coordinates on the phase space and background information encoded in the
Hamiltonian via the generalised metric — we get η and ω in their canonical form and
H(G,B) in a general background dependent form. So, unless we are in flat (or toroidal)
space, where we can choose H = 1, the classical phase space geometry of the string σ-model
is not described by Born geometry.

3.1.2 SL(p+ 3) and Ed(d)

In total analogy to the O(d, d) case, we study the role that the ω-term plays in exceptional
generalised geometry. The main question will be whether a similar relation to (3.10)
holds, i.e. whether generalised and standard Lie derivatives are the same up to total
derivative terms.

We use the definitions of η- and ω-symbols in (3.2) and appendix B in order to de-
fine the projector PKLMN = 1

2

(
Y KL

MN + ΩKL
MN

)
= 1

2η
P,KL (ηP,MN + ωP,MN ). This
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projector8 has the following properties:

PKLMN = PLKMN , PKLMN∂K ⊗ ∂L = 0 (section condition)

Working on a solution to the section condition one derives

PKLMNP
NP

RS∂L ⊗ ∂P ≈ 0
PKLNMP

NP
RS∂(L ⊗ ∂P ) ≈ PKLRS∂(L ⊗ ∂M) (3.14)

e.g. PKLNMP
NP

RS

(
∂Lφ

M
[1

) (
∂Pφ

S
2]

)
≈ PKLRS

(
∂Lφ

P
[1

) (
∂Pφ

S
2]

)
(3.15)

As is also the case in the usual exceptional generalised geometry in identities regarding the
Y -tensor [35], these identities involing the projector P are a weaker than in the string case.

Instead of taking a given section and computing these identities, one could again
take the opposite route and choose the PKLMN as the fundamental object obeying the
identities (3.14). Then one sees that a choice of ω is equivalent to a choice of (M-theory or
IIb) section up to a gauge-transformation of the three-form gauge fields.

Again, one can define a total derivative object

[[φ1, φ2]]K = 1
2ΩKL

MN∂L
(
φM1 φN2

)
(3.16)

and, besides the standard Dorfman brackets (3.3) and (3.4), a bracket in terms of the
projector P :

[φ1, φ2]KL = φL1 ∂Lφ
K
2 − φL1 ∂LφK2 + 2PKLMNφ

M
[1 ∂Lφ

N
2] . (3.17)

By the identities (3.14) this is a Lie bracket. From here on, the stories slightly diverge:

• For the SL(p+ 3)-theory, we have

[φ1, φ2]L = [v1, v2] + Lv1ξ2 − Lv2ξ1 = [φ1, φ2]C + [[φ1, φ2]] , (3.18)

with φi = vi + ξi ∈ (T ⊕∧p T ?)M as in the O(d, d)-case.

• For the Ed(d)-theory, on the other hand, we have

[φ1, φ2]L = [v1, v2] + (Lv1ω2 − Lv2ω1) + (Lv1ξ2 − Lv2ξ1) (3.19)

with φi = vi + ωi + ξi ∈
(
T ⊕

∧2 T ? ⊕
∧5 T ?

)
M . So, essentially, the para-Hermitian

Ed(d)-geometry is basically the same as multiple copies of para-Hermitian SL(p+ 3)-
geometry put together. But, the key difference is that the generalised Lie derivative of
Ed(d)-generalised geometry and the standard Lie derivative on the extended tangent
bundle do not only differ by a total derivative term: [φ1, φ2]L 6= [φ1, φ2]C + [[φ1, φ2]].
The reason is, that the ‘interaction’ term ω[1 ∧ dω2] in (the Courant bracket version
of) (3.4) is not a total derivative. On the level of the ω-symbol this has also the con-
sequence that the ω-symbols are in general not skewsymmetric: ωM,KL 6= −ωM,LK ,
see appendix B for the explicite expressions.

8This object should not be confused with the background dependent projector in [82]. Instead the term
‘projector’ for the background independent PKLMN here is justified by the form of (ηP,MN + ωP,MN ), cf.
appendix B, and first of the identity in (3.14). As such, it appeared already in [49].
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3.2 Charges, currents and the (generalised) Lie derivatives

As currents of p-branes we postulate, motivated by our investigation of the M2-brane and
the type IIa and type IIb string in the SL(5)-theory in section 2, spatial top-forms on the
world-volumes, i.e. (spatial) world-volume p-forms:

ZK(σ) = 1
p
ηN ,KLQN ∧ dXL. (3.20)

For sake of simplicity of notation, σ = (σ1, . . . , σp) always denote the spatial coordinates
of the p-brane world-volume,

∫
the integral of the p-dimensional spatial part of the world-

volume and δ(σ − σ′) the δ-distribution in p-dimension. The p, for which σ,
∫
, δ and the

spatial world-volume differential d are to be understood, should be clear from context.
The currents (3.20) are characterised by a charge Q : ∧p−1R1 → R2, an R2-valued

(p− 1)-form on the extended space, parameterised by coordinates XM . We define

ηKL = ηN ,KLQN = 1
(p− 1)!ηN ,KLq

N
N1...Np−1dXN1 ∧ . . . ∧ dXNp−1

in term of constants qN1...Np−1
and consequentially assume that dQ = 0 resp. dη = 0. In

such a form a charge appeared already in [46, 49].
Again, the aim is that the algebra of sections φ[X] = −

∫
φK (X(σ)) ZK(σ), satisfying

the section condition, is the standard exceptional generalised Lie derivative

{φ1, φ2}D = −
∫ (

φK1 ∂Kφ
L
2 − φK2 ∂KφL1 − Y KL

MNφ
M
1 ∂Kφ

N
2

)
ZL (3.21)

respectively the para-Hermitian exceptional generalised Lie derivative {φ1,φ2}L for PKLMN

instead of Y KL
MN . This will be the case if we assume

{
ZM (σ),XN (σ′)

}
= δNMδ(σ−σ′) and

the current algebra {
ZM (σ),ZN (σ′)

}
D = ηMN ∧ dδ(σ − σ′) (3.22)

respectively{
ZM (σ),ZN (σ′)

}
L =QL∧

((
ηL,MN +ωL,(MN)

) 1
2
(
d−d′

)
+ωL,[MN ]

1
2
(
d+d′

))
δ(σ−σ′),

(3.23)

and if the charge QM fulfils the charge condition

QM ∧ dXN∂N = ηM,NPZP∂N . (3.24)

In terms of the Q alone it is, using (3.20), given by9

QM ∧ dXN∂N = 1
p
ηM,NP ηK,LPQK ∧ dXL∂N . (3.25)

9If multiplied by ηM,KL the charge condition can be put in terms of the ηKL as

ηKL ∧ dXM∂M = YMN
KLZM∂N = 1

p
YMN

KLηMP ∧XP ∂N .

As such, the condition already appeared for the string (p = 1) in [47].
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In order to find a solution for the charge QM, it seems that the section condition needs to
be imposed first. Only in special cases like SL(5), it seems that one can solve the charge
condition first and derive a section condition from a concrete charge.

Connecting to the previous results for SL(5). For the 1- and 2-branes we can make
contact with section 2 and [47]

p= 1 : qM≡qM ∈R2 (3.26)
p= 2 : qMM1 = qMM1M2 ≡ δ

MM′
M1M2qM′ , with qM′ ∈R2 =R3 (3.27)

p= 3 : qMM1M2 = εMM3M4εN1M1M3εN2M2M4qN1N2 , with qN1N2 ∈
∧2
R2 =R4. (3.28)

The charge condition (3.25) implies

qM∂MM′ = 0 ∈ R3, q[M1∂M2M3] = 0 ∈ R4, qM1M2∂M1M2 = 0 ∈ R5, (3.29)

using the SL(5) representations Rp. Motivated by that one might suggest that also for
general d the charges of p-branes are elements of representations Rp+1 appearing in the
tensor hierarchy, cf. table 1, Q(p) ∈ Rp+1 and their charge conditions to be elements in Rp+2
as was already done in [47]. This claim is true for the SL(5)-theory as demonstrated above.

Apart for the p = 3-case, D3-branes in the IIb theory, for which a similar embedding
Q(3) = R4 ∈

∧2R1 ⊗R2 seems possible for arbitrary d, and the obvious Q(1) ∈ R2, there
seems no necessity in our approach to the current algebra to assume that the charges or
their charge condition should fit into the tensor hierarchy. We worked so far purely from
the point of view of the theory in the internal space. Furthermore, the charges should
exist also in cases, which are normally not considered to be part of the tensor hierarchy, as
for example for the 5-brane multiplet in the E6(6), for which the charges then would take
values in R6. So, in the following, we will continue to consider the charges to be rather
Q(p) ∈

(∧ p−1 R1
)
⊗R2 as before, and not elements of Rp+1.

3.3 Canonical p-form currents, their current algebra and SL(p+ 3)

The obvious generalisation of the type II string in d = 3 and membrane in d = 4 cases is
the p-brane current in a p+ 2-dimensional target space10

ZM (σ) =
(
pµ(σ) ? 1, 1√

p!dx
µ1 ∧ . . . ∧ dxµp

)
. (3.30)

Using the canonical Poisson structure, one obtains{
ZM (σ),ZN (σ′)

}
= QL ∧

(
ηL,MN

1
2
(
d− d′

)
+ ωL,MN

1
2
(
d + d′

))
δ(σ − σ′) (3.31)

with η- and ω-symbols of the SL(p+ 3)-group (3.2) and

QM =
(

1√
(p− 1)!

Qµ1...µp−1 , 0
)
, Qµ1...µp−1 = dxµ1 ∧ . . . ∧ dxµp−1 . (3.32)

10Similar nice looking expressions can be obtained for any d ≥ p+ 1, but only for d = p+ 2 the currents
form a representation of an SL group, SL(p + 3). The occurring currents have been investigated already
in [75] in the strive for topological theories.
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This is a solution to the charge condition (3.25) to the SL(p+ 3) η-symbols and indeed the
form of the current fits into the above system ZM = 1

pηK,LMQ
K ∧ dXL:

ZM =
( 1
p!dx

κ1 ∧ . . . ∧ dxκp−1 ∧ dx̃κ1...κp−1κ ,
1√
p!dx

µ1 ∧ . . . ∧ dxµp
)

(3.33)

with coordinates x̃κ1...κp corresponding to the p-brane momentum (cf. the string case:
p = ∂x). When neglecting total derivative contributions (3.31) becomes{

ZM (σ),ZN (σ′)
}

= ηL,MNQL ∧ dδ(σ − σ′), (3.34)

as wished, and gives the SL(p + 3) generalised Lie derivative (3.3), when applied on
φ = −

∫
φKZK . If, instead, one used (3.31), one reproduces the standard Lie derivative of

the para-Hermitian generalised geometry on (T ⊕∧p T ?)M (3.18).

Dirac brackets. As for the O(d, d) string, an alternative derivation of (3.34) exists.
This again employs Dirac brackets on an extended phase space with R1 momenta and
coordinates {

PM (σ), XN (σ′)
}

= −(p+ 1)δNMδ(σ − σ′) (3.35){
PM (σ),PN (σ′)

}
=
{
XM (σ), XN (σ′)

}
= 0

for constraints ΦM = PM − ZM = PM − 1
pηK,LMQ

K ∧ dXL. One finds, neglecting total
world-volume derivatives,

AKL(σ, σ′) =
{
ZK(σ),ΦL(σ′)

}
=
{
ZK(σ),PL(σ′)

}
= (p+ 1)

(
ακλ δ

[λp
κ Qλ1...λp−1]

pδ
[κp
λ Qκ1...κp−1] 0

)
∧ dδ(σ − σ′)

BKL(σ, σ′) =
{
ΦK(σ),ΦL(σ′)

}
= −(p+ 1)2

p
ηM,KLQM ∧ dδ(σ − σ′)

with ακλ = −αλκ. The Dirac brackets on (3.35) are, as striven for,

{
ZK(σ),ZL(σ′)

}
D.B. = −

∫ ′′ ∫ ′′′
AKM (σ, σ′′)(B−1)MN (σ′′, σ′′′)ANL(σ′′′, σ′)

= ηM,KLQM ∧ dδ(σ − σ′), (3.36){
ZM (σ), XN (σ′)

}
D.B

= −δNMδ(σ − σ′).

3.4 Exceptional currents for d ≤ 6

The previous setting was quite restrictive and only in part related to the exceptional duality
groups that we want to geometrise. In particular, one can find solutions to the charge
condition (3.25) for each 1

2 -BPS object in type IIb and eleven-dimensional supergravity
and construct potential currents of world-volume theories, such that their algebras respect
the exceptional symmetries.
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Solutions to the charge condition in Ed(d). In the following, solutions of the charge
condition and their corresponding currents ZM = 1

pηK,LMQ
K∧dXL in an M-theory or type

IIb section in Ed(d) are collected.11 In contrast to the previously discussed p = 1, 2 cases
in the SL(5)-theory, it does not seem possible to solve the condition without specifying the
section first.

• In the M-theory section, we have directly from (3.24):

ZM =
(
Zµ,

1√
2!
Q[µ1 ∧ dxµ2],

1√
5!
Q[µ1µ2µ3µ4 ∧ dxµ5]

)
(3.37)

– M2-brane:

Qµ = q dxµ, Qµ1µ2µ3µ4 = 0 (3.38)

ZM = q

( 1
2!dx

λ ∧ dx̃λµ ,
1√
2!

dxµ1 ∧ dxµ2 , 0
)

– M5-brane:

Qµ =−q6 dxµ∧dxµ1∧dxµ2∧dx̃µ1µ2

Qµ1µ2µ3µ4 = q dxµ1∧dxµ2∧dxµ3∧dxµ4 (3.39)

ZM = q

( 1
5!dx

µ1∧. . .∧dxµ4∧dx̃µ1...µ4µ−
1

6·5dxµ1∧. . .∧dxµ3∧dx̃µ1µ2∧dx̃µ3µ ,

1√
2!

1
6dxµ1∧dxµ2∧dxµ3∧dxµ4∧dx̃µ3µ4 ,

1√
5!

dxµ1∧. . .∧dxµ5

)

• In the type IIb section one derives from (3.24):

ZM =
(
Zµ,Qm ∧ dxµ, 1√

3!
Q[µ1µ2 ∧ dxµ3],

1√
5!
Q

[µ1µ2µ3µ4
m ∧ dxµ5]

)
(3.40)

– F1/D1-system resp. (p, q)-string

Qm = qm =
(
p

q

)
, Qµ1µ2 = 0, Q

µ1µ2µ3µ4
m = 0 (3.41)

ZM = qm
(
dx̃mµ , dxµ , 0 , 0

)
11The currents and charges for the type IIa theory objects — F1, D2, D4, NS5 — can be obtained

dimensional reduction analogous to section 2.3:

• M2 → F1, M5 → D4: xd ≡ σp, xµ = xµ(σ1, . . . , σp−1), µ = (µ, d)

• M2 → D2, M5 → NS5: dxd ≡ 0

The point particle, p = 0, exists as well (Q = 0) [46], but has no spatial world-volume and, hence, there is
also no interesting current algebra defined on it.
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– D3-brane:12

Qm = 1
2 q εmndxµ ∧ dx̃nµ, Qµ1µ2 = q dxµ ∧ dxν , Q

µ1µ2µ3µ4
m = 0

ZM = q

( 1
3!εmndxν ∧ dx̃mν ∧ dx̃nµ −

1
3!dx

ν1 ∧ dxν2 ∧ dx̃µ1µ2µ
, (3.42)

1
2εmndxµ ∧ dxν ∧ dx̃nµ ,

1√
3!

dxµ1 ∧ dxµ2 ∧ dxµ3 , 0
)

– NS5/D5-brane:

Qm = 1
4!ql

(
3 εmndxν ∧ dx̃nν ∧ dxλ ∧ dx̃lλ − δlmdxµ1 ∧ dxµ2 ∧ dxµ3 ∧ dx̃µ1µ2µ3

)
Qµ1µ2 = 1

2 qm dxµ1 ∧ dxµ2 ∧ dxµ3 ∧ dx̃mµ3

Q
µ1µ2µ3µ4
m = qm dxµ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4 (3.43)

ZM =
(1

5

[
Qm ∧ dx̃mµ + 1

2!Q
µ1µ2 ∧ dx̃µ1µ2µ

+ 1
4!Q

µ1µ2µ3µ4
m ∧ dx̃mµ1µ2µ3µ4µ5

]
,

− 1
4! ql dxµ ∧ dxµ1 ∧ dxµ2 ∧

(
3 εmndx̃nµ1

∧ dx̃lµ2
+ δlmdxµ3 ∧ dx̃µ1µ2µ3

)
,

1√
3!

1
2 qm dxµ1 ∧ . . . ∧ dxµ4 ∧ dx̃mµ4

,
1√
5!
qm dxµ1 ∧ . . . ∧ dxµ5

)

Suggested by these charge solutions, we see the typical decomposition of R1 and R2 in the
M-theory and type IIb sections

ZM =
(
Zµ,

Zµ1µ2
√

2!︸ ︷︷ ︸
M2

,
Zµ1µ2µ3µ4µ5
√

5!︸ ︷︷ ︸
M5

)
, QM=

(
Qµ︸︷︷︸
M2

,
Qµ1µ2µ3µ4
√

4!︸ ︷︷ ︸
M5

,
Qµ1µ2µ3µ4µ5µ6,µ

√
6!︸ ︷︷ ︸

KKM

)

ZM =
(
Zµ, Zµm︸︷︷︸

F1/D1

,
Zµ1

µ
2
µ

3
√

3!︸ ︷︷ ︸
D3

,
Z
µ

1
µ

2
µ

3
µ

4
µ

5
m √

5!︸ ︷︷ ︸
NS5/D5

)
, QM=

(
Qm︸︷︷︸

F1/D1

,
Q
µ

1
µ

2
√

2!︸ ︷︷ ︸
D3

,
Q
µ

1
µ

2
µ

3
µ

4
m√

4!︸ ︷︷ ︸
NS5/D5

,
Q
µ

1
µ

2
µ

3
µ

4
µ

5
,µ

√
5!︸ ︷︷ ︸

KKM

)

(3.44)

The already existing place for the Kaluza-Klein monopole (KKM) in the R2-representation
is empty in the above collected list of currents. It is simply not a solution to the charge
condition (3.25) for d ≤ 6 yet. The decomposition of the Z is similar to the one of the
generalised coordinates in XM . For both sections the xµ and Zµ = pµ-components are
shared in all currents.

The non-geometric coordinates of XM , i.e. the ones that do not belong to a section,
could be associated to the momenta of the corresponding objects — in the same decompo-
sition as the one for the Z. This is analogous to the string in O(d, d) generalised geometry,
where pµ = dx̃µ [25, 28, 70].

12As suggested by (3.28) there might be an embedding of R4 =
∧2R2 of this charge solution. This

is indeed the case — the only non-zero component of qM1M2 is qm1m2 = 1
2 q εm1m2 in the IIb section.

With (3.28) one reproduces QM of the D3-brane.
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The non-geometry of the currents. As already noted previously [46, 49], where σ-
model constructions of such world-volume theories were considered, we observe that for
the ‘higher’ (p > 2) world-volume not only the corresponding Q-component but also all
the ‘lower’ ones are turned on — e.g. for the M5-brane (3.39) not only Qµ1...µ4 but also
Qµ. In the end, the reason for that is Ed(d)-covariance.

In [46, 49] and, from a current algebra approach for the M5-brane, [65] this was done by
introducing the gauge fields, that typical for M5-brane actions [83, 84]. Here, instead, these
components contain differentials of non-geometric coordinates, that are associated to the
momenta of the lower dimensional branes. In the example of the NS/D5-brane (3.43), the
D3-charge and current contain the differential dx̃mµ4

and so on. Hence, one interpretation
of the extended coordinates could be to account for these d.o.f.s.

Consequentially, from the point of view of such a higher brane, whose phase space coor-
dinate normally just would be xµ and pµ = Zµ, the currents itself already are non-geometric
as also the additional non-geometric coordinates x̃ appear inevitably. Finally, such terms
are logical to appear if one strives for an Ed(d)-covariant setup: as for example the M2- and
M5-brane or the D-branes are connected by duality, in general M5 currents can’t appear
alone in such a setup. Another way to understand that fact is, that in the generalised Lie
derivative for d > 4 (in the M-theory picture) a ‘coupling’ of two-forms appears: [ω1, ω2]D =
ω1 ∧ dω2 for two-forms ωi. Hence, the current algebra bracket of two M2-currents forms
an M5-current, necessitating that in presence of an M5-current also M2-currents have to
be present. Interestingly, the converse does not seem to be true: one can formulate an
M2-brane current algebra, by consistently setting the (canonical) M5-current to zero.

Relation to supersymmetry and superalgebras? Before the advent of exceptional
generalised geometry in the study of M-theory, algebraic considerations on p-brane world-
volume theories have been done in terms of certain superalgebras [85–89]. Recently, these
have been reconsidered in terms with help of exceptional generalised geometry [41, 90].

A priori, the present construction takes only input from exceptional generalised ge-
ometry. Therefore, it is in fact rather astonishing that the solutions of the charge con-
dition (3.25) are exactly the half-BPS p-branes, as there is no role of supersymmetry in
the construction at all. This correspondence between charge and the BPS-condition gives
further evidence for the conjecture that both supersymmetry and the duality symmetry
are both equivalent geometric tools to organise string and M-theory.

Looking for further connections of the construction of this article to the superalgebra
approach [90] one notices that the condition on massless presentation are the Hamiltonian
and diffeomorphism constraints (3.5). Another coincidence is that supersymmetry for the
supersymmetric p-brane actions only holds up to total derivative terms [89], whereas in the
construction of this paper either the exceptional symmetry or the Jacobi identity of the
current algebra only holds up to similar total derivative terms.

Deriving the current algebra? As the generalised Lie derivative for Ed(d) for d ≥ 5
is not equivalent to the standard Lie derivative up to total derivatives, one cannot hope
to derive this current algebra in a similar way to the p-brane in SL(p + 3) or the string
in O(d, d). Neither starting from canonical Poisson brackets nor the Ed(d)-invariant Dirac
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bracket approach lead to a non-Lie bracket. The only reason, why one could make it work
in the previous cases, is that there the difference is always only a total-derivative term on
the spatial world-volume, that would not contribute classically.

It is possible to derive a para-Hermitian Ed(d) current, though. For example, for
d = 5, 6, it could simply be realised as a ‘sum’ of the p = 2- and p = 5-currents resp. their
corresponding SL(p+ 3)-theory

ZM = Z(2)
M (σ) + Z(5)

M (ρ) ∼
(
p(2)
µ (σ) + p(5)

µ (ρ), dxµ1(σ) ∧ dxµ2(σ), dxµ1(ρ) ∧ . . . ∧ dxµ5(ρ)
)

in the M-theory section. They correspond to decoupled M2 and M5 world-volume theories,
without exhibiting the exceptional symmetry at the classical level.

Comparison to the Hatsuda-Kamimura M5-current. As a consistency check, we
compare the M5-currents (3.39) to the M5-current of the SO(5, 5) theory in [65] that
were shown to encode the Hamiltonian formulation of the Pasti-Sorokin-Tonin M5-brane
action [83, 84].

If we make the identifications

pµ = Zµ and F = 1
6dxµ ∧ dxµ′ ∧ dx̃µµ′ (3.45)

in (3.39) we reproduce the currents from [65]. The charge corresponding to this current is
the one from [46, 49]

QM[F ] = (F ∧ dxµ , dxµ1 ∧ . . . ∧ dxµ4 , 0) (3.46)

when plugged into (3.20). From (3.22) we derive the formal expression{
F (σ), F (σ′)

}
= dδ(σ − σ′) (3.47)

or
{
F̄αα

′(σ), F̄ ββ′(σ′)
}

= εαα
′ββ′γ∂γδ(σ − σ′) for Fα1α2α3 = 1

2εα1α2α3β1β2F̄
β1β2 . As

shown in [65] this is indeed the Dirac bracket of a self-dual two-form gauge field A with
field strength F = dA (on the M5-brane world-volume) and canonical momentum E:{
Eαα

′(σ), Aββ′(σ′)
}

= −δα[βδα
′

β′], w.r.t. to the constraints Φ = E − F̄ = 0. Hence, one can
derive from the canonical phase space (pµ(σ), xµ(σ);E(σ), A(σ)) a current algebra

{
ZM (σ),ZN (σ′)

}
[F ] = QL[F ] ∧

(
ηL,MN

1
2
(
d− d′

)
+ ωL,[MN ]

1
2
(
d + d′

))
δ(σ − σ′), (3.48)

without the previously unwanted ωL,(MN)-terms and, hence, it corresponds to the striven
for Dorfman current algebra up to total world-volume derivative terms. However, it does
only satisfy the Jacobi identity up to such total-derivative terms and, resultantly, does not
correspond to para-Hermitian exceptional geometry.

Of course, another price for deriving the Dorfman current algebra (3.22) here was the
loss of Ed(d)-invariance, due to the identifications (3.46). The formalism presented in this
paper allows encode such degrees as the gauge field A in an Ed(d)-covariant form in form
of the extended coordinates x̃µµ′ . One could expect that the gauge field momentum E is a
(non-local) incarnation of the extended momentum Pµµ

′ .
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4 Outlook

There are several conceptual questions left open in this article. The main result, the
Ed(d)-covariant current algebra{

ZM (σ),ZN (σ′)
}

= ηL,MNQL ∧ dδ(σ − σ′) (4.1)

of a p-brane current was postulated but could not be derived from some underlying prin-
ciple, like a canonical (Poisson) structure, in general, when also imposing a Ed(d)-invariant
definition of the current Z. It would be nice to change that by considering higher algebraic
structures, like aspects of dg-symplectic geometry, L∞ algebras or AKSZ constructions, see
for example [91] for similar approaches in the context of exceptional generalised geometry.
Another interesting direction would be the relation of the current algebra approach based
on Ed(d)-symmetry to an approach based on supersymmetry and superalgebras [41, 90]. As
discussed in the main text, there are many similarities but the most pressing question is the
relation of the charge condition (3.25) to the BPS-condition. On a fundamental level, one
might further ask whether a canonical (Poisson) phase space structure could ever capture
the symmetries of M-theory (either in form of exceptional or supersymmetry), or whether
a structure like (4.1) is fundamental.

The current algebra was constructed as a simple way to write down an Ed(d)-invariant
world-volume theory, motivated by the membrane and string in the SL(5)-theory where it
could be derived from the standard Polyakov type action, when neglecting total world-sheet
derivatives. A similar clean path to an action could be possible for D-branes, following [64].
For p > 2 the difference between the canonical and the Ed(d)-current algebra is not a total
world-volume differential anymore (as in the string and the membrane case). This relates
directly to discussions at the level of the action, where such topological contributions
have been shown to appear as well, as difference between duality invariant and standard
versions of actions [2, 67–69]. Hence, for p > 2 severe modification of actions in contrast
to the normal Polyakov Nambu-Goto type ones are to be expected, when demanding Ed(d)
covariance. Several candidates of such Ed(d)-invariant world-volume actions have been
discussed in the literature [44–47, 49]. It would be interesting to study whether they would
correspond to the Hamiltonian settings presented in this paper. This would also clarify,
whether the conjectured Hamiltonian and spatial diffeomorphism

H = 1
2

∫
ZK ∧ ?ZLHKL, 0 = ηM,KLZK ∧ ?ZL, (4.2)

make sense for p > 2 and d > 4 as well on the extended space, also in cases apart from
the M5-brane. The Hamiltonian formulation of membranes in a duality invariant way
might be helpful in context of the recent study of exceptional Drinfeld algebras [51, 52, 56–
63], in particular in the question whether certain transformations, e.g. polyvector shifts
a.k.a. generalised Yang-Baxter deformations, of Drinfeld algebras really correspond to
dualities of some world-volume theory, generalising work of [51] to generic objects and
d > 4. But one should not forget that the current algebra (4.1) is, in general, not a
Lie algebra. Tools of conventional classical field theory, like Legendre transformations or
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canonical transformations, have to be reconsidered. Generalising techniques of geometric
quantisation from the recently studies O(d, d) case [92] could be necessary, as well.

The fact, that all the p > 2 exceptional currents in section 3.4 are manifestly non-
geometric, is a puzzling results. Perhaps one must consider multiple interacting world-
volume theories at once, e.g. M2- and M5-branes, to make sense out of that Hamiltonian
theory. Potentially this might help resolving the famous membrane duality problem [1, 43].
In the string case, the study of the current algebra was feasible in order interpret back-
grounds as non-commutative and non-associative ones [25, 70]. Integrating (4.1) could give
a similar picture for M-theory backgrounds. The picture should be more involved, as one
would expect all kinds of higher brackets to appear.

Generalisations of the present setup to E7(7) and E8(8) generalised geometry should be
possible as well. The additional duality group invariants, that appear in the generalised
Lie derivatives there, have to be introduced into the current algebra (4.1). In particular in
the E8(8) case, it would be interesting to investigate how the gauge transformations of the
dual graviton [93] are encoded in the current algebra. Extending the analysis to include
the exterior space and tensor hierarchies seems straightforward.

For the membrane in the SL(5)-theory it was recently shown [94] that the solution
to the classical world-volume theory can be interpreted as generalised geodesics in SL(5)
generalised geometry, based on earlier ideas in [82, 95]. Studying the equations of motion
for the Ed(d)- and SL(p + 3)-currents with the above Hamiltonian, might extend that
picture to higher dimensional objects and higher space-time dimension. This might give a
geometric interpretation of the charge Q. So far, it only appears as a auxiliary object to
ensure manifest Ed(d)-covariance.
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A Conventions and identities

We define the generalised Kronecker symbols as follows:

εi1...ikj1...jn−kεi1...ikk1...kn−k = k! δj1...jn−kk1...kn−k
= k! (n− k)! δj1[k1

. . . δ
jn−k
kn−k]

The standard δ-distribution f(σ) =
∫

dσ′f(σ′)δ(σ−σ′) behaves in a maybe unexpected
way, when applied to functions on compact spaces. In particular (∂1 + ∂2)δ(σ2 − σ1) 6= 0,
but instead ∫

dσ1dσ2 φ(σ1, σ2)(∂1 + ∂2)δ(σ2 − σ1) =
∫

dσ ∂ (φ(σ, σ)) . (A.1)

As discussed in the main text, this term is not vanishing in general. Strings and membranes
can have non-trivial winding around a non-trivial cycle in target space. In that case, the
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coordinate fields x(σ) are not smooth, such that in particular
∫

dσ ∂x(σ) 6= 0. For open
world-volumes there are boundary contributions, as well.

In many calculations it is helpful to write

δ(σ2 − σ1) =
∫

dσδ(σ − σ1)δ(σ − σ2), (A.2)

to see for example that (∂1 + ∂2)δ(σ2 − σ1) =
∫

dσ∂δ(σ − σ1)δ(σ − σ2). The following
distributional identities follow:

∫
dσf(σ)(∂1 + . . .+ ∂n)

(
δ(σ − σ1) · . . . · δ(σ − σn)

)
=
∫

dσ
(
(∂f(σ)) + (n− 1)f(σ)∂

)(
δ(σ − σ1) · . . . · δ(σ − σn)

)
1
2e(σ1) · e−1(σ2)(∂1 − ∂2)

(
δ(σ − σ1)δ(σ − σ2)

)
(A.3)

= 1
2(∂1 − ∂2)

(
δ(σ − σ1)δ(σ − σ2)

)
1−

(
(∂e) · e−1)(σ)δ(σ − σ1)δ(σ − σ2)(

f(σ2)∂1 + f(σ1)∂2
)
δ(σ − σ1)δ(σ − σ2)

=
(
∂f(σ)

)
δ(σ − σ1)δ(σ − σ2) + ∂

(
f(σ)δ(σ − σ1)δ(σ − σ2)

)
for arbitrary (matrix-valued) functions e and f which hold without any additional boundary
terms.

The higher world-volume currents are written directly as forms (on the spatial world-
volume). Typical important identities are

dxµ(σ) ∧ dδ(σ − σ′) = dxµ(σ′) ∧ dδ(σ − σ′)
ω(σ′) ∧ dδ(σ − σ′) = ω(σ) ∧ dδ(σ − σ′) + (dω)(σ)δ(σ − σ′) for (p− 1)-forms ω.

B The Ed(d) η- and ω-symbols for d ≤ 6

For d ≤ 6 the Y -tensor can be written in terms of the η-symbols:

Y KL
MN = ηP,KLηP,MN (B.1)

when we choose the normalisation

ηM,KLηN ,KL = 2(d− 1)δMN . (B.2)

Indices K,L,M,. . . resp. K,L,M, . . . denote R1-resp. R2-indices of the duality group Ed(d).
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In the following, we give the η- and ω-symbols explicitly in the conventions in which
contractions of the totally antisymmetric multi-indices µ1...µp receive a factor 1

p! . Let us
note, that for d > 4 the ω-symbols are not skewsymmetric anymore: ωM,KL 6= −ωM,LK .

• M-theory decomposition with target space indices κ, λ, µ, . . . = 1, . . . , d:

XM =
(
xµ,

x̃µ1µ2√
2!
,
x̃µ1µ2µ3µ4µ5√

5!

)
∈ R1

QM =
(
Qµ,

Qµ1µ2µ3µ4
√

4!
,
Qµ1µ2µ3µ4µ5µ6,µ

√
6!

)
∈ R2

ηM,KL : ηµ,KL =


0 δ

λ1λ2
µκ√

2! 0
δ
κ1κ2
µλ√

2! 0 0
0 0 0



ηµ1µ2µ3µ4,KL =


0 0 δ

λ1λ2λ3λ4λ5
µ1µ2µ3µ4κ√

5!

0 δ
κ1κ2λ1λ2
µ1µ2µ3µ4√

2!
√

2! 0
δ
κ1κ2κ3κ4κ5
µ1µ2µ3µ4λ√

5! 0 0



(ηµ1µ2µ3µ4µ5µ6,µ)KL =


0 0 0

0 0 δ
λ1λ2λ3λ4λ5ν
µ1µ2µ3µ4µ5µ6δ

νµ
κ1κ2√

5!
√

2!

0
δ
κ1κ2κ3κ4κ5ν
µ1µ2µ3µ4µ5µ6δ

νµ
λ1λ2√

5!
√

2! 0



ωM,KL : ωµ,KL =


0 − δ

λ1λ2
µκ√

2! 0
δ
κ1κ2
µλ√

2! 0 0
0 0 0



ωµ1µ2µ3µ4,KL =


0 0 − δ

λ1λ2λ3λ4λ5
µ1µ2µ3µ4κ√

5!

0 − δ
κ1κ2λ1λ2
µ1µ2µ3µ4√

2!
√

2! 0
δ
κ1κ2κ3κ4κ5
µ1µ2µ3µ4λ√

5! 0 0



(ωµ1µ2µ3µ4µ5µ6,µ)KL =


0 0 0

0 0 − δ
λ1λ2λ3λ4λ5ν
µ1µ2µ3µ4µ5µ6δ

νµ
κ1κ2√

5!
√

2!

0 −
δ
κ1κ2κ3κ4κ5ν
µ1µ2µ3µ4µ5µ6δ

νµ
λ1λ2√

5!
√

2! 0


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• Type IIb decomposition with SL(2)-indices k, l,m, . . . = 1, 2 and target-space indices
κ, λ, µ, . . . = 1, . . . , d− 1:

XM =
(
xµ, x̃mµ ,

x̃µ1µ2µ3√
3!

,
x̃mµ1µ2µ3µ4µ5√

5!

)
∈ R1

QM =
(
Qm,

Qµ1µ2
√

2!
,
Q
µ1µ2µ3µ4
m√

4!
,
Qµ1µ2µ3µ4µ5,µ

√
5!

)
∈ R2

ηM,KL : (ηm)KL =


0 δml δ

λ
κ 0 0

δmk δ
κ
λ 0 0 0

0 0 0 0
0 0 0 0



(
ηµ1µ2

)
KL

=


0 0

δ
λ1λ2λ3
µ1µ2κ√

3! 0
0 εklδ

κλ
µ1µ2 0 0

δ
λ1λ2λ3
µ1µ2λ√

3! 0 0 0
0 0 0 0



(
ηmµ1µ2µ3µ4

)
KL

=



0 0 0
δml δ

λ1λ2λ3λ4λ5
µ1µ2µ3µ4κ√

5!

0 0
δmk δ

κλ1λ2λ3
µ1µ2µ3µ4√

3! 0

0
δml δ

λκ1κ2κ3
µ1µ2µ3µ4√

3! 0 0
δmk δ

κ1κ2κ3κ4κ5
µ1µ2µ3µ4λ√

5! 0 0 0



(
ηmµ1µ2µ3µ4µ5,µ

)
KL

=



0 0 0 0

0 0 0 εlk
δ
κ
µδ
λ1λ2λ3λ4λ5
µ1µ2µ3µ4µ5√

5!

0 0 1
2

(
δ
κ1κ2κ3ν1ν2
µ1µ2µ3µ4µ5δ

λ1λ2λ3
ν1ν2µ

2!
√

3!3! +(κ↔λ)
)

0

0 εkl
δ
λ
µδ
κ1κ2κ3κ4κ5
µ1µ2µ3µ4µ5√

5! 0 0


The ω-symbols are given by the same terms as the η-symbols, but with different signs
similar to the M-theory section:

ω•,MN =


0 − − −
+ − − −
+ − − 0
+ − 0 0

 .

– 28 –



J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

[2] A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett.
B 242 (1990) 163 [INSPIRE].

[3] A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl.
Phys. B 350 (1991) 395 [INSPIRE].

[4] W. Siegel, Manifest duality in low-energy superstrings, in International Conference on
Strings 93, Berkeley, California, 24–29 May 1993, pp. 353–363 [hep-th/9308133] [INSPIRE].

[5] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826
[hep-th/9305073] [INSPIRE].

[6] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281
[math/0209099] [INSPIRE].

[7] M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, University of Oxford (2003)
[math/0401221] [INSPIRE].

[8] M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and
Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

[9] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]
[INSPIRE].

[10] B. Zwiebach, Double Field Theory, T-duality, and Courant Brackets, Lect. Notes Phys. 851
(2012) 265 [arXiv:1109.1782] [INSPIRE].

[11] G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class.
Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

[12] O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review,
Remarks, and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].

[13] D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP
06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

[14] E. Plauschinn, Non-geometric backgrounds in string theory, Phys. Rept. 798 (2019) 1
[arXiv:1811.11203] [INSPIRE].

[15] C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys.
Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].

[16] C. Klimčík and P. Ševera, NonAbelian momentum winding exchange, Phys. Lett. B 383
(1996) 281 [hep-th/9605212] [INSPIRE].

[17] D. Osten and S.J. van Tongeren, Abelian Yang-Baxter deformations and TsT
transformations, Nucl. Phys. B 915 (2017) 184 [arXiv:1608.08504] [INSPIRE].

[18] F. Hassler, Poisson-Lie T-duality in Double Field Theory, Phys. Lett. B 807 (2020) 135455
[arXiv:1707.08624] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(90)90520-N
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB335%2C610%22
https://doi.org/10.1016/0370-2693(90)91454-J
https://doi.org/10.1016/0370-2693(90)91454-J
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB242%2C163%22
https://doi.org/10.1016/0550-3213(91)90266-Z
https://doi.org/10.1016/0550-3213(91)90266-Z
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB350%2C395%22
https://arxiv.org/abs/hep-th/9308133
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9308133
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9305073
https://doi.org/10.1093/qjmath/54.3.281
https://arxiv.org/abs/math/0209099
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0209099
https://arxiv.org/abs/math/0401221
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0401221
https://doi.org/10.1088/1126-6708/2009/04/075
https://arxiv.org/abs/0807.4527
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.4527
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.4664
https://doi.org/10.1007/978-3-642-25947-0_7
https://doi.org/10.1007/978-3-642-25947-0_7
https://arxiv.org/abs/1109.1782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.1782
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1088/0264-9381/30/16/163001
https://arxiv.org/abs/1305.1907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.1907
https://doi.org/10.1002/prop.201300024
https://arxiv.org/abs/1309.2977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.2977
https://doi.org/10.1007/JHEP06(2013)101
https://doi.org/10.1007/JHEP06(2013)101
https://arxiv.org/abs/1304.1472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1472
https://doi.org/10.1016/j.physrep.2018.12.002
https://arxiv.org/abs/1811.11203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11203
https://doi.org/10.1016/0370-2693(96)00025-1
https://doi.org/10.1016/0370-2693(96)00025-1
https://arxiv.org/abs/hep-th/9512040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9512040
https://doi.org/10.1016/0370-2693(96)00755-1
https://doi.org/10.1016/0370-2693(96)00755-1
https://arxiv.org/abs/hep-th/9605212
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605212
https://doi.org/10.1016/j.nuclphysb.2016.12.007
https://arxiv.org/abs/1608.08504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.08504
https://doi.org/10.1016/j.physletb.2020.135455
https://arxiv.org/abs/1707.08624
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08624


J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

[19] J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Homogeneous Yang-Baxter deformations as
generalized diffeomorphisms, J. Phys. A 50 (2017) 415401 [arXiv:1705.07116] [INSPIRE].

[20] R. Borsato and L. Wulff, On non-abelian T-duality and deformations of supercoset string
sigma-models, JHEP 10 (2017) 024 [arXiv:1706.10169] [INSPIRE].

[21] J.J. Fernandez-Melgarejo, J.-i. Sakamoto, Y. Sakatani and K. Yoshida, T -folds from
Yang-Baxter deformations, JHEP 12 (2017) 108 [arXiv:1710.06849] [INSPIRE].

[22] J.-I. Sakamoto and Y. Sakatani, Local β-deformations and Yang-Baxter sigma model, JHEP
06 (2018) 147 [arXiv:1803.05903] [INSPIRE].

[23] D. Lüst and D. Osten, Generalised fluxes, Yang-Baxter deformations and the O(d, d)
structure of non-abelian T-duality, JHEP 05 (2018) 165 [arXiv:1803.03971] [INSPIRE].

[24] S. Demulder, F. Hassler and D.C. Thompson, Doubled aspects of generalised dualities and
integrable deformations, JHEP 02 (2019) 189 [arXiv:1810.11446] [INSPIRE].

[25] D. Osten, Current algebras, generalised fluxes and non-geometry, J. Phys. A 53 (2020)
265402 [arXiv:1910.00029] [INSPIRE].

[26] D.C. Thompson, An Introduction to Generalised Dualities and their Applications to
Holography and Integrability, PoS CORFU2018 (2019) 099 [arXiv:1904.11561] [INSPIRE].

[27] R. Borsato and S. Driezen, Supergravity solution-generating techniques and canonical
transformations of σ-models from O(D,D), JHEP 05 (2021) 180 [arXiv:2102.04498]
[INSPIRE].

[28] C.D.A. Blair, E. Malek and A.J. Routh, An O(D,D) invariant Hamiltonian action for the
superstring, Class. Quant. Grav. 31 (2014) 205011 [arXiv:1308.4829] [INSPIRE].

[29] K. Sfetsos, Canonical equivalence of nonisometric sigma models and Poisson-Lie T duality,
Nucl. Phys. B 517 (1998) 549 [hep-th/9710163] [INSPIRE].

[30] C. Klimčík, η and λ deformations as E -models, Nucl. Phys. B 900 (2015) 259
[arXiv:1508.05832] [INSPIRE].

[31] P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and
superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

[32] D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074
[arXiv:1008.1763] [INSPIRE].

[33] D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and
Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

[34] A. Coimbra, C. Strickland-Constable and D. Waldram, Ed(d) × R+ generalised geometry,
connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].

[35] D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of
generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

[36] D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant
M-theory: Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174
[arXiv:1208.0020] [INSPIRE].

[37] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised
Geometry II: Ed(d) × R+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].

– 30 –

https://doi.org/10.1088/1751-8121/aa8896
https://arxiv.org/abs/1705.07116
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.07116
https://doi.org/10.1007/JHEP10(2017)024
https://arxiv.org/abs/1706.10169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.10169
https://doi.org/10.1007/JHEP12(2017)108
https://arxiv.org/abs/1710.06849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.06849
https://doi.org/10.1007/JHEP06(2018)147
https://doi.org/10.1007/JHEP06(2018)147
https://arxiv.org/abs/1803.05903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.05903
https://doi.org/10.1007/JHEP05(2018)165
https://arxiv.org/abs/1803.03971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.03971
https://doi.org/10.1007/JHEP02(2019)189
https://arxiv.org/abs/1810.11446
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.11446
https://doi.org/10.1088/1751-8121/ab8f3d
https://doi.org/10.1088/1751-8121/ab8f3d
https://arxiv.org/abs/1910.00029
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00029
https://doi.org/10.22323/1.347.0099
https://arxiv.org/abs/1904.11561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11561
https://doi.org/10.1007/JHEP05(2021)180
https://arxiv.org/abs/2102.04498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.04498
https://doi.org/10.1088/0264-9381/31/20/205011
https://arxiv.org/abs/1308.4829
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.4829
https://doi.org/10.1016/S0550-3213(97)00823-7
https://arxiv.org/abs/hep-th/9710163
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710163
https://doi.org/10.1016/j.nuclphysb.2015.09.011
https://arxiv.org/abs/1508.05832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.05832
https://doi.org/10.1088/1126-6708/2008/09/123
https://arxiv.org/abs/0804.1362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.1362
https://doi.org/10.1007/JHEP06(2011)074
https://arxiv.org/abs/1008.1763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.1763
https://doi.org/10.1007/JHEP02(2012)108
https://arxiv.org/abs/1111.0459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.0459
https://doi.org/10.1007/JHEP02(2014)054
https://arxiv.org/abs/1112.3989
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.3989
https://doi.org/10.1007/JHEP01(2013)064
https://arxiv.org/abs/1208.5884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.5884
https://doi.org/10.1007/JHEP10(2012)174
https://arxiv.org/abs/1208.0020
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.0020
https://doi.org/10.1007/JHEP03(2014)019
https://arxiv.org/abs/1212.1586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.1586


J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

[38] O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111
(2013) 231601 [arXiv:1308.1673] [INSPIRE].

[39] K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and
consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

[40] O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field
Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

[41] D.S. Berman and C.D.A. Blair, The Geometry, Branes and Applications of Exceptional Field
Theory, Int. J. Mod. Phys. A 35 (2020) 2030014 [arXiv:2006.09777] [INSPIRE].

[42] M.J. Duff and J.X. Lu, Duality Rotations in Membrane Theory, Nucl. Phys. B 347 (1990)
394 [INSPIRE].

[43] M.J. Duff, J.X. Lu, R. Percacci, C.N. Pope, H. Samtleben and E. Sezgin, Membrane Duality
Revisited, Nucl. Phys. B 901 (2015) 1 [arXiv:1509.02915] [INSPIRE].

[44] Y. Sakatani and S. Uehara, Branes in Extended Spacetime: Brane Worldvolume Theory
Based on Duality Symmetry, Phys. Rev. Lett. 117 (2016) 191601 [arXiv:1607.04265]
[INSPIRE].

[45] C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018)
111 [arXiv:1712.01739] [INSPIRE].

[46] Y. Sakatani and S. Uehara, Exceptional M-brane sigma models and η-symbols, PTEP 2018
(2018) 033B05 [arXiv:1712.10316] [INSPIRE].

[47] A.S. Arvanitakis and C.D.A. Blair, The Exceptional Sigma Model, JHEP 04 (2018) 064
[arXiv:1802.00442] [INSPIRE].

[48] C.D.A. Blair, Open exceptional strings and D-branes, JHEP 07 (2019) 083
[arXiv:1904.06714] [INSPIRE].

[49] Y. Sakatani and S. Uehara, Born sigma model for branes in exceptional geometry, PTEP
2020 (2020) 073B05 [arXiv:2004.09486] [INSPIRE].

[50] M. Hatsuda and K. Kamimura, SL(5) duality from canonical M2-brane, JHEP 11 (2012) 001
[arXiv:1208.1232] [INSPIRE].

[51] Y. Sakatani and S. Uehara, Non-Abelian U -duality for membranes, PTEP 2020 (2020)
073B01 [arXiv:2001.09983] [INSPIRE].

[52] Y. Sakatani, Extended Drinfel’d algebras and non-Abelian duality, arXiv:2009.04454
[INSPIRE].

[53] P. du Bosque, F. Hassler and D. Lüst, Generalized parallelizable spaces from exceptional field
theory, JHEP 01 (2018) 117 [arXiv:1705.09304] [INSPIRE].

[54] A. Ashmore, Marginal deformations of 3d N = 2 CFTs from AdS4 backgrounds in
generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].

[55] I. Bakhmatov, N.S. Deger, E.T. Musaev, E.O. Colgáin and M.M. Sheikh-Jabbari, Tri-vector
deformations in d = 11 supergravity, JHEP 08 (2019) 126 [arXiv:1906.09052] [INSPIRE].

[56] Y. Sakatani, U -duality extension of Drinfel’d double, PTEP 2020 (2020) 023B08
[arXiv:1911.06320] [INSPIRE].

[57] E. Malek and D.C. Thompson, Poisson-Lie U-duality in Exceptional Field Theory, JHEP 04
(2020) 058 [arXiv:1911.07833] [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevLett.111.231601
https://doi.org/10.1103/PhysRevLett.111.231601
https://arxiv.org/abs/1308.1673
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1673
https://doi.org/10.1002/prop.201700048
https://arxiv.org/abs/1401.3360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3360
https://doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8145
https://doi.org/10.1142/S0217751X20300148
https://arxiv.org/abs/2006.09777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.09777
https://doi.org/10.1016/0550-3213(90)90565-U
https://doi.org/10.1016/0550-3213(90)90565-U
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB347%2C394%22
https://doi.org/10.1016/j.nuclphysb.2015.10.003
https://arxiv.org/abs/1509.02915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02915
https://doi.org/10.1103/PhysRevLett.117.191601
https://arxiv.org/abs/1607.04265
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.04265
https://doi.org/10.1007/JHEP03(2018)111
https://doi.org/10.1007/JHEP03(2018)111
https://arxiv.org/abs/1712.01739
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.01739
https://doi.org/10.1093/ptep/pty021
https://doi.org/10.1093/ptep/pty021
https://arxiv.org/abs/1712.10316
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.10316
https://doi.org/10.1007/JHEP04(2018)064
https://arxiv.org/abs/1802.00442
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.00442
https://doi.org/10.1007/JHEP07(2019)083
https://arxiv.org/abs/1904.06714
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06714
https://doi.org/10.1093/ptep/ptaa081
https://doi.org/10.1093/ptep/ptaa081
https://arxiv.org/abs/2004.09486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.09486
https://doi.org/10.1007/JHEP11(2012)001
https://arxiv.org/abs/1208.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.1232
https://doi.org/10.1093/ptep/ptaa063
https://doi.org/10.1093/ptep/ptaa063
https://arxiv.org/abs/2001.09983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.09983
https://arxiv.org/abs/2009.04454
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.04454
https://doi.org/10.1007/JHEP01(2018)117
https://arxiv.org/abs/1705.09304
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.09304
https://doi.org/10.1007/JHEP12(2018)060
https://arxiv.org/abs/1809.03503
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.03503
https://doi.org/10.1007/JHEP08(2019)126
https://arxiv.org/abs/1906.09052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09052
https://doi.org/10.1093/ptep/ptz172
https://arxiv.org/abs/1911.06320
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06320
https://doi.org/10.1007/JHEP04(2020)058
https://doi.org/10.1007/JHEP04(2020)058
https://arxiv.org/abs/1911.07833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.07833


J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

[58] I. Bakhmatov, K. Gubarev and E.T. Musaev, Non-abelian tri-vector deformations in d = 11
supergravity, JHEP 05 (2020) 113 [arXiv:2002.01915] [INSPIRE].

[59] C.D.A. Blair, D.C. Thompson and S. Zhidkova, Exploring Exceptional Drinfeld Geometries,
JHEP 09 (2020) 151 [arXiv:2006.12452] [INSPIRE].

[60] E.T. Musaev, On non-abelian U-duality of 11D backgrounds, arXiv:2007.01213 [INSPIRE].

[61] E. Malek, Y. Sakatani and D.C. Thompson, E6(6) exceptional Drinfel’d algebras, JHEP 01
(2021) 020 [arXiv:2007.08510] [INSPIRE].

[62] K. Gubarev and E.T. Musaev, Polyvector deformations in eleven-dimensional supergravity,
Phys. Rev. D 103 (2021) 066021 [arXiv:2011.11424] [INSPIRE].

[63] E.T. Musaev and Y. Sakatani, Non-abelian U-duality at work, arXiv:2012.13263 [INSPIRE].

[64] M. Hatsuda and T. Kimura, Canonical approach to Courant brackets for D-branes, JHEP 06
(2012) 034 [arXiv:1203.5499] [INSPIRE].

[65] M. Hatsuda and K. Kamimura, M5 algebra and SO(5, 5) duality, JHEP 06 (2013) 095
[arXiv:1305.2258] [INSPIRE].

[66] M. Hatsuda, S. Sasaki and M. Yata, Five-brane current algebras in type-II string theories,
JHEP 03 (2021) 298 [arXiv:2011.13145] [INSPIRE].

[67] D.S. Berman and N.B. Copland, The String partition function in Hull’s doubled formalism,
Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [INSPIRE].

[68] C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065
[hep-th/0406102] [INSPIRE].

[69] C.M. Hull, Global aspects of T-duality, gauged sigma models and T-folds, JHEP 10 (2007)
057 [hep-th/0604178] [INSPIRE].

[70] C.D.A. Blair, Non-commutativity and non-associativity of the doubled string in
non-geometric backgrounds, JHEP 06 (2015) 091 [arXiv:1405.2283] [INSPIRE].

[71] E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional
Supergravity, Phys. Lett. B 189 (1987) 75 [INSPIRE].

[72] M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Superstrings in D = 10 from
Supermembranes in D = 11, Phys. Lett. B 191 (1987) 70 [INSPIRE].

[73] E. Malek, U-duality in three and four dimensions, Int. J. Mod. Phys. A 32 (2017) 1750169
[arXiv:1205.6403] [INSPIRE].

[74] C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03
(2015) 144 [arXiv:1412.0635] [INSPIRE].

[75] G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP
09 (2005) 015 [hep-th/0507051] [INSPIRE].

[76] I. Vaisman, Towards a double field theory on para-Hermitian manifolds, J. Math. Phys. 54
(2013) 123507 [arXiv:1209.0152] [INSPIRE].

[77] L. Freidel, F.J. Rudolph and D. Svoboda, A Unique Connection for Born Geometry,
Commun. Math. Phys. 372 (2019) 119 [arXiv:1806.05992] [INSPIRE].

[78] D. Svoboda, Algebroid Structures on Para-Hermitian Manifolds, J. Math. Phys. 59 (2018)
122302 [arXiv:1802.08180] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP05(2020)113
https://arxiv.org/abs/2002.01915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.01915
https://doi.org/10.1007/JHEP09(2020)151
https://arxiv.org/abs/2006.12452
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12452
https://arxiv.org/abs/2007.01213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01213
https://doi.org/10.1007/JHEP01(2021)020
https://doi.org/10.1007/JHEP01(2021)020
https://arxiv.org/abs/2007.08510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.08510
https://doi.org/10.1103/PhysRevD.103.066021
https://arxiv.org/abs/2011.11424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.11424
https://arxiv.org/abs/2012.13263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.13263
https://doi.org/10.1007/JHEP06(2012)034
https://doi.org/10.1007/JHEP06(2012)034
https://arxiv.org/abs/1203.5499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.5499
https://doi.org/10.1007/JHEP06(2013)095
https://arxiv.org/abs/1305.2258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.2258
https://doi.org/10.1007/JHEP03(2021)298
https://arxiv.org/abs/2011.13145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.13145
https://doi.org/10.1016/j.physletb.2007.03.007
https://arxiv.org/abs/hep-th/0701080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0701080
https://doi.org/10.1088/1126-6708/2005/10/065
https://arxiv.org/abs/hep-th/0406102
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406102
https://doi.org/10.1088/1126-6708/2007/10/057
https://doi.org/10.1088/1126-6708/2007/10/057
https://arxiv.org/abs/hep-th/0604178
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604178
https://doi.org/10.1007/JHEP06(2015)091
https://arxiv.org/abs/1405.2283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2283
https://doi.org/10.1016/0370-2693(87)91272-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB189%2C75%22
https://doi.org/10.1016/0370-2693(87)91323-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB191%2C70%22
https://doi.org/10.1142/S0217751X1750169X
https://arxiv.org/abs/1205.6403
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6403
https://doi.org/10.1007/JHEP03(2015)144
https://doi.org/10.1007/JHEP03(2015)144
https://arxiv.org/abs/1412.0635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.0635
https://doi.org/10.1088/1126-6708/2005/09/015
https://doi.org/10.1088/1126-6708/2005/09/015
https://arxiv.org/abs/hep-th/0507051
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507051
https://doi.org/10.1063/1.4848777
https://doi.org/10.1063/1.4848777
https://arxiv.org/abs/1209.0152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0152
https://doi.org/10.1007/s00220-019-03379-7
https://arxiv.org/abs/1806.05992
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05992
https://doi.org/10.1063/1.5040263
https://doi.org/10.1063/1.5040263
https://arxiv.org/abs/1802.08180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.08180


J
H
E
P
0
6
(
2
0
2
1
)
0
7
0

[79] V.E. Marotta and R.J. Szabo, Para-Hermitian Geometry, Dualities and Generalized Flux
Backgrounds, Fortsch. Phys. 67 (2019) 1800093 [arXiv:1810.03953] [INSPIRE].

[80] F. Hassler, D. Lüst and F.J. Rudolph, Para-Hermitian geometries for Poisson-Lie symmetric
σ-models, JHEP 10 (2019) 160 [arXiv:1905.03791] [INSPIRE].

[81] V. Emilio and R.J. Szabo, Born Sigma-Models for Para-Hermitian Manifolds and
Generalized T-duality, arXiv:1910.09997 [INSPIRE].

[82] J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP 06 (2014)
006 [arXiv:1403.7198] [INSPIRE].

[83] P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the
chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].

[84] M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World volume action of the M-theory
five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [INSPIRE].

[85] M.B. Green, Supertranslations, Superstrings and Chern-Simons Forms, Phys. Lett. B 223
(1989) 157 [INSPIRE].

[86] E. Bergshoeff and E. Sezgin, New Space-time Superalgebras and Their Kac-Moody Extension,
Phys. Lett. B 232 (1989) 96 [INSPIRE].

[87] W. Siegel, Randomizing the superstring, Phys. Rev. D 50 (1994) 2799 [hep-th/9403144]
[INSPIRE].

[88] E. Bergshoeff and E. Sezgin, Superp-Brane theories and new space-time superalgebras, Phys.
Lett. B 354 (1995) 256 [hep-th/9504140] [INSPIRE].

[89] E. Sezgin, The M algebra, Phys. Lett. B 392 (1997) 323 [hep-th/9609086] [INSPIRE].

[90] D.S. Berman, A Kaluza-Klein Approach to Double and Exceptional Field Theory, Fortsch.
Phys. 67 (2019) 1910002 [arXiv:1903.02860] [INSPIRE].

[91] A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised
geometry as an L∞-algebroid, Adv. Theor. Math. Phys. 23 (2019) 1159 [arXiv:1804.07303]
[INSPIRE].

[92] L. Alfonsi and D.S. Berman, Double Field Theory and Geometric Quantisation,
arXiv:2101.12155 [INSPIRE].

[93] O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014)
066002 [arXiv:1406.3348] [INSPIRE].

[94] C. Strickland-Constable, Classical worldvolumes as generalised geodesics, arXiv:2102.00555
[INSPIRE].

[95] D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional
Field Theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].

– 33 –

https://doi.org/10.1002/prop.201800093
https://arxiv.org/abs/1810.03953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.03953
https://doi.org/10.1007/JHEP10(2019)160
https://arxiv.org/abs/1905.03791
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03791
https://arxiv.org/abs/1910.09997
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.09997
https://doi.org/10.1007/JHEP06(2014)006
https://doi.org/10.1007/JHEP06(2014)006
https://arxiv.org/abs/1403.7198
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.7198
https://doi.org/10.1016/S0370-2693(97)00188-3
https://arxiv.org/abs/hep-th/9701037
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9701037
https://doi.org/10.1016/S0550-3213(97)00227-7
https://arxiv.org/abs/hep-th/9701166
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9701166
https://doi.org/10.1016/0370-2693(89)90233-5
https://doi.org/10.1016/0370-2693(89)90233-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB223%2C157%22
https://doi.org/10.1016/0370-2693(89)90564-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB232%2C96%22
https://doi.org/10.1103/PhysRevD.50.2799
https://arxiv.org/abs/hep-th/9403144
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403144
https://doi.org/10.1016/0370-2693(95)00655-5
https://doi.org/10.1016/0370-2693(95)00655-5
https://arxiv.org/abs/hep-th/9504140
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9504140
https://doi.org/10.1016/S0370-2693(96)01576-6
https://arxiv.org/abs/hep-th/9609086
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609086
https://doi.org/10.1002/prop.201910002
https://doi.org/10.1002/prop.201910002
https://arxiv.org/abs/1903.02860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.02860
https://doi.org/10.4310/ATMP.2019.v23.n5.a1
https://arxiv.org/abs/1804.07303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07303
https://arxiv.org/abs/2101.12155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.12155
https://doi.org/10.1103/PhysRevD.90.066002
https://doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.3348
https://arxiv.org/abs/2102.00555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.00555
https://doi.org/10.1007/JHEP05(2015)130
https://arxiv.org/abs/1412.2768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.2768

	Introduction
	The string case
	Summary of results

	Membranes in the SL(5)-theory
	The SL(5) generalised Lie derivative on the membrane phase space
	Charges and SL(5)-covariance
	Double reduction of membrane current algebra
	Twist by generalised vielbein and the embedding tensor

	Canonical and exceptional currents
	Para-Hermitian generalised geometries
	O(d,d)
	SL(p + 3) and E(d(d))

	Charges, currents and the (generalised) Lie derivatives
	Canonical p-form currents, their current algebra and SL(p + 3)
	Exceptional currents for d leq6

	Outlook
	Conventions and identities
	The E(d(d)) eta- and omega-symbols for d leq 6

