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ABSTRACT: In this paper we systematically consider the baryon (B) and lepton (L) num-
ber violating dinucleon to dilepton decays (pp — (70T, pn — (70 nn — »v') with
AB = AL = —2 in the framework of effective field theory. We start by constructing a basis
of dimension-12 (dim-12) operators mediating such processes in the low energy effective field
theory (LEFT) below the electroweak scale. Then we consider their standard model effec-
tive field theory (SMEFT) completions upwards and their chiral realizations in baryon chi-
ral perturbation theory (BxPT) downwards. We work to the first nontrivial orders in each
effective field theory, collect along the way the matching conditions, and express the decay
rates in terms of the Wilson coefficients associated with the dim-12 operators in the SMEFT
and the low energy constants pertinent to BxPT. We find the current experimental limits
push the associated new physics scale larger than 1 — 3 TeV, which is still accessible to the
future collider searches. Through weak isospin symmetry, we find the current experimental
limits on the partial lifetime of transitions pp — £7¢'", pn — £T7' imply stronger limits on
nn — v/’ than their existing lower bounds, which are improved by 2—3 orders of magnitude.
Furthermore, assuming charged mode transitions are also dominantly generated by the sim-
ilar dim-12 SMEFT interactions, the experimental limits on pp — ete™ et u™, T ut lead
to stronger limits on pn — ¢ Dz with a, 8 = e, 1 than their existing bounds. Conversely,
the same assumptions help us to set a lower bound on the lifetime of the experimentally

unsearched mode pp — e™7T from that of pn — e*i,, i.e., F;p1_>6+7+ > 2 x 103 yr.
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1 Introduction

The observed matter-antimatter asymmetry of the universe requires the violation of baryon

number, which as one of the three Sakharov conditions for a successful baryogenesis mecha-

nism [1]; at the same time, the extremely possible Majorana nature of neutrinos breaks the

lepton number. Both facts lead to the existence of a class of new physics scenarios beyond

the minimal standard model (SM) in which the baryon and/or lepton numbers are violated

explicitly or spontaneously to a certain degree, this is because the baryon (B) and lep-

ton (L) numbers are accidental global symmetries in the SM but are violated through the



quantum anomaly at an unobservable level [2].! On the other hand, the violation of baryon
and/or lepton numbers would be expected in the grand unified theories (GUT) [3, 4]. Thus,
the search of rare baryon and/or lepton number violation signals becomes more and more
important than ever before for the pursuit of new physics (NP).

Usually, the experimentally accessible baryon number violation signatures can be cat-
egorized into two classes in terms of the net baryon number being changed by one unit
(AB = 1) or two units (AB = 2). For the AB = 1 case, the relevant processes are the
single free or bound nucleon decays, which could change the lepton numbers by AL = +1
or +3 units, like the most well-known proton decay mode p — e*7, etc, see ref. [5] and
references therein for a thorough discussion on these AB = 1 processes. Such processes
have been searched for experimentally for a long time but with null results [6], which,
however, tightly constrain the NP scenarios and push the NP scale around the GUT scale
unaccessible directly for the current and future collider experiments.

On the other hand, for the AB = 2 case, the net lepton numbers can be changed by
either AL = 0 or AL = £2 units.? They are interesting because they can be searched
for experimentally with clean signatures and high precision, as well as because there exist
NP scenarios in which their contributions are dominant but that of AB = 1 processes
like proton decay are suppressed [8-12]. The neutron-antineutron oscillation (n—n) is a
representative example for the AL = 0 case, which has attracted a lot of attention in recent
years both theoretically and experimentally, see the review [13] and references therein for
a summary on the state of the art of this process. For the AL = £2 case, the interesting
processes are the dinucleon to dilepton decays in nuclei, including pp — ¢70'", pn — 77/
and nn — v’ with (({') = e, u,7 and v(V') = Ve, Uy, Uy, respectively.® Such processes
get less attention than the above mentioned AB = 1 and n—n oscillation processes [9,
12, 16, 17], but they may open new avenues for the baryon number violation signals due
to their distinct theoretical origin and clear experimental signatures.* The most stringent
lower limits on the partial lifetime of those dinucleon to dilepton decays in oxygen %0 and
carbon 12C nuclei are reported by the earlier Frejus and KamLAND experiments [19, 20]
and the recent Super-K results [21, 22], and are collected in table 1 for our latter use.

Confronted with the relatively less studies on those baryon and lepton number violating
AB = AL = —2 decays pp — {70, pn — (7' and nn — v/, it is our goal in this paper
to make a comprehensive analysis via the model-independent framework of effective field
theory (EFT). Our approach is pictorially explained in figure 1 which shows the series of
EFTs relevant to the decays, including the relevant degrees of freedom and symmetries
in each EFT, and the matching and renormalization group running procedures among
different EFTs. We start by constructing a basis mediating such processes using the first
two flavors of quarks (u,d) and the charged and neutral leptons (¢,v) that enjoys the

!The difference B — L is still an exact symmetry survived from the anomaly cancellation in the SM.

2For the processes with other larger even units of lepton numbers (AL = £4,46, - - - ), their effect would
be expected to be severely suppressed due to higher dimensionality of the relevant interactions [7] and thus
omitted here.

3There are also AL = 0 dinucleon decays with the final states being a pair of leptons conserving lepton
flavor and number or two mesons, like pn — £Tv, nn — v and pp — nTnt, KTK™ [14, 15].

1A timely brief status report of the AB = 2 physics can be found in [18].



Decay mode | Lifetime limit | Decay mode | Lifetime limit | Decay mode | Lifetime limit
pp—etet [4.2x10% yr [21] |pn—et | 2.6 x 1032 yr [22] 1.4 x 1039 yr [20]
pp—etut [4.4x10% yr [21] | pn—put’ | 2.2x10%2 yr [22]

pp— ptpt [4.4x10% yr 21] | pn—7T0 | 2.9x 103! yr [22]

pp—etrt —

Table 1. The lower bound on the partial lifetime of the dinucleon to dilepton transitions. Where
the limits for the charged modes (pp) and (pn) were set per oxygen nucleus 60 in water Cherenkov
Super-K experiment at 90% confidence level [21, 22] while the limit on the neutral mode (nn)
is obtained from the carbon nucleus ?C in KamLAND experiment [20]. The bounds on modes
involving anti-neutrinos are also valid for the cases with neutrinos since they are treated as invisible
states in the experimental search.
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Figure 1. The flow chart for an EFT calculation of the low energy observables.

QCD and QED gauge symmetries SU(3)c x U(1)gym in the low energy effective field theory
(LEFT) below the electroweak scale Agw. At leading order in the LEFT, the contribution
arises from effective interactions of dimension-12 (dim-12) AB = AL = —2 operators
that involve six quark fields and two lepton fields (gqqqqqll), where ¢ denotes u,d while
[ stands for ¢,v. By crossing symmetry, those operators also parametrize the general
interactions contributing to the baryon and lepton number violating conversion processes
e p—etp, vn and e n — P in the electron-deuteron (e-d) scattering [11], the neutron
exotic decay n — pet [23] and the hydrogen-antihydrogen (H—H) oscillation [24].

To translate the experimental constraints at low energy to those on NP at a high scale
Anp, we have to climb up the ladder of energy scales in figure 1. If there are no new particles
with a mass at or below Agw , the standard model effective field theory (SMEFT) defined
between some NP scale Anp and the electroweak scale Agw is a good starting point to
parametrize the UV NP in a model-independent way. Based on this logic, we then consider
the leading order SMEFT completions of the LEFT interactions in question and it happens
that the relevant operators also first appear at dim 12, and without counting lepton flavors
we obtain 29 independent operators contributing to the decays. Along the way we perform
a tree-level matching between the SMEFT and LEFT interactions at Agw, and it turns
out that the interaction structures simplify significantly due to the constraints of the SM



gauge symmetry SU(3)c x SU(2), x U(1)y and many LEFT Wilson coefficients vanish at
this leading order.

To calculate the transition rate, at low energy which we take to be the chiral symmetry
breaking scale A, we perform the non-perturbative matching of the LEFT interactions of
quarks to those of nucleons and mesons using the two-flavor baryon chiral perturbation
theory (BxPT) formalism [25-27]. In order to realize this, we first organize the LEFT
operators into irreducible representations under the chiral group SU(2){ X SU(2)£ of chiral
u,d quarks and then construct the corresponding hadronic operators using the spurion
techniques with the non-perturbative QCD effect being encoded in the so-called low en-
ergy constants (LECs). These LECs may be extracted by chiral symmetry from other
measured processes, or computed in lattice theory (LQCD), or estimated based on the
naive dimensional analysis [28-30].

Last we collect all pieces together to express the transition rate as the function of the
Wilson coefficients of effective interactions in the SMEFT and the LECs. The merit in such
an approach is that the uncertainties incurred in the result may be estimated systematically.
Taking the current experimental limits into consideration, we find the NP scale is pushed
around 1-3 TeV, which is accessible to the future collider searches to complementarily study
the relevant NP. If we further assume these transitions are dominantly generated by the
similar dim-12 SMEFT operators, then the three different types of transitions are correlated
with each other via the weak isospin symmetry, and the experimental limits on the partial
lifetime of one type of transitions may be translated into stronger limits on that of another
type than their existing experimental lower bounds. In addition, this correlation helps
us to set a lower bound on the lifetime of the experimentally unsearched decay mode
pp — et T from that of pn — et -, and we find the partial lifetime is constrained to be
rt > 2 x 1034 yr.

pp_)e+7-+ ~

This paper is organized as follows. In section 2, we will first list at quark level the
operators for dinucleon and dilepton transitions. We then establish the basis of dim-12
operators contributing to the dinucleon to dilepton transitions with AB = AL = —2 in
the LEFT in subsection 2.1, and we will do a similar job to establish the leading order
dim-12 operators contributing to the same transitions in the SMEFT in subsection 2.2. In
subsection 2.3, we give tree-level matching relations between LEFT and SMEFT operators.
Section 3 is devoted to the chiral realization of the six-part of these dim-12 operators at
A. After some brief explanation how to perform matches to chiral theory from quark level
operators in subsection 3.1, in subsections 3.2 and 3.3, we discuss the chiral irreducible
representation decompositions and matching operators. In section 4, we calculate the de-
cay rate from the series of EFTs and make predictions for the sensitivity of such processes
for future experimental searches. We summarize our main results in section 5. In appen-
dices A to H we list the operator basis in each EFT obtained and chiral decompositions
and matching leading to the main results described in the text.



2 Operator basis for pp — 7€'+, pn — £, nn — v’ transitions

Since all operators we are interested in violate baryon and lepton numbers and are thus
non-Hermitian, we only list one half of them relevant to this work, and the other half is
easily obtained by Hermitian conjugation. To have dinucleon to dilepton transitions of
AB = AL = —2, the quark level operators first appear at dim 12 and contain six quark
fields made out of the up and down quarks (u,d) and two leptons (¢,v). By the Fierz
transformation, these operators can be factorized as the pure quark sectors multiplied by
the proper lepton currents. At the hadron level, according to the initial state nucleons or
the final state leptons, by the electric charge conservation, we have three different types of
transitions: pp — ¢T0'T, pn — ¢t and nn — /', respectively. The corresponding lepton
currents for each type of transitions are defined as follows

pp — 00 ]wj_ ((TOPLl), Gt = (RCye) ,  GE = ((FCot PLl) | (2.1)
pn— 00 G = ([0, Gt = ROy L i = ((ECat ), (2.2)
nn— i s G = (WiCu) g = (i Co ) | (2.3)

where C is the charge conjugation matrix satisfying CT = CT = —C and C? = —1, the
charged lepton field is denoted by ¢,¢' € {e,pu,7} and the SM left-handed neutrinos by
VL,V € {1/6,1/“,1/7}.5 The chiral projection operators are abbreviated as P+ = Prj =
(1 £ 5)/2 and therefore £ = Prif = Pi{. Here we see that for the diproton and
dineutron transitions pp — £7¢'T, nn — v/, the scalar lepton current is symmetric under
the exchange of the two leptons while the tensor lepton current is anti-symmetric. Es-
pecially, for the transitions with identical charged leptons pp — eTe™, u™u™ the tensor
lepton current vanishes, and the non-vanishing scalar and vector currents can be equiva-
lently parametrized by the four-component Dirac fields as

js = (frcey, jss = ((TCsL) s = ((TCys0) ,  (24)

and the vector current ({*C~y#{) = 0 from the same reason as the tensor current.

For the dinucleon to dilepton transitions, from the above classification, we may first
write down a minimal hadron level effective Lagrangian consisting of nucleon currents
NTTN' (N,N’ € {p,n}) as well as the lepton currents in egs. (2.1)—(2.3),

Ly = Z C pp)o Pp) + Z C pn)O(Im + Z C (nn) ’ (2'5)
where a, b, ¢ are just labels to distinguish different operators, and Céﬁl) are the Wilson co-

N')

efficients associated with the relevant hadronic operators C’)((IJX .

. Those operators OZ(NN,)

®We do not include the right-handed neutrinos since they are absent in the SM framework.



are dim-6 and composed of dinucleon and the above lepton currents, and can be written as

pp— L0+ 0P = (pTep)(foey) O = (pTCsp)(LECL) |
OIS = (T Cp) (RCLR) | O = (pT Crysp) (FRCOIR) |
0PV = (p" Cyusp) (LRCH*L7) (2.6)
pn— 7 O = (pTen)(feuy) O = (T Cysn) (ELCvy)
= (" Crm)(RCy"vr) . O = (0T Cysn) (v |
(pTCUWn)(ELCUWVL) (2.7)
nn — v nn)S = (nTon)(vicy)), Oézn)s (nTCysn)(viCvy), (2.8)

where there are no operators with a vector or tensor diproton/dineutron current since such
currents vanish, i.e., (NTCv,N) = (NTCo,,N) = (N'Co,,75N) =0 for N € {p,n}.

Since the dinucleon fields in the above operators must originate from the wu, d quarks,
it is thus necessary to start from the classification of relevant operators at the quark level.
There are two approaches in constructing relevant quark level operators responsible for
dinucleon to dilepton transitions. One is to use effective degrees of freedom below the
electroweak scale to obtain all relevant operators respecting SU(3)c x U(1)gm, this is the
LEFT approach. And the other is to use effective degrees of freedom of the SM to obtain
all relevant operators respecting the SM gauge symmetry SU(3)c x SU(2);, x U(1)y, the
SMEFT. We will obtain the operators in both approaches.

In both the LEFT and SMEFT approaches the color SU(3)c symmetry must be re-
spected, the six quarks in all operators obtained must form color singlets. We denote a
general six-quark field configuration as

O™ — 4t g qfeqr aran (2.9)
where the superscripts {i, j, k, 1, m,n} are the color indices in fundamental representation of
SU(3)¢ while the subscripts {1, J, K, L, M, N} encode the flavor and chiral information for
each quark field. To form a color invariant operator, the color indices must be contracted
by a color tensor Tjjximn such that Oijklm"Tijklmn is invariant under SU(3)c. This color
symmetry can be achieved by contracting the color indices {i,7,k,l,m,n} in the quark
fields with the following five independent color tensors

T{S;}s]‘f{kl}{mn} = €ikm€jin + €ikn€jlm T €ilmEjkn T €iln€jkm »
Tgﬁ?kl} [mn] = €imn€jkl + €iki€jmn T{kl}[mn] lij] = €igk€mnl + €ijl€mnk »
T{Swfrﬁ[ij][kl] = €ijm€kin T €ijn€kim ; T[z‘j][kl][mn] = €ijm€kin — €ijnCkim - (2.10)
We put the details for the color tensor construction and their subtleties in appendix A.

2.1 LEFT operators

In the LEFT framework, the effective degrees of freedom are the SM light quarks
(u,d,s,c,b), charged and neutral leptons (e, i, T, Ve, vy, V7 ), and the effective interactions



are governed by the higher dimensional local operators Q;-i built out of those fields and
satisfying the symmetry SU(3)c X U(1)gm. The LEFT Lagrangian Ly gpr is organized in
terms of the canonical mass dimension of the local operators

C i Cé.i
L1prT = Ldim<a + Y K > AGQ’ QR+ D

dim 5,7 dim 6,7 dim 12,1

where Lgim<4 is the renormalizable terms, and the Wilson coefficients CA’dJ- together with
the heavy scale A encode informations about the presumed fundamental physics. The
systematic enumeration of operator bases up to dim 9 have been figured out in [31-34].
In our case, the relevant operators first appear at dim 12 and can be parametrized as the
product of six-quark sectors and a proper lepton current given in egs. (2.1)—(2.3).

For the quark sectors, we can repeatedly apply the Fierz identities (FI) to reach as
many quark scalar bilinear currents as possible. In this way, by the Lorentz symmetry,
for the operators with a lepton scalar current their quark sectors can be factorized as
three quark scalar currents, and for the operators with a lepton vector (tensor) current
their quark sectors can be factorized as two quark scalar currents along with a single quark
vector (tensor) current. As a non-trivial example, at the end of appendix C, we will employ
the FIs to show how the operators with a lepton tensor current in quark scalar-vector-vector
bilinear structure are shifted into those with a scalar-scalar-tensor structure outlined here.
Lastly, the color SU(3)¢ invariance can be done by contracting the free quark color indices
using the independent color tensors constructed earlier. In doing so, one should be careful
with operators containing several identical quark fields since the color relations in eq. (A.4)
and the Fls in appendix C may further restrict their independency. Combining the above
points and excluding potential redundant operators, and for ny ( ny = 3 in the real
case) flavors of lepton fields (¢,v), the final bases of the dim-12 operators mediating the
transitions pp — £T0'T, pn — £TV' nn — v’ are summarized one by one as follows:

B Dim-12 operators contributing to pp — £7#'t. One can attach different lepton
currents to operators already formed by six quarks to form the operators. We will discuss
for each type in the following. For a scalar current jg‘jli, one just attaches it to some color
singlet and Lorentz scalar six quark operators. An example of this class of operators, the

Q%ﬁ%t, is given in the following

S,+ i j m n\ L0
QgpﬁL,a = (ULTCUD(UIETCCZ[L)(ULTCdL)Jé{iTgf}ikl}{mn} :

We find that there are 28 independent operators without referring to lepton flavors which
are listed in (B.1) in appendix B.
For the operators with a vector lepton current jé # there are 19 independent opera-

o H we find there are 16 indepen-

tors, and for the operators with a tensor lepton current j,
dent operators. Therefore there are total 63 operators which we give them in egs. (B.1)-
(B.3) in appendix B. For n; flavors of charged leptons, there are 41n?c + 6ny operators.
As a cross-check, we also confirmed our above results (and following ones) by the
Hilbert series method [35-38]. In appendix B, by a non-trivial example, we also show how

to reduce the redundant operators using the Fierz and Schouten identities.



When restricting to the same flavor leptons with ¢/ = ¢, we find there are 28 + 19 = 47
independent operators from the scalar and vector lepton currents, because the tensor lepton
current vanishes for identical fields. Besides the transitions pp — ete™,u™u* | such
operators also contribute to the H—H oscillation process and have been enumerated long
ago by Caswell, Milutinovic and Senjanovic in ref. [39]. However, we find 13 out of total
60 operators in their counting are redundant and all of them belong to the class with the
vector lepton current jf;e #. In appendix C, we show explicitly the redundancy of the basis
in [39] and give the correspondence of their basis (after excluding the redundant ones) with
the basis in egs. (B.1), (B.2).

B Dim-12 operators contributing to pn — €tv’. For the operators with a scalar
current jg’/, we find there are 14 independent operators without counting lepton flavors.
For the operators with a vector current j‘l;y L , there are 24 independent operators. And for
the operators with a tensor current jf}”l’“ Y, there are 13 independent operators.

In total, there are 51 independent operators for the transition pn — ¢+ which are
listed in egs. (B.4)-(B.6) in appendix B. For n; flavors of charged leptons and neutrinos,
there are 51n3c operators. These operators are also responsible for the conversions e p — vn
and e~ n — vp in the electron-deuteron scattering. In addition, we find they can contribute
to the unique neutron decay mode with the baryon number being changed by two units

n — petv [23].

B Dim-12 operators contributing to nn — vr’. For the operators with a scalar
current jg”,, we find there are 14 independent operators. And for the operators with a
tensor neutrino current j;'/’“ Y, we find there are only 8 independent operators. In total,
there are 22 independent operators which are listed in egs. (B.7), (B.8) in appendix B. For
ny flavors of neutrinos there are lln?c + 3ny operators. Excluding the scalar neutrino cur-
rents, one can easily identity the remaining 7 quark operators in eq. (B.7) plus their parity

partners are just the 14 operators contributing to the neutron-antineutron oscillation [39].

2.2 SMEFT completions

To connect with the NP scenarios at a higher scale than Agw, the SMEFT can serve as a
suitable bridge between the LEFT interactions and the unknown NP as shown in figure 1.
It parametrizes the high scale UV NP in a model-independent way and therefore is a good
starting point for the systematic EFT analysis of low energy processes. In this section, we
consider the leading order SMEFT completions for the AB = AL = —2 dinucleon to dilep-
ton transition operators discussed above. It happens that the relevant SMEFT operators
also first appear at dim 12 at leading order, and contain six quark fields and two lepton
fields. By the similar logic as the construction of the LEFT operators, we first factorize the
operators as the convolution of the six-quark part and the proper lepton bilinear current
through the Fierz rearrangement. Furthermore, since the nucleons made out of the up and
down quarks, we only focus on the first generation of quark fields but without restriction for
the generation of the lepton fields. We denote the SM left-handed lepton and quark doublet
fields as L(1,2,—1/2), Q(3,2,1/6) and right-handed up-type quark, down-type quark and
charged lepton fields as ug(3,1,2/3), dr(3,1,—1/3), er(1,1,—1). We employ the front



Latin letters (a,b,c,d, e, f) for the SU(2)y, indices and the middle ones (i, j, k, [, m,n) for
the color SU(3)¢ indices in fundamental representations, respectively. Similar to the clas-
sification of operators in the LEFT, we classify the relevant dim-12 SMEFT operators in
terms of the lepton currents, and the final results are summarized in appendix D.

Here we briefly comment the procedures to reach the independent operators in ap-
pendix D.1). Based on the U(1)y invariance, one can easily identify the allowed field con-
figurations with six quarks and two leptons. 2). For each field configuration, we first use the
Fierz transformation to fix the Lorentz structure of the operator so that it takes the quark-
lepton factorized form O, x jz, in which the lepton current j;, can be either scalar, vector, or
tensor type. For the scalar/vector/tensor lepton current, the Fierz transformation can be
used further to organize the corresponding six-quark part to be scalar-scalar-scalar /scalar-
scalar-vector /scalar-scalar-tensor bilinear structures as we did in section 2.1.3). Followed
by step 2), we consider the electroweak SU(2)y, invariance which can be done by implement-
ing the contractions using the rank-2 Levi-Civita tensor €,,. In doing so, the SI identity
€ab€cd = €ac€bd+EadEch has to be considered carefully for the multiple SU(2)y, contractions so
as to reduce the redundant operators. 4). Last, the color SU(3)¢ invariance can be done by
contracting the free color indices using the independent color tensors discussed in section A
and appendix A. If there are multiple identical quark fields, the color relations in eq. (A.4)
and the Fls in appendix C must be taken into account to reduce the operators into the
minimal basis given in appendix D.5). We also count the number of independent operators
in each configuration using the Hilbert series method [38] and confirmed our result.

The following is an example of using SM building blocks to build the SMEFT dinucleon
to dilepton operators which are different from those in the LEFT,

Ogirh = QI CRDQETCQNQITCQY) Ly CLyeavecacese T immais - (212)

This time, uy, and dy, must appear at the same time so that the SM gauge symmetries are
respected. Expanding () into its u;, and dj, components, one obtains

S,(8 i'T j kT ~ 4l T SAA 00!
Ogirs = Al Cup) (wf Oy (wp " CATEN ) 36
iT o~ 33\ (kT v 3l T SAA !
= 8(uy Cdy)(ug, Cdp)(uf™ Cdp) T mn) IS
T~ 33\ (0 kT v 3l T SAA !
+4(dy Cdy) (uy” Cdy)(ul” Cdp) TN ypmn) I8
_ 40(PP)S,— (pn)S (nn)S
=407717, =807y T40 01y - (2.13)
Therefore it is expected that the SMEFT approach will have less independent operators
than that can be constructed in the LEFT approach. Without counting the lepton flavors,
for operators with a scalar lepton current, we find there are 12 independent operators. For
operators with a vector lepton current, we find there are 7 independent operators. And
for operators with a tensor lepton current, we find there are 10 independent operators.
In total, there are 29 operators which are listed in appendix D. For ns flavors of leptons
there are 18nfc + ny operators. Except the sub-GeV scale dinucleon to dilepton processes
studied in this work, these SMEFT operators are crucial for the model-independent study

of the AB = AL = 2 signals on colliders, for example, the process pp — £7¢'* 4+ 4 jets at
LHC [16] and e~ p — €T + 5 jets in the future electron-proton colliders like LHeC.



In literature, refs. [12, 17] also provide a bunch of dim-12 operators contributing to
dinucleon to dilepton transitions in the SMEFT. We find the operators given in [12] are
neither complete nor independent as a basis. Specifically, the 28 operators® listed in [12]

can be covered by 21 operators in our counting and 8 of them are redundant. In addition,
u3d3L21 29 u2d2Q2L22’ u2d2Q2L22’ udQ4L23’ QGLQ’ wtd2e2) u3dQ2621,2
in our basis are missed in their list. In appendix E, we translate their operators as linear

the 9 operators 0>

combinations of our above operators so that one can easily recognize the redundancy and
incompleteness of the operators in [12].

2.3 Relations between SMEFT and LEFT operators

As already mentioned earlier that some of the SMEFT operators contain several LEFT
operators, i.e. OQ(;(L% 4(’)%) g‘z; — 8(9&725,17 + 4(’)%@55 The SMEFT approach will
have less independent operators than that can be constructed in the LEFT approach at
the same order. To have better idea on how these operators are related to each other,
in table 2, we perform a tree-level matching of the dim-12 SMEFT operators listed in
appendix D to the dim-12 LEFT operators listed in appendix B at the electroweak scale
Arw. We have approximated the CKM factor V4 =~ 1 arising from the mismatch of the
flavor and mass eigenstates of the left-handed down quark dy. From table 2, it is obvious
that the operators with the singlet charged lepton scalar/tensor current (eLCTely) can
only exclusively contribute to the transition pp — ¢*¢'", while the operators with an anti-
symmetric scalar lepton current ‘S,(A)’ and the operators with a symmetric tensor current
‘T,(S)’ can only contribute to the transition pn — ¢*v/. The remaining operators with a
symmetric scalar lepton current ‘S,(S)’ or with an anti-symmetric tensor current ‘T,(A)’
could contribute to both the three different transition channels. Last but not least, one must
be careful that the SMEFT Wilson coefficients with a superscript ‘(A)’ vanish for identical
lepton fields since the relevant operators are anti-symmetric for the two lepton fields.

From appendix D and table 2, we see there are many operators which can be con-
structed in the LEFT, but not in the SMEFT at leading dim-12 order, for instance, oper-
ators fof L‘Zi, QianL r and QE&T]L;); for the three channels respectively. Those operators are
not SU(2)r, x U(1)y invariant and can only be generated by the higher dim-14 and/or dim-
16 SMEFT SU(2)1, x U(1)y invariant operators consisting of dim-12 fermion part (gqqqqqll)
together with additional Higgs doublets. The physical effects from such operators are sup-
pressed with additional factors like v2/A%p and/or v*/A§p relative to the dim-12 SMEFT

operators and will be neglected in our numerical analysis.

SRef. [12] also considered operators with the SM singlet right-handed neutrinos, here we only focus on
the SMEFT subsets.
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SMEFT operators pp — 00 pn — L' nn — i/’
Oriarey - Clienne =20 35021 -
Oliganas - Cliinns = ~2C 2, —

O§é<rf2>Q2L21 C’é’g)ﬁ*; = Cfé(;)@%h Cfs?}%i,a = 72055((52122 L21 ng?%rgiu = féiii)Qz L21
Ofé<£)q?2L22 - Cé%ﬁz%i,b = _405561122)%22 7
Oiég)Q‘ZL?:s Célg}z%,; = 052’(;)@%23 Ciglj%nﬂzf,c = *2052'(;)@%23 Cé?zrlbz)ib = Cfési?cﬂ 23
Of;l(ngm - CSTL)E,C = _805:1((;422 1 o
Of&gZLzz CéprL)I%,; = QC;Z((SZL22 Cézzrz);b = _4Cfé((§4)L22 Cézri)}ib = QCZ(QSZL%
o3 |otmty =40 Ol = 5054 Clfie, =105
Ofi(j?)ﬁ 1 C&pl)?%; = C’f‘;(dsz)ez 1 7 7
053(:;)&2 Ci%pl)?%jg = Cfi;i% 7 7
O OO =200 0 - -
O Cimy =400 — —
O'Z3d2QeL1 C;%ﬁ; = _Cq‘,/@rﬂQem CY;?’;%)‘Z = CX@rﬂQeLl *
OX3d2QeL2 Ci%}gﬁ = 1‘1/3,12 QeL2 Cig}%,‘g = _C;/i*dZQem *
OZSdZQeLS C{%p)zf/c = *CL/S# QeL3 Ci%nlz,‘z = CXSd?QeLs -
OXHQ%L] Cﬁ’iﬁ%,‘ﬁ = 201‘1/2dQ3eL1 ngnL),‘g = *QCX?dQBeLl —
OXMQ%LQ Cﬁp}%}; = QCX?in*cLz 04(1117%”[?,‘1/1 = 2011/24@3@2 o
Oz‘L/de3eL3 Czilﬁr),}g = _Qqung%L:s Cz(xxz)aﬂi),: = _QCXZdQ%Ls *
OZQSeL C{ip[?,‘; = 4CXQ5EL C;TLL)‘C/ = _4CXQ5 el *
035252222L21 * Céllgzz,a = _4035222)2L21 o
Ouipweres  |Csine = Cudeiera Ciinr o =20 302 12, Ciinr =~ Clitabera
OZQ’E;)QQLQB — Cé‘f%?%f,c = _4055515222L23 o
f&(c;)m 1 CéipL)gb_ = 2021(;4221 CéTL)g,c = 7405(;((;&2 1 Céﬁ)g,b = 720:&2?4221
Of:i(QS‘zLQZ * Céi?g,b = _SCZQS‘BL% o
OZ‘;Z(C‘QA‘Bszi Cé’ﬂ)gf = _QCZ(}&)L% Céi?;,d = _4C§é(c;1>L23 Céan)g,c = _2051;&;4)&3
o) - ct, = —16Ch) -
Ol |Cihn " =Clliale - -
033((122 e21 Cé%?})zg,z = 2033512;%2 1 o o
021;222)2522 Cé%:pl)%?: = 20/32;((;2;2622 - -

Table 2. The SMEFT dinucleon to dilepton operators and their matching onto the LEFT at the
Agw. Where the notation for the Wilson coefficients is similar to the corresponding operators with

the replacement of O by C, e.g., C We do not show the explicit flavors of

3 Chiral realizations

T,(A)
u3dQ?e?2
leptons in the above matching but can be easily recognized through the corresponding operators.

for O,

u3dQ2e22’

3.1 Some basics of chiral matching

After establishing the operator basis for dinucleon to dilepton transitions in the LEFT
and SMEFT, the next step is to calculate the transition matrix elements and the decay
rates. However, the hadronic matrix elements between the initial dinucleon state and the
QCD vacuum are not a trivial task due to their non-perturbative QCD nature. In order to
obtain those matrix elements with a controllable uncertainty, fortunately, one can employ
the successful effective chiral perturbation theory of the low energy QCD and the spurion
field techniques to shift the quark level interactions into those interactions among hadrons

and leptons.
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In the QCD sector, the approximate chiral symmetry G, = SU(Z){ X SU(2)£ of the two-
flavor QCD Lagrangian under the limit of massless up and down quarks is spontaneously
broken into its isospin subgroup SU(2)y by the quark condensation (gq) at the scale A,.”
The interaction of the resultant pseudo Nambu-Goldstone pion fields at low energy (p < Ay)
is described by the xPT which inherits the QCD chiral symmetry [40, 41], and the baryon
extended yPT termed as ByPT is our main focus in this section. The (B)xPT Lagrangian
is organized in terms of the power of the soft momentum p relative to A,. Introducing the
proper external sources transforming under the chiral group, the global chiral symmetry
can be promoted to be a local one. Therefore, the (B)xPT Ward identities can be easily
formulated and the interaction of hadrons with other light particles such as leptons and
photon can be included. In the following we will use the two-flavor ByPT formalism and
the spurion field techniques to construct an equivalent effective chiral Lagrangian for the
dim-12 interactions in section 2.1.

Before performing the detailed non-perturbative matching for the LEFT interactions,
we can expect the six-quark part of those dim-12 operators will be transformed into proper
nucleon current together with pions and derivatives. For our purpose of capturing the
leading order contributions to the dinucleon to dilepton transitions, it is enough to consider
the dim-6 terms composed of a nucleon bilinear current and a lepton bilinear current
without any pions and derivatives in egs. (2.6)—(2.8). The hadron level Wilson coefficients
C’éfzfcvl) will be determined below by the chiral matching to the quark level operators.
Once these Wilson coefficients are obtained, it is straightforward to obtain the transition
amplitudes and henceforth the decay rates, which will be postponed in section 4 for a
detailed analysis. Now we turn to the chiral matching and find the relationship between
the Wilson coefficients of the operators in egs. (2.6)—(2.8) and those in the LEFT/SMEFT.

We start from the basics of the yPT. For the light two-flavor quarks ¢ = (u, d)T, the
QCD-like Lagrangian with extended external sources is parametrized as

L= LGS + Tl ar + Trrnar — [Gr(s — p)ar — TR ow)ar +hel . (31)

where the flavor space 2 x 2 matrices {l, = lL, Ty = TL, s=sl, p=7pl tH = tf“’T} are
the external sources related to the corresponding quark currents. Under the global chiral
transformation q;, — Lqp, and gg — Rgqr with (ﬁ, }AB) € Gy, the pure QCD part E(%’C:DO is
invariant. The introduction of the external sources with proper transformation properties
can promote the global chiral symmetry to be a local one. In this way, the whole Lagrangian
L can be made invariant under the local chiral transformation q;, — L(z)q; = Lqr and
qr — R(x)gr = Rqg together with the following transformations of the external sources

X — RxL', 1, — LI, L' +iLd,L", r,— Rr,R' +iRO,R', " — RVLT, (3.2)

where x = 2B(s+ip) with B = —(gq)/(2F?) ~ 2.8 GeV. Fy is the pion decay constant, and
the quark condensate (qq) can be treated as an order parameter to measure the strength
of the spontaneous chiral symmetry breaking.

"Usually the strange quark s can also be included in this framework to consider the larger group breaking
pattern SU(3) x SU(3)£ — SU(3)v [40, 41]. For our purpose, it is enough to only focus on the two-flavor
case in which the chiral symmetry breaking effect is relatively smaller.
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For the Lagrangian in eq. (3.1), the equivalent chiral Lagrangian at low energy can
be constructed by identifying the relevant degrees of freedom and to write down the most
general chiral invariant Lagrangian ordered in terms of the number of soft momenta. The
relevant degrees of freedom are just the light hadrons (pseudo-scalar pions and nucleons)
and all possible non-QCD states (like leptons and photon) encoded in the external sources.
Define the pseudo Nambu-Goldstone matrix U as

. 0 2t
U=u?, U = exp (zH) , H=niro=| " var . (3.3)
2Fy \/§7T_ —70

Then, under the chiral transformation (L, R) € Gy, they transform as U — RUL' and
u — Ruh' = huL' with the compensator matrix h € SU(2)y as a function of U, L, R.
Furthermore, we define the chiral vielbein as

Uy =1 (uT(au —iry)u —u(0, — ilu)uT) , uL =, (3.4)

which transforms as u, — huuhT under the chiral group. The power counting of these
building blocks in terms of the soft momentum p is

u=0("), u, = O0(p'), X =0(p). (3.5)

Then the leading order mesonic chiral Lagrangian is at O(p?) and takes the form

F2
Ly = - Trfu + x4, X+ = ulxul + uxTu, (3.6)

where Fj is the pion decay constant in the chiral limit. Here we see the tensor exter-
nal source does not enter into the leading chiral Lagrangian but rather first appears at
O(p*) [42).

Next, we include the nucleons in this framework. Denote the nucleon doublet as
U = (p,n)" which transforms as ¥ — h¥ under the chiral transformation. The covariant
derivative of the nucleon doublet is

1
D,V = (9,+T,)¥, I, = 3 (uT(au —iry)u 4+ u(0, — ilu)uT) , (3.7)
where I', is the chiral connection which helps D, ¥ to have the same transformation rule
as . The power counting for the nucleon field is ¥ = O(p”), and also D, ¥ = O(p"), this
latter result is because the nucleon mass my is comparable with the expansion scale A, .

However, (i) —mpy)¥ = O(p'), then the leading order baryonic chiral Lagrangian takes
[,7(3]2[ =0 (le —mpy + 92147“751%) v, (3.8)

where g4 is the axial-nucleon coupling constant. For the chiral matching of the dim-12
operators below, we will treat D, V¥ as a higher term than ¥ through the naive dimensional
analysis, and neglect their contribution to the leading order chiral realization of the relevant
dim-12 operators. A possible way out for saving the power counting rule of the nucleons is
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via the heavy baryon chiral perturbation formalism (HBxPT) [26] but with the sacrifice of
Lorentz covariance. The HByPT formalism is beyond our current scope and one can check
ref. [43] for the treatment of neutron-antineutron oscillation. A brief comment concerning
the relation between the Lorentz covariant operators and their HBxPT reduction is given
at the end of this section.

3.2 Decomposition of irreducible chiral symmetry

In the matching onto BxPT for the effective operators in our case, the lepton current
together with the associated Wilson coefficient of a dim-12 operator in the LEFT behaves as
a fixed external source, thus we only have to cope with the six-quark sector of the operator.
One of the key steps for the chiral matching is to identify irreducible chiral representations.
We describe the procedures in the following. Suppose the quark sector has been decomposed
into a sum of irreducible representations/tensors (irreps) of the chiral group

P = 0 O )05 Ot G T, VT (39)

ijklmn »

where ¢y, are the chiral quark doublets (u, d); with x; being the proper chiral projectors
1

ikl

and appendix A. The flavor indices {u,v,w,z,y,2} as dummy indices are summed over

Py, I'; are the Dirac gamma matrices, a general color tensor discussed in section 2

and take 1 or 2 for the up quark u or down quark d respectively. The set of pure numbers
AurwrYz depends on the irrep under consideration. 6 is promoted as a spurion field that
transforms properly together with chiral transformations of the quarks under G, so that
P looks like a chiral invariant.

The chiral counterparts of operator P are constructed out of the spurion field 6 plus
the hadronic degrees of freedom {V, D, u, u,, X, - - } and share the same symmetry trans-
formation properties as that of P, which include the chiral symmetry, the Lorentz and the
global baryon/lepton transformation properties. Since P is chiral invariant and violates
baryon number by two units, the matched operators must also be chiral invariant and
contain exactly one spurion field 6 and two nucleon fields Ws. Based on the chiral power
counting property of the hadronic degrees of freedom, the obtained operators are ordered in
terms of the number of soft momenta p and the dominant terms are those with least power
of p. Last, for each independent operator we associate it with an unknown LEC which
accommodates the non-perturbative QCD dynamics. These LECs can be determined by
fitting to the data, or calculated using the LQCD method, or estimated based on the naive
dimensional analysis. In addition, for the LEFT operators belonging to the same chiral
irrep, the chiral symmetry implies their chiral counterparts at a given chiral order share the
same LEC. Here we remark that the above procedures have been used previously to the non-
perturbative matching of the dim-9 operators mediating the nuclear and kaon neutrinoless
double beta decay processes [44, 45] as well as the neutron-antineutron oscillations [43].

With the above procedures, we can now match the operator basis in the LEFT in
section 2.1 onto ByPT at leading order of the chiral expansion, i.e., at O(p").® We first
transform the LEFT operator basis into a chiral basis in which each operator itself belongs

8The higher order terms can be constructed in the same style as was done in [43].
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to some irrep of the chiral group G,. The chiral bases are shown in table 5, table 6
and table 7 in appendix F for the operators contributing to the transition pp — £T¢'T,
pn — {77 and nn — v/, respectively. In the tables, we list their relations with the LEFT
operators in the first and second column and show their chiral irreps in the third column
(where the subscripts (a,b,c) behind some irrep are used to distinguish different irreps
with the same chiral type)® and the corresponding chiral spurion fields in last column.
Except the gray sectors, which already include the parity conjugates, all the rest ones have
their parity conjugates with L <+ R (and an additional exchange of + <> — for the tensor
operators in table 5). The parity conjugate of chiral operator P; is denoted by P; once it is
needed. For those chiral operators expressed as a linear combination of two or more LEFT
operators, their equivalent definitions are given in appendix F through fully symmetrizing
all free quark flavors with the same chirality. The relations between the Wilson coefficients
of the chiral basis as those of the LEFT operators can be determined easily. The general
expression for the spurion fields takes the form
R = e = B S ) (310)

where we take the symmetrization notation with the round brackets (---). Symmetrization
with respect to a group of indices is defined by placing these indices between round brackets
(--+), so we have

57(“;116};2 e 5;;”) = % 031057 -+ 0;™ + (n! — 1) permutations of (iy, - ,zn)} , (3.11)
where we take the normalization as in [46]. For example, for the operators with a scalar
lepton current belonging to the chiral (37,1z) and (57,3g) irreps in table 5, we have

Oty = 01" = ooy

ULVLWLT z 1'LLU’U)$ u SV SW ST U SV SW ST u SV SW ST z z
9(1L113)(§zfyR = §[51 070103 + 010705'07 + 01050107 + 030701076165 + 0507] ,

1
QULVLULILURER — Z(5UGYSY5E 4 SUSSSY Y + SYSY0Y 6T + 1 4> 208Y5T |

(1122)(11) =5l
01 5y U = 010107676505 . (3.12)

From tables 5-7, we see that for the operators with a scalar lepton current, there are
six types of irreps under the chiral group: (37,1r), (51,3r), (71,1Rr) plus their parity
conjugates. The three operators Pl(f;p )S, Pl(f;n)s, Pl(zn)

and relate to each other by the chiral symmetry, and similar situation appears in the irrep

% belong to the same irrep (7r,1R)

(51,3p) in which the nine operators are related to each other. However, for the irrep type
(31,1R), there are three different irreps distinguished by the subscripts a, b, ¢ and each one
contains three operators. For the operators with a vector lepton current, there are also six
types of irreps: (2r1,2g), (41,2Rr), (41,4Rr), (61,2R), (21,4R) and (27,6r). One should
be careful that there are four different irreps for the type (21, 2r) since the parity conjugate

9For the operators belonging to the same irrep, they must have the similar chiral, Lorentz and color
structures so that they can be related to each other through the action of the chiral transformation.
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of the irrep (21,2R)|q is different from itself and will be denoted as (21,2r)|q . Last, for
the operators with a tensor lepton current, there are still six types of irreps: (1r,1gr),
(3L7 1R), (3L, 33), (5L, 13), (1L, 33) and (1L7 5R)- Where the type (3L, 33) contains four
different irreps due to the parity conjugates of (31,3Rr)|q are distinct from themselves for
the operators in table 5. Another interesting fact is that the LEFT operators belonging
to the same chiral irrep will not mix with each other under the QCD renormalization and
have the same anomalous dimensions since the QCD preserves the chiral symmetry and
quark flavors. In addition, the QCD renormalization for the operators related to each
other by parity is also the same. For the operators with a scalar lepton current, the 1-
loop QCD renormalization is identical to the dim-9 operators contributing to the n—n
oscillation and can be found in [39, 47]. But there is no result for the operators with a
vector or tensor lepton current yet, and we will neglect the QCD renormalization effect
for the current work due to the involvement of considerable effort. However, from the
1-loop anomalous dimension matrix result for the dim-9 n—n oscillation operators given
in [47], we can estimate the 1-loop QCD correction for those operators with a lepton scalar
current. From the electroweak scale Agw to the scale A, we find the running effect could
have substantial impact on some scalar lepton current operators but the influence on the
derived NP scale is at most O(30 %) due to the high power dependence (C; ox AyS). We
will systematically explore in the future work their renormalization effect.

3.3 Chiral matching for the operators

Based on the chiral irrep, we reorganize the chiral building blocks in terms of the power of
soft momentum p and the explicit chiral left or right doublet indices such that they have
only one or two free indices, i.e., the building blocks are constructed to take the forms: X,
and Xy v, With x; = L, R.10 They transform as Xuy, — (gXl)qu@XlXﬁX1 and Xy, v, —
(9x1 Dy, iy (Gx2 iy, Xy, 0y, Under chiral transformation gy, € SU(2){’R. Therefore, the
first few building blocks with lower chiral order are constructed as follows [43]:

O(po) : (UiTz)nyL ) (U\I])xR ) (UT\I’):EL )
(’)(pl) : (uu“uirz)zRyL , (uuMuTiTQ)nyR , (uTuMuiTQ)chyL ,
O(p2) : (XiTQ)nyL ) (XTiTQ)xLyR ) Ty (313)

where for O(p?) we just show a few examples, and the full list should include terms with
two us, field strength tensors for the vector external sources, etc. Due to the fact that
w12 = 722* for x € SU(2), the other possible O(p") and O(p') building blocks are not
independent: (UTi72),,,, = —(UiT?)ypz, TLUR yrzr- Note
that the two O(p!) objects with the same chirality are anti-symmetric under the exchange

and (ulu,ulir?) = —(uuyuit?)
of the two indices. In the above, we neglect those O(p") terms with derivatives acting on
the nucleon field like (uD,¥),, since, at leading O(p") order of the matched operators,
they are actually redundant and can be transformed into those non-derivative operators
plus higher order terms (O(p=!)) via the equation of motion (EoM) of nucleon fields and

10The building blocks with three or more free indices are not independent and can be reduced into a
product of X, s and X S

Ux1 Ux1Vx2 ™"
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integration by parts (IBP) relations. At the same time they can not yield the operators in
eq. (2.5) used for the analysis in this paper. For instance, we consider the lepton vector
current operators, one possible leading O(p°) order operator with derivative acting on the
nucleon field takes (¥1iD#Wy)P(u)jv,, with P(u) a polynomial of pion field u. It can be
reduced as follows

2U ) CiDFU, P (u)jy,

= UL C(iPy" + i) Uy P(u)jv,
PR YT O Dy + mny*) O P (u)jv, + O(p')

<_
B _wT (P — may" )W, P(u) v, — U Cy " 0,0, [P(w)jy ) + O(pY) |

where in the last line, the first term can be further reduced by the EoM to be a derivative-
free operator, the second term is again O(p') due to the derivative acting on the pion and
external source. The other O(p®) terms with derivatives acting on the nucleon field can be
reduced in a similar fashion.

Without consideration of the operators involving covariant derivatives acting on the
nucleon fields, the leading order matching results for all the relevant chiral irreps are shown
in table 8. Where the spurion fields are easily identified from tables 5—7 for each specific
operator, and g; are the unknown LECs parametrizing non-perturbative QCD effect. One
should keep in mind that for each independent irrep there is a corresponding LEC.

Here we again take the operator (’)géig as an example to show the relevant spurion
fields and the chiral matching result. From eq. (2.13), the six-quark part of the matched
three LEFT operators (’)](Lpr L)i’;, ng@zbv O??L)ib can be rewritten as

(uiTcui)(ulzTCdljl)(UTLHTCdE)TEﬁ?kl}[mn] = (610))Tupw, = eztlLli)}LTuLvL )
) j m n 1 U SV U SV _ pupv
(uiTCTdi)(uET<7d2)(uLfTC7dL)?¥§fﬁkqpnn]:: 5(5152'+'5251)TLLDL ::HUB)L]LLUL‘
(dF O}, ) (T Ody) (W O YT ) = (0303)Toy, = O To, (3.14)
where we have defined the spurion fields as
urv U Sv urv 1 u sv u Sv Ur,v u Sv
9(1L1)L = 51 (51 5 9(1L2)L = 5((51 62 + 52 51) 3 9(111)L == 52 52 5 (315)

and Ty, v, = T, v, is a three-dimensional irrep tensor under the group SU(Z){ but a singlet

under SU(2)£, and takes the form

1 T 0\ (KT SAA G
TULUL = Zewxeyz(quEquLv)(QL;FUCQLm)(quTCQZz)T{ij}[kl][mn} - LiL%Twy € (3L’ 1R) .
(3.16)
According to the previous procedures, the leading order chiral realization of T, ,, is at

O(p°) and formed by two (u'¥),, s to have the same baryon number and chiral structure.
In addition, the Lorentz covariance further restricts 7),,,, to be a scalar and have the
general form (u')y, oa(u')u,aWs [g3x1 + G3x175] U as shown in table 8. Then the complete
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matching for Ogéi; together with its Wilson coefficient becomes

CoAOSE —4CG ) (0 34~ =208 38 + 0153 38 ) (e (u) s Wa lg3.c1 + G3.175] W
(3.17)

Keeping the O(p") terms in table 8 and expanding them to zeroth order in the pion
fields, we have

O3S><1,i - e?ofgvf [\I]ELC(QSXLZ' + 93x1,i75) Vo | »

ng?, — HzLogﬁvpru)}%;—L)yRZRGwaL €zrxp, [\IJELC(95><3 + §5><3'75)\I/1)L] s

v, A
02;<M2,i - QZEUR [‘I’ELCV“(QQXM + 92x2,i75) Vor]

"
Oyt ; = gax2,ib g eapuy [V, C1* 15 W0, ]

OX;ZL — 9?;51}5)1::;Tl§yRZR€vaL €zrwr, [\IJELCPYM(94><4 + g4><4'}’5)\119c3] )

v 1 .

O{x“u = §€ab[‘I’aTCUW(91x1,i + G1x1,i75) W)
T Y .

O35 = Oy om e oy [V, O™ (93x3,5 + G3x3,75) Yug) (3.18)

and the similar expressions for the parity conjugates Ofx&i, 03, 5 and OXX“Z ;- Taking the

specific expressions of the spurion fields in tables 5-7 into consideration, we can obtain
the matching results for the Wilson coefficients of the operators in egs. (2.6)—(2.8) as the
function of the LECs and the LEFT/SMEFT Wilson coefficients, the full matching results
from the LEFT and SMEFT operators are listed in appendix H.

In the following, we show as an example the matching results from the SMEFT oper-
ators ng(fg and Cg,(S) In terms of their LEFT counterparts Qgpr ian nn)S and QganL)f , we

br2
have

1 = e (SIS + O )+ OO =,

S = gucra (SO CUIE) + . AP = g,

COMT = G (GO + CUE )+

Cgm)s = g3x1a @dﬂ)iga + C&@ﬁb) te CéTLm)S = gm)s‘g_@ ; (3.19)

where - - - stand for contributions from other operators. For the tensor case Cép n)’T, we have
used the identity o*/~5 = ie""*?5,,/2 to eliminate the operator (pTCo ., v5n)((5CT* 1)
in favor of (pTC'JWn)([}F%CJWVL) with the shifted LECs gy, , = Gixiz — Jixiz. After
neglecting the QCD running effect and replacing the LEFT Wilson coefficients by the
SMEFT ones Cg’e(fg and ng(fg) as the way shown in table 2, we find the above results are
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simplified to become

Cépp)s = 493x1,a0c§%(§g +oee Céip)s = épp)s‘gﬁs? ;

Cpms = —8g3x1,acc§’6(f% R Ci% = O™ gng

COMT = 1697, ) Coiih++ .

CH™ = 4gs1 aCpitd + -0 O = O™ gy (3:20)

Once the hadronic LEC g; is known one can obtain the dinucleon and dilepton transitions.
In the following section we will discuss how this can be done and obtain constraints on the
LEFT and SMEFT operators.

Before doing that, let us have some discussion about the LECs. By the parity invariance
of QCD, we expect the LECs of an operator and its parity conjugate are the same up to a
sign determined by the parity transformation property of the quark and the corresponding
hadron level operators, i.e., gix; = £g;x;. Particularly, for the scalar current case, we have

93x1i = —91x3i»  93x1i = +01x3,i »  93x5 = —05x3 ,  03x5 = +05x3 - (3.21)

The numerical value of g3x1,; and g3xs can be determined by the LQCD results for the
n—n oscillation matrix elements [47]. This is because the quark sectors of the 14 operators
with a scalar lepton current contributing to nn — v/ transitions are exactly the 14 dim-
9 operators mediating n—n oscillation. Neglecting the lepton current, the scalar chiral
operators in the irreps (11,35) and (51,3Rr) in table 7 have the following correspondence
with the dim-9 chiral operators for the n—n oscillation [47]

Qi = —4B(S | Qs =~ Qs = —4P"%
Qs — me)s 7 Qs = _4P2(32n)5 ’ Qr = _4P3(77;n)5 ' (3.22)

After comparing the LQCD results on the n—n matrix elements from @); and our chiral
matching results for Pi(”n)s in eq. (3.18), we find

Gixzac~ —6x 1070 GeV® | giu3p ~1x107° GeV® | gru3 ~5x 1070 GeV® | (3.23)

at the scale A ~ 2GeV or so and the uncertainty in [47] is neglected.

Except the above LECs, the rest of the hadronic couplings, such as the g; and the ones
related to the vector and tensor current operators, have not been determined. For these
LECs, we will use dimensional analysis as a guide to illustration. Since the transition from
quarks to hadrons is through the non-perturbative QCD dynamics, the only relevant scale
Aqcp ~ 200 MeV will come into play. To make the dimensionality correct, one can take
as a rough estimate the couplings to be of order A%CD ~ 6.4 x 107° GeVS. This is larger
than the numbers in (3.23). But considering the large uncertainties involved, we can take
it as a guide for estimate.

Alternatively, these LECs can be estimated via the naive dimensional analysis by keep-
ing track of 47 factors [28, 29] and relating the hadronic matrix element to the chiral sym-
metry breaking scale A, = 1190 MeV. One introduces “reduced” couplings for the hadron
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and quark level operators and to match them [30]. For a coupling constant g appearing
in an interaction of dimensionality D in mass which containing NN field operators, the re-

duced coupling is (47)>~N Af -4

g. For our case, the hadronic operators involve two fields
(N = 2) with a coupling g as given in egs. (2.6)—(2.8). The quark operators involve six
quarks (N = 6) with a coupling g,, therefore we would obtain gy/A, = g,(A,)%/(47)*
by matching. Setting g, = 1, one would have the hadronic coupling to be of order
(Ay)8/(4m)* ~ 11 x 1075 which is about 2 times the above dimensional estimate. For
our numerical estimate of the undetermined LECs in the next section, we assume their
value to be the similar order as AgCD .

Last, we comment the heavy baryon yPT formalism [26], which is a consistent frame-
work for the power counting of nucleon fields. In this framework, for our case, the anti-
nucleon mode is integrated out and the remaining heavy nucleon doublet is defined as
Ny(z) = e 2P, U with P,y = 1(1 £ ¢), where v is a reference velocity satisfying
v? =1 and usually taken as v = (1,0). The chiral power counting for D, N, (z) is O(p!)
as promised in this formalism. To leading order of chiral matching, there should have no
derivatives acting on the nucleon fields. Since

NSON, =N PLL.CP N, = NSCP,_P, N, =0, (3.24)

we find that the matched operators using heavy nucleon fields can be directly obtained
from the matched operators using the relativistic nucleon fields in table 8 by replacing the
nucleon field ¥ by N, together with the omission of the operators with a scalar nucleon
current. The use of relativistic formalism is its explicit Lorentz invariance and chiral
symmetry, which are convenient for the loop calculations.

4 Dinucleon and dilepton transition rate

Combining the previous sections for the effective interactions from the SMEFT, to LEFT,
then to BxPT, in this section we will collect all pieces together and calculate the din-
ucleon to dilepton decay rate. Denote collectively NN’ € {pp,pn,nn} and l.lg €
{er0* 070 vv'}, then the decay rate for dinucleon NN’ to dilepton [,ls transition in
nucleus can be estimated in the following way [48]

NN i, = /d3k1d kapn (k1)pn: (k2)vrer. (1 — v - va)o (NN = I,l5) ,  (4.1)

(2m)3/onpN:
where py (k) is the nucleon density distribution in momentum space and py is the average
nucleon density defined as py = [ d®kpn(k)/(v/2m)3. vi(va) is the velocity of the nucleon
N(N'). The total cross-section for the free nucleon scattering process N (k1)N'(ko) —

la(p1)ls(p2) is )

! , (4.2)

NN' = 1,1 -
of — lalp) = S4E1E2vrel

/dH2’MNN/—>laz5

where E1(Es) is the energy of the initial state nucleon N(N'), and S is a symmetry factor
and equals 2 for identical final leptons I, = lg = {eT, u™, v, Uy, Ur }, otherwise S = 1. dIly
is the relativistically invariant two-body phase space.
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The dinucleon collisions occur at low relative velocity v, they may be affected by
some other SM interaction resulting in modification of the cross sections. For example for
pp — E;“Ezg, there is a repulsive force between the two protons due to electrodynamics which
reduces the cross section. The effect of exchange photons between protons is best captured
by the Sommerfeld effect [49, 50]. Because the repulsive nature of the electromagnetic
force there is a reduction of the cross section, the original cross section ¢ is modified to
& = oSF with SF given by (aemm/v)/(exp[emm/v] — 1). This reduction factor SF' could
be very severe if v is very small. For the case in question, the typical v of about 0.1 leads
to SF = 0.9. Had v be 0.01, SF is further reduced to 0.26. Therefore the case we are
considering the reduction is not severe. One expects such effects for np and nn cases will
be smaller. We still use eq. (4.2) as our order of magnitude estimate.

To a good approximation for the oxygen nuclei 10, we treat the nucleons to be quasi-
free and neglect the small effects due to the nucleon Fermi motion and nuclear binding
energy, as well as the above Sommerfeld suppression effect. The average nuclear mat-
ter density py approximately equals 0.25 fm™> for either proton or neutron. Then the
transition rate reduces into

1 oy T 12
CNN/ 1ty = S4p 3 MNN S11,| T2, (4.3)

where we have neglected the mass difference between proton and neutron and taken both
to be my = (my + my,)/2. The two-body final state phase factor IIy takes

1 2
Iy = . —[A(L, 04, 08)]"? , b0 = 47:;; My, 2) =2t 4y 2R = 2wy +yz o2z L (4.4)
N

Working on the center of mass frame of the two-nucleon system and neglecting the nu-
cleons’ velocity, from the effective interaction in eq. (2.5), then the spin-averaged squared
amplitudes are

2

Myt | = 32 [57 1 b0 = 6) (CUP° P+ 1O
+ (6o + 05 = (00 = 65)7) [COPV | — 452\ [5,65Re[CEPS D™ (4.5)
+28((1 4 60 — 85) /55Re[CPPV CEPIS*) _ (L 5, « R, 55))} +O0(w?),
2
‘Mpn%m = 8m (1 — [|C PS4 by ycé@")v\z + (24 62)[CPV? 4 4(1 4 26,)
x| CrmT 2 — 23 /5Re[CHM Y — 6PV T | 4 0(?) | (4.6)
2 2 (nn)S |2 2
Monsrazy| = 328%mi| 55 + 0(0?) (4.7)

where we see that the contribution to pp — EIE; (nn — pr') transition from the operators

O(sz Z;%)S (O(Lnn)s) vanishes in that pp (nn) annihilation through such operators is p-wave
(ox v?), whereas the contribution from the vector operator OwP)V g helicity-suppressed

(pn)S

(x 0q,8). For pn — w7/, the vanishing from O}~ has a similar reason.
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WC [[1073% GeV 2] WC [10730 GeV 2] WC [10730 GeV 2]
cwns — 8P |eerepn | 0.068, 0.094, 0.067| CPP)V |eq oy | 350, 1.7, 1.7
oS — CMS| L rw 0.77, 0.84, 22 [CP"Y |, 4uru | 0.55, 0.59, 13

— — C W ey | 2800, 15,23 |COT,, L, -, (039, 0.42, 6.6
cirms — CM v wavssa 3.7, 5.3

Table 3. The upper limit on the Wilson coefficients (WC) of the dim-6 hadronic operators in
egs. (2.6)—(2.8). Where we take the current experimental lower limit on the dinucleon to dilepton
transitions in table 1 to set the bound.

The partial lifetime characterizing the matter instability is the inverse of the rate
(7/B;); =T'; !, where B; is a branching ratio. Taking the experimental lower limits on the
partial lifetime in table 1 into consideration, and by the relation I'; L= (7/By); > Texps
we can obtain the constraints on the coefficients in eqs. (4.5)—(4.7). Assuming one term
dominates at a time, then the result is shown in table 3, where the upper limit on the Wilson
coeflicients is classified in terms of the final state leptons. We see the most stringent limit
is for the operator Oé?)fgg’ee,eu,uu in which C’gﬁf eeepup < 6.8,9.4,6.6 x 10732 GeV~2, this

is because the strong experimental limits on these decay modes.

Next, we consider the above limits on the implications of SMEFT Wilson coefhi-
cients and the relevant NP scales. Based on the matching results in eqs. (H.11)—(H.20)
in appendix H, and assuming one term active in the matching result at a time, then
the limits in table 3 translate into limits on the SMEFT Wilson coefficients as shown in
table 4. In obtaining the results, we have taken our previous estimation of the LECs
gi ~ A%CD ~ 6.4 x 1075 GeV® as our benchmark value, therefore, the factor (g,-/AGQCD)l/8
is O(1). Up to the O(1) hadronic LECs ratio, the associated NP scale is found to be around
0.8 — 2.7 TeV for all relevant operators. Here we see that, even the effective interactions
are at dim 12, the matter instability puts a stringent limit on the NP scale. Similarly, we
can set constraints on the LEFT operators. However, taking the assumption of the NP
scale much higher than Agw, the above constraints on the SMEFT interactions are more
illuminating in connection with NP scenarios, and thus we do not show the constraints on
the LEFT interactions here for brevity.

Furthermore, we consider the contribution to the transitions from the dim-12 operators

S, (S S, (S S,(S ..
(’)QG( L%, (’)uz,(dQ)Q2 1213 and O d(Qz 12 containing purely left-handed lepton fields. By weak
isospin symmetry, they can contribute to both three transition modes, and in particular,
they are the only possible operators contributing to the nn — v2’ modes at leading order.

From the previous discussion, the transition rates become

- S

Pppttey = = (1= 8o = 05) y/1 = 2000 +85) + (80— 8)Pmipn s -

~ 1

Fpn—m;fﬁg = }(1 - 5a)2m%VpNCc2vﬁ )

- S

an—n’/aﬁg == ;m?vaCﬁ,g 5 (48)
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SMEFT WO pp—etel, etpt, ptpt pm—ety, pto, w0 NN — Dala, Talpra
/. S
Axp = |Cy|~F [TeV) Anp =|Ci| 7% [TeV) Axp =|Ci|78 [TeV]
T
Cone — 2.04, 2.02, 1.34 x [»‘xgs-a] s _
QC
1
Cfé(ﬁ)m — 1.89, 1.87, 1.25 x [-‘“gs‘a] s _
1 QC 1 R
O a1 s 2.35, 2.26, 2.36 x {“’\1—1} : 1.89, 1.87, 1.25x [93“”] : 1.43, 1.37x [gm } N
QCD QCD QCD
5:(4) g \b 3
Cn2d2Q2L22 - 2.07, 2.04, 1.36 x [ lx;;] 1 .
Coaiie — 2.25, 2.23, 1.48 X [gmf]" o
1 < 1 1
cs) 2.57, 2.46 257x{‘73“vbr 2.07, 2.04, 13@x[f"’ ~"]§ 1.56, 149x[““b]g
udQ4L22 O 4=, 4 AC A8
Qoo qop | acn ]|
Coira 280, 269, 2.81 |fpe | 2.25, 223, 148 | Jte ] 170, 163 |G|
QCD N QCD QCD
58, 2.21, 2.12, 2.21 x [‘“ 3-@} : _ o
QCD
o, 2.35, 2.26, 2.36 % [ 3-0} : _ -
QCD N
e 2.57, 2.46, 257% ,b}s _ -
QCD N
CsS) . 2.80, 2.69, 2.81x {-‘“W } ;
QCD T -
Cusaqerrs 0.808, 1.58, 1.58 x h%““’] ) 1.81, 1.79, 1.22x [gm d] £ _
’ QCD i QCD
Claargers 0.700, 137, 137 | %2 ] 158, 156, 106 [%24]°
cp ) QCD
Clragrers 0.837, 1.63, 1.63x [92“"]8 1.88, 1.86, 1.27 [92“-6]8 o
QC 1 QCD N
Claaqers 0.881, 1.72, 1.72x ["2“"'] ° 1.98, 1.96, 1.33 x [ “] s _
QCD 1 QCD N
CVaagoers 0.881, 1.72, 1. 72><[ ] : 1.98, 1.96, 1.33 x [%27] » _
QCD qeo
Cugoer 0.961, 1.88, ISSX[%“J]S 2.16, 2.13, 1.45x [%]8 _
: QCD QCD .
T,(S) 971 ]E
Cisargerens — 2.95, 2.23, 1.35 x [AIQCID] 1 _
T(4) 95an]®
Csiag2ras — 1.89, 1.87, 1.33x [F(g]l _
T,(A) a8
Cuiqizz - 2.07, 2.04, 145 [inD ]1 _
T,(S) 168
Crioires — 2.46, 2.43, 1.72x [ QCD] 1 o
T,(5) ERE
Coire — 2.68, 2.65, 1.88 [A%CD] _

Table 4. The constraint on the effective NP scale from the current experimental data in table 1.
The flavor index is suppressed and can be easily recognized in terms of the transition mode. One
should keep in mind that the SMEFT Wilson coefficients with a superscript ‘(A)’ vanish for identical
lepton flavors.

where we use a ‘tilde’ to represent such special contributions, and

93x5
6

5,(9),a8
6L2

),aB

S5,(S S5,(S),ap
udQ4L22

2d2Q2L23

Csz(s)aaﬁ

5,(5),ap8
u?d?Q?L?1 &

Ca6:4g3><1 aC +2§3><1 bC +§3><1,c( +C5 )+ u2d2Q2L21"

Here we have added the lepton flavor indices for a more careful treatment.!! By the weak
isospin symmetry, we see the three transitions are related to each other. From eq. (4.8),

H¥or pn — ¢} g mode, the last term should take a minus sign. We neglect this sign difference here.
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we obtain

S (1= 8o — 0g) /1 = 2(0a + 35) + (00 — 05) .|

pn—tivs (1—164)2 pp—tEes
Drinosizy = (1= o= 83) {1 = 2000+ 35) + (8o = 0T,
Crnosvazg =S (1=0a)T 1o (4.9)

Due to the stronger experimental limits on pp — E;jfg and pn — (X vg, through the above
relations, we can set new stronger limits on the neutral modes nn — v,v3. Taking the
experimental limits for the charged modes into consideration and requiring F Pt >
exp d f\fl > exp

T an T we obtain
Z:E; pn—lEog ~ "pn—tlg’

pp—

n—1 — — 33 —
{Frm—weue Frm—weuu an—)u 79 } 2 4 x10 yr, {FTL’I’L—HjelIT an—)z/ Ur

}>2x10% yr.
(4.10)
One can see the limits on nn — v,V are improved by 2 — 3 orders of magnitude than
the direct experimental search in table 1. On the other hand, if we assume the charged
modes also exclusively mediated by the same operators, then the experimental bounds on
pp — 636; imply the following new bounds on pn — ¢ vg for a, B = e, u flavors,
{r! rt o 1>8x10%yr, {I! o 1 >4x10¥yr,  (4.11)

pn—et e’ " pn—uto, pn—et i, T pn—put e

which are also stronger than the current experimental bounds by at least an order of magni-
tude. Conversely, the experimental limit on pn — ¢1v; can further translate into a bound
on the transition pp — et 71, which is also kinetically allowed but has not yet been searched
for experimentally. Based on eq. (4.9) and the limit on pn — ¢70, in table 1, we obtain

! > 2% 10% yr | 4.12
y

pp_)e+7-+ ~

we see this bound is even more stronger than any other ones due to the small phase space.
In figure 2 we show the dependence of the partial lifetime on the NP scale. For sim-
~1/8

plicity, we only consider the contribution from operator (’)26(}2 and take A = [ng(fg} .

The relevant hadronic LEC §1x3, is set equal to 6.4 x 10~® GeV. From the figure we
see the partial lifetime is very sensitive to the NP scale, because of the large power

dependence(ox A1®). For a future experimental sensitivity about 104

yr the NP scale is
pushed towards 5 TeV or so.

Finally, we make a brief comments on the concrete NP models and the collider signals.
For a given NP model, one can integrate out the heavy new physics states and match onto
the dim-12 SMEFT operators. In literature, there exist models contributing to dinucleon to
dilepton transitions with AB = AL = 2 but not giving rise to the AB = 1 nucleon decays
or AB = 2 neutron-antineutron oscillation. In refs. [9, 11], the authors considered a class of
such models which involve new scalar-fermion and scalar-quartic interactions, meanwhile,
the left-right symmetric models with extra-dimensions considered in refs. [12, 17] can also

do the job. On the other hand, from the above limit of NP scale we have set, one may expect
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Figure 2. The partial lifetime of the dinucleon to dilepton transitions as a function of the NP scale

-1/8
in the SMEFT. Where we assume the contribution from operator Ogéfl and set A = [Cg’e@} .

the search of the AB = AL = 2 NP signals at the current/future high energy colliders to
be interesting. Ref. [16] has made such a try by studying the process pp — eTe™ + 4 jets
based on a dim-12 SMEFT operator (similar to the operator Ogéig in our basis). However,
the eight fermion operator considered in [16] cannot yet be processed by the FeynRules
to MG5AMC framework, and the authors take a “stand-in” operator for estimation. Such
a procedure could yield large uncertainty, and we would like to come back to the collider

signals in the future for a more precise analysis.

5 Conclusion and outlook

In this work we have made a thorough investigation on the baryon and lepton number
violating dinucleon to dilepton decays (pp — £1¢'T,pn — (T0/ nn — ') with AB =
AL = —2 in the framework of effective field theory. We first construct a basis of dim-
12 operators mediating such processes in the low energy effective field theory (LEFT)
below the electroweak scale. Such a basis not only contribute to the dinucleon decays
studied in this work, it also serves as a starting point for model independent study of the
hydrogen-antihydrogen oscillation and the low energy baryon number violating conversions
e~ p — etp,vn, e n — vp in electron-deuteron scattering. Then we consider their leading-
order standard model effective field theory (SMEFT) completions upwards and obtain the
SMEFT basis mediating such processes at dim 12. We find the SMEFT gauge symmetry
has a strong constraint on the structure of the interactions. The dim-12 SMEFT operators
are suitable for the high energy signature on colliders like LHC to search the excess of
events with four jets plus two same-sign charged leptons.
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Next, we analyze the chiral structure of the LEFT operators and make a non-
perturbative matching through the baryon chiral perturbation theory (BxPT). In doing so,
we construct a chiral basis in which each operator belongs to an irreducible representation
of the two-flavor chiral group SU(2){ X SU(2)£, and then we construct the corresponding
hadronic operators through the spurion techniques. Last, we express the dinucleon to dilep-
ton decay rates in terms of the Wilson coefficients associated with the dim-12 operators in
the LEFT/SMEFT and the low energy constants pertinent to ByPT. Our result is general
in that it does not depend on dynamical details of physics at a high scale that induce the
effective interactions in the SMEFT and in that it does not appeal to any hadronic models.
We find the current experimental limits push the associated new physics scale larger than
a few TeV, a scale appealing to the future experimental searches. Due to the weak isospin
symmetry, based on the experimental limits on pp — Eiﬁg‘,pn — (Xvg, we improve the
lower limits on the partial lifetimes of the neutral transition modes nn — v,3 (except the
(v, B) = (7, 7) case) by 2 — 3 orders of magnitude than their current experimental sensitiv-
ity. Furthermore, assuming these transitions dominantly generated by the similar dim-12
SMEFT operators, we find the limits on the partial lifetime of pp — eTe™, et u™, utu™ are
also transformed into stronger limits on pn — €Zvg (o, B = e, p) than their existing lower
bounds.

Our operator basis obtained in this work is a starting point for further investigation
on the related processes with AB = AL = 2 signals, in which the hydrogen-antihydrogen
oscillation and the collider signals pp — ¢T¢'T 4+ 4 jets and e"p — £ + 5 jet are the
most interesting ones. Both of these processes can be systematically studied in the cur-
rent LEFT/SMEFT framework, and we will come back to these processes in the future
publications.
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A Independent color tensors

In this appendix, we give details the independent color tensors to contract with six quarks
in a color SU(3)¢ invariant way. Denoting a general six-quark field configuration as

- o
OIM™ = qrq afearairan (A.1)
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where the superscripts {1, j, k, [, m,n} are the color indices in fundamental representation of
SU(3)¢ while the subscripts {I, J, K, L, M, N} encode the flavor and chiral information for
each quark field. To form a color invariant operator, the color indices must be contracted
by a color tensor Tjjiimn such that Oijklm"Tijklmn is invariant under SU(3)¢ . Since all
quark fields belong to the fundamental representation of the color group, the color tensor
T jkimn must be a linear combination of two rank-3 totally anti-symmetric tensor €;,.s. By
the Schouten identities (SI) [51]

€imn€jkl = —€ijm€kin T €ikm€jln — €ilmEjkn

€ijmEkin = €ikmEjln T €ikn€jlm — €ilmEjkn — €iln€jkm — €ijn€kim (A.2)
we can split the m-index and n-index into two epsilon tensors via the first SI, in turn, there
are six independent combinations remained and the second SI further reduces them into five

independent ones. By symmetrizing or anti-symmetrizing pairs of indices (ij), (kl), (mn),
we can choose the following five independent color tensors:

SS.S — . ) ) ) ) ) e
T{zg}{kl}{mn} = €ikm€jln + €ikn€jim T €Eilm€jkn T €iln€jkm »

SAA

T{ij}[kl“mn] = €imn€jkl T €iki€jmn = €ikmEjln — €ikn€jlm — €ilm€jkn T Eiln€jkm »
SAA

T{kl}[mn][zg] = €jk€mnl T €ijl€mnk = €kmEjin — €ikn€jlm T €ilm€Ejkn — €iln€jkm »

SAA
T{mn}[ij][kl] = €ijmE€kin t €ijn€kim = €ikmEjin t €ikn€jlm — €ilmEjkn — €iln€jkm »
AAA 1
T[ij} [kl][mn] = g (Eijmﬁkln — €ijin€klm — €ijk€mnl t €ijl€mnk T €ikl€imn — EimnEjkl)
= €igm€kin — €ijnCkim - (AB)

where the subscripts in curly bracket {ij} and squared bracket [kl] indicate separately the
symmetrization and anti-symmetrization under the exchange of two color indices i <> j
within. In the above, the Tgfﬁkl} {mn} and ﬂ%ﬁl?l][mn] are separately totally symmetric
and anti-symmetric under the exchange of any pairs of the arguments, and T{é‘;f}‘?mn”kl]
is symmetric for the latter two pairs of indices. In addition, we have the constraints for
exchanging two indices among two different pairs of indices

SSS _ SSS SAA
2Tk iy imny = ~TGi¥ k0 mny + 3T mnd gl w)

2T pomiin) = T it oy + TO03) ]

2T ) = ~ T bttimn)  Toet i)+ 271t

2T kam) = ~Liasikagmm) — Tommdaslte) — 2T 50kl jon) -

21550 = TCyiman) + TR0} bl (A.4)

These relations are useful to reduce redundant operators, and will be used repeatedly in
latter sections to reach the minimal basis for the dim-12 AB = AL = —2 operators both
in the LEFT and in the SMEFT .

B LEFT operators

The full list for dim-12 operators inducing dinucleon to dilepton transitions.
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B Dim-12 operators contributing to pp — £7¢'7. For the operators with a scalar
current jgti/i, we find there are 28 independent operators which can be parametrized as
follows

(pp)S +

QAiLre = (zTCUL)( TCdy) (W CdR) 5§ TE (ki my
QTS = (uiF Cul) (kT Cdl ) (Wi Oy ) J4 L T ) -
éprgij; (uiF Cud) (ufT Cdl) (u mTCdE) STk fmmy
QYRS = (T Cud) (kT Cdl ) (w4 TN )
Qe = (Wi O} ) (uf T Od)) (" Cul) J 4 TSk (-
Qs = (Wi Cd) (u chd’m( TOuR) YL TEM ik -
QYIS = (Wil Cul) (uf T Cul ) (AT C )i LTSS iy fmy - (B.1)

together with their parity partners with L < R.

For the operators with a vector lepton current jgl’“ , there are 19 independent operators

which are chosen to take

o) = (i Od)) (kT Cdl ) (W T Crul) et T kg oy
Q) = (uiF O ) (T Cdl ) (wp Oy et P TN ) -
o). = (uiF Cal ) (ufTCdl) (T i) jyf M T i)
QgprEfz = (uiLTCUJL)( predy) (uf™ CWdR) T{ZJ}{kl}{m”} ’
QéprEZ = (W Cu) (Wit Cdh) (u TC’Yudn) gj‘}?kl][mn] ’
QP = (Wi Ol ) (uliF Cdly) (u ’”TCWZ”)JV TSy () -
Qiff iy = (uif Cul) (i Odi) (wF" )iy " T )
QY = (Wi Od)) (ulF Cdly) (uf T Crypuiy) it T{U}{kl}{mn}’
QU = (uff Oy ) (i Cdi) (™ Cou) 5 T Y onn
QYRR = (uif Cai) (uf Cdlp) (u ’”TCwu}%) ML ]
QI = (uif Cd}) (uff Cdlp) (up™ Cypie) syt T{m"}[””’“”’
ol = (uiFCd,) (ulF Cdly) (u TC’m R T on (B:2)
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For the operators with a tensor lepton current jg o Y we find there are 16 independent
operators which are chosen to take

L0 v

QW) = (uif Copuul) (uf Cdl)( TR ) i T e ik
Q2LLRa (ug CUWUJL)( )( 77R1 drﬁ)]éﬂéliw &?ﬁmn][zg]?
QzLLRb (uif Coul) (uf T Ody ) (uf T Cdy) it ’WT{mn}[w][klp
QQPL”LQZ (UL CUWUJ )( rod; )(u mTCd?%)Jé? s [gﬁl?l][mn] 5
Q2TLYI;Z (uf" Cul) (uf T Odl) (u ™ Corydiy) i Ttk )
2%;: = (uff Cup) (uf" Cp) (g™ Oy i) i1 2 T b
QUFIR = (uf Cd})(uf" Copudy) (Wi Cul) iz T i
QYR = (uff Cdy) (wT Oy ) (™ Coul) i 1 T8 Nityonn) (B.3)

together with the parity partners for operators chllg with L < R and — < +.
As a non-trivial example for the reduction of redundant operators, we consider the
above tensor current operator Q:(,)IZR71;+ in eq. (B.3) with the replacement of the color

tensor T{ij}[kl][mn} by T, {ij}{kl}{mn}’ then the new operator is reduced as follows

2(uf" Cul ) (ul Cly) (uly™ Copdiy) i T3tk g
= —2(uf Cu}) {(u?TCd%)(U%TCUWd") + (U’ETCUT}?)(leTCUWdT}'%)} jff’;“”T{S;f}S{u}{mn}
= (UiLTCUJL)(u%TCd%)(UELTCUWdR)Jg iW (Tﬁfﬁm}{mn} + 3T5f}?}cl] [mn})

+ (uif Cul) ) (uh Culy) (5T Cor i) i ( TE 5 thty o) — 3T5ﬁ?kz][mn]) (=0),

where in the second step we have used the FIs in appendix C and the third step the SI

in eq. (A.4), and the terms in last line vanish due to mismatched color symmetry. We see
this new operator is equivalent to Qgpr RT;F and therefore redundant. All other operators
with different color tensors or Lorentz structures beyond the above lists can be reduced in

a similar manner.

B Dim-12 operators contributing to pn — £Tv’. For the operators with a scalar
current jg”l, there are 14 independent operators which can be parametrized as follows

1LLLa = (uif Cd}) (uf " Cdl ) (wp T Cd} ) 5§ TE iy tmmy

n)S i mn

1pLL)Lb (uit Cdl) (ukT Cdy) (up T Cd} )38 TEN hatfomm -

Q)5 = (Wi Cul) (ubTCdl ) (T Ody) 74 TE5 ity )
éi”LRa (ul Cath) (" Oy ) " CaR)IS Ty oy
3LLRb = (uif Cd}) (ufT Cdl) (ug T Cdy) g TN ki) n] »

n)S n
;’LL)RC (uf! Cd}) (b Cdl) (i Cd) & T i

4LLR = (dZTCd]L)( CdlL)( TC“R) T{'Lj}{kl}{mn} ) (B.4)

together with their parity partners with L < R.



For the operators with a vector current jé”/’“ , we find there are 24 independent oper-
ators which are parametrized as follows

n)V n
QgpLL),a = (uf Cd)) (uf" Cdb ) (upT Cydip)jyy T{m}{kl}{mn}»
QganL)‘lj (uif Cd ) (uf" Cdy ) (u mTC’Yudn) T{z]}[kl][mn]a
Q) = (il Cdl) (i Cdl) (™ Cyud) sy Tl i
QU = (u LT d},)(uf" Cdl)( mTCWUR)Jv MGk ()
QzLLb = (uif Cd}) (uf " Cdy ) (df Coypu) i) T{z]}[kl][mn} ;
QY. = (i O ) (wiT Cdy (AT O T isina
QY)Y = (uiT Cul ) (dfF Odly) (u T Crydiy) 1Y T{z]}{kl}{mn}a
Q4LRa = ( ZLT d]L)( le)( TC’YMdn) T{m}{kl}{mn} )
n)V m mn
qu%b (uf" Cd) (uf Celg) (u Tny“d )iy T{z]}[kl][mn}’
N7
Q4LRC = ( E d]L)( di‘%)( ’YMdR) {Slf?}?mn}[z]} )
n)V mn 14
Q4pLzzzd—( Tod]) (b Odly) (upT Cnpudi) jy T {mn}[zy}[m
Q4LRe = (uf Cd}) (uf Cdlp) (T Cypd )3y TE s (B.5)

together with their parity partners with L <+ R

7/'”/

For the operators with a tensor current jT there are 13 independent operators

which can be parametrized as follows

Fod]) (ufTCdy) (T Copuwd? )i M TN )

LLLa ( ( )
(pn)T m v uv
LpLib = (Wi Cd)) (Wb CdL) (WPt Coydp) i ToA ik -

éanLR = (uf CUWUL)(U el )(meC R)JT i ’unyn?rﬁ[lj][kl] )
3anL)£a (Wi Cd)) (T Codh) (uipT Cdiy) i3 T ]
éi”LRb (T Cd}) (uhT oyl ) (T CdR) 1 T i)
3LLRc = (u lLT ) (uf T Cody ) (uf T Cdy) ji ’WT{mn}[U][kz] ;
QU g = (uf Ol ) (uhT Codh) (wl T C) i Tili )
iR = (0} Coudy) (T Oy ) )i TS e
%‘RL = (uff Culy) (uf Cd) (A7 Copd )7 TS htny
SRRLa = (ulf Cdly) (ufF Cdly) (WP Copdi) iy ”uyT{zj}{kl}{mn}’
3RRLb = (uff Cdfy) (ul Cdlp) (up™T Cody )y gf}?kq[mn] ;
:(Sz;gRLC (ufg Cdly) (ul Cdlp) (WP T Copdl)j ? ’WT{grfé[m[kl}
QUL = (i Cly) (ul Cdlg) (Wi Couuf )i TE N n - (B.6)
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B Dim-12 operators contributing to nn — vr’. For the operators with a scalar
current jg” /, there are 14 independent operators which are parametrized as follows

1LLLa (dZTCd )(dkTC lL)( U%) T{z]}{kl}{mn}?
%ZL b= (dzTCdjL)( ZL)(mecug) 5 T{z]}[kl][mn} )
OV o = (T Cdl) (AT Ol ) (T Culy) 5 T{z]}{kl}{mn} :
Q2LLRb = (dZTCdJL)( ZL)( R Cup)js” {”}[M][mn} )
Q47 0 = (A Cuty) (dFT Cul) (AT CR) 38 Tty
QgLLRb = (dif Cul)(d kTCUlL)( HECdR) i T ik -
Qi) = (dif Cdt ) (dfT Cdp) (T Cup) 38 TSty oy (B.7)

together with their parity partners with L <> R.
And for the operators with a tensor neutrino current j7” """, there are only 8 indepen-
dent operators which are parametrized as follows

QY] = (df Coydl ) (5T Cul ) (7T Cul) VT{gnﬁﬁ[kz}[ij] :

Ol = (A1 Coudy) (A5 Cu) (AT Cul) g7 T )

Ol s = (dif Oy} )(dfT Culy ) (T Cul) i Tt e

Q2LLRC (diF Copd] ) (dET Cub ) (AT Cup) iy ’Myﬂéﬁifz][mn} )

Q3LLR = (leCUL)( kTCUuuUL)(meC R)JT i 7MVT{mn}[ij][kl] y
Qs = (dif Cap)(di Culg) (A7 o )iz ™ Tty gy
Q2RRLb = (leCdj )(dchuR)(meCUMVUZ) T ’MVT{if}?kl}[mn] )

QT = (diF Culy) (d5F Culg) (7T Coud ) 35 M TN ) - (B.8)

C Reduction of the redundant operators in the LEFT

The dim-12 operators contributing to H—H oscillation and pp — etet transitions in the
LEFT were given first in ref. [39]. For the operators with the scalar lepton current, their
results are consistent with ours, and the 28 operators in their paper can be easily identified
with the results shown in eq. (B.1). For the operators with a vector current, they count 32
operators and 13 of them are redundant and will be reduced in the following. In doing so, we
first notice that the color tensors in ref. [39] have the following one-to-one correspondence
with our notation

(TS)ijklmn = T{S@f}ikl}{mn} ) (TA)ijklmn = Tfnfylf}[k[][lj] ) (TA)ijlmn = T[l]][kl][mn} . (Cl)

The relations in eq. (A.4) imply the following corresponding relations

2(T5)ikjlmn = 3(TA)ijklmn - (TS)ijk:lmn ;
2(Ta)mjktin = —2(Ta)ijktmn — (Ta)ijrtmn — (TA)mnkiij - (C.2)
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Since the two lepton fields in the vector current have different chirality, ref. [39]
parametrized all such operators using four scalar fermion bilinears in which the two lepton
fields are combined separately with two quark fields to make scalar currents. By the Fierz
identity
1
(a7 Clr) (' Clr) = =5 (a7 Crugh) ((RCY'Er) (C3)

we can rewrite the operators with a pair of (¢1,fr) in ref. [39] to have a factorized vector
lepton current as follows

(O ixarr = —%(Ugcuil)(uigcué@)(dTTCWd%)(KECW’%L)(Ts)z‘jklmn ,
(O s = — (0 Cud, )@, ) i) (RO L) (TS it
(O s = — (W Cud, ) WL Ol ) " Ol (RO ) (TS ks
(O wrxanr = (0 Oud, ) kT ) (" Oyl (R0 (T s
(O oo = — (W Cud, ) (k2 Ol )T i) (RO ) (TS s
(OF s = + (W Cud ) T Ol (T ) (CROA 1) (T s
(O wissrn = — (w1 Cal, )T, )™ i) (RO L) (TS st
(OF s = —5 (W CaL, )T CA ) Oy (CROV 1) (T it
(OF ) anat = — 5 (i O, Yk Ol ) O (CRCA00) ()t
(O s = —5 (i Cal, )T CA, )W Oy ROV 1) (Ta i+ (C)

where the convention for the operators is taken from ref. [39] with a minor change
e <> £. Under the exchange of the chirality L <> R, we see easily that (Ogﬁ )xix2RL =
(O8M) ixorr for i = 1,2,5,6 and (OFH), \,r = —(OH)\,1r for j = 7,8. Consid-
ering (x1x2) € {LL,LR,RL, RR}, there are totally 40 operators in the above. The 32
operators counted in [39] can be obtained after taking into account the following eight
obvious relations

O Lrer = (O rLLr i =1,5,6,
HH HH
(OH7 )XlszR = *(OH7 )X2X1LR y X1,2 = L,R,

(O8I xrr = (OB rr — 3(0R ) 1r . x = L, R, (C.5)

where the last relation is obtained by exploiting the first relation in eq. (C.2) and the Fierz
identity

(V1 Cthay) (13, Cbay ) = — (11, Cthsy ) (003, Cthay ) — (101, Cthay ) (403, Ctbay) ,x = L, R .

Now we show that the remaining 32 operators in eq. (C.4) after modulo the relations
in eq. (C.5) can be further reduced into the 19 operators shown in eqgs. (B.2). Using the
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following Fierz identities

(1L C%ar) (Y31, Cy*bar) = — (Vi Cbsr) (Vap Cy*1bar) — (o, Csr) (b1, Cy*var) , (C.6)
(¢1TRC¢2R)(¢3TLC’YM¢4R) = —(¢1PRC¢4R)(7/J3TLC’YM¢2R) - (%TRC?/MR)(%TLC’Y“%R) )
= + (U1 RC%aR) (YapCY*131) + (V3 rC¥ar) (Wi RCY*31) , (C.7)

where the third equality is obtained due to ¢S, Cy*pr = —1irCy*er [52], and the
relations in eq. (C.2), we finally obtain the following relations among the remaining 32

operators
(OB Lir = (OB LR — 3 ofl xLLR X =L, R,
OB rr = (OB rRL — 3 ng xBRRL »X = L, R
Off Mrrr s x =L, R,

Q
T tTm Cm Yo Voo T T

Q
T T
SN— — SN— >\<_/ — N~— S~—
oy
h
|

O ryrr — 3(01& ) yrLr . x =L, R
H _ HH
Ows' )ixre = (Ogs )oyer +3(0gs )xLLr s x = L, R
OHM pyrr = +OH pyrr + 2008 pyrr + (OB pyrr . x = L, R
OB 1yre = — (ORI 1y + 2008 nyr + (OF) xir . x = L, R, (C.8)

On top of the relations in eq. (C.5), the above relations give 13 new constraints which
therefore reduce the 32 operators into 19 independent operators as we claimed. Choosing
the following 19 independent operators

(Of3) Exer - (Of3) Rere (Ol 8)wir s x = L R (Ofifls ) irer s (O rier -
One can easily find they have a one-to-one correspondence with the ones given in eq. (B.2):
(0H34)LLLR+L<—>R<:> Q%DLM—FLHR,
(OHI ) Lrr+ L& Re QU + L R,
(Of%s 9)rer + (OfF O rrir < QW) ape t LR,

D)V
(OH5 6.7.8) LRLR + (OHg JRLLR < Q4LRabcde : (C.9)

Last, in response to the statement at the beginning of section 2.1, here we take a
constructive approach to reduce the lepton tensor current operators with a quark scalar-
vector-vector current structure into those with a scalar-scalar-tensor structure. In doing so,
we only need to transform the vector-vector current into scalar-tensor ones. From the FlIs in
egs. (C.6), (C.7), we can replace 1o, by v”19r in eq. (C.6) and ¢1z by —v”911, in eq. (C.7)
to obtain new FIs, such a manipulation is guaranteed by the fact that the FI actually is the
algebraic identity of gamma matrix and independent of the specific representation of spinor
fields. Then we combine the two new FIs from the above replacements, after noticing that
PIRC — (=) TC = =L (v)TC = +91,C¥, and obtain

21Oy Y2r) (W3, Oy Yar) = (V1L Csr) (W3 rCY Y 1bar) + (1L C v*4b31) (Y3 Cur)
+ (UL CY"1haR) (WarCY 31 )+ (W1, Cv Yar) (YapCY* 3L
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where the two terms in the second line are symmetric with each other under p <+ v. Anti-

symmetrizing the two indices ¢ and v from the contraction with the lepton tensor current,

we reach

iYL O ar) (W Cylpur) =

where [v,

(V1 LCs3L) (hgrCo* bar) +

(Vi Co" 1h3r) (V3rCar)

-, ] means anti-symmetrization of the two indices. The other chiral structures

can be shown in a similar manner. Thus, the above finishes the proof of the equivalence.

D SMEFT operators

For operators with a scalar lepton current, there are 12 independent operators chosen as

follows

OS54
0>

u3d3L21

u3d3L22

055

w2d2Q2121 =
5,(4)
Ou2d2 Q2022 —

5,(S)
Ou2d2Q2L23

o>
o>

O

S,(A
udQ4L21
S,(S
udQ4L22

05:(5)
Q6L2 =

u4d2621
05©)
u4d2622
S,(S
u3dQ262 -
05S)

u2 Qie2 =

= (uf
= (uf
= (u]
= (uf
(ug
= (uf
= (uf
=
= (u
= (u
= (u]
= (u]

7 Cdly) (uf;
1 Odl) (uf;
i Cdly) (u;
1 Odl) (uf;
7 Cdly) (u;
7 Cdy)(
7 Cdl)(
)

k

Q
Q

T

ey
o))

LCdy) (u
LCdy) (up
TCdh)(
Cdby)(
Todh)(

TCdn
QmTCQ
QmTCQ

(
(

7)
#)
b
b

TCdn LECL;J)ﬁabT{%f}f{kl}{mn} y

(
(L CLy)eabTE Y fktipmn] -
)(LCTCL&)GaCEdeSfﬁkl}{mn} ;
)Ly CLY)eavécaT ) il frn] -

)

QU CQP) (L CLy)eacevdT i »
QI CQN(LECLy ) eavecaces LN kiymn] -
QrreQy)

(
(LTCLY ) eavecceas Tl wagis)
)

Q' CQN(QETCQ) QI CQY)(Ly CLY)eav€cdeegt nT ey hillif]

zTCuR)

iT

CuR)
C“R)
CuR)

(uk
(uf
(uk
(

LFcdk)
Lodl)
LTcd)

)
(u
(ug
(

B CAR) (eRCeR)TE (ki () »

Cd")
Qr T CQY) (€RCER)eabT Y fkttimn) -

QkTCQb)(QmTCQd)(eRceR)EabEch{zg}[kl][mn] )

eRCER) T hitfmn]

(
(
)

(D.1)

where the first superscript ‘S’ ( and the following ‘V’ and ‘T’ ) is used to represent the

relevant operator with a scalar (vector and tensor for the following ones) lepton current, and

the bracket superscripts ‘(S)/(A)’ indicate the flavor symmetric/anti-symmetric property

of the lepton current under the exchange of the two lepton fields.
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For operators with a vector lepton current, we find there are 7 independent operators

chosen as follows

Olage QeLl =
O’l‘l,/sdQ QeL2 —
Ou3d2 QeL3 —
OXQdQ?’eLl
O’L‘L/;dQSGIQ
O"u/QdQSeLS

uQ5eL

i C) (ufy Cdip) QT Cyu) (eRCA L eabT (5 thty )
7 C) (uf Cdip) QT Cyuulp) (e RCA L) eab Ty et ]

7 Cdl W (W CdlR) QT Cryulh) (e RCy* Lb)eabT{mn}[kl][z]] )

i Cdl) (QETCQU QI Crypulp) (e CA™ L) aveed Ty g mm] »
7 Cdy) (QETCQY)

i Cdy)(QETCQL) QI Crypuh) (e RCA" L) eavecd Tty ) -
)

= (uf
= (up
= (uf
(ug
(ug
(ug
(QZTCQ] (QkTCQd (QZLTC’Y;LUR (eRC’YMLf)fabfcdﬁefT{mn}[kl][Z-j] )

( (
(QT Crpup) (e RCY* L) eaveeaT o ifig]
( (
) )

(D.2)

where the lepton current mixes the lepton doublet field L and singlet field er and therefore
no any flavor symmetry property.

For operators with a tensor lepton current, there are 10 independent operators which
are chosen as follows

O e = (ulf Cdly) (ulf Cdip) QT C o Q) (LY Com™ L eaveca TSkt fumy -
Opitoeran = (it Cdp) (ul Cd) (Q Cou Q) (LY Co™ Lip)eacesdTegpmn
sz(szng (uf Cdj)( TCdl )(QmTCU;U«VQ’lr)L)(LrCI‘CJ“VL:i)EOLbGCdT{SnI’?Tﬁ[kl}[ij}’
Ot = (i CaR) QLT CQL(QE Ca Qi) (LY Cot” Lip)eapeceear Ti fuymn -
OZdQ4L22 (ufg Cdp) (QLTCQL(QET Cop Qi) (L O™ Ly)eapecace Ty wfi)
OudQ4L23 (ufg Cdi)(QETCQY)(QIT Cop Q) (LT Cot™ Ly eaveceear T ummn) -
Q6L2 (QZTCQJ)(QkTCQd)(QmTCUWQ?)(L;FCUWL;L)fabﬁcdﬁefﬁghTfnfé[kl][z‘j] ;
On5)s = (ulf Copudy) (ulff Cdly) (i T C ) (R C o ) TEAA itk -
Ofsszezl (ug Copudy) (W CdR) QT CQp)(eRC™ €R)easT i pmmliis] -
OZBdQ2e22 (uf Coudy) (Wl CdR) QT CQp)(eRC™ )Ty il mn) (D.3)

E Reduction of the redundant operators in the SMEFT

Ref. [12] provides a bunch of the dim-12 operators contributing to dinucleon to dilepton
transitions in the SMEFT, but the operators are neither complete nor independent as a
basis. By using the color tensor relations in eq. (A.4) and the SI for the SU(2)y, group and
FIs in appendix C, in the following, we translate their operators as linear combinations
of operators given in appendix D so that one can easily recognize the redundancy and
incompleteness in [12]:

O =405 2 =300 s
o =105,

— 35 —



O( pp)
O( pp)
Oépp)

Oépp) —
ngpmp) _

Oépp,np) _

Og()pp,np) _

o\epnp) _

13

Oﬁp,np) _

O%p,np)

Og;;p,np) _

nggpmp) _

O(pp np) _

) %p,npmw _

1) %p,np,nn) _

O(pp,np,nn) _
Oégp,np,nn) _

) éz?l’p,np,nn)

) ;Iip,npmn)

) éz;p,npmw —

1) é}ép,np,nn) _

) éz;p,npmn)

Oégp,np,nn) -

5,(S5)

405 (E.1)
=405 (E.2)
+O5oe
—3005 00 (E.3)
—é (C';/Sd2QeL1 3C 3d2QeL3) ;
—1(0"“ ~6C Y pgers +3Cpqers) -
3 \Cutd2Qert d2QeL2 d2QeL3
*é (CXWQ@M 3C 3d2QeL3) ;
é (Cu3d2QeL1 +4C 3d2QeL2+C 3d2QeL3> ;
—é (Cx%d%zem 20} u3d2QeL2 — CXiﬁd?QeLs) ) (E.4)
—% (CXQdQ?’eLl_FC 2dQSeL2+Cu2dQ3eL3) )
2 Clhagoers
_1 v
5 Cu2dQseL3
:‘% (C;/?dQ?reLlJFC 2d03er2 20, 2dQ3eL3) ;
+%C1Y2dQ3eL1 ) (E.5)
—*OuQseLv
+3OuQ5eL ; (E.6)
(5084030~ O +30 )
L (505 - O
_% (80u5(ds2)Q2L23 - Ofﬁg)cz%?s) )
+% (8035((182)Q%2l o 24055(52)69%23 + 3052’515)@2%21 o 9052722)QQL23> ’
+% (805 e o1 +303 211 (E.7)
_% (805&(53L22 _Ofég2L22) )
g (QOud(Ql)L21 - @fd(é?m) )
(30588, +3005),1,)
= +405d(£24‘2L21 + Oud(QA‘l)LQl ; (E.8)
! 16 (805 - 057 - (E.9)
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F Chiral basis construction

In tables 5-7, we rewrite the operator basis in the LEFT into a chiral basis which has
well-defined chiral transformation properties. This chiral basis is obtained from LEFT
basis by symmetrizing quark flavors with the same chirality modulo the anti-symmetric
chiral singlet bilinear D;j = W (qx uI‘qxv) = ( iTFdj) — 1 <> j. In doing so, most of the
operators with color tensors T {w}[kl] (mn] and T; [U][kl] mn] in the LEFT already belong to the
chiral irreps under SU(2 ) x SU(2 ) R as shown in tables 5-7. For the remaining operators,
especially those with color tensor T { > j} Tel} {mn}> the chiral irrep ones are defined in terms
of the above flavor symmetrization procedures as follows:

B Dim-12 operators contributing to pp—£¢1t¢/*.

1 i j m n .00’
Pf?f)s’i:*(uLTCU]L)[4(ulzT0dlL)( CdL) ( kTCUlL)(dLTCdL)]]é’%iT{s;gSf{kl}{mn},

W=

PPSE = 2 [2(uf Cdl ) (uf T Cdly )+ (ui! Cud ) (df T Cdy) ) (ui T Cu) 564 T8 ay fomny
1 k2 m n
PP =2 [2(uf! Cd}, ) (k™ Ol ) (™ Copdp) + (i O (07 Ol ) (™ o)

+2(uL CujL)( CdL)(dm C’YHUR)} \t;z YHTE]S}S{M}{mn}a
)

PP =2 (57 Cdy) (20T Ol ) (™ Copp) + (i O (A7 o) 342 T8
1 W

pgfij:g uy Cul) [4(up" Cdy) (uf'™ Cryudh)+(uf Cul) (7 Cyudi)] gy TH5 iy fmn »
1 i m n .00’

ng,’;”)V:§ (uf" Cu}) )[2( (uf CdR) (ui' T Cryudip)+ (dlfchCle)(uLTC%UR)]Jff T ) fmn) »
1

P = 5[4l Ody) (uf! Cdie) (uf ™ ) +2(ul! Cuy ) (ul” O (AT Crye)

F2(uif Ody ) (ul Culy) (ul T Cryudip)+ (! Cul ) (ul Culp) (AT Cryudi) | e ekt

1 i j m
Pigp>vzg(u’1§TCdl13)[Z(uLTCdi)(uLTC"yuuR) (uL CuL)(dL C’yuuR)}]V Tgf}Akl Jimn] >
1 i j m n m m
Pif”f)vzg(uLTCdjL) [2(u%TCdﬁ;¢)(uL TC’yuuR)—i—(u’f?TCulR)(uLTC’y#dR)} ”T{Sk’?]fqmn] [ij]5
_ 1 i ; i 1 m v
PP =5 [ Couy ) (u” Cdy )+ (u Copdy) (uh" Cul)] (ufi " CdRy) i, o T i) -
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B Dim-12 operators contributing to pn—£¢1tv'.

n 1 1 m n m n . V/
PEVS = (uif Od ) [2(uf " CdY ) (uf " Cd7 ) +3(uf " Culp) (d7 T Cd7) | 58 TS (ki ey

OJ>—‘O1

P:s(,pan)szf[ (UETCd]L)(UIETCCZZL)‘F(UZLTC“%)(dlzTCdlL)]( TedR)js T{zg}{kl}{mn}7
P = £ [2(u Ca]) (™ Caly ) (™ O+ (! Cul ) (5T Caly) (™ Oy

F2(uif Cul)) (uf T CdL ) (7T Crud )| e TS k) (o »
POV = (k" ) [2(uil Ot} ) (" ) + (i Co ) (A7 )| 58 T bt
Py :é [2<u2Tcd1><u’zT0dlL>(dzﬁmu@ﬂufcui)(d’zTcdb<d$T0wu%>

+2(ur Cdy)(di" Cdy) (uE T Cyuuf)] gy T{if}s{kl}{mn},
Pz(in)vzg(uliTCdlL)[Q(ui Cd2)(d7" Cypulp)+(dp Cdy)(uf™ C’YMUR)]JV T{zg}[kl][mn]
PV = 5[4 C]) (s Cali) (™ Copdi) 42T O, ) Ol (45 o)

+2(uL Cd}) (" Cd) (uf ™ Crpuy) +(uf Cul ) (diF i) (d T Crypu) | 45 TES5 thay
Pi,’z”w = (Wl Cdp) [2(uf Cd)) (uf " Crypd i)+ (ul Cu ) (dE T Cryd ) | 50 T8 feayoan
PV = gwfc%) [2(u" CdR) (uf T Crpddie) + (A CdR) (wf T Crpuh) | 50 TG b
Pt = g(uIETCdlL)[4(uiLTCd”L)(uZLTC’awdﬁ)—i—(uiLTCu’L)(d’L"TC’aWdZ)

+(diLTCd£)(U?Tcauvuz)]jéy/’HUT{Si?}?kl][mn] ;
P?ff;")T:é [4(uf" Cd}) (uf " Copdl)+(uy Cul ) (dE Coyudy)+(d7 Cd) ) (uf Copul)]

X (g CdR) i TE N faynd
AT = £ [2(uif Ol (i Coly) +(uif Cuc) (5 Coly)) (W™ Co )1 TES a0y oy

B Dim-12 operators contributing to nn—vv’.

nn) 1 7 j m n m ny | v/

P =2 (dif Cy) [a(df" Cul) (d T Oup)+(df" O ) " Cup) |38 Ty gy -

nn 1 7 3 j m n\ vv’
Py =3 207 Cu ) (dFT Cul) (a7 Cd) (" Cu) | (AT O 357 TSy oy

nn)T 1 " ] " j m RV 1/
Pyt =2 [(df Copud)) (df" Cul) + (] oot ) (dF" Ol )| (T Cu) i " TNy

They are converted into the linear combinations of the LEFT operators shown in tables 5-7
via the Schouten identities in eq. (A.4) and the Fierz identities in eqgs. (C.6), (C.7) and

their similar cousins.
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Chiral basis LEFT basis Chiral irrep. Chiral spurion
prrSE ! (595?2%,15 - 395?’2%,?) (Te,1r) | OfL Erorve™t
Pl QT (3,18)|a 5"
PiISE T (52,3R) YT
pipSE o) i (8L, 1R 05"
Py o — QU (5,3r) | O(Lakih rnen
PyPSE o (12,3n)lc s
pirrSE e (52,3r) | OfEEE
P L (s —ool), —3Qi) (61,2r) | OG0
PPV L (3@l - ot (4n2e)le | O
PR orn, (22,28)a oy 1"
P L (5 —34Y ) (61,28) | OfTEyET
Y s (4L,28)[a O - F
pY S, — oSy, (40,4r) | OR5 EynyRen
DY G- (dudn) | O
B o, (42,2R)s Oinye - F
I o, (22,4R)|b Ot
PEPY |4 (30U +300, 300 — QY 42000 ) | (uan) | O
N 1 (3Qi, — Qi 200y (42.28)]s Ot "
pY 1 (3Qm+ oy, —20im, (21,48)|s Oy e
prY oY, (21,2R)|y 01"
B oy, (21,25l 03"
P AL (Bu1r)la | 005"
Py Ol R + Uk CI P M R
Py SRy (Br.3r)la | OLIEST
Py e (32,1R)la e
PO e (3,37)la Ol "
PRI S (1,5R)lc it
PPT o, (82,3r)[b Oinin.
BT xfine (3e.3r)lo | 05"

Table 5. The chiral basis and their chiral irreps under G, for

pp — 0T,
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the operators contributing to




Chiral basis LEFT basis Chiral irrep. Chiral spurion
P NN (71.15) Oy
pie ot (3,1r)|a 005"
P{ms e (5..3r) A
PYs O = O (51.3r) Otk iy en
pie o ns (32.1r)) 0"
pmms . (11,3R)lc 0"
p{ms on (5.,3r) Y
P R ) (61.21) ™
P L (30 - oY) (42.,28)l, O
pEmY oY (22,28)|a 014"
pirY L(say 60l —3Q0m)Y (61,2r) Oy R
P L (sl + oY) (42,20)l. e
pirY S (22,28)|a O31"
BFY ol (42.,40) Ot
P - (41.4r) A Ot
P 3 (3t 300 — 300y + ol 204 (42.4) Oty ™
B 3 (sQi sl —sQR+ QiR —20i)Y) | (anan) G
pY (3, — ot +20Y, (42.28))s A
25 1 (80t — o +205)", (2.4)s Oy Y5 RTE
2 1 (3Qiy — Qi+ 20, (21,48))s e
2 1 (3Qfi — o +205)Y, (42.28)]s Ok R
pEpY A (22,2R)|b 075"
B —olm (22,25)]s o3rn
O oY, (22,25)|c 014"
o - (21,28l 031"
P L (sl — o) (52,10l O
B oL, (1,18)]a 1
e oh (3,3R)|a 0 o™
BT L (30h., —Qn,) (5,10 o
P?,(T)T QganL)Z;,b (1r,1Rr) 1
PVT o). (32.3r)|a O harn
i T (32.1r)la 0"
pET oh (32,3n)la Ot
R ofar (81,3R)lb O an
BT e — QS (12.58)]e O fiamenen
B Qs s (32,3r)|s Oisyany
e oS A0 (12, 18)le 1
T o (32.3n)s Oy

Table 6. The
pn — LT,

chiral basis and their chiral irreps under G, for the operators contributing to
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Chiral basis LEFT basis Chiral irrep. Chiral spurion
nn)S nn)S nn)S ULV, W, T z
Pl(,a ) % <5Q§LL)L,a_3Q§LL)L,b) (7c,1r) 9(1L12§22)L SR
S S urv
Py QT (32, 18)la Ol
S S ULV WL T z
PQ(,Z”) Q;Z?R,a (5L=3R) 9(1L22§)(1L2)Ly}2 "
Py QT rs (32, 1R)l 0ieiy "
nn)S nn)S nn)S
P?S,a ) :(sLL)R,a - Q:(SLL)R,b (5L,3R) 9?1%55)182§LMZR
nn)S nn)S
P?f,b ) QéLL)R,b (12,3r)lc 0?21;;”2
nn)S nn)S ULV, WL, T z
P4( : QA(LLL)R (52,3r) (2L22§)(1L1)LyR "
nn)T nn)T ULV, W], T
P1( ) _QgLL)L (5L’1R)|a 0(1L22§) L
nn)T nn)T nn)T ULV, W], T
Pz(,a ) - < éLL)R,a—i—QéLL)R,c) (5L71R)|b 0(1L22§) L
P(nn)T _Q(nn)T (3 3 )I QULVLWRTR
2,b 2LLR,b L;9R)la (22)(12)
T nn)T
Pz(,?;n) ;LL)R,C (3L» 1R)|d 9?2L2;)L
P(nn)T _Q(nn)T (3 3 )l PULVLWRTR
3 3LLR L;9R)]a (12)(22)
p(nn)T _ )T (1 5 )| YURVRWRTR
2,a 2RRL,a Ls9R)le (1222)
S(nn)T nn)T ULV, WRET
Py ~QYRALs (32,3R)l Oy "
S T nn)T ULV, WRT
Pénn) _QéR}%L (8L,3R)b 9(2L2)(L12)R "

Table 7. The chiral basis and their chiral irreps under G, for the operators contributing to

nn — v’
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G Chiral irreducible representations in terms of hadrons

Ope. type|Chi. irrep|Chi. order Matching operator
(8r,1R)|: po O‘gxl,i:oél,f;)'“(“f)uLa(“T)va[‘IJ;FC(E’BXIJ,+§’3><1,11"/5)\Ijb]
(5L,3R) p” OE‘?XS :ezlffgfpl)u(]}ﬁ?y)%zn (UiTz)waL (UiTz)szL (uf)uLll(u‘t)ULb[lPEC(g5X3 +95x375) V)

(Toln) | p) | Oy = OEREo et (uluyuir®) sy o, (a0 i)y oy (o (0o o [WE C g1 +G7x175) W]

(1L,3r)li|  P° |Ofusi =000 tunatio [ V3 O(grxs,i +§1xs.i75) V]

Scalar current: O;juark X js

(B5r) | 00| Ofs ORI (V1) (Uir)a ey gt 2 g3+ Gx575) V)
(12,7r) | P*(X) |Ofur = OB RURERIRER (yuutir?) o (0P ulir? )y e gt atio g [U0 C(g1x7 + G1x775) U

(2L,2R)|: p° O;/’XH“ :025”(UT)uLauva[‘I’aTC”Y”(guz,i + g2x2,i75) Ws)
@L28)i|  P° |00, = gaxaif( L E TR (Uit e gy (u)ug a(uh)uy o[ U7 O )
(4r,4r) »° 04‘1/;‘4 = H?JXJSaZi?yRZR Uit yror, UiT*)zpur, (W), auwﬂb[q’aTC'Y“ (gaxa+ gaxays) Wy

(6L12R) pl(X) O(‘)/;g :arélg’fpz)L:LyLZH(UiTQ)ZRU’L (UTU‘MUiTZ)ILyL (uf)uLa(uT)va[\IlEC(gBX2 +§5><2'Y5)\I]17]

. Vi -
Vector current: Oquark X Jv,u

(21,4R)l: P’ 0334, = —g2x a0 BB (Uit ) w oy, W o (Wg O3 W)
(21,6R) PI(X) OXQE = _Q?fﬁlﬁZ)}?RszL (Ui'rz)wnu (uu”“w"'z)rnyn“una“vnb["I’aTC(Q2x6 +G2x675) Ws)
%5 (1z,1R): P’ OFHY = 5 [ W5 Co™ (grx,i+G1x1,75) Ws)
E§ (Br,1r) | P'(x) O3 =005 (whut)upa(uh)up o[ W5 OV (gaxam + Gax1.175) Us] — 63 v
5
2 Br.3r)li| P |05 =0 (Ui e oy (w1 upations [ Ve O (93x3,i + G5x3,i75)) W]
g (B 1r)i| P'(X) |05 = gsx1af( LtV (ulu uit®)wyap (U )upa (uh)uy s (V5 Cy 15 W) — s v
% (1,3r) p'(x) Of;!l:su:e?ﬁqv)R(uuu)uRa”va[\IJEC'Yy(gl><3,T + G1x3,775) Vs —p > v
& (L,5r)li| P'(x)  |OTY5) = gixs il (B T (uu ulir?)w e p U gatio ns (Vs C 5 W) — 63 v

Table 8. The leading order chiral matching of the chiral irrep six-quark part in our assumed
framework without including terms containing nucleon derivatives. Where in the third column we
show the leading chiral order of each matched operator, and the crosses (x) behind p*? indicate
the matched operators cannot contribute to the leading order dim-6 interactions in eq. (2.5).

H LEFT and SMEFT contributions to CP?, CP" and C™

Taking the specific expressions of the spurion fields in tables 5-7 into the leading order
matching results in eq. (3.18), and combining with the relevant LEFT Wilson coefficients
and lepton currents, we obtain the final matching results for the operators in egs. (2.6)—(2.8)
as the function of the LECs and the LEFT Wilson coefficients as follows

s 3 S+ S+ S+ S+ S+
C}('f(pL)) = {QSX La (50%21:@ +C§ipl),L,b ) +93x 1,bC§ipL)R,b +93x1.c (C:E,Z})%p}?zL,a+O§IJ7§)2L,b)

Lowmst 1 o)t | ~p)s.+ Lek
__C pp)S, —o\pp)o= ~pp)o, H.1
+95><3< 1 2LLR,a+6 3LLRa TCUALLR + Gixi<r9ixi) (H1)
S S
ey =CHizy lo—s: .
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oV =[guaa(ctlsolivetm )+ (, FOE )]
92x2,a5792x2,d
+§2><2b<0i117,1})€‘2 3 Oziipz%‘fz CAELR +Ci c))
i Ol (U L-CHRACURY) )
+ava (5 (Cimirolt) -5
Hooeaa (3 (Sotm+ fapgx;)( oot ) J+(, 08 )]

( 9ixj <7 Gjxi
—avea (RO + 3 (Cimb-ciy) )

g (CAmRL O - (CHERCRY) ). (13)
n)S n n)S n)S n)S n)S
crms = [93“7&( C&LL Cms b) +93x1,b0§§23’b+93xl,c (Cézész,a‘FCé%I%L,c)
+ C(P S—pr ) + CP >]+< > H.4
95><3< 2LLR™ 3“3LLR,a 4LLR Gixj > Gjxi (H.4)

n)S n)S
Cézi S_olrms) (H.5)
O = |l Ol Dttt ot )+ )]
92x2,a$792x2,d
n)V n)V n)V
raveas | (O3 (CHRACER +OIL) )z R)
+avea| (CHRY- (cgg’gmc;gﬁgmcgg’gz)) Heen)]
+auea( O 408 3 (Gl + cm)), (H.6)
n)V N n n)V n)V n n)V L& R
Oéi V= {92x27a (CE,L at3 CliL)b C&L)c +Og)Y — a CéLL b +CziL)c)+ <A A )}
92x2,a$792x2,d
A n)V n)V n n
+iveas | (O3 (AR +OIL) ) 2o m)
~ n)V 2 n)V n)V n)V
+avea | (O (ozzg,awgg,ﬁcﬁ,;c)) ~(zen)
v (O -l -5 (clmi-cim) )
2 6 n LR
Javea (gt gt -cty )+ (L, 200 )]
3 Gixj < Gjxi

2 n)V m n)V n)V L& R
3 lms(ctirct-ci-cm)+(, F00 ). (.7)
9ixj<79jixi
n r n n r 1 n)T n)T r n)T n)T
ceIT—gi, lLa ( CS/LL a+C§Z£LL b) T91x1,b <3C?Eil?R,a+C§iL)R,b> FTY1x1,c (C?EIIJQI%L,a_FCiE)ZI)%I%L,c)

n)T 1 n)T n)T n)T 1 n n
s (O~ 3CUVR YR )~ (CHRE-3CHRAE AT ) (HL9)
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nn)S 3 L (an)s (nn) nn)S (nn)S
Cé {gsxl a <5O§LL)L a+ClLLL b> +93x1, bO2LLR pTY3x1,c (O?()RI%)L,a+C3R1~’3L,b)

1 nn nn)S nn)S LR
+95x3 ( 402(LLR a+ CigLL)R a+C£LL)R):| +< )

Gixj$rGjxi
nn)S nn)S
oM™, s, (H.10)

(H.9)

After neglecting the QCD running effect and taking the matching result of the LEFT
and SMEFT interactions in table 2 into consideration, we find the above results simplify
considerably and take

S S, (S S,(S S,(S)
ngp) = 4g3><1,aCQ6(Lg +2g3><1vbcud(Q4)L22 +93><1,c (C 2(dz)Q2L21 +C 222@2[/23)
+ R O e o (H.11)

3
CE5 g1 5 (505455;)21 +CS4E;Z)22) 20105005 a 415 O

S
Yl =CLb loma (H12)
N R 1
crrV = 492x2,vaYQ5eL —92x2,d (CXS‘dZQeLl - ng‘f«;d?Qem +C¥d2QeL3)
N 1 v v 4 2w V.
—202x2,b gcu2dQ3eL1 - Cu2dQ3eL2 +202%2,c gCquQ3eL1 - Cu2dQ3eL3
92x4,a C ov. 2 ov H.13
T3 w3d2Qer1 — CusazQer2 | T 392x40002dQ%e L1 > (H.13)
n)S s S,(S
C(Lp ) =-2 (493><1,aCQ6(L22 +293><1 bC dQ4L22 +93><1 c (Cu2$12)Q2L21 +C 2d2Q2L23>)
9 s, 5,(A4) 5,(A 5,(A
-2 (gl><3,a (5Cu3513L21 + Cu3Ei3L22) +291 XS,bCuz(d2)QzL22 +4gl XS,cCud(Q‘l)Lzl
2
+ 593550, e o1 (H.14)
n)S n)S
CiS =S, (H.15)

v 1
Cépn) — 492><2,aCXQ5eL +92><2,d (C;/?’szeLl — gCZ‘L/SdQQELQ +C 3d2QeL3)

1 2
- 292><27b (30’1‘1/de36[/1 - C’L‘J;dQseLQ) +292><2,c <3C1‘4/2dQ3eL1 - Cz‘L/QdQ3eL3) ’ (H16)

C(p")v —4goxa aCqueL +J2x2,d <C1‘L/’~"d2QeL1 - %C;/i‘szeLQ +OXad2Q@L3)

+2g2x2b (;OXQin‘eLl XQdQ3eL2> —202x2,c <§va2dQSeL1 - Oz‘L/ZdQ3eL3> ’

- %92x47a (§C¥d2QeL1 - CXSd?QeLz) + %9%4 bCo u?dQ?eLl> (H17)
on)T — —164g7 4 acgg(fﬁ —891«1 bOudQ4L22 491x1,¢ (012((12221:21 +C 2d2Q2L23)

- 29§x3,a03é(6§4)L21 _9§x3,b0u27d22221322 ’ (H.18)

n 936x5 052,(;32%21 , (H.19)
clms =S, . (1.20)
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