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1 Introduction

Local operators with dimension larger than four, such as four-quark operators, play a key
role in quantitatively understanding the low-energy dynamics of renormalizable theories.
When working with a quantum field theory involving widely-separated scales, such as the
Standard Model (SM), the logarithms of large scale ratios induce higher-order corrections
that slow-down, if not directly spoil, the standard perturbative series. The use of short-
distance techniques like the Operator Product Expansion (OPE) [1] to separate scales and
Renormalization Group Equations (RGE) to resum those logarithmic corrections becomes
then a must [2–5]. When these techniques are applied, the resulting Effective Field The-
ory (EFT) contains a series of low-energy operators, whose quantitative role in a given
observable is, in general, inversely proportional to their dimensions.
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At low energies, the short-distance logarithmic resummation is not enough. Owing
to confinement and the associated growing of the strong coupling, the low-energy theory
cannot be formulated in terms of approximately-free quarks and gluons; the relevant degrees
of freedom are, instead, hadrons. In practice, one runs perturbatively the EFT to energies
as small as possible, so that all large short-distance logarithms can be reabsorbed into
the computed Wilson coefficients, but the hadronic matrix elements of their associated
operators must still be determined with non-perturbative methods.

At very low energies, the only observed hadrons are pions, kaons and eta bosons. Due
to their flavour structure, non-leptonic kaon decays cannot occur through strong or elec-
tromagnetic interactions; one needs to trace back their origin to the only source of flavour-
breaking in the SM, the W boson, whose imprint in the effective low-energy Lagrangian
appears through dimension-six four-quark operators. The non-perturbative calculation of
the corresponding hadronic matrix elements is a formidable task and current theoretical
uncertainties for the associated observables are unfortunately large [6]. Improved lattice
computations, e.g., see [7], may change the situation in the future.

A more precise knowledge arises in inclusive semileptonic processes involving three
light quark flavours, such as hadronic tau decays or electron-positron annihilation into
hadrons [8]. Although they have a quite different nature, the former being a weak-
interaction transition and the latter an electromagnetic one, their associated hadronic
distributions can be studied with the same theoretical formalism, since rigorous dispersion
relations [9, 10] connect them with two-point correlation functions of quark currents, lead-
ing to very precise predictions [11]. It is precisely in the OPE of these two-point correlation
functions [12] where the four-quark operators appear. In the same way that local quark
operators can give non-zero matrix elements in transitions among hadrons, they can also
acquire non-vanishing expectation values in the non-perturbative QCD vacuum. A well-
known example is the q̄q condensate that plays a key role in the dynamical breaking of
chiral symmetry. Unlike in non-leptonic kaon decays, the numerical role of four-quark oper-
ators is very small in the τ decay width because they enter suppressed by six powers of the
tau mass. Nevertheless, with the achieved experimental accuracy, it is possible to extract
significant dynamical information on some operators from the current τ data samples.

Non-trivial relations among matrix elements involving different four-quark operators
can be derived, using their known symmetry transformations together with our knowledge
of strong interactions at low energies. Many of these relations have been exploited in the
past, but they appear somehow scattered in the literature [13–31]. In the following, we aim
to provide a self-contained derivation, based only on symmetry considerations and EFT,
and apply them to the phenomenology of non-leptonic kaon decays. As an important
application, we will determine the electromagnetic-penguin contribution to ε′/ε, using the
measured hadronic spectral functions in τ decay. Our determination will be compared with
the updated values obtained combining Chiral Perturbation Theory (χPT) and large-NC

techniques [32, 33], and with the most recent lattice results [7].
We will also present a global fit to the available lattice data on K → ππ matrix

elements [7, 34, 35], in terms of a complete set of independent dynamical parameters
with well-defined SU(3)L ⊗ SU(3)R transformation properties, at next-to-leading order
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(NLO) in αs (short-distance logarithms) and χPT. The comparison of this numerical fit
with previous analytical results makes possible to achieve a quantitative assessment of
the different approximations adopted in those approaches. This provides an interesting
anatomy of the ∆I = 1

2 enhancement, confirming old suggestions about its underlying
dynamical origin.

The paper is organized as follows. Section 2 focuses on the derivation of symmetry
relations, making use of effective Lagrangians. The formalism is applied to strangeness-
changing transitions in section 3, which recovers the usual notation employed in χPT [6]. In
section 4, we apply the same tools to analyze the four-quark vacuum condensates appearing
in the correlation functions of the QCD currents. This provides the wanted connection be-
tween the two sectors, making possible to determine with τ data a non-perturbative dynam-
ical parameter characterizing the electroweak-penguin operator Q8. This determination is
presented in section 5, after introducing all necessary dispersive tools. A phenomenological
analysis of K → ππ matrix elements is presented in section 6, which contains the impli-
cations of our dispersive result for ε′/ε and the numerical fit to the most recent lattice
data. A detailed discussion of our current understanding of the ∆I = 1

2 rule is given there,
based on the fitted results and the previous analytical knowledge. As a final consistency
check, we also provide a precise determination of the pion decay constant, combining the
parameters fitted to the lattice data with the measured inclusive distribution of the final
hadrons in τ decay. The main results of our paper are finally summarized in section 7.

2 Low-energy realization of four-quark operators

The massless QCD Lagrangian with three quark flavours,

L0
QCD = −1

4 G
a
µνG

µν
a + i q̄Lγ

µDµqL + i q̄Rγ
µDµqR (2.1)

with qT = (u, d, s), is invariant under (L,R) ∈ SU(3)L ⊗ SU(3)R global transformations in
the flavour space: q′L,i = L j

i qL,j , q′R,i = R j
i qR,j , where qL = 1

2 (1−γ5) q and qR = 1
2 (1+γ5) q

denote the left and right quark chiralities. This chiral symmetry is however not seen in
the hadronic spectrum, which is only invariant under SU(3)V transformations with L = R.
Thus, chiral symmetry is dynamically broken by the QCD vacuum, giving rise to eight
0− massless Goldstone bosons that can be identified with the lightest pseudoscalar octet
(π, K, η).

Together with parity (P ) and charge-conjugation (C) invariance, chiral symmetry
enforces very strong constraints on the low-energy dynamics of these (pseudo)Goldstone
bosons that can be most easily analyzed with an effective Lagrangian expanded in powers
of derivatives [36]. A convenient parametrization of the Goldstone fields is provided by the
unitary matrix U [φi] = eiλiφi/F , transforming as U → RUL† under chiral rotations. At
leading order (LO) in the derivative expansion, the effective Goldstone Lagrangian contains
only two terms [37]:

Leff = F 2

4 Tr(DµU
†DµU + U †χ+ χ†U) +O(p4) . (2.2)
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The covariant derivative DµU = ∂µU − irµU + iU`µ includes auxiliary external left (`µ)
and right (rµ) matrix-valued vector sources coupled to the quarks, which allow us to easily
derive the low-energy realization of the QCD currents [36]. The second term incorporates
the couplings to external scalar (s) and pseudoscalar (p) sources through χ = 2B0 (s+ ip).
Taking p = 0 and s =M = diag(mu,md,ms), this term implements the explicit breaking
of chiral symmetry induced by the non-zero quark masses, generating the physical masses
of the eight pseudoscalar bosons. The LO effective Lagrangian Leff completely determines
the O(p2) contributions to the Goldstone masses and scattering amplitudes, in terms of
the quark masses, and the two low-energy couplings (LECs) F and B0, which are related
to the pion decay constant and the q̄q vacuum condensate [38].

The underlying QCD Lagrangian, including the external sources `µ, rµ, s and p, and
its low-energy Chiral Perturbation Theory (χPT) [37, 39] realization Leff are connected
through the path integral expression

exp {iZ[`µ, rµ, s, p]} =
∫
DqDq̄DGµ exp

{
i

∫
d4xLQCD

}
=
∫
DU exp

{
i

∫
d4xLeff

}
. (2.3)

By taking functional derivatives with respect to the appropriate external sources in both
terms of the equality, one finds the explicit low-energy expressions of the QCD quark
currents. This dictionary will be exploited below to derive some useful relations among
four-quark operators. Many of those symmetry relations are well-known, although quite
often they are presented without a crystal-clear derivation or resorting to soft-pion methods.
The next subsections compile them together, using a much simpler approach purely based
on symmetry arguments.

2.1 Chiral symmetry decomposition

At low energies below the electroweak scale v, the renormalizable SM gives rise to an effec-
tive short-distance Lagrangian that contains dimension-six four-fermion operators. They
originate from integrating out the heavy degrees of freedom (t, H, Z, W±, b, c), which
is needed in order to resum the large perturbative logarithms generated by the sizeable
ratios of mass scales [2–5]. The phenomenological effects of these ‘irrelevant’ electroweak
operators are suppressed by a factor E2/v2 ∼ GFE

2, where E is the energy scale of the
process. They can then be treated as small perturbations to the QCD Lagrangian, in the
sense that it is usually enough to analyze their implications to LO in GF .

Let us then consider the extended QCD Lagrangian

L = LNf=3
QCD + [tL]jlik (q̄LiγµqLj) (q̄Lkγµ qLl) + [tR]jlik (q̄RiγµqRj) (q̄Rkγµ qRl) , (2.4)

with auxiliary tensorial sources [tL,R]jlik. These sources will be later identified with the
corresponding Wilson coefficients of the short-distance electroweak Lagrangian, which are
obviously scale and scheme dependent because the four-quark operators need to be properly
renormalized.
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Taking into account the transformation of the quark currents under P and C,

(q̄L(R)
iγµqL(R)j)

P→ (q̄R(L)
iγµ qR(L)j) , (q̄L(R)

iγµqL(R)j)
C→ −(q̄R(L)

jγµqR(L)i) , (2.5)

invariance under P and C is recovered if

[tL(R)]
jl
ik

P→ [tR(L)]
jl
ik , [tL(R)]

jl
ik

C→ [tR(L)]ikjl . (2.6)

Moreover, under chiral flavour transformations

[tL(R)]
jl
ik → L(R)† jj′ L(R)† ll′ tj

′l′

i′k′ L(R) i′
i L(R) k′

k , (2.7)

in order to preserve the chiral invariance of L. Imposing this formal symmetry on the
external sources (spurions), one can easily work out the symmetry implications for the
different types of four-fermion operators.

It is convenient to identify those combinations of four-quark operators belonging to
irreducible representations of the chiral group. The transformation (2.7) corresponds to
the 81-dimensional representation (3̄⊗3)⊗ (3̄⊗3) of SU(3)L(R), which can be decomposed
into irreducible symmetric/antisymmetric representations with dimensions1 1, 8, 10 and
27. This decomposition can be done in a straightforward way, taking into account that the
SU(3) transformations preserve traces and the symmetry under exchange of upper (j ↔ l)
and/or lower (i↔ k) indices.2

Defining a tensor scalar product as

A · B = AijklB
kl
ij , (2.8)

one can define an orthonormal basis in terms of irreducible subsets:

{ea27
S
S , e

a
8
S
S , e1

S
S , e

a
10
A
S , e

a
8
A
S , e

a
10
S
A, e

a
8
S
A, e

a
8
A
A, e1

A
A} , (2.9)

where S and A refer to the symmetric or antisymmetric character of the representation
with respect to the upper or lower indices. One can then write any tensor in this basis as

A = AarMN ear
M
N , (2.10)

where the coefficient is, using orthonormality,

AarMN = A · earMN = Aijkl

[
ear
M
N

]kl
ij
. (2.11)

1The representation r stands here for (1L, rR) or (rL, 1R), corresponding to [tR] and [tL], respectively.
2A pair of upper or lower indices give 6 symmetric plus 3 antisymmetric possibilities (3 ⊗ 3 = 6 ⊕ 3).

Considering the single and double traces of an upper and a lower index, the 36 symmetric-symmetric (SS)
configurations can be decomposed in 27 (= 36 − 9) fully traceless ones, plus other 8 (= 36 − 27 − 1)
configurations with non-vanishing single traces but null double trace, plus the singlet combination where
both traces are non-zero [40]. Obviously, the 9 antisymmetric-antisymmetric (AA) configurations can only
produce the octet plus singlet possibilities. A singlet combination cannot be present in the AS or SA
configurations, which are then decomposed into 10⊕ 8.
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Since the operators in eq. (2.4) are symmetric under the simultaneous exchange (i, k)↔
(j, l), we only need to consider the symmetric-symmetric (1⊕ 8⊕ 27) and antisymmetric-
antisymmetric (1⊕8) configurations. The fully-symmetric singlet and octet basis elements
take the form: [

e1
S
S

]jl
ik

= 1√
24

(δji δ
l
k + δliδ

j
k) , (2.12)[

ea8
S
S

]jl
ik

= 1√
40

(λa,ji δlk + λa,li δ
j
k + λa,jk δli + λa,lk δ

j
i ) , (2.13)

with λa,ji any basis of traceless SU(3) matrices such that Tr(λaλb) = 2δab, for which we
adopt the conventional Gell-Mann choice. Instead of building an explicit basis of 27 sym-
metric tensors, it is simpler to subtract the singlet and octet pieces from the symmetric-
symmetric component of the tensor:

A27
S
S = ASS − (ASS · e1

S
S) e1

S
S − (ASS · ea8SS) ea8SS . (2.14)

The remaining antisymmetric-antisymmetric pieces can be projected in a fully analogous
way with the corresponding basis elements[

e1
A
A

]jl
ik

= 1√
12

(δji δ
l
k − δliδ

j
k) , (2.15)[

ea8
A
A

]jl
ik

= 1√
8

(λa,ji δlk − λ
a,l
i δ

j
k − λ

a,j
k δli + λa,lk δ

j
i ) . (2.16)

2.2 Effective χPT operators

To build the corresponding structures in the low-energy χPT framework, one just needs to
combine the transformation properties in eqs. (2.6) and (2.7) with those of the basic chiral
building blocks. Under P and C [41],

(Dµ1 · · ·DµnU)ji
P→ (Dµ1 · · ·DµnU)†ji , χji

P→ χ†ji , (2.17)

(Dµ1 · · ·DµnU)ji
C→ (Dµ1 · · ·DµnU)ij , χji

C→ χij , (2.18)

and under flavour,3

(Dµ1 · · ·DµnU)ji → Ri
′
i (Dµ1 · · ·DµnU)j

′

i′ L
†j
j′ , χji → Ri

′
i χ

j′

i′ L
†j
j′ . (2.19)

It turns useful to define simple χPT structures transforming as pure left or right objects:

Lµ ≡ i U †DµU → LLµ L
† , U †χ → LU †χL† , (2.20)

Rµ ≡ i U (DµU)† → RRµR
† , U χ† → RU χ†R† . (2.21)

The LO building block compatible with a non-zero 27-plet arises at O(p2) from connecting
Lµ

i
kL

µj
l to [tL]klij and RµikRµ

j
l to [tR]klij . Making use of the relation (2.14) to project the 27

3Schematically, for building blocks purposes one may just represent them as tLLLL, ULR , χLR, U†RL , χ†RL , tRRRR.
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piece, and requiring invariance under the discrete symmetries P and C, one finds:

L27 = a27
F 4

8

{
[tL]jlik

(
[Lµ,ij Lkµ,l + Lµ,kj Liµ,l]−

1
12 Tr(LµLµ) [δijδkl + δilδ

k
j ]

− 1
10 Tr(λaLµLµ) [λia,jδkl + λia,lδ

k
j + λka,jδ

i
l + λka,lδ

i
j ] + O(p4)

)
+ L↔ R

}
. (2.22)

Parity invariance requires the result to be symmetric under the exchange L↔ R. Therefore,
the (27L, 1R) and (1L, 27R) components share the same normalization. Symmetries alone
do not allow to fix the (µ dependent) global constant a27, which encodes details on the
non-perturbative QCD dynamics. We have normalized it with a factor F 4 so that a27
is a dimensionless quantity. Notice that there are no other independent colour or spinor
structures that can give a 27-plet made out of four-quark operators.4 At this chiral order,
our non-perturbative ignorance for the 27-plet part of any (SM or beyond SM) effective
four-quark operator is encoded in a single constant.

Projecting with the fully-symmetric octet basis element in eq. (2.13), one directly finds
the effective symmetric octet Lagrangian:5

LS8 = aS8
F 4

80
{

[tL]jlik Tr(λaLµLµ) + [tR]jlik Tr(λaRµRµ)
}

(λia,jδkl + λia,lδ
k
j + λka,jδ

i
l + λka,lδ

i
j)

+ O(p4) . (2.23)

A completely analogous derivation leads to the antisymmetric octet one:

LA8 =− aA8
F 4

16
{

[tL]jlik Tr(λaLµLµ) + [tR]jlik Tr(λaRµRµ)
}

(λia,jδkl − λia,lδkj − λka,jδil + λka,lδ
i
j)

+O(p4) . (2.24)

The parameters a27, aS8 and aA8 depend on the short-distance renormalization scale
µ. Since there is only a 27-plet structure, the µ dependence encoded in a27(µ) cancels
exactly the one carried by the [tL] and [tR] tensorial sources in eq. (2.22). The cancellation
of renormalization-scale dependences is more subtle in the octet sector because the QCD
interaction mixes different flavour-octet structures.

With only symmetry consideration, no useful information can be derived from the
singlet structures, since there are pure O(p0) contact terms, such as [tL(R)]

ij
ij and [tL(R)]

ij
ji,

that are not related to the Goldstone dynamics.

4For (V ±A)× (V ±A) operators, Fierz transformations trivially relate the two possible colour-singlet
structures.

5An additional allowed octet structure is obtained, replacing Tr(λaLµLµ) and Tr(λaRµRµ) in eq. (2.23)
by Tr[λa(U†χ+χ†U)] and Tr[λa(Uχ†+χU†)], respectively [16]. However, it induces a vacuum misalignment
through Goldstone tadpoles. Once the Goldstone fields are properly redefined, this O(p2) weak mass term
is rotated away. Thus, it does not contribute to any physical amplitude [19, 42].
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2.3 Left-right four-quark operators

Let us now consider the Lagrangian

L = LNf=3
QCD + [tδδLR]jlik (q̄LiγµqLj) (q̄RkγµqRl) + [tλλLR]jlik (q̄LiγµT aqLj)(q̄RkγµT aqRl) , (2.25)

where T a = 1
2 λ

a
C are the generators of the colour SU(3)C group with λaC the corresponding

Gell-Mann matrices in colour space. Both tδδLR and tλλLR share the same symmetry transfor-
mations. We will omit the superscript when we refer to any of them. The Lagrangian is
invariant under discrete symmetries provided that

[tLR]jlik
P→ [tLR]ljki , [tLR]jlik

C→ [tLR]kilj , (2.26)

while invariance under chiral flavour transformations requires

[tLR]jlik → L† jj′ R
† l
l′ [tLR]j

′l′

i′k′ L
i′
i R

k′
k . (2.27)

The decomposition into irreducible representations is now simpler because each fermion
bilinear transforms with a different SU(3) group. Thus, we have the 3̄⊗ 3 = 1⊕ 8 decom-
position in each chiral sector, which results in four possible structures transforming as
(1L, 1R), (8L, 1R), (1L, 8R), and (8L, 8R). Following the same procedure explained before,
an associated orthonormal basis is trivially given by

[e1L,1R ]jlik = 1
3δ

j
i δ
l
k , [ea8L,1R ]jlik = 1√

6
λa,jL,iδ

l
k , [ea1L,8R ]jlik = 1√

6
δji λ

a,l
R,k , [eab8L,8R ]jlik = 1

2λ
a,j
L,iλ

b,l
R,k ,

(2.28)
where we have made explicit the left or right nature of the different Gell-Mann matrices.

The LO χPT structure compatible with a nonzero (8L, 8R) piece is the O(p0) tensor
U †li U

j
k . Projecting it with the corresponding element of the orthonormal basis in eq. (2.28),

one finds

L8L,8R = F 6

4
(
aδδ88 [tδδLR]jlik + aλλ88 [tλλLR]jlik

)
λa,iL,jλ

b,k
R,l Tr(λaLU †λbRU) + O(p2) . (2.29)

It can be easily checked that this Lagrangian is invariant under parity and charge conju-
gation, provided that the external sources transform as indicated in eq. (2.26). These two
discrete transformations connect the (8L, 1R) and (1L, 8R) sectors; their corresponding LO
effective Lagrangian is easily found to be

LLR8 = F 4

6
(
aδδLR [tδδLR]jlik + aλλLR [tλλLR]jlik

){
Tr(λaLLµLµ) λa,iL,jδ

k
l + Tr(λaRRµRµ) δijλ

a,k
R,l

}
+ O(p4) . (2.30)

The global factors F 6 and F 4 have been introduced in order to have dimensionless couplings
aδδ88, aλλ88 , aδδLR and aλλLR. Once again, the low-energy realization of the remaining singlet
structure does not give any useful information.
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2.4 Large-NC limit

At LO in the momentum expansion, all non-trivial dynamical information about the non-
singlet flavour structures is then encoded in the seven couplings ai(µ). Their expected
size can be easily estimated in the limit of a large number of QCD colours NC , where
the colour-singlet currents factorize. The LO χPT realizations of the left and right QCD
currents are just given by [38]

(q̄LiγµqLj) =̇ − 1
2 F

2 Lµ,ij , (q̄RiγµqRj) =̇ − 1
2 F

2Rµ,ij . (2.31)

This explains the chosen normalization factor in eq. (2.22), from which the global factors
in (2.23) and (2.24) follow. Therefore, the dynamical couplings associated with left-left
and right-right four-quark operators take the large-NC values:

a∞27(µ) = 1 , aS,∞8 (µ) = 1 , aA,∞8 (µ) = 1 . (2.32)

The left-right colour-singlet structure in eq. (2.25) does not contribute to the LO χPT
Lagrangians (2.29) and (2.30) when NC →∞:

aδδ,∞88 (µ) = 0 , aδδ,∞LR (µ) = 0 . (2.33)

Making a Fierz rearrangement, the colour-octet term can be written as a product of right
and left scalar currents:

(q̄LiγµT aqLj) (q̄RkγµT aqRl) = −(q̄LiqRl) (q̄RkqLj) + 1
NC

(q̄ αiL q βRl) (q̄ βkR qαLj)

=̇−B2
0F

2
{1

4 F
2 U il U

†k
j

+U il

[
L5 U

†DνUD
νU † + 2L7 U

†Tr(U †χ− χ†U) + 2L8 U
†χU † +H2 χ

†
]k
j

+
[
L5 UDνU

†DνU − 2L7 U Tr(U †χ− χ†U) + 2L8 Uχ
†U +H2 χ

]i
l
U †kj

}
,

+ O(p4N2
C , p

2NC) , (2.34)

where the indices α and β in the first line denote the quark colours (colour-singlet currents
are understood whenever colour labels are not explicit). In the last expression we have only
kept the large-NC contributions, using the known χPT realization of these currents [32].
This fixes the normalization of aλλ88 and aλλLR in the limit NC →∞:

aλλ,∞88 (µ) = −1
4 B(µ) , aλλ,∞LR (µ) = −2L5B(µ) , (2.35)

where the µ-dependent factor

B(µ) ≡ B2
0

F 2 =
[

M2
K

(ms +md)(µ)Fπ

]2{
1 + 8M2

π

F 2
π

L5 −
16M2

K

F 2
π

(2L8 − L5)
}

(2.36)

is related to the quark condensate in the chiral limit, 〈0|ūu|0〉 = −F 2B0. The constants
Li and H2 are low-energy couplings of the O(p4) χPT Lagrangian [38].
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Thus, F 2aλλ88 (µ) and aλλLR(µ) are of O(N0
C), while aδδ88(µ) and aδδLR(µ) are suppressed

by a factor 1/NC . The dependence on the renormalization scale of a27(µ), aS8 (µ) and
aA8 (µ) is also colour suppressed, while the factor B(µ) captures the exact µ dependence of
aλλ,∞88 (µ) and aλλ,∞LR (µ) in the large-NC limit. The anomalous dimensions of the left-left and
right-right operators are necessarily of NLO in 1/NC because the vector and axial-vector
currents are not renormalized. On the other side, the scalar and pseudoscalar QCD currents
do depend on renormalization conventions. Only renormalization-invariant combinations
such as mq q̄

iqj can appear in observable quantities, which explains why the µ dependence
of left-right operators scales with the factor B(µ) ∼ mq(µ)−2 at large-NC .

3 Strangeness-changing weak transitions

Let us particularize now the previous discussion to the ∆S = 1 and ∆S = 2 transitions.
After integrating out the heavy mass scales, the effective ∆S = 1 SM Lagrangian takes
the form

L∆S=1 = G
10∑
i=1

Ci(µ) Qi(µ) , (3.1)

where
G ≡ −GF√

2
VudV

∗
us , (3.2)

contains the Fermi coupling and the leading quark-mixing parameters, and the sum extends
over the standard basis of ten four-quark operators Qi [2, 43]:

Q1 = 4 (s̄αLγµu
β
L) (ūβLγµd

α
L) , Q2 = 4 (s̄LγµuL) (ūLγµdL) ,

Q3 = 4 (s̄LγµdL)
∑

q=u,d,s
(q̄LγµqL) , Q4 = 4 (s̄αLγµd

β
L)

∑
q=u,d,s

(q̄βLγµq
α
L) ,

Q5 = 4 (s̄LγµdL)
∑

q=u,d,s
(q̄RγµqR) , Q6 = 4 (s̄αLγµd

β
L)

∑
q=u,d,s

(q̄βRγµq
α
R) ,

Q7 = 6 (s̄LγµdL)
∑

q=u,d,s
eq (q̄RγµqR) , Q8 = 6 (s̄αLγµd

β
L)

∑
q=u,d,s

eq (q̄βRγµq
α
R) ,

Q9 = 6 (s̄LγµdL)
∑

q=u,d,s
eq (q̄LγµqL) , Q10 = 6 (s̄αLγµd

β
L)

∑
q=u,d,s

eq (q̄βLγµq
α
L) , (3.3)

where α, β are colour indices. The factors eq denote the corresponding quark charges in
units of e =

√
4πα. All short-distance dynamical information on the heavy scales is encoded

in the Wilson Coefficients Ci(µ) = zi(µ) + τ yi(µ), where τ = −λt/λu with λq = V ∗qsVqd.
These coefficients can be computed with standard perturbative tools and their numerical
values at NLO are given in table 1.

The effective realization of L∆S=1 in the low-energy Goldstone theory is well known [6].
At LO is characterized by three different χPT structures [16–20, 44–46],

L∆S=1
eff = GF 4

{
g27

(
Lµ3

2 L1
µ1 + 2

3 L
µ1
2 L3

µ1

)
+ g8 Tr(λLµLµ) + e2g8 gewk F

2 Tr(λU †QU)
}
,

(3.4)
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zi(1 GeV) yi(1 GeV)
1 −0.482 0
2 1.260 0
3 0.00105 0.0307
4 −0.0296 −0.0563
5 0.00699 0.00105
6 −0.0293 −0.103
7 0.0000745 −0.000314
8 0.0000832 0.00115
9 0.000117 −0.0114
10 −0.0000503 0.00475

Table 1. ∆S = 1 Wilson Coefficients at NLO in the MS (NDR) scheme at µ = 1GeV.

transforming as (27L, 1R), (8L, 1R) and (8L, 8R), respectively. Here, λ ≡ 1
2 (λ6 − iλ7)

projects onto the s̄→ d̄ transition and Q = 1
3 diag(2,−1− 1) is the quark charge matrix.

Particularizing the tensor sources in eqs. (2.4) and (2.25) to the SM ∆S = 1
Lagrangian (3.1) and projecting over the different chiral-symmetry components, using
eqs. (2.22), (2.23), (2.24), (2.29) and (2.30), one easily finds the expression of the three
low-energy couplings in terms of the SM Wilson coefficients:6

g27 = 3
5 a27(µ)

(
C1 + C2 + 3

2 C9 + 3
2 C10

)
(µ) , (3.5)

g8 = 1
10 a

S
8 (µ) (C1 + C2 + 5C3 + 5C4 − C9 − C10)(µ)

−1
2 a

A
8 (µ) (C1 − C2 + C3 − C4 + C9 − C10)(µ)

+4 aδδLR(µ)
(
C5 + C6

Nc

)
(µ) + 8 aλλLR(µ)C6(µ) , (3.6)

e2g8 gewk = 6
{
aδδ88(µ)

(
C7 + C8

Nc

)
(µ) + 2 aλλ88 (µ)C8(µ)

}
. (3.7)

Since the chiral couplings g27, g8 and gewk are independent of the short-distance renor-
malization scale µ, these equations contain also information on the µ dependence of the
non-perturbative parameters ai(µ). Inserting the large-NC values of the ai(µ) couplings in
eqs. (2.32), (2.33) and (2.35), one recovers the known expressions for the weak χPT LECs

6The operator basis is redundant because Q4 = −Q1 + Q2 + Q3, Q9 = 3
2 Q1 − 1

2 Q3 and Q10 =
1
2 Q1 +Q2− 1

2 Q3. Thus, Q4, Q9 and Q10 can be eliminated redefining appropriately the Wilson coefficients
to C′1 = C1 − C4 + 3

2 C9 + 1
2 C10, C′2 = C2 + C4 + C10 and C′3 = C3 + C4 − 1

2 C9 − 1
2 C10. The

Fierz transformation needed to rewrite Q4 in the colour-singlet form of eq. (4) generates an additional tiny
contribution from evanescent operators in the NDR scheme (this correction is zero with the ’t Hooft-Veltman
prescription for γ5) [47]. It can be easily incorporated in eq. (3.6) with the changes: C6 → C6 − αs

4π C4,
C4 → C4 − αs

4π C4, C3 → C3 + αs
12π C4 and C5 → C5 + αs

12π C4.
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in the limit of a large number of QCD colours [48]:

g∞27 = 3
5

(
C1 + C2 + 3

2 C9 + 3
2 C10

)
,

g∞8 = −2
5 C1 + 3

5 C2 + C4 − 16L5B(µ)C6(µ)− 3
5 C9 + 2

5 C10 ,(
e2g8 gewk

)∞
= −3B(µ)C8(µ) . (3.8)

C6 and C8 are the only Wilson coefficients carrying an explicit dependence on µ at NC →
∞. This dependence is exactly cancelled by the factor B(µ).

3.1 ∆S = 2 Lagrangian

In the SM the mixing between the neutral kaon and its antiparticle is mediated by box
diagrams with two W exchanges. In the three-flavour theory, they generate a ∆S = 2
effective Lagrangian that contains one single dimension-six operator [49]:

L∆S=2 = −G
2
FM

2
W

(4π)2 F(VCKM,mc,mt) C∆S=2(µ) Q∆S=2(µ) , (3.9)

where

Q∆S=2 = 4 (s̄LγµdL) (s̄LγµdL) , (3.10)

C∆S=2(µ) = αs(µ)−2/9
[
1 + αs(µ)

4π J3

]
(3.11)

and the short-distance factor [50]

F(VCKM,mc,mt) = λ2
u ηcc S (xc) + λ2

t ηtt S (xt) + 2λuλt ηut S (xc, xt) (3.12)

contains the information on the relevant quark-mixing factors λq and the heavy mass scales,
through the modified Inalmi-Lim functions S (xq) and S (xc, xt), where xq = m2

q/M
2
W . In

the MS scheme, the QCD corrections take the values J3 = 1.895, ηcc = 1.87 ± 0.76,
ηtt = 0.5765± 0.0065 and ηut = 0.402± 0.005 [50–54].

The corresponding external source tensor in eq. (2.4), [tL]22
33, belongs to the (27L, 1R)

multiplet. Using eq. (2.22), one finds the effective χPT realization of this ∆S = 2 operator:

L∆S=2
27 = G2

FM
2
W

(4π)2 F(VCKM,mc,mt) g∆S=2 F
4 Lµ,32 L3

µ,2 +O(p4) , (3.13)

with
g∆S=2 = a27(µ)C∆S=2(µ) . (3.14)

Thus, a27(µ) depends on the renormalization scale in precisely the opposite way than
eq. (3.11), so that the product g∆S=2 remains scale invariant.

Since both involve the same non-perturbative parameter a27(µ), the chiral couplings
g∆S=2 and g27 are directly related through the identity

g27 = 3
5

(
C1 + C2 + 3

2 C9 + 3
2 C10

)
(µ)

C∆S=2(µ) g∆S=2 . (3.15)
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This symmetry relation guarantees that the running of the Wilson coefficients in the nu-
merator matches exactly the one of C∆S=2(µ) in the denominator, so that the ratio is scale
invariant. From the measured K → ππ rates, one obtains at NLO in χPT [6, 33]

g27 = 0.29± 0.02 , (3.16)

which implies
g∆S=2 = 0.79± 0.05 , (3.17)

and
a27(µ0) = 0.622± 0.043 (3.18)

at µ0 = 1GeV.
The relation between these two 27-plet couplings is usually expressed [13] in terms of

the so-called BK parameter, defined through

〈K̄0|Q∆S=2|K0〉 = 16
3 F 2

KM
2
K BK , (3.19)

or the scale-invariant quantity B̂K ≡ BK(µ)C∆S=2(µ). Evaluating this hadronic matrix
element with the effective Lagrangian (3.13), one gets

F 2
KB̂K = 3

4 F
2 g∆S=2 +O(p4) . (3.20)

Thus, 3
4 g∆S=2 and 3

4 a27(µ) correspond to the values of B̂K and BK(µ), respectively, in the
chiral limit.7 Using eq. (2.32), one recovers the well-known result B∞K = 3

4 at large NC .
The value of g∆S=2 extracted above from the K → ππ rates implies B̂K = 0.59± 0.02

in the chiral limit. This can be compared with the results from explicit calculations with
different methods:

lim
mq→0

B̂K =


0.33± 0.09 [15]
0.38± 0.15 [55, 56]
0.36± 0.15 [30, 57]

. (3.21)

Conversely, taking the chiral-limit value of B̂K from the most recent calculation of ref. [55],
one predicts:

g∆S=2 = 0.51± 0.20 , g27 = 0.19± 0.07 , (3.22)

and
a27(µ0) = 0.40± 0.16 , (3.23)

at µ0 = 1GeV.
Since a27(µ) is a CP-conserving parameter, eq. (3.5) allows us to predict also the tiny

CP-violating component of g27. Taking the experimental value of Re[g27] in eq. (3.16),
one gets

Im[g27] =
Im
(
C1 + C2 + 3

2 C9 + 3
2 C10

)
Re
(
C1 + C2 + 3

2 C9 + 3
2 C10

) Re[g27] = −(0.0037± 0.0002) Im(τ) , (3.24)

where Im(τ) ≈ −ηλ4A2/
√

1− λ2 in the Wolfenstein parametrization of the CKM matrix.
7BK(µ) receives large chiral corrections of O[M2

K log (M2
K/ν

2
χ)/Λ2

χ] [14].
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4 Vacuum condensates

The two-point correlation functions of the colour-singlet vector V µ
ij = q̄jγµqi and axial-

vector Aµij = q̄jγµγ5qi quark currents,

Πµν
ij,J (q) ≡ i

∫
d4x eiqx 〈0|T (J µij (x)J νij(0)†)|0〉 = (−gµνq2+qµqν) ΠL+T

ij,J (q2)+gµνq2 ΠL
ij,J (q2) ,

(4.1)
play a central role in the study of hadronic production through electroweak currents [8].
Here, J = V,A and the superscripts denote the transverse (T ) and longitudinal (L) com-
ponents. We are mainly interested in the correlators associated with J µud, (V + A)µus and
J̄µem ≡

√
3/2

∑
i eiV

µ
ii , which can be related to precise experimental data. From now on, we

focus on their corresponding L+ T parts (omitting the L+ T label), which we will denote
Πd
J , Πs

V+A and ΠEM .
At large Euclidean momenta Q2 = −q2 � Λ2

QCD, their asymptotic behaviour is well
described by the OPE [12]:

Π(q2) =
∑
i,D

Ci,D(q2, µ) 〈Oi,D(µ)〉
(−q2)D/2

≡
∑
D

〈OD〉
(−q2)D/2

. (4.2)

The leading D = 0 perturbative contribution, which is currently known to order α4
s [58–61],

is corrected by inverse-power contributions from gauge- and Lorentz-invariant operators of
increasing dimension D. These dimensional corrections, obtained by dressing and renor-
malizing contributions where not all quark and gluon fields are contracted, are characterized
by Wilson coefficients that only depend logarithmically on the energy scale,

Ci,D(q2, µ) = C0
i,D

{
1 + αs(µ)

[
ci,D + cLi,D log (−q2/µ2)

]
+O(α2

s)
}
, (4.3)

where the coefficients cLi,D are related to the leading anomalous-dimension matrix of the
associated operators.

We are going to analyze the four-quark operators that appear at D = 6. Follow-
ing a notation close to eqs. (2.4) and (2.25), their contributions to the relevant current
correlators [11] can be written in the form8

O6 = [t̃L]jlik (q̄iLγµT aqLj) (q̄kLγµT aqLl) + [t̃R]jlik (q̄iRγµT aqRj) (q̄kRγµT aqRl)

+ [tδδLR]jlik (q̄iLγµqLj) (q̄kRγµqRl) + [tλλLR]jlik (q̄iLγµT aqLj) (q̄kRγµT aqRl) . (4.4)

At LO in αs, [tδδLR]jlik = 0. For Πd
J the non-zero tensor coefficients are

[t̃dL,J ]jlik = [t̃dR,J ]jlik = −8παs
{1

4 (λ1,j
i λ1,l

k + λ2,j
i λ2,l

k ) + 1
18
√

3
(λ8,j
i δlk + λ8,l

k δ
j
i ) + 2

27 δ
j
i δ
l
k

}
,

(4.5)

[td,λλLR,J ]jlik = −8παs
{
∓1

2 (λ1,j
i λ1,l

k + λ2,j
i λ2,l

k ) + 1
9
√

3
(λ8,j
i δlk + λ8,l

k δ
j
i ) + 4

27 δ
j
i δ
l
k

}
, (4.6)

8For the left-left and right-right operators, the notation of eq. (2.4) without colour matrices corresponds
to [tL(R)]jlik = 1

2

(
[t̃L(R)]ljik −

1
NC

[t̃L(R)]jlik
)
.
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where the upper (lower) signs correspond to the vector (axial-vector) currents. To obtain
the corresponding results for the Πs

J correlators, one just needs to exchange the down and
strange quarks, which amounts to the changes

[tsJ ]jlik = [tdJ ]jlik
(
λ1 → λ4, λ2 → λ5, λ8 →

√
3

2

(
λ3 −

1√
3
λ8

))
. (4.7)

Finally, the tensor coefficients of the electromagnetic correlator ΠEM are

[t̃L,EM ]jlik = [t̃R,EM ]jlik = −8παs
{3

2 Q
j
iQ

l
k + 1

18 (Qji δ
l
k + δjiQ

l
k) + 2

27 δ
j
i δ
l
k

}
, (4.8)

[tλλLR,EM ]jlik = −8παs
{
−3QjiQ

l
k + 1

9 (Qji δ
l
k + δjiQ

l
k) + 4

27 δ
j
i δ
l
k

}
. (4.9)

In addition to the octet and 27-plet structures, all these correlators contain also flavour-
singlet components. However, the singlet terms cancel in the flavour-breaking differences
Πd
V−A, Πd−s

V+A and ΠEM −Πd
V , together with the purely perturbative contributions.9 These

correlation functions are then governed by long-distance matrix elements that can be related
to the ones discussed in the previous section.

4.1 Od6,V−A

The cleanest flavour-breaking difference is Od6,V−A, which only receives an (8L, 8R) con-
tribution from [td,λλLR,V−A]jlik = 8παs (λ1,j

L,iλ
1,l
R,k + λ2,j

L,iλ
2,l
R,k). From eqs. (2.25) and (2.29), the

realization of this local operator in terms of the long-distance degrees of freedom is found
to be:

Od6,V−A(µ) = 8παs(µ)F 6aλλ88 (µ) Tr(λ1
LU
†λ1
RU + λ2

LU
†λ2
RU) +O(p2, α2

s) . (4.10)

Taking now the vacuum expectation value, one finds

〈Od6,V−A(µ)〉 = 32παs(µ)F 6aλλ88 (µ) +O(p2, α2
s) , (4.11)

which provides a direct link between this condensate and g8gewk in eq. (3.7).
Expanding the flavour trace in eq. (4.10) to second order in the Goldstone fields and

computing the resulting tadpole contributions, we can easily obtain the O(p2) χPT cor-
rections to the vacuum condensate:

〈Od6,V−A(µ)〉 = 32παs(µ)F 6aλλ88 (µ)
{

1− 2M2
K

(4πF )2 log
(
M2
K

ν2
χ

)
− 4M2

π

(4πF )2 log
(
M2
π

ν2
χ

)

+ 4
F 2 M

2
π c

λλ
4 (νχ, µ) + 2

F 2 (2M2
K +M2

π) cλλ6 (νχ, µ)
}

+O(p4, α2
s) . (4.12)

9The so-called singlet topologies that only contribute to the neutral correlators are absent in the three-
flavour theory because

∑
q
eq = 0 [8].
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The chiral logarithmic corrections are unambiguously predicted in terms of the LO coupling
aλλ88 (µ), but there are in addition local contributions from the O(p2) χPT operators [62]

LO(p4)
8L,8R = F 4

4 cλλ4 [tλλLR]jlik λ
a,i
L,jλ

b,k
R,l Tr(λaLS+U

†λbRU + λaLU
†λbRUS+)

+ F 4

4 cλλ6 [tλλLR]jlik λ
a,i
L,jλ

b,k
R,l Tr(λaLU †λbRU) Tr(S+) , (4.13)

with S+ = U †χ+χ†U . The renormalized couplings cλλ4,6(νχ, µ) reabsorb the loop divergences
and, therefore, depend on both the short-distance (µ) and χPT (νχ) renormalization scales:

c
λλ,(0)
i (µ) = aλλ88 (µ)

{
cλλ,ri (νχ, µ) + ζi

(4πF )2

[
2 νD−4

χ

D − 4 + γE − log (4π)− 1
]}

, (4.14)

where ζ4 = 3
4 and ζ6 = 1

2 . These couplings can be easily estimated in the large-NC limit,
using eq. (2.34):

cλλ,∞4 (νχ, µ) = 2 (2L8 +H2) = 32
3 L8 , cλλ,∞6 (νχ, µ) = 0 . (4.15)

The dependence of the product aλλ,∞88 (µ) cλλ,∞4 (νχ, µ) on the short-distance renormaliza-
tion scale µ is fully carried by aλλ,∞88 (µ), through the factor B(µ) in eq. (2.36), while the
dependence on the scale νχ is of higher order in 1/NC because it is a χPT loop effect.

The NLO corrections in αs are also known [63, 64]. For Od6,V−A they have the structure:

[tδδLR]jlik = α2
s

[
A1 +B1 log

(−q2

µ2

)]
(λ1,j
L,iλ

1,l
R,k + λ2,j

L,iλ
2,l
R,k) , (4.16)

[tλλLR]jlik = 8παs

[
1 + αs

2π A8 + αs
2π B8 log

(−q2

µ2

)]
(λ1,j
L,iλ

1,l
R,k + λ2,j

L,iλ
2,l
R,k) , (4.17)

where [63–65]

B1 = 3
(

1− 1
N2
C

)
, B8 = nf −NC

3 − 3
NC

, (4.18)

are related to the anomalous dimensions of the four-quark operators, with nf = 3 quark
flavours. The values of the non-logarithmic coefficients A1 and A8 depend on the adopted
regularization prescription for γ5. The most recent calculation gives, in the naive dimen-
sional regularization (NDR) and ’t Hooft-Veltman (HV) schemes [28]:

A1 =
{

2 (NDR)
−10/3 (HV)

, A8 =
{

25/4 (NDR)
21/4 (HV)

, (4.19)

for nf = NC = 3. These NLO QCD corrections introduce the colour-singlet four-quark left-
right operator and, therefore, additional non-perturbative parameters. The final expression
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for the vacuum condensate at NLO in χPT and αs is then given by

〈Od6,V−A(µ)〉 = 32παs(µ)F 6 aλλ88 (µ)
[
1 + αs(µ)

2π A8 + αs(µ)
2π B8 log

(
−q2

µ2

)]

·
{

1− 2M2
K

(4πF )2 log
(
M2
K

ν2
χ

)
− 4M2

π

(4πF )2 log
(
M2
π

ν2
χ

)

+ 4
F 2 M

2
π c

λλ
4 (νχ, µ) + 2

F 2 (2M2
K +M2

π) cλλ6 (νχ, µ)
}

+ 4α2
s(µ)F 6 aδδ88(µ)

[
A1 +B1 log

(
−q2

µ2

)]

·
{

1− 2M2
K

(4πF )2 log
(
M2
K

ν2
χ

)
− 4M2

π

(4πF )2 log
(
M2
π

ν2
χ

)

+ 4
F 2 M

2
π c

δδ
4 (νχ, µ) + 2

F 2 (2M2
K +M2

π) cδδ6 (νχ, µ)
}
. (4.20)

The contribution from the colour-singlet four-quark operator is nevertheless very small. In
addition to be a higher-order correction in the strong coupling, it is colour suppressed. In
the large-NC limit,

aδδ,∞88 (µ) = cδδ,∞4 (νχ, µ) = cδδ,∞6 (νχ, µ) = 0 . (4.21)

In order to keep track of the total size of the chiral logarithmic corrections, which will
be useful to estimate uncertainties in the comparison with the kaon sector in section 6, it
is convenient to rewrite eq. (4.20) reabsorbing the chiral logarithms into powers of F/Fπ.
Doing that and approximating the NLO counterterms, which play a very minor numerical
role, by their large-Nc values, one finds:

〈Od6,V−A(µ)〉 = 32παs(µ)F 4
π

{
F 2aλλ88 (µ)

[
1 + αs(µ)

2π A8 + αs(µ)
2π B8 log

(
−q2

µ2

)]

+F 2aδδ88(µ) αs(µ)
8π

[
A1 +B1 log

(
−q2

µ2

)]}{
1− 16M2

π

F 2
π

(
L5 −

8
3 L8

)}
.

(4.22)

4.2 Other flavour-breaking structures

The bosonization of Od−s6,V+A can be obtained with the same method. However, the (8L, 8R)
structures disappear when summing the vector and axial-vector contributions, as can be
seen in eq. (4.6). This implies that the corresponding effective operator contains two
derivatives and, therefore, cannot acquire a vacuum expectation value at tree-level. The
associated Od−s6,V+A condensate can be only generated through χPT loops and is then heavily
suppressed with respect to Od6,V−A by a factor of O(M4

K/Λ4
χ).

The bosonization of O6,EM −Od6,V contains an O(p0) term proportional to aλλ88 , gener-
ated by the [tλλLR] contribution. However, the vacuum expectation value of this term also
vanishes at tree-level and, as a consequence, it has a chiral suppression of O(M2

K/Λ2
χ).

This suppression is not accidental. The currents J̄µEM and Jµud,V are trivially related by an
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SU(3)V rotation. Their two-point correlation functions ΠEM and Πd
V must then be iden-

tical, as far as the SU(3)V symmetry is preserved. But SU(3)V cannot be spontaneously
broken in QCD [66]. Any nonzero condensate in the difference must then emerge as a
consequence of an explicit symmetry breaking of SU(3)V , which is fully dominated by the
nonzero strange quark mass, leading to an O(M2

K/Λ2
χ) suppression.

5 Determination of Im(g8 gewk) from τ -decay data

The inclusive invariant-mass distributions of the final hadrons in τ decay directly measure
the hadronic spectral functions associated with the ud and us two-point current correlators
in eq. (4.1), up to the τ mass scale [8, 11]:

dΓ
ds

= G2
F

16π2 m
3
τ SEW

(
1− s

m2
τ

)2 {(
1 + 2 s

m2
τ

)
Im ΠL+T

τ (s)− 2 s

m2
τ

Im ΠL
τ (s)

}
, (5.1)

where

Πτ (s) ≡
∑
i=d,s

|Vui|2 [Πui,V (s) + Πui,A(s)] (5.2)

and SEW = 1.0201± 0.003 incorporates the (renormalization-group improved) electroweak
corrections [67–69]. Identifying an even or odd number of pions and kaons in the final
state, one can further separate the spectral distributions corresponding to Vud, Aud and
Vus +Aus.

We are going to focus in the Cabibbo-allowed ud spectral functions, making use of
the most precise measurements of the corresponding vector and axial-vector distributions,
extracted from ALEPH data [70], which are displayed in figure 1. Given the current
experimental uncertainties, the longitudinal axial spectral function is well approximated
by the pion pole contribution, ImΠL

A(s) = 2πF 2
π δ(s−m2

π), while the tiny contribution from
ImΠL

V (s) can be safely neglected.
The current correlators are analytic functions in all the complex s ≡ q2 plane, except

for the physical cut in the positive real axis where they acquire their absorptive components.
Apart from the pion pole, this cut starts at sth = 4M2

π . Integrating along the circuit of
figure 2 a given correlator times any arbitrary weight function ω(s), analytic at least in the
same complex region as the correlator, one finds

∫ s0

sth

ds

s0
ω(s) 1

π
Im ΠL+T (s) + 1

2πi

∮
|s|=s0

ds

s0
ω(s) ΠL+T (s) = 2 F

2
π

s0
ω(M2

π) . (5.3)

In the first term one can introduce the experimental spectral function, while for large
enough values of s0, the OPE of ΠL+T (s) becomes an excellent approximation for the
integral along the complex circle |s| = s0, except maybe for the region near the positive
real axis [11, 71].
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Figure 1. ALEPH non-strange spectral functions 1
π Im ΠL+T

ud,V/A(s).

Figure 2. Analytic structure of ΠL+T (s) and complex contour used to derive eq. (5.3).

The small differences between using the physical correlators or their OPE approxima-
tions are known as quark-hadron duality violations [29, 72–78]:

δDV[ω(s), s0] ≡ 1
2πi

∮
|s|=s0

ds

s0
ω(s)

[
ΠL+T (s)−ΠL+T

OPE(s)
]

= 1
π

∫ ∞
s0

ds

s0
ω(s)

[
Im ΠL+T (s)− Im ΠL+T

OPE(s)
]
. (5.4)

These effects get strongly suppressed when using (pinched) weight functions ω(s) with
zeros at s = s0. This can be seen in two different ways. First, the zeros at s = s0 kill
the contributions to the contour integral from the region near the physical axis, where the
OPE is less justified. Second, since Im ΠL+T

OPE(s) approaches Im ΠL+T (s) very fast, typically
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Figure 3. FV±A(s0) as defined in eq. (5.5). The upper and lower curves correspond to V +A and
V −A, respectively.

exponentially, the spectral differences are dominated by the region near s0 that pinched
weight functions remove.

In this work, we are interested in the correlation function ΠV−A(s) ≡ ΠL+T
ud,V − ΠL+T

ud,A ,
which vanishes to all orders in perturbation theory when quark masses are neglected.
Since mu,d are tiny, this is an excellent approximation in the up-down sector. The non-
zero value of Π(s) originates in the spontaneous breaking of chiral symmetry by the QCD
vacuum, which results in different vector and axial-vector correlators. The leading OPE
contribution comes from four-quark operators with D = 6 (the lowest dimension where
a chiral-symmetry breaking can be induced with massless quark and gluon fields) and is
suppressed by six powers of the τ mass. Although the vector and axial-vector spectra in
figure 1 have very different shapes in the low-energy resonance regime, chiral symmetry
implies a very strong suppression of their integrated difference in eq. (5.3) when duality
violations are suppressed, i.e., taking s0 near m2

τ and pinched weight functions.
In order to illustrate this, let us focus on the pinched integrals

FV±A(s0) ≡
∫ s0

sth

ds

s0

(
1− s

s0

) 1
π

Im ΠV±A(s) ± 2F
2
π

s0

(
1− m2

π

s0

)
, (5.5)

which are plotted in figure 3, as a function of the upper integration limit s0. In spite of
the very small experimental uncertainties, which are below the percent level, no signatures
of non-perturbative effects can be observed near the τ mass. FV−A ≈ 0, as expected,
exhibiting the negligible role of duality violations in this pinched observable, at large s0.
While for the V + A channel this fact leads to a precise determination of the strong
coupling [11, 70, 79, 80], it also translates into a very limited sensitivity to the gluon
and four-quark condensates. Since four-quark operators only enter into the integral (5.5)

– 20 –



J
H
E
P
0
6
(
2
0
2
1
)
0
0
5

through the αs-suppressed logarithmic term in eq. (4.2), they could only leave a sizeable
imprint at very small values of s0, where duality violations are beyond theoretical control,
as becomes manifest looking at the large splitting of the spectra in figure 1.

Taking into account the current experimental uncertainties and provided the renor-
malization scale µ is set close to the tau mass, one can neglect the running of the QCD
corrections and work with effective condensates 〈OD〉 in eq. (4.2), independent of the en-
ergy scale.10 Inserting the OPE into the second term of eq. (5.3) and invoking the Cauchy
formula, every monomial weight function ω(s) = (s/s0)n becomes connected to a different
effective condensate 〈O2(n+1)〉. For the V −A correlation function, one finds

∫ s0

sth

ds

s0

(
s

s0

)n 1
π

Im ΠV−A(s) + (−1)n+1O2(n+1)

sn+1
0

+ δDV[(s/s0)n, s0] = 2 F
2
π

s0

(
M2
π

s0

)n
.

(5.6)

Determining 〈O6〉, which is nothing else but 〈Od6,V−A(s0)〉 in eq. (4.22),11 is going to give
us aλλ88 (s0), which is linked to e2g8 gewk(s0) through eq. (3.7).

5.1 Determination of 〈O6〉

We already determined 〈O6〉 in ref. [81], which updated refs. [76, 77]. In this subsection
we revisit it, introducing some minor modifications and extra tests.

5.1.1 Determination of 〈O6〉 based on energy stability

Naively, one could try to estimate 〈O6〉 by using eq. (5.6) with the corresponding mono-
mial function ω(s) = (s/s0)2, hoping that at large-enough energies duality violations are
negligible. This should be reflected in the appearance of a plateau at high energies, when
making the trivial rescaling of that equation, so that it converges to 〈O6〉 for large-enough
values of s0. However, as can be seen in figure 4, there are large violations of quark-hadron
duality and the experimental uncertainties grow when increasing s0. The weight function
is enhancing both the contribution of the high-energy part of the spectral function, where
data are less precise, and the high-energy duality-violation tail associated to eq. (5.4).

As already mentioned before, duality violations can be suppressed introducing pinched
weight functions, containing the desired monomia. Taking the (once-pinched) ω(s) =
x(1− x) and (double-pinched) ω(s) = (1− x)2 weight functions, with x = s/s0, we obtain
the values of 〈O6〉 shown in figure 5, to be compared with figure 4 (notice the different
scales in the y axes). Experimental uncertainties are clearly reduced and a plateau has
arisen. One may still argue, by taking an artificial shape for the high-energy tail of the
spectral function, that the plateau could be accidental and disappear at higher values of s0.
However, since there is an increasing hadronic multiplicity at s0 ∼ m2

τ , duality violations
should go to zero very fast when increasing the energy, making this contrived scenario very
unlikely. Moreover, the results from the two pinched weight functions approach the same

10The only large NLO correction in αs, arising from the large value of A8 in eq. (4.22), does not change
this approximation and will be taken into account.

11The scale is set to s0 in order to avoid large logarithms in the αs corrections.
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Figure 4. Rescaled version of the moment associated to ω(s) = (s/s0)2 so that, at large-enough
s0, it converges to 〈O6〉.
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Figure 5. Results for 〈O6〉, as a function of s0, obtained from (appropriately rescaled) moments
with pinched weights.

value of 〈O6〉 at large s0. Thus, duality violations become indeed relatively small at large
s0, specially for the doubly-pinched weight that leads to smaller uncertainties. Taking
that into account, we take as central value the lowest energy point within the plateau,
i.e., the lowest one which lies within the experimental error bars of the following ones
(s0 = 2.1 GeV2), and as an estimate of duality-violation uncertainties its difference with
the last energy point with an acceptable experimental resolution, i.e., s0 = 2.8 GeV2. We
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obtain in this way

〈O6〉stab = (−3.1± 0.6 exp ± 1.0 DV) · 10−3 GeV6 = (−3.1± 1.2) · 10−3 GeV6 . (5.7)

5.1.2 Determination of 〈O6〉 modeling duality violations

An alternative approach to estimate duality-violation effects consists in trying to guess the
spectral function ρ(s) = 1

π Im ΠV−A(s) above the region where data are available.12 In
order to do that, a parametrization is unavoidable and, therefore, some model-dependence
arises. We will impose the theoretical requirement that the physical spectral function must
obey the Weinberg Sum Rules (WSRs) [82], i.e. eq. (5.6) for n = 0 and n = 1, which do not
involve any condensate contribution. This condition restricts very strongly the possible
choice of admissible spectral functions.

We will adopt the four-parameter ansatz [74–77, 83–85]

ρ(s) = 1
π
κ e−γs sin [β(s− sz)] (s > ŝ0) (5.8)

that combines an oscillatory function with the expected exponential suppression at large
values of s.

Following the procedure of ref. [81], we generate 109 random tuples of (κ, γ, β, sz)
parameters, so that every one of them represents a possible spectral function above a
threshold ŝ0. The fit to the ALEPH data does not show significant deviations (p-value
above 5%) from this specific ansatz above ŝ0 = 1.25 GeV2. However, the model is only
motivated as an approximation at higher energies, where the hadronic multiplicity is also
higher. As in ref. [81], we only accept those tuples contained within the 90% C.L. region
(χ2 < χ2

min + 7.78) in the fit to the experimental data. By doing that, we are relaxing
somewhat the model dependence by allowing small deviations of the admissible spectral
functions from the fitted data.

In ref. [81] we imposed in this step the short-distance constraints on the tuples, i.e.,
the WSRs. However, the experimental uncertainties on these constraints become then
correlated in a non-trivial way with the experimental uncertainty of the final parameters.

In order to avoid that, for every accepted spectral function, we perform a combined fit
to eq. (5.6) for n = 0, 1, 2 to extract 〈O6〉. Then we only accept those spectral functions
that are compatible with the WSRs (n = 0, 1), selecting only the ones whose p-values in
the combined fit are larger than 5%. Every accepted spectral function gives a value of 〈O6〉.
Figure 6 shows the statistical distribution of 〈O6〉 values, obtained with ŝ0 = 1.7 GeV2. The
width of this distribution provides a good assessment of the duality-violation uncertainty.

The choice of ŝ0, the parameter separating the use in eq. (5.6) of real data or the model
ansatz, is somehow arbitrary. Therefore, a smooth dependence on the chosen value of ŝ0,
within a large-enough range, is a minimal requirement that we should impose.13 Repeating
our procedure with different thresholds leads to the results displayed in table 2. The overall

12At LO in αs, ρDV (s) = ρ(s) because the OPE does not generate absorptive contributions.
13This is analogous to the stability condition (plateau) imposed in the previous subsection. Using the

ansatz at lower ŝ0 does not improve the results if the convergence of data to the model at that energy is
actually worse than the convergence of data to the QCD OPE above ŝ0 [80].
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Figure 6. Distribution for 〈O6〉 obtained with the tuples procedure at ŝ0 = 1.7 GeV2.

ŝ0 (GeV2) 1.25 1.4 1.55 1.7 1.9

〈O6〉 (10−3 GeV6) −5.2 +0.5
−0.3 −5.0 +0.5

−0.5 −5.3 +0.5
−0.3 −3.8 +0.8

−0.9 −3.1 +1.0
−1.2

Table 2. Results for 〈O6〉, obtained with our tuple procedure with different values of ŝ0.

agreement is acceptable. We choose ŝ0 = 1.7 GeV2 as our optimal threshold, large enough
to have some hadronic multiplicity and small enough to be able to constrain the space of
parameters. We then obtain:

〈O6〉ans = (−3.8 +0.8
−0.9 DV ± 0.1 exp) · 10−3 GeV6 . (5.9)

However, even if the ansatz (5.8) were exactly true above some threshold ŝ0, this ŝ0
could happen to be larger than the available energy range, so that the physical spectral
function could not be well approximated by the fitted parameters. In that case, assuming
small duality violations with double-pinch weights could be giving more accurate results
than assuming the spectral function ansatz with the fitted parameters. This motivates
averaging the two results. Fortunately, in this case both methods are in good agreement.
Our final value, taking conservatively the quadratic sum of the lowest uncertainty plus half
of the difference between central values, is:

〈Od6,V−A(m2
τ )〉 = (−3.5± 0.9) · 10−3 GeV6 , (5.10)

in total agreement with our previous determination in ref. [81] and the result obtained in
ref. [86] with a different procedure.

5.2 Determination of g8 gewk

Inserting in eq. (4.12) the obtained value for 〈Od6,V−A〉, we can perform a determination of
aλλ88 at NLO in the chiral counting. We approximate the tiny counterterm piece, which has
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a minor numerical role, by its large-NC estimate in eq. (4.15). Incorporating also the large
and dominant NLO correction in αs coming from A8 in eq. (4.20), which does not modify
the energy-independent condensate approximation used in our determination of 〈Od6,V−A〉,
one finds

F 2 aλλ88 (mτ ) = (−1.15± 0.30 〈O6〉 ± 0.11 pert) GeV2 , (5.11)

where we have assigned an extra 10% perturbative uncertainty based on the expected size
∼ αs(m2

τ )
π of the unaccounted NLO corrections. Notice that more precise experimental data

may allow in the future for a full NLO analysis.
Taking into account that Im(C7) is smaller than Im(C8), the large NC-suppression of

aδδ88 with respect to aλλ88 and the extra 1
NC

prefactor in the contribution proportional to
C8 a

δδ
88, we can safely neglect the aδδ88 term in eq. (3.7) to derive14

e2 Im (g8 gewk) ≈ 12 Im [C8(mτ )] aλλ8L,8R(mτ ) , (5.12)

from which we find

e2 Im (g8 gewk)
Imτ F 2 = −(1.07 ± 0.30) · 10−2 GeV2 . (5.13)

This phenomenological determination has a smaller central value than previous estimates,
but, within the quoted uncertainties, it is in agreement with most of them [26–29, 88, 89].
As we will see in the following section, our result also agrees with the large-NC estimate,
and with the value obtained from a fit to the lattice data.

6 Interplay with K → ππ transitions

As we have seen in section 3, the ∆S = 1 four-quark operators in eq. (3.3) induce contri-
butions to the corresponding LO χPT Lagrangian in eq. (3.4), which are regulated by the
couplings ai(µ). This fully determines the K → ππ matrix elements at O(p2). Adopting
the conventions of ref. [87], the associated ∆I = 1

2 and ∆I = 3
2 decay amplitudes induced

by the operator Qi are easily found to be:

AQi1/2(µ) ≡ 〈Qi〉1/2 =
(1

9 g
Qi
27 (µ) + gQi8 (µ)

)√
2F (M2

K −M2
π)− 2

√
2

3 F 3 (e2g8gewk)Qi(µ) ,

AQi3/2(µ) ≡ 〈Qi〉3/2 = 10
9 gQi27 (µ)F (M2

K −M2
π)− 2

3 F
3 (e2g8gewk)Qi(µ) . (6.1)

The factors gQij (µ), which contain the ai(µ) couplings, can be directly obtained from
eqs. (3.5) (3.6) and (3.7) by simply taking Ci(µ) = 1 and Ck 6=i(µ) = 0.

At NLO in the chiral expansion one must take into account: 1) the different ways the
LO realization of the operators Qi can be combined with the rest of the χPT building
blocks to induce such a transition, and 2) new NLO building blocks with the appropriate

14Since we have neglected long-distance electromagnetic contributions, no reliable estimate of the real
part can be made at this point. While in general this is a good approximation due to the large enhancement
of the short-distance piece with respect to the long-distance one, i.e., α log (M2

W /µ
2) vs α log (µ2/M2

ρ/K),
no such logarithmic enhancement is present in z8(µ), since the GIM mechanism sets z8(µ > mc) = 0 [87].
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transformation properties, which can be obtained in a similar way as it was done for the LO
ones in section 2. They generate the O(p4) ∆S = 1 χPT Lagrangians of refs. [19, 90, 91]
and explicit values for their corresponding LECs NQi , DQi , and ZQi can be obtained in
terms of mass-independent NLO dynamical parameters. By doing that, one can keep track
of both the short-distance renormalization scale µ and the chiral scale νχ.

In the isospin limit, the NLO K → ππ amplitudes induced by the set of operators Qi
can be expressed in the form:

〈Qi〉∆I = Fπ
{

(M2
K −M2

π)
[
A
Qi (8)
∆I +A

Qi (27)
∆I

]
− F 2A

Qi (g)
∆I

}
, (6.2)

with components (X = 8, 27, g)

A
Qi (X)
∆I = a(X)

∆I gQiX

[
1 + ∆L

RA
(X)
∆I + i∆L

I A∆I + ∆CA
Qi (X)
∆I

]
(6.3)

where a(X)
∆I are the tree-level normalizations in eq. (6.1) and gQiX the tree-level contribu-

tions induced by Qi to the couplings gQi8 , gQi27 , and (e2g8gewk)Qi . The dispersive and
absorptive parts of the chiral loop corrections (the absorptive part fully comes from ππ

re-scattering) are parametrized by ∆L
RA

(X)
∆I and ∆L

I A∆I , respectively, while the local coun-
terterm contributions are included in ∆CA

Qi (X)
∆I . All these NLO χPT corrections can be

taken from ref. [87].
The re-scattering of the final pions generates large phase shifts in the K → (ππ)I decay

amplitudes into the two possible final states with isospin I = 0 and 2:

A1/2 = A0 e
iχ0 , A3/2 = A2 e

iχ2 , (6.4)

where A0,2 are real and positive if CP is conserved. In the isospin limit, the phases χ0,2
can be identified with the S-wave ππ scattering phase shifts δ0

I (s) at s = M2
K (Watson’s

theorem). The absorptive contributions in eq. (6.3) are given by the tree-level amplitudes
times universal corrections ∆L

I A1/2 and ∆L
I A3/2, which only depend on the isospin quantum

number and reproduce the χPT values of the I = 0 and I = 2 ππ phase shifts at LO in
the momentum expansion, i.e., at O(p2) [92]. Thus, the one-loop χPT calculation only
gives the first term in the Taylor expansion of sin (δ0

I ) = δ0
I + O[(δ0

I )3]. This implies that
cos (δ0

I ) = 1 at this χPT order and, therefore, the NLO dispersive amplitudes and the
moduli AI are equal up to higher-order contributions: AI = Dis (A∆I) + O(p6). In the
limit of isospin conservation, these quantities satisfy the relation

AI = Dis (A∆I) ΘδI , ΘδI ≡
√

1 + tan2 (δ0
I ) . (6.5)

Using the LO χPT prediction for the phase shifts, this brings back the absorptive one-loop
contributions that result in Θδ0 = 1.10 and Θδ2 = 1.02. Using instead the physical values
of δ0

I (M2
K) [93], which include higher-order χPT corrections, one gets

Θδ0 = 1.29± 0.03 , Θδ2 = 1.011± 0.004 . (6.6)

This final-state-interaction effect induces a strong 30% enhancement of the isoscalar am-
plitude, while the isotensor one is only modified by a mild 1% correction [92].
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We can then extract the dispersive contributions Dis (〈Qi〉1/2) and Dis (〈Qi〉3/2) from
eq. (6.2) and obtain the corresponding isospin amplitudes 〈Qi〉0 ≡ Dis (〈Qi〉1/2) Θδ0 and
〈Qi〉2 ≡ Dis (〈Qi〉3/2) Θδ2 with the correction factors in eq. (6.6), achieving a resummation
of the large absorptive contributions. All needed ingredients can be taken from the tables of
refs. [32, 33, 87].15 At NLO in the chiral counting, the isoscalar amplitudes take the form:

〈Q1(µ)〉0 =
√

2Fπ(M2
K −M2

π) Θδ0

{ 1
10
[
aS8 (µ)− 5 aA8 (µ)

] (
1 + ∆L

RA
(8)
1/2 + ∆C

Q1

)
+ 1

15 a27(µ)
(
1 + ∆L

RA
(27)
1/2 + ∆C

Q1

)}
,

〈Q2(µ)〉0 =
√

2Fπ(M2
K −M2

π) Θδ0

{ 1
10
[
aS8 (µ) + 5 aA8 (µ)

] (
1 + ∆L

RA
(8)
1/2 + ∆C

Q1

)
+ 1

15 a27(µ)
(
1 + ∆L

RA
(27)
1/2 + ∆C

Q1

)}
,

〈Q3(µ)〉0 = 1√
2
Fπ(M2

K −M2
π) Θδ0

[
aS8 (µ)− aA8 (µ)

] (
1 + ∆L

RA
(8)
1/2

)
,

〈Q5(µ)〉0 = 4
√

2Fπ(M2
K −M2

π) Θδ0 a
δδ
LR(µ)

(
1 + ∆L

RA
(8)
1/2

)
,

〈Q6(µ)〉0 = 4
√

2Fπ(M2
K −M2

π) Θδ0

[
2 aλλLR(µ) + 1

NC
aδδLR(µ)

] (
1 + ∆L

RA
(8)
1/2 + ∆C

Q6

)
,

〈Q7(µ)〉0 = −4
√

2Fπ Θδ0 F
2aδδ88(µ)

(
1 + ∆L

RA
(g)
1/2

)
,

〈Q8(µ)〉0 = −4
√

2Fπ Θδ0

[
2F 2aλλ88 (µ) + 1

Nc
F 2aδδ88(µ)

] (
1 + ∆L

RA
(g)
1/2 + ∆C

Q8,0

)
, (6.7)

while the I = 2 amplitudes are given by:

〈Q1(µ)〉2 = 2
3 Fπ(M2

K −M2
π) Θδ2 a27(µ)

(
1 + ∆L

RA
(27)
3/2 + ∆C

Q1

)
,

〈Q7(µ)〉2 = −4Fπ Θδ2 F
2aδδ88(µ)

(
1 + ∆L

RA
(g)
3/2

)
,

〈Q8(µ)〉2 = −4Fπ Θδ2

[
2F 2aλλ88 (µ) + 1

Nc
F 2aδδ88(µ)

] (
1 + ∆L

RA
(g)
3/2 + ∆C

Q8,2

)
. (6.8)

The local counterterm contributions have been approximated by their large-NC expres-
sions [32, 33, 87]:

∆C
Q1 = 4M2

π

F 2
π

L5 ,

∆C
Q6 = 4M2

K

F 2
π

[
2L8 −

1
4 L5 (1− 16λSS3 )

]
+ 4M2

π

F 2
π

[
8L2

8
L5
− L5 (3 + 4λSS3 )

]
+O(λ̄RRi ) ,

∆C
Q8,0 = 4M2

K

F 2
π

(4L8 − L5) + 16M2
π

F 2
π

(2L8 − L5) ,

∆C
Q8,2 = 8M2

K

F 2
π

(2L8 − L5) + 4M2
π

F 2
π

(8L8 − 3L5) . (6.9)

15Notice, however, our slightly different definition of the amplitudes AQi (g)
∆I that differs by a factor F 2

π/F
2

from the one adopted in refs. [32, 33, 87].

– 27 –



J
H
E
P
0
6
(
2
0
2
1
)
0
0
5

∆L
RA

(8)
1/2 ∆L

RA
(27)
1/2 ∆L

RA
(g)
1/2 ∆L

RA
(27)
3/2 ∆L

RA
(g)
3/2

0.27± 0.05 1.02± 0.63 0.44± 0.10 0.01± 0.05 −0.34± 0.10

Table 3. Numerical values for the dispersive loop amplitudes ∆L
RA

(X)
∆I .

∆C
Q1

∆C
Q6

∆C
Q8,0 ∆C

Q8,2

0.010± 0.001 0.15± 0.03 0.10± 0.06 −0.03± 0.06

Table 4. Numerical values for the counterterm contributions.

The numerical values of the different loop and counterterm corrections are given in tables 3
and 4. The uncertainties quoted for the loop contributions have been estimated by vary-
ing the chiral scale νχ in the interval (0.6–1.0)GeV. To estimate the smaller counterterm
contributions, we have used the same input values for the χPT LECs than ref. [33]; their
associated parametric uncertainties are reflected in the errors displayed in table 4.

The matrix elements of Q4, Q9 and Q10 are not independent because of the relations
among operators given in footnote 6. Thus,

〈Q4〉0 = −〈Q1〉0 + 〈Q2〉0 + 〈Q3〉0 ,

〈Q9〉0 = 3
2 〈Q1〉0 −

1
2 〈Q3〉0 ,

〈Q10〉0 = 1
2 〈Q1〉0 + 〈Q2〉0 −

1
2 〈Q3〉0 . (6.10)

Notice that the strong penguin operators Q3,4,5,6 cannot induce a ∆I = 3
2 transition and,

therefore, their corresponding matrix elements into an I = 2 ππ final state are identically
zero. Moreover, isospin symmetry implies

〈Q1〉2 = 〈Q2〉2 = 2
3 〈Q9〉2 = 2

3 〈Q10〉2 . (6.11)

Using the theoretically-estimated value of a27(µ0) in eq. (3.23), one finds

〈Q1(µ0)〉2 = 0.0058 (23)a27(3)∆L
, (6.12)

in the MS-NDR scheme at µ0 = 1 GeV, where the first uncertainty is the parametric error
from a27(µ0) and the second one accounts for missed subleading chiral corrections. The
CP-conserving part of the amplitude A2 is totally dominated by the contributions from
the operators Q1 and Q2. Taking the corresponding Wilson Coefficients from table 1, one
then predicts:

Re (A2)th = (0.82± 0.33) · 10−8 GeV , (6.13)

in reasonable agreement with the experimental value Re (A2)exp = 1.210 (2) · 10−8 GeV [6].
The measured value of A2 is of course exactly reproduced, taking instead as input the
phenomenological determination of a27(µ0) in eq. (3.18).

From the measured τ spectral functions, we have been able to determine F 2aλλ88 (mτ )
in eq. (5.11), which allows us to predict the K → ππ matrix elements of the operator Q8.
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Safely neglecting the very suppressed aδδ88 contribution, we find at µ0 = 1 GeV:

〈Q8(µ0)〉0 = 1.62 (45)aλλ88
(10)∆L

(6)∆C
,

〈Q8(µ0)〉2 = 0.37 (10)aλλ88
(6)∆L

(3)∆C
. (6.14)

The isotensor matrix element governs the SM contribution to the CP-violating ratio ε′/ε
associated with the (I = 2) electroweak penguin operators [32],

(ε′/ε)(2)
EWP ≡

1√
2|ε|

Im (A2)EWP

Re (A0) , (6.15)

which at µ = 1 GeV is dominated by Q8. Taking the experimental values of Re (A0)exp =
2.704 (1) · 10−7 GeV [6] and |ε|exp = 2.228 (11) · 10−3 [94], and

Im (A2)EWP
Q8 = G Im [C8(µ)] 〈Q8(µ)〉2 , (6.16)

one finds

(ε′/ε)(2)
EWP,Q8

=
(
−5.6± 1.5 aλλ88

± 0.9∆L
± 0.5∆C

)
· 10−4 = (−5.6± 1.8) · 10−4 . (6.17)

On the other hand, using eq. (6.11) the (smaller) Q9,10 contribution is simply given by

(ε′/ε)(2)
EWP,Q9,10

= 3ω
2
√

2|ε|
Im(C9 + C10)
Re(C1 + C2) = (1.1± 0.1) · 10−4 , (6.18)

where the ratio ω ≡ ReA2/ReA0 = 0.0447 (1) has been taken from experimental data.
Adding this contribution one finally finds

(ε′/ε)(2)
EWP =

(
−4.5± 1.5 aλλ88

± 0.9∆L
± 0.5∆C

)
· 10−4 = (−4.5± 1.8) · 10−4 . (6.19)

This result agrees very well with the value −(3.5±2.2) ·10−4, obtained in refs. [32, 33] with
a large-NC estimate of aλλ88 (as well as the smaller contributions of the other couplings),16

instead of our determination from τ decay data.

6.1 Fit to lattice data

Our NLO results for the kaon decay amplitudes allow us to perform a direct fit to the
lattice data of the RBC-UKQCD collaboration [7]. The numerical values for the matrix
elements of the different four-quark operators provided in ref. [7] can be fitted to our
analytic expressions in eqs. (6.7), (6.8), (6.10) and (6.11). In ref. [7], the ten I = 0
matrix elements are given at µ = 4 GeV in the MS scheme, together with their statistical
covariance matrix.17 Systematic uncertainties are estimated to be a 15.7%. We run those
matrix elements to µ = 1 GeV, propagating their uncertainties, and use afterwards the
relations (6.10) to reduce the operator basis to the seven independent I = 0 operators.
The matrix elements of the three independent (in the isospin limit) I = 2 operators can
also be found in ref. [7] (see also refs. [34] and [35]).

16We thank Hector Gisbert for cross-checking this number.
17A useful comparison of the different normalization conventions can be found in ref. [95].
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a27(µ0) aS8 (µ0) aA8 (µ0) aδδLR(µ0) aλλLR(µ0) F 2aδδ88(µ0) F 2aλλ88 (µ0)
Lattice 0.64 (10) −0.2 (24) 2.7 (5) −0.48 (41) −1.17 (26) −0.22 (12) −0.68 (11) GeV2

K, τ data 0.622 (43) −0.78 (22) GeV2

Large NC 1 1 1 0 −1.06 0 −0.70 GeV2

Table 5. Values at µ0 = 1 GeV (MS-NDR) of the ai(µ0) parameters, extracted from a NLO fit to
the lattice data (first line) and from experimental data (second line), compared with their large-NC
predictions (third line).

The fitted results for our seven ai(µ) parameters are displayed in table 5. The fit returns
a relatively small p-value (p = 8%), which mainly arises from a small tension between 〈Q8〉0
and 〈Q8〉2 (the lattice determination of 〈Q8〉0 favours smaller values for |aλλ88 | than 〈Q8〉2).
The fitted parameters are in good agreement with the phenomenological values of a27 and
F 2aλλ88 found in the previous sections, which are shown in the second line of the table. The
third line collects the predicted numerical values for those couplings in the large-NC limit,
given in section 2.4. This limit is able to correctly reproduce the hierarchy of the couplings,
with the exception of a27 and, especially, aA8 . Notice also the large error in the fitted value
of the coupling aS8 (µ0) that governs the contribution of the operator Q+ ≡ Q2 + Q1 to
the isoscalar K → ππ amplitude. With the current precision, the lattice data are still
insensitive to this parameter because its contribution to g8 in eq. (3.6) is suppressed by a
factor 1/10.

From the measured K → ππ rates, it is not possible to extract separate values for the
different octet couplings. The experimental data only determines the combination g8 in
eq. (3.6). Taking into account the absorptive resummation factor Θδ0 in eq. (6.6),18 one
obtains

gexp
8 = 3.07± 0.14 . (6.20)

Our fit to the lattice data implies gLatt
8 = 2.6 ± 0.5, in good agreement with (6.20), while

the large-NC determination of the ai couplings gives a value g∞8 = 1.2± 0.4 that is clearly
too small.

The comparison between the values of the ai parameters extracted from the lattice
data and their large-NC predictions provides an enlightening anatomy of the well-known
∆I = 1

2 rule in non-leptonic kaon decays. The large difference between the isoscalar and
isotensor decay amplitudes results from the combination of several interrelated dynamical
effects:

1. The table exhibits a large enhancement of aA8 (µ0) by a factor 2.7 that complements
the short-distance gluonic enhancement of C−(µ0) ≡ (C2−C1)(µ0) at LO [96, 97] and
NLO [98–102]. This clearly identifies the main origin of the isoscalar enhancement in
the K → ππ matrix element of the operator Q− ≡ Q2 −Q1, confirming the findings
of many previous approaches [20, 23, 103–109].

18Including only the absorptive one-loop contribution, i.e. with Θδ0 = 1.10, one gets instead gexp
8 =

3.60± 0.14 [33].
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2. The matrix element of the penguin operator Q6 receives a chiral enhancement through
the factor 8 aλλLR(µ0). In spite of the small numerical value of the Wilson coefficient
C6(µ0), this provides an additional (∼ 10% at µ = 1GeV) increment of the I = 0
amplitude [110, 111]. Since the anomalous dimension of Q6 is leading in 1/NC , the
large-NC limit is able to capture the chiral enhancement factor, providing a very
good approximation to aλλLR(µ0), as exhibited in table 5. However, this is not enough
to reproduce the physical hadronic matrix element of Q6 [31]. One still needs to
incorporate the very sizeable corrections from χPT loops [92].

3. The χPT loop contributions are subleading in the 1/NC counting but they are en-
hanced by large infrared logarithms and, moreover, contain very important unitarity
corrections associated with the final-state interactions of the emerging pions [92]. As
shown in table 3, the one-loop χPT correction provides a sizeable 30% enhancement
of the isoscalar amplitude [21, 48, 92, 112] that is further reinforced by the all-order
resummation of absorptive contributions through the factor Θδ0 in eq. (6.6). The
corresponding χPT corrections on Re(A2) are very mild.

4. In addition, there is a sizeable suppression of a27(µ0) by about 30–40%, with respect
to its expected value at NC →∞, which implies a corresponding suppression of the
amplitude A2. This effect was suggested long time ago through a large-NC topological
analysis of the K → ππ amplitudes [23], showing that the leading and subleading
contributions in 1/NC (excluding penguins) appear anticorrelated in g8 and g27, so
that the enhancement of one coupling requires the suppression of the other.19 The
anticorrelation of the two colour structures has been numerically confirmed by the
RBC-UKQCD lattice evaluation of A2 [113], and corroborated by a more recent lattice
analysis of the scaling with NC of the K → π amplitudes in a simplified setting with
four degenerate quark flavours (mu = md = ms = mc) [114, 115].

It is worth mentioning at this point that these dynamical features are fully supported
at the inclusive level by the NLO calculation of the two-point correlation function (without
electroweak penguin operators)

Ψ(q2) ≡
∫
d4x eiqx 〈0|T (L∆S=1(x)L∆S=1(0)†)|0〉 = G2

6∑
i,j=1

Ci(µ)Cj(µ)∗ ψij(q2) , (6.21)

presented in refs. [20, 23, 116, 117]. This correlator does not involve any hadronic state
and, therefore, can be rigorously analyzed with short-distance QCD methods. In order
to better visualise the large impact of gluonic corrections, it is convenient to simplify
the discussion and restrict ourselves to the non-penguin operators Q±. In the absence of
penguin-like contributions, these two operators are multiplicatively renormalizable, which
allows one to derive compact analytical expressions for the spectral functions associated

19At LO, the topological parameters a, b, c defined in ref. [23] can be easily related to our ai(µ) couplings:
a+ b = a27 (C1 +C2), b ≈ 1

2 a
A
8 (C1 −C2 +C3) + 1

10 (6 a27 − aS8 ) (C1 +C2)− 1
2 a

S
8 C3 and c ≈ 8 aλλLR C6 +

1
2 (aA8 + aS8 )C4. They are also directly related to the lattice topologies discussed in ref. [113].
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with the C±(µ)Q± terms (exact numerical results for the full correlator can be found in
ref. [117]):

ρ±(t) ≡ 1
π

ImΨ±±(t)

= θ(t) 2
45 G

2C2
±(M2

W )N2
C

(
1± 1

NC

)
t4

(4π)6 αs(t)
−2γ̂±

[
1 + ζ±

αs(t)
π

]
, (6.22)

where the 1
NC

-suppressed powers γ̂± = γ
(1)
± /β1 = ± 9

11NC

(
1∓ 1

NC

)
/
(
1− 6

11NC

)
contain

the LO anomalous dimensions that enhance the Wilson coefficient C−(µ) (γ̂− = −4
9) and

suppress C+(µ) (γ̂+ = +2
9). Since Ψ(t) is a renormalization-invariant quantity, the loga-

rithmic αs corrections have been already reabsorbed with the choice µ2 = t. At this level
of approximation (ζ± = 0), it is impossible to understand the big ratio A0/A2 (or, equiva-
lently, g8/g27) with the information provided by the spectral functions ρ±(t) [18, 118]. The
physics picture gets completely changed once the NLO corrections are included: ρ−(t) gets a
huge enhancement through the positive NLO correction ζ− = 9139

810 , while the corresponding
correction to ρ+(t) is negative and 6 times smaller, ζ+ = −3649

1620 [23, 117]. In both cases, the
NLO short-distance Wilson coefficients only contribute a small part of the ζ± corrections
(17% and 8%, respectively, for ζ− and ζ+). More interesting, this enhancement/suppression
pattern completely disappears in the large-NC limit where ζ∞+ = ζ∞− = 9

4 [116].
Since Q6 is the only operator (excluding electroweak penguins) with a non-vanishing

anomalous dimension at NC → ∞, it is possible to make an analogous computation of
ρ6(t) ≡ 1

π ImΨ66(t) in the large-NC limit [116]. The result is in fact known to NNLO [20]:

ρ6(t) = θ(t) 12
5 G2 |C6(M2

W )|2 t4

(4π)6 αs(t)
18/11

[
1 + 117501

4840
αs(t)
π

+ 470.72
(
αs(t)
π

)2]
.

(6.23)
This exhibits again a huge dynamical enhancement which persists at higher perturbative
orders, but this time the enhancement is already captured in the large-NC limit. The NLO
Wilson coefficient only contributes a 13% of the non-logarithmic O(αs) correction.

6.2 Fπ determination from inclusive τ-decay data

Instead of determining aλλ88 from τ decays, we can use the value extracted from our fit to
the lattice data of the RBC-UKQCD collaboration. Since we have also fitted aδδ88, we can
obtain the full dimension-six contribution to the OPE of Πd

V−A(s), at NLO in both αs and
the χPT expansion. Taking into account the complete scale dependence of 〈Od6,V−A(µ)〉 in
eq. (4.22), the dispersion relation of eq. (5.6) for the weight ω̂(s) = (1− s/s0)2 generalizes,
up to corrections suppressed by αs and 8 powers of the energy scale, to∫ s0

sth

ds

s0

(
1− s

s0

)2 1
π

Im ΠV−A(s)−
〈Od6,V−A(s0)〉′

s3
0

+ δDV[ω̂(s), s0] = 2 F
2
π

s0

(
1− M2

π

s0

)2

,

(6.24)

where 〈Od6,V−A(s0)〉′ equals 〈Od6,V−A(s0)〉 in eq. (4.22), with the changes A1,8 → A1,8+3
2 B1,8

and B1,8 → 0. In table 5, the parameters aλλ88 (µ) and aδδ88(µ) have been determined at
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Figure 7. F (2)
V±A(s0) as defined in eq. (6.26). The error bars include the experimental uncertainties

and the theoretical errors associated with 〈Od6,V−A〉′.

µ = 1 GeV. Their running up to s0 is governed by the known µ dependence of Q7 and
Q8 at NLO because the χPT coupling e2g8gewk in eq. (3.7) does not depend on the short-
distance renormalization scale. At s0 = m2

τ one finds:

〈Od6,V−A(m2
τ )〉′ = −(2.9± 0.5) · 10−3 GeV . (6.25)

The negligible role of duality violations for this weight function at s0 ∼ m2
τ , together with

the good knowledge of the very small power corrections involved, translate into a very
powerful prediction for its associated integral. In figure 7 we display the s0 dependence of

F
(2)
V±A(s0) ≡

∫ s0

sth

ds

s0

(
1− s

s0

)2 1
π

Im ΠV±A(s)± 2 F
2
π

s0

(
1− M2

π

s0

)2

−
〈Od6,V±A(s0)〉′

s3
0

. (6.26)

Similarly to what we did before in figure 3 with the weight (1 − s/s0), we plot also the
corresponding V +A integral, although neglecting in that case the relatively very small con-
tribution from 〈Od6,V+A〉′ that is irrelevant for the comparison. For the V −A distribution,
we have used the value of 〈Od6,V−A(m2

τ )〉′ in eq. (6.25), running it down to every s0 at NLO
in QCD. Above 2 GeV2, one observes an exact cancellation of the vector and axial-vector
contributions to F (2)

V−A(s0), which remains compatible with zero within 1σ, even when the
experimental data are precise enough to resolve the predicted zero of F (2)

V−A(s0) with a
∼ 0.5% accuracy with respect to the normalization of the total V +A distribution.

Since the strong cancellation involves the pion decay constant, one can exploit the
theoretical prediction F (2)

V−A(s0 ∼ m2
τ ) = 0 to determine Fπ. Although the pion contribution

in eq. (6.26) is suppressed by two powers of energy, the sensitivity is good enough to derive
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a precise value for Fπ:

F incl
π = (92.6± 0.6) MeV ,

√
2F incl

π = (130.9± 0.8) MeV , (6.27)

in perfect agreement with the values found in the literature from other sectors [94, 119].
Notice that we have not used any information from the decay τ− → π−ντ .

Another possible application of this result is reinterpreting it as a powerful constraint
on hypothetical new physics contributions that do not respect chiral symmetry at short
distances. Contributions of this type would easily spoil the strong cancellation between
the vector and axial-vector integrated distributions, in disagreement with the behaviour
displayed in figure 7. This idea was already exploited in ref. [120], where powerful bounds
on new physics above the TeV scale were extracted.

Finally, we can also estimate the dimension-8 condensate, using the triple-pinched
dispersion relation
∫ s0

sth

ds

s0

(
1− s

s0

)3 1
π

ImΠV−A(s)− 2 F
2
π

s0

(
1− m2

π

s0

)3

− 3
〈Od6,V−A(s0)〉′′

s3
0

−
〈Od8,V−A〉

s4
0

= 0 ,

(6.28)
where now 〈Od6,V−A(s0)〉′′ equals 〈Od6,V−A(s0)〉 in eq. (4.22), with the changes A1,8 → A1,8+
1
2 B1,8 and B1,8 → 0, and the equality holds up to very tiny logarithmic (αs-suppressed)
corrections to D ≥ 8 and duality violations. Since 〈Od6,V−A(s0)〉′′ is determined by our
lattice fit, the τ data now implies:

〈Od8,V−A〉 = (−1.3± 0.7) · 10−2 GeV8 , (6.29)

which is in good agreement with the different determinations found in the literature [81, 86].

7 Conclusions

We have presented a detailed analysis of light-quark four-fermion operators, using the sym-
metry relations emerging from their chiral SU(3)L ⊗ SU(3)R structure and a low-energy
effective Lagrangian approach. This has allowed us to derive rigorous relations between
non-perturbative parameters appearing in different physical processes. In particular, we
have studied in a systematic way the relations between the dimension-six vacuum con-
densates entering the OPE of the vector and axial-vector QCD currents, and the hadronic
matrix elements of weak operators in ∆S = 1 (K → ππ) and ∆S = 2 (K0−K̄0) transitions.
The χPT framework provides a powerful way to determine the low-energy realization of
the four-quark operators, taking into account their different decomposition in irreducible
representations of the chiral group and ordering their phenomenological impact through
the chiral momentum expansion. The non-trivial dynamical information gets encoded in
a few low-energy constants that characterize the different structures allowed by symmetry.
These constants can be easily estimated in the limit of a large number of QCD colours,
which provides useful reference values to compare with.

As a first important phenomenological application, we have determined the electro-
magnetic penguin contribution to the ratio ε′/ε, which parametrizes the direct violation
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of CP symmetry in the K → ππ amplitudes. The relevant operator has an (88) structure
that gives rise to a leading O(p0) contribution, providing a sizeable chiral enhancement of
its matrix elements. The symmetry relations connect this O(p0) term with the vacuum
matrix element of the corresponding four-quark operator appearing in the OPE of the
Πd
V−A correlator, which is accessible through hadronic τ decay data. Using the measured

invariant-mass distribution of the final hadrons in τ decays, we have found

(ε′/ε)(2)
EWP = −(4.5± 1.8) · 10−4 , (7.1)

at NLO in χPT. This phenomenological determination is in excellent agreement with the
values obtained in the χPT calculation of refs. [32, 33], with a large-NC estimate of aλλ88 ,
and with the most recent lattice results [7].

Combining our analytical evaluation of theK → ππ matrix elements [32, 33], at NLO in
χPT, with the numerical analysis of the RBC-UKQCD collaboration [7], we have extracted
the leading chiral couplings through a direct fit to the lattice data. The comparison of
these results, shown in table 5, with the corresponding large-NC estimates provides an
enlightening anatomy of the well-known enhancement of the isoscalar K → ππ amplitude,
which we have discussed in detail in section 6.1. A dynamical QCD understanding of the
so-called ∆I = 1

2 rule clearly emerges from this exercise.
The comparison with the lattice results also confirms that the K → ππ matrix ele-

ments of the penguin operators Q6 and Q8 are well approximated by the large-NC limit,
once the large χPT loop corrections (subleading in 1/NC) are properly taken into account.
This was suggested long time ago [48, 92], based on the fact that the anomalous dimensions
of these two operators are leading in 1/NC and, moreover, the large-NC limit gives a good
estimate of their exact values. The numerical confirmation of this property further rein-
forces the theoretical accuracy of the updated Standard Model prediction of ε′/ε presented
in refs. [32, 33], since Q6 and Q8 completely dominate the quantitative evaluation of this
important observable.

Finally, we have also presented a beautiful consistency test between the experimen-
tal τ -decay distribution, the χPT analytical description and the numerical lattice data.
Using the lattice fit to determine the dimension-six condensate contribution to the Πd

V−A
correlator, we have extracted the pion decay constant from the integrated V −A invariant-
mass distribution of the final hadrons in inclusive τ decays. The resulting value, given in
eq. (6.27), is surprisingly accurate and in excellent agreement with the direct determina-
tions from π → µν [94] and from lattice simulations [119].
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