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In two quite recent interesting works [1, 2] has been addressed the issue of the Higgs
mechanism in nonlocal field theory. In both such papers, it has been pointed out that
the number of degrees of freedom is not preserved when the usually stable non tachyonic
vacuum is replaced in the action. Indeed, after spontaneous symmetry breaking we can
have more real degrees of freedom including an infinite number of complex conjugate poles
in the propagator [3–6], which signal vacuum instabilities. In [2], the authors proposed a
purely nonlocal gauge theory in six dimensions in order to avoid the proliferation of extra
degrees of freedom. In this paper we advance a nonlocal formulation of the scalar quantum
electrodynamics based on four requirements that turned out to be crucial in order to define
stable nonlocal gravitational theories [7–11] in presence or not of matter [12, 13] and with
or without supersymmetry [14, 15]. The required properties are: (i) all the exact solutions
of the local theory must be solutions of the nonlocal theory too [16], (ii) the equations
of motion (EoM) for the perturbations around the latter background solutions must be
the same of the local theory, (iii) the local and nonlocal theory must have the same tree-
level scattering amplitudes (this guarantees macro-causality [17–19]), (iv) the nonlocal field
theory is unitary [20–23] and super-renormalizable or finite at quantum level [7–11].

The theory is defined in terms of the following five quantities: a nonlocal action S[Φi],
a local Lagrangian with U(1) gauge symmetry L, the local EoM Ei, a nonlocal form factor
F (∆), whose argument ∆, which is the Hessian of the local theory,

S[Φi] =
∫

dDx (L+ EiFijEj) , (1)

L = −1
4FµνF

µν + (Dµφ)∗(Dµφ)− V (φ) , (2)

Ei(x) = δS`
δΦi(x) , S` =

∫
dDxL , (3)

2∆ikFkj ≡
(
eH(∆Λ) − 1

)
ij
, (4)

∆ij(y, x) ≡ δEj(x)
δΦi(y) , (5)

where we defined Φi = (Aµ, φ, φ∗), H is an entire analytic function of its argument, and
h.c. stays to the hermitian conjugate of the second operator in the action quadratic in the
local EoM. The reader can explicitly verify that ∆ij(x, y) = ∆ji(y, x) when such operator
is integrated in the variables x and y [24].

The potential V (φ) and the gauge covariant derivative are:

V (φ) = −µ2φ∗φ+ λ(φ∗φ)2 , (6)
Dµ = ∂µ + ieAµ , (7)

with µ2 > 0. We can also decompose the complex field φ in a real and an imaginary part
in order to express the Lagrangian in terms of two real scalar fields, namely

φ = 1√
2

(φ1 + iφ2) . (8)
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The potential (6) has a maximum in φ = 0, while the minimum is located in

φ∗φ = 1
2
(
φ2

1 + φ2
2

)
= µ2

2λ ≡
φ2

0
2 . (9)

Taking the variation of the local Lagrangian (2) respect to the gauge boson Aµ and
the two scalar fields φ and φ∗ the local EoM (3) read:

EA = ∂µF
µν − ie [φ∗(Dνφ)− (Dνφ)∗φ] , (10)

Eφ = −Dµ(Dµφ)∗ − ∂V

∂φ
, (11)

Eφ∗ = −D∗µ(Dµφ)− ∂V

∂φ∗
. (12)

Therefore, the EoM for the nonlocal field theory defined by the action (1), up to terms
quadratic in the local EoM, are:

Ek = Ek + 2∆ik FkjEj + [O(E2)]k
=
(
eH(∆Λ))

kj
Ej + [O(E2)]k = 0 . (13)

We can invert the exponential in (13) to end up with the following nonlocal EoM,

Ẽi ≡ Ei +
(
e−H(∆Λ))

ij

[
O(E2)

]
j

= 0 . (14)

Since the operator exp−H(∆Λ) is invertible, we have:

Ẽi ≡
(
e−H(∆Λ)

)
ij
Ej = 0 ⇐⇒ Ei = 0 , (15)

Now, given an exact solution of the nonlocal EoM (Ẽi = 0) compatible with Ei = 0,
we can derive the EoM for the perturbations defined through an expansion of the fields,
and of the local and nonlocal EoM, in a small dimensionless parameter ε, namely

Φi =
∞∑
n=0

εnΦ(n)
i , (16)

Ek(Φi) =
∞∑
n=0

εnE
(n)
k , Ẽk(Φi) =

∞∑
n=0

εnẼ(n)
k . (17)

The fields Φ(0)
i satisfy the background EoM, namely

E
(0)
k (Φ(0)

i ) = 0 . (18)

Hence, it is simple to prove the following theorem, which is a slight generalization of the
theorems proved in [25, 26].
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Theorem. In the nonlocal theory (1), all perturbations satisfy the same EoM of the
perturbations of the local theory defined by (2), namely

Ẽ(n)
k (Φ(n)

i ) = 0 =⇒ E
(n)
k (Φ(n)

i ) = 0 for n > 0 , (19)

where the label “n” stays for the perturbative expansion of the nonlocal Ẽk and local EoM
Ek at the order “n” in all the perturbations Φ(n)

i . Finally,

E(n)
k (Φ(n)

i ) = 0 =⇒ E
(n)
k (Φ(n)

i ) = 0 for n > 0 , (20)

because of the double implication (15). Notice that at any perturbative order the expo-
nential form factor always appears diagonal and at the zero order in the perturbations.

The proof is a straightforward consequence of the EoM (14), which coincide with the
local EoM (10), (11), (12), namely Ek = 0, up to operators O(E2), and of the invertibility
of the exponential form factor in (13) (for more details see [24–26]).

We now apply the theorem above at the linear perturbative order to investigate the
spectrum of the theory around the vacuum solutions:

1) φ = 0 , Aµ = 0 , (21)

2) φ = φ0 =

√
µ2

λ
, Aµ = 0 , (22)

Since all the solutions of the local theory are solutions of the nonlocal too, one can easily
see that the spectrum around the tachyonic vacuum (21) consists on a massless vector field
and two real scalar fields. Indeed, all the other operators in (14) do not contribute at the
linear level because quadratic in the local EoM, namely O(E2). Similarly, when we replace
the vacuum (22) in the nonlocal EoM (14) by means of the following definition,

φ = 1√
2

(φ0 + φ1 + iφ2) , (23)

we get the same spectrum of the local theory with the U(1) symmetry spontaneously
broken. Let us expand on this statement reminding the Higgs mechanism in the EoM for-
mulation instead of using the Lagrangian formalism. This derivation is of course equivalent,
but as far as we know usually not presented in the textbooks.

When we replace (23) in the EoM (10)–(12) and we choose the unitary gauge, namely
φ2 = 0 (or equivalently φ = φ∗), we get the following EoM,

EA = ∂µF
µν + e2φ2

0A
ν + · · · = 0 , (24)

Eφ = −(� + 2µ2) φ1√
2

+ · · · = 0 , (25)

Eφ∗ = (Eφ)∗ , (26)

where the dots stay for interaction terms at least quadratic in the fields. One of the terms
in (25) is complex and proportional to ieφ1(∂µAµ) (similarly: one of the terms in (26) is
complex and proportional to −ieφ1(∂µAµ)), hence, taking the difference Eφ∗ −E∗φ = 0 one
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of the two EoM can be replaced with ∂µAµ, which is the on-shell transversality condition for
the massive vector field. The latter results can now be directly exported to the EoM (14)
because the nonlocal EoM match the local ones up to interaction terms quadratic in E.

We now investigate the spectrum of the theory expanding the nonlocal action at the
second order in the fields. The purpose of this paragraph is twofold, on the one hand we
will verify the correctness of the newly derived spectrum, on the other hand we will have
the nonlocal action in the suitable form for the derivation of the propagators and infer
about the renormalizability.

In terms of the fields defined in (8) the local Lagrangian reads:

L = −1
4FµνF

µν + L(φ1, φ2) , (27)

L(φ1, φ2) = 1
2(∂µφ1)2 + 1

2(∂µφ1)2 − eφ2(∂µφ1)Aµ + eφ1(∂µφ2)Aµ

+e2

2
(
φ2

1 + φ2
2

)
AµA

µ − µ2
(
φ2

1 + φ2
2

)
+ λ

(
φ2

1 + φ2
2

)2
.

Given the minimum of the potential in (9) the U(1) symmetry is spontaneously broken
whether we select the vacuum (φ1 = φ0, φ2 = 0, Aµ = 0).

The functional Taylor expansion of the nonlocal action at the second order in the fields
Φi can be derived from (1), and in short notation (see [24]) it reads:

S(2) = 1
2

∫
dDxδΦi

[
δ2S`
δΦiδΦj

+2δEk
δΦi
Fkl

δEl
δΦj

]
δΦj = 1

2

∫
dDxδΦi

δEk
δΦi

[
δkj +2Fkl

δEl
δΦj

]
δΦj

= 1
2

∫
dDxδΦi

δEk
δΦi

[δkj +2Fkl∆jl]δΦj = 1
2

∫
dDxδΦi

δEk
δΦi

[δkj +2Fkl∆lj ]δΦj

= 1
2

∫
dDxδΦi

δEk
δΦi

[
δkj +

(
eH(∆)−1

)
kj

]
δΦj = 1

2

∫
dDxδΦi

δ2S`
δΦiδΦk

(
eH(∆)

)
kj
δΦj

= 1
2

∫
dDxδΦi∆ik

(
eH(∆)

)
kj
δΦj , (28)

where δΦi = (δφ1 = φ1−φ0 ≡ ϕ, φ2 , Aµ) and we used that the Hessian is symmetric under
integration.

Now, in oder to get the second order expansion of the action in the fields ϕ, φ2, Aµ it
is convenient to make the following field redefinition,

δΦi =
(
e−

H(∆)
2

)
ij
δΦ̃j , (29)

which is allowed because the form factor eH(∆) is invertible tough ∆ is in general not
invertible because of the gauge invariance. Therefore, (28) turns into:

S(2) = 1
2

∫
dDx

[(
e−

H(∆)
2

)
il
δΦ̃l

]
∆ik

(
eH(∆)

)
kj

(
e−

H(∆)
2

)
jm
δΦ̃m

= 1
2

∫
dDx

[(
e−

H(∆)
2

)
il
δΦ̃l

]
∆ik

(
e

H(∆)
2

)
kj
δΦ̃j (30)

= 1
2

∫
dDx

∫
dDy

∫
dDz

[(
e−

H(∆)
2

)
il

(x, y) δΦ̃l(y)
]

∆ik(x, z)
[(
e

H(∆)
2

)
kj
δΦ̃j

]
(z) ,
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where in the last step we explicitly introduced the kernel representation for the first form
factor, which is a function of ∆, and for the operator ∆ itself.

In order to move the first form factor in (30) from the left to the right of δΦ̃l(y), we
consider only one ∆-term of the Taylor’s expansion for exp−H(∆)/2, and we introduce
the following short notation,∫

dDx

∫
dDy

[
∆il(x, y) δΦ̃l(y)

]
Vi(x) , Vi(x) ≡

∫
dDz∆ik(x, z)

[(
e

H(∆)
2

)
kj
δΦ̃j

]
(z).

(31)
Now we can commute ∆il(x, y) and δΦ̃l(y) because in the kernel representation all the
derivatives, which are present in ∆, do not act on the right side but on internal fields, if
there are, or the Dirac’s distribution on the right side [24]. Hence, (31) is equivalent to:∫

dDx

∫
dDy δΦ̃l(y) ∆il(x, y)Vi(x) , (32)

where we also removed the square brackets because of the same reason.
Finally, we make use of the symmetry property of the Hessian under the integral,

namely ∫
dDx

∫
dDy δΦ̃l(y) ∆il(x, y)Vi(x) =

∫
dDx

∫
dDy Vi(x) ∆il(x, y) δΦ̃l(y)

=
∫
dDx

∫
dDy δΦ̃l(y) ∆li(y, x)Vi(x) . (33)

The generalization of the result (33) to the form factor in (30) is straightforward, namely

S(2) = 1
2

∫
dDx

∫
dDy

∫
dDz δΦ̃l(y)

(
e−

H(∆)
2

)
li

(y, x) ∆ik(x, z)
[(
e

H(∆)
2

)
kj
δΦ̃j

]
(z) .

(34)
Since exp−H(∆)/2 commutes with ∆ we end up with

S(2) = 1
2

∫
dDx

∫
dDy

∫
dDz

∫
dDwδΦ̃l(y)

(
e−

H(∆)
2

)
li
(y,x)∆ik(x,z)

(
e

H(∆)
2

)
kj

(z,w)δΦ̃j(w)

= 1
2

∫
dDx

∫
dDy

∫
dDz

∫
dDwδΦ̃l(y)∆li(y,x)

(
e−

H(∆)
2

)
ik

(x,z)
(
e

H(∆)
2

)
kj

(z,w)δΦ̃j(w)

= 1
2

∫
dDx

∫
dDyδΦ̃l(y)∆ik(y,x)δΦ̃j(x)

= 1
2

∫
dDxδΦ̃l∆ikδΦ̃j , (35)

which coincides with the second order variation of the local theory upon the field redefini-
tion (29). Therefore, the local and nonlocal theories have the same perturbative spectrum
when the action is expanded in perturbative fluctuations around a vacuum exact solution
of the local EoM. Notice that the Hessian has to be expanded on the selected vacuum too.

Conclusions. We have introduced a recipe to construct general gauge invariant actions
consistent with the Higgs mechanism. Indeed, in nonlocal theories the spectrum is very
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sensitive to the selected vacuum and it is not guaranteed that the number of degrees of
freedom will be preserved following spontaneous symmetry breaking. However, the theory
propose in [24], and applied here to the scalar electrodynamics, provides a very simple
and general solution to the issue pointed out in [1] and [2]. Finally, the theory is super-
renormalizable (or finite whether we introduce several other local operators that do not
spoil all the required properties) as proved in [12]. The generalization to non-abelian
Yang-Mills gauge theories is straightforward according with the theory [24].

Acknowledgments

In memory of my mother.
This work was supported by the Basic Research Program of Science, Technology and

Innovation Commission of Shenzhen Municipality (grant no. JCYJ20180302174206969).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] F.S. Gama, J.R. Nascimento, A.Y. Petrov and P.J. Porfirio, Spontaneous symmetry breaking
in the nonlocal scalar QED, arXiv:1804.04456 [INSPIRE].

[2] M.N. Hashi, H. Isono, T. Noumi, G. Shiu and P. Soler, Higgs mechanism in nonlocal field
theories, JHEP 08 (2018) 064 [arXiv:1805.02676] [INSPIRE].

[3] M. Asorey, J.L. Lopez and I.L. Shapiro, Some remarks on high derivative quantum gravity,
Int. J. Mod. Phys. A 12 (1997) 5711 [hep-th/9610006] [INSPIRE].

[4] I.L. Shapiro, Counting ghosts in the “ghost-free” non-local gravity, Phys. Lett. B 744 (2015)
67 [arXiv:1502.00106] [INSPIRE].

[5] L. Modesto and I.L. Shapiro, Superrenormalizable quantum gravity with complex ghosts,
Phys. Lett. B 755 (2016) 279 [arXiv:1512.07600] [INSPIRE].

[6] L. Modesto, Super-renormalizable or finite Lee-Wick quantum gravity, Nucl. Phys. B 909
(2016) 584 [arXiv:1602.02421] [INSPIRE].

[7] N.V. Krasnikov, Nonlocal gauge theories, Theor. Math. Phys. 73 (1987) 1184 [Teor. Mat.
Fiz. 73 (1987) 235] [INSPIRE].

[8] Y.V. Kuzmin, The convergent nonlocal gravitation (in Russian), Sov. J. Nucl. Phys. 50
(1989) 1011 [Yad. Fiz. 50 (1989) 1630] [INSPIRE].

[9] L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005
[arXiv:1107.2403] [INSPIRE].

[10] L. Modesto and L. Rachwał, Nonlocal quantum gravity: a review, Int. J. Mod. Phys. D 26
(2017) 1730020 [INSPIRE].

[11] L. Modesto and L. Rachwal, Super-renormalizable and finite gravitational theories, Nucl.
Phys. B 889 (2014) 228 [arXiv:1407.8036] [INSPIRE].

– 6 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1804.04456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.04456
https://doi.org/10.1007/JHEP08(2018)064
https://arxiv.org/abs/1805.02676
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.02676
https://doi.org/10.1142/S0217751X97002991
https://arxiv.org/abs/hep-th/9610006
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610006
https://doi.org/10.1016/j.physletb.2015.03.037
https://doi.org/10.1016/j.physletb.2015.03.037
https://arxiv.org/abs/1502.00106
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.00106
https://doi.org/10.1016/j.physletb.2016.02.021
https://arxiv.org/abs/1512.07600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07600
https://doi.org/10.1016/j.nuclphysb.2016.06.004
https://doi.org/10.1016/j.nuclphysb.2016.06.004
https://arxiv.org/abs/1602.02421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.02421
https://doi.org/10.1007/BF01017588
https://inspirehep.net/search?p=find+J%20%22Theor.Math.Phys.%2C73%2C1184%22
https://inspirehep.net/search?p=find+J%20%22Sov.J.Nucl.Phys.%2C50%2C1011%22
https://doi.org/10.1103/PhysRevD.86.044005
https://arxiv.org/abs/1107.2403
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.2403
https://doi.org/10.1142/S0218271817300208
https://doi.org/10.1142/S0218271817300208
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CD26%2C1730020%22
https://doi.org/10.1016/j.nuclphysb.2014.10.015
https://doi.org/10.1016/j.nuclphysb.2014.10.015
https://arxiv.org/abs/1407.8036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.8036


J
H
E
P
0
6
(
2
0
2
1
)
0
4
9

[12] L. Modesto and L. Rachwał, Universally finite gravitational and gauge theories, Nucl. Phys.
B 900 (2015) 147 [arXiv:1503.00261] [INSPIRE].

[13] L. Modesto, M. Piva and L. Rachwal, Finite quantum gauge theories, Phys. Rev. D 94
(2016) 025021 [arXiv:1506.06227] [INSPIRE].

[14] S. Giaccari and L. Modesto, Nonlocal supergravity, Phys. Rev. D 96 (2017) 066021
[arXiv:1605.03906] [INSPIRE].

[15] G. Calcagni and L. Modesto, Nonlocal quantum gravity and M-theory, Phys. Rev. D 91
(2015) 124059 [arXiv:1404.2137] [INSPIRE].

[16] Y.-D. Li, L. Modesto and L. Rachwał, Exact solutions and spacetime singularities in nonlocal
gravity, JHEP 12 (2015) 173 [arXiv:1506.08619] [INSPIRE].

[17] S. Giaccari and L. Modesto, Causality in nonlocal gravity, in 10th mathematical physics
meeting: school and conference on modern mathematical physics, (2018) [arXiv:1803.08748]
[INSPIRE].

[18] P. Donà, S. Giaccari, L. Modesto, L. Rachwal and Y. Zhu, Scattering amplitudes in
super-renormalizable gravity, JHEP 08 (2015) 038 [arXiv:1506.04589] [INSPIRE].

[19] A.S. Koshelev, K. Sravan Kumar, L. Modesto and L. Rachwał, Finite quantum gravity in dS
and AdS spacetimes, Phys. Rev. D 98 (2018) 046007 [arXiv:1710.07759] [INSPIRE].

[20] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1
(1960) 429 [INSPIRE].

[21] F. Briscese and L. Modesto, Cutkosky rules and perturbative unitarity in Euclidean nonlocal
quantum field theories, Phys. Rev. D 99 (2019) 104043 [arXiv:1803.08827] [INSPIRE].

[22] F. Briscese and L. Modesto, Non-unitarity of Minkowskian non-local quantum field theories,
arXiv:2103.00353 [INSPIRE].

[23] R. Pius and A. Sen, Cutkosky rules for superstring field theory, JHEP 10 (2016) 024
[Erratum ibid. 09 (2018) 122] [arXiv:1604.01783] [INSPIRE].

[24] L. Modesto, Nonlocal spacetime-matter, arXiv:2103.04936 [INSPIRE].

[25] F. Briscese and L. Modesto, Nonlinear stability of Minkowski spacetime in nonlocal gravity,
JCAP 07 (2019) 009 [arXiv:1811.05117] [INSPIRE].

[26] F. Briscese, G. Calcagni and L. Modesto, Nonlinear stability in nonlocal gravity, Phys. Rev.
D 99 (2019) 084041 [arXiv:1901.03267] [INSPIRE].

– 7 –

https://doi.org/10.1016/j.nuclphysb.2015.09.006
https://doi.org/10.1016/j.nuclphysb.2015.09.006
https://arxiv.org/abs/1503.00261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.00261
https://doi.org/10.1103/PhysRevD.94.025021
https://doi.org/10.1103/PhysRevD.94.025021
https://arxiv.org/abs/1506.06227
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.06227
https://doi.org/10.1103/PhysRevD.96.066021
https://arxiv.org/abs/1605.03906
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03906
https://doi.org/10.1103/PhysRevD.91.124059
https://doi.org/10.1103/PhysRevD.91.124059
https://arxiv.org/abs/1404.2137
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.2137
https://doi.org/10.1007/JHEP12(2015)173
https://arxiv.org/abs/1506.08619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.08619
https://arxiv.org/abs/1803.08748
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.08748
https://doi.org/10.1007/JHEP08(2015)038
https://arxiv.org/abs/1506.04589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.04589
https://doi.org/10.1103/PhysRevD.98.046007
https://arxiv.org/abs/1710.07759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.07759
https://doi.org/10.1063/1.1703676
https://doi.org/10.1063/1.1703676
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C1%2C429%22
https://doi.org/10.1103/PhysRevD.99.104043
https://arxiv.org/abs/1803.08827
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.08827
https://arxiv.org/abs/2103.00353
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.00353
https://doi.org/10.1007/JHEP10(2016)024
https://arxiv.org/abs/1604.01783
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1610%2C024%22%20and%20year%3D2016
https://arxiv.org/abs/2103.04936
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.04936
https://doi.org/10.1088/1475-7516/2019/07/009
https://arxiv.org/abs/1811.05117
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.05117
https://doi.org/10.1103/PhysRevD.99.084041
https://doi.org/10.1103/PhysRevD.99.084041
https://arxiv.org/abs/1901.03267
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.03267

