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1 Introduction

Distinguishing knots and links up to ambient isotopy is the central problem in knot theory.
The main technique that a knot theorist uses is to compute some knot invariants and see
if one of them can be of help. Over the last 35 years tremendous progress has been made
in the development of several new knot invariants, starting with the Jones polynomial and
the HOMFLY-PT polynomial [1–3]. Recently even more sophisticated invariants such as
Heegard-Floer homology groups [4] and Khovanov homology groups [5] have been added
to the toolkit. In the 1980s William Thurston’s seminal result [6, corollary 2.5] that most
knot complements have the structure of a hyperbolic manifold, combined with Mostow’s
rigidity theorem [6, theorem 3.1] giving uniqueness of such structures, establishes a strong
connection between hyperbolic geometry and knot theory, since knots are determined by
their complements. Indeed, any geometric invariant of a knot complement, such as the
hyperbolic volume, becomes a topological invariant of the knot. Thus, investigating if data
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derived from the new knot invariants is related to natural differential geometric invariants
becomes another natural problem. In this direction ‘volume conjecture’ is one of the
most challenging open problem. This conjecture has been tested for torus knots but for
hyperbolic knots it has been verified only for a handful of knots. Weaving knots W (p, n) of
type (p, n) for a pair of co-prime integers p and n are doubly infinite family of alternating,
hyperbolic knots and share the same projection with torus knots. They can be thought
of a prototype of hyperbolic knots. Thus an extensive study of this family of knots will
provide an insight to ‘volume conjecture.’ One of us in an earlier work [7] have attempted
recursive method of relating the HOMFLY-PT of W (3, n). In a parallel paper [8], the
closed form of HOMFLY-PT for W (3, n) with explicit proof is provided. In this paper, we
study the hybrid family of weaving knots denoted by (Ŵ3(m,n)). Here, we use the approach
of Reshitikhin and Turaev to evaluate the colored polynomials for knots and obtained the
closed form expression for HOMFLY-PT polynomial for hybrid weaving knots. Further,
we have computed the [r]-colored HOMFLY-PT polynomial forW (3, n) which agrees when
[r] = [1] with the results in [8]. Further we study the reformulated invariants in the context
of topological string dualities and validate Oogur-Vafa conjecture [9–11]. Interestingly, we
show that certain BPS integers of weaving knot W (3, n) can be written in the Chebyshev
coefficients of first kind.

The paper is organized as follows.
In section 2, we will review Reshitikhin and Turaev (RT) method of constructing

knot and link invariants which involves R-matrices. This is followed by the subsection 2.2
where we present the R̂-matrices in a block structure form for a three strands braid. In
section 3, we used the properties of quantum R̂2×2 matrices, we succeeded in writing a
closed form expression of HOMFLY-PT polynomial for (Ŵ3(m,n)). As a consequence, we
showed the relation to the infinite set of Laurent polynomials called Vn,t[q] whose absolute
coefficients are related to Fibonacci numbers. Section 4 deals with [r]-colored HOMFLY-
PT for weaving knots W (3, n). Particularly, we could express the trace of product of 2
dimensional matrices as a Laurent polynomial. We explicitly calculate colored polynomials
for weave knot up to representation [r] = [3]. In section 5, we verify that the reformulated
invariants from these weave knot invariants indeed respect Ooguri-Vafa conjecture. The
concluding section 6 contains summary and related challenging open problems. There are
two appendices B and C with explicit data on colored HOMFLY-PT and reformulated
invariants for W (3, n).

2 Knot invariants from quantum groups

Recall Alexander theorem which states that any knot or link can be viewed as closure of
m-strand braid. Hence the knot invariants can be constructed from the braid group Bm
representations. The representations of the generators σi’s of Bm:

R1,R2, . . .Ri, . . .Rm−1

are derivable from the well-known universal Ř-matrix of Uq(slN ) defined as

Ř = q

∑
i,j

C−1
ij Hi⊗Hj ∏

positive root α
expq[(1− q−1)Eα ⊗ Fα] , (2.1)
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where q is complex number, (Cij) is the Cartan matrix and {Hi, Ei, Fi} are generators of
Uq(slN ). Braid group generators Ri’s, depicted in (2.4), in terms of (2.1) is

Ri = 1V1 ⊗ 1V2 ⊗ . . .⊗ P Ři,i+1 ⊗ . . .⊗ 1Vm ∈ End(V1 ⊗ . . . ,⊗Vm) , (2.2)

where P denotes the permutation operation: P (x⊗ y) = y ⊗ x. Notice that the subscript
i, i+1 on the universal quantum Ř in the above equation implies Ř acts only on the modules
Vi and Vi+1 of the Uq(slN ). The quantum Ri matrices discussed in [12–15] provides a braid
group Bm representation. That is.,

π : Bm → End(V1 ⊗ . . . ,⊗Vm) ,
π(σi) = Ri.

(2.3)

Graphically the braid group generator Ri as follows:

Ri = . . .. . .

V1 V2 Vi Vi+1 Vm

. (2.4)

Algebriacally these generators in terms of (2.1). These operators Ri obeys the following
relations:

RiRj = RjRi for |i− j| > 1 , (2.5)
RiRi+1Ri = Ri+1RiRi+1, for i = 1, . . . ,m− 2. (2.6)

Graphically, the equation (b) is equivalent to the third Reidemeister move. According to
Reshetikhin-Turaev approach [16, 17] the quantum group invariant, known as [r]-colored
HOMFLY polynomial of the knot K denoted by HK[r] is defined as follows:

HK[r] = qtrV1⊗···⊗Vm (π(αK)) , (2.7)

where qtr is the quantum trace ([18]) defined as follows:

qtrV (z) = trV (zK2ρ) ∀z ∈ End(V ), (2.8)

where ~ρ is the Weyl vector that can expressed in terms of simple roots ~αi is 2~ρ = ∑
i ai~αi

and the K2ρ is defined as
K2ρ = Ka1

1 Ka2
2 . . .K

aN−1
N−1

where Kp = q~αp.H having Cartan generators H1, H2, . . . HN−1.
Note that the universal Ř matrix is not diagonal and makes the computations of knot

invariants very cumbersome. There is a modified RT-approach [19–21] where the braiding
generators can be written in a block structure form. This methodology gives a better
control and simplify the computation of knot invariants. We will present the details of this
modified RT method in the following section.
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2.1 R̂-matrices with block structure

The modified RT approach fixes the block structure form for R̂i’s from the study of the irre-
ducible representation in the tensor product of symmetric representations [r]⊗ [r]⊗ . . .⊗ [r]︸ ︷︷ ︸

m

:

[r]
⊗m

=
⊕

α, Ξα`m|r|
(dimM1,2...m

Ξα ) Ξα , (2.9)

where Ξα denote the irreducible representations labeled by index α. The repetition in the
irreducible representation called multiplicity (an irreducible representation occurs more
than once) denoted by M1,2,...m

Ξα that keep track of the subspace of the highest weight
vectors1 sharing same highest weights corresponding to Young diagram Ξα ` m|r|,2 which
we indicate as Ξα,µ with the index µ, takes values 1, 2, . . . dimM1,2,...m

Ξα , keep track of the
different highest weight vectors sharing the same highest weight ~ωΞα .

To evaluate quantum trace (2.8), we need to write the states in weight space incorpo-
rating the multiplicity as well. There are several paths leading to the state corresponding
to the irreducible representations Ξα. Pictorially depicted one such state in the weight
space (see in (2.10))

[r] [r] [r] [r]

Λα
Ξα1

Ξα2

[r]

Ξα

(2.10)

and algebraically it can written as

|
(
. . . (([r]⊗ [r])Λα ⊗ [r])Ξα1

. . . [r]
)

Ξα
〉(µ) ≡ |Ξα; Ξα,µ,Λα〉 ∼= |Ξα,µ,Λα〉 ⊗ |Ξα〉 , (2.11)

where [r] ⊗ [r] = ⊕rα=0Λα ≡ [2r − α, α]. For clarity, in this paper, we denote the R̂i’s-
matrices corresponding to Ξα as R̂Ξα

i . Incidentally, the choice of state (2.11) is an eigenstate
of quantum R̂Ξα

1 matrix:

R̂Ξα
1 |Ξα; Ξα,µ,Λα〉 = λΛα,µ([r], [r])|Ξα; Ξα,µ,Λα〉〉.

Hence we will denote the R̂Ξα
1 matrix which is diagonal in the above basis and the elements

denoted by λΛα,µ([r], [r]). These elements are the braiding eigenvalues whose explicit form
is [18, 22]

λΛα,µ([r], [r]) = εΛα,µq
κ(Λα)−4κ([r])−rN , (2.12)

where κ(Λα) = 1
2
∑
j αj(αj+1−2j),3 is cut-and-join-operator eigenvalue of Young tableaux

representation Λα that does not depend on the braid representation of the knot K [23, 24]
1Note that the Young diagram Ξα represented as [ξα1 , ξα1 , . . . , ξαl ] partitioned by {ξα1 ≥ ξα2 ≥ . . . , ξαl−1 ≥

ξαl ≥ 0}, then the highest weights ~ωΞα of the corresponding representation are ωαi = ξαi −ξαi+1 ∀ i = 1, . . . , l,
and vice versa ξαi =

∑l

k=i ω
α
k .

2Ξα ` m|r| means a sum over all Young diagrams Ξα of the size equal to m|r|. Here,|r| is total number
of boxes in the Young diagram [r] = . . .︸ ︷︷ ︸

r

.

3The representation Λα whose Young diagram is denoted by α1 ≥ α2 . . . ,≥ αN−1.
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and εΛα,µ will be ±1.4 From the eq. (2.11), (2.7), incorporating all the facts of R̂-matrix and
the decomposition of states (2.11),5 the unreduced [r]-colored HOMFLY-PT will become

H?K
[r]

(
q, A = qN

)
= trV1⊗···⊗Vm (π(αK)K2ρ) =

∑
α

trM1,2...m
Ξα

(π(αK)) · trΞα (K2ρ)

=
∑
α

trM1,2...m
Ξα

(π(αK)) · S∗Ξα =
∑

α,Ξα`m|r|
S∗ΞαC

K
Ξα , (2.13)

where Ξα represent the irreducible representations in the product [r]⊗m, m stands for
number of braid strands, [r] denotes the representation on each strand, CΞα having the trace
of product of all R̂-matrices, and S∗Ξα is the quantum dimension of the representation Ξα
whose explicit form is given in terms of Schur polynomials [25, 26]. Note that the notation
H?K

[r] denote unreduced HOMFLY-PT of knot K. The reduced [r]- colored HOMFLY-PT
(HK[r]) is obtained by dividing the [r]-colored unknot invariant (Hunknot

[r] ) i.e.

HK[r] =
H?K

[r]
Hunknot

[r]
=
H?K

[r]
S∗[r]

. (2.14)

For clarity, we present the invariants of knots obtained from the simplest two-strand braids
using this method in the following subsection.

2.1.1 [r]-colored HOMFLY-PT polynomial for closure of two strand braids

We will illustrate the [r]-colored HOMFLY-PT for knot K carrying symmetric represen-
tation [r] obtained from the braid word σn1 (2.15) where n is odd integer. These knots
known as torus knot T(2,n) and we have drawn as a example in figure 1. The irreducible
representation Λα in the tensor product of [r]⊗[r] = ⊕r

β=0 Λα = ⊕r
β=0[2r − α, α] has no

multiplicity. Note that each irreducible representation occurs only once. So the R̂ are only
eigenvalues and not matrices.

. . . n . (2.15)

Hence, using eqs. (2.13), (2.12), we can obtain colored HOMFLY-PT HK[r](q, A =
qN ) which involves the single diagonal R̂-matrix i.e. R̂n1 whose explicit entries depicted
from eq. (2.12).

λΛα([r], [r]) = (−1)αq(2r2−r(2α+1)+α(α−1)−rN). (2.16)

The HOMFLY-PT for torus knot T(2,n)

HK[r](q, A) =
∑
α trΛαR̂nS∗Λα

S∗[r]
= 1
S∗[r]

∑
α

λΛα([r], [r])n S∗Λα ,

= A(−rn)

S∗[r]

r∑
α=0

(−1)nαq(2r2−r(2α+1)+α(α−1))n S∗Λα . (2.17)

4The multiplicity subspace state Ξα,µ is connected by Λα and zero otherwise.
5In facts, the action of R̂-matrix acts an identity operator on |Ξα〉 and non-trivially on the subspace

M1,2,...m
Ξα and similarly on other way, the element K2ρ acts diagonally on |Ξα〉 but as identity operator on

subspaceM1,2...m
Ξα as this space represent all possible highest weight vectors Ξα,µ with the same weight ~ωΞα .
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Figure 1. Torus knot T(2,9) = 91 knot.

The explicit form of quantum dimension S∗Λα

S∗Λα = [N + α− 2]q! [N + 2r − α− 1]q! [2r − 2α+ 1]q
[α]q! [2r − α+ 1]q! [N − 1]q! [N − 2]q!

,

where the factorial is defined as [n]q! = ∏n
i=1[i]q with [0]q! = 1 and the q-numbers for our

computation will be given as,
[n]q = qn − q−n

q1 − q−1 . (2.18)

The explicit polynomial form for colors [r] = [1] and [r] = [2] for this knot T (2, 9) = 91 are

H91
[1] (q, A) = A8 + A8

q8 −
A10

q6 + A8

q4 −
A10

q2 −A
10q2 +A8q4−A10q6 +A8q8,

H91
[2] (q,A) =

(
A16−A18 +A20 + A16

q16 −
A18

q12 + A16

q10 −
A18

q10 + A16

q8 −
A18

q6 + A20

q6 + A16

q4

−2A18

q4 + A16

q2 −
A18

q2 +A16q2− 2A18q2 +A20q2 +A16q4− 2A18q4 +A16q6

−2A18q6 +A20q6 + 2A16q8− 2A18q8 +A20q8 +A16q10− 2A18q10 +A20q10

+A16q12− 3A18q12 +A20q12 + 2A16q14− 3A18q14 +A20q14 + 2A16q16

−2A18q16 +A20q16 +A16q18− 3A18q18 + 2A20q18 + 2A16q20− 3A18q20 +

A20q20 +A16q22− 2A18q22 +A20q22 +A16q24− 2A18q24 +A20q24 +A16q26

−2A18q26 +A20q26 +A16q28−A18q28−A18q30 +A20q30 +A16q32−A18q32
)
.

If we go beyond two-strand braids, we need to deal with quantum R̂′is which could
be matrices depending on the multiplicity sub-spaces. As our focus is on weaving knots
W (3, n) and their hybrid generalization, we will elaborate the steps of the modified RT
method for three strands braid in the following section. Notice that, the braiding property
eq. (2.6) means that both R̂1 and R̂2 cannot be simultaneously diagonal but related by a
unitary matrix which can be identified with the Uq(slN ) Racah matrices.
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2.2 R̂- matrices with block structure for three strand braids

For three strand braids and each strands carrying the symmetric representation, the tensor
product of representations [r]⊗ [r]⊗ . . .⊗ [r]︸ ︷︷ ︸

m

into the direct sum of irreducible represen-
tations (Ξα) is shown:

3⊗
[1] = [3, 0, 0]

⊕
[1, 1, 1]

⊕
2[2, 1, 0],

3⊗
[2] = [6, 0, 0]

⊕
[3, 3, 0]

⊕
[4, 1, 1]

⊕
2[5, 1, 0]

⊕
2[3, 2, 1]

⊕
3[4, 2, 0],

3⊗
[3] = [9, 0, 0]

⊕
[7, 1, 1]

⊕
[5, 2, 2]

⊕
[4, 4, 1]

⊕
[3, 3, 3]

⊕
3[8, 1, 0]

⊕
2[4, 3, 2]

⊕
2[6, 2, 1]

⊕
2[5, 4, 0]

⊕
3[7, 2, 0]

⊕
2[5, 3, 1]

⊕
4[6, 3, 0],

. . .
3⊗

[r] =
∑
α

(dimM1,2,3
Ξα )Ξα,

where Ξα ≡ [ξ1
α, ξ2

α, ξ3
α] is such that ξ1

α + ξ2
α + ξ3

α = 3r and ξ1
α ≥ ξ2

α ≥ ξ3
α ≥ 0. Let

us discuss the path and block structure of R̂-matrix for irreducible representation [4, 2, 0].
Note that the multiplicity of the representation [4, 2, 0] is equal to three which means there
are three possible paths:

(i) [2] → [2] → [4] → [4, 2, 0] ,
(ii) [2] → [2] → [3, 1] → [4, 2, 0] ,
(iii) [2] → [2] → [2, 2] → [4, 2, 0].

(2.19)

Let us choose R̂[4,2,0]
1 to be diagonal whose entries defined by (2.12)

λ[2,2]([2], [2]) = A−2, λ[3,1]([2], [2]) = −A−2q2, λ[4]([2], [2]) = A−2q6. (2.20)

The explicit form of R̂[4,2,0]
1

R̂[4,2,0]
1 = A−2

 1 0 0
0 −q2 0
0 0 q6

 . (2.21)

R̂2 is defined as
R̂Ξα

2 = UΞαR̂Ξα
1 (UΞα)† .

Note that UΞα† denotes the conjugate-transpose of UΞα . This unitary matrix relate two
equivalent basis states for irreducible representation [4, 2, 0] as shown below in:

[2] [2] [2]

Λα

Ξα = {3[4, 2, 0]}

U [4,2,0]
−→

[2] [2] [2]

Λα′

Ξα = {3[4, 2, 0]}

(2.22)
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where, Λα & Λ′α ∈ {[4], [3, 1], [2, 2]} and algebraically the transformation state for Ξα are:

|
(
([r]⊗ [r])Λα ⊗ [r]

)
Ξα
〉 U

Ξα−−−→ |
(
[r]⊗ ([r]⊗ [r])Λα′

)
Ξα
〉 ,

where the elements of the transformation matrix UΞα related to quantum Racah coefficients
discuss in details [26–28]. For completeness, Racah matrix involving Ξα ≡ [ξ1

α, ξ2
α, ξ3

α]
(whose Young diagram has three rows) can be identified as Uq(sl2) Racah matrix:

UΞα≡[ξ1α,ξ2α,ξ3α] = UUq(sl2)

[
(r − ξ3

α)/2 (r − ξ3
α)/2

(r − ξ3
α)/2 (ξ1

α − ξ2
α)/2

]
. (2.23)

The closed form expression of Uq(sl2) Racah coefficients [12]:

U
Uq(sl2)
j,l

[
j1 j2
(j3 j4

]
=
√

[2j + 1]q[2l + 1]q(−1)j1+j2+j3+j4+j+l+1∆(j1, j2, j)∆(j3, j4, j)

∆( j4, j1, l)∆( j2, j3, l)F [j1, j2, j3, j4] ,

where,

F [j1, j2, j3, j4] =
∑
m≥0

(−1)m[m+ 1]q!{[m− (j+ j1 + j2)]q![m− (j+ j3 + j4)]q![(m− ( j1 + j4 + l))]q!

[m− ( j2 + j3 + l)]q![(j+ j1 + j3 + l)−m]q! [(j+ j2 + j4 + l)−m]q!

[( j1 + j2 + j3 + j4)−m]q!}−1

∆(a, b, c) =
√

[a− b+ c]q![b− a+ c]q![a+ b− c]q!
[a+ b+ c+ 1]q!

.

Hence, from eq. (2.23) the explicit form of unitary matrix U [4,2,0] defined as

U [4,2,0] =



− 1
1+ 1

q2 +q2 − q√
1+q2+q4 −

√
1+q2+q4+q6+q8

1+q2+q4

− q√
1+q2+q4 −1 + q2

1+q4

q4

√(
1+ 1

q2 +q2
)(

1+ 1
q4 + 1

q2 +q2+q4
)

(1+q4)(1+q2+q4)

−
√

1+q2+q4+q6+q8

1+q2+q4

q4

√(
1+ 1

q2 +q2
)(

1+ 1
q4 + 1

q2 +q2+q4
)

(1+q4)(1+q2+q4) − q4

1+q2+2q4+q6+q8


.

(2.24)
Hence, the R̂2 matrix for [4, 2, 0] is

R̂[4,2,0]
2 = U [4,2,0]R̂[4,2,0]

1 U [4,2,0]†.

Explicit form of quantum R̂i’s and U can be similarly worked out for other irreducible
representations to compute [r]-colored HOMFLY-PT for hybrid weaving knots.

3 Hybrid weaving knot Ŵ3(m, n)

In this section, we discuss the hybrid weaving knot obtained from closure of three-strand
braid whose braid word is

(σm1 σ−m2 )n

– 8 –
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Figure 2. Snappy diagram representation for hybrid knots [29, 30]: (a) Ŵ3(2, 1) = 41, (b)
Ŵ3(4, 1) = 818 knot, (c) Ŵ3(5, 1) = 10123 knot, and (d) Ŵ3(3, 2) = 12a1288 knot.

which is pictorially seen in (3.1). Note that the subscript 3 in Ŵ3(m,n) indicates three-
strand braid.

m

−m

m

−m

m
. . . n . (3.1)

The classification of knots belongs to the hybrid weaving knot Ŵ3(m,n) are tabulated
below for some values of m and n: where m is odd and m 6= n > 1. When m = 1, Ŵ3(1, n)
reduces to the weaving knot W (3, n) discussed in [7, 8]. Well known examples of weaving
knots (see in figure 2) are

W (3, 2) = 41, W (3, 4) = 818 and W (3, 5) = 10123.

For m > 3 and n ≥ 2, the crossing number exceeds 20 whose data are not available in
the knot theory literature to validate. Now we will elaborate the modified RT method
for hybrid weaving knots and achieve a closed form expression for their HOMFLY-PT
polynomial.
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3.1 HOMFLY-PT for hybrid weaving knot Ŵ3(m, n)

In this case, tensor product of fundamental representation of three strand braid:

[1]
⊗

3 = [3]
⊕

[1, 1, 1]
⊕

2[2, 1, 0]

shows that representation [2, 1, 0] has multiplicity two. Incorporating 2 × 2 matrix form
R̂1 and R̂2 for representation [2, 1, 0] in eq. (2.13), the HOMFLY-PT for Ŵ3(m,n) is

HŴ3(m,n)
[1] = 1

S∗[1]

∑
Ξα={[3],[1,1,1],[2,1,0]}

S∗ΞαTrΞα(R̂Ξα
1 )m(R̂Ξα

2 )−m . . . (R̂Ξα
1 )m(R̂Ξα

2 )−m

= 1
S∗[1]

(S∗[3] + S∗[1,1,1] + S∗[2,1]Tr[2,1,0](R̂[2,1,0]
1 )m(R̂[2,1,0]

2 )−m)n . (3.2)

Here S∗[1] =[N ]q, S∗[3] =
[N ]q [N+1]q [N+2]q

[2]q [3]q , S∗[111] =
[N ]q [N−1]q [N−2]q

[2]q [3]q , and S∗[21] =
[N ]q [N+1]q [N−1]q

[3]q .
In order to apply the formula (3.2) to evaluate the HOMFLYPT polynomial for

Ŵ3(m,n) we need to compute the trace of the matrix Ψ[2,1,0][m,n]=((R̂[2,1,0]
1 )m(R̂[2,1,0]

2 )−m))n.
Using eq. (2.16) and eq. (2.23), we have,

R̂1 = A−1

 q 0
0 −1

q

 and R̂2 = A−1


q2−[3]q
q[2]q2 −

√
[3]q

[2]q

−
√

[3]q
[2]q

1−q2[3]q
q[2]q2

 .
Thus

R̂m1 R̂−m2 =


1−q2m[3]q

([2]q)2 − (1+q2m)
√

[3]q
([2]q)2

(1+q2m)
√

[3]q
q2m([2]q)2

1−q−2m[3]q
([2]q)2

 =

 x1 −x2
x2
q2m x3

 ,

where x1 = 1−q2m[3]q
([2]q)2 , x2 = (1+q2m)

√
[3]q

([2]q)2 , and x3 = 1−q−2m[3]q
([2]q)2 . Interestingly, we have succeed in

the writing of diagonal entries of the nth power of the above matrix ((R̂[2,1,0]
1 )m(R̂[2,1,0]

2 )−m)n

in a compact form Ψ[2,1,0]
1 [m,n] and Ψ[2,1,0]

2 [m,n] i.e.

Ψ[2,1,0]
1 [m,n] = xn1 +

bn2 c∑
i=1

n−i∑
k=1

(−1)i
(
k + i− 2
i− 1

)(
n− (k + i− 1)

i

)
x
n−(2i+k−1)
1 xk−1

3

(
x2
qm

)2i
,

Ψ[2,1,0]
2 [m,n] = xn3 +

bn2 c∑
i=1

n−i∑
k=1

(−1)i
(
k + i− 2
i− 1

)(
n− (k + i− 1)

i

)
x
n−(2i+k−1)
3 xk−1

1

(
x2
qm

)2i
.

(3.3)

Hence the trace of the matrix Ψ[2,1,0][m,n]

Ψ[2,1,0][m,n] = Ψ[2,1,0]
1 [m,n] + Ψ[2,1,0]

2 [m,n]. (3.4)

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

Using these binomial series for the trace, the closed form expression for HOMFLY-PT for
hybrid weaving knot turns out to be

HŴ3(m,n)
[1] = 1

S∗[1]

S∗[3] +S∗[111] +S∗[21] ·

xn1 +xn3 +
bn2 c∑
i=1

n−i∑
k=1

(−1)i
(
k+ i− 2
i− 1

)(
n− (k+ i− 1)

i

)

(x(n+1−2i−k)
1 x

(k−1)
3 +x

(k−1)
1 x

(n−2i−k+1)
3 )

( x2
qm

)2i
 .

(3.5)
The closed form expression is an important result providing a useful starting point to

investigate [r]-colored HOMFLY-PT, knot-quiver correspondence for hybrid weaving knots
which we will pursue in future. Incidentally for m = 1, Ψ[2,1,0][m,n] in eq. (3.4) is a Laurent
polynomial [8] giving closed form HOMFLY-PT for weaving knots W (3, n). We propose
such a Laurent polynomial structure will be seen for all the multiplicity two irreducible
representation Ξα ∈ [r]⊗3 for symmetric colors [r] > 1 as well.

Proposition 1. Given a representation Ξα ≡ [ξ1
α, ξ2

α, ξ3
α] having multiplicity 2 with

R̂Ξα
1 = ±qm1A−r

(
qt 0
0 − 1

qt

)
, and UΞα =

 1
[2]
qt

√
[3]
qt

[2]
qt√

[3]
qt

[2]
qt

− 1
[2]
qt

, the Laurent polynomial Vn,t[q]

is defined as

Vn,t[q] = Tr(R̂Ξα
1 UΞα(R̂Ξα

1 )−1(UΞα)†)n =
n∑

g=−n
(−1)gSn,n−|g|q2gt. (3.6)

Here t and m1 are also an integer dependent on Ξα and the coefficients Sn,j are:

Sn,j =
b j2c∑
i=0

n

n− i

(
n− i

n− j + i

)(
j − i− 1

i

)
,

where the parameters n &j are positive integers and |x| denote the absolute value of x and
bxc indicate the greatest integer x. For m = 1 and fundamental representation [r] = [1],
the trace in eq. (3.4) is

Ψ[2,1,0][1, n] = Vn,1[q],

exactly matching with the parallel work [8]. Further, we conjecture the sum of the absolute
coefficient Sn,n−|δ| given by On, satisfy the beautiful relation.

Conjecture 1.

On =
n∑

δ=−n
Sn,n−δ = 5F2

n + 2(−1)n , (3.7)

where Fn denotes Fibonacci numbers. The explicit form of Fn is given by [31]

Fn = 1√
5

(φn − cos (nπ)(φ)−n) .
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n 1 2 3 4 5 6 7 8
Fn 1 1 2 3 5 8 13 21
On 3 7 18 47 123 322 843 2207

Table 1. On and Fn for n ≤ 8.

Notation Knot
Ŵ3(1, n) weaving knot of type W (3, n)
Ŵ3(m, 1) T(2,m)#T ∗(2,m)

Ŵ3(3, 2) 12a1288 Knot

Table 2. The classification of hybrid weaving knot Ŵ3(m,n).

Here φ ≈ 1.618 is the golden ratio. We have checked this conjecture for large values of n.
For values of n ≤ 8, we have presented the values of On,Fn in table 1. For completeness, we
will briefly discuss the Fibonacci numbers and its properties. The Fibonacci (Fn) numbers
are sequences satisfying the Fibonacci recursion relation

Fn+1 = Fn + Fn−1,

with following initial conditions: F0 = 0,F1 = 1. Here n is integer and it satisfy yhe
following relation

F−n = (−1)n+1Fn.

3.2 Examples

For the hybrid weaving knots in table 2, HOMFLY-PT are obtained using our closed form
expression for Ŵ3(m,n).

• (a) For m = 1, the HOMFLY-PT polynomial is for weaving knots W (3, n):

HW (3,n)
[1] (A, q) = 1

S∗[1]
(S∗[3] + S∗[111] + S∗[21]Vn,1[q]). (3.8)

Substituting A = q2, we get the Jones polynomial:

JW (3,n)(q) = q−2 + q2 + Vn,1[q] .

These results agree with the results in the parallel paper on weaving knots [8].

• (b) composite knot T(2,m)#T ∗(2,m).
For odd m ≥ 2 and n = 1, the knot belongs to composite knot of type T(2,m)#T ∗(2,m).6
Hence, the HOMFLY-PT will be

H
Ŵ3(m,1)
[1] = H

T(2,m)
[1] (q, A)H

T ∗(2,m)
[1] (q,A)

= q2−2m(−1 +A2q2 −A2q2m + q2+2m)(−A2 + q2 − q2m +A2q2+2m)
A2(−1 + q)2(1 + q)2(1 + q2)2 .

and examples for some values of m shown in table 3.
6T ∗(2,m) is the mirror of torus knot T(2,m).
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m KNOT H
Ŵ3(m,1)
[1] (q, A)

3 31#3∗1 (A−2q−4)(1−A2q2 + q4)(A2 − q2 +A2q4)

9 91#9∗1 A−2q−16(1 − A2q2 + q4 − A2q6 + q8 − A2q10 +
q12−A2q14 + q16)(A2− q2 +A2q4− q6 +A2q8−
q10 +A2q12 − q14 +A2q16)

Table 3. HOMFLY-PT for Ŵ3(m, 1) = T(2,m)#T ∗
(2,m).

Ξα ∈ [2]3 Matrix size # of matrices

[6, 0, 0], [4, 1, 1], [3, 3] 1 3

[5, 1, 0],[3, 2, 1] 2 2

[4, 2, 0] 1 3

Table 4. The multiplicity table for Ξα ∈ [2]3.

• (c) The m = 3 and n = 2 refers to a 12 crossing knot “12a1288” in the Rolfsen table
whose HOMFLY-PT polynomial is

H
W3(3,2)
[1] = 11 + 7

A2 + 7A2 − 1
q10 + 1

q8 + 1
A2q8 + A2

q8 −
5
q6 −

1
A2q6 −

A2

q6 + 6
q4

+ 4
A2q4 + 4A2

q4 −
11
q2 −

5
A2q2 −

5A2

q2 − 11q2 − 5q2

A2 − 5A2q2 + 6q4 + 4q4

A2

+4A2q4 − 5q6 − q6

A2 −A
2q6 + q8 + q8

A2 +A2q8 − q10.

In the following section, we will present [r]-colored HOMFLYPT for W (3, n) for
[r] = 2, 3 and verify our proposition 1.

4 Colored HOMFLY-PT for weaving knot type W (3, n)

We will use the data on UΞα matrices in section 2.2 for three-strand braid where Ξα ∈ [2]3
and Ξα ∈ [3]3 to compute colored HOMFLY-PT for the weaving knots.

4.1 Representation [r] = [2]

In this case, ⊗3[2] = [6, 0, 0]⊕[3, 3, 0]⊕[4, 1, 1]⊕ 2[5, 1, 0]⊕ 2[3, 2, 1]⊕ 3[4, 2, 0].
From the multiplicity, we can see that there one 3×3 matrix, two 2×2 matrices, three

1× 1 matrices as shown in the table 4. Also the path and the block structure of Ξ ∈ [2]⊗3
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is shown (4.1)

[4,0] [3,1] [2,2]

[2]⊗[2]

[4,2][5,1][6,0] 2 3

. (4.1)

The eigenvalues and UΞα matrices in this case are

R̂[5,1,0]
1 =A−2q4

(
q2 0
0 −q−2

)
, R̂[3,2,1]

1 =A−2q

(
q−1 0
0 −q

)
, R̂[4,2,0]

1 =A−2

 1 0 0
0 −q2 0
0 0 q6

 (4.2)

U [5,1,0] =

 1
[2]q2

√
[3]q2

[2]q2√
[3]q2

[2]q2
− 1

[2]q2

 , U [3,2,1] =

 1
[2]q

√
[3]q

[2]q√
[3]q

[2]q −
1

[2]q

 , (4.3)

U [4,2,0] =



− 1
1+ 1

q2 +q2 − q√
1+q2+q4

−
√

1+q2+q4+q6+q8

1+q2+q4

− q√
1+q2+q4

−1 + q2

1+q4

q4
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2+q4

)
(1+q4)(1+q2+q4)

−
√

1+q2+q4+q6+q8

1+q2+q4

q4
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2+q4

)
(1+q4)(1+q2+q4) − q4

1+q2+2q4+q6+q8


.

(4.4)

From eq. (2.13), [2]-HOMFLY-PT for W (3, n):

HW (3,n)
[2] = 1

S∗[2]

∑
α

TrΞα(R̂Ξα
1 (R̂Ξα

2 )−1 . . . R̂Ξα
1 (R̂Ξα

2 )−1)

= 1
S∗[2]

∑
α

TrΞα(R̂Ξα
1 (R̂Ξα

2 )−1)n

= 1
S∗[2]

(
S∗[6] + S∗[3,3] + S∗[4,1,1] + S∗[5,1,0]Tr[5,1,0](R̂[5,1,0](R̂[5,1,0]

2 )−1)n + S∗[3,2,1]

Tr[3,2,1](R̂[3,2,1](R̂[3,2,1]
2 )−1)n + S∗[4,2,0]Tr[4,2,0](R̂[4,2,0](R̂[4,2,0]

2 )−1)n
)
. (4.5)

Using eqs. (4.2) to (4.4), and (3.6), we can rewrite the equation (4.5) into neat formula

HW (3,n)
[2] = 1

S∗[2]

(
S∗[6] + S∗[3,3] + S∗[4,1,1] + S∗[5,1,0]Vn,2 + S∗[3,2,1]Vn,1 + S∗[4,2,0]Tr(X [4,2,0])n

)
,

(4.6)
where,

X [4,2,0] =



1
q6+q8+q10 − 1

q5
√

1+q2+q4

√
1+q2+q4+q6+q8

q2+q4+q6

1
q3
√

1+q2+q4
−1+q2−q4

q2+q6 −
q3
√

1+q2+q4+q6+q8
1+q2+q4

1+q4

q4
√

1+q2+q4+q6+q8

1+q2+q4

q7
√

1+q2+q4+q6+q8
1+q2+q4

1+q4
q14

1+q2+2q4+q6+q8


. (4.7)
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Ξα ∈ [3]3 Matrix size # of matrices
[9, 0, 0], [7, 1, 1], [5, 2, 2],[4, 4, 1],[3, 3, 3] 1 5
[4, 3, 2],[6, 2, 1], [5, 4, 0],[5, 3, 1] 2 4
[8, 1, 0], [7, 2, 0] 3 2
[6, 3, 0] 4 1

Table 5. The multiplicity table for Ξα ∈ [3]3.

Using eq. (3.6), the [2]-colored reduced HOMFLY-PT polynomials for W (3, n). We would
like to emphasize that the polynomial form of this algebraic expression for arbitrary n

is easily computable. We have listed [2] colored HOMFLY-PT in appendix B for some
weaving knots.

4.2 Representation [3]

In this case, ⊗3[3] = [9, 0, 0]⊕[7, 1, 1]⊕[5, 2, 2]⊕[4, 4, 1]⊕[3, 3, 3]⊕ 3[8, 1, 0]⊕
2[4, 3, 2]⊕ 2[6, 2, 1]⊕ 2[5, 4, 0]⊕ 3[7, 2, 0]⊕ 2[5, 3, 1]⊕ 4[6, 3, 0].

Thus, there are two 3 × 3 matrices, four 2 × 2 matrices, five 1 × 1 matrices and one
4× 4 matrix tabulated in table 5. The braiding and UΞα matrices in this case are

R̂[6,3,0]=A−3


−q3 0 0 0

0 q5 0 0
0 0 −q9 0
0 0 0 q15

, R̂[5,3,1]=A−3

−q
3 0 0

0 q5 0
0 0 −q9

, R̂[7,2,0]=A−3

 q5 0 0
0 −q9 0
0 0 q15

,

(4.8)

R̂[5,4,0]=R̂[6,2,1]=A−3q7

(
q−2 0
0 −q2

)
, R̂[4,3,2]=A−3q4

(
−q−1 0

0 q

)
, R̂[8,1,0]=A−3q12

(
−q−3 0

0 q3

)
,

(4.9)

U [5,3,1]=



− 1
1+ 1

q2 +q2 − q√
1+q2+q4

−
√

1+q2+q4+q6+q8

1+q2+q4

− q√
1+q2+q4

−1+ q2

1+q4

q4
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2+q4

)
(1+q4)(1+q2+q4)

−
√

1+q2+q4+q6+q8

1+q2+q4

q4
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2+q4

)
(1+q4)(1+q2+q4) − q4

1+q2+2q4+q6+q8


,

(4.10)

U [5,4,0]=U [3,6,2,1]=

 1
[2]
q2

√
[3]
q2

[2]
q2√

[3]
q2

[2]
q2
− 1

[2]
q2

, (4.11)

U [8,1,0]=

 1
[2]
q3

√
[3]
q3

[2]
q3√

[3]
q3

[2]
q3
− 1

[2]
q3

, U [4,3,2]=

 1
[2]q

√
[3]q

[2]q√
[3]q

[2]q − 1
[2]q

. (4.12)
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We have placed the other 3 × 3 and also 4 × 4 matrices in appendix A. From eq. (2.13),
[3]-colored HOMFLY-PT for W (3, n):

HW (3,n)
[3] = 1

S∗
[3]

∑
α

TrΞα(R̂Ξα
1 (R̂Ξα

2 )−1 . . . R̂Ξα
1 (R̂Ξα

2 )−1) ,

= 1
S∗

[3]

∑
α

TrΞα(R̂Ξα
1 (R̂Ξα

2 )−1)n ,

= 1
S∗

[3]

(
S∗

[9] +S∗
[7,1,1] +S∗

[5,2,2] +S∗
[4,4,1] +S∗

[3,3,3] +S∗
[4,3,2]Tr[4,3,2](R̂[4,3,2](R̂[4,3,2]

2 )−1)n

+S∗
[6,2,1]Tr[6,2,1](R̂[6,2,1](R̂[6,2,1]

2 )−1)n +S∗
[5,4,0]Tr[5,4,0](R̂[5,4,0](R̂[5,4,0]

2 )−1)n +

S∗
[8,1,0]Tr[8,1,0](R̂[8,1,0](R̂[8,1,0]

2 )−1)n +S∗
[7,2,0]Tr[7,2,0](R̂[7,2,0](R̂[7,2,0]

2 )−1)n +

S∗
[6,3,0]Tr[6,3,0](R̂[6,3,0](R̂[6,3,0]

2 )−1)n
)
. (4.13)

Using eqs. (4.8) to (4.12), eq. (3.6), and appendix A, we can rewrite the equation (4.13)
into neat formula

HW (3,n)
[3] = 1

S∗[3]

(
S∗[9] + S∗[7,1,1] + S∗[5,2,2] + S∗[4,4,1] + S∗[3,3,3] + (S∗[6,2,1] + S∗[5,4,0])Vn,2

+S∗[4,3,2]Vn,1 + S∗[8,1,0]Vn,3 + S∗[7,2,0]Tr(X [7,2,0]
1 )n + S∗[5,3,1]Tr(X [5,3,1]

2 )n

+S∗[6,3,0]Tr(X [6,3,0]
3 )n

)
. (4.14)

where the explicit form of X [6,3,0]
3 , X [7,2,0]

1 and X
[5,3,1]
2 are given in appendix A and the

colored HOMFLY-PT polynomials for W (3, n) for color [3] are presented in appendix B.
Even though we have explicitly computed [r]-colored HOMFLY-PT upto [r] = 3, the
method is straightforward. However, it will be interesting if we can write a closed form
expression for arbitrary color [r]. This is essential to work on volume conjecture for these
hyperbolic knots which we plan to pursue in future. As a piece of evidence that our [r]-
colored HOMFLY-PT for weaving knots are correct, we work out reformulated invariants
and BPS integers in the context of topological string duality in the following section.

5 Integrality structures in topological strings

Motivated by the AdS-CFT correspondence, Gopakumar-Vafa conjectured that the SU(N)
Chern-Simons theory on S3 is dual to closed A-model topological string theory on a resolved
conifold O(−1) + O (−1) over P1. Particularly, the Chern-Simons free energy lnZ[S3]
was shown to be closed string partition function on the resolved conifold target space:

lnZ[S3] = −
∑
g

Fg(t)g2−2g
s , (5.1)

where Fg(t) are the genus g topological string amplitude, gs = 2π
k+N denotes the string

coupling constant and t = 2πiN
k+N denote the Kähler parameter of P1. Ooguri-Vafa conjec-

tured that the Wilson loop operators in Chern-Simons theory correspond to the following
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topological string operator on a deformed conifold T ∗S3:

lnZ(U, V )S3 =
∑
m

1
m
Tr[1]U

mTr[1]V
m, (5.2)

where U represent the holonomy of the gauge connection A around the knot K carrying
the fundamental representation ([1]) in the U(N) Chern-Simons theory on S3, and V is the
holonomy of a gauge field Ã around the same component knot carrying the fundamental
representation ([1]) in the U(M) Chern-Simons theory on a Lagrangian sub-manifold C
which intersects S3 along the knot K. Gopakumar-Vafa duality require integrating the
gauge field A on S3 leading to open topological string amplitude on the resolved conifold
background. For unknot, the detailed calculation was performed [9] giving:

〈Z(U, V )〉S3 = exp
{(

i
∞∑
m=1

exp
{
(mt2 )

}− exp
{
(−mt2 )

}
2m sin (mgs2 ) TrV −m

)}
, (5.3)

which was justified using Gopakumar-Vafa duality. Further, Ooguri-Vafa conjectured the
generalization of eq. (5.3) for other knots as (also known LMOV integrality conjecture):

〈Z(U, V )〉S3 =
∑
R
H∗KR (q,A)TrRV

= exp
[ ∞∑
m=1

(∑
R

1
m
fKR(Am, qm)TrRV

m

)]
, (5.4)

where fKR(A, q), known as reformulated invariant, obeying the following integrality
structure:

fKR(q, A) =
∑
i,j

1
(q − q−1)ÑKR,i,jA

iqj .

Here, R denotes the irreducible representation of U(N) and ÑKR,i,j counts the number of
D2-brane intersecting D4-brane (BPS states) where, i and j keeps track of charges and
spins respectively [10, 32]. These reformulated invariants can be written in the terms of
colored HOMFLY-PT polynomials (5.4). For few lower dimensional representations, the
explicit forms are as follows [11, 33, 34]:

fK[1](q, A) = H∗K[1] (q, A),

fK[2](q, A) = H∗K[2] (q, A)− 1
2
(
H∗K[1] (q, A)2 +H∗K[1] (q2, A2)

)
,

fK[12](q, A) = H∗K[12](q, A)− 1
2
(
H∗K[1] (q, A)2 −H∗K[1] (q2, A2)

)
,

. . .

In fact, reformulated invariants obey Ooguri-Vafa conjecture verified for many arborescent
knots up to 10 crossings in [35]. Moreover, these reformulated invariant can be equivalently
written as [11]:

fKR(q, A) =
∑

m,k≥0,s
CRSN̂KS,m,kAm(q − q−1)2k−1, (5.5)
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where N̂KS,m,k called refined integers and

CRS = 1
q − q−1

∑
∆

1
z∆
ψR(∆)ψS(∆)

l(∆)∏
i=1

(
qξi − q−ξi

)
.

Here the sum goes over the Young diagrams ∆ with l(∆) lines of lengths ξi and the
number of boxes |∆| = ∑l(∆)

i ξi, while ψR(∆) denote the characters of symmetric groups
at |R| = |∆| and z∆ is the standard symmetric factor of the Young diagram [36]. Using
our colored HOMFLY-PT form for the weaving knot W (3, n) (listed in appendix B), we
computed the reformulated invariants for representations upto length |R| = 2. From our
analysis, we propose the following:

Proposition 2. Refined BPS integer N̂W (3,n)
[1],∓1,k for weaving knot W (3, n) is the coefficient

of zk of polynomial f∓n [z] of degree n− 1 i.e.

f∓n [z] = ±
2(−1)nTn

(
1+z

2

)
+ 1

z
, (5.6)

where Tn(z) represents the nth degree Chebyshev polynomial of the first kind at the point
z. Rodrigue’s formula to obtain Tn(z) is

Tn(z) = (−2)nn!
2n!

√
1− z2 d

n

dzn
(1− z2)n−1/2 . (5.7)

Here we list the polynomial form for some values of n: for completeness,

f−11[z] = 11 + 22z − 66z2 − 99z3 + 77z4 + 154z5 + 22z6 − 66z7 − 44z8 − 11z9 − z10

f−10[z] = −10 + 15z + 60z2 − 15z3 − 98z4 − 35z5 + 40z6 + 35z7 + 10z8 + z9

f−5 [z] = 5 + 5z − 5z2 − 5z3 − z4

f−4 [z] = −4 + 2z + 4z2 + z3 .

Unfortunately, we have not managed to write the other integers for fundamental represen-
tation N̂W (3,n)

[1],±3,k : as a closed form. There are other properties of N̂ which we have checked
up to the level |S| = 2 for W (3, n) knot. They are∑

m

N̂W (3,n)
S,m,k = 0

∑
k

N̂W (3,n)
[1],∓1,k = ∓4

3Tn−1(−1) sec
(
nπ

6

)2
sin
(
nπ

3

)4
, n ≥ 1.

here Tn−1(z = −1) is the Chebyshev polynomial evaluated at z = −1. We have tabulated
below these refined integers for knotW (3, 4),W (3, 5),W (3, 10), andW (3, 11), when |r = 1|:

N̂W [3,4]
[1] :

k\m = −3 −1 1 3
0 1 −4 4 −1
1 −1 2 −2 1
2 −1 4 −4 1
4 0 1 −1 0

, N̂W [3,5]
[1] :

k\m = −3 −1 1 3
0 −2 5 −5 2
1 −1 5 −5 +1
2 2 −5 5 −2
3 1 −5 5 −1
4 0 −1 1 0
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N̂W [3,10]
[1]

k\m = −3 −1 1 3
0 3 −10 10 3
1 −6 15 −15 6
2 −18 60 −60 18
3 11 −15 15 −11
4 29 −98 98 −29
5 2 −35 35 −2
6 −14 40 −40 14
7 −7 35 −35 7
8 −1 10 −10 1
9 0 1 −1 0

, N̂W [3,11]
[1]

k\m = −3 −1 1 3
0 −4 11 −11 4
1 −6 22 −22 6
2 24 −66 66 −24
3 25 −99 99 −25
4 −34 77 −77 34
5 −40 154 −154 40
6 6 22 −22 −6
7 20 −66 66 −20
8 8 −44 44 −8
9 1 −11 11 −1
10 0 −1 1 0

.

The table of refined integers for representations whose length |R| = 2 are presented in
appendix C.

6 Conclusion and discussion

Hybrid weaving knots Ŵ3(m,n) obtained from braid word
[
σm1 σ

−m
2

]n
(see figure 3.1) con-

tains weaving knots W (3, n) as subset which are hyperbolic in nature. Finding a closed
form expression for [r]-colored HOMFLY-PT for such hybrid weaving knots was attempted
using the modified Reshtikhin-Turaev approach [16]–[17] method. Using the R̂i matri-
ces, we derived the explicit closed form expression of HOMFLY-PT for hybrid weaving
knotŴ3(m,n) (3.5). Motivated by the Laurent polynomial structure studied for HOMFLY-
PT of weaving knots [8], we proposed such a structure Vn,t[q] (4.5 and 4.14) for any [r]-
colored HOMFLY-PT for the weaving knots. Further we showed that the absolute sum of
the coefficients in the Laurent polynomial is related to Fibonacci numbers (see conjecture
1 (3.7)). We have computed the colored HOMFLY-PT for W (3, n) upto [r] = 3 and pre-
sented them in the appendix B. Clearly, writing the polynomial form is computationally
simplified by this modified RT method. Using these knot invariants, we computed refor-
mulated invariants and found some of the refined BPS integers can be written in terms of
coefficient of Chebyshev polynomials (Tn(x)) of first kind for W (3, n) (5.6).

So far, we have managed to write the closed form expression for trace of 2×2 matrices
by introducing the Vn,t[q]. For higher dimensional matrices, such a Laurent polynomial
structure is not obvious. We have seen a concise form for [r]-colored HOMFLY-PT for
knot 41 ≡W (3, 2), twist knots and torus knots using q-binomial and q-Pochammer terms.

It will be interesting if we can find a similar expression for weaving knots. Such an
expression will help us to address volume conjecture, A-polynomials for these weaving
knots. We hope to address these problems in future.
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A Unitary matrices

U [6,3,0]=



q3

1+q2+q4+q6
q2
√

1+q2+q4

1+q2+q4+q6 (u1)13 (u1)14

q2
√

1+q2+q4

1+q2+q4+q6
q+2q3+2q5+q7+2q9+2q11+q13

(1+q2+q4+q6)(1+q2+q4+q6+q8) (u1)23

q
√

1+q2+q4+q6+q8

1+q2+q4+q6 (u1)32 − q+q
3−q5+q7+q9

1+q4+q6+q10 (u1)34
√

1+q2+q4+q6+q8+q10+q12

1+q2+q4+q6 (u1)42 (u1)43 (u1)44


(A.1)

(u1)14=
√

1+q2 +q4 +q6 +q8 +q10 +q12

1+q2 +q4 +q6

(u1)13=
q
√

1+q2 +q4 +q6 +q8

1+q2 +q4 +q6

(u1)24=−
q5(1+q2 +q4)√(1+ 1

q2 +q2
)(

1+ 1
q6 + 1

q4 + 1
q2 +q2 +q4 +q6

)
(1+q2 +q4 +q6)(1+q2 +q4 +q6 +q8)

(u1)23=
q3
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2 +q4

)(
1−q4 +q8)

(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(u1)32=
q3
√(

1+ 1
q2 +q2

)(
1+ 1

q4 + 1
q2 +q2 +q4

)(
1−q4 +q8)

(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(u1)34=
q9
√(

1+ 1
q4 + 1

q2 +q2 +q4
)(

1+ 1
q6 + 1

q4 + 1
q2 +q2 +q4 +q6

)
(1+q4)(1+q6)(1+q2 +q4 +q6 +q8)

(u1)42=−
q5(1+q2 +q4)√(1+ 1

q2 +q2
)(

1+ 1
q6 + 1

q4 + 1
q2 +q2 +q4 +q6

)
(1+q2 +q4 +q6)(1+q2 +q4 +q6 +q8)

(u1)44=− q9

(1+q4)(1+q6)(1+q2 +q4 +q6 +q8)

(u1)43=
q9
√(

1+ 1
q4 + 1

q2 +q2 +q4
)(

1+ 1
q6 + 1

q4 + 1
q2 +q2 +q4 +q6

)
(1+q4)(1+q6)(1+q2 +q4 +q6 +q8)

U [7,2,0]=



− q4(1+q2+q4)
(1+q4)(1+q2+q4+q6+q8) −

q2
√

1+q2+q4+q6+q8+q10+q12
1+q4+q6+q8+q12

1+q4 (u2)13

−
q2
√

1+q2+q4+q6+q8+q10+q12
1+q4+q6+q8+q12

1+q4 −1+ q4

(1+q4)(1−q2+q4) (u2)23

(u2)31 (u2)32 − q6

1+q4+q6+q8+q12


(A.2)

(u2)13=−
(
1+q8)(1+q2 +q4 +q6 +q8 +q10 +q12)

(1+q2 +q4 +q6 +q8)
√

1+q4 +q6 +2q8 +q10 +2q12 +q14 +2q16 +q18 +q20 +q24

(u2)23=
q2
√

1+q8

1+q2+q4+q6+q8

1−q2 +q4

(u2)32=
q2
√

1+q8

1+q2+q4+q6+q8

1−q2 +q4
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(u2)31=−
(
1+q8)(1+q2 +q4 +q6 +q8 +q10 +q12)

(1+q2 +q4 +q6 +q8)
√

1+q4 +q6 +2q8 +q10 +2q12 +q14 +2q16 +q18 +q20 +q24

X
[6,3,0]
3 =



− 1
q12(1+q2+q4+q6)

√
1+q2+q4

q11(1+q2+q4+q6) (x3)13 (x3)14

−
√

1+q2+q4

q9(1+q2+q4+q6)
1+2q2+2q4+q6+2q8+2q10+q12

q8(1+q2)(1+q4)(1+q2+q4+q6+q8) (x3)23 (x3)23

−
√

1+q2+q4+q6+q8

q2+q4+q6+q8 (x3)32
q4(1+q2−q4+q6+q8)

1+q4+q6+q10 (x3)34

− q
9
√

1+q2+q4+q6+q8+q10+q12

1+q2+q4+q6 (x3)42 (x3)43 (x3)44


(A.3)

(x3)13=−
√

1+q2 +q4 +q6 +q8

q8(1+q2 +q4 +q6)

(x3)14=
√

1+q2 +q4 +q6 +q8 +q10 +q12

q3 +q5 +q7 +q9

(x3)23=
(
−1+q4−q8)√1+q2(1+q2)(2+q2 +2q4 +q6 +q8)

q5(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(x3)24=−
q2(1+q2 +q4)√1+q2(1+q2)(2+q2 +2q4 +q6 +2q8 +q10 +q12)

(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(x3)32=
(
1−q4 +q8)√1+q2(1+q2)(2+q2 +2q4 +q6 +q8)

q(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(x3)34=
q13
√

1+q2(1+q2)(2+q2 +3q4 +2q6 +3q8 +2q10 +2q12 +q14 +q16)
(1+q2)(1+q4)(1−q2 +q4)(1+q2 +q4 +q6 +q8)

(x3)42=−
q12(1+q2 +q4)√1+q2(1+q2)(2+q2 +2q4 +q6 +2q8 +q10 +q12)

(1+q2)(1+q4)(1+q2 +q4 +q6 +q8)

(x3)43=−
q19
√

1+q2(1+q2)(2+q2 +3q4 +2q6 +3q8 +2q10 +2q12 +q14 +q16)
(1+q2)(1+q4)(1−q2 +q4)(1+q2 +q4 +q6 +q8)

(x3)44=− q30

(1+q2)(1+q4)(1−q2 +q4)(1+q2 +q4 +q6 +q8)

X
[5,3,1]
1 =



1
q6+q8+q10 − 1

q5
√

1+q2+q4

√
1+q2+q4+q6+q8

q2+q4+q6

1
q3
√

1+q2+q4
− 1
q2 + 1

1+q4 −
q3
√

1+q2+q4+q6+q8
1+q2+q4

1+q4

q4
√

1+q2+q4+q6+q8

1+q2+q4

q7
√

1+q2+q4+q6+q8
1+q2+q4

1+q4
q14

1+q2+2q4+q6+q8



X
[7,2,0]
2 =



q22

1+q4+q6+q8+q12

q12
√

1+q8
1+q2+q4+q6+q8

1−q2+q4 (x2)13

−
q6
√

1+q8
1+q2+q4+q6+q8

1−q2+q4
−1+q2−q4+q6−q8

q2(1+q4)(1−q2+q4) (x2)23

(x2)31

√
(1+q4+q6+q8+q12)(1+q2+q4+q6+q8+q10+q12)

q8(1+2q4+q6+2q8+q10+2q12+q16)
1+q2+q4

q10(1+q4)(1+q2+q4+q6+q8)


(A.4)

– 21 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

where

(x2)13 = −
q6
√

1+q2+q4+q6+2q8+2q10+2q12+q14+q16+q18+q20

1−q2+q4

1 + q2 + q4 + q6 + q8

(x2)23 = −
√

(1 + q4 + q6 + q8 + q12) (1 + q2 + q4 + q6 + q8 + q10 + q12)
q4 (1 + 2q4 + q6 + 2q8 + q10 + 2q12 + q16)

(x2)31 = −

√
1+q2+q4+q6+2q8+2q10+2q12+q14+q16+q18+q20

1−q2+q4

q4 + q6 + q8 + q10 + q12 .

B Colored HOMFLY-PT polynomials

The weaving knot W (3, n) whose [r] = 2, 3 colored HOMFLY-PT worked out in section 4
(see in eq. (4.6) & (4.14)) can be compactly rewritten in the matrix form (q2, A2): as
example [2]-colored HOMFLY-PT of W (3, 2) knot is

H
W [3,2]
[2] = 1

A4q6 (−A2 +A4 + q2 −A2q2 −A4q2 +A2q4 −A6q4 + 3A4q6 −A2q8 +A6q8

−A4q10 −A6q10 +A8q10 +A4q12 −A6q12),

and it can compactly rewritten in the matrix form (q2, A2)

H
W [3,2]
[2] = A−4q−6



0 −1 1 0 0
1 −1 −1 0 0
0 0 3 0 0
0 −1 0 1 0
0 0 −1 −1 1
0 0 1 −1 0


.

Similarly, colored HOMFLY-PT for few other weaving knots listed in the matrix
form (q2, A2):

H
W [3,4]
[2] = A

−4
q

−18



0 −1 1 0 0
1 2 −3 0 0
−3 3 1 −1 0
0 −10 7 2 0
9 2 −14 3 0
−8 19 2 −9 1
−7 −20 27 3 −3
15 −15 −26 16 0
−3 31 −13 −23 8
−9 −8 47 −8 −9
8 −23 −13 31 −3
0 16 −26 −15 15
−3 3 27 −20 −7
1 −9 2 19 −8
0 3 −14 2 9
0 2 7 −10 0
0 −1 1 3 −3
0 0 −3 2 1
0 0 1 −1 0



, H
W [3,5]
[2] = A

−4
q

−24



0 −1 1 0 0
1 3 −4 0 0
−4 2 3 −1 0
2 −15 10 3 0
12 13 −26 2 0
−22 25 11 −15 1
−2 −58 46 12 −4
45 5 −76 24 2
−36 92 1 −54 12
−29 −87 129 8 −21
66 −58 −116 85 −1
−19 136 −65 −93 41
−40 −40 189 −40 −40
41 −93 −65 136 −19
−1 85 −116 −58 66
−21 8 129 −87 −29
12 −54 1 92 −36
2 24 −76 5 45
−4 12 46 −58 −2
1 −15 11 25 −22
0 2 −26 13 12
0 3 10 −15 2
0 −1 3 2 −4
0 0 −4 3 1
0 0 1 −1 0
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H
W [3,10]
[2] = A

−4
q

−54



0 −1 1 0 0
1 8 −9 0 0
−9 −18 28 −1 0
27 −25 −10 8 0
−3 182 −161 −18 0
−171 −215 410 −25 1
368 −452 −89 182 −9
60 1550 −1422 −215 27
−1436 −763 2654 −452 −3
2002 −3631 249 1550 −171
1201 6924 −7730 −763 368
−6748 283 10046 −3630 60
5900 −16340 4951 6925 −1436
7228 18695 −28254 274 2002
−20384 11318 24214 −16348 1200

9951 −47634 25873 18733 −6749
24582 31349 −73186 11346 5909
−42876 46700 36275 −47744 7236

6553 −97291 79874 31285 −20421
56419 26407 −138924 46951 9924
−64446 113504 23438 −97179 24683
−13101 −142395 171125 25948 −42820
92427 −16795 −195296 113324 6340
−67075 189673 −35612 −141595 56325
−45008 −143645 269458 −16752 −64053
108753 −89895 −196699 188829 −13061
−44308 224367 −128141 −143909 91991
−67241 −88626 313941 −88626 −67241
91991 −143909 −128141 224367 −44308
−13061 188829 −196699 −89895 108753
−64053 −16752 269458 −143645 −45008
56325 −141595 −35612 189673 −67075
6340 113324 −195296 −16795 92427
−42820 25948 171125 −142395 −13101
24683 −97179 23438 113504 −64446
9924 46951 −138924 26407 56419
−20421 31285 79874 −97291 6553

7236 −47744 36275 46700 −42876
5909 11346 −73186 31349 24582
−6749 18733 25873 −47634 9951
1200 −16348 24214 11318 −20384
2002 274 −28254 18695 7228
−1436 6925 4951 −16340 5900

60 −3630 10046 283 −6748
368 −763 −7730 6924 1201
−171 1550 249 −3631 2002
−3 −452 2654 −763 −1436
27 −215 −1422 1550 60
−9 182 −89 −452 368
1 −25 410 −215 −171
0 −18 −161 182 −3
0 8 −10 −25 27
0 −1 28 −18 −9
0 0 −9 8 1
0 0 1 −1 0



,
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H
W [3,11]
[2] = A

−4
q

−60



0 −1 1 0 0
1 9 −10 0 0
−10 −25 36 −1 0
35 −16 −28 9 0
−20 234 −189 −25 0
−205 −397 617 −16 1
577 −434 −367 234 −10
−158 2443 −1923 −397 35
−2060 −2239 4753 −434 −20
3927 −4832 −1333 2443 −205
486 13585 −12408 −2239 577
−11853 −5003 21846 −4832 −158
14988 −28037 1513 13584 −2060
8635 46774 −54332 −5004 3927
−44032 5271 66368 −28027 486
35635 −102619 32053 46783 −11852
43315 106204 −169962 5224 14989
−114157 70990 137197 −102655 8625

51703 −260950 147528 106353 −44041
130381 156476 −393621 71083 35681
−216338 250236 182839 −261319 43350

28407 −484855 414452 156292 −114296
274974 114379 −689801 250986 51619
−303193 555289 101777 −484577 130704
−65130 −665659 830585 113126 −216190
427192 −92394 −917444 554840 27806
−305233 878875 −180468 −663554 274736
−205261 −652190 1251930 −92336 −302143
494008 −412593 −898236 876735 −65072
−203589 1021418 −591159 −652754 426084
−305582 −409517 1435653 −409517 −305582
426084 −652754 −591159 1021418 −203589
−65072 876735 −898236 −412593 494008
−302143 −92336 1251930 −652190 −205261
274736 −663554 −180468 878875 −305233
27806 554840 −917444 −92394 427192
−216190 113126 830585 −665659 −65130
130704 −484577 101777 555289 −303193
51619 250986 −689801 114379 274974
−114296 156292 414452 −484855 28407

43350 −261319 182839 250236 −216338
35681 71083 −393621 156476 130381
−44041 106353 147528 −260950 51703

8625 −102655 137197 70990 −114157
14989 5224 −169962 106204 43315
−11852 46783 32053 −102619 35635

486 −28027 66368 5271 −44032
3927 −5004 −54332 46774 8635
−2060 13584 1513 −28037 14988
−158 −4832 21846 −5003 −11853
577 −2239 −12408 13585 486
−205 2443 −1333 −4832 3927
−20 −434 4753 −2239 −2060
35 −397 −1923 2443 −158
−10 234 −367 −434 577

1 −16 617 −397 −205
0 −25 −189 234 −20
0 9 −28 −16 35
0 −1 36 −25 −10
0 0 −10 9 1
0 0 1 −1 0



H
W [3,2]
[3] = A

−6
q

−14



0 −1 1 0 0 0 0
1 −1 1 −1 0 0 0
0 −1 0 1 0 0 0
0 1 −1 0 0 0 0
0 0 0 −2 1 0 0
0 0 3 −3 0 0 0
0 −1 2 0 −1 0 0
0 0 0 3 0 0 0
0 0 −1 0 2 −1 0
0 0 0 −3 3 0 0
0 0 1 −2 0 0 0
0 0 0 0 −1 1 0
0 0 0 1 0 −1 0
0 0 0 −1 1 −1 1
0 0 0 0 1 −1 0



– 24 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

H
W [3,4]
[3] = A

−6
q

−38



0 −1 1 0 0 0 0
1 2 −2 −1 0 0 0
−3 2 −2 3 0 0 0
0 −3 4 −1 0 0 0
6 −11 8 −4 1 0 0
4 4 −6 0 −2 0 0
−11 27 −24 10 −2 0 0
−17 6 8 0 3 0 0
17 −44 48 −27 7 −1 0
28 −39 11 2 −4 2 0
−7 55 −82 49 −18 2 0
−42 79 −59 15 9 −2 0
−6 −27 98 −92 36 −9 0
42 −114 126 −53 0 3 1
17 −14 −73 124 −70 19 −3
−31 113 −190 136 −26 −2 0
−21 59 −10 −114 107 −36 5
16 −79 200 −201 75 −14 3
20 −69 71 45 −122 64 −9
−11 37 −151 263 −151 37 −11
−9 64 −122 45 71 −69 20
3 −14 75 −201 200 −79 16
5 −36 107 −114 −10 59 −21
0 −2 −26 136 −190 113 −31
−3 19 −70 124 −73 −14 17
1 3 0 −53 126 −114 42
0 −9 36 −92 98 −27 −6
0 −2 9 15 −59 79 −42
0 2 −18 49 −82 55 −7
0 2 −4 2 11 −39 28
0 −1 7 −27 48 −44 17
0 0 3 0 8 6 −17
0 0 −2 10 −24 27 −11
0 0 −2 0 −6 4 4
0 0 1 −4 8 −11 6
0 0 0 −1 4 −3 0
0 0 0 3 −2 2 −3
0 0 0 −1 −2 2 1
0 0 0 0 1 −1 0



,

– 25 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

H
W [3,5]
[3] = A

−6
q

−50



0 1 −1 0 0 0 0
−1 −3 3 1 0 0 0
4 −1 1 −4 0 0 0
−2 6 −7 3 0 0 0
−8 9 −6 6 −1 0 0
2 −18 17 −4 3 0 0
21 −27 23 −18 1 0 0
4 40 −44 7 −7 0 0
−58 73 −57 48 −7 1 0
−14 −49 71 −21 16 −3 0
98 −184 146 −85 26 −1 0
72 27 −94 25 −36 6 0
−145 329 −316 179 −57 10 0
−167 118 52 −35 50 −16 −1
150 −481 563 −333 126 −29 4
287 −386 157 −19 −66 29 −2
−91 482 −793 589 −249 64 −8
−366 724 −571 190 52 −30 1
−22 −308 872 −868 448 −142 20
386 −962 1111 −619 65 27 7
116 −53 −598 1036 −699 248 −50
−304 987 −1532 1169 −352 45 −13
−180 365 72 −863 915 −412 79
207 −763 1638 −1749 812 −197 52
174 −564 508 334 −863 541 −130
−114 461 −1314 1963 −1314 461 −114
−130 541 −863 334 508 −564 174

52 −197 812 −1749 1638 −763 207
79 −412 915 −863 72 365 −180
−13 45 −352 1169 −1532 987 −304
−50 248 −699 1036 −598 −53 116

7 27 65 −619 1111 −962 386
20 −142 448 −868 872 −308 −22
1 −30 52 190 −571 724 −366
−8 64 −249 589 −793 482 −91
−2 29 −66 −19 157 −386 287
4 −29 126 −333 563 −481 150
−1 −16 50 −35 52 118 −167
0 10 −57 179 −316 329 −145
0 6 −36 25 −94 27 72
0 −1 26 −85 146 −184 98
0 −3 16 −21 71 −49 −14
0 1 −7 48 −57 73 −58
0 0 −7 7 −44 40 4
0 0 1 −18 23 −27 21
0 0 3 −4 17 −18 2
0 0 −1 6 −6 9 −8
0 0 0 3 −7 6 −2
0 0 0 −4 1 −1 4
0 0 0 1 3 −3 −1
0 0 0 0 −1 1 0



.

C Refined BPS integers

N̂W [3,2]
[2] =


k/m −6 −4 −2 0 2 4 6

0 1 −3 4 −6 9 −7 2
1 0 −1 2 −5 9 −6 1
2 0 0 0 −1 2 −1 0

 (C.1)

N̂W [3,5]
[2] =



k/m −6 −4 −2 0 2 4 6
0 5 −15 20 −30 45 −35 10
1 −20 85 −170 195 −135 60 −15
2 −106 441 −840 1125 −1130 676 −166
3 −115 485 −865 1400 −1860 1245 −290
4 58 −304 893 −895 −17 319 −54
5 220 −1112 2721 −3910 3407 −1728 402
6 190 −1053 2594 −4360 4748 −2667 548
7 75 −504 1287 −2580 3268 −1874 328
8 14 −132 354 −901 1300 −737 102
9 1 −18 51 −186 302 −166 16
10 0 −1 3 −21 38 −20 1
11 0 0 0 −1 2 −1 0



(C.2)

– 26 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

N̂W [3,10]
[2] =



k/m −6 −4 −2 0 2 4 6
0 15 −45 60 −90 135 −105 30
1 −60 705 −2310 3285 −2205 630 −45
2 −238 318 30 725 −2340 2223 −718
3 −230 −9535 40480 −59150 35020 −5455 −1130
4 −5276 18038 −10726 −8750 1419 7782 −2487
5 −14765 146944 −442897 622355 −446589 151571 −16619
6 79740 −198204 −1608 289370 −123746 −101606 56054
7 508927 −2324454 4616391 −5906820 5390964 −2958324 673316
8 1028581 −4926087 10581436 −15418579 15626039 −8863136 1971746
9 391793 −1556984 2518630 −6792357 12260745 −8784777 1962950
10 −2012429 10695435 −26645018 34658435 −24266624 9735414 −2165213
11 −3782274 19693607 −47993117 72809354 −69531190 36832395 −8028775
12 −1512571 8341895 −20569240 43380863 −58198567 35897456 −7339836
13 4189988 −21105464 50727994 −60798221 36574589 −13279099 3690213
14 8727473 −46175793 112341954 −166703357 154882064 −80507746 17435405
15 8982577 −49903892 122763600 −201133018 212030754 −116092856 23352835
16 6117458 −36148228 90092284 −161044360 185210485 −103620634 19392995
17 2978166 −19030475 48156926 −94240005 116596085 −65816480 11355783
18 1065351 −7510739 19336164 −41833861 55278128 −31237740 4902697
19 281585 −2245022 5890311 −14299136 20085108 −11298452 1585606
20 54437 −506753 1356948 −3772701 5613530 −3129606 384145
21 7490 −85090 232800 −762716 1198736 −660014 68794
22 695 −10309 28842 −116056 192190 −104205 8843
23 39 −852 2439 −12866 22400 −11932 772
24 1 −43 126 −981 1792 −936 41
25 0 −1 3 −46 88 −45 1
26 0 0 0 −1 2 −1 0


(C.3)

N̂W [3,2]
[1,1] =


k/m −6 −4 −2 0 2 4 6

0 −2 7 −9 6 −4 3 −1
1 −1 6 −9 5 −2 1 0
2 0 1 −2 1 0 0 0

 (C.4)

N̂W [3,5]
[1,1] =



k/m −6 −4 −2 0 2 4 6
0 −10 35 −45 30 −20 15 −5
1 15 −60 135 −195 170 −85 20
2 166 −676 1130 −1125 840 −441 106
3 290 −1245 1860 −1400 865 −485 115
4 54 −319 17 895 −893 304 −58
5 −402 1728 −3407 3910 −2721 1112 −220
6 −548 2667 −4748 4360 −2594 1053 −190
7 −328 1874 −3268 2580 −1287 504 −75
8 −102 737 −1300 901 −354 132 −14
9 −16 166 −302 186 −51 18 −1
10 −1 20 −38 21 −3 1 0
11 0 1 −2 1 0 0 0



(C.5)

– 27 –



J
H
E
P
0
6
(
2
0
2
1
)
0
6
3

N̂W [3,10]
[1,1] =



k/m −6 −4 −2 0 2 4 6
0 −30 105 −135 90 −60 45 −15
1 45 −630 2205 −3285 2310 −705 60
2 718 −2223 2340 −725 −30 −318 238
3 1130 5455 −35020 59150 −40480 9535 230
4 2487 −7782 −1419 8750 10726 −18038 5276
5 16619 −151571 446589 −622355 442897 −146944 14765
6 −56054 101606 123746 −289370 1608 198204 −79740
7 −673316 2958324 −5390964 5906820 −4616391 2324454 −508927
8 −1971746 8863136 −15626039 15418579 −10581436 4926087 −1028581
9 −1962950 8784777 −12260745 6792357 −2518630 1556984 −391793
10 2165213 −9735414 24266624 −34658435 26645018 −10695435 2012429
11 8028775 −36832395 69531190 −72809354 47993117 −19693607 3782274
12 7339836 −35897456 58198567 −43380863 20569240 −8341895 1512571
13 −3690213 13279099 −36574589 60798221 −50727994 21105464 −4189988
14 −17435405 80507746 −154882064 166703357 −112341954 46175793 −8727473
15 −23352835 116092856 −212030754 201133018 −122763600 49903892 −8982577
16 −19392995 103620634 −185210485 161044360 −90092284 36148228 −6117458
17 −11355783 65816480 −116596085 94240005 −48156926 19030475 −2978166
18 −4902697 31237740 −55278128 41833861 −19336164 7510739 −1065351
19 −1585606 11298452 −20085108 14299136 −5890311 2245022 −281585
20 −384145 3129606 −5613530 3772701 −1356948 506753 −54437
21 −68794 660014 −1198736 762716 −232800 85090 −7490
22 −8843 104205 −192190 116056 −28842 10309 −695
23 −772 11932 −22400 12866 −2439 852 −39
24 −41 936 −1792 981 −126 43 −1
25 −1 45 −88 46 −3 1 0
26 0 1 −2 1 0 0 0



.

(C.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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