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1 Introduction

It is an old proposition to use self-consistency conditions, such as unitarity, analyticity
and crossing symmetry, to “bootstrap” physical observables like the S-matrix of Lorentz
invariant quantum field theories. Nonperturbatively, this philosophy has been successfully
applied in recent years to conformal field theories (CFT). This has allowed to nonper-
turbatively explore the space of conformal theories, and to extract precision spectra for a
number of specific theories (for a review see [1]).

A surprising feature of the bootstrap is that a small number of correlators often suffice
to obtain interesting constraints. Many studies therefore focus on four-point correlators of
scalar operators. Spinning correlators are technically more complicated but much progress
has been made and numerical studies involving them are now possible [2–6]. As non-
trivial representations of rotation groups, spinning operators are bound to involve fancier
structures. Three-point functions, for example, can be constructed using the embedding
formalism [7, 8], and four-point conformal blocks, key ingredient to the bootstrap, may
then be obtained by acting with corresponding spinning-up or weight-shifting operators
on scalar seeds [8, 9]. This heavy machinery comes at a cost. This is especially visible in
analytic work, which has so far specialized to limits such as free theories, the Regge limit,
or conformal collider kinematics (see for example [10–16]).

There are several motivations to pursue analytic work with spinning correlators. A
main one is the analogy with perturbative S-matrices, where massless spinning particles
obey stringent self-consistency conditions. These include Weinberg’s derivation of pertur-
bative general relativity from soft limits [17], or to give just one more modern example,
on-shell recursion relations for gluon amplitudes [18, 19]. For strongly coupled conformal
theories with a holographic AdS dual that includes weakly coupled gravity, stress-tensor
correlators are thus expected to strongly constrain not only gravity, but its coupling to
matter. Indeed any CFT has a stress tensor, which, like gravity, couples to every degree of
freedom.

A useful starting point for analytic approaches is good control of mean-field theory,
around which one can start various approximations, be these in large spins, large N , small
ε, or other quantities [20–26]. When the mentioned technology is applied to spinning
correlators, the operator-product-expansion (OPE) involves matrices in the space of tensor
structures. But even making seemingly natural choices, one finds dense, non-diagonal
matrices already in mean field theory (MFT) [12]! It is difficult to bring oneself to study
corrections when the zeroth approximation takes this form.

A possible way forward is the fascinating observation that the number of spinning
structures in CFTd is identical to the number of structures for scattering amplitudes in
QFTd+1 [27]. While physically natural from the viewpoint of the bulk-point or flat space
limit of correlators, it remains unclear whether this counting extends to a useful map in
general kinematics. Indeed, the non-diagonal nature of MFT correlators stands in sharp
contrast with the QFT side, where diagonalizing trivial scattering S = 1 was never a big
challenge! We should then ask: can one find a basis of CFT three-point structures in which
MFT correlators are diagonal?
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In this paper we address this question in the special case of CFT3, exploiting the fact
that in QFT4 massless particles come with two helicity states ±. We point out that the
“helicity” of a conserved current is a meaningful (crossing-symmetric) concept also in CFT3,
which formally implies that a helicity basis of three-point structures will automatically
diagonalize crossing symmetry. We will confirm this by computing explicit OPE data in
MFT, as well as the first correction to CFT3 current correlators dual to tree-level gluon
scattering in AdS4.

This paper is organized as follows. In section 2, we construct the helicity basis for
three-point functions and explain that it diagonalizes a well-defined operator h. We also
introduce the group-theoretic concepts to be used in later sections, including three-point
pairings, shadow transforms, Euclidean and Lorentzian inversion formula. In section 3, we
use both inversion formulas to independently obtain mean-field OPE data for conserved
currents of various spins. In section 4, we apply our scheme to study YM4/CFT3, using
the Lorentzian inversion formula to extract the analytic-in-spin part of the leading-order
double-twist anomalous dimensions of currents. In section 5, we explicitly check that the
anomalous dimensions of the double-twist states [V V ]n,J at large-n agree with flat-space
partial waves for tree-level gluon scattering.

This paper contains a number of technical appendices. In appendix A, we relate
CFT3 three-point functions conserved currents to the bulk YM4 couplings, using the AdS
embedding formalism. In appendix B, we explain how to simplify certain calculations by
representing polarization vectors as spinors and give formulas for Fourier transforms. In
appendix C, we review the series expansion of scalar conformal blocks. Moreover, we show
how to compute OPE data for correlators that are powers of cross-ratios multiplied with
Gegenbauer polynomials, which may have applications to other problems; we also record
simplified expansions for certain scalar, currents and stress-tensors exchanges. Finally, flat-
space gluon amplitudes, including Yang-Mills and higher-derivative couplings, are reviewed
in appendix D.

2 Generalities

The structure of conformal correlators for spinning external operators is by now well under-
stood. Here we aim to concisely summarize key results so as to state our new three-point
structures as early as possible (eq. (2.10) below). We eschew the use of embedding space
and cross-ratios. Rather, we use conformal symmetry to place local operators at standard
locations such as (0, x,∞) as shown in figure 1, or (0, x, y−1,∞) for four-points.

In this frame, three point functions for scalar operators are determined by dimensional
analysis up to a normalization:

T123(x) = 〈O1(0)O2(x)O3(∞)〉 = 1
|x|∆1+∆2−∆3

, |x| ≡
√
xµxµ . (2.1)

We define Oi(∞) by taking the limit x−1 → 0 in an inverted frame (with an inversion
tensor inserted for spinning operators), so it behaves as an operator of dimension −∆i (see
eq. (114) of [28]). We will often Fourier transform with respect to the second position x:

T123(p) = 〈O1(0)O2(p)O3(∞)〉 =
∫
ddxe−ip·x〈O1(0)O2(x)O3(∞)〉. (2.2)
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x

O1(0)

O2(x)

O3(∞)

Figure 1. Conformal frame used for three-point functions: 〈O1(0)O2(x)O3(∞)〉.

This was used in [12] to simplify calculations of shadow transforms and to compute con-
formal pairings, which all become simple algebraic operations.

It is important to note that we do not Fourier transform all operators, as is sometimes
considered in the literature, e.g. in [29]. The only Fourier integrals we will compute involve
powers of a single variable as in (2.1) and are rather straightforward. Physically, singling
out one operator is natural in conformal bootstrap applications, where one typically treats
external and internal states asymmetrically. We think of the third operator as the ex-
changed one O in the conformal block decomposition of a four-point correlator, as shown
in figure 2.

2.1 Three-point functions: helicity basis

Multiple index contractions generally exist between spinning operators, and three-point
structures are correspondingly non-unique. They are straightforward to classify in the
above frame [30]. For pedagogical reasons, let us focus on the case where all operators are
symmetric traceless tensors, Oµ1...µJ , where J is the spin of the operator. In d = 3, this
covers all bosonic operators. We work in index-free notation [7] and dot into the J ’th power
of a null polarization vector εµ. Our two-point functions follow the standard normalization:

〈O(0)O(∞)〉 = (ε1·ε2)J . (2.3)

Any index contraction between the εµi and xµ defines an allowed three-point function.
For example, for two operators of spin-1 and a third of spin J3 〈V1V2O3〉, a basis of five
independent (parity-even) monomials is easily enumerated:

BV =
{
ε1·ε2,

ε1·x ε2·x
x2 ,

ε1·x ε2·ε3
ε3·x

,
ε1·ε3 ε2·x
ε3·x

,
ε1·ε3 ε2·ε3

(ε3·x)2 x2
}
× (ε3·x)J3

|x|∆1+∆2−∆3+J3
.

(2.4)
Each monomial has homogeneity (1, 1, J3) with respect to the three εi. It will be useful
to treat structures analytically in the third spin J3. The fact that 1/(ε3·x) appears in the
denominator implies that certain structures cease to exist at low spin. It will be possible
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〈O1O2O3O4〉 = ΣO

O1

O2 O3

O4

O

Figure 2. Four-point function factorized into three-point functions.

to use a common labelling scheme for all values of J3, but we will have to remember that
certain structures do not contribute at low J3.

Although our frame choice breaks permutation symmetry it is trivial to restore it.
For example to exchange 1 and 2, we simply apply a translation by an amount −x and
substitute xµ 7→ −xµ.1 Less trivially, to interchange operators 1 and 3, we use the inversion
xµ 7→ xµ/x2 ≡ x−1, acting with the inversion tensor on ε2:

T123(∞, x, 0) = x−2∆2T123(0, x−1,∞)
∣∣∣
εµ2 7→Iµν(x)εν2

, Iµν(x) = δµν − 2x
µxν

x2 . (2.5)

There is no need to include inversions acting on ε1, ε3 because inversion is included in the
definition of O(∞). The structures in eq. (2.4) become{

ε1·ε̃2, −ε1·x ε2·x
x2 ,

ε1·x ε̃2·ε3
ε3·x

, −ε1·ε3 ε2·x
ε3·x

,
ε1·ε3 ε̃2·ε3

(ε3·x)2 x2
}
× (ε3·x)J3

|x|∆3+∆2−∆1+J3

(2.6)
where ε̃µ2 = εµ2 − 2xµε2·x/x2.

Let us now improve this in steps. Instead of just “listing all monomials”, a good
idea is to use the SO(d−1) symmetry which preserve the point x. An SO(d) traceless
symmetric tensor of rank J can be written as a direct sum of multiple SO(d−1) tensors,
whose rank 0 ≤ J ′ ≤ J indicates, roughly, how many indices are perpendicular to x.
Three-point structures are then in one-to-one correspondence with SO(d−1) singlets in
the tensor products of the three representations. Such a scheme was used for example
in ref. [30]. While effective for generic operators, this is not the scheme we shall use,
since we are interested in conserved currents. In x-space, conservation is a cumbersome
differential constraint.

The next improvement is to use instead SO(d−1) tensors in momentum space, separat-
ing indices that are parallel or perpendicular to p in the frame in eq. (2.2). For conserved
currents one simply has to drop all the structures that are not fully perpendicular to p.
For example, for two conserved currents in d dimensions (which have scaling dimension
∆1 = ∆2 = d− 1) there are just two allowed structures, proportional to:{[

p2(ε1·ε3)− (p·ε1)(p·ε3)
] [
p2(ε2·ε3)− (p·ε2)(p·ε3)

]
(p · ε3)2 − p2(ε1·ε2)− (p·ε1)(p·ε2)

d− 1 ,

p2(ε1·ε2)− (p·ε1)(p·ε2)
}
× (p · ε3)J3 |p|d−4−∆3−J3 .

(2.7)

1This is really a substitution, not a symmetry transformation. It can be done whether or not the theory
is parity symmetric.
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These two structures are transverse with respect to ε1 and ε2 and are respectively SO(d−1)
traceless symmetric tensors of rank 2 and 0 with respect to ε3. The first structure is analytic
for spin J ≥ 2, and the second for J ≥ 0. In this example “transverse” simply means
invariant under εi 7→ εi+pi. For higher-rank conserved currents, the correct statement will
involve an operator D designed to preserve the constraint ε2i = 0 [31]:

pµDε1µ T = pµDε2µ T = 0, Dεµ ≡
(
d

2 − 1 + ε · ∂
∂ε

)
∂

∂εµ
− εµ

2
∂

∂ε
· ∂
∂ε
. (2.8)

Such a scheme could be used to label three-point structures in any dimension d, including
operators O3 in mixed representations of SO(d).2 We now specialize to d = 3, where further
simplifications occur.

In d = 3, SO(d−1) irreps (transverse to p) are one-dimensional and labelled by helicity
±J . For a pair of conserved currents of any spin there are thus only four structures. A
projector onto the positive-helicity component of ε2 can be written by combining parity-
even and odd structures:

ε2µΠµν
±pε3ν ≡

1
2

(
ε2·ε3 −

(p·ε2)(p·ε3)
p2 ± i

|p|
(ε2, p, ε3)

)
. (2.9)

Here (a, b, c) = εµνσa
µbνcσ denotes contraction with ε123 = +1 the antisymmetric tensor in

Euclidean signature. The projector satisfies Π2
±p = Π±p and p·Π±p = 0. For p along the z

axis, it can be written as 1
2(1, i, 0)µ(1,−i, 0)ν .

Given two conserved currents of spin J1 and J2 in d = 3, we thus define a complete
basis of four possible three-point couplings, including a convenient factor, as:

T±,±123 ≡
(4π) 3

2 (−i
√

2)J1+J2+J3

2τ1+τ2−∆3
× (ε1Π∓pε3)J1(ε2Π±pε3)J2 × (p · ε3)J3−J1−J2 |p|β12;3−3 ,

(2.10)
where β12;3 = (∆1 + J1) + (∆2 + J2) − (∆3 + J3) and τi = ∆i − Ji is the twist. The two
superscripts represent the helicity of each operator. Note the reversal of the momentum in
the first projector, so that helicity retains its physical interpretation as spin along momen-
tum axis since the first operator has momentum −p. The transversality condition (2.8) is
readily verified for any Ji.

Eq. (2.10) defines the helicity basis we will use throughout. The opposite-helicity
structures T+−

123 and T−+
123 are only allowed for local operators (polynomial in ε3) when

J3 ≥ J1 + J2. On the other hand, since SO(2) representations are one-dimensional, the
projectors satisfy the identity:

(ε1Π−ε3)(ε2Π+ε3) = (ε1Π−ε2)(ε3Π−ε3) = −(p·ε3)2

2p2 (ε1Π−ε2) , (2.11)

which extends the range of same-helicity structures T++
123 and T−−123 to: J3 ≥ |J1 − J2| .

These ranges coincide with the usual selection rules for the total angular momentum of
two massless particles in flat four-dimensional space.

2There are momentum-space constructions for spinning operators in the literature, where all three posi-
tions are Fourier transformed, see, e.g., [29, 32–34] and references therein, which enjoy potential applications
to inflationary cosmology [35, 36].
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Although eq. (2.10) is primarily meant to be used for conserved currents, where ∆i =
1+Ji for i = 1, 2, we kept ∆i free since the structures make sense for any ∆i. In particular,
we will use the same expressions below for shadow-transformed operators. For spin-0 states,
we keep the same formula but drop superscripts.

Once the helicity basis is defined in momentum space, it is often necessary to transform
it to coordinate space. The Fourier-transform of a power-law is straightforward∫

ddp

(2π)d e
ip·xp2k = 4k

x2k+d
Γ(d2 + k)
π
d
2 Γ(−k)

. (2.12)

Our strategy is to perform Fourier-transform for pure power-laws at first, and then replace

p · ε→ −iε · ∂ . (2.13)

Doing so, one finds that the parity-even and odd components produce disparate gamma-
functions that don’t nicely combine. Many calculations are thus simplified by switching
to an Even/Odd basis of parity eigenstates. Each parity sector contains two elements,
representing states with opposite or same helicity:{

TE,opp
123 , TE,same

123

}
≡

Γ
(3−τ1−τ2+∆3+J3

2
)

Γ
( τ1+τ2−τ3

2
) ×

{
T+−

123 + T−+
123√

2
,
T++

123 + T−−123√
2

}
,

{
TO,opp

123 , TO,same
123

}
≡

Γ
(2−τ1−τ2+∆3+J3

2
)

Γ
(1+τ1+τ2−τ3

2
) ×

{
T+−

123 − T
−+
123√

2
,
T++

123 − T
−−
123√

2

}
,

(2.14)

where we introduced gamma-factor normalizations for future convenience. These ensure
that the transform produces polynomials in ∆3 and J3 of the lowest possible degree, as the
denominator cancels spurious double-twist poles from the Fourier transform.

Fourier transforms may now be straightforwardly computed, by expanding the
even/odd structures into dot products of p with polarizations, up to a possible single
odd factor (p, εi, εj).

As a trivial example, in the scalar case J1 = J2 = 0, there is just a single structure

TE00O = 2
J3
2 |x|∆3−J3−∆1−∆2(x·ε3)J3 . (2.15)

As a more illustrative example, for two spin-1 currents 〈V1V2O〉 the two even structures
turn out to be proportional to eq. (2.7) (in the same order). As it should, the transform
takes the form of a matrix acting on the basic structures BV in eq. (2.4): TE,opp

11O

TE,same
11O

 = 2
J3+1

2 n

 2(n−J̃3) 2(n−1) (3J̃3−4n+1) (3J̃3−4n+1) J̃2
3−(8n+1)J̃3+8n2

2n

2(−n−J3) 2(n−1) J3 J3
(J3−1)J3

2n

 ·BV ,
(2.16)

where n is defined through τ3 = τ1 +τ2 +2n, and J̃ denotes the “spin shadow”: J̃ = −1−J
in d = 3 [37]. The parity-odd structures can be similarly represented in terms of four odd
monomials:

B′V =
{(ε1, x, ε3)ε2·x

x2 ,
(ε1, x, ε3)ε2·ε3

x·ε3
,

(ε2, x, ε3)ε1·x
x2 ,

(ε2, x, ε3)ε1·ε3
x·ε3

} (ε3·x)J3−1

|x|∆1+∆2−∆3+J3−1 , (2.17)
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in which TO,opp
11O

TO,same
11O

 = 2
J3+1

2

 (1−2n) (1+J3+2n) (1−2n) (1+J3+2n)

(1−2n) (−1+J3+2n) (−1+2n) (1−J3−2n)

 ·B′V . (2.18)

Notice that so far n is simply a notation for the twist, but when n takes on (half-)integer
values it will represent so-called double-twist operators. Parity-even double twists have
integer n while parity-odd ones have half-integer n.

A technical complication when dealing with higher-rank tensors and odd structures is
the presence of Gram determinant relations (antisymmetrizing any four vectors gives zero).
In our calculations below, we circumvent this either by evaluating expressions on a symbolic
three-dimensional parametrization, or by using the spinor formulation in appendix B.

The opposite-helicity structure in eq. (2.16) is physically allowed for J3 ≥ 2, but there
is an important discrete exception: when O3 is a conserved current (J3 = 1 and ∆3 = 2).
Then the complicated polynomial in the fifth column vanishes, shielding the problematic
denominator in eq. (2.4). The three structures: TE,opp, TE,same, TO,same then define valid
(and independent) couplings between three currents. We verify in appendix A that these
map, respectively, to bulk Yang-Mills couplings TrF 2, and to parity even/odd parts of TrF 3!

2.2 Helicity is conformally invariant

The reader may worry that our definition of helicity structures in eq. (2.10) is tied to the
specific frame (0, x,∞). However, it turns out to be independent of this! Here we construct
a conformal integral transform, whose eigenvalue is helicity. Its existence will automatically
imply that crossing is diagonal in the helicity basis.

It is intuitively clear from holography that helicity should be frame-independent, since
momentum-space currents with definite helicity source AdS4 gauge fields that are either
self-dual or anti-self-dual near the boundary [35, 38]. Helicity structures for correlators of
three higher-spin currents in momentum space, and their relation with bulk AdS couplings,
were discussed in [39]. (For a spinor-helicity formalism in AdS4, see also [40].) Since the self-
dual decomposition is invariant under conformal isometries, we expect it to be independent
of frame and to agree between all channels.

In momentum space, the operation which measures helicity is simply

hJµ(p) ≡ −iε
µνσpσ
|p|

Jν(p) . (2.19)

Fourier transforming this defines an integral transform:

hJµ(x) =
∫
d3yHµν(x− y)Jν(y) , Hµν(x− y) ≡ εµνσ

2π2
∂

∂yσ
1

(x− y)2 . (2.20)

We now show that h commutes with conformal transformations. Normally, this would
require the kernel H to transform like a two-point function between a current and its
shadow, 〈Jµ(x)J̃ν(y)〉. For a generic operator, this is impossible: conformal two-point
functions between operators of different dimension must vanish! (This follows easily from
scale invariance in the frame (x, y) = (0,∞).) The loophole here is that since Jν(y) is

– 7 –
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conserved, the shadow J̃ν is defined modulo a derivative: the kernel H only needs to be
conformally invariant modulo a total derivative ∂νyXµ(x, y).

Let’s thus check invariance under inversion xµ 7→ xµ/x2. Applying the standard trans-
formation laws, a short calculation gives:

Iµµ′(x)Iνν′(y)
x4y2 Hµν(x−1 − y−1) = 1

π2

[
εµνσ(y − x)σ

(x− y)4 + εµνσxσ
(x− y)2x2 + 2(x− y)νεµρσyρxσ

x2(x− y)4

]
(2.21)

We have used the Schouten identity to eliminate terms with xµ or yµ. With a bit of
inspection, we find that the sum of H and its transform is indeed a total derivative:

Hµν(x− y) + I
µµ′(x)Iνν′(y)

x4y2 Hµν(x−1 − y−1) = ∂

∂yν
εµρσyρxσ
π2(x− y)2 . (2.22)

This shows formally that h is invariant under inversion (up to an overall sign change):

(hJ)−1 = −h(J−1) (2.23)

where (J−1)µ(x) = Iµµ′Jµ′(x−1)/x4 denotes the inversion map. The sign change was
expected since h is parity-odd. One could equivalently say that h is invariant under the
combination of inversion and parity.

To illustrate the action of h, let us briefly consider two-point functions. A special
feature of d = 3 CFTs is that two structures are allowed by conformal invariance [41]:

〈Jµ(x)Jν(0)〉 =
(
δµν∂

2 − ∂µ∂ν
) τ

32π2x2 + iκ

2πεµνρ∂
νδ3(x) , (2.24)

where the coefficient κ of the contact term is defined modulo an integer. It is easy to
see (for example using momentum space expressions from ref. [41]) that acting with h on
Jµ(x) yields the same with τ and 8κ/π interchanged. This confirms that h maps conformal
two-point functions to conformal two-point functions. Of course, just like the shadow
transform, hJ is generally not a local operator.

For higher-spin conserved currents, a similar transform can be defined

hTµ1···µJ (x) =
∫
d3y (Hµ1ν1(x− y)T ν1µ2...µJ (y) + (J − 1) permutations of µ1) (2.25)

Generally, h2 = J2, and one can easily verify that the structures in eq. (2.10) are eigen-
states:

h1T
±1,±2
123 = (±1J1)T±1,±2

123 h2T
±1,±2
123 = (±2J2)T±1,±2

123 . (2.26)

Although we did not construct a total derivative akin to eq. (2.22) in the higher-spin case,
we believe h to be conformal as well, given the fact that all data computed in the next
sections will turn out diagonal.

In Lorentzian signature, there is a subtlety: h depends on operator ordering through
the branch choice |p| ≡

√
p2 ± i0 in eq. (2.19). While eqs. (2.26) remain valid as long as the

same branch is used for h and T , this means that taking discontinuities or commutators
does not preserve h eigenstates; one can explicitly see in eqs. (2.16)–(2.18) that even and
odd structures acquire different phases. This will be important below in our discussion of
Lorentzian inversion.
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2.3 Simple operations: three-point pairings and shadow map

Since h is a conformal operation, three-point structures with definite helicity will be or-
thogonal under all natural operations. Here we review two simple operations, which will
form useful building blocks later.

The simplest may be the conformal pairing between three-point structures and shadow
structures:

P a,b123 =
(
T a123, T

b
1̃2̃3̃

)
≡
∫

ddx1d
dx2d

dx3
vol(SO(d+ 1, 1))〈O1O2O3〉a〈Õ1Õ2Õ3〉b (2.27)

= 1
2dvol(SO(d− 1))

∑
ε1,ε2,ε3

T a123(ε1, ε2, ε3)(1) T b1̃2̃3̃(ε∗1, ε∗2, ε∗3)(1) , (2.28)

where we have used the symmetry to put x = 1. The denominator is the volume form of
the “little group” that keeps the frame (0, 1,∞) fixed [12].

A good way to compute index contraction is to use the differential operator (2.8)∑
ε

f(ε∗)g(ε) = 1
J !(d−2

2 )J
f(Dε)g(ε). (2.29)

For example, for vector-vector-general 〈V1V2O〉 case, the pairings between Even or Odd
structures (2.16) and (2.18) is readily evaluated:

PE11O = 16PsNE
11O

( (J3+1)(J3+2)
(J3−1)J3

0
0 1

)
, PO11O = 16PsNO

11O

( (J3+1)(J3+2)
(J3−1)J3

0
0 1

)
, (2.30)

where Ps is just the pairing of two scalars and one spinning operator [12]3

Ps = 1
2dvol(SO(d− 1))

(d− 2)J3(
d−2

2
)
J3

(2.31)

and for latter convenience we introduce the N factor, which is precisely the product of the
gamma-functions in eq. (2.14) and its shadow:

NE
J1J2O =

(
τ1 + τ2 − τ3

2

)
J1+J2

(3 + β3 − β1 − β2
2

)
J1+J2

,

NO
J1J2O =

(1 + τ1 + τ2 − τ3
2

)
J1+J2−1

(4 + β3 − β1 − β2
2

)
J1+J2−1

. (2.32)

Many other examples can be straightforwardly worked out and it turns out that the three-
point pairing is always orthogonal. In fact there is a rather mechanical explanation: the
x-space pairing is also proportional to the momentum-space one [12]:4

P a,b123 = 1/(2π)d
2dvol(SO)(d− 1)

∑
ε1,ε2,ε3

T a123(ε1, ε2, ε3)(p) T b1̃1̃1̃(ε∗1, ε∗2, ε∗3)(−p) . (2.33)

3Our scalar structures are larger by a factor 2J3/2 than those of [12]: P here
s = 2J3P there

s .
4This can be proven formally by moving gauge-fixing factors in the frame (0, x,∞):∫

ddx

vol(SO(d)× SO(1, 1))T (x)T̃ (x) =
∫
ddx

∫
ddp ddp′ eix·(p+p

′)

(2π)2dvol(SO(d)× SO(1, 1))T (p)T̃ (p′) .

The x integral simply gives a delta-function setting p′ = −p.

– 9 –



J
H
E
P
0
6
(
2
0
2
1
)
0
4
1

Due to this, the diagonal pairing would be rather trivially diagonal in any d, if one uses
the momentum space basis discussed above eq. (2.7). Without derivation, we thus quote
the diagonal 4× 4 matrix of pairings in the d = 3 helicity basis (2.10):

P
(h1,h2),(h̄′1,h̄′2)
123 = δ

h′1
h1
δ
h′2
h2
× Ps × 4|h1|+|h2|(−1)|h1−h2| (J3 + 1)|h1−h2|

(−J3)|h1−h2|
. (2.34)

Taking Even/Odd combinations (2.14) simply adds the NE/O factors, reproducing the
J1 = J2 = 1 example quoted in eq. (2.30). The fact that the pairing is diagonal (with
h̄ = −h) is a first hint that the structures are well chosen.

A second natural and useful operation is the shadow transform

S[O1(x)] ≡
∫
ddy〈Õ1(x)Õ1(y)〉O1(y) , (2.35)

which maps operators to their shadow operators nonlocally. Operating on three-point
structures this generally produces a shadow matrix S([O1]O2O3)a b:

〈S[O1]O2O3〉a = S([O1]O2O3)a b〈Õ1O2O3〉b . (2.36)

The shadow transform for conserved currents in d = 3 is simple: the two-point function in
momentum space can be diagonalized by helicity, which is always maximal for conserved
currents. Using 2∆−∆̃Aj,j

∣∣
∆=J+1 from eq. (E.11) of [12], we get simply

S([Õ1]O2O3)(h′1,h′2)
(h1,h2) = δ

h′1
h1
δ
h′2
h2

(−4)J1π2 × CJ1 , CJ ≡
1 + δJ,0
2(2J)! . (2.37)

This holds when acting on the shadow of a conserved current Õ1, or a scalar with the same
twist ∆1 = 1. (We note that S is not invertible and S[O1] = 0 acting on a conserved
current.) The transform in the Even/Odd basis is of course also diagonal, but displays
additional scalar factors due to the gamma-functions in (2.14).

The shadow transform with respect to O3 will be technically more difficult to compute;
we will find below (see (3.15)) that it is also diagonal.

2.4 Spinning conformal blocks

A more interesting and nontrivial object is the correlator of four operators. The Operator
Product Expansion distills those in terms of a given theory’s spectrum and OPE coefficients.
Using conformal symmetry we can assume the four points are at (0, x, y−1,∞) (where y−1

is the point yµ/y2). Factoring out a conventional prefactor to trivialize the x → 0 and
y → 0 limits,

〈O1(0)O2(x)O3(y−1)O4(∞)〉 = |y|
∆3+∆4

|x|∆1+∆2
G(z, z). (2.38)

Our notation O3(y−1) implies that we apply inversion tensors to the indices on the third
(and fourth) operator. The complex variable z (which is complex conjugate to z in Eu-
clidean signature) encodes the sizes and angles of the vectors xµ and yµ:

zz = x2y2, z + z = 2x·y . (2.39)
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Inserting a complete basis of states between O1,O2 gives the operator product expansion

G(z, z) =
∑

∆,J,a,b
λ12Oaλ43ObG

a,b
∆,J(z, z) (2.40)

where the sum runs over the spectrum of the theory, and the λ’s are OPE coefficients. When
the external operators have spin, there are generally multiple index contractions a, b to
sum over representing the different three-point structures, each of which has an independent
coefficient. The special functions Ga,b∆,J(z, z) are the so-called conformal blocks, which we
normalize so they approach as x→ 0 a simple product of three-point structures (summing
over the polarizations of the intermediate operator O):

lim
x→0

Ga,b∆,J(z, z) = x∆1+∆2

y∆3+∆4

∑
εO

T a12O(x)T b43O(y) ≡ Pa,b∆,J(x, y) . (2.41)

For example, for scalar external operators in our normalization (2.15) one finds

P∆,J(x̂, ŷ) = (|x||y|)∆ (d− 2)J(
d−2

2
)
J

C̃J

(
x·y
|x||y|

)
→z�z�1 (zz)∆/2(z/z)J/2 (2.42)

where C̃j(ξ) = CJ(ξ)/CJ(1) = 2F1(−J, J + d− 2, d−1
2 , 1−ξ

2 ) is a Gegenbauer normalized to
unity at ξ = 1. In terms of cross-ratios, x·y

|x||y| = z+z
2
√
zz
.

The conformal block G contains an infinite tower of terms suppressed by powers of x
(or z, z), arising from exchange of descendants ∂kO∆. Series expansions for these terms
are available from refs [42–44], as well as an efficient Zamolodchikov recursion algorithm,
see [6, 45]. In practice we will use the spinning up/spinning down method. We write the
spinning block as a derivative of a scalar one,

Ga,b∆,J = Pa(α)P
b
(β)D

(α,β)
↑ G

(α,β)
∆,J . (2.43)

Let us explain our notation here. The indices α, β, · · · span the space of spinning-up
operators (see eq. (3.25) below), so that the Pb(β) are constant matrices that depend only
on ∆, J but not on spacetime coordinates; G̃(α,β) is a scalar conformal block, where the
superscripts denote the specific shift of conformal dimensions associated with the particular
spinning-up operator (α, β). Explicit operators will be written in section 3.3 below; a simple
recursion for scalar conformal blocks is reviewed in appendix C.1.

2.5 Euclidean inversion formula

The OPE sum runs over the spectrum of the theory, which we generally don’t know exactly.
For analytics it is often better to replace the sum by an integral, the “harmonic analysis”:

G(z, z) =
∑
J,a,b

1
2

∫ d/2+i∞

d/2−i∞

d∆
2πica,b(∆, J)

(
Ga,b∆,J(z, z) + shadow

)
. (2.44)

The “shadow term” is the same block with ∆ 7→ ∆̃ = d−∆ and with a specific coefficient,
see [46, 47]. This shadow term ensures that the parenthesis is Euclidean single-valued (i.e.
does not have a branch cut) in the limits x→ y−1 and x→∞. Explicitly, this term is

S(O1O2[O])a c (S(O3O4[Õ])−1)b d Gc,d∆̃,J . (2.45)
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To obtain the OPE (2.40) from the integral (2.44) one simply closes the contour to the
right in the G term, and the formulas will match provided

− Res
∆′→∆

ca,b(∆, J) = λ12Oaλ43Ob . (2.46)

The function ca,b(∆, J) will be useful below since it simultaneously encodes the spectrum
(through the location of its poles) and OPE coefficients (through the residues); this enables
one to speak about OPE coefficients without having to first know the spectrum.

As single-valued eigenfunctions of a Casimir differential operator, the harmonic func-
tions satisfy an orthogonality relation∫

ddx1 · · · ddx4
vol(SO(d+ 1, 1))〈1234〉a,b∆,J〈1̃2̃3̃4̃〉c,d∆̃,J = (N (∆, J)(a,b),(c,d))−1 [2πδ(ν − ν ′) + shadow],

(2.47)
where ∆ = d

2 + iν and the tildes denote shadow operators; tensor indices are meant to be
contracted between each operator and its shadow. Note that we abbreviate (G∆,J+shadow)
as 〈1234〉∆,J . The symmetry can be used to fix the points to (0, x, 1,∞) so the integral
is really just over x. The normalization N (∆, J) can be expressed in terms of the pairing
P (a,b) of eq. (2.34), since the δ-function originates from the x→ 0 limit, where the blocks
can be approximated by their limit (2.41). Explicitly, the normalization reads [12]

N (∆, J)(a,b),(c,d) = µ(∆, J) (P a,c12O)−1 (P b
′,d′

34Õ )−1 S(34[Õ])b′b S(3̃4̃[O])d′d , (2.48)

where the “Plancherel measure” is

µ(J,∆) = (d+ 2J − 2)Γ(d+ J − 2)Γ(∆− 1)Γ(d−∆− 1)(∆ + J − 1)(d−∆ + J − 1)
2dπdvol(SO(d))Γ(d− 1)Γ(J + 1)Γ( d

2 −∆)Γ(∆− d
2 )

. (2.49)

Evaluated in terms of cross-ratios, this gives an integral over the complex-z plane5

ca,b(∆, J) =
N (∆, J)(a,b),(c,d)

22d−1vol(SO(d− 2))

∫
d2z

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2(
G̃c,dd−∆,J(z, z) + non-shadow

)
G(z, z)

(2.50)

where index contractions with G(z, z) is again implied. To extract the spectrum using this
formula one would have to know the exact correlator G(z, z), which of course is impractical
unless one already has solved the theory. The usefulness of this formula is that it provides
analytic estimates for the OPE data in certain limits. Specifically, following [12] we will
use this formula to extract OPE data in mean field theory in section 3.

2.6 Spinning Lorentzian inversion formula

An effective method to go beyond MFT is to analytically continue the Euclidean inversion
formula to Lorentzian signature, which gives the Lorentzian inversion formula [37, 48, 49].
It expresses OPE data as a sum of so-called t- and u-channel double-discontinuities.

5We used eq. (2.28) and the relation vol(SO(d−1))
vol(SO(d−2)) = volSd−2 to write, for any conformal function (· · · ):∫

ddx1 · · · ddx4

vol(SO(d+ 1, 1))
(· · · )
x2d

12x
2d
34

= 1
22d−1vol(SO(d− 2))

∫
d2z

z2z2

∣∣∣z − z
zz

∣∣∣d−2
(· · · ) .
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A practical advantage relevant to the present paper is that at tree-level in theories with
a large-N expansion, the double-discontinuity is saturated by single-trace exchanges [50,
51], effectively giving AdS cutting rules (see also [52, 53]).

The formula was generalized to the spinning case in ref. [37]. The t-channel contribu-
tion is given as:

cta,b(∆, J) = NL
(a,b),(c,d)

∫ 1

0

dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2
G̃c,dJ+d−1,∆−d+1(z, z̄)dDisc[G(z, z̄)] , (2.51)

where the tilde denotes that the external operators are shadow operators, and (omitted)
tensor indexes are to be contracted between G̃ and dDisc[G]. A key result of ref. [37] is
an elegant way to calculate the normalization factor NL, which is generally a matrix, in
terms of “light-transforms”. The light-transform of a spinning operator is defined as

L[O](x, ε) =
∫ ∞
−∞

dα(−α)−∆−JO
(
x− ε

α
, ε

)
. (2.52)

(Despite appearance, the integral has no branch point at α = 0 due to the behavior of O.
We refer to [37] for further details on the precise branch choices, which we will ignore in
this presentation.) When the light-transform acts on the third operator of a three-point
function, it simply induces a Weyl reflection for that operator (∆ 7→ 1−J, J 7→ 1−∆) with
an overall light-transform matrix, i.e.

〈O1O2L[O∆,J ]〉a = Lab (O1O2[O])〈O1O2O1−∆,1−J〉b . (2.53)

We found that the integrand can be computed directly in our frame (0, x,∞), using a
special conformal transformation along the direction ε3 to keep x3 = ∞ and move x2
instead. This reduces to a simple substitution:

x 7→ x+ x2

α
ε3 , ε2 7→ ε2 +

(
x · ε2 −

x2ε2 · ε3
α+ 2x · ε3

)2ε3
α
− 2ε2 · ε3
α+ 2x · ε3

x (2.54)

and we have to multiply three-point functions by (1 + 2x·ε3/α)∆1−∆3 . Using this rule,
and integrating over α following ref. [37], we find that the light-transform matrix in the
Even/Odd basis is actually independent of J1 and J2:

LE(J1J2[O∆,J ]) = L(0)
s

(
0 1
1 0

)
, LO(J1J2[O∆,J ]) = L(1)

s

(
0 1
1 0

)
, (2.55)

where L(∆12)
s denotes the scalar light transform [37]

L(∆12)
s = −i 2

3−β
2 πΓ(β − 1)

Γ
(β−∆12

2
)
Γ
(β+∆12

2
) . (2.56)

Although simple, the light transform (2.55) is not diagonal. Attempting to transform from
the Even/Odd basis to the helicity basis (via eq. (2.14)) would produce a matrix that is
not only non-diagonal, but also dense. The reason the light transform does not commute
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with helicity is that its calculation requires taking a discontinuity, which does not commute
with h, as found at the end of subsection 2.2. We will therefore work in the Even/Odd
basis, where the simple form of eq. (2.55) will enable us to write the Lorentzian inversion
formula very explicitly below.

The remaining ingredient is the inverse of a “Lorentzian” pairing between three-point
structures [37], which reads in the x = 1 gauge:

P a,b12[O],L = (−2ε3 · 1)d−2

22d−2vol(SO(d− 2))
∑
ε1,ε2

T a123(ε1, ε2, ε3)T b1̃2̃3S(ε∗1, ε∗2, ε3)(1) . (2.57)

The tilde denotes the shadow, and the superscript S denotes the full shadow where both
the scaling dimension and the spin are reflected (∆ 7→ d−∆, J 7→ 2−d−J). Similarly to the
Euclidean pairing discussed above, we find that it is nicely diagonal in the even/odd basis:

PEJ1J2[OL],L = (−4)J1+J2Ps,LN
E
J1J2OL × I , POJ1J2OL,L = −(−4)J1+J2Ps,LN

O
J1J2OL × I ,

(2.58)
where the factor NE/O is defined in eq. (2.32) and the subscript L denotes Weyl reflection
associated with the light-transform (∆ 7→1−J, J 7→1−∆). Ps,L is simply the Lorentzian
pairing of two scalars and one spinning operator [37]

Ps,L = (−1)d21− 3d
2

vol(SO(d− 2)) . (2.59)

The normalization NL
(a,b),(c,d) in the Lorentzian inversion formula (2.51) is then given as

NL
(a,b),(c,d) = 1

2∆+J(∆ + J − 1) L̂a,c(O1O2[OJ,∆])L̂b,d(O3O4[OJ,∆]) , (2.60)

where L̂ is a sort of inverse of the light transform with respect to the pairing:

L̂a,c(O1O2[OJ,∆])Lde(O1O2[OJ,∆])P c,eL (O1O2[O1−∆,1−J ]) = −iδdaPs,L . (2.61)

For scalars, it is straightforward to verify that the above expression reduces to

NL
s = 1

4κ
(∆12,∆34)
β , κ

(∆12,∆34)
β =

Γ(β−∆12
2 )Γ(β+∆12

2 )Γ(β−∆34
2 )Γ(β+∆34

2 )
2π2Γ(β − 1)Γ(β) . (2.62)

More generally, we can write explicitly the normalization factor in the spinning Lorentzian
inversion formula (2.51) in the Even/Odd basis:

NL
(a,b),(c,d) = 1

4
κ

(∆12,∆34)
β (−4)−

∑4
i=1 Ji

N
E/O
J1J2OL

N
E/O
J3J4OL

(
0 1
1 0

)
a,c

(
0 1
1 0

)
b,d

(2.63)

where a and c must have the same parity, as well as b and d. We set ∆12 = 0 if a, b are even
and ∆12 = 1 if they are both odd, and similarly for ∆34. (If operator 1 or 2 is a scalar,
there is only one structure a and we drop the corresponding matrix.)

Performing (2.51) is a bit challenging because evaluating the spinning conformal blocks
is generally a hard task. A nice idea, following ref. [9], is to “integrate-by-parts” the spin-up
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from eq. (2.43) acting on the block to get instead spinning-down operators acting on the
correlator:

cta,b(∆, J) = NL
(a,b),(c,d)

∫
dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2
G̃

(α,β)
J+d−1,∆−d+1(z, z̄)dDisc[PcαPdβD

(α,β)
↓ G(z, z̄)] ,

(2.64)
which will effectively reduce us to the scalar Lorentzian inversion formula. Eq. (3.31) below
gives a concrete expression in a specific basis of spin-down operators.

3 OPE data for spinning Generalized Free Fields

3.1 From Euclidean inversion and shadow representation

Using the shadow transform, the OPE data in MFT can be efficiently evaluated by the
Euclidean inversion formula [12]. It is especially effective for three-point functions in
momentum-space. To use this, it is best to write the Euclidean inversion formula (2.50) in
a covariant way

ca,b(∆, J) = N̂ (∆, J)(a,b),(c,d)

∫
ddx1 · · · ddx4

vol(SO(d+ 1), 1)〈1234〉(Ψ∆̃i

∆̃,J)c,d , (3.1)

where the tildes denote shadow operators. The factor N̂ is the same as N in eq. (2.48)
but with the factor S(3̃4̃[O]) dropped (ie. replaced by identity). The harmonic function
Ψ∆i

∆,J is a combination of block and shadow, which, importantly, can be written as integral
of two three-point functions (this is called the shadow representation):

(Ψ∆i
∆,J)a,b = S(34[Õ])b c (Ga,cJ,∆ + shadow) (3.2)

=
∫
ddx 〈12O(x)〉a〈Õ(x)34〉b . (3.3)

We now consider a Mean Field Theory four-point function:

〈1234〉 = 〈12〉〈34〉+ 〈23〉〈14〉+ 〈13〉〈24〉 . (3.4)

We focus on the t-channel contribution 〈23〉〈14〉 to illustrate the algorithm for computing
the s-channel OPE data in MFT. The u-channel contributions 〈13〉〈24〉 can be evaluated in
the same way, while the s-channel term 〈12〉〈34〉 is trivial: it is simply identity exchange.
Considering the term 〈23〉〈14〉, the integrals over x3, x4 in (3.1) boil down to the shadow-
transform for 3̃ and 4̃, and the remaining integrals are all removed by the gauge-fixing,
leaving a simple pairing [12]:

ct,MFT
a,b (∆, J) = µ(∆, J)(P a,c34Õ)−1S([1̃]2̃Õ)cdS(1[2̃]Õ)deS(12[Õ])eb . (3.5)

In words, MFT coefficients are products of simple operations: three shadows and a pairing.
The pairing and first two shadows were presented earlier in subsection 2.3. Before we

calculate the third shadow, let us revisit the shadow transform, defined in eq. (2.35). It
can be computed algebraically as multiplication in momentum space:∑

ε′1

K1̃1̃′(p)T1′23(p)a = S([O1]O2O3)a bT1̃23(p)b , (3.6)
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where K11′ is the Fourier transform of the two-point function of O1 [54]:

K11′(p) =
J∑
k=0
Kk(∆, J)(ε1 · p)k(p · ε′1)k(ε1 · ε′1)J−k|p|2∆−d−2k ,

Kk(∆, J) =
πd/2Γ(J + 1)2d−2∆+kΓ

(
d
2 + k −∆

)
Γ(J − k + ∆− 1)

Γ(∆− 1)Γ(k + 1)Γ(J + ∆)Γ(J − k + 1) . (3.7)

Applying this map to the helicity structures normalized as in eq. (2.10), we find the sim-
ple result

K11′(p)T±,±1̃′2O(p) =
π

3
2 Γ(3

2 −∆1)
(∆1 + J1 − 1)Γ(∆1 − 1) × T

±,±
12O (p) , (3.8)

which reproduces as ∆1 → J1 + 1 the formula for conserved current in eq. (2.37).
The third shadow transform is technically more difficult to evaluate since we defined

our structures in a frame where x3 =∞. The trick is to use the rule eq. (2.5) to interchange
x1 and x3 in position space, then Fourier transform back to the momentum space, where we
can apply eq. (3.6). These steps are somewhat lengthy (we found the Fourier transform in
eq. (B.4) helpful), but thankfully the last step turns out to simply multiply each structure
by an overall factor. This had to be the case since the shadow transform commutes with
h1 and h2. Trying a few cases we observe a simple pattern:

S(12[O])h1,h2
h′1,h

′
2

= δh1
h′1
δh2
h′2

42∆−3π
3
2 Γ(2 + J −∆)Γ(∆− 3

2)
Γ(∆− 1)Γ(∆ + J) ×

(2−∆)|h1+h2|
(∆− 1)|h1+h2|

. (3.9)

Combining the shadows (3.8) and (3.9) with the pairing (2.34) thus gives MFT coeffi-
cients (3.5):

ct,MFT
h1,h2,h̄3,h̄4

(∆, J) = δh4
h1
δh3
h2

25−4∆π
Γ(∆− 1)
Γ(∆− 3

2)
Γ(∆ + J)

Γ(J −∆ + 2)
Γ(J + 3

2)
Γ(J + 1) CJ1CJ2

×
(−J)|h1−h2|

(J + 1)|h1−h2|

(∆− 1)|h1+h2|
(2−∆)|h1+h2|

,

(3.10)

where the constant CJ is defined in eq. (2.37). The u-channel identity (if operators 1 and
3 are identical) gives the same result times (−1)J and with h3 and h4 swapped.

Eq. (3.10) can be used in the harmonic decomposition (2.44). Where are the poles
and corresponding OPE data? To read off the local OPE data, we have to keep in mind
that tensor structures in the helicity basis have poles at double-twist locations. To find
OPE data from residues, it is best to convert to the Even/Odd basis defined in eq. (2.14),
in which the position-space structures do not have poles. Performing the rotation, we get
extra gamma-functions which nicely combine to give scalar MFT coefficients, times the
same matrix in the even and odd cases:

ct,MFT,E/O(∆, J) = cE/O(∆, J)s


(−J)J1+J2 (∆−1)|J1−J2|
(J+1)J1+J2 (2−∆)|J1−J2|

0

0 (−J)|J1−J2|(∆−1)J1+J2
(J+1)|J1−J2|(2−∆)J1+J2

 CJ1CJ2 ,

(3.11)
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where we normalized it by the OPE data for scalars of twist 1 or 2 in the even and odd
cases, more precisely:

cE(∆, J)s = c(1, 1; ∆, J)s , cO
J (∆)s = 1

2c(1, 2; ∆, J)s . (3.12)

The scalar MFT data c(∆1,∆2; ∆, J)s can be found from earlier literature [55] and is
recorded in eq. (C.9) (with p = ∆1 + ∆2, a = b = ∆2−∆1

2 ).
For future reference, let us summarize all the ingredients in the Even/Odd basis. The

products of “easy” shadows, S([1̃]2̃Õ)S(1[2̃]Õ), are given as

SE = SEs NE
J1J2Õ(−4)J1+J2 × CJ1CJ2I , SO = 1

2S
O
s N

′
J1J2Õ(−4)J1+J2+1 × CJ1CJ2I , (3.13)

where SE/Os are just the scalar factor for (∆1,∆2) = (1, 1) and (1, 2) respectively [37]

SE = 4π4

(1− β)(τ − 2) , SO = −2π4 . (3.14)

The third shadow (3.9) yields

SE/O(12[O]) = Ss(12[O])

 (2−∆)|J1−J2|
(∆−1)|J1−J2|

0

0 (2−∆)J1+J2
(∆−1)J1+J2

 , (3.15)

with the same matrix for both even and odd, and where Ss is just the shadow coefficients
of scalars [12, 56]

Ss(12[O]) =
πd/2Γ(∆− d

2)Γ(J + ∆− 1)Γ
(1

2(J + ∆̃ + ∆12)
)
Γ
(1

2(J + ∆̃−∆12
)

Γ(∆− 1)Γ
(1

2(J + ∆ + ∆12)
)
Γ
(1

2(J + ∆−∆12)
)
Γ(J + ∆̃)

(3.16)

with ∆12 = 0 for parity-even and ∆12 = 1 for parity-odd cases. Finally, the pairing (2.34):

P
E/O
12O = δ

h′1
h1
δ
h′2
h2
× Ps ×NE/O

12O 4|h1|+|h2|(−1)|h1−h2| (J3 + 1)|h1−h2|
(−J3)|h1−h2|

. (3.17)

Multiplying these ingredients again according to (3.5) gives eq. (3.11).

3.2 OPE data and remarks on the leading trajectory

Let us now describe the OPE data which stems from eq. (3.11). When computing the
integral (2.44) as a sum of poles, one finds two sorts of terms: double-twist poles at
∆− J = 2 + 2n from the gamma-function in eq. (3.11), and spurious poles from the block,
at ∆−J = 3, 4, . . .. The position of the latter is set by their kinematical origin as zero-norm
descendants (“null states”) of the exchanged primary.

We are in the unfortunate situation that the physical and spurious poles overlap. In
principle, we should subtract the spurious poles using the results from ref. [45] for the
poles of spinning 3d blocks. We pursue a simpler, heuristic method, to be justified in the
next subsection. For scalar mean-field-theory with ∆1 = ∆2 = 1, the poles are simpler
and have been discussed in ref. [48]. Using eq. (3.9) there, we find that the spurious poles
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effectively double the OPE coefficient. On the other hand, the leading trajectory n = 0 has
no corresponding spurious pole and so does not double.

Such a relative factor 1
2 was also found in the spinning case [12], and so our tentative

guess is that the same happens in our basis and the only effect of spurious poles is to double
the non-leading trajectories, which leads to:

λE12Oλ
E
43O

∣∣
n,J

= −2 Res
∆=2+2n+J

cE,MFT(∆, J) (3.18a)

= 2CJ1CJ2

24n+2J

(J + 1) 1
2
(2n+ J + 1

2) 1
2

(n+ 1
2) 1

2
(n+ J + 1) 1

2

M(2 + 2n+ J, J) (n = 1, 2, 3, . . .),

λO12Oλ
O
43O

∣∣
n,J

= −2 Res
∆=2+2n+J

cO,MFT(∆, J) (3.18b)

= 2CJ1CJ2

24n+2J

(J + 1) 1
2
(2n+ J + 1

2) 1
2

(n+ 1)− 1
2
(n+ J + 3

2)− 1
2

M(2 + 2n+ J, J)
(
n = 1

2 ,
3
2 ,

5
2 , . . .

)
,

where M(∆, J) is the 2× 2 matrix

M(∆, J) =

 (−J)J1+J2 (∆−1)|J1−J2|
(J+1)J1+J2 (2−∆)|J1−J2|

0

0 (−J)|J1−J2|(∆−1)J1+J2
(J+1)|J1−J2|(2−∆)J1+J2

 . (3.19)

Some comments are in order. We recall that the first structure (opposite-helicity) exists
only for J ≥ J1 + J2. This is reflected in an overall zero from (−J)J1+J2 in the first entry.
Even below this range, the denominator always have fewer zeros than the numerator, so
the vanishing is never ambiguous. The range of the J-sums is built-in!

The second structure (same-helicity) is more subtle. It generically exists only for
J ≥ |J1 − J2|. But since 2 − ∆ = −2n − J , it may look like the second entry of the
matrix M diverges for the lowest few trajectories. However, inspection of the structures
TE12O reveals that these have corresponding zero for precisely those cases (a special case is
visible in eq. (2.18) with n = 1

2 , J = 1). The conformal blocks thus have a double zero,
which shields the singularity from the denominator. This means that mean-field-theory
doesn’t have operators at these places. For n = 0, we will find below that there is a single
leading trajectory.

The set of operators appearing in MFT can thus be characterized as:

• Opposite-helicity: one operator for each n ≥ 0 and J ≥ J1 + J2

• Same-helicity: one operator for each n ≥ 1 and J ≥ max(|J1 − J2|, J1 + J2 − n)

This spectrum is depicted in figure 3. (The helicity of the n = 0 double-twists is really
undefined.)

Let us further discuss the leading trajectory OPE data, n = 0. Since there are no
spurious poles, one might think that we should take half the above formula. This is correct
but misleading. The reason is that when n = 0 the same- and opposite- helicity structures
become degenerate, as visible from eq. (2.16). Helicity is simply not defined for n = 0.
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One can verify that this happens whenever O1,O2 are spinning operators, of any spin. The
resolution is to rotate to a new, non-degenerate basis near n = 0: TE,reg

123

TE,sing
123

 =

 1 0

− (−J)J1+J2 (J+1)|J1−J2|
(J+1)J1+J2 (−J)|J1−J2|

1
n

1
n

 TE,opp
123

TE,same
123

 . (3.20)

Despite 1/n both combinations are smooth around n = 0. Since the second structure
TE,sing

123 has a non-vanishing double-discontinuity (in fact it has poles 1/x2
12), its coefficient

is guaranteed to vanish in MFT. The fact that the two structures become T reg effectively
doubles the real n = 0 coefficient. In the rotated basis (TE,reg

123 , TE,sing
123 ), the leading-

trajectory data is thus given by

λE,rotated
12O λE,rotated

43O
∣∣
0,J = 2Γ(J + 1)2

Γ(2J + 1) × CJ1CJ2

(−J)J1+J2(J + 1)|J1−J2|
(J + 1)J1+J2(−J)|J1−J2|

(
1 0
0 0

)
. (3.21)

The above fully describes the OPE decomposition of t-channel exchange. To be fully
explicit, let us write out the s-channel OPE decomposition of the full MFT correlator
including identity in all three-channels, including color indices in the case that the theory
has multiple currents:

Gabcd,MFT = δabδcd

+
∑
n≥0

∑
J≥J1+J2

λE,same
12O λE,same

43O
∣∣
n,J

(
δbcδad + (−1)Jδacδbd

)
GE,same, E,same

∆,J

+
∑
n≥1

∑
J≥J0(n)

λE,opp
12O λE,opp

43O
∣∣
n,J

(
δbcδad + (−1)Jδacδbd

)
GE,opp, E,opp

∆,J

+
∑
n≥ 1

2

∑
J≥J1+J2

λO,same
12O λO,same

43O
∣∣
n,J

(
δbcδad + (−1)Jδacδbd

)
GO,same, O,same

∆,J

+
∑
n≥ 1

2

∑
J≥J0(n)

λO,opp
12O λO,opp

43O
∣∣
n,J

(
δbcδad − (−1)Jδacδbd

)
GO,opp, O,opp

∆,J , (3.22)

where J0(n) = max(|J1 − J2|, J1 + J2 − n) and the λ’s refer to elements of (3.18a). The
last two sums run over half-integer n.

Typically, one would further decompose the global symmetry indices into s-channel
irreps, and symmetrical versus antisymmetrical combinations. The t and u channels con-
tributions then effectively remove half the spins (the double-twist operators with the wrong
symmetry), and effectively double the surviving coefficients.

Let us cross-check the above MFT spectrum against direct counting. MFT operators
can be written as products of two operators and their derivatives: ∂#O1∂

#O2; the game is
to enumerate linear combinations that are primaries. An equivalent exercise is to enumerate
three-point structures of the form eq. (2.10) whose Fourier transform are polynomials in x.
Although finding such explicit polynomials is somewhat cumbersome, it is straightforward
to count them by making a generating function. We now summarize this exercise.

We make a generating function where a power q∆zJ represents an SO(3) multiplet of
dimension ∆ and spin J (that is, 2J + 1 states). Starting from a scalar operator φ of di-
mension ∆, we could characterize its descendants in terms of symmetric-traceless tensors,
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(a) two currents (J1 = J2 = 1)
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(b) one current and one stress tensor

Figure 3. Spectrum of double-twist operators of the form [JJ ]n,J and [JT ]n,J . Double circles
indicate multiplicity: there is a single trajectory for n = 0 and two for each n ≥ 1.

times Laplacian: (∂µ1 · · · ∂µJ − traces)(∂2)nφ, which contributes a term q∆+2n+JzJ . Sum-
ming over n and J gives a generating function q∆

(1−q2)(1−zq) which enumerates descendants
of a scalar. Omitting steps, we find similar generating functions for the descendants of
conserved currents and generic primaries:

Zconserved
J = qJ+1zJ

(1− q)(1− qz) , Zgeneric
∆,J = q∆ z

J + q(1 + z) qJ−zJq−z
(1− q2)(1− qz) . (3.23)

For conserved currents, the dimension-one generator responsible for 1
1−q is simply the curl

~∇ × •, that is, the numerator of eq. (2.25). To find the primaries that enter the OPE
product of two conserved currents, we have to match the generating functions:

Zconserved
J1 × Zconserved

J2 =
∑
n,J

cn,JZ
generic
2+n+J,J (3.24)

where the c’s are multiplicities of the various representations appearing. Putting in the
multiplicities from figure 3 and comparing the series for various values of J1, J2, we find
perfect agreement.

3.3 From Lorentzian inversion formula

Beyond MFT, the Euclidean inversion formula becomes less efficient since double-twist op-
erators contaminate the cross-channel OPE. We should thus seek another way to extract
the relevant OPE data: using the Lorentzian inversion formula. As a warm-up, we demon-
strate that we can reproduce the above OPE data from the Lorentzian inversion formula,
using spinning-down technology. As we will explain, within this framework it is straight-
forward to disentangle physical and spurious poles, so this calculation will also confirm the
decomposition (3.22). In this subsection, we restrict attention to parity-even four currents
(“VVVV”) as a concrete example.

– 20 –



J
H
E
P
0
6
(
2
0
2
1
)
0
4
1

In d = 3, all bosonic conformal blocks can be written as spin-ups of scalar conformal
blocks. In embedding space, a convenient set of spinning-up differential operators is [8]

Dij
ii = ZAi

(
(Xi ·Xj)

∂

∂XA
j

+ (Xi · Zj)
∂

∂ZAj
−XA

j

(
Xi ·

∂

∂Xj

)
− ZAj

(
Xi ·

∂

∂Zj

))
,

Dij
ij = ZAi

(
(Xi ·Xj)

∂

∂XA
i

+XA
j

(
Zi ·

∂

∂Zi

)
−XA

j

(
Xi ·

∂

∂Xi

))
,

Dij
iO = εABCDE ZAi X

B
i

∂

∂XiC

(
XD
j

∂

∂XjE
+ ZDj

∂

∂ZjE

)
. (3.25)

Dij
ii increases the spin and decreases the conformal dimension of ith operator by one unit

simultaneously. On the other hand, Dij
ij increases the spin of ith operator by one unit and

decreases the conformal dimension of jth operator by one unit simultaneously, while the
odd operator DiO only changes the first spin but not the dimensions. Using these operators,
(for example) our two parity-even three-point structures 〈V1V2O〉 can be constructed by
acting on scalar three-point functions 〈O1O2O〉 with five spin-up operators

〈V1V2O〉a = Pa(α)D
(α)
↑ 〈O1O2O〉(α) , D(α)

↑ =
(
D12

11D
21
22, H12, D

12
12D

21
22, D

21
21D

12
11, D

12
12D

21
21

)
,

(3.26)
where H12 is

H12 = 2
(
(X1 · Z2)(Z1 ·X2)− (X1 ·X2)(Z1 · Z2)

)
. (3.27)

As mentioned previously, it is important to note that the operators act on dif-
ferent three-point functions (α) as the dimensions ∆1 and ∆2 are shifted dif-
ferently for different operators. For example, the first and the third struc-
tures are actually (D12

11D
21
22, D

12
12D

21
21)〈O∆1+1O∆2+1O∆,J〉, and the fourth structure is

D12
12D

21
22〈O∆1O∆2+2O∆,J〉. Each of these can be written as a combination of the five basis

monomials in eq. (2.4) and ultimately we are interested only in the linear combinations
which produce the two conserved structures in our basis (2.16). We find that these combina-
tions, when acting on the “funny block” G̃(c,d)

J+d−1,∆−d+1, with external shadow operators are:

Paα =

−
√

2(β+1)(4−τ)
(∆−3)(∆−2)

(β+1)(∆−1)(4−τ)√
2(∆−3)

√
2(J+3)(β+1)(4−τ)

(J+1)(∆−3)(∆−2)

√
2(J+3)(β+1)(4−τ)

(J+1)(∆−3)(∆−2)

√
2(∆∆̃(J+5)−(J+1)2(J+4))

(J+1)(∆−3)(∆−2)
√

2(β+1)(4−τ)
(J+1)(J+2) −J(β+1)(4−τ)√

2(J+2)

√
2(β+1)(4−τ)
(J+1)(J+2)

√
2(β+1)(4−τ)
(J+1)(J+2)

√
2(∆∆̃−J(J+1))
(J+1)(J+2)

 ,
(3.28)

where β = ∆ + J and τ = ∆ − J . (The coefficients are different if we want to get the
currents instead of their shadows.)

After integrating by parts, the spinning-up operators D(α)
↑ become spinning-down op-

erators, in our case D(α)
↓ =

(
D̄21

22D̄
12
11, D̄H12 , D̄

21
22D̄

12
12, D̄

12
11D̄

21
21, D̄

21
21D̄

12
12

)
. The spinning-down

operators can be constructed from weight-shifting operators in [9], and we find convenient
to define them so they are adjoints to the above. This is readily done using the operator
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DZ from eq. (2.8):6

D̄ij
ii = −DAZi

(
(Xi ·Xj)

∂

∂XA
j

+ (Xi · Zj)
∂

∂ZAj
−XA

j

(
Xi ·

∂

∂Xj

)
− ZAj

(
Xi ·

∂

∂Zj

))
,

D̄ij
ij = −DAZi

(
(Xi ·Xj)

∂

∂XA
i

−XjA

(
d− 1 +

(
Xi ·

∂

∂Xi

)
+
(
Zi ·

∂

∂Zi

)))
,

D̄Hij = 2
(
(Xi · DZj )(DZi ·Xj)− (Xi ·Xj)(DZi · DZj )

)
,

D̄ij
iO = −εABCDE DAZiX

B
i

∂

∂XiC

(
XD
j

∂

∂XjE
+ ZDj

∂

∂ZjE

)
(3.29)

These are adjoint to the D’s up to a spin-dependent factor which can be traced to eq. (2.29),
namely:(

D12
11TJ1J2..., TJ1+1,J2...

)
= 1

(J1 + d−2
2 )(J1 + 1)

(
TJ1J2..., D̄

12
11TJ1+1,J2...

)
. (3.30)

This identity makes it trivial to integrate-by-parts.7 Boundary terms cannot arise in the
above pairing, because the integration variables are ultimately all gauge-fixed to a point.
For D̄Hij there is an extra factor 1

(J2+ d−2
2 )(J2+1) since both spins change by one unit.

Interestingly, we find that D̄ij
ij vanishes identically on conserved currents, so the last

three spin-down operators in our list vanish identically, reducing us to a two-dimensional
basis. It would be interesting to understand these simplifications from the perspective of
the bispinor formalism for AdS4/CFT3 [57].

To find the spinned-down Lorentzian inversion formula, we now have two options. The
first, as described so far, is to insert the matrix in eq. (3.28) inside eq. (2.63) and integrate-
by-parts. Since the last three spin-down operators vanish, we can write eq. (2.64) in terms
of two-by-two matrices. Generally, we have8

cta,b(∆, J) =
∑
α,β

κ
(α,β)
∆+J
4

∫
dzdz

z2z2

∣∣∣∣z − zzz

∣∣∣∣d−2
G̃

(α,β)
J+d−1,∆−d+1(z, z̄)dDisc[P̂a,αP̂b,βD(α,β)

↓ G(z, z̄)] ,

(3.31)
where, from eq. (2.63),

P̂a,α = (−4)J1+J2

J1!J2!(1
2)J1(1

2)J2

1
N
E/O
J1J2OL

(
0 1
1 0

)
ac

Pcα . (3.32)

Explicitly, for J1 = J2 = 1, the parity-even matrix evaluates to:

P̂Ea,α = 2
√

2
(β − 1)(τ − 2) ×

 −2
(J+1)(J+2)

J
(J+2)

2
(∆−3)(∆−2) −

(∆−1)
(∆−3)

 , (3.33)

6While DZ now acts on an embedding-space 5-vector Z, the dimension-dependent factor d−2
2 remains

the same as in eq. (2.8). See ref. [7].
7For the odd operators, we only verified that DiO is the adjoint of D̄iO when acting on scalar operators,

sufficient for our purposes.
8There are no possible boundary terms because the potential limits z, z = 0, 1 are not really “boundaries”.

The limit z → 0 is regulated, on the Euclidean and Regge sheets, by the fact that ∆ is continuous and
J > J∗, respectively. Furthermore, as discussed in [48], the integral over dDisc near z → 1 is defined most
precisely as a boundary-free “keyhole” type contour integral.
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where only ∆12 = 0 appears in κ and the block. For odd structures, in the spin-down basis
DO↓ = (D̄12

1OD̄
21
22, D̄

21
2OD̄

12
11),

P̂Oa,α = −
√

2
(J + 1)(∆− 2) ×

( 1
(J+2)(∆−1)

−1
(J+2)(∆−1)

1
J(∆−3)

1
J(∆−3)

)
. (3.34)

These matrices tell us how to convert the scalar inversion of the spinned-down correlators
(given below in eq. (3.36)) to OPE data in opposite/same-helicity structures.

There is a simple check: acting with the spin-down operators P̂a,αDα↓ on the three-point
spinning structure T b11O, we must get δba times a canonically normalized scalar three-point
structure T00O. In fact this gives a second method to directly find the matrix P̂a,α, by-
passing the spinning Lorentzian inversion formula. We find precise agreement between the
two methods. (The second one being admittedly more straightforward.)

These operators can be applied to any correlator. We now consider t-channel identity
exchange:

G = H23H14
(−2X2 ·X3)∆2+1(−2X1 ·X4)∆1+1 , (3.35)

which gives for example the even spinned-down correlator D↓G

D(1,1)
↓ G = −3

2y(ȳ + 1)(24y4 + 3y3(5− 4ȳ) + 3y2(ȳ(4ȳ + 3) + 1)

−y(ȳ + 1)(3ȳ(4ȳ + 3) + 1) + 3(ȳ + 1)2(ȳ(8ȳ + 7) + 1)) ,

D(2,2)
↓ G = −y(ȳ + 1)

(
y2 − y(ȳ + 1) + (ȳ + 1)2

)
,

D(1,2)
↓ G = D(2,1)

↓ G (3.36)

= −1
2y(ȳ + 1)

(
9y3 + y2(1− 5ȳ) + y(ȳ + 1)(5ȳ + 1)− 3(ȳ + 1)2(3ȳ + 1)

)
,

where we reparameterized the cross-ratios by (z = y
1+y , z̄ = 1

1+ȳ ).
Inserting in eq. (3.33) it remains to do the scalar inversion integrals of eqs. (3.36).

A good strategy is to expand in y → 0 to work out the integral over z twist-by-twist.
This also requires the lightcone expansion z → 0 for G̃J+d−1,∆−d+1(z, z̄) in the inversion
formula (2.64), which can be done by noting (see, eq. (A.24) in [48])

κ(β)
κ(β + 2p)(1− z)a+b

(
1− z

z̄

)d−2
GJ+d−1,∆−d+1

∣∣
q,p
∼ Bq,p z

J−∆
2 +n+d−1kβ+2m(z̄) , (3.37)

where Bq,p can be recursively solved by the quadratic Casimir equation [48]. Moreover, we
can take use of the following integral formula to do the integral over z̄ [48]

Iτ̂ (β) =
∫ 1

0

dz̄

z̄2 (1− z̄)a+bκa,bβ ka,bβ (z̄) dDisc
[(1− z̄

z̄

) τ̂
2−b

(z̄)−b
]

=
Γ(β2 − a)Γ(β2 + b)Γ(β2 −

τ̂
2 )

Γ(− τ̂
2 − a)Γ(− τ̂

2 + b)Γ(β − 1)Γ(β2 + τ̂
2 + 1)

. (3.38)
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With this strategy we can calculate the result analytically for any n > 0, and find a simple
common formula given below.

The case n = 0 is subtle as we discussed previously in subsection 3.2: the structures
become degenerate. In fact the whole matrix (3.33) blows up as τ → 2. The solution, as
above, is to apply a further rotation to the basis in eq. (3.20). In the (TE,reg

123 , TE,sing
123 )

basis, the matrix (3.33) becomes:

P̂E,rotated
a,α =

√
2

− 2J−1
(J−1)J(J+1)(J+2)(2J+1)

J
(J−1)(J+1)(J+2)(2J+1)

1
2(J−1)J(2J+1) − J+1

4(J−1)(2J+1)

 , (3.39)

which is now nicely finite. The same rotation will also be necessary in the computation of
anomalous dimensions in the next section.

For MFT correlators discussed here where D↓G is actually a finite sum of powers of
cross-ratios times Gegenbauer polynomials, a more compact and comprehensive trick is
available to extract the OPE data, see appendix C.2. Our result, for n ≥ 1, the coefficients
of even (opposite/same) helicity structures are then:

λE12Oλ
E
43O

∣∣
n,J

=
(J + 1) 1

2
(2n+ J + 1

2) 1
2

24n+2J+3(n+ 1
2) 1

2
(n+ J + 1) 1

2

 J(J−1)
(J+2)(J+1) 0

0 (2n+J+1)(2n+J+2)
(2n+J)(2n+J−1)

 , (3.40)
which is precisely eq. (3.18a) with J1 = J2 = 1. For the leading trajectory, in the rotated
basis we find

λE,rotated
12O λE,rotated

43O
∣∣
0,J = 2Γ(J + 1)2

Γ(2J + 1) ×
J(J − 1)

16(J + 2)(J + 1)

(
1 0
0 0

)
, (3.41)

which again agrees with eq. (3.21) with J1 = J2 = 1. This confirms that the only effect of
accounting for spurious poles is to double the residues of n > 0 trajectories.

4 Application to AdS4/CFT3

The simplicity and diagonal nature of the mean field OPE encourages us to look at the
leading corrections. In this section, we study CFT3 current correlators that are dual to
bulk YM4 gluon amplitudes at tree-level. The Lorentzian inversion formula will give us
the corresponding anomalous dimensions in terms t- and u- channel exchanges of con-
served currents.

These correlation functions have been previously discussed in momentum space. Re-
sults are remarkably tractable thanks to the fact that YM4 is conformally invariant (at
tree-level) and AdS4 is conformally flat [35, 38, 58–61]. Our goal is to obtain the cor-
responding OPE anomalous dimension, which we will then compare with the flat space
limit in the next section. The flat space limit of AdS/CFT [62–64] (RAdS → ∞) has not
been much studied for spinning operators (with a notable exception [65]) and we feel it is
important to clarify it. Similarly to the scalar case, one may expect (massless) amplitudes
to be encoded in the z → z̄	 “bulk-point” limit [66, 67], or equivalently the large-twist
limit of OPE data. This will be confirmed in the next section.
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Figure 4. Witten diagram for 〈V V V V 〉 with on-shell t-channel gluon exchange. Two even and
one odd coupling can be used in each vertex; u-channel is similar with 1 and 2 swapped.

4.1 Setup for current correlators

Our strategy is to use spin-up/spin-down operators to reduce the calculation to scalar
Lorentzian inversion formulas. The spin-down operators were described and validated in
section 3.3, acting on identity exchange in the t- and u-channel. The exchanged operator is
now a current, as shown in figure 4. (Double-trace exchanges do not contribute to tree-level
accuracy, thanks to the double-discontinuity.)

From the CFT perspective, each current exchange involves two parity-even and one
odd coupling, described below eq. (4.1), which maps one-to-one with bulk on-shell three-
gluon couplings. These can be obtained from a bulk Lagrangian including higher-derivative
corrections:

L = − 1
4g2

YM
F aµνF

µνa + θ

32π2F
a
µνF̃

µνa

− fabc

3g3
YM

(
gH Fµ

νaFν
ρbFρ

µc + g′H F̃µ
νaF̃ν

ρbF̃ρ
µc
)

+ · · · , (4.1)

where F̃µν = 1
2εµνσρF

σρ. We show that in appendix A that the couplings satisfy:

λ
(e1)
V V V = gYM

16
√

2
, λ

(e2)
V V V = gH

8
√

2
, λ

(o2)
V V V = g′H

4
√

2π
(4.2)

where the structures refer to the even/odd basis in eq. (2.14). (We recall that the first struc-
ture is the “opposite helicity” one which generically exists for spin J ≥ 2.) Having stated
this dictionary, in this section we shall present results in terms of the CFT couplings λ(i)

V V V .
We consider only the parity-even couplings. There are then four ways to dress the

graph in figure 4:

G11 , Yang-Mills vertex to Yang-Mills vertex ,
G22 , higher-derivative vertex to higher-derivative vertex ,
G12 , Yang-Mills vertex to higher-derivative vertex ,
G21 , higher-derivative vertex to Yang-Mills vertex . (4.3)
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In each case the t-channel block can be written as the spin-up of a scalar block, so after
spinning down D(c,d)

↓ G(z, z̄) in eq. (2.64) gives a 8th order differential equation acting on
scalar blocks. The cross-channel scalar blocks themselves are not known in closed form; in
appendix C.3 we provide the series expansion of the log z term to any order in z, which
is sufficient to calculate anomalous dimensions exactly, in terms of (y = z/(1 − z), ȳ =
(1 − z̄)/z̄), i.e., eq. (C.16). For example, at the leading order in the lightcone expansion
y → 0, we find

D↓G11 = log y
π

−
9y(ȳ+1)(ȳ3+27ȳ2+675ȳ+1225)

32ȳ9/2
3y(3ȳ3−29ȳ2−123ȳ−75)

4ȳ7/2

3y(3ȳ3−29ȳ2−123ȳ−75)
4ȳ7/2 −2y(9ȳ2+26ȳ+9)

ȳ5/2

+O(y2) , (4.4)

where we parameterize y = z/(1− z), ȳ = (1− z̄)/z̄. At the leading order, D↓G22 has the
same expression as D↓G11, but differs at the second and higher orders. Up to the leading
order, D↓G12 = D↓G21 is

D↓G12 = 3 log y
π

−
3y(ȳ+5)(ȳ3−9ȳ2+171ȳ+245)

32ȳ9/2
3y(ȳ3+ȳ2−9ȳ−25)

4ȳ7/2

3y(ȳ3+ȳ2−9ȳ−25)
4ȳ7/2 −2y(3ȳ2−2ȳ+3)

ȳ5/2

+O(y2) . (4.5)

The above expansions eq. (4.4) and eq. (4.5) would then be used in principle to obtain the
leading-twist anomalous dimensions by simply integrating over ȳ using the formula (3.38).
As discussed in subsection 3.2, the leading-twist analysis is a bit subtle due to a degen-
eracy in three-point structures, and we present it separately here. Since the rotation in
eq. (3.20) removes all divergences, the anomalous dimension can be computed using just
the logarithmic term in eq. (4.4). We find a result proportional to the leading order matrix( 1 0

0 0
)
, which is nontrivially compatible with the fact that there is a single leading-twist

family (the number of operators can’t change under small perturbations). The anomalous
dimension is then9

γE11
∣∣
n=0 = −

(
β4 − 4β3 + 28β2 − 48β + 32

(β − 4)(β − 2)(β − 1)β(β + 2)
(
(λe1
V V V )2 + (λe2

V V V )2) (4.6)

+ 2
1− βλ

e1
V V V λ

e2
V V V

)
(T + (−1)JU) .

At subleading twists, the calculation uses analogous expressions together with the
s-channel expansion (3.37) and (3.38).

4.2 Anomalous dimensions: Yang-Mills case

This yields the anomalous dimensions as analytic functions of β for fixed n ≥ 1. Including
the P̂ matrix in eq. (3.33), we obtain 〈cγ〉J,∆, which we then divide by the generalized free
OPE data (3.11) (with J1 = J2 = 1), to arrive at anomalous dimensions. It is important

9Since the second structure TE,sing
11O has a nonvanishing discontinuity, its ∼ (λ(e1)

V V V )2 OPE coefficient will
be required to predict the one-loop dDisc, in addition to the given anomalous dimension.
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to include both t- and u-channel identity in the denominator, which effectively doubles it
as discussed below (3.22). In the pure Yang-Mills case we find:

γE11 = 128(λ(e1)
V V V )2

π2

(
T + (−1)JU

)
diag

ψβ
2−n−2− ψβ

2 +n −
4

(β−2n)(β−2n+2) + 4
−2n+β−2

ψβ
2−n
− ψβ

2 +n+2 + 4
(β+2n−4)(β+2n−2) + 4

2n+β

 ,

(4.7)
where diag represents the diagonal matrix, and we have factored out T - and U -channel
color structures

T = f bcefade, U = facef bde . (4.8)

These should be viewed as operators acting on the initial pair, for example both have the
eigenvalue T, U 7→ CA when acting on a color-singlet state δab.

Eq. (4.7) (for n ≥ 1) gives the CFT3 analog of the four-point Parke-Taylor amplitude.
We note that to all orders in the 1/β, the two entries are interchanged under the reciprocity
relation β 7→ 2− β, which could have been anticipated from the off-diagonal nature of the
light transform in eq. (2.55). The fact that the anomalous dimension is diagonal correlates
with the vanishing of non-helicity-conserving flat space amplitudes at tree-level.

The Yang-Mills self-interaction also gives diagonal anomalous dimension the odd
double-twists (which have half-integer n):

γO11 = 128(λ(e1)
V V V )2

π2 diag


(
ψβ

2−n
− ψβ

2 +n −
8

(β−2n−2)(β−2n)

)(
T − (−1)JU

)
(
ψβ

2−n
− ψβ

2 +n + 8
(β+2n−2)(β+2n)

)(
T + (−1)JU

)
 . (4.9)

4.3 Higher-derivative corrections

Let us now record the pure higher-derivative corrections, which involve purely algebraic
expressions:

γE22 = 128(λ(e2)
V V V )2

π2 diag


(n(β−1)+2)(4n2+8(β−1)n+(β−2)β+4)
(2n−β−2)(2n−β)(2n−β+2)(2n−β+4)

(
−T − (−1)JU

)
(n(β−1)−2)(4(n+1)2+β2−2(4n+1)β)
(2n+β−4)(2n+β−2)(2n+β)(2n+β+2)

(
−T − (−1)JU

)
 , (4.10)

γO22 = 128(λ(e2)
V V V )2

π2 diag


(n(β−1)+2)(4n2+8(β−1)n+(β−2)β+4)
(2n−β−2)(2n−β)(2n−β+2)(2n−β+4)

(
T − (−1)JU

)
(n(β−1)−2)(4(n+1)2+β2−2(4n+1)β)
(2n+β−4)(2n+β−2)(2n+β)(2n+β+2)

(
T + (−1)JU

)
 . (4.11)

The even and odd matrices are identical up to some signs, and again reciprocity β 7→ 2−β
swaps the trajectories up to a minus sign.

The G12 contributions (one Yang-Mills and one higher-derivative vertex) violate helic-
ity conservation and give purely off-diagonal anomalous dimensions. Since the Lorentzian
inversion formula gives us 〈cγ〉J,∆, we divide the off-diagonal terms by the geometric mean
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of MFT coefficients to define a symmetrical anomalous dimension matrix γeven
12 = γeven

21 :

γE12 = 128λ(e1)
V V V λ

(e2)
V V V

π2 (4.12)

× −4n(β − 1)
√

(β − 2n)(β − 2n+ 2)(β(β − 2) + 4n2 − 4)(T + (−1)JU)
(β − 2n+ 2)(β − 2n)

√
(β − 2n− 4)(β − 2n− 2)(β + 2n− 4)(β + 2n− 2)(β + 2n)(β + 2n+ 2)

(
0 1
1 0

)
.

The odd γ12 is the same and γ21 is also identical up to an overall minus sign (such that the
sum vanishes: γO12 + γO21 = 0, which will be in agreement with symmetries of the scattering
amplitude).

We end this section by giving the large-n limit of above anomalous dimensions, which
will be compared in the next section with flat-space 2-to-2 gluon scattering amplitudes:

γE11|n→∞ = 128(λ(e1)
V V V )2

π2 (T + (−1)JU)diag

ψJ−1 − log(2n) + 2
J −

1
(J+1)(J+2)

ψJ+1 − log(2n)

 ,

γO11|n→∞ = 128(λ(e1)
V V V )2

π2

 (ψJ+1 − log(2n)− 2
J(J+1)

)
(T − (−1)JU)(

ψJ+1 − log(2n)
)
(T + (−1)JU)

 ,

γ
E/O
22 |n→∞ = 128(λ(e2)

V V V )2

π2

 12n4(∓T+(−1)JU)
(J−1)J(J+1)(J+2) 0

0 0

 ,

γ
E/O
12 |n→∞ = 128λ(e1)

V V V λ
(e2)
V V V

π2
−n2(T + (−1)JU)√

(J − 1)J(J + 1)(J + 2)

(
0 1
1 0

)
,

γ
E/O
21 |n→∞ = 128λ(e1)

V V V λ
(e2)
V V V

π2
∓n2(T + (−1)JU)√

(J − 1)J(J + 1)(J + 2)

(
0 1
1 0

)
. (4.13)

We note that each higher-derivative correction λ
(e2)
V V V comes accompanied with a power

of n2 ∼ s, as expected from bulk dimensional analysis. Furthermore, we see that the
difference between even- and odd- same-helicity anomalous dimensions vanishes at large-n:

γE,same
11 − γO,same

11 = 128(λ(e1)
V V V )2

π2
6(T + (−1)JU)

(β2 + n− 2)4
∼ 1
n4 . (4.14)

This indicates that the same-helicity amplitudeM++++ vanishes in the flat-space limit (as
expected). However, we find it remarkable that it is not identically zero in AdS space. This
suggests that, in a more precise treatment where the flat-space limit is defined as R→∞
as opposed to s → ∞, a distributional term near s = 0 may survive; such terms could
potentially give a new perspective on four-dimensional unitarity and the rational one-loop
amplitudeM(1)

++++. We leave this to future work.

5 Large-n limit from gluon scattering amplitudes

There is a close relation between the anomalous dimensions at large dimension in a CFTd
and scattering amplitudes of a dual QFTd+1 in the flat space limit of AdS. This can be
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X1

X2

X3

X4

P

Figure 5. Bulk-point kinematics in Lorentzian cylinder of AdS. X1 and X2 are at Lorentzian time
−π/2, X3 and X4 are at Lorentzian time π/2, where particles are focused on the bulk-point P .

seen for example by considering kinematic configurations which focus particles — such
as the analytically continued z → z “bulk-point” limit, see for example [62–64, 66–68].10

For massless external particles (dual to our currents), since the past and future states are
connected by time π on the cylinder, the scattering phase is related to CFT anomalous
dimensions by the simple dictionnary

γn,J |n→∞ → −
1
π
aJ , sR2 = 4n2 , (5.1)

where aJ is the phase shift at angular momentum J , s is the Mandelstam invariant of
the bulk scattering process, and R is the AdS radius. We often take R = 1 below for
simplicity and take s 6= 0, so the limit is equivalent to n →∞. (In general the amplitude
maps to a weighted average of anomalous dimensions. A one-loop example is provided
in [50].) We expect this relation to work for spinning operators as well, for suitably defined
partial waves.

5.1 Partial waves in massless QFT4

Two-particle scattering states in QFT4 can be organized according to their SO(3) spin
in the rest frame of their total momentum, P = p1 + p2. Since rotations commute with
helicity, we can choose a basis of states with definite helicity. For definiteness, we focus
here on the case of two massless spin 1 particles.

We use the spinor-helicity formalism where each null momentum is factorized into a
product of spinors, p/i = |i]〈i|, see [73]. Under little-group rotations of spinors |i] and |i〉
by opposite phases, a state of helicity h transforms like |i]2h. A two-particle state can
be treated like a single massive particle of momentum P and spin J , which in index-free
notation is a polynomial ∼ |ε〉2J in a left-handed spinor |ε〉. (There is no need to use right-
handed spinors, since P can be used to convert one into the other, see [74].) Lorentz and

10This kinematic configuration is, however, modified if external particles are massive [69–72].
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little-group symmetries then uniquely fix the matrix elements of two-particle states ΨJ
±:

〈2−1−|ΨJ
−−〉 = 〈ε1〉J〈ε2〉J

〈12〉J−1[12] , 〈2+1−|ΨJ
−+〉 = 〈ε1〉

J+2〈ε2〉J−2

〈12〉J ,

〈2+1+|ΨJ
++〉 = 〈ε1〉J〈ε2〉J

〈12〉J+1/[12] , 〈2−1+|ΨJ
+−〉 = 〈ε1〉

J−2〈ε2〉J+2

〈12〉J .

(5.2)

More precisely, symmetries fix the states up to a power of s = −P 2, which we chose so that
all states have the same dimension. We further define the state |ΨJ

h1h2
〉 to be orthogonal

to gluons of other helicity.
In the above kinematic factors we treat the two particles as distinguishable. These are

related to actual gluon states by adding color labels and accounting for Bose symmetry:
fully decorated states can be defined as

〈3h3c4h4d|ΨJ,ab
h1h2
〉 = δadδbcδh4

h1
δh3
h2
〈3h34h4 |ΨJ

h1h2〉+ δacδbdδh3
h1
δh4
h2
〈3h34h4 |ΨJ

h1h2〉 . (5.3)

Since interactions can change helicities, the action of the S-matrix on these states takes
the form of a 4× 4 matrix:

S|ΨJ
h1a,h2b〉 =

∑
h3,h4,c,d

SJh1a,h2b
h4d,h3c|ΨJ

h3c,h4d〉+ multi-particles . (5.4)

As is customary, we subtract the identity part: S = 1 + iA, where A is the scattering
amplitude. In the 2 → 2 sector, SJ12

43 = 1
2(δ4

1δ
3
2 + δ3

1δ
4
2) + iaJ12

43, where we use collective
indices in δ4

1 = δh4
h1
δda. The partial wave a is then simply the amplitude in the |Ψ〉 basis:

aJ = A⊗ |ΨJ〉 , (5.5)

which can be computed as a phase-space integral. To be fully explicit with indices (see
also eq. (2.16) of [75]):

aJh1a,h2b
h4d,h3c = 1

2
∑

h′1,h
′
2,a
′,b′

∫
dΩ

64π2

〈3h3c4h4d|A|1a′h′12b′h′2〉〈1
h′1a
′2h′2b′ |ΨJ

h1a,h2b
〉

〈3h34h4 |ΨJ
h3,h4
〉

(5.6)

= 1
16π

∫
dΩ
4π 〈3

h3c4h4d|A|1ah12bh2〉
〈1h12h2 |ΨJ

h1,h2
〉

〈3h34h4 |ΨJ
h3,h4
〉
. (5.7)

The second form will be particularly useful for calculations. Notice that the two terms in
eq. (5.3) simply canceled the symmetry factor 1

2 . In this integral, p3 and p4 are held fixed
and dΩ represents the solid angle of ~p1 in the rest frame of P .

The angular integral can be conveniently parametrized in terms of spinors via [76]

|1〉 = cos θ|4〉 − sin θeiφ|3〉 , |2〉 = sin θe−iφ|4〉+ cos θ|3〉 , (5.8)

with analogous expressions for the conjugate spinors |1] and |2] with the phase reversed
φ 7→ −φ. In the rest frame of P , the variables θ and φ represent physically (half) the
azimuthal and polar angle with respect to p1. The measure is then∫

dΩ
4π =

∫ 2π

0

dφ

2π

∫ π
2

0
sin(2θ)dθ . (5.9)
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It is important to note that both the numerator and denominator in eq. (5.7) depend on
|ε〉, p3 and p4, in addition to the integration variables θ, φ. However, since the result of the
integral is determined by symmetry, the ratio after doing the integral is guaranteed to be
a pure number independent of these variables.

This method allows us to define partial waves without having to worry about the
normalization of the states. The idea is that the eigenvalues of the matrix SJ12

43 map to
weighted averages of CFT anomalous dimensions e−iπγ . To leading order in perturbation
theory, this relation gives simply, as quoted above:

γJ12
43 ≈ − 1

π
aJ12

43. (5.10)

Surprisingly, the exact same relation has an interpretation purely in the context of QFT: the
phase of the S-matrix acting on form factors of local operators gives the dilatation operator
of the QFT: SF∗ = e−iπDF∗ [75]. This was used there to compute anomalous dimensions
of local operators of a QFT4, as labelled by their two-particle form factors. (For example,
the infrared-safe combination γ0

++
++−γ2

+−
+− acting on a color-singlet state computes the

QCD β-function.) Here γJ12
43 instead gives holographically a CFT3 anomalous dimension

γ(n) where 4n2 = sR2 is large. It is amusing that anomalous dimensions in the bulk
QFTd+1 and boundary CFTd are computed by literally the same formula.

5.2 Anomalous dimensions in Yang-Mills theory

On-shell amplitudes in YM4 are recorded in appendix D. We use these on-shell amplitudes
together with eq. (5.7) to extract the corresponding partial-wave amplitudes, from which
we will find perfect agreement with CFT eq. (4.13).

We begin with the pure Yang-Mills theory, then add higher-derivative corrections.

5.2.1 Pure Yang-Mills

Using Yang-Mills amplitudes eq. (D.4), we can readily evaluate (5.7). For example,
we obtain

(aYM2)−+
−+ = g2

YM
8π〈ε3〉J−2〈ε4〉J+2

∫ 2π

0
dφ

∫ π
2

0
dθ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J+2

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J−2 cos4 θ × (T cot θ + U tan θ) ,

(aYM2)−+
+− = g2

YM
8π〈ε3〉J−2〈ε4〉J+2

∫ 2π

0
dφ

∫ π
2

0
dθe4iφ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J−2

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J+2 sin4 θ × (T cot θ + U tan θ) , (5.11)

and (aYM2)+−
−+ = (aYM2)−+

+− when the integral is evaluated. Same-helicity partial-
wave amplitudes give

(aYM2)−− −− = (aYM2)++
++

= g2
YM

8π〈ε3〉J〈ε4〉J
∫ 2π

0
dφ

∫ π
2

0
dθ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J ×
(
T cot θ + U tan θ

)
, (5.12)
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and other helicity-violation terms identically vanish, e.g., a−+
−− = a−−

−+ = 0. It is
worth noting that above integrals fail to converge due to IR divergence. In the context of
computing UV anomalous dimensions in QFT, these could be subtracted using that the
stress-tensor is protected [75]. However, in our context these reflect physical divergences
of bulk anomalous dimensions as RAdS → ∞. We thus regularize the above equations by
introducing a small-angle cut-off ε < θ < π

2 − ε which we will then compare with the bulk
cutoff n→∞. The azimuthal integral can be readily evaluated, which gives

(aYM2)−+
−+ = −g

2
YM
4π

(
γE + log ε+ ψJ−1 + 2

j
− 1

(j + 2)(j + 3) + 3
(j − 1)4

)
T

+ 3g2
YM

4π(J − 1)4
(−1)JU ,

(aYM2)−+
+− = −g

2
YM
4π

(
γE + log ε+ ψJ−1 + 2

j
− 1

(j + 2)(j + 3) + 3
(j − 1)4

)
(−1)JU

+ 3g2
YM

2π(J − 1)4
T ,

(aYM2)−− −− = (aYM2)++
++

= −g
2
YM
4π

(
γE + log ε+ ψJ+1

)
(T + (−1)JU) . (5.13)

As a simple check, acting on color-singlet states (T, U 7→ CA) and taking large spin, we
reproduce the famous logarithmic scaling of gauge theories, γ = −a

π → +g2
YM

2π2 log J .
To compare with anomalous dimensions evaluated in CFT, we should rotate to par-

ity basis

(aYM2)E = 1
2diag

 (aYM2)−+
−+ + (aYM2)−+

+− + (+↔ −)

(aYM2)−− −− + (aYM2)++
++

 ,

(aYM2)O = 1
2diag

 (aYM2)−+
−+ − (aYM2)−+

+− + (+↔ −)

(aYM2)−− −− + (aYM2)++
++

 , (5.14)

where (+↔ −) denotes flipping all helicity. Imposing following simple identification

ε = e−γE

2n , (5.15)

and using λ(e1)
V V V = gYM/(16

√
2) from eq. (4.2), we then find a perfect match with the CFT

anomalous dimension in eq. (4.13):

γ
E/O
11 |n→∞ = − 1

π
(aYM2)E/O . (5.16)

5.2.2 Higher-derivative corrections

Let us start with the pure higher-derivative interaction (e.g. at both vertices). Using
the amplitudes recorded in eq. (D.5), we can immediately conclude that (aH2)−− −− =
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(aH2)++
++ = 0, because MH2

1−2−3+4+ only have s-channel pole and thus is evaluated to
be identically zero, which nicely agrees with predictions from CFT. On the other hand,
(aH2)−+

−+ and (aH2)−+
+− contributes with T and U factors separately, giving

(aH2)−+
−+ = g2

H
32π〈ε3〉J−2〈ε4〉J+2

∫ 2π

0
dφ

∫ π
2

0
dθ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J+2

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J−2(cos θ)3 sin θ(cos(2θ)− 3)× U ,

(aH2)−+
+− = g2

H
32π〈ε3〉J−2〈ε4〉J+2

∫ 2π

0
dφ

∫ π
2

0
dθe4iφ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J−2

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J+2(sin θ)3 cos θ(cos(2θ) + 3)× T . (5.17)

We can readily evaluate the integrals and find

(aH2)−+
−+ = 3g2

Hs
2

4π2(J − 1)4
(−1)JU , (aH2)−+

+− = 3g2
Hs

2

4π2(J − 1)4
T , (5.18)

and simultaneously flipping helicity + ↔ − gives the same answer. Rotating to the
Even/Odd parity basis readily gives

(aH2)E/O = 3g2
Hs

2

4π2(J − 1)4

( (
∓ T + (−1)JU

)
0

0 0

)
. (5.19)

Using λe2
V V V = gH/(8

√
2) from eq. (4.2) and s = 4n2 from eq. (5.1), we achieve a perfect

agreement with CFT anomalous dimensions from eq. (4.13).

γ
E/O
22 |n→∞ = − 1

π
(aH2)E/O . (5.20)

The contact ambiguity that has the same scaling dimension as the a2
H interaction (see

eq. (D.5)) affects the J = 2 OPE data, making the preceding partial wave valid only for
J > 2. We believe that all other results are valid for J > 1 (with similar comments applying
to the Lorentzian inversion formula results from the preceding section).

Finally, let us look at the product of Yang-Mills and higher-derivative couplings. Here,
there are two kinds of amplitudes, for exampleM−−+− andM−+++, which is not symmet-
ric and thus give slightly different partial-wave amplitudes that form a non-symmetric and
anti-diagonal matrix; eigenvalues of the resulting matrix should agree with CFT eigenvalues
from eq. (4.13) (that is, we only compare up to similarity transformation).

For example, we find some of (amix) = a
∣∣
gYMgH

forM−−+− type mixing reads

(amix)−+
−− = − gYMgHs

8π〈ε3〉J〈ε4〉J
∫ 2π

0
dφ

∫ π
2

0
dθe−2iφ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J+2

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J−2 sin(2θ)× (T cot θ + U tan θ) ,

(amix)−− +− = − gYMgHs

8π〈ε3〉J−2〈ε4〉J+2

∫ 2π

0
dφ

∫ π
2

0
dθe2iφ(〈ε4〉 cos θ − 〈ε3〉 sin θeiφ)J

×(〈ε3〉 cos θ + 〈ε4〉 sin θe−iφ)J sin2 θ cos2 θ × (T cot θ + U tan θ) . (5.21)
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(amix)−+
++ gives the same as (amix)−+

−−, and (amix)−− −+ is similar to (amix)−− +− but
flipping e2iφ → e−2iφ. Though the integrand looks a bit different when we flipping +↔ −,
we find they give the same result

(amix)−+
−− = (amix)−+

++ = − gYMgHs

8πJ(J − 1)
(
T + (−1)JU

)
,

(amix)−− −+ = (amix)−− +− = − gYMgHs

8π(J + 1)(J + 2)
(
T + (−1)JU

)
, (5.22)

and the same for flipping ± → ∓. Now we can rotate to the parity basis. To compare
with CFT calculation where we record γ12 and γ21 separately, we should be careful about
clarifying amix

12 and amix
21 : γ12 corresponds to amix with different helicity in (h2, h3) , and

γ21 corresponds to amix with same helicity in (h2, h3). We find

(amix
12 )E/O = 1

2

(
0 (amix)−+

−− + (amix)+−
++

(amix)−− +− + (amix)++
−+ 0

)
,

(amix
21 )E/O = ±1

2

(
0 (amix)−+

++ + (amix)+−
−−

(amix)−− −+ + (amix)++
+− 0

)
. (5.23)

The signs work out so that, when we add the contributions from the two vertices, the
parity-even part doubles and the odd part cancels out (aO12 + aO21 = 0), as found in the
preceding section. Using the dictionary λe2

V V V = gH/(8
√

2) and λe2
V V V = gH/(16

√
2) from

eq. (4.2) and s = 4n2, we find that the eigenvalues of amix precisely coincide with γ12 and
γ21 in eq. (4.13) up to −1/π, i.e.,

γE/O
∣∣
n→∞ ∼ −

1
π

(amix)E/O , (5.24)

and ∼ denotes the equivalence up to similarity transformation.

6 Conclusion

In this paper, we introduced a helicity basis for conformal blocks of conserved currents of
any spins in three-dimensional CFTs. We observed that the concept of helicity is confor-
mally invariant (see subsection 2.2) and can be defined without reference to any particular
formalism such as momentum space. This ensures that the helicity basis plays nicely with
crossing symmetry. We found evidence of this in the OPE decomposition of mean-field
correlators, which turned out to be nicely diagonal (see eq. (3.10), and we further com-
puted the CFT3 OPE data dual to tree-level gluon scattering of Yang-Mills theory in AdS4,
including higher-derivative corrections.

The YM4 calculation was done using the spinning Lorentzian inversion formula (see
eq. (4.7), (4.9) and following), which gives the OPE data for sufficiently large spin J > J∗,
where we expect J∗ = 1 for the pure Yang-Mills theory without higher-derivative corrections
and J∗ = 2 with them. The anomalous dimensions follow a simple diagonal/off-diagonal
pattern and precisely match, in the large-twist limit, with the partial waves in the flat
space limit of the bulk theory, shown in eq. (4.13). We found a simple one-to-one dictionary
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between on-shell three-point interactions in bulk AdS4 and three-point helicity structures
(see eq. (A.14)).

We expect that a calculation of the 6j symbol (also known as crossing kernel) in the
helicity basis could thus greatly help bootstrap calculations involving conserved currents
and stress tensors in 3d CFTs. We expect 6j symbols to be diagonal in the helicity basis. It
is also worth exploring if this basis could help numerical work by diagonalizing certain steps.

In higher spacetime dimensions, whether a basis exists which would diagonalize mean-
field correlators remains an open question. Better understanding the flat-space limit of
massless-massless-massive three-point functions could shed light on this question.

In perturbation theory, our findings pave the way for a study of loop corrections in
YM4 with a four-dimensional treatment of infrared effects. Compared with flat space, AdS
physics comes with a built-in infrared regulator, and an interesting fact is that leading
double-twist states (the n = 0 trajectory) do not have a definite helicity (see eq. (3.21)).
The notion that zero-energy gluons do not have helicity resonates with findings from the
asymptotic symmetry context (see for example [77]), and it would be interesting to make
this connection closer. Eq. (4.14) suggests that the tree-level amplitude for four same-
helicity gluons is not identically zero even in flat space, but retains a sort of distributional
component around zero energy, which could help refine unitarity constraints at loop level
in flat space.

Nonperturbatively, we expect the helicity basis to be particularly convenient for un-
covering the implications of crossing symmetry on stress tensor correlators in CFT3 and
the dual gravitational physics.
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A 〈V V V 〉 from Witten-diagram

In this appendix, we start from AdS Lagrangian in d = 3 to derive 〈V V V 〉 three-point
functions. From helicity basis we constructed in the main text, it follows that 〈V V V 〉
has three independent structures, and it is expected the first structure corresponds to the
Yang-Mills vertex and the higher-derivative coupling in AdS is captured by the second two
(the odd and even “same-helicity” ones, which are analytic in spin for J ≥ 0). Our starting
point is the following Lagrangian for Yang-Mills in AdS (omitting gravity):

L = − 1
4g2

YM
F aµνF

µνa + θ

32π2F
a
µνF̃

µνa

− fabc

3g3
YM

(
gH Fµ

νaFν
ρbFρ

µc + g′H F̃µ
νaF̃ν

ρbF̃ρ
µc
)

+ · · · , (A.1)
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where a, b, c are SU(N) group indices, fabc is the structure constant, F̃µν = 1
2εµνσρF

σρ

and · · · is other terms that are not relevant to our purpose. After rescaling the fields by
the coupling to make A canonically normalized, it follows that we have two three-point
gluon vertices

Yang-Mills: − gYM fabc∂µA
a
νA

µbAνc ,

Higher-derivative: − gH
3 fabc Fµ

νaFν
ρbFρ

µc + odd part ,
(A.2)

where only the linearized part of Fµν will contribute in the second case.
It is most convenient to work with the AdS embedding formalism [78] where the bulk-

to-boundary propagator with conformal dimension ∆ and spin J is [78]

Π∆,J(Y,W ;X,Z) = C(∆, J)
(
(−2X · Y )(W · Z) + 2(W ·X)(Z · Y )

)J
(−2X · Y )∆+J , (A.3)

whereX and Z are embedding coordinate and auxiliary polarization respectively for bound-
ary CFT, similarly Y andW are (d+2)-dimensional embedding coordinate and polarization
for the bulk AdSd+1, which are constrained by

X2 = X·Z = Z2 = 0 , Y 2 = −1 , Y ·W = W 2 = 0 , (A.4)

and have the further redundancy Z ' Z + αX. The normalization factor reads

C(∆, J) = (J + ∆− 1)Γ(∆)
2π d2 (∆− 1)Γ(∆ + 1− d

2)
. (A.5)

Derivatives in AdS can be evaluated using the bulk covariant derivative operator [78]

∇A = ∂

∂Y A
+ YA

(
Y · ∂

∂Y

)
+WA

(
Y · ∂

∂W

)
. (A.6)

which commutes with the constraints. It is also convenient to introduce the differential
operator KA [78]

KW
A =

(
∂

∂WA
+ YA

(
Y · ∂
∂W

))(
d− 3

2 +W · ∂
∂W

)
− 1

2WA

(
∂2

∂W ·∂W
+
(
Y · ∂
∂W

)2)
,

(A.7)
which helps do index contractions in AdS:∑

W

f(W ∗)g(W ) = 1
J !(d−1

2 )J
f(KW )g(W ) . (A.8)

With these ingredients, we are ready to compute 〈V V V 〉 by performing the following
integrals over (Euclidean) AdS Y 2 = −1:

〈V (X1)V (X2)V (X3)〉YM

= −gYMf
abc C

3
2
d−1,1

∫
EAdS

dY
∑

W1,W2

(W ∗1 · ∇Πd−1,J(Y,W ∗2 ;X1, Z1))

×Πd−1,J(Y,W1;X2, Z2)Πd−1,J(Y,W2;X3, Z3) + (5 permutations)
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〈V (X1)V (X2)V (X3)〉H

= −2gHf
abc C

3
2
d−1,1

∫
EAdS

dY
∑

W1,W2,W3

×
(
W ∗1 · ∇Πd−1,1(Y,W2;X1, Z1)−W2 · ∇Πd−1,1(Y,W ∗1 ;X1, Z1)

)
×
(
W ∗2 · ∇Πd−1,1(Y,W3;X2, Z2)−W3 · ∇Πd−1,1(Y,W ∗2 ;X2, Z2)

)
×
(
W ∗3 · ∇Πd−1,1(Y,W1;X3, Z3)−W1 · ∇Πd−1,1(Y,W ∗3 ;X3, Z3)

)
, (A.9)

where the factor C
3
2
d−1,1 ensures our V V two-point function follows the CFT normalization.

The integrals can be done in elementary ways, for example using Feynman/Schwinger
parameters. We obtain (in d = 3):

〈V V V 〉YM = 3gYM

16
√

2
fabc

H23V1 +H13V2 +H12V3 + V1V2V3

(−2X1 ·X2) 3
2 (−2X1 ·X3) 3

2 (−2X2 ·X3) 3
2
,

〈V V V 〉H = −gH

8
√

2
fabc

H23V1 +H13V2 +H12V3 + 5V1V2V3

(−2X1 ·X2) 3
2 (−2X1 ·X3) 3

2 (−2X2 ·X3) 3
2
, (A.10)

where Hij follows the definition in eq. (3.27) and Vi is defined by (see [7] for more details)

Vi := Vi,jk = (Xi ·Xk)(Zi ·Xj)− (Xi ·Xj)(Zi ·Xk)
Xj ·Xk

. (A.11)

To project onto the conformal frame (0, x,∞), we parameterize Xi, Zi (in embedding light-
cone coordinates) as

X1 = (1, 0, 0) , Z1 = (0, 0, ε1) , X2 = (1, x2, x) , Z2 = (0, 2ε2 · x, ε2) ,
X3 = (0, 1, 0) , Z3 = (0, 0, ε3) . (A.12)

We thus end up with

〈V V V 〉YM = 3gYMf
abc

16
√

2|x|3

[
(x · ε1)(ε2 · ε3) + (x · ε2)(ε1 · ε3)− (x · ε3)(ε1 · ε2)

+(x · ε1)(x · ε2)(x · ε3)
x2

]
,

〈V V V 〉H = −gHf
abc

8
√

2|x|3

[
(x · ε1)(ε2 · ε3) + (x · ε2)(ε1 · ε3)− (x · ε3)(ε1 · ε2)

−3(x · ε1)(x · ε2)(x · ε3)
x2

]
. (A.13)

Comparing the above results with MVBV (see eq. (2.4) and eq. (2.16)) for conserved
currents, the agreement can be easily observed and the OPE coefficients can be readily
read off

λ
(e1)
V V V = gYM

16
√

2
, λ

(e2)
V V V = gH

8
√

2
, λ

(o2)
V V V = g′H

4
√

2π
, (A.14)

where we strip off color factors by defining 〈V V V 〉 three-point functions as

〈V V V 〉a = fabc × λaV V V T a111 , (A.15)

in which a runs through structures in eq. (2.14).
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B Simplifying Fourier transforms using spinors

We find that much of the calculations can be streamlined analytically by representing the
polarization vectors as a product of two spinors (see also [12]).

Given a two-component spinor |ε〉, we define 〈ε| ≡ |ε〉T ·iσ2, and parametrize the null
polarizations as

εµi ≡
1
2〈εi|σ

µ|εi〉 (B.1)

where σµ, µ = 1, 2, 3, are Pauli matrices. This vector is automatically null. Other useful
identities include:

〈a|σµ|b〉〈c|σµ|d〉 = −〈ac〉〈bd〉 − 〈ad〉〈bc〉, (ε1, p, ε3) = i

2〈ε1ε3〉〈ε1|p|ε3〉 .
(B.2)

The three-point helicity structures in eq. (2.10) are very simple in terms of spinors:

T±,±123 (p) = (4π) 3
2

2τ1+τ2−∆3

(−i〈ε3|p|ε3〉√
2

)J3−J1−J2

〈ε1ε3〉2J1〈ε2ε3〉2J2 |p|β12;3−3

×
(1− ξ1,p,3

2

)2J1 (1 + ξ2,p,3
2

)2J2
(B.3)

where ξi,p,3 ≡ 〈εi|p|ε3〉|p|〈εiε3〉 is a measure of spin along the p axis.
When we go to Fourier space using eq. (2.12) and its derivatives, we find remarkable

simplifications thanks to the fact that the vector ε3 is orthogonal to all other vectors
multiplying p. In fact the Fourier-transform involves only similar-looking objects and we
were able to Fourier-transform the generic term analytically:∫

d3p

(2π)3 e
ip·xp2k (−i〈ε3|p|ε3〉)J (ξ1,p,3)a(ξ2,p,3)b

= 22k+J

π
3
2

〈ε3|x|ε3〉J

x2k+2J+3 ×
∑
a′,b′

fa,ba′,b′
Γ
(
a′+b′+3

2 + k + J
)

Γ
(
a+b

2 − k
) (ξ1,x,3)a′(ξ2,x,3)b′

(B.4)

where the sum runs over a′ ≤ a, b′ ≤ b such that (a + b − a′ − b′) is even, and f is the
following combinatorial factor

fa,ba′,b′ = (2i)a′+b′

2a+b
a!

a′(a− a′)!
b!

b′!(b− b′)!
(a+ b− a′ − b′)!(

a+b−a′−b′
2

)
!

. (B.5)

Using the integral (B.4) it is straightforward to convert the structures in eq. (B.3) back
and forth between momentum and coordinate space. The other operations also have sim-
ple forms:

• Conformal inversion: this takes (∞, x, 0) 7→ (0, xµ/x2,∞) and |ε2〉 7→ ix|ε2〉|x| . The net
effect is simply: ξ2,x 7→ 1/ξ2,x and 〈ε2ε3〉 7→ i〈ε2ε3〉ξ2,x.

• Shadow transform: two-point functions in position and Fourier space are simply:

〈O1(0)O2(x)〉 = 〈1|x|2〉2J
(−2)J |x|∆+J ,

〈O1(0)O2(p)〉 =
(4π) 3

2 Γ(3
2 −∆)(1

2)J
(−2)J4∆Γ(∆ + J) |p|

∆− 3
2 〈ε1ε2〉2J× 2F1

(
− J, 3

2 −∆, 1
2 , ξ

2
1,p,2

)
.

(B.6)
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• Index contractions: the sum over a basis of spin-J states (2.29) becomes:

∑
ε

f(ε∗)g(ε) = (−2)J
(2J)! f(∂ε)g(ε) . (B.7)

C More on conformal blocks

C.1 Series expansion of conformal blocks

Here we review how to obtain a series expansion for conformal blocks using the conformal
Casimir operator, following the work of ref. [42] for scalar blocks. The same recursion will
come in handy for doing certain inversion integrals in the next subsection. The conformal
symmetry generators act on a spinning primary O(x, ε) of dimension ∆ as

D = xµ∂xµ + ∆, Jµν = xµ∂νx − xν∂µx + εµ∂νε − εν∂µε ,
Pµ = ∂µx , Kµ = x2∂µx − 2xµD + 2(x·ε∂µε − εµx·∂ε),

(C.1)

where D, J , P and K generate respectively dilations, rotations, translations and special
conformal transformations. The Casimir operator is then C2 = D2− 1

2JµνJ
µν + 1

2{Pµ,K
µ},

which has eigenvalue C∆,J = ∆(∆− d) + J(J + d− 2) if O is a rank-J tensor.
Four-point conformal blocks are (by definition) eigenfunctions of the Casimir acting

on the pair of operators 1, 2:

C = D2
12 −

1
2J

µν
12 (J12)µν + 1

2{P
µ
12, (K12)µ} (C.2)

where the subscripts denote the fields on which the generators act: D12 ≡ D1 + D2 etc.
This form of the Casimir operator however can’t be used for the correlator in the frame
0, x, y−1,∞. The problem is that P12 does not preserve the condition x1 = 0. Fortunately,
there is a simple solution: we can use conformal invariance of the four-point correlator to
rewrite P12 7→ −P34. Accounting for a commutator, the Casimir is

C =
[
D12(D12 − d)− 1

2J
µν
12 (J12)µν

]
+Kµ

xKyµ ≡ C(0) + C(1). (C.3)

Notice that C(0) is homogenous in x, while C(1) increases the weight in x and y by one unit.
Furthermore, the former is diagonalized by the three-point structures Pab∆,J in eq. (2.42).
This suggests writing the block as an infinite series in Pab∆,J :

G
(a,b)
J,∆ (z, z) =

∞∑
m=0

m∑
k=−m

A
(aa′)(bb′)
m,k Pa,b∆+m,J+k(x̂, ŷ) , (C.4)

such that the Casimir (C.3) gives a recursion relation for the coefficients A. For example,
for scalar operators, applying the Casimir to the Gegenbauer polynomials (2.42) gives

C(0)Pa,b∆,J = C∆,JPa,b∆,J , C(1)Pa,b∆,J = γa,b,−∆,J P
a,b
∆+1,J−1 + γa,b,+∆,J P

a,b
∆+1,J+1, (C.5)
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with

γa,b,+∆,J = (∆ + J + 2a)(∆ + J + 2b) ,

γa,b,−∆,J = J(d+ J − 3)(−2a+ d−∆ + J − 2)(−2b+ d−∆ + J − 2)
(d+ 2J − 4)(d+ 2J − 2) , (C.6)

from which one deduces the recursion [42](
C∆,J − C∆+m,J+k

)
Am,k = γ−∆+m−1,J+k−1Am−1,k+1 + γ+

∆+m−1,J+k+1Am−1,k−1. (C.7)

Note a, b in γa,b,±∆,J is not representing the structure index, they are simply a = 1/2(∆2 −
∆1), b = 1/2(∆3 −∆4). These coefficients eq. (C.6) will also play important role when we
are dealing with MFT, see appendix C.2.

This method allows to extend this result straightforwardly to spinning operators [79].
We can use eq. (2.41) to construct Pa,b∆,J from three-point functions, and in general Pa,b∆,J
can be organized as Gegenbaur polynomials and their derivatives, which is consistent with
group theoretical analysis for projectors [80].

C.2 Inverting powers of cross-ratios times Gegenbauers

In this appendix, we present a more compact approach to deal with the spinning MFT. To
be more precise, there is a surprisingly concise and powerful trick that can be used per-
form Lorentzian inversion formula for a scalar MFT correlator extended with Gegenbauer
polynomial, namely

G = u
p
2

v
p
2 +a C̃J ′

(
ξ′
)
, (C.8)

where u = zz̄, v = (1 − z)(1 − z̄) and ξ′ = (1 − u − v)/(2
√
uv). The punchline is that

we find a recursion relation for OPE data associated with above correlator, see eq. (C.11).
This formula enjoys more general applications, since as just shown, conformal blocks admit
series expansion of precisely this form (after interchanging operators 3 and 4 operators).
This was used in [81] to estimate Lorentzian inversion integrals at large dimensions in the
3d-Ising model. In this paper, we apply the formula to G = D↓G for spinning MFT, which
is a finite sum of terms (C.8).

The starting point of the recursion is the scalar case, J ′ = 0. The relevant OPE data
can be found in literatures, at least for equal external operators a = b, e.g., [55, 82]. There
is a trivial modification that also works for independent a, b, p:

ca,b0,p,J(∆) =
Γ
(d−p

2 − a
)
Γ
(d−p

2 + b
)

2Γ
(p

2 + a
)
Γ
(p

2 − b
) Γ

(∆+J
2 + a

)
Γ
(∆+J

2 − b
)

Γ
(
d−∆+J

2 − a
)
Γ
(
d−∆+J

2 + b
)

×
Γ(∆− 1)Γ

(
J + d

2
)
Γ(d−∆ + J)

Γ(J + 1)Γ
(
∆− d

2
)
Γ(∆− 1 + J)

Γ
(p−∆+J

2
)
Γ
(p−d+∆+J

2
)

Γ
(−p+d+∆+J

2
)
Γ
(−p+2d−∆+J

2
) . (C.9)

This was tested by checking that the obtained OPE coefficients (obtained from the residues
at ∆ = p+ J + 2m) reproduce the series expansion of the bracket in eq. (C.8) with J ′ = 0
to high order. To proceed on generalizing above OPE data to those with J ′ 6= 0, we
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shall slightly modify P∆,J in (C.4) by interchanging operator 3 and 4, for which eq. (C.5)
becomes

C(0) u
p
2

v
p
2 +a C̃J ′

(
ξ′
)

= Cp,J ′
u
p
2

v
p
2 +a C̃J ′

(
ξ′
)
,

C(1) u
p
2

v
p
2 +a C̃J ′

(
ξ′
)

= u
p+1

2

v
p+1

2 +a

(
γa,−b,−p,J ′ C̃J ′−1

(
ξ′
)

+ γa,−b,+p,J ′ C̃J ′+1
(
ξ′
))
, (C.10)

with γa,b,±∆,J already given in eq. (C.6). Since we can integrate-by-parts the Casimir operator
in the inversion integral, by eliminating C̃J ′+1 from this equation, we get a recursion relation
in t-channel spin J ′:

γa,−b,+p−1,J ′−1 c
a,b
J ′,p,J(∆) =

(
C∆,J − Cp−1,J ′−1

)
ca,bJ ′−1,p−1,J(∆)− γa,−b,−p−1,J ′−1 c

a,b
J ′−2,p,J(∆) . (C.11)

Let’s end by explaining how do we extract OPE data in spinning MFT by using above
formula. We first decompose D↓G, e.g., eq. (3.36) into a finite sum of (C.8), next we
obtain OPE data for each term by using eq. (C.11) and in the end we can sum them over
to get a final answer.

C.3 Cross-channel expansion of blocks

In this appendix, we expand (scalar) conformal blocks as z → 1 as an exact function of
z. To accomplish the computations of the anomalous dimensions in the main-text, we
would need t-channel conformal blocks with scalar-exchange, conserved-current-exchange
and stress-tensor-exchange. In particular, since we are only concerned about the anomalous
dimensions, the logarithmic part of t-channel conformal blocks are enough for our purpose.
Our formulae can be deduced from geodesic Witten-diagram [83] by doing a bit of guesswork
as described in [84], and is consistent with the most general t-channel conformal blocks in
terms of (u, v) rather than (y, ȳ) provided recently in [85, 86] (see also [87]). Throughout
this appendix, we use the variables:

y = z

1− z , ȳ = 1− z
z

. (C.12)

In the main text, we use these conformal blocks in the t-channel dDisc, where we take
z 7→ 1− z (using y variables, it is y → ȳ).

• Scalar exchange
For scalar-exchange, we can provide a more general t-channel conformal blocks, be-
yond only picking up logarithmic part. The explicit series is given by

G0,∆(z, z̄) = y
∆
2 (1 + y)b(1 + ȳ)a

×
∑
k

(
(−1)kȳk+a+b

2 Γ(∆)Γ(−a− b− k)
(
a+ ∆

2
)
k

k!Γ(−b+ ∆
2 )Γ(−a− k + ∆

2 )
sa,b,k(y) (C.13)

+(a→ −a, b→ −b)
)
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where

sa,b,k(y) = 3F2

(∆− 2a
2 ,

2b+ ∆
2 ,

−2a− d+ ∆− 2k + 2
2 ; (C.14)

−d+ 2∆ + 2
2 ,

−2a+ ∆− 2k
2 ,−y

)
.

In practice, what we use in the main text is the logarithmic part log ȳ of above series
from setting a = b = 0. Note the first line of eq. (C.13) does not have log ȳ, and the
second line gives us

G0,∆(z, z̄) = −
∑
k

Γ(∆)Γ(k − ∆
2 + 1)y∆

2

Γ(∆
2 )2Γ(k + 1)2Γ(−k − ∆

2 + 1)
ȳk log ȳ s0,0,k(y) . (C.15)

• Conserved-current exchange

The log ȳ part of t-channel conformal block with conserved-current-exchange is ex-
hibited as follows:

G1,d−1(z, z̄) =
∑
k

N (1)
k

ȳk y
d−2

2 log ȳ
y + 1

(
v d−2

2 ,k,1 −
2(d− 2)ky

(d− 2k)(d− 2 + 2k)v d2 ,k,0
)
,

(C.16)

where

N (1)
k = −

2d−1Γ
(
d+1

2

)
Γ
(
d
2 + k

)
√
π(k!)2Γ

(
d
2

)
Γ
(
d
2 − k

) , vp,k,m = 2F1(p,−k+m, p+1−k,−y) . (C.17)

• Stress-tensor exchange

The log ȳ part of t-channel conformal block with stress-tensor-exchange was also
obtained in [84], it is given by

G2,d(z, z̄) =
∑
k

N (2)
k

ȳk y
d−2

2 log ȳ
y + 1

(
(d− 2)(3d(y + 1) + 2(ky + k − 2y − 1))g d

2 ,k
(y)

−2
(
2d2(y + 1) + d(k(4y + 3)− 6y − 5)

+2(k − 1)(ky + k − 2y − 1)
)
g d−2

2 ,k(y)
)
, (C.18)

where

N (2)
k =

2d+1Γ
(
d+3

2

)
Γ
(
d
2 + k + 1

)
√
π(d+ 2k − 2)(d+ 2k)Γ

(
d
2 + 1

)
Γ(k + 1)2Γ

(
d
2 − k + 1

) ,
gp,k(y) = 2F1

(
p,−k, 1

2(d+ 2− 2k),−y
)
. (C.19)
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D Four-dimensional gluon amplitudes in flat space

Here we record the bulk YM4 tree-level gluon amplitudes corresponding to the Lagrangian
in eq. (A.1) used in the main text. We start with the three-point ones, from which the
four-point amplitudes are then determined by factorization (see [73], whose conventions we
follow, for a pedagogical introduction), up to contact interactions with the mass dimension
of g2

H . The form of on-shell three-point amplitudes are fixed by Lorentz and little-group
symmetries, up to coupling-dependent prefactors, which we find to be

MYM
1−2−3+ = i

√
2fabcgYM

〈12〉3
〈23〉〈31〉 , MH

1−2−3− = i
√

2fabc(gH − ig′H)〈12〉〈23〉〈31〉 . (D.1)

ForMYM
1+2+3− andMH

1+2+3+ , we simply replace angle-bracket by square-bracket and reverse
the odd coupling gH′ . Tree-level four-point amplitudes can be cut into a product of on-shell
three-point amplitudes

M1234
∣∣∣
p2
I→0

= M12IMI34
p2
I

. (D.2)

We can use this factorization property to construct four-point amplitudes.
Let’s first consider the pure Yang-Mills case. One might try to directly use (D.2)

for all channels and sum them over, however, this overcounts the pole structures, since
the s-channel residue has poles in t or u channel. The standard strategy (see [74]) is to
make an ansatz which correctly counts helicity weight and number of derivatives without
violating locality

M1−2−3+4+ = 〈12〉2[34]2
(
A

st
+ B

su
+ C

tu

)
. (D.3)

By demanding the factorization (D.2), one can readily obtain the Parke-Taylor form

MYM2 = 2g2
YM〈ij〉4

(
T

〈12〉〈23〉〈34〉〈41〉 + U

〈12〉〈24〉〈43〉〈31〉

)
, (D.4)

where i, j are gluons that have negative helicity, T = f bcefade is the t-channel color factor
previously defined in eq. (4.8), and U is the same with a and b swapped.

Note that the first term above actually contains s and t-channel poles, and the second
term contains s and u poles.

For pure higher-derivative coupling, the nonvanishing amplitudes again all have two
gluons of each helicity: MH2

1−2−3+4+ ,M
H2
1−2+3+4− andMH2

1−2+3−4+ that arise from s-channel,
t-channel and u-channel respectively. Using the factorization (D.2) and Bose symmetry,
we obtain:

MH2
1−2+3+4− = 2(g2

H + g′2H)〈14〉2[23]2T u− s
2t + c〈14〉2[23]2 , (D.5)

and permutations thereof. The contact ambiguity c depends on higher-derivative terms
in the Lagrangian but doesn’t contribute to the analysis in the main text as it has finite
support in spin. (The tree-level all-+ amplitude, also a pure contact term but controlled
by a different constant, similarly does not contribute.)
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Finally, the mixed gYMgH amplitudes (including the higher-derivative correction
on both vertices) are quite similar to pure Yang-Mills amplitudes. For example, for
Mmix

1−2+3+4+ we consider an ansatz suggested by its helicity scaling and derivative order:
〈12〉〈14〉[23][34][24]2 times two-channel poles like 1/(st). We then obtain:

MYM−H
1−2−3−4+ = 2gYM(gH − ig′H)T 〈12〉〈23〉〈13〉2

〈34〉〈41〉 + (1↔ 2) ,

MYM−H
1−2+3+4+ = 2gYM(gH + ig′H)T [23][34][24]2

[12][41] + (3↔ 4) , (D.6)

and permutations thereof.
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any medium, provided the original author(s) and source are credited.
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