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1 Introduction

Dirac fermions play a central role in physics — not only in elementary particle physics
but also in condensed matter physics [1–4]. Interactions of Dirac fermions are essential in
determining the ground state of various physical systems, and models with quartic inter-
actions have been studied for decades in a variety of fields. For instance, in nuclear and
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hadron physics, the Nambu-Jona-Lasinio (NJL) model [5, 6] is famous as a phenomeno-
logical effective theory of QCD [7, 8]. Lower-dimensional four-fermion models such as the
Gross-Neveu model in 1 + 1 dimensions [9] have also played a pivotal role in advancing our
understanding of phenomena like dynamical symmetry breaking, asymptotic freedom and
dimensional transmutation. Recently there are renewed interests in Dirac fermions in 2+1
dimensions. They appear in some condensed matter systems [10–20] and understanding
the effects of interactions is therefore imperative. Historically, four-fermion models of Dirac
fermions in 2 + 1 dimensions have been thoroughly studied both analytically [21–36] and
by numerical simulations [37–44], and intriguing features such as superfluidity, Kosterlitz-
Thouless transitions, non-Gaussian Ultra-Violet (UV) fixed points and magnetic catalysis
have been elucidated. These studies have provided a tractable avenue for understanding
nonperturbative aspects of (2 + 1)-dimensional strongly coupled gauge theories, including
QED3 and QCD3 as prominent examples.

Recently QCD3 has experienced a flurry of revived attention [45–53]. In [50] the present
authors have proposed a new random matrix theory (RMT) which, when random matrix
elements are integrated out, reduces to a four-fermion model that spontaneously breaks
symmetries in exactly the same way as does QCD3 with a Chern-Simons term [45], thus
extending the previous work [54]. Although RMT is a zero-dimensional theory with no
gauge interactions, it provides exact descriptions of the low-lying Dirac spectrum owing to
the universality of the microscopic domain [55–59].

In this work, we study thermodynamics and symmetry breaking of an unconventional
interacting model of Dirac fermions in 2 + 1 dimensions at finite temperature and chemical
potential in the large-N limit, where N denotes the number of “colors.” Each fermion
comes in M different flavors. This model can be viewed as a generalization of the RMT
proposed in [50]. The model has three key ingredients: a repulsive interaction, an attractive
interaction, and a flavor-symmetric parity-breaking mass term. Their interplay leads to a
surprisingly rich phase diagram. At zero temperature and zero density, the model exhibits
a spontaneous symmetry breaking patterns U(M) → U(M − k) × U(k) with various k
and experiences a sequence of first-order phase transitions, bearing a close resemblance
to three-dimensional QCD [45, 52]. The model reduces to a sigma model on a complex
Grassmannian at low energy. At nonzero temperature or chemical potential, there appear
even more exotic phases where the symmetry is broken as U(3) → U(1) × U(1) × U(1),
U(4)→ U(2)×U(1)×U(1), and U(5)→ U(2)×U(2)×U(1), to name but a few. All these
patterns show up in a single model with a few adjustable parameters.

The present work is structured as follows. In section 2, the model is defined and the
thermodynamic potential is derived. In section 3, the ground state at zero temperature
and density is analyzed. In section 4 the effect of nonzero temperature is considered. In
section 5, a nonzero chemical potential is introduced, and the fermion number density is
calculated. In section 6, phases at nonzero temperature and density are studied. It is shown
that the phase structure changes dramatically, depending on the interaction strength and
the flavor-singlet mass. We conclude in section 7, and technical details are worked out in
several appendices. Throughout this article we will work in the natural units where ~ =
c = kB = 1 and with Einstein’s summation convention where we sum over repeated indices.
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2 Planar four-fermion model

We consider a system of two-component Dirac fermions ψisα in 2 + 1 dimensions. Here
α = 1, 2 are spinor indices, i = 1, · · · , N are color indices and s = 1, · · · ,M are flavor
indices. The Lagrangian in the Euclidean spacetime is given by

L = ψ
i
s(σν∂ν + κ− µσ3)ψis + g2

1
N

(ψisψis)2 − g2
2
N

(ψisψis′)(ψ
j
s′ψ

j
s), (2.1)

where σν = (σ1, σ2, σ3) are the Pauli matrices in spinor space. The couplings have dimen-
sions [g1] = [g2] = −1/2. The Lagrangian L is invariant under U(1) × SU(N) × SU(M)
transformations of ψ.1 The mass term κψψ breaks parity symmetry, and µ is the baryon
chemical potential. The four-fermion interactions of the form (2.1) arise in the random ma-
trix model proposed in [50] which also gives the sign of the interaction terms. We underline
that these signs are essential for the results of the present work.

To rephrase the four-fermion terms in two quadratic ones, we perform the Hubbard-
Stratonovich transformation and obtain

Z =
∫
D(ψ,ψ, φ,Φ) exp

(
−
∫ β

0
dτ
∫

d2x L̃
)

(2.2)

with β = 1/T the inverse temperature and the Lagrangian

L̃ = ψ
i
s(σν∂ν + κ− µσ3 + 2ig1φ+ 2g2Φ)ss′ψis′ +N(φ2 + Tr Φ2), (2.3)

where φ is a scalar field and Φ is a Hermitian M ×M matrix field, i.e., Φ† = Φ. Fermions
can now be integrated out, yielding

Z =
∫
Dφ

∫
DΦ detN (σν∂ν + κ− µσ3 + 2ig1φ+ 2g2Φ) exp

{
−N

∫
dτd2x(φ2 + Tr Φ2)

}
.

(2.4)

Next, we introduce a shifted field Φ′ ≡ Φ + ig1
g2
φ1M + κ

2g2
1M to obtain

Z =
∫
Dφ

∫
DΦ′ detN (σν∂ν − µσ3 + 2g2Φ′)

× exp
[
−N

∫
dτd2x

{
φ2 + Tr

(
Φ′ − ig1

g2
φ1M −

κ

2g2
1M

)2
}]

. (2.5)

Assuming that the condition g2
2 > Mg2

1 is fulfilled, the integral over the φ field can be
carried out and leads to the result

Z ∝
∫
DΦ′ detN (σν∂ν − µσ3 + 2g2Φ′)

× exp
[
−N

∫
dτd2x

{
g2

1
g2

2 −Mg2
1

(
Tr Φ′ −m

)2 + Tr Φ′2
}] (2.6)

1A three-dimensional four-fermion model having this symmetry was investigated in [60, 61]. We thank
K. G. Klimenko for bringing these references to our attention.
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with

m ≡ g2κ

2g2
1
. (2.7)

After substituting this into (2.4) and the shifted field Φ′ ≡ Φ + ig1
g2
φ1M + κ

2g2
1M we arrive

at (2.6). Alternatively, the Gaussian integral over φ in equation (2.4) can also be evaluated
from the saddle point equation in φ with the saddle point φ = (ig1/g2) Tr Φ.

In the large-N limit the partition function is dominated by saddle points of the effective
potential

Veff(Φ′) = g2
1

g2
2 −Mg2

1

(
Tr Φ′ −m

)2 + Tr Φ′2 − T

L2 log det(σν∂ν − µσ3 + 2g2Φ′) , (2.8)

where L is the linear extent of the plane. Assuming a constant field Φ′(τ, x1, x2) = Φ′ we
find

Veff(Φ′) = g2
1

g2
2 −Mg2

1

(
Tr Φ′ −m

)2 + Tr Φ′2

− T
∫ d2p

(2π)2

∞∑
n=−∞

tr log[ip1σ1 + ip2σ2 + (iωn − µ)σ3 + 2g2Φ′] , (2.9)

where ωn = (2n + 1)πT and tr is the trace over the spinor and flavor indices. Next, we
perform the diagonalization Φ′ = UEU † with E = diag(E1, · · · , EM ),2 and combine terms
with n ≥ 0 and n < 0 to get

Veff(E) = g2
1

g2
2 −Mg2

1

(
M∑
k=1

Ek −m
)2

+
M∑
k=1

E2
k

− T

2

M∑
k=1

∫ d2p

(2π)2

[ ∞∑
n=−∞

log
{
β2ω2

n + β2
(√

p2 + 4g2
2E

2
k + µ

)2
}

+
∞∑

n=−∞
log

{
β2ω2

n + β2
(√

p2 + 4g2
2E

2
k − µ

)2
}]

. (2.10)

We have included a factor β2 in the argument of the logarithm which just amounts to an
overall normalization constant. Finally, we use the standard formula for summation over
Matsubara frequencies [62, 63]

∞∑
n=−∞

log
(
β2ω2

n + z2

β2ω2
n

)
= z + 2 log(1 + e−z)− 2 log 2 (2.11)

to obtain

Veff(E) = g2
1

g2
2 −Mg2

1

(
M∑
k=1

Ek −m
)2

+
M∑
k=1

E2
k −

M∑
k=1

∫ d2p

(2π)2

{√
p2 + 4g2

2E
2
k

+ T log
[
1 + e−β

(√
p2+4g2

2E
2
k
+µ
)]

+ T log
[
1 + e−β

(√
p2+4g2

2E
2
k
−µ
)]}

. (2.12)

2This change of variables yields a Jacobian
∏

1≤i<j≤M |Ei −Ej |2, which does not play a role at leading
order of the large-N expansion because M is fixed.
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This is the main result of this section. The momentum integral for the zero-temperature
part is UV divergent and we regularize it by a cutoff Λ.

What happens if we switch off the Gross-Neveu-type interaction by letting g1 → 0? In
this limit the potential becomes

Veff(E) =
M∑
k=1

[
E2
k −

κ

g2
Ek −

∫ d2p

(2π)2

{√
p2 + 4g2

2E
2
k + T log

[
1 + e−β

(√
p2+4g2

2E
2
k
+µ
)]

+ T log
[
1 + e−β

(√
p2+4g2

2E
2
k
−µ
)]}]

, (2.13)

where a divergent constant independent of E has been dropped. For any κ 6= 0 the origin of
the Ek is unstable due to the presence of a linear term and Ek develops a nonzero vacuum
expectation value (VEV) 〈E〉 ∝ 1M at all temperatures. There is no spontaneous breaking
of U(M) symmetry, though. As will be shown in the following sections, the situation is dra-
matically different for g1 6= 0; we will see a rich pattern of symmetry breaking taking place.

According to the Coleman-Mermin-Wagner-Hohenberg theorem, in the absence of
long range interactions, continuous symmetries cannot be broken spontaneously in two-
dimensions which includes 2+1 dimensions at nonzero temperature. However, fluctuations
that destroy the condensate, are suppressed for N → ∞ and spontaneously symmetry
breaking is possible also at nonzero temperature. Below we always analyze the large N
limit, but in appendix C we argue that even at finite N the same phase transitions still
may be observed in particular if they are of first order.

3 Vacuum

3.1 Numerical results

We begin our discussion with the vacuum, T = µ = 0, to see what the underlying phases
are. The momentum integral can be done analytically and yields the effective potential

Veff(E) = g2
1

g2
2 −Mg2

1

(
M∑
k=1

Ek −m
)2

+
M∑
k=1

v(Ek) (3.1)

with v(E) given by

v(Ek) = E2
k + 4

3π |g2Ek|3 −
1

6π
(
Λ2 + 4g2

2E
2
k

)3/2
. (3.2)

It is convenient to introduce dimensionless variables

ek = Ek
Λ3/2 , g̃1,2 = g1,2

√
Λ , λ̃ = m

Λ3/2 (3.3)

which will be used primarily for the numerical results in this paper. For the analytical
results we stick to a different notation, see next subsection, to simplify mathematical
manipulations.
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Figure 1. The λ̃-dependence of the minimum of Veff(E) for g̃1 = 1 and g̃2 = 3 at T = µ = 0. Each
ek is represented by a different color. The plots are vertically displaced slightly so that they do not
overlap exactly.

The dimensionless potential reads

Veff(E)
Λ3 = g̃2

1
g̃2

2 −Mg̃2
1

(
M∑
k=1

ek − λ̃
)2

+
M∑
k=1

ṽ(ek) (3.4)

with
ṽ(e) = e2 + 4

3π |g̃2e|3 −
1

6π
(
1 + 4g̃2

2e
2
)3/2

. (3.5)

When g̃2
2 > π, so that the potential ṽ(e) is confining, ṽ(e) has two minima. For large

negative λ̃, all the ek are degenerate and negative. With increasing λ̃, one of the eigenvalues
jumps to a positive value. After increasing λ̃ further, another eigenvalue jumps. This
continues until all eigenvalues become degenerate and positive.

To understand this phenomenon quantitatively, we performed numerical minimization
of the potential. In figure 1 we display the λ̃ dependence of the ek at the minimum of
the potential Veff(E). The ek jump M times, marking M sequential first-order phase
transitions. Hence, there are in total M + 1 different vacuum states. The ground state
energy density shown in figure 2 exhibits M sharp kinks associated with the jump of the
eigenvalues. In figure 3 a schematic phase diagram is drawn for even M and odd M ,
respectively. For large |λ̃| the U(M) symmetry is restored, while at intermediate λ̃ the
eigenvalues form two clumps, triggering symmetry breaking U(M)→ U(M − k)×U(k).
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Figure 2. The ground state energy density for g̃1 = 1 and g̃2 = 3 as a function of λ̃.

U(4)

U(3) × U(1)

U(2) × U(2)

U(1) × U(3)

U(4)
λ

U(5)

U(4) × U(1)

U(3) × U(2)

U(2) × U(3)

U(1) × U(4)

U(5)
λ

Figure 3. The phase diagram at T = µ = 0 with |g̃2| >
√
π for M = 4 (top) and M = 5 (bottom)

at large N . The blobs denote first-order phase transitions. Each phase is labeled with its unbroken
symmetry group. The phase structure shown here generalizes to higher M in an obvious manner.

The above numerical findings will be rigorously derived in the next subsection.
The natural pattern of flavor symmetry breaking for QCD3 is U(M) → U(M/2) ×

U(M/2) for evenM and U(M)→ U([M−1]/2)×U([M+1]/2)×Z2 for oddM , see [64–66].
However, the sign of the Chern-Simons term can nullify this phase so that subleading saddle
points become dominant resulting in symmetry breaking patterns U(M)→ U(j)×U(M−j)
and a cascade of phase transitions [45]. Recently it was proposed that QCD3 with a large
number of colors would undergo a sequence of first-order transitions when the flavor-singlet
mass is varied, in exactly the same fashion as figure 3 [52]. Although we may have local
minima leading to the symmetry breaking pattern U(M)→ U(j)×U(M − j − 1)×U(1),
saddle points with even less symmetry are unnatural and unlikely to be global minima of
the free energy. It may require fine tuning of the parameters if they exist. This is indeed
the case for the model analyzed in the present work and makes our model a fascinating
theoretical laboratory of ideas and methods for QCD3.

3.2 Analytical considerations

To simplify the expressions, in this subsection we use the following variables

ek = 2g̃2
Ek

Λ3/2 , γ1 = 3πg̃2
1

2g̃2
2(g̃2

2 −Mg̃2
1)
≥ 0 , γ2 = 3π

2g̃2
2
> 0 , λ = 2g̃2λ̃ (3.6)
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0

0 e

g(e)

Figure 4. The two forms of the function g(e) = 2γ2e + 3e(|e| −
√

1 + e2) for γ2 < 3/2 (blue solid
curve) and γ2 ≥ 3/2 (red dashed curve).

Then, the potential takes the form

V̂eff(e) ≡ 6πVeff(E)
Λ3 = γ1

(
M∑
k=1

ek − λ
)2

+
M∑
k=1

v(ek), v(e) = γ2e
2 + |e|3 −

(
1 + e2

)3/2

(3.7)

with three parameters γ1, γ2 and λ determining the phases. They essentially correspond to
the relative strength of the two quartic interactions, the inverse strength of the interaction
proportional to g2 and the mass term, respectively, cf. (2.1).

Our primary goal is to find the global minimum of V̂eff(e). The extrema are determined
by the following saddle point equations (k = 1, . . . ,M)

∂ek V̂eff(e) = 2s+ g(ek) = 0 , (3.8)

where

s = γ1

 M∑
j=1

ej − λ

 and g(e) = ∂ev (e) = 2γ2e+ 3e
(
|e| −

√
1 + e2

)
. (3.9)

In appendix A, we study the solutions and some properties of the corresponding phase
diagrams for general g(e) and illustrate it with a simple but non-trivial toy model.

To solve ∂ek V̂eff(e) = 0 for a fixed s, we note that g(e) is a strictly monotonously
increasing function if γ2 ≥ 3/2 (Λ < π/g2

2), see the red dashed curve in figure 4, as can be
seen from its derivative

g′(e) = 2γ2 + 3
(

2|e| − 1 + 2e2
√

1 + e2

)

= 2γ2 − 3 + 3(1 + 2|e|)
(

1− 1 + 2e2√
(1 + 2e2)2 + e2(4|e|−1 + 1 + 4|e|)

)
.

(3.10)

Hence, in the regime γ2 ≥ 3/2 we have only a single real solution for ek = e(0) with
unbroken flavor symmetry. Explicit expressions for e(0) are derived in appendix B. Let us

– 8 –
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Figure 5. The determinant of the Hessian, detH, as a function of s and γ2 for γ1 = 1,M = 2 (left)
andM = 3 (right). The variable s lies in the interval [g(emin)/2, g(−emin)/2] when the saddle point
equation has three solutions. The grey curves show the boundaries of this interval. For M = 2 the
figure shows detH for the solution (e0, e+) while for M = 3 it is given for the solution (e−, e0, e+).

emphasize that this part of the phase diagram will be avoided when the cutoff Λ is chosen
large enough.

When γ2 < 3/2, there may be two minima e−(s) < 0 < e+(s) and a maximum e0(s) of
the confining potential v(e) for each ek when s is fixed because the derivative g(e) = v′(e)
has the form of the blue curve sketched in figure 4. When emin is the position of the local
minimum of g = v′(e), see (B.9), and −emin the position of its local maximum, this is
the case if s ∈ [g(emin)/2, g(−emin)/2]. When s lies outside this interval, at large values
of |λ|, all ek are the same and we are in a phase without flavor symmetry breaking, see
appendix B for explicit expressions.

The question is which solutions of the saddle point equations are global minima of
V̂eff(e) so that we can conclude what kind of symmetry breaking patterns we can expect.
For M = 2, we can have either a solution with e1 6= e2 leading to a symmetry breaking
pattern U(2) → U(1) × U(1) or e1 = e2 with no symmetry breaking. For a second order
phase transition to occur, the solution (e0, e+) should join smoothly with the solution
(e+, e+) as a function of λ (or (e−, e−) joins with (e−, e0)). For this solution to be a global
minimum, the Hessian at (e0, e+) has to be positive definite since in appendix A.2 we have
shown that maximally only one ek can have g′(ek) < 0. In figure 5 we show the determinant
of the Hessian forM = 2 andM = 3 when s varies from smax to smin. ForM = 2 the point
where (e0, e+) coalesces with (e+, e+) is always at negative s. At this point the determinant
of the Hessian vanishes (see grey curve in figure 5) and becomes negative away from the
minimum. This implies that a second order phase transition does not occur for M = 2
at T = 0.

For M > 2, γ1 > 0 and γ2 < 3/2, we can exploit insights from the previous work [50]
and the discussion in appendix A. As is the case in the random matrix theory [50] on which
the present model is based, there are always the phases corresponding to the symmetry
breaking pattern U(M) → U(j) × U(M − j) with j = 0, . . . ,M (see appendix A). The
integer j is a monotonously increasing function of λ when the solution is given by e =
(ea1M−j , eb1j) with ea < eb. The phase transition between the phase j and j + 1 with
j = 1, . . . ,M−2 evidently has to be of first order because for a second order phase transition
to happen we need ea = eb at the transition point.

– 9 –
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As we have seen in appendix A.3.1 also the phase transitions between j = 0 and j = 1
as well as j = M − 1 and j = M are of first order. This time the Hessian is positive
semi-definite so that a second order phase transition might be possible, but there is always
a direction, namely the eigenvector of the Hessian with the eigenvalue 0, whose leading
term in the Taylor expansion becomes negative (see appendix A.3.1).

Although general arguments indicate [67, 68] that the flavor breaking ground state
should have maximum symmetry, more exotic symmetry breaking patterns such as
U(M)→ U(j)×U(M−j−1)×U(1) with j = 1, . . . ,M−1, although unlikely, can in princi-
ple appear. As can be shown from a plot of the Hessian determinant as a function of γ2 and
s, the Hessian is always negative definite in such a phase, see figure 5 forM = 3. Therefore,
there is no phase with the symmetry breaking pattern U(M)→ U(j)×U(M−j−1)×U(1)
at zero temperature.

4 Nonzero temperature

4.1 Phase structure

The effective potential (2.13) at T > 0 and µ = 0 can be evaluated analytically. Absorbing
Λ in T → Λ3/2T , we have

Veff(E)
Λ3 = g̃2

1
g̃2

2 −Mg̃2
1

(
M∑
k=1

ek − λ̃
)2

+
M∑
k=1

{
e2
k + 4

3π |g̃2ek|3 −
1

6π (1 + 4g̃2
2e

2
k)3/2

+ T 3

π

[2|g̃2ek|
T

Li2
(
− e−2|̃g2ek|/T

)
+ Li3

(
− e−2|̃g2ek|/T

)]}
, (4.1)

where Lis(z) =
∞∑
k=1

zk

ks
is the polylogarithm function.3 In the notation of (3.6), we find

V̂eff(e) = γ1

(
M∑
k=1

ek − λ
)2

+
M∑
k=1

{
γ2e

2
k + |ek|3 − (1 + e2

k)3/2

+ 6T 3
[ |ek|
T

Li2
(
− e−|ek|/T

)
+ Li3

(
− e−|ek|/T

) ]}
.

(4.2)

Thus, the saddle point equation becomes

− 2s = g(e) with g(e) = 2γ2e+ 3e
(
|e| −

√
1 + e2

)
+ 6Te log

(
1 + e−|e|/T

)
(4.3)

and s = γ1(
∑M
k=1 ek−λ) the same as before. The possible shapes are depicted in the insets

of figure 6.
Depending on the temperature and γ2 we can distinguish 4 different domains depending

on the maximum number of different solutions of g(e) = −2s, see insets in figure 6. The
domains are separated by the following curves:

3This series is convergent for |z| < 1. The values for |z| ≥ 1 are defined by analytic continuation.
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Figure 6. Phase diagram of g(e). For each region, labeled by Roman numerals, we included an
inset with the shape of g(e) = v′(e).

i) The vanishing of the slope at e = 0 (blue line in figure 6),

g′(e = 0) = −3 + 2γ2 + 6T log 2 = 0. (4.4)

Because the asymptotic behavior of g(e) ≈ 2γ2e, if the slope at 0 is negative g(e)
cannot be a monotonic function, and the equation g(e) = −2s can have three solutions
for T < (3− 2γ2)/(6 log 2).

ii) The curve in the (γ2, T ) plane (red curve in figure 6) with

g(e) = g′(e) = 0 (4.5)

separates region II and region IV. At those points a minimum of g(e) touches the
e-axes, and because g(e) is an odd function, the equation g(e) = −2s can have 5
possible real solutions in the region IV.

iii) The curve in the (g2, T ) plane when a minimum and a maximum of g(e) coincide
(green curve in figure 6) is given by

g′(e) = g′′(e) = 0. (4.6)

It indicates definitely a phase transition that splits the region above curve i) and ii)
into regions I and II. In region I the function g(e) increases monotonously, while in
region II the equation g(e) = −2s can have at most three solutions despite g(e) has
two local minima and two local maxima.
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At the tricritical point, the potential which had three minima in the region V, joins the
potential in regions I and II, with one and two minima, respectively. Because the potential
is even, this has to happen at e = 0. The condition for the tricritical point is thus

g′(e = 0) = −3 + 2γ2 + 6T log 2 = 0, (4.7)

g′′(e = 0) = −3
2 + 3

4T = 0, (4.8)

which is solved by
(γtri

2 , T tri) =
(3

2(1− log 2), 1
2

)
. (4.9)

A second special point in the (γ2, T ) plane is the point on the curve g′(e) = g′′(e) = 0
where

dg2
dT

∣∣∣∣
γcr

2 ,T
cr

= 0. (4.10)

This point is at γcr
2 = 0.3278 with T cr = (3−2γ2)/(6 log 2). For γ2 < γcr

2 the system always
experiences a cascade of phase transitions when varying λ.

4.2 High temperature regime

At sufficiently high temperatures and fixed γ2 > 0, see region II in figure 6, the curve g(e)
shows a “wiggle” (a local maximum followed by a minimum) for large |e|. Taking into
account the arguments of [50] and the discussion in appendix A.3, we expect a cascade of
phase transitions for sufficiently large |λ̂|. This is indeed observed numerically, see the plots
in figures 9 as well as 10 for M = 2, 3, 4. It shows as a strip which obeys approximately a
linear relation between T and λ. The cascade of symmetry breaking patterns are those of
U(M)→ U(j)×U(M − j) where j = 0, 1, . . . ,M − 1 changes by 1.

In appendices A.3 and A.3.1 we have argued that all phase transitions for a locally
double well shaped potential have to be of first order for M ≥ 3. For M = 2, a second
order phase transition is possible, but our numerics confirm that at high temperature all
transitions are first order. As we will see in the next section, a second order phase transition
does occur for M = 2 at lower temperatures.

4.3 Low temperature regime

At low temperature T < (3 − 2γ2)/(6 log 2) and γ2 <
3
2 (region III in figure 6) we find a

g(e) in the shape of a wiggle, this time about the origin. When increasing the temperature
we encounter three scenarios depending on the value of γ2 which will be discussed in the
next three subsections.

4.3.1 Low temperature regime with
√
π < |g̃2| < g̃tri

2 (γtri
2 < γ2 <

3
2)

For γtri
2 < γ2 <

3
2 , the function g(e) becomes a strict monotonously increasing function

for T > (3 − 2γ2)/(6 log 2), as we already have seen at T = 0 for γ2 >
3
2 (or |g̃2| <

√
π).

The second order phase transition on the curve T = (3 − 2γ2)/(6 log 2) is at λ = 0. For
the parameters of figure 7 this gives a critical temperature of T = 0.469. For M = 2
the transition remains of second order until the tricritical point in the (γ2, T ) plane. The
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Figure 7. (a) The phase diagram for M = 2 at µ = 0 with g̃1 = 1 and g̃2 = 3 in the large-N limit.
The magnitude of |e1−e2| is plotted. (b) A simplified sketch of (a). There are two tricritical points
(TCP). The dashed line denotes a second-order transition and the thick solid line a first-order
transition. We have omitted the high temperature phase diagram where a strip of first order phase
transitions starts at about T = 1.5 and λ̃ = 6.2.

location of this point can be extracted numerically. For g̃2 = 3 (γ2 = 0.5236) it is at
(λ̃, T ) = (±0.1010, 0.457). There is another second order phase transition point in the
(γ2, T ) plane at T = 1.499 (not displayed in figure 7). This is the starting point of a strip
of two close first order phase transitions in the (λ̃, T ) plane and begins at λ̃ = 6.2. The
first order transitions are from a phase with unbroken flavor symmetry to a phase with
U(1)×U(1) breaking and back to the unbroken phase.

Adopting the order parameter
∑M
k=2(−1)k(ek−1− ek) (assuming e1 ≥ e2 ≥ · · · eM ) the

phase diagram for M = 2 in the (g̃2, T ) plane is mapped out in figure 7. The second order
line extends from λ = −λtri to λ = λtri. We have omitted the high temperature regime in
this figure which contains the strip of first order phase transitions. It will be discussed in
more detail in the next subsection.

As is discussed in appendix A.3.1 for M ≥ 3 there is no line of second order phase
transitions in the (λ̃, T ) plane and the only second order point at λ̃ = 0.

Moreover, we expect a cascade of phase transitions between phases with the symmetry
breaking pattern U(M)→ U(j)×U(M−j) with j = 0, 1, . . . ,M , as in the high temperature
phase, the system runs through all possible j from j = 0 to j = M when increasing λ̂. We
have corroborated this by numerical minimization of the potential (4.1) for M = 3 and
M = 4 (see figure 8) where in both cases we have chosen g̃2 = 3 < |g̃tri

2 |. Again we did not
consider the high temperature phase.

4.3.2 Low temperature regime with g̃tri
2 < |g̃2| < g̃cr

2 (γcr
2 < γ2 < γtri

2 )

In this regime we have a richer phase diagram which is mapped out in figure 9 using e1−e2
as an order parameter. The most notable feature is that the strip with the cascade of phase
transitions is split into two pieces. The strips end in second order points that are visible in
the (γ2, T ) plane as the two transitions from region I to region II. The two parts join each
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Figure 8. (a) The phase diagram for M = 3 at µ = 0 with g̃1 = 1 and g̃2 = 3 in the large-N limit.
The value plotted is e1 − 2e2 + e3, where the ordering e1 ≥ e2 ≥ e3 is assumed. (c) The phase
diagram for M = 4 at µ = 0 with g̃1 = 1 and g̃2 = 3 in the large-N limit. The value plotted is
e1 − 2e2 + 2e3 − e4, where the ordering e1 ≥ e2 ≥ e3 ≥ e4 is assumed. The diagrams (b) and (d)
are simplified versions of figures (a) and (c). There is a critical point (CP) at which all first-order
transition lines meet. Again we have omitted the high temperature regime.

other at g̃2 = g̃cr
2 . The function g(e) is shown in figure 9 for three different temperatures,

T = 0.59 corresponding to the lower part of the strip (green dotted curve), T = 0.7 in
between the two strips (blue solid curve) and T = 2.5 corresponding to the upper part of
the strip (red dashed curve).

The transition between region III and region IV is first order. Since the curve sepa-
rating the regions III and IV describes two minima of v(e) coalescing with the minimum
at e = 0, one would expect a second order transition, and it may be accidental that the
position of the first order transition is located on this curve (it could also be that our nu-
merically accuracy is not sufficient). In the region IV we have three first order transitions
as a function of λ while there are only two transitions in the region II which become second
order at an intermediate value of T .
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Figure 9. (a) The phase diagram for M = 2 (a) andM = 3 (b) at µ = 0 with g̃1 = 1 and g̃2 = 3.75
in the large-N limit. The magnitude of |e1 − e2| is plotted. The strip of first order transitions
for high temperature is interrupted roughly between λ̃ = 1 and λ̃ = 2, but is present close to the
broken phase around the origin and at high temperatures. In figures (c) we show a log-log-plot
of the function g(e) where γ2 = 3π/(2g̃2) ≈ 0.34 for three different temperatures T = 0.59 (green
dashed curve), T = 0.7 (blue solid curve), and T = 2.5 (red dashed curve). The remnant of the
strip close to the bulk of phase transitions at the origin can be explained by the existence of a
“wiggle” of g(e) which briefly dissolves for larger temperature and reappears anew. For smaller g̃2
(larger γ2) the high temperature strip of phase transitions is completely separated from the broken
phase near the origin, cf. figures 7 and 8.

4.3.3 Low temperature regime with |g̃2| > g̃cr
2 (γ2 < γcr

2 )

For these values of g̃2 or γ2, the system no longer enters region I with increasing temperature
so that the strip with the cascade of first order phase transitions is no longer interrupted.
We have numerically analyzed this regime for M = 2, 3 and 4 at g̃2 = 5 in figure 10.
The cascade of phase transitions at high temperature has been visualized in figure 10(d)
where we have plotted the actual solutions ek at the global minimum of the potential (4.1).
To understand the nature of the two phases above and below this strip, we interpret the
ek as the effective masses of the fermions of the theory. As shown in figure 10, the low-
T region is characterized by a large value of |ek| implying that the effective masses are
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Figure 10. Figures (a), (b) and (c) show the same plots as in figures 7 and 8 but with g̃2 = 5. All
phase transitions are first order. (d) The minimum of Veff(E) with g̃1 = 1 and g̃2 = 5 at µ = 0. As
the temperature rises, the eigenvalues drop sequentially through M first order transitions.

heavy. In contrast, in the high-T region above the strip all |ek| drop nearly to zero, making
the fermions almost massless. The large bare mass κψψ of the constituent fermions is
dynamically canceled by interactions. This cancellation proceeds step by step across the
strip. For a large fixed λ̃, as the temperature goes up, there are M first-order transitions;
across each transition one of the M species of fermions becomes light. After all transitions
are traversed, all M fermions become light.

In the same way as in the high temperature regimes, one can depict the phase tran-
sitions in the low T and low λ̃ phase where we also find a cascade of phase transi-
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Figure 11. (a) The phase diagram for M = 3 at µ = 0 with g̃1 = 1 and g̃2 = 5 in the large-N
limit. The plotted observable is Min(|e1− e2|, |e2− e3|, |e3− e1|). Within the red triangle the three
ek differ from one another, indicating spontaneous symmetry breaking U(3) → U(1)3. (b) The
T̃ -dependence of {ek} at λ̃ = 0.05. There is a range of T in which the three ek are all different.

tions. A new phenomenon shows up for |g̃2| > |g̃cr
2 | for parameter values in region

IV. When zooming into figure 10(b) there is a large region where the symmetry break-
ing pattern is U(3) → U(2) × U(1) (namely, two of the three ek coincide). Yet, in a
tiny region, shown in figure 11, all ek are mutually distinct and break the symmetry as
U(3)→ U(1)×U(1)×U(1). In this phase, one of the bosons is very light but the other two
are heavy. Indeed when |g̃2| > |g̃cr

2 | (or |γ2| < |γtri
2 |), we find a different kind of transition

in the shape of the function g(e) in the region IV (see insets in figure 6). One of the
consequences is the occurrence of exotic phases corresponding to the symmetry breaking
patterns U(M) → U(j) × U(k) × U(M − j − k) because g(e) has three positive slopes so
that the potential v(e) has three minima, see appendix A.2.

5 Nonzero chemical potential

The zero-temperature potential at µ > 0 can be readily found from (2.12) as

Veff(E) = Veff(E)
∣∣∣
µ=0
−

M∑
k=1

∫ d2p

(2π)2

(
µ−

√
p2 + 4g2

2E
2
k

)
Θ
(
µ−

√
p2 + 4g2

2E
2
k

)

= Veff(E)
∣∣∣
µ=0
− 1

12π

M∑
k=1

(µ− 2|g2Ek|)2(µ+ 4|g2Ek|)Θ(µ− 2|g2Ek|) (5.1)

where Veff(E)
∣∣∣
µ=0

is as given in (3.2) and Θ(x) is the Heaviside step function. In dimen-

sionless units where Λ is absorbed in µ→ Λ3/2µ we have

Veff(E)
Λ3 = g̃2

1
g̃2

2 −Mg̃2
1

(
M∑
k=1

ek − λ̃
)2

+
M∑
k=1

{
e2
k + 4

3π |g̃2ek|3 −
1

6π (1 + 4g̃2
2e

2
k)3/2

− 1
12π (µ− 2|g̃2ek|)2(µ+ 4|g̃2ek|)Θ(µ− 2|g̃2ek|)

}
. (5.2)
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Figure 12. Phase diagram of the derivative of the potential, v′(e) = g(e), in the (γ2, µ) plane. The
insets show the different shapes of the function g(e).

For analytical considerations, we adopt again the notation of (3.6), where the potential
becomes

V̂eff(e) = γ1

(
M∑
k=1

ek − λ
)2

+
M∑
k=1

{
γ2e

2
k + |ek|3 − (1 + e2

k)3/2

− 1
2(µ− |ek|)2(µ+ 2|ek|)Θ(µ− |ek|)

}
.

(5.3)

with the saddle point equation

− 2s = g(e) with g(e) = 2γ2e+ 3e
(
|e| −

√
1 + e2

)
+ 3e(µ− |e|)Θ(µ− |e|) (5.4)

and s = γ1(
∑M
k=1 ek − λ).

The insets in figure 12 show the different shapes of the function g(e) in the (γ2, µ)
plane. Taking into account the Heaviside Θ function, in a similar way as at µ = 0 and
nonzero temperature, the regions are separated by the following three curves:

i) The vanishing of the slope at e = 0,

g′(e = 0) = 2γ2 + 3µ− 3 = 0, (5.5)

see blue line in figure 12.
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ii) The curve (red curve in figure 12) defined by

g(µ) = 0, (5.6)

has the explicit solution
γ2 = 3

2

(√
1 + µ2 − µ

)
. (5.7)

iii ) The third curve is given by

lim
ε→0+

g′(µ− ε) = 0. (5.8)

The limit is introduced so that the Heaviside Θ function is equal to one (green curve
in figure 12). This equation can be solved explicitly with the solution

γ2 = 3(1 + 2µ2)
2
√

1 + µ2 −
3
2µ. (5.9)

From that expression we obtain the critical point

dγ2
dµ = 3µ(3 + 2µ2)

2(1 + µ2)3/2 −
3
2 = 0, (5.10)

which is solved by µcr = 0.3703 with a corresponding value of γ2 given by

γcr
2 = 1.2370. (5.11)

This point is indicated by the yellow point in figure 12.

These three curves partition the (γ2, µ) plane into four regions which are anew referred
to by Roman numerals, see figure 12. The curves meet at the tricritical point where the
minima of the potential coalesce. Combining 2γ2 + 3µ = 3 with 2γ2 = 3(

√
1 + µ2 − µ) we

find that the tricritical point is at µtri = 0 and γtri
2 = 3/2 (blue point in figure 12).

Since the shapes of g(e) at nonzero µ and T = 0 are similar to the shapes of g(e) for
µ = 0 and nonzero T , we expect a similar phase diagram where we again can distinguish
three regions depending on the value of γ2 relative to γcr

2 and γtri
2 . Especially, we see a

cascade of phase transitions between phases of the form U(M) → U(j) × U(M − j). We
have checked this numerically for M = 2 and M = 3 with g̃2 = 3 (γ2 = 0.5236), see
figure 13 (a) and (b). As is the case at nonzero T and µ = 0 for γ2 < γcr

2 the strip of
first order phase transitions is connected. Both inside this strip and in the region around
(µ, λ̃) = (0, 0) we observe a cascade of first order phase transitions.

When increasing the chemical potential at fixed |g̃2| > g̃cr
2 (or γ2 < γcr

2 ) we enter region
IV, where v(e) has three minima. This opens the possibility of phases with the symmetry
breaking pattern U(M) → U(j) × U(k) × U(M − j − k). This has been indeed observed
by us for M = 3, see figure 14. The region where this kind of symmetry breaking pattern
happens is very narrow as it has been the case for finite temperature. Note the similarity
of figure 14 to figure 11. We repeated the same analysis for M = 4 and M = 5. For M = 4
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Figure 13. The T = 0 phase diagram at nonzero chemical potential for (a) M = 2 and (b)
M = 3 with g̃1 = 1 and g̃2 = 3. The value plotted is |e1 − e2| in (a) and e1 − 2e2 + e3 in (b)
with e1 ≥ e2 ≥ e3 assumed. All phase transitions are first order. (c) The minimum of Veff(E) with
g̃1 = 1 and g̃2 = 3 at T = 0. As the chemical potential increases, the eigenvalues drop sequentially
through M first-order transitions.

we found an exotic phase in which U(4) is broken down to U(2)×U(1)×U(1). For M = 5
we found a phase with the breaking pattern U(5)→ U(2)×U(2)×U(1).

When γ2 < γcr
2 the strip of first order phase transitions is connected to the broken

region around the origin of the (λ, µ) plane. For γcr
2 < γ2 < γtri

2 the strip is interrupted
exactly as in the finite T and µ = 0 case. The part that is connected to the broken region
about the origin disappears for γ2 < γtri

2 .

The strip divides the U(M)-symmetric part of the phase diagram into two regions.
The qualitative distinction between these two regions is clear from the behavior of the {ek}
(figure 13). They start with a large value at low µ̃ and then successively drop to a small
value as µ̃ increases.

At nonzero chemical potential the region between the tricritical point and γ2 = 3/2,
which gives a second order phase transition for M = 2 at low temperature, is absent.
Therefore, we do not expect second order transitions at µ 6= 0 and T = 0, even for M = 2.
Only at the end points of the cascades of phase transitions where all first order transitions
run together, we expect second order phase transitions.
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Figure 14. (a) The T = 0 phase diagram for M = 3 with g̃1 = 1 and g̃2 = 3. The plotted
observable is Min(|e1 − e2|, |e2 − e3|, |e3 − e1|). Within the red triangle the three ek differ from one
another, indicating spontaneous symmetry breaking U(3)→ U(1)3. (b) The µ-dependence of {ek}
at λ̃ = 0.01. There is a range of µ in which the three ek are all different.
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Figure 15. Fermion number density at T = 0 with g̃1 = 1 and g̃2 = 3.

Finally, we consider the fermion number density n. Since it is proportional to N it is
useful to divide it by N . In dimensionless units, we have

n

NΛ2 = 1
4π

M∑
k=1

(µ2 − 4g̃2
2e

2
k)Θ(µ− 2|g̃2ek|) . (5.12)

In figure 15 we show the µ-dependence of the fermion number density. It jumps at
first-order transitions. The plots for λ̃ = 0.6 (M = 2) and λ̃ = 0.8 (M = 3) reveal that
the two U(M)-symmetric phases at small µ and large µ are physically quite distinct, as
was suggested in figure 13 as well. At small µ, fermions are rather heavy and the number
density is quenched to zero. In contrast, at large µ, fermions are nearly massless and
their density is enhanced: the large bare mass originating from κψψ in the Lagrangian is
dynamically screened by interactions.
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6 Phases at nonzero T and µ

Finally, in this section we investigate the effect of simultaneously nonzero T and µ.
From (2.12) the potential in this case is found to be

Veff(E)
Λ3 = g̃2

1
g̃2

2 −Mg̃2
1

(
M∑
k=1

ek − λ̃
)2

+
M∑
k=1

{
e2
k + 4

3π |g̃2ek|3 −
1

6π (1 + 4g̃2
2e

2
k)3/2

+ T 3

2π

[
2|g̃2ek|
T̃

Li2

(
− e−

2|̃g2ek|+µ
T

)
+ Li3

(
− e−

2|̃g2ek|+µ
T

)

+ 2|g̃2ek|
T

Li2

(
− e−

2|̃g2ek|−µ
T

)
+ Li3

(
− e−

2|̃g2ek|−µ
T

)]}
. (6.1)

To speed up numerical minimization, we used the Taylor expansion of Li2(z) and Li3(z)
around z = −1 up to 11th order to compute values for −1 ≤ z < 0, and then used
functional identities relating Lis(z) to Lis(1/z) [69, 70] to compute values for z < −1.

De novo we use the notation of (3.6) in which the potential reads

V̂eff(e) = γ1

(
M∑
k=1

ek − λ
)2

+
M∑
k=1

{
γ2e

2
k + |ek|3 − (1 + e2

k)3/2

+ 3T 3
[ |ek|
T

Li2
(
−e−(|ek|+µ)/T

)
+ Li3

(
−e−(|ek|+µ)/T

)
+ |ek|

T
Li2

(
−e−(|ek|−µ)/T

)
+ Li3

(
−e−(|ek|−µ)/T

) ]}
.

(6.2)

with the saddle point equation

− 2s = g(ek) with g(e) = 2γ2e− 3e
√

1 + e2 + 3Te log
(

2 cosh
[
e

T

]
+ 2 cosh

[
µ

T

])
(6.3)

and s = γ1(
∑M
k=1 ek − λ). The possible four shapes of the function g(e), see figure 16,

are basically smoothened versions of the zero temperature but finite chemical potential
setting, compare with figure 12. This also implies that the discussion of the phase diagram
in the (λ̃, µ)-plane looks essentially the same with one exception, namely the onset of a
second order phase transition for M = 2 which results from the finite temperature picture
in section 4.

The phase transitions can again be understood via a Taylor expansion of the function
g(e) about the origin, i.e.,

g(e) ≈
(

2γ2 + 3T log
[
2
(

1 + cosh
[
µ

T

])]
− 3

)
e+ 3

2

( 1
T (1 + cosh [µ/T ]) − 1

)
e3

+ 1
8

(
cosh [µ/T ]− 2

T 3 (1 + cosh [µ/T ])2 + 3
)
e5 + o(e5).

(6.4)

The coefficient of the linear term determines the plane (blue dotted plane in figure 16) that
separates region III from regions I and IV, which is explicitly given by

γ2(T, µ) = 3
2

(
1− T log

[
2
(

1 + cosh
[
µ

T

])])
. (6.5)
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Figure 16. Three-dimensional phase diagram of g(e) in the (γ2, µ, T ) space. The insets show the
possible shapes of the derivative of the potential g(e), see (6.3), at finite chemical potential and
temperature.

The intersections of the blue surface with the µ = 0 and T = 0 planes are given by the
blue curve in figures 6 and 12, respectively. For M = 2 and λ = 0, the part of this surface
between regions I and III allows second order phase transitions. It continues to exist for
not too large values of the chemical potential. When γ2 < γ2(T, µ) the phase will have the
symmetry breaking pattern U(2) → U(1) × U(1), and for γ2 > 3/2 the flavor symmetry
remains unbroken at low temperature and chemical potential.

There are two additional planes that divide the (µ, T, γ2) space. As is the case at zero
chemical potential, the first one is given by (green dotted surface in figure 16)

g′(e) = g′′(e) = 0. (6.6)

On this surface, that separates regions I and II, the extrema of g(e) in region II join so
that g(e) in region I becomes monotonous.

The second plane is given by the equation (red dotted plane in figure 16)

g(e) = g′(e) = 0. (6.7)

On this plane the minimum of g(e > 0) touches the e-axis so that the corresponding
potential will have three minima in region IV.

The tricritical points at T tri = 1/2 for µ = 0 becomes now a tricritical curve (see black
curve in figure 16 for finite µ, namely when the cubic term in g(e) is also vanishing, which
is at

µtri = T triarccosh
[

1− T tri

T tri

]
⇒ γtri

2 = 3
2

(
1− T tri log

[ 2
T tri

])
. (6.8)

There are bounds for the location of this curve, particularly T tri ∈ [0, 1/2], γtri
2 ∈ [3/2(1−

log 2), 1.5] and µtri ∈ [0, 0.45] (the latter number is an approximation for the maximum of
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Figure 17. The M = 3 phase diagram in the large-N limit with g̃1 = 1 and g̃2 = 3 for various λ̃.
The plotted observable is e1 − 2e2 + e3 with e1 ≥ e2 ≥ e3 assumed.

the right hand side of (6.8)). Whenever µ < µtri forM = 2 the system experiences a second
order phase transition at γ2 = γ2 (see eq. (6.5)). Larger values of M remain untouched
and all phase transitions are of first order apart from the critical points where first order
transition lines end. Also for suitably large λ̃ all second order phase transitions will vanish
and what remains are first order transitions.

In region IV at fixed γ2 the potential will have three minima and we can again expect
exotic phases of the form U(M)→ U(j)×U(k)×U(M − j−k). They will certainly appear
only for small µ since this has been already the case for either T = 0 or µ = 0.

For suitably large γ2, µ and T , we find either a strictly monotonous g(e) (region I) or
one which has local maxima and minima symmetrically about the origin in two separate
quadrants (region II). The latter signals again the existence of a strip of cascades of phase
transitions in the high T and µ region. Yet, the shape of g(e) in region II can be also found
for a small region for γ2 < γtri

2 which will show itself as a remaining appendix of this strip
of phase transitions at the phase region about the origin, cf. figure 9.

For simplicity of exposition we limit our numerical analysis to M = 3. Our main
results are summarized in figure 17 (for g̃2 = 3) and figure 18 (for g̃2 = 5). Figure 17 shows
that the phase structure depends on λ̃ in a nontrivial way. At small λ̃, there is a large
region at low T and low µ in which U(3) is spontaneously broken to U(2)×U(1). Along the
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Figure 18. Same as figure 17 but with g̃2 = 5.

boundary of this phase, there is a narrow strip in which U(3) is broken to U(1)×U(1)×U(1)
(cf. figure 14). As λ̃ increases, this strip gradually disappears. At λ̃ = 0.4 there are three
symmetry-broken phases: they have the same symmetry (U(2) × U(1)) but are separated
by first-order phase transitions. As λ increases further, the symmetry gets restored in the
low-T low-µ region but remains broken in the cold dense region.

At stronger coupling a qualitatively new feature emerges. In figure 18 we observe that
the symmetry-broken phase forms a thin annulus, separating the low-T low-µ region from
the high-T high-µ region. This annulus never disappears even at very large λ, although it
is shifted to higher T and µ gradually. By monitoring the behavior of |ek| we found that
the U(3)-symmetric phase below the annulus is characterized by very heavy fermions, while
the other U(3)-symmetric phase above the annulus is characterized by massless fermions.
Although these two phases cannot be distinguished by symmetries, they host quite different
physics.

7 Conclusions and outlook

In the present article, we investigated various aspects of Dirac fermions with nonstandard
quartic interactions in two spatial dimensions. We showed within the mean-field approxi-
mation that the model experiences a cascade of phase transitions when the flavor-symmetric
parity-breaking mass is varied, in a way quite analogous to the behavior of QCD3 [45, 52].
At nonzero temperature and chemical potential we provided analytical and numerical ar-
guments that show how a complicated phase diagram embellished by exotic symmetry
breaking patterns emerges. In particular, we showed (in figures 10, 13 and 18) that, at
strong coupling, the low-(µ, T ) phase with heavy bosons is separated from the high-(µ, T )
phase with almost massless bosons by a series of M phase transitions, through which M

species of fermions become light one after another. At finite temperature there is a subtlety
about symmetry breaking due to enhanced infrared singularities and we gave a speculative
comment on this. Summarizing above, our results shed light on previously unnoticed novel
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dynamics of Dirac fermions in 2 + 1 dimensions and have potential implications for planar
gauge theories as well as planar condensed matter systems.

There are several directions in which this work can be extended. First, the present
analysis in the large-N limit could be generalized to incorporate finite-N corrections. Fluc-
tuations of bosonic fields can be conveniently included by employing methods such as the
functional renormalization group [71]. At finite N , the Jacobian (the squared Vander-
monde determinant) associated with the diagonalization of the matrix field can no longer
be neglected and will affect ground state properties. Secondly, it would be interesting to
see what happens if our assumption g2

2 > Mg2
1 is relaxed. Thirdly, various topological

excitations arise in our model. For instance, in the phases depicted in figures 11 and 14,
π2(U(3)/U(1)3) = Z × Z, implying there are two kinds of Skyrmions. Fourthly, while we
have only considered fermion-anti-fermion condensates, a di-fermion condensate may form
at high density [72, 73]. The competition of two kinds of condensates may be an interest-
ing subject of research. Finally, it would be challenging but quite important to take into
account the possibility of an inhomogeneous condensate that spontaneously breaks trans-
lation symmetry. While the existence of such a condensate has been firmly established in
some (1 + 1)-dimensional models at finite density [74–76], the situation is elusive in higher
dimensions [77, 78].
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A Phase diagram of the effective potential and a toy model

In this appendix, we outline the general strategy for analyzing the phases for an effective
potential of the general structure considered in the main body of the text given by the sum
of a confining (γ1 > 0) harmonic collective potential and confining “single-particle” terms
with potential v(x),

V (e1, · · · , eM , λ) = γ1

 M∑
j=1

ej − λ

2

+
M∑
j=1

v(ej). (A.1)

Generically, we assume that v(x) has the shape of a double well potential that increases
faster than linear for large |e| (i.e. lim|e|→∞ v(e)/|e| =∞)). Such potentials show a similar
behavior such as the cascade of phase transitions and the kind of symmetry breaking
patterns we have found in the physical system. Moreover, the mechanism when and how
the system experiences a second order phase transition is very similar for different v(e).

In the last part of this appendix, we illustrate the general arguments with the properties
of a much simpler toy model (indicated by the subscript tm) with the confining potential

vtm(ej ;T ) = (e2
j + T − 1)2. (A.2)
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This model is motivated by the analysis in section 4 and its numerical observations. It is
essentially a truncation of the expansion of the single particle part of the potential (4.2)
to fourth order, which is expected to capture some essential part of the physics in the
vicinity of a second-order phase transition. Regardless of its simplified form, this toy
model already exhibits generic features for general v(e). Hence, we would like to underline
that most conclusions apply for a more general confining potential v(e).

A.1 Saddle point equation and its asymptotic solutions

What has to be studied are the M saddle point equations

− 2s = −2γ1

 M∑
j=1

ej − λ

 = g(ek) = v′(ek). (A.3)

The extrema of the potential V (e, λ) are determined by the intersections of g(e) with −2s,
which also select the possible phases, especially, which symmetry breaking patterns the
system can exhibit as a function of λ and the parameters of the potential. Note that s can
have different values for the same values of the parameters. The reason is that the solution
of the saddle point equations is not unique.

One particular ingredient is the asymptotic behavior of the solutions of (A.3) for large
|λ|. The asymptotic super-linear growth of v(e) implies also an asymptotic growth of |g(e)|.
Particularly we have three cases to consider where the asymptotic value

lim
e→±∞

g(e)
e

= c± (A.4)

can be either vanishing (c± = 0), be finite (0 < c± < ∞), or diverge (c±(e) = ∞).
Depending on which case the asymptotic solution for ej becomes unique and takes the
form

ek ≈



λ

M
− 1

2γ1M
g

(
λ

M

)
, csign(λ) = 0,

2γ1λ

2γ1M + csign(λ)
, 0 < csign(λ) <∞,

g−1(2γ1λ), csign(λ) =∞,

(A.5)

for all k = 1, . . . ,M . The function g−1 is the inverse of g in the asymptotic regime; for
instance when g(e) grows like eL, the inverse is essentially e1/L. In the physical system in
the main text we have the situation of a finite c+ = c− while the toy model (A.2) leads to
csign(λ) = ∞. An asymptotic behavior with c+ and c− in a different class is possible, but
we do not consider that in the present work.

Regardless which case the asymptotic satisfies, we obtain the same conclusions for the
global minimum of the potential. First, all ek are degenerate for suitably large |λ|. Second,
the modulus of the auxiliary parameter s in (A.3) also grows asymptotically, and its sign
is the opposite of λ and ek. As a physical conclusion we find that for suitably large |λ| we
always have a solution with all ek equal which has unbroken flavor symmetry.
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A.2 Local extrema of g(e) and implications on the possible phases

The solutions of the saddle point equation can be either minima or maxima for V (e, λ).
For a saddle point with g′(ek) > 0 for all ek the potential has certainly a minimum, not
necessarily the global one we are looking for. This follows from the fact that the Hessian
at the saddle point is given by

H = {∂ek∂ejV (e, λ) = 2γ1 + g′(ek)δjk}j,k=1,...,M (A.6)

The Hessian is positive definite if the determinants

det(Hjk)j,k=1,...,n = det{2γ1 + g′(ek)δjk}j,k=1,...,n > 0, for all n ≤M. (A.7)

The term proportional to 2γ1 is of rank 1 which simplifies the evaluation of the determinant
drastically and it is equal to

det(Hjk)j,k=1,...,n =
(

1 + 2γ1

n∑
l=1

1
g′(el)

)
n∏
k=1

g′(ek), for all n ≤M. (A.8)

In general, we may have a solution with L different ek. At most one of the ek may have
g′(ek) < 0. The reason is that the term of the Hessian that is proportional to γ1 is of rank
one. A rank one addition can maximally switch one eigenvalue of a matrix from positive to
negative and vice versa, regardless how large its prefactor is. Let us label the intersection
with g′(ek) < 0 as eM . Then all subdeterminants up to n = M − 1 are positive, and the
condition for the positive definiteness of the Hessian matrix is given by the positivity of its
determinant,

det{2γ1 + g′(ek)δjk}j,k=1,...,M > 0 ⇔ 1 + 2γ1

M∑
l=1

1
g′(el)

< 0. (A.9)

If the solution with L different ek is a global minimum, this would result in the symmetry
breaking pattern U(M)→ U(j1)× · · · ×U(jl) with

∑L
l=1 jl = M . The unbroken symmetry

associated with ek with g′(ek) < 0 can only be a U(1) factor. However, not all of these
saddle points are global minima of V (e, λ) which is the hard part of the analysis.

The simplest case is M = 2. Then the only possible flavor symmetry breaking pattern
is U(2)→ U(1)×U(1), that means a transition from a solution with e1 = e2 to a solution
with e1 6= e2. This transition can only be of second order if the solutions join continuously
to the point where the determinant of the Hessian vanishes, i.e. for parameter values with
g′(e1) = g′(e2) = 0 (or at g′(e1) = g′(e2) = −4γ1, but that is not allowed for γ1 > 0). There
is no second order phase transition when g(e) increases monotonically. More generally, the
phase transition is first order when the global minimum is not a continuous function of λ.

As is shown for the potential in the main text and for the toy model (A.2) a second
order phase transition is realized for M = 2. However, as we will show below, for M > 2
the phase transition for a potential of the form (A.1) is always first order.
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A.3 Cascade of phase transitions

In this subsection, we discuss the phases of the general potential (A.1) with v(e) having
locally the shape of a confining (not necessarily symmetric) double well. The notion “lo-
cally” means that there is a region for s bounded by a local maximum and local minimum
of g(e) where the saddle point equation (A.3) has only three solutions when fixing s. The
integral of g(e) in this region looks like a double well potential.

For the solutions of the saddle point equations we use the Ansatz diag(e) =
diag(X11M−j , X21j), with X1 < X2 without restriction of generality. The two variables
X1 and X2 must satisfy the equations

−2γ1((M−j)X1 +jX2−λ) = g(X1) and −2γ1((M−j)X1 +jX2−λ) = g(X2). (A.10)

These equations can be solved for a real ĵ ∈ R. We would like to highlight the difference
of ĵ ∈ R and j = 0, . . . ,M ; while the former is real and can take an optimal position
minimizing

V
ĵ
(X1, X2, λ) = γ1((M − ĵ)X1 + ĵX2 − λ)2 + (M − ĵ)v(X1) + ĵv(X2) (A.11)

the latter can be only an integer and only approximately minimizes the potential. The
saddle point equation for ĵ is given by

0 =
∂V

ĵ

∂ĵ
= 2γ1(X1 −X2)((M − ĵ)X1 + ĵX2 − λ̂) + v(X1)− v(X2), (A.12)

which yields a unique minimum for ĵ in terms of X1 and X2. This follows from the second
derivative in ĵ which is always positive when X1 6= X2,

∂2V
ĵ

∂ĵ2
= 2γ1(X1 −X2)2 > 0. (A.13)

Note that for X1 = X2 the saddle point equation for ĵ is satisfied trivially.
The minimizer ĵ will generally not lie on one of the integers j = 0, . . . ,M . Yet, the

convexity of V
ĵ
(X1, X2, λ) in ĵ shows that only those closest to ĵ minimize the potential

Vj(X1, X2, λ̂) with j = 0, . . . ,M .
The saddle point equations (A.10) are invariant under

ĵ → ĵ + δĵ, λ→ λ+ (X2 −X1)δĵ, (A.14)

as is the saddle point equation (A.12) for ĵ. We therefore must have

dĵ
dλ̂

= 1
X2 −X1

> 0. (A.15)

Since λ is a function of ĵ, the saddle point solutions are functions of ĵ only and increasing
λ will increase ĵ. For the discretized version j = 0, . . . ,M the solutions X1 and X2 get
an explicit dependence on λ̂ though it has only a limited impact as j tries to be as close
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as possible to ĵ. The convexity of the potential as a function of ĵ also tells us that there
can be only phase transitions from the phase with flavor symmetry U(j) × U(M − j) to
the phase with flavor symmetry U(j + 1)× U(M − j − 1) or U(j − 1)× U(M − j + 1) for
j = 1, . . . ,M − 1. We still could have a phase transition between a solutions with all ek
the same. As we will see below, in the toy model, this happens when T > 1. Also in the
physical system at finite temperature and/or at finite chemical potential there is a region
where the system may experience such a direct transition from all ek equal and negative
to all ek equal and positive, see sections 4, 5 and 6.

In summary, the system runs through all phases corresponding to U(M) → U(j) ×
U(M−j) from j = 0, . . . ,M as the real minimizing set (ĵ, X1(ĵ), X2(ĵ)) will depend contin-
uously on λ̂. The kinks and, hence, phase transitions only originate from the discreteness
of j rather than the continuous variable ĵ → j implying X1,2(ĵ)→ X1,2(j, λ).

Let us underscore the following. What is locally required for the discussion above is
a potential with two minima and the validity of our assumption that the bipartite Ansatz
is valid. However, we could not exclude the possibility that the flavor symmetry is broken
according to U(M)→ U(j)×U(M − j−1)×U(1) when the potential has a minimum with
three different ek, two with g′(ek) > 0 and one with g′(ek) < 0. This possibility has to be
investigated case by case.

A.3.1 No-go statement for second order phase transitions

The question that remains is whether any of these phase transitions are of second order.
The transition from j to j + 1 for j 6= 1 and j 6= M necessarily has to be of first order,
because if X1 = X2 is at a second order phase transition point, we would have a transition
from a state with j of the ek at X2 to a state with all of the ek at X2 as the positivity
condition (A.7) does not allow any other possibility. The only exceptions are the transitions
from j = 0 to j = 1 and from j = M − 1 to j = M . We now consider the latter, while the
former can be worked out in the same way.

As before, the arguments below apply to a potential v(e) that has locally the form of a
double well potential and which is super-linearly increasing for large and small e, this means
its derivative g(e) = v′(e) has the shape of a wiggle. For a second order phase transition to
occur two solutions of the saddle-point equations have to coalesce. This can only happen at
the point e0 with g′(e0) = 0. Since we are considering the solution M − 1→M , we study
the behavior of the potential around ek = e0, for k = 1, · · · ,M . At this point we have

2γ1(Me0 − λ) +Mv′(e0) = 0,
v′′(e0) = 0. (A.16)

Although this point is a solution of the saddle-point equations it does not have to be a
global minimum. Below we will show that for M > 2 there is one direction in which the
potential decreases. We use the Ansatz

(e1, · · · , eM ) = (e0 + x1, · · · , e0 + x1︸ ︷︷ ︸
M−1

, e0 + x2). (A.17)
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Because the potential is homogeneous in the xk the derivatives of the potential with respect
to x1 and x2 also vanish for this Ansatz. Since the determinant of the Hessian vanishes at
e0, there is at least one direction in which the second order fluctuations vanish. To find a
decreasing direction, we thus have to Taylor expand the potential at least to third order

V = V (e0, · · · , e0) + γ1((M − 1)x1 + x2)2 + 1
3!g
′′(e0)((M − 1)x3

1 + x3
2) + · · · . (A.18)

In the direction of vanishing second derivative, given by

x2 = −(M − 1)x1, (A.19)

the third order term behaves as

(M − 1)− (M − 1)3

3! g′′(e0)x3
1 = −M(M − 1)(M − 2)

6 g′′(e0)x3
1. (A.20)

For the assumed shape of the potential we have g′′(e0) > 0 (minimum of g(e) at e0) so that
generally the third order term becomes negative. One exception is M = 2. In that case
the fourth order term of the expansion is positive. So for M = 2 the point e1 = e2 = e0
can be a global minimum. For M > 2, we always have a decreasing direction excluding the
possibility of a second order phase transition.

When g′′(e0) = 0, we need to expand to higher orders. For a local double well shape
of v(e) or local wiggle shape of its derivative g(e) the first non-vanishing derivative of v(e)
must be even. For L = 3, 5, . . ., we obtain

M − 1
L! g(L−1)(e0)xL1 + 1

L!g
(L−1)(e0)xL2

= (M − 1)
[
1− (M − 1)L−1

] xL1
L! g

(L−1)(e0) < 0
(A.21)

because it must be g(L−1)(e0) > 0 if we consider the transition from j = M − 1 to j = M

as g(e) has to have a minimum at e0.
In summary, we can say that forM ≥ 3 the system always experiences a cascade of first

order phase transitions. The only requirement is that the potential has locally the shape
of a double well or its derivative g(e) has the shape of a “wiggle” meaning a maximum
followed by a minimum and then growing again. This is the situation also for the physical
system in the main text. There are surely more complex situations when the potential v(e)
has more than two minima in a restricted region so that the saddle point equation (A.3)
has more than three real solutions. For instance this happens in the middle temperature
regime discussed in section 4. However, generally the mechanism for the phase transition
is similar.

A.4 Phase diagram of the toy model for M = 2

Let us illustrate the phase diagram for M = 2 with the toy model (A.2), where we have

V (e1, e2) = γ1(e1 + e2 − λ)2 + vtm(e1) + vtm(e2) (A.22)
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with
vtm(e) = (e2 + T − 1)2. (A.23)

The saddle point equations are given by

−2γ1(e1 + e2 − λ) = gtm(e1)
−2γ1(e1 + e2 − λ) = gtm(e2), (A.24)

where the derivative of the potential is defined as

gtm(e) = v′tm(e) = 4e(e2 + T − 1). (A.25)

This function can have only two distinct shapes depending on the temperature T . For
T ≥ 1, it is monotonously increasing so that all ek need to be equal, and the flavor
symmetry is not broken in this case. For T < 1, the function develops a local minimum
and maximum. Therefore, equation (A.3) can exhibit three solutions for a fixed s, two at
e(+) > 0 > e(−) with gtm(e(±)) > 0, and one at e(0) with g′tm(e(0)) < 0. In agreement with
the asymptotic analysis in subsection A.1, for sufficiently large or small λ only one solution
exists when all ek are the same. The solutions corresponding to the global minimum are
illustrated in figure 19.

In the toy model (A.2), we can have a transition from a broken phase with e1 6= e2 to a
phase with unbroken flavor symmetry with e1 = e2. At a second order transition curve we
therefore must have e1 = e2 = e0 while the determinant of the Hessian must vanish. At this
point we also must have that g′tm(e0) = 0. To determine the possible critical behavior we
calculate the Hessian at the saddle point in terms of X = (e1 + e2)/2 and ∆ = (e1 − e2)/2
and simplify it with the difference of the two saddle point equations,

gtm(e2)− gtm(e1) = 4(e1 − e2)(e2
1 + e2

2 + e1 + e2 − 1 + T ) = 0. (A.26)

On the branch e1 = e2 = e the Hessian reduces to

detH = (12e2 + 4(T − 1))2 + 4γ1(12e2 + 4(T − 1)), (A.27)

which vanishes when g′tm(e0) = 0, i.e. at

e0 = ±

√
1− T

3 . (A.28)

The value of λ at the second order transition follows from the saddle point equations (A.24)
for e1,2 → e0,

λ = ± 2
γ1

[
γ1 −

2
3(1− T )

]√1− T
3 . (A.29)

The line of second order phase transitions in the (λ, T ) plane may end in a tricritical
point. At this point a second zero of the determinant of the Hessian vanishes. To determine
it, we consider the branch e2

1 + e2
2 + e1e2 − 1 + T = 0 of the difference of the saddle point

equations, see (A.26), where the determinant of the Hessian in terms of ∆ is given by

detH = 32∆2(8∆2 + γ1 − 6(1− T )). (A.30)
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Figure 19. The trajectories (red and blue curves) of the two solutions e1 and e2 as functions of λ
for M = 2, γ1 = 1 and various T . The tri-critical point is at T = 5/6. To highlight the way how
the two solutions e1 = e2 = e(−) and e1 = e2 = e(+) depend on λ we also show the function gtm(e).
The dashed curves indicate the location of the phase transition. The dashed lines parallel to the λ
axis are the “ridges” of the local minimum and maximum of g(e) given by (A.28), while the dashed
curves parallel to e0 are given by (A.29).

The tricritical point, when ∆ changes from ∆ = 0 to ∆ 6= 0, is located at

T = 1− 1
6γ1, (A.31)

and λ given by (A.29).
If e1 = e2 = e0 is a global minimum, the line of second order phase transitions has to

end at T = 1 − γ1/6 for γ1 < 6. In particular, at zero temperature the phase transition
has to be of first order for γ1 < 6. The phase diagram will look like the sketch in figure 20.
There is a region for 1−γ1/6 < T < 1 where a second order phase transition happens. For
T < 1 − γ1/6 we only have a first order phase transitions. To determine if e1 = e2 = e0
is indeed a global minimum, we need explicit expressions for the solutions and substitute
them in the potential which will be done in the remainder of this subsection.

We will solve the saddle point equations in terms ofX = (e1+e2)/2 and ∆ = (e1−e2)/2.
From the difference of the two saddle point equation (A.26) we see that we can have two
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different cases

∆ =

0,
±
√

1− T − 3X2, only when X2 < 1−T
3 .

(A.32)

The solution ∆ = 0 always exists and is even a solution for general g(e). It corresponds
to unbroken flavor symmetry. The non-trivial solution for ∆ obviously represents the case
U(2)→ U(1)×U(1). The potential in terms of ∆ and X reads as follows

V (X,∆, λ, T ) = −16X4 + 8(1− T )X2 + γ1 (2X − λ)2 + 2(∆2 − 1 + T + 3X2)2, (A.33)

which implies that ∆2 = 1 − T − 3X2 is the global minimum whenever this solution is
allowed.

The resulting saddle point equations for X of the two cases of ∆ differ and are given by

− 2γ1(2X0 − λ) = 4X0(X2
0 + T − 1) ⇔ γ1λ = 2X3

0 + 2(γ1 + T − 1)X0 (A.34)

for ∆ = 0, and

− 2γ1(2X1 − λ) = 4
(
X1 ±

√
1− T − 3X2

1

)[(
X1 ±

√
1− T − 3X2

1

)2
+ T − 1

]
(A.35)

for ∆ = ±
√

1− T − 3X2
1 . The latter one can be simplified by adding the two equations

with signs ± which gives

−4γ1(2X1 − λ) = 4[2X3
1 + 6X1(1− T − 3X2

1 ) + 2(T − 1)X1] ⇔ γ1λ = −16X3
1 + 2[γ1 + 2(1− T )]X1.

(A.36)
Using eq. (A.29) for λ at the saddlepoint, this equation can be factorized asX1 −

√
1− T

3

−16X2
1 − 16X1

√
1− T

3 − 4
3(1− T ) + 2γ1

 = 0. (A.37)

The solutions of the quadratic equation are given by

X± = 1
2

(
±
√
γ1
2 −

√
(1− T )/3

)
. (A.38)

One can easily see that the solution X+ has the lower potential. Next we compare the dif-
ference of the potential for X1 =

√
(1− T )/3 and X+. With some work one can show that

∆V = 24(1− T )3/2(γ1 − 6(1− T ))
(√

γ1
6 −

√
1− T

)
. (A.39)

This is negative for T > 1 − γ1/6 which shows that the solutions with the second order
phase transition is the global minimum. As we have seen before from the analysis of the
Hessian, T = 1− γ1/6 is the tricritical temperature.

Summarizing, there is a second order phase transition whenever

(X,∆, |λ|) =

sign(λ)

√
1− T

3 , 0, 2
γ1

[
γ1 −

2
3(1− T )

]√1− T
3

 with 1 ≥ T ≥ 1− γ1
6 .

(A.40)
The point T = 1− γ1/6 is a tricritical point where the transition changes into a first order
phase transition, we have sketched it in figure 20.
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|Δ| ≠ 0

Δ = 0
1

Figure 20. Sketch of the phase diagram of the toy model for M = 2. The solid curve denotes a
first-order phase transition and the dashed curve a second-order phase transition. The open circle
marks a tri-critical point whose exact location is given by (A.40) at T = 1− γ1/6.

A.5 Phase diagram of the toy model for M > 2

The situation for larger values of M is more complicated. The two saddle-point equations
have 3M solutions, most of them complex. However, we find a substantial number of real
solutions with different values of

∑
k ek. A necessary condition for a global minimum is that

the Hessian is positive definite, but to uniquely identify the solution we have to substitute
it in the potential. For example, for M = 3, excluding permutations, we find three real
solutions with a positive definite Hessian for a significant range of parameters. We also
have a saddle point with all three ek different but this had never been a minimum for the
values of the parameters we have analyzed.

However, as we argued in previous sections, the global minimum of the potential can
have at most two different ek. Using this as an Ansatz, this substantially simplifies the
saddle point equations. We still have that a second order phase transition can only happen
at the minimum of gtm(e) which is at

√
(1− T )/3. The difference of the two saddle-

point equations is again given by (A.26). The determinant of the Hessian on the branch
e2

1 + e2
2 + e1e2 − 1 + T can have only other zeros in addition to ∆ = 0 when 2j = M . In

that case the location of the tricritical point is given by

T = 1− γ1M

12 . (A.41)

In principle these equations can be solved analytically, and by evaluating the potential at
all minima it is possible to determine whether or not this Ansatz yields a global minimum.
However, as was shown in A.3.1 2nd order phase transitions are not possible for M > 2
and this Ansatz with 2j = M cannot be the true minimum.

B Some computations of section 3.2

In this section we solve the saddle point equations

g(ek) = −2s, k = 1, · · · ,M (B.1)
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with
g(e) = 2γ2e+ 3e(|e| −

√
1 + e2) (B.2)

and

s = γ1

(
M∑
k=1

ek − λ
)
. (B.3)

In the first part of this appendix, we calculate the solution with all ek equal in which case
we can find the exact solution. In the second part, we compute the solution as a function
of s for the case that there are three different solutions.

When all ek take the same value we look for the solution e0 closest to the origin when
s and e0 have opposite signs. The saddle point equation simplifies to

2γ1λ = 2(γ2 +Mγ1)e0 + 3e0

(
|e0| −

√
1 + e2

0

)
(B.4)

which can be rephrased as

x3
0 −

2γ1λ− 3/2
γ2 +Mγ1

x2
0 − x0 + 3

2(γ2 +Mγ1) = 0 with e0 = x0 − x−1
0

2 . (B.5)

Its solution is

x0 = −a0 + 21/3(1 + 3a2
0)(√

b20 − 108(1 + 3a2
0)3 − b0

)1/3 +

(√
b20 − 108(1 + 3a2

0)3 − b0
)1/3

3× 21/3 (B.6)

with

a0 =− 1
2(γ2 +Mγ1)

(4
3γ1λ+1

)
and b0 = 27

( 3
2(γ2 +Mγ1) +a0 +2a3

0

)
. (B.7)

For γ2 < 3/2 the function g(e) develops a local minimum and maximum. Thus, the
derivative of g(e) with respect to e has to vanish at these points. Its symmetry tells us
that there is one zero of g′(e) for e > 0 and one for e < 0. Indeed, the equation g′(e) = 0
can be rewritten as

x3 + x− 3
γ2

= 0 (B.8)

with |e| = (x− x−1)/2 and x > 1. The corresponding solution is given by

emin = max
{
x− x−1

2 , 0
}
, (B.9)

x =

(
27/γ2 +

√
12 + (27/γ2)2

)1/3

181/3 − (2/3)1/3(
27/γ2 +

√
12 + (27/γ2)2

)1/3 , (B.10)

which is the local minimum of g(e). The local maximum lies at −emin. Hence, for a fixed
s ∈ [g(emin)/2, g(−emin)/2] we find three solutions for g(e) = −2s.
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Two solutions of g(e) = −2s, that we denote by e(−)(s) < 0 < e(+)(s), come with a
positive slope g′(e(±)(s)) > 0. The two solutions e(+)(s) and e(−)(s) satisfy the relation
e(−)(s) = −e(+)(−s) due to the symmetry of g(e). Thus, it is enough to state the solution
for e(+)(s) = (x+ − x−1

+ )/2 with

x+ =−a++
21/3(1+3a2

+)(√
b2+−108(1+3a2

+)3−b+
)1/3 +

(√
b2+−108(1+3a2

+)3−b+
)1/3

3×21/3 (B.11)

and
a+ = 1

2γ2

(4
3s− 1

)
and b+ = 27

( 3
2γ2

+ a+ + 2a3
+

)
. (B.12)

This can be derived by solving the cubic equation

x̃3 + 2s− 3/2
γ2

x̃2 − x̃+ 3
2γ2

= 0 (B.13)

in x̃ > 1 which is equivalent to g(e) = −2s for e > 0. The correct solution can be selected
by the special case s = 0 which should yield x̃ = 3/(2γ2) as can be readily checked for the
equation in g(e) = 0.

At the third solution e(0)(s) ∈] − emin, emin[, the function g(e) has a negative slope.
For s ∈ [0, g(−emin)/2], the solution e(0)(s) = (x0 − x−1

0 )/2 has the form

x0 = −a+ −
e−iπ/3 21/3(1 + 3a2

+)(√
b2+ − 108(1 + 3a2

+)3 − b+
)1/3 − e

iπ/3

(√
b2+ − 108(1 + 3a2

+)3 − b+
)1/3

3× 21/3

(B.14)
with a+ and b+ as in (B.12), since its limit for s = 0 should be x+ = 1. For s ∈
[g(emin)/2, 0], we can use again the symmetry of g(e) = −g(−e), meaning the solution
is then e(0)(s) = −e(0)(−s).

C Comment on the role of bosonic fluctuations

In the main text we have explored the pattern of symmetry breaking in the large-N limit.
In this limit the fluctuations of the bosonic fields are completely negligible, but this is no
longer the case at finite N . Actually the celebrated Coleman-Mermin-Wagner-Hohenberg
(CMWH) theorem [79–81] stipulates that continuous symmetries cannot be spontaneously
broken at nonzero temperature in 2+1 dimensions in the absence of long-range interactions.
Thus any symmetry-breaking condensate at T = 0 must disappear as soon as nonzero
temperature is turned on. No massless Nambu-Goldstone modes can appear; in fact they
acquire nonzero masses, as demonstrated explicitly for O(N)-invariant models in [82–86].
In our model, the ground state has to be E ∝ 1M everywhere on the phase diagram at
T > 0. The second-order phase transition line in figure 7 will be wiped out at finite N and
becomes a crossover. As long as N � 1, the first-order transitions in figures 7, 8, and 10
may well persist. However, if thermal fluctuations were so strong that the critical point
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at λ = 0 (present in figures 8) is destroyed, then M first-order transition lines emanating
from the T = 0 axis would probably end at M distinct critical points.

From the viewpoint of the CMWH theorem it may seem that there is no point in talking
about symmetry breaking for T > 0. However this is not the case. Preceding analyses [82–
86] have shown that the mass of the would-be Nambu-Goldstone modes mNG is of order
F 2 exp(−cF 2/T ), where c is an O(1) pure number and F 2 is a square of the “pion decay con-
stant”, also known as spin stiffness in the literature of quantum magnets. It is well known
that F 2 ∝ N in the large-N limit [87], so we have parametrically mNG ∼ N exp(−N/T )
which gets exponentially small at low temperatures or large N . In experiments or numerical
simulations, the correlation length ∼ m−1

NG can easily exceed the system size. The system is
then virtually indistinguishable from a genuine symmetry-broken phase. The interactions
of the would-be Nambu-Goldstone modes get weaker and weaker as the energy scale goes
down, but start to increase at the scale ∼ mNG. As far as physics at length scales � m−1

NG
is concerned, it is perfectly sensible to adopt a description based on spontaneously broken
symmetry. A detailed discussion on the consistency between the CMWH theorem and the
utility of low-energy effective theories of Nambu-Goldstone modes can be found in [88].

To go beyond the mean-field analysis of this paper we must employ nonperturbative
methods such as Monte Carlo simulations on a lattice, which seems feasible since the
statistical weight (2.6) is real and nonnegative for even N .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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