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1 Introduction

The study of supersymmetric quantum field theories in four dimensions led to numerous

insights on the dynamics of strongly coupled systems. Many of these insights follow from

the better control one has with supersymmetry over the renormalization group flow, thus

leading to by now well established conjectures of IR equivalences of different flows as well

as IR enhancements of global symmetries. Another important class of understandings is

related to the existence of interacting conformal supersymmetric Lagrangians in 4d. Such

Lagrangians have tunable couplings which in particular can be taken to be small. The

history of this subject is rather rich, see e.g. [1–3]. A systematic understanding of such

conformal Lagrangians was developed first in [4]. One of the highly non-trivial properties

such models often have is S-duality, that is an exact equivalence of seemingly different

conformal Lagrangians. The canonical example is that of N = 4 SYM based on gauge group
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G with complexified coupling τ being equivalent to N = 4 SYM based on the Langlands

dual group LG and coupling −1/τ [5–8].1 These types of dualities typically relate strongly

coupled regimes of one model to weakly coupled regimes of another. By now, a huge variety

of such dualities with extended, N = 4 or N = 2 [10], supersymmetry is known. Often

these dualities can be understood geometrically by compactifying the 6d (2, 0) theory on

a Riemann surface [11, 12] which can lead to deep insights into various properties of the

models, see e.g. [13, 14]. Moreover, S-dualities are also intimately connected to deep purely

mathematical ideas [15].

However, with minimal supersymmetry in 4d, N = 1, the understanding of conformal

dualities is rather fragmented. One class of examples discussed recently is that of quiver

theories based on SU(N)k gauge group such that each SU(N) factor sees exactly 3N flavors.

The one loop beta function for the gauge fields vanishes and this theory admits a conformal

manifold which passes through zero coupling. To deduce this the exact structure of the

quiver theory is essential [16] (see [17–20] for some further developments). Moreover it

was argued in [16] that the conformal manifold has a one dimensional complex direction

such that the theory with weak coupling is dual to the same theory, modulo possible

global issues, albeit with strong coupling. The full duality group should be the mapping

class group of a sphere with two pairs of different punctures. Another example which was

recently considered is that of SU(3) SQCD with nine flavors [21]. This model has a seven

dimensional conformal manifold [4, 22] passing through zero coupling. It was argued in [21]

that this manifold should admit an action of a duality group which is the mapping class

group of a sphere with ten punctures. The model in four dimensions can be understood as a

compactification on a ten punctured sphere of a (1, 0) 6d SCFT described by a pure SU(3)

SCFT on its tensor branch [23, 24].2 In both of these examples, as well as in the cases

with extended supersymmetry, the appearance of the conformal duality can be understood

geometrically by constructing the models at hand as compactifications of six dimensional

theories on Riemann surfaces. The duality group is then the mapping class group of the

Riemann surface. It is natural to wonder whether any conformal Lagrangian with a non

trivial conformal manifold would admit an action of a duality group. That is the conformal

manifold will have loci describable by weakly coupled conformal gauge theories.3

A first step when trying to answer such a question is to compile a list of four dimensional

supersymmetric theories which admit a description in terms of a conformal Lagrangian.

Partially achieving this goal is the purpose of the current paper. As N = 1 models have a

rather rich structure allowing to choose a gauge group, matter content, and superpotential;

1See for example [9] for a precise statement of this duality taking into account also the spectrum of line

operators. Despite these comments, for the most part when we refer to groups in this article we refer to

the algebra and are cavalier about the group structure.
2Yet another intriguing example is a conformal duality between an SU(2)N(N+1) quiver gauge theory

and a USp(2N)2×SU(N +1)2 quiver theory discussed in [25, 26]. There the duality follows from geometric

considerations and is related to using 5d dualities to construct in two different ways a compactification of

D type conformal matter on a torus with flux.
3A more general scenario would be that the conformal manifold might have loci, cusps, which are

described by a conformal weak gauging of a global symmetry of some SCFT, which might by itself be

strongly-coupled [27, 28].
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classifying the most general model with a weakly coupled Lagrangian conformal description

is a rather intricate problem. Here we will focus on Lagrangians based on a simple gauge

group G. However, we will keep the matter content and the interactions generic, guided

only by the demand that the theory should have a conformal manifold passing through zero

couplings. Given the list of conformal gauge theories with simple gauge groups one can

start building theories with non-simple groups by coupling the currents of a (sub)group of

the global symmetry to dynamical vector fields. In that respect the models we classify here

are a set of building blocks for more general conformal Lagrangian theories with weakly

coupled conformal manifolds.4

The classification detailed here consists of two main simple steps. As we are interested

in conformal Lagrangians we take all the matter chiral superfields to have the free conformal

R-symmetry assignment of 2
3 . First we need to find all the possible choices of matter

content such that all the one loop beta functions of gauge couplings vanish, which is a

rather trivial exercise to perform. The second step is to figure out whether the theory

with this matter content, and with assignment of free R charges to the matter fields,

has a conformal manifold, that is, it is not IR free. This step amounts to computing

certain Kähler quotients [22] (see also [29, 30]), which is, though mostly straightforward,

a laborious task to perform. We will find a rich variety of conformal Lagrangian theories

from which the well known cases of SU(3) SQCD with nine flavors, N = 4 SYM, and N = 2

SU(N) SQCD with 2N flavors are just few examples. For each such model we will detail

the conformal anomalies, the dimension of the conformal manifold, the symmetry group

preserved on a generic locus of the manifold, as well as (at least some) directions of the

conformal manifold preserving larger sub-groups of the global symmetry of the free point.5

The space of conformal gauge theories can be thought of as defining a special slice, an

interface, in the space of quantum field theories. Theories with larger matter content, but

same gauge group, are IR free (though often UV completed by other gauge theories [57]).

Whereas theories with smaller matter content are asymptotically free.6 We thus classify a

4In some cases conformally gauging a subgroup of the global symmetry of a free gauge theory with a

simple gauge group that does not have a conformal manifold can lead to a non trivial conformal manifold.

Such a theory must have a vanishing beta function for this to happen. Thus, the full set of building blocks

of conformal gauge theories include also free gauge theories with simple gauge groups.
5Let us here mention some other classification programs of various properties of supersymmetric QFTs.

First, the conformal N = 2 Lagrangians with arbitrary gauge groups were classified in [31]. The 6d

tensor branch Lagrangian descriptions were analyzed in [32], and there is a rapidly growing literature on

classifying 6d and 5d SCFTs (see [33] for a recent review of some aspects of the 6d classification program,

and [34–45] plus references within for some recent approaches to the 5d classification program). Another

strand of recent works deals with the analysis of possible protected operators, relevant and marginal in

particular, of supersymmetric QFTs in various dimensions [46, 47]. Yet another strand of recent works

deals with the various properties of N = 2 theories: classification of 4d N = 2 SCFTs using their Coulomb

branch geometries, culminating in a proposed classification of all 4d rank 1 N = 2 SCFTs (see [48] for a

recent review, and references within); the chiral algebra program [49]; the relation to quantum mechanical

integrable models [50]; and many facets of BPS/CFT correspondence, see e.g. [13, 51, 52]. The connection

between the integrable models and SCFTs persists also for minimal supersymmetric cases through various

index computations [16, 53–56]. All the studies listed here are deeply interrelated.
6Note that by smaller and larger we mean removing or adding representations, not merely changing the

dimension of the representation under the gauge group. There are interesting examples of gauge theories
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sub-slice of this interface given by simple gauge groups. There are several ways in which our

analysis can be generalized given this picture. One can either complete the classification of

this interface by considering non simple gauge groups, or one can start exploring the bulk

of the asymptotically free theory space by turning on some relevant deformations. In fact

the only interesting relevant deformations of the conformal theories on the boundary are

mass terms or vacuum expectation values and thus we expect it will be not too hard to

analyze. This is to be contrasted with the models farther away from the interface in the

theory space which might admit a large variety of relevant deformations, see e.g. [58] for a

recent discussion.

The results we derive here can be exploited in a variety of ways. For example, one can

try to seek conformal dualities between different N = 1 theories in four dimensions. A way

to systematically do so was discussed in [59]. The main idea is that once we restrict the

discussion to conformal Lagrangians, the dimension of the gauge group and the dimension

of the representation are fixed by the conformal anomalies leaving a finite set of theories

which might, or might not, contain a dual of a given model. Many examples of conformal

dualities were obtained in this manner in [28, 59]. It would be very interesting to study such

conformal dualities using a variety of techniques involving various types of supersymmetric

indices [60–66] and going beyond these, see e.g. [67]. As a concrete motivation for our

program, and also a detailed example of computations of conformal manifolds, in section 2

we discuss an example of a putative conformal triality between three different conformal

gauge theories. Some of the conformal Lagrangian theories might have an alternative UV

complete non-conformal description which involves an RG flow. We will discuss a particular

example of this in section 9.1: thus, one can not just go inside the bulk of the theory space

away from the conformal interface by RG flows but also go back to the interface from the

bulk. Another interesting question is whether conformal manifolds have any interesting

geometric interpretation. In addition to examples of this that we have already mentioned,

let us mention one more interesting case. In [59] it was shown that certain conformal quiver

theories with SU(3) gauge nodes with nine flavors each have conformal manifolds which can

be understood as parametrizing the space of complex structure moduli of genus g Riemann

surfaces as well as the space of flat connections of E8 on these surfaces. This is again related

to the fact that these models can be conjecturally obtained by compactifying the (1, 0) 6d

rank one E-string theory on a genus g Riemann surface (see [68–70] for related works).

As a concrete example of an application of the classification program in this direction we

discuss in section 9.2 an extension of the conformal manifold of class S [12, 71] theories

corresponding to the compactification of the A type (2, 0) theory on a genus g Riemann

surface with s maximal punctures. The extension is done by conformally gauging the

maximal puncture symmetries with the addition of two chiral superfields in the adjoint

representation.

The paper is organized as follows. We start in section 2 with a detailed example

of a derivation of a conformal triality which illustrates the set of techniques we will use

with non-simple gauge groups such that some of the simple gauge factors are asymptotically free and

some are IR free. The latter gauge couplings are actually dangerously irrelevant leading to, conjecturally,

interacting SCFTs in the IR. See [25] for some recent examples.
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to classify theories with non-trivial conformal manifolds. In section 3 the classification

procedure is detailed and in the following sections we apply it to various classical gauge

groups. N = 1 conformal theories with simple unitary, section 4, symplectic, section 5,

orthogonal, section 6, and exceptional, section 7, gauge groups are considered. In section 8

we discuss conformal theories with simple gauge group which have extended supersymmetry

at zero coupling. Finally, in section 9 we discuss a couple of physical applications of our

results. Several appendices complement the bulk with additional technical details and

definitions. Specifically, appendix B has numerous worked out examples of computations

illustrating the various subtleties in analyzing the structure of the conformal manifolds.

2 Prologue: a conformal triality

We start our discussion with a simple example of a conformal triality. We claim that

three different looking conformal gauge theories describe different weakly coupled cusps

of the same 21 dimensional conformal manifold. The derivation of this triality proceeds

by first considering the theory in triality frame A, which is a USp(6) conformal gauge

theory with six fields in the 14, the two index antisymmetric traceless representation. We

argue that this theory is conformal and that on a generic locus of the conformal manifold

there is no global (non-R) symmetry. The model has 21 vector fields and 6×14 = 84 chiral

superfields. All the ’t Hooft anomalies for symmetries that are not broken on the conformal

manifold must agree between the different triality frames. For the case at hand, the only

symmetry that is preserved on the conformal manifold is the U(1) R-symmetry, whose

anomalies can be expressed in terms of the a and c conformal anomalies. For conformal

gauge theories, these are expressible in terms of the dimension of the gauge group (dim G)

and the dimension of the representation of the chiral fields under it (dim R),

a =
3

16
dimG +

1

48
dimR , c =

1

8
dimG +

1

24
dimR . (2.1)

This implies [59] that any conformal dual gauge theory to this model has to have the same

dimension of the gauge group and the same dimension of representations of matter. We

then proceed to find two models that fit this bill and analyze their conformal manifolds

to claim that in fact they are dual to the theory in frame A. The discussion concretely

illustrates the various methods to analyze the conformal manifolds which we use in the

next sections of the paper to classify conformal gauge theories with simple gauge groups.

2.1 Frame A

Let us consider a USp(6) gauge theory with matter comprised of six chiral fields in the 14,

which is the two index traceless antisymmetric representation of USp(6). The Dynkin index

of this matter representation is 2 and of the adjoint is 4 and thus, as 4+6×2× (23−1) = 0,

the one loop beta function for the gauge coupling vanishes. This matter content does not

have a Witten anomaly [72]. We also note that the 14 has a non-trivial totally symmetric

cubic invariant and thus the theory has 8 × 7 = 56 marginal operators, which transform

in the three index symmetric representation of the SU(6) global symmetry group of the

– 5 –
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Figure 1. Triality frame A.

free point. As we will discuss shortly the dimension of the conformal manifold is 21 on a

generic point of which the SU(6) global symmetry is completely broken. We can also count

the number of supersymmetric relevant operators and we find 21 of these corresponding to

the symmetric square of the matter fields.

To determine the dimension of the conformal manifold we will follow here, and in

most similar computations in the paper, the procedure developed in [22]. In this reference,

analyzing the general structure of the beta functions of N = 1 theories in four dimensions

(as well as theories with four supercharges in lower dimensions), it was determined that to

compute the dimension of the conformal manifold one could proceed in two simple steps.

We start from some SCFT and as a first step we list all the supersymmetric marginal

couplings, the set of which we will denote by {λi}. The theory can be a free UV Lagrangian,

an IR end point of an RG flow, or even an abstractly defined strongly-coupled SCFT. The

SCFT has some global symmetry which we will denote by G. Note that if the SCFT

has weakly coupled vector fields, we should in principle also consider the gauge couplings

and include the anomalous symmetries in G. In the second step we compute the Kähler

quotient of the space given by dividing the marginal couplings by the complexified global

symmetry group,

{λi}/GC . (2.2)

The dimension of the Kähler quotient is the dimension of the conformal manifold, i.e.

the space of exactly marginal couplings, of the theory. The intuition one might have

about this is that the only way a marginal coupling might not be exactly marginal, in fact

marginally irrelevant, is if it recombines with a component of a conserved current multiplet.

In particular there are no marginally relevant supersymmetric deformations. We note here,

that this fact can be also neatly observed [73] by computing the supersymmetric index of

a theory [60, 61].

Let us apply this procedure for the case at hand by computing the relevant Kähler

quotient. The non-anomalous symmetry of the free theory is SU(6) and the marginal

– 6 –
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operators λijk form the 56 which is the three index symmetric representation. There is an

anomalous U(1) symmetry under which all the matter fields have the same charge and there

is one (complexified) gauge coupling τ . The Kähler quotient which we need to compute

then is,

Mc ∼ {λijk, τ}/SU(6)C ×U(1)C = {56}/SU(6)C . (2.3)

Here we have used the fact that the anomalous U(1) transformation can be always absorbed

by appropriate factors depending on τ . By ∼ in the above equation we mean the equality

to hold locally near the weakly coupled point. To explicitly compute the quotient we first

note that it is easy to construct invariants of SU(6) and thus show that the Kähler quotient

is not empty leading to a conformal manifold. For example let us define,

fi3j3k3s3m3n3 = εi1j1k1s1m1n1εi2j2k2s2m2n2λi1i2i3λj1j2j3λk1k2k3λs1s2s3λm1m2m3λn1n2n3 , (2.4)

which is symmetric in all the indices and then,

6∏
i=1

fui1ui2ui3ui4ui5ui6
εu

1
i u

2
i u

3
i u

4
i u

5
i u

6
i , (2.5)

is an SU(6) invariant.

We can also consider a maximal SU(3) subgroup of SU(6) such that the fundamental

representation of SU(6) is mapped to the second rank symmetric representation of SU(3),

the 6. Then the 56 decomposes as 1 ⊕ 27 ⊕ 28. Moreover, the adjoint of SU(6), 35,

decomposes as 27⊕ 8. This implies that the theory has a one dimensional sublocus of the

conformal manifold on which the SU(3) is preserved. Here the exactly marginal operator

parametrizing this one dimensional sublocus is given by the singlet in the decomposition of

the 56. The marginal operators in the 27 of the preserved SU(3) are actually marginally

irrelevant, as these are eaten by the conserved currents enhancing the SU(3) to SU(6)

that are now no longer conserved [22]. As a result, when on a generic point of this one

dimensional sublocus, the marginal operators are in the 1 ⊕ 28, where the 28 is the six

index symmetric representation of SU(3). The singlet just moves us along the sublocus,

but we can insert the marginal operator in the 28 to move away from it.

We can next decompose SU(3) into SU(2) maximal subgroup such that 3 goes to

3. Then 28 decomposes as 1 ⊕ 5 ⊕ 9 ⊕ 13 and the adjoint 8 decomposes as 3 ⊕ 5.

Thus we have an additional one dimensional manifold on which SU(3) is farther broken

to SU(2) with marginal operators being in 1 ⊕ 1 ⊕ 9 ⊕ 13. We can then break SU(2) to

its U(1) Cartan using the U(1) singlets in either the 9 or 13. This gives an additional

two dimensional manifold preserving only the U(1). On this subspaces we have, besides

the four singlets parametrizing it, also 18 marginal operators charged under the U(1).

As this originated from SU(2) representations, they come in pairs with opposite charges,

giving additional 18 − 1 = 17 directions breaking the U(1). Overall, we end with a 21

dimensional conformal manifold, preserving no symmetry on a generic locus of it, but with

a one dimensional subspace preserving SU(3), a two dimensional subspace preserving SU(2)

and a four dimensional subspace preserving U(1).

– 7 –
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Figure 2. Triality frame B.

The conformal anomalies are fixed by dimG = dim(USp(6)) = 21 and dimR = 6×14 =

84. We can also compute some quantities of this theory which do not depend on the location

on the conformal manifold (We will call themMc invariants following [59]), and which thus

should match in any duality frame . For example the superconformal index [60–62] is given

by (for definitions see appendix A),

IA =
(q; q)3(p; p)3

48

∮
dz1

2πiz1

∮
dz2

2πiz2

∮
dz3

2πiz3

(
Γe((qp)

1
3 )2
∏
i 6=j Γe((qp)

1
3 z±1i z±1j )

)6
∏
i Γe(z

±2
i )

∏
i 6=j Γe(z

±1
i z±1j )

.

(2.6)

Here zi are USp(6) fugacities, that is the character of the fundamental is z1 + 1
z1

+ z2 +
1
z2

+ z3 + 1
z3

. This can be generalized to other partition functions, e.g. lens index [63–65].

2.2 Frame B

Let us now consider an SU(2)7 gauge theory with matter comprised by a single bifunda-

mental chiral field between every pair of SU(2) gauge factors. Each SU(2) gauge group has

then twelve fundamentals and thus has a vanishing one loop beta function. The marginal

operators correspond to the triangles in the quiver, the number of which is
(
7
3

)
= 35. The

free theory has 21− 7 = 14 non-anomalous U(1) symmetries all of which are broken on the

conformal manifold as we will soon show. We thus get a 21 dimensional conformal mani-

fold with no symmetry on a generic point. The relevant operators are built from quadratic

gauge invariants of the fields, the number of which is given by the number of the edges in

the quiver which is 21.

Let us count explicitly the exactly marginal deformations. Here it is convenient to

perform the analysis using the methods developed by Leigh and Strassler [4]. The basic

idea is that in supersymmetric theories the beta functions of superpotential interactions

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

are given as a linear combination of the anomalous dimensions of the fields participating

in the superpotential term (see for example [74]). Moreover, the beta function of a gauge

interaction is proportional to a linear combination of anomalous dimensions of the fields

transforming non-trivially under the gauge group [75, 76]. Thus, demanding that the beta

functions vanish gives a set of linear equation for anomalous dimensions with the number

of independent variables given by the couplings. Then if one can show that a solution for

this set exists (say at zero coupling in our case) and that the number of couplings is larger

than the number of equations one can deduce the existence of a conformal manifold and

compute its dimension. This procedure is particularly straightforward if the theory has

only abelian global symmetries as is the case for the theory at hand.

Let us denote the anomalous dimensions of bifundamental chiral fields between the ith

and j th gauge group (i 6= j) as γij . Then the demand that all the beta functions vanish

translates to,

∀ i 6= j 6= k γij + γjk + γki = 0 , ∀ j
∑
i 6=j

γij = 0 . (2.7)

The first type of equations are beta functions for superpotential couplings and the second is

the NSVZ beta function [75, 76]. The only solution for these equations is that all γij vanish.

We have thus 21 equations for functions depending on 42 variables (the 35 superpotential

couplings and 7 gauge couplings), which gives us a 21 dimensional space of solutions, that

is dimMc = 21.

It is not hard to construct some of the invariants explicitly. We have 21 U(1) sym-

metries associated to the edges of the quiver, 7 of which are anomalous. Let us define the

fugacity of the U(1) corresponding to the edge between ith and jth gauge group as sij .

Then the non-anomalous symmetries satisfy for any i
∏
j 6=i sij = 1. The fugacity associated

to the superpotential term of the vertices i, j, and k (i 6= j 6= k) is λijk = sijsjkski. Let

us by abuse of notation also denote by λijk the coupling of the superpotential term. Then

for example
∏
j,k 6=i;j 6=k λijk are invariants for any i out of all the nonanomalous symmetries

and thus correspond to exactly marginal deformations.

The conformal anomalies are fixed by dimG = 7 × dim(SU(2)) = 21 and dimR =
7×6
2 × 4 = 84. The index is given by,

IB =
(q; q)7(p; p)7

27

∮ 7∏
i=1

dzi
2πizi

∏
i 6=j Γe((qp)

1
3 z±1i z±1j )∏7

i=1 Γe(z
±2
i )

. (2.8)

The zi are fugacities for the seven SU(2) groups, that is the character of fundamental of

each is zi + 1
zi

.

2.3 Frame C

Let us consider an SU(2)2 × SU(4) gauge theory with matter comprised of three bifunda-

mental chiral fields between each SU(2) and the SU(4) gauge group, and six chiral fields

in the two index antisymmetric representation, 6, of the SU(4). Each SU(2) gauge group

has twelve fundamentals and thus has vanishing one loop beta function. The SU(4) has
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Figure 3. Triality frame C.

six fundamentals, six antifundamentals, and six antisymmetrics. The Dynkin index of the

latter representation is 1 and thus as 4 + 6 × 1 × (23 − 1) + (6 + 6) × 1
2 × (23 − 1) = 0

the one loop beta function for the SU(4) gauge group also vanishes. There are marginal

operators made from two bifundamentals and an antisymmetric, where the indices for the

SU(2) × SU(4) gauge groups are contracted using epsilon tensors for both groups. We

have one such operator for every choice of SU(2) group, combination of bifundamentals,

and antisymmetric chiral giving a total of 2 × 6 × 6 = 72 marginal operators. Here we

note that the bifundamental pair must be symmetric, leading to six different symmetric

combinations of three bifundamentals. There are also 21 relevant deformations built from

the symmetric squares of the SU(4) antisymmetrics.

The symmetry group of the free theory is SU(3)1 × SU(3)2 × SU(6) and the

marginal operators are in the (1, 6̄,6) ⊕ (6̄,1,6) where the representations are of

(SU(3)1, SU(3)2, SU(6)). Let us analyze the conformal manifold in more detail. We denote

the two types of marginal operators as λiα and λiα̇ where i are SU(6) indices, α SU(3)1
indices in its symmetric representation, and α̇ SU(3)2 indices also in its symmetric repre-

sentation. First, it is very easy to see that the Kähler quotient is not empty and indeed we

have a conformal manifold. For instance for λiα we can build the invariant

εijklmnεαβγδµνλiαλ
j
βλ

k
γλ

l
δλ
m
µ λ

n
ν , (2.9)

and likewise for λiα̇.

This means that there must be at least a two dimensional conformal manifold cor-

responding to turning on both of these operators. Let us first go along the subspace

corresponding to inserting one of these to the superpotential. Doing so will break the sym-

metry to the subgroup that the chosen operator is invariant under. In our case the breaking

is very similar to that of an SU(N)× SU(N) bifundamental where one breaks to the diag-

onal SU(N). Likewise here we are going to break to the diagonal between the SU(3) and

an SU(3) subgroup of the SU(6) such the fundamental of SU(6) becomes the symmetric
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6 of the SU(3). Under this decomposition the operator in the (6̄,6) of SU(3) × SU(6)

is decomposed into 6̄ ⊗ 6 = 1 ⊕ 8 ⊕ 27. The singlet is just the exactly marginal oper-

ator we turned on, which is indeed a singlet of the preserved symmetry. The remaining

operators are additional marginal operators breaking the preserved SU(3), however, these

turn out to be marginally irrelevant. To see this recall that when turning on this operator

we have broken the SU(3) × SU(6) part of the global to a diagonal SU(3), and so the

broken conserved currents must eat marginal operators to become long multiplets. The

eaten marginal operators must transform in the same representation as those of the broken

conserved currents under the preserved diagonal SU(3), otherwise these cannot be eaten

and this decomposition is impossible. Indeed under the SU(3) subgroup of SU(6) that we

used we have that the adjoint of SU(6) decomposes to 8⊕27. These are precisely the rep-

resentations appearing besides the singlet in the decomposition of the marginal operator,

and so they combine with them to form long multiplets.

So overall we see that there is a one dimensional subspace of the conformal manifold

along which the SU(3) × SU(3) × SU(6) global symmetry is broken to SU(3) × SU(3).

There are in fact two such subspaces depending on which of the two operators, λiα or λiα̇,

we use. We can also turn on both operators. As we previously determined, once one

operator is turned on then besides its singlet component under the preserved symmetry,

the other components become marginally irrelevant. However we still have the second

operator which is now in the (6̄,6) of the SU(3)×SU(3) global symmetry that is preserved

on this one dimensional subspace. We can then insert it into the superpotential. This will

break the SU(3)× SU(3) to the diagonal and we again have that 6̄⊗ 6 = 1⊕ 8⊕ 27. The

singlet is the operator we are inserting. Since we break one of the SU(3) global symmetry

groups, the 8 is actually marginally irrelevant. The 27, though, remains marginal. So

we conclude that there is a two dimensional subspace preserving a diagonal SU(3) of the

SU(3) × SU(3) × SU(6) global symmetry group, spanned by the two singlets we get from

λiα and λiα̇. On this subspace we still have a marginal operator in the 27 that we can turn

on. Note that 27 is the tensor representation which is traceless with two symmetric upper

indices and two symmetric lower indices, let us denote the couplings as λ̃αβγδ . We can now

turn on these couplings and break the symmetry completely. It is easy to build invariants

and classify them, e.g. λ̃αβγδ λ̃
γδ
αβ , λ̃αβγδ λ̃

ρσ
αβλ̃

γδ
ρσ, λ̃αβγδ λ̃

γσ
αρλ̃

δρ
βσ etc. This gives a 21 dimensional

conformal manifold on a generic point of which all the symmetry is broken.

The conformal anomalies are fixed by dimG = 2 dim(SU(2)) + dim(SU(4)) = 21 and

dimR = 6× 6 + 8× 6 = 84. The index is given by,

IC =
(q; q)5(p; p)5

224!

∮ 3∏
i=1

dzi
2πizi

∮
du

2πiu

∮
dv

2πiv
(2.10)

×

(∏4
i=1(Γe((qp)

1
3u±1zi)Γe((qp)

1
3 v±1z−1i )

)3 (∏
i 6=j Γe((qp)

1
3 (zizj)

±1)
)6

Γe(u±2)Γe(v±2)
∏
i 6=j Γe(zi/zj)

.

Here zi are SU(4) fugacities and satisfy
∏4
i=1 zi = 1, that is the character of the fundamental

is z1 + z2 + z3 + 1
z1z2z3

.
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2.4 Triality

Note that each of the three gauge theories we have discussed are conformal, and have

dimG = 21 and dimR = 84 and thus the same conformal anomalies. Also all three have

a 21 dimensional conformal manifold passing through zero coupling on a generic point of

which there is no flavor symmetry, and 21 supersymmetric relevant operators. We thus can

conjecture that these models describe different weakly coupled cusps of the same conformal

manifold, that is they are dual to each other. In particular this implies that the index of

all the models should be equal,

IA = IB = IC . (2.11)

The indices are given by rather different expressions, for example the number of integra-

tions is different. We have verified that in expansion in fugacities they indeed agree when

computed using any one of the three dual models. Expanding the indices we obtain the

following result in the three duality frames,

1 + 21(qp)
2
3 + 21qp+ 21(q + p)(qp)

2
3 + 231(qp)

4
3 + (21q2 + 21p2 + 378qp)(qp)

2
3

+420(q + p)(qp)
4
3 + 1750(qp)2 + 21(q3 + p3)(qp)

2
3 + 441(q + p)(qp)

5
3

+651(q2 + p2)(qp)
4
3 + 3573(qp)

7
3 + 4599(q + p)(qp)2 + · · · . (2.12)

Note also that all three models have the same choice of global structure for the gauge

group. Namely, USp(4) or USp(4)/Z2, SU(2)7 or SU(2)7/Z2, and SU(4) × SU(2)2 or

(SU(4)×SU(2)2)/Z2. This is noteworthy since the existence of these choices implies the ex-

istence of one-form symmetries [9, 77], either electric or magnetic, in these theories. These

are hard to break and so must also agree on all sides of the duality, and indeed the presence

of this choice on all three sides guarantees this.7 Note also that although we gave some

evidence for the validity of the triality we did not discuss the precise mapping between the

21 exactly marginal couplings in each triality frame. This is a very interesting question

which should be addressed but it goes beyond what we can comment on now.

Note that in triality frames B and C each one of the gauge groups by themselves

are IR free. What makes these theories conformal is the fact that several symmetries are

gauged which changes the global symmetry of the theory, and this alters the computation

of the conformal manifold as a quotient by global symmetry. This fact stresses that if one

is to classify most general conformal gauge theories, one should also keep IR free gauge

theories (such that the one loop gauge beta function vanishes) as building blocks for more

complicated theories.

The construction of the triality illustrates the basic technology we will use in classi-

fying conformal theories in what follows as well as the physical motivation behind looking

for such models. With this discussion we are ready to divert our attention to the classifi-

cation program.

7In principle one can probe [64] the map between various choices of global structure for the gauge group

by computing the lens index [63–65].
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3 The classification program

We shall begin by specifying the general approach of our classification program. As previ-

ously stated, we are interested in classifying all N = 1 gauge theories with simple gauge

groups in four dimensions which possess a conformal manifold passing through weak cou-

pling. We are then lead to consider a non-abelian gauge group G with some number of

chiral fields in representations Ri. The conditions that this gauge theory is an interacting

SCFT at the weak coupling point are:8

1. The theory must be gauge anomaly free. This is necessary for the consistency of the

gauge theory. Since in 4d the gauge anomalies are all cubic, they depend on the cubic

Casimir which only exist for G = SU(N) with N > 2. As a result this condition is

only non-trivial for this case, and reads:∑
i

C(Ri) = 0, (3.1)

where we use C(Ri) for the cubic index of the representation Ri. We note for

convenience that it obeys C(Ri) = −C(Ri), and as such vanishes for real and pseudo-

real representations.

2. The one loop β-function must vanish with no anomalous dimensions for any field.

This ensures that the theory can be conformal at weak coupling. This leads to

the condition: ∑
i

T (Ri) = 3h∨G, (3.2)

where we use T (Ri) for the Dynkin index of the representation Ri, and h∨G for the

dual Coxeter number of the group G.

3. The theory must have a conformal manifold. This ensures that the theory is indeed

an interacting SCFT, that is, it remains conformal away from zero coupling for some

appropriate combination of couplings. This means that, first, there must be appro-

priate cubic superpotentials, so as to be marginal at weak coupling, that one can

turn on. Furthermore, the Kähler quotient of the space of marginal couplings by the

complexified global symmetry group of the free point must be non-zero [22].

For a given theory we need to verify that these three conditions are satisfied. The first

two are given by trivial algebra. The third one, the computation of the Kähler quotient,

can be rather tricky. In appendix B we detail an algorithm to compute such a quotient

and the various subtleties involved, as well as work out quite a few concrete examples.

In what follows we will detail the final result of such computations along with comments

which should be instrumental in rederiving the quoted results.

8We shall only consider cases where the gauge theory itself is conformal at weak coupling, and ignore

cases where the gauge theory flows to an interacting SCFT with a different weak coupling description.
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Symbol Label Dimension Index � Casimir Reality

F, F (1, 0, 0, . . . , 0), N 1
2 1,−1 Complex

(0, 0, . . . , 0, 1)

AS,AS (0, 1, 0, . . . , 0), N(N−1)
2

N−2
2 N − 4,−(N − 4) Complex

(0, . . . , 0, 1, 0) (Real for N = 4)

S, S (2, 0, 0, . . . , 0), N(N+1)
2

N+2
2 N + 4,−(N + 4) Complex

(0, 0, . . . , 0, 2)

Ad (1, 0, . . . , 0, 1) N2 − 1 N 0 Real

Table 1. Various group theory data for SU(N) representations associated with tensors with at

most two indices. Here the label entry stands for the standard Dynkin label of the representation,

and the symbol entry provides the shorthand symbol that will be employed for that representation

throughout this article. The remaining entries list the dimension, Dynkin index (a.k.a. quadratic

Casimir), cubic Casimir, and the reality properties of each representation.

We next consider each simple group in turn, and enumerate our results. We shall

consider only cases that are intrinsically N = 1 at weak coupling. We shall return to

consider cases with extended supersymmetry in section 8. For each case we specify the

dimension of the conformal manifold, the symmetry of the free point, the symmetry on the

generic point of the conformal manifold. The conformal manifolds might contain subspaces

which preserve larger symmetry than the generic point. We identify some of such subspaces,

though we do not claim that we identify all of them, as these types of computations tend to

be rather involved.

4 G = SU(N)

We shall first consider the case of group G = SU(N).

4.1 Generic cases

For generic N , condition 3.2 can only be satisfied by representations containing at most

two indices. These are the adjoint, symmetric, antisymmetric, fundamental and their

conjugates. We have summarized the relevant group theory data on these in table 1. For

sufficiently low N , some other representations are possible. We shall refer to the cases

involving them as exotic cases, and discuss them in the next section. Cases made from

the above mentioned representations will be dubbed generic cases, and considered in this

section, even if some of them are only conformal for small N .

An important part in the classification is the possible superpotential terms one can

add, which will be discussed forthwith. First adjoints can be coupled using a cubic su-

perpotential. This can be done with an antisymmetric coupling for any group and with

a symmetric coupling for N ≥ 3. The antisymmetric coupling is the one used in N = 4

super Yang-Mills, but will not play a role here as we always considered cases with less than

3 adjoint chirals. We shall here only concentrate on cases where N ≥ 3, and so can always

use the symmetric coupling. These comes about as for SU(2), the only interesting cases

are the ones with extended supersymmetry.
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Additionally all two index representations can be coupled to two fundamentals via cu-

bic superpotentials. For symmetrics and antisymmetrics this is to two anti-fundamentals,

where the coupling is respectively symmetric or antisymmetric, and similarly for the conju-

gate representations. Adjoints couple to a fundamental and anti-fundamental, and similarly

can be coupled also to any other pair of a representation and its conjugate. These are just

the superpotential types that exist for N = 2 theories. There is also a superpotential

involving all three two-index representations: a symmetric, conjugate antisymmetric and

adjoint, and likewise for the complex conjugate.

For generic N , these are the only superpotentials, but for low values of N additional

superpotential terms are possible. We next review some of these special cases.

1. N = 3: several special things occur for N = 3. First the antisymmetric is the same as

the anti-fundamental, so there are less choices in terms of matter multiplets. However,

the fundamentals and anti-fundamentals can be coupled with an antisymmetric cubic

superpotential given by the baryons. Also the symmetrics and their conjugates can be

coupled with a symmetric cubic superpotential given by the determinant. As a results

almost every representation can be coupled to itself making conformal manifolds quite

common for SU(3) gauge theories.

2. N = 4: the special feature of N = 4 is that the antisymmetric representation becomes

real. As a result there are more cubic superpotentials for theories with antisymmetrics

as, if these can couple to a given representation, they can also couple to the conjugate

one. We also note that the N = 2 type coupling between two antisymmetrics and

the adjoint is antisymmetric.

3. N = 5: here one can build a baryonic invariant from two antisymmetrics and a

fundamental, and likewise for the complex conjugate. This invariant is symmetric.

4. N = 6: here one can build a baryonic invariant from three antisymmetrics, and

likewise for the complex conjugate. This invariant is symmetric.

We next list the possible theories and their properties. For ease of presentation we

shall break the possibilities into cases.

4.1.1 Cases with two adjoints

We first consider the cases with two chiral fields in the adjoint representation. The possible

solutions to conditions (3.1) and (3.2) for generic N are:

1. NF = NF = N

2. NAS = 1, NF = 3, NF = N − 1

3. NAS = NAS = 1, NF = NF = 2

Here we have suppressed the two adjoints for brevity, but we remind the reader that

they are also part of the matter content. Also, for chiral choices there are two possibilities
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given by complex conjugation and we have only written one, as they are physically the

same differing merely by redefining the SU(N) generators.

Besides these, there are several solutions that exist only for small N :

1. NAS = 2, NF = 6−N, NF = N − 2, N = 5, 6

2. NAS = 3, NF = NF = 1, N = 4

3. NAS = 4, N = 4

4. NAS = 2, NAS = 1, NF = 1, N = 5

Here we have only listed cases that do not reduce to one of the generic families. Finally,

we need to consider the possible superpotentials and perform the Kähler quotient. We list

the cases where this is non-trivial, together with some of their properties in table 2. In all

the tables in the paper we use the following notations. dimM stands for the dimension

of the conformal manifold. GfreeF and GgenF are the symmetries preserved at the free point

and at a generic point of the conformal manifold respectively. The symbol ∅ denotes the

situation when no symmetry is preserved. Under GgenF we also list some of the larger

symmetries preserved on sub-loci of the conformal manifold. Finally, we list for reference

the a and c anomalies.

Let us make several specific comments about the various cases.

• Case 1 can be conformaly gauged with the diagonal SU(N). The Cartan of this group

is preserved on generic points. The other preserved U(1) groups are the baryon U(1),

which is preserved generically, and some combination of the other U(1) group and

the Cartan of the SU(2), which is preserved only on a special line.

• In case 2 the preserved SU(3) is the diagonal of the intrinsic SU(3) and an SU(3)

subgroup of SU(5), while the SU(2) is the complement of this diagonal SU(3) in

SU(5). The U(1) is a combination of the commutant U(1) in SU(5) and the intrinsic

U(1) groups.

• In case 3 we have the breaking of SU(3)→ U(1)×SU(2) and SU(4)→ U(1)×SU(2)2,

where the preserved SU(2)2 is the diagonal of the SU(2) in SU(3) and one of the SU(2)

groups in SU(4), while the other SU(2) is its commutant in SU(4). The two U(1)

groups are combinations of the intrinsic U(1) groups and the U(1) commutants in

the non-abelian groups. One of these cannot be broken and is one of those preserved

generically, while the second generically preserved U(1) is a combination of the other

U(1) and Cartans of the SU(2) groups.

• In case 4 we have the breaking SU(3)→ U(1)× SU(2) for both SU(3) groups, where

the SU(2)2 is preserved as well as two combinations of the commutant and intrinsic

U(1) groups. As both of these SU(2) groups see effectively 4 doublet chiral fields,

this can easily be used to build linear quivers using for instance N = 2 SU(2) + 4F .

• In case 5 the two SU(2) groups rotating the flavor symmetries can be preserved along a

2d subspace together with some combination of the intrinsic U(1) groups. This allows

one to gauge them, which can also be used to build quivers for small N , like N = 4.
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Matter dimM Gfree
F Ggen

F a, c

1 NF = NF = N N + 1 U(1)2 × SU(2) U(1)N a = 13N2−11
48 ,

(5 for ×SU(N)2 (U(1)2 for N = 3) c = 7N2−5
24

N = 3) has a 1d subspace

preserving U(1)2 × SU(N)

2 NAS = 1, NF = 3, 7 U(1)3 × SU(2) ∅ a = 28
3 ,

NF = 5, N = 6 ×SU(3)× SU(5) has a 2d subspace c = 119
12

preserving U(1)× SU(2)

×SU(3)

3 NAS = 1, NF = 3, 4 U(1)3 × SU(2) U(1)2 a = 103
16 ,

NF = 4, N = 5 ×SU(3)× SU(4) has a 2d subspace c = 55
8

preserving U(1)2 × SU(2)2

4 NAS = 1, NF = 3, 2 U(1)3 × SU(2) U(1)2 × SU(2)2 a = 65
16 ,

NF = 3, N = 4 ×SU(3)2 c = 35
8

5 NAS = NAS = 1, 5 U(1)4 × SU(2)3 U(1)2 (U(1) for N = 6) a = 12N2+3N−11
48 ,

NF = NF = 2 (6 for (U(1)3 × SU(2)4 (∅ for N = 5) c = 6N2+3N−5
24

N = 6) for N = 4) has a 2d subspace

(7 for preserving U(1)× SU(2)2

N = 5) also has a 1d subspace

preserving U(1)3 × SU(2)

(U(1)2 × SU(2)2

for N = 4)

6 NAS = 4, N = 4 3 U(1)× SU(2) SU(2)2 a = 63
16 ,

×SU(4) has a 1d subspace c = 33
8

preserving U(1)×USp(4)

7 NAS = 2, NF = 4 3 U(1)2 × SU(2)2 SU(2)2 a = 439
48 ,

N = 6 ×SU(4) has a 1d subspace c = 229
24

preserving U(1)×USp(4)

Table 2. Cases involving an SU(N) gauge group with two adjoint chiral fields. Note that the two

adjoint chiral fields are not written in the table.

Additionally there is a 1d subspace, generated by the cubic adjoint superpotential

and the N = 2 superpotentials for the fundamentals and antisymmetrics, where

these SU(2) groups are broken to the diagonal, but one preserves the two baryonic

symmetries as well as another U(1) which is a combination of the intrinsic U(1) groups

and the Cartan of the adjoint SU(2). for N = 4, one of the baryonic symmetries

enhances to SU(2), which is then also preserved on this subspace. Generically, the

Cartan of the diagonal fundamental SU(2) and some combination of the baryonic

symmetries is preserved, except for N = 6 where all baryonic symmetries can be

broken and N = 5 where all symmetries can be broken.

• In case 6 we first have the breaking SU(4) → USp(4), with an additional preserved

U(1) being a combination of the intrinsic U(1) and the Cartan of the SU(2). We can

further completely break the U(1) and break USp(4) to SU(2)2.

– 17 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

• Case 7 features similar breaking as in the previous case, with first breaking SU(4) →
USp(4), with an additional preserved U(1) being a combination of the intrinsic U(1)

and the Cartan of the antisymmetric SU(2). We can further completely break the

U(1) and break USp(4) to SU(2)2.

4.1.2 Cases with one adjoint

We next consider cases with one chiral field in the adjoint representation, that only have

N = 1 supersymmetry. The possible solutions to conditions (3.1) and (3.2) for generic N

are then:

1. NS = NS = 1, NAS = 1, NF = 1, NF = N − 3

2. NS = 1, NAS = 1, NF = 2N

3. NS = 1, NAS = 1, NF = N − 4, NF = N + 4

4. NS = 1, NAS = 2, NF = N − 5, NF = 7

5. NS = 1, NF = N − 3, NF = 2N + 1

6. NAS = 2, NAS = 1, NF = 5, NF = N + 1

7. NAS = 2, NF = 6, NF = 2N − 2

8. NAS = 1, NF = N + 3, NF = 2N − 1

Here we have suppressed the adjoint for brevity, but we remind the reader that it is

also part of the matter content. Also, for chiral choices there are two possibilities given

by complex conjugation and we have only written one, as they are physically the same

differing merely by redefining the SU(N) generators. We also note that while for generic

N these models have only N = 1 supersymmetry, for some this is enhanced to N = 2 for

low values of N .

Besides these, there are several solutions that exist only for small N :

1. NS = 1, NAS = 3, NF = N − 6, NF = 10−N, N = 6, 7, 8, 9, 10

2. NAS = 7, NF = NF = 1, N = 4

3. NAS = 5, NF = 15− 3N, NF = 2N − 5, N = 4, 5

4. NAS = 4, NAS = 2, NF = 2, N = 5

5. NAS = 4, NAS = 1, NF = 1, NF = 4, N = 5

6. NAS = 4, NF = 12− 2N, NF = 2N − 4, N = 5, 6

7. NAS = 3, NAS = 2, NF = 7−N, NF = 3, N = 5, 6, 7

8. NAS = 3, NAS = 1, NF = 8−N, NF = N, N = 5, 6, 7, 8

9. NAS = 3, NF = 9−N, NF = 2N − 3, N = 5, 6, 7, 8, 9
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Matter dimM Gfree
F Ggen

F a, c

1 NS = NS = 1, 2 U(1)5 ∅ a = 23
6 ,

NAS = 1, NF = 1, has a 1d subspace c = 47
12

NF = 1, N = 4 preserving U(1)2

2 NS = NS = 1, 2 U(1)5 × SU(2) U(1)2 a = 295
48 ,

NAS = 1, NF = 1, has a 1d subspace c = 151
24

NF = 2, N = 5 preserving U(1)2 × SU(2)

3 NS = NS = 1, 4 U(1)5 × SU(3) ∅ a = 431
48 ,

NAS = 1, NF = 1, has a 1d subspace c = 221
24

NF = 3, N = 6 preserving U(1)2 × SU(2)

4 NS = 1, NAS = 1, N−2
2 for U(1)4 U(1)

N−2
2 × SO(8) for N even a = 13N2−10

48 ,

NF = N − 4, N even, ×SU(N − 4) U(1)
N−1

2 × SO(8) for N odd c = 7N2−4
24

NF = N + 4 N−3
2 for ×SU(N + 4) for N even has 1d subspace

N odd (U(1)3 × SU(8) preserving U(1)

for N = 4) ×USp(N − 4)× SO(N + 4)

for N odd has 1d subspace

preserving U(1)2

×USp(N − 5)× SO(N + 3)

5 NS = 1, NF = 7, 15 U(1)2 × SU(7) ∅ a = 107
48 ,

N = 3 has 1d subspace preserving c = 59
24

SO(7)

6 NAS = 2, NAS = 1, 11 U(1)4 × SU(2) U(1) a = 467
48 ,

NF = 5, NF = 7, ×SU(5)× SU(7) has 1d subspace preserving c = 257
24

N = 6 U(1)2 × SU(2)× SU(5)

and 1d subspace preserving

U(1)2 ×USp(4)×USp(6)

7 NAS = 2, NAS = 1, 28 U(1)4 × SU(2) ∅ a = 325
48 ,

NF = 5, NF = 6, ×SU(5)× SU(6) has 1d subspace preserving c = 181
24

N = 5 U(1)3 × SU(2)× SU(4)

and 1d subspace preserving

U(1)2 ×USp(4)×USp(6)

8 NAS = 3, 30 U(1)3 × SU(3) ∅ a = 13
3 ,

NF = NF = 5, ×SU(5)2 has 1d subspace preserving c = 59
12

N = 4 U(1)× SU(2)×USp(4)

9 NAS = 2, N = 6 3 U(1)3 × SU(2) U(1)× SU(6)× SU(2)2 a = 119
12 ,

NF = 6, NF = 10 ×SU(6) has 1d subspace preserving c = 133
12

×SU(10) U(1)2 × SU(6)×USp(4)

Table 3. Cases involving an SU(N) gauge group with one adjoint chiral field. Note that the adjoint

chiral field is not written in the table.

Here we have only listed cases that do not reduce to one of the generic families. Finally,

we need to consider the possible superpotentials and perform the kähler quotient. We list

the cases where this is non-trivial, together with some of their properties in tables 3 and 4.
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F a, c

10 NAS = 2, 6 U(1)3 × SU(2)× U(1)2 × SU(3) a = 55
8 ,

NF = 6, NF = 8, SU(6)× SU(8) has 1d subspace preserving c = 31
4

N = 5 U(1)3 × SU(4)×USp(4)

11 NAS = 1, N = 6, 1 U(1)3 × SU(9) U(1)× SU(2) a = 485
48 ,

NF = 9, NF = 11, ×SU(11) ×SU(9) c = 275
24

12 NAS = 1, N = 5, 1 U(1)3 × SU(8) U(1)2 × SU(2) a = 335
48 ,

NF = 8, NF = 9, ×SU(9) ×SU(7) c = 191
24

13 NAS = 1, 3 U(1)3 × SU(7)2 U(1)× SU(2)3 a = 53
12 ,

NF = NF = 7, has 1d subspace preserving c = 61
12

N = 4 U(1)×USp(6)

and 1d subspace preserving

U(1)2 × SU(2)2 × SU(5)

14 NAS = 5, N = 4, 1 U(1)3 × SU(3)2 U(1)2 × SU(2)2 a = 17
4 ,

NF = NF = 3, ×SU(5) ×USp(4) c = 19
4

15 NAS = 4, 53 U(1)2 × SU(4) ∅ a = 229
24 ,

NF = 8, N = 6 ×SU(8) has 1d subspace preserving c = 31
3

U(1)×USp(8)

16 NAS = 3, NAS = 2, 10 U(1)4 × SU(2) U(1)× SU(2) a = 449
48 ,

NF = 1, NF = 3, ×SU(3)2 has 1d subspace preserving c = 239
24

N = 6 U(1)2 × SU(2)2

17 NAS = 3, NAS = 2, 19 U(1)4 × SU(2)2 ∅ a = 105
16 ,

NF = 2, NF = 3, ×SU(3)2 has 1d subspace preserving c = 57
8

N = 5 U(1)3 × SU(2)2

18 NAS = 3, NAS = 1, 23 U(1)4 × SU(2)× ∅ a = 229
24 ,

NF = 2, NF = 6, SU(3)× SU(6) has 1d subspace preserving c = 31
3

N = 6 U(1)× SU(2)×USp(6)

19 NAS = 3, NAS = 1, 31 U(1)4 × SU(3)2 ∅ a = 20
3 ,

NF = 3, NF = 5, ×SU(5) has 1d subspace preserving c = 22
3

N = 5 U(1)4 ×USp(4)

20 NAS = 3, 12 U(1)3 × SU(3)2 U(1)2 × SU(3) a = 467
48 ,

NF = 3, NF = 9, ×SU(9) has 1d subspace preserving c = 257
24

N = 6 U(1)2 × SU(3)×USp(6)

21 NAS = 3, 42 U(1)3 × SU(3)× ∅ a = 325
48 ,

NF = 4, NF = 7, SU(4)× SU(7) has 1d subspace preserving c = 181
24

N = 5 U(1)3 × SU(2)×USp(6)

Table 4. Cases involving an SU(N) gauge group with one adjoint chiral field, continued.
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Let us make several specific comments about the various cases.

• In case 3 the SU(2) is embedded in SU(3) as U(1) × SU(2) ⊂ SU(3).

• In case 5 the symmetry is embedded as SO(7) ⊂ SU(7). Incidentally, it can be further

broken to G2 along a 2d subspace.

• In case 6 the SU(2) is embedded inside U(1)×SU(2)×SU(5) ⊂ SU(7) and the SU(5)

is the diagonal one of the flavor SU(5) and the one inside SU(7). The USp(4) and

USp(6) are embedded inside U(1) × USp(4) ⊂ SU(5) and U(1) × USp(6) ⊂ SU(7),

respectively.

• In case 7 the symmetries are embedded as follows. In the first case we have SU(4)×
SU(2) ⊂ SU(6) and SU(4) × U(1) ⊂ SU(5), where the SU(4) group is the diagonal

one. In the second case we have USp(6) ⊂ SU(6) and USp(4) × U(1) ⊂ SU(5). In

both cases, the preserved U(1) groups are combinations of the intrinsic U(1) groups,

the Cartan of the SU(2), and the U(1) commutants in the non-abelian groups.

• In case 8 the SU(2) is embedded inside U(1) × SU(2) ⊂ SU(3), and the USp(4) is in

the diagonal SU(5), where the embedding is such that there is a U(1) commutant.

• In case 9 the USp(4) is embedded inside SU(6)×USp(4) ⊂ SU(10) and the SU(6) is

the diagonal one of the flavor SU(6) and the one inside SU(10).

• In case 10 the breaking is as follows: SU(4)×U(1)2 ⊂ SU(6) and SU(4)×USp(4) ⊂
SU(8), where the SU(4) group is the diagonal one. Generically the diagonal SU(4) is

further broken to SU(3). The preserved U(1) groups are combinations of the intrinsic

U(1) groups, the Cartan of the SU(2), and the U(1) commutants in the non-abelian

groups.

• In case 11 we break SU(11) → SU(9) × SU(2) × U(1), where the preserved SU(9) is

the diagonal one and the U(1) is a combination of the intrinsic U(1) groups and the

U(1) commutant in SU(11).

• In case 12 we break SU(9) → SU(7) × SU(2) × U(1) and SU(8) → SU(7) × U(1),

where the preserved SU(7) is the diagonal one and the U(1) groups are combinations

of the intrinsic U(1) groups and the U(1) commutants in the non-abelian groups.

• In case 13 for the first 1d subspace we first break both SU(7) → SU(6) × U(1) and

then break SU(6) → USp(6). The preserved USp(6) is then the diagonal one and

the U(1) is a combination of the intrinsic U(1) groups and the U(1) commutants in

the non-abelian groups. For the second 1d subspace we first break both SU(7) →
SU(5)×SU(2)×U(1). The preserved SU(5) is then the diagonal one. In this subspace,

the generically preserved SU(2)3 is embedded as SU(2)2 → SU(2)diagonal, SU(5) →
U(1)×USp(4)→ U(1)× SU(2)2.
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• In case 14 we break both SU(3)→ SU(2)×U(1) and break SU(5)→ USp(4)×U(1).

The preserved U(1) groups are combinations of the intrinsic U(1) groups and the

U(1) commutants in the non-abelian groups.

• In case 15 the USp(8) group is embedded in SU(8) and the U(1) is a combination of

the intrinsic U(1) groups and the Cartans of SU(4).

• In case 16 the symmetries are embedded as follows: first we break both SU(3) groups

to U(1) × SU(2). The preserved SU(2)2 are then the diagonal combination of the

intrinsic SU(2) with SU(2) ⊂ SU(3)AS and the SU(2) ⊂ SU(3)F . The former is

further broken on generic points. The U(1) groups are combinations of the intrinsic

U(1) groups and the U(1) commutants in the non-abelian groups.

• In case 17 the symmetries are embedded as follows: first we break both SU(3) groups

to U(1) × SU(2). The preserved SU(2)2 are then the diagonal combination of the

intrinsic SU(2) acting on the conjugate antisymmetrics with SU(2) ⊂ SU(3)AS and

the SU(2) ⊂ SU(3)F . the U(1) groups are combinations of the intrinsic U(1) groups

and the U(1) commutants in the non-abelian groups.

• In case 18 the SU(6) is broken to USp(6) and the SU(3) is broken to a U(1) which

combines with the intrinsic ones.

• In case 19 the SU(5) is broken to USp(4)×U(1) and the U(1) groups are combinations

of the intrinsic U(1) groups and the U(1) commutants in the non-abelian groups.

• In case 20 we first break SU(9) → U(1) × SU(3) × USp(6). The preserved SU(3) is

then the diagonal one with the SU(3) rotating the fundamentals. This SU(3) cannot

be broken on the conformal manifold.

• In case 21 we break SU(7) → U(1) × USp(6), SU(4) → U(1) × SU(3) and SU(3) →
U(1) × SU(2). The preserved SU(2) is then the diagonal one of SU(2) ⊂ SU(3) and

SO(3) ⊂ SU(3) ⊂ SU(4).

4.1.3 Cases with symmetrics but no adjoints

We next consider the cases where there is at least one chiral field in the symmetric rep-

resentation, but no chiral fields in the adjoint representation. The number of solutions to

conditions (3.1) and (3.2) is very large and we list all the cases in appendix C.1.3. Among

those there are only a few which also have a non trivial conformal manifold once generic

superpotentials are turned on. We consider the possible superpotentials and perform the

Kähler quotient. We list the cases where this is non-trivial, together with some of their

properties in table 5.

Let us make several specific comments about the various cases.

• In case 1 the breaking is SU(4)→ SO(4) for both groups. We can then further break

each SO(4) to SO(3).
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Matter dimM Gfree
F Ggen

F a, c

1 NS = NS = 1, 3 U(1)3 × SU(4)2 SU(2)2 a = 9
4 ,

NF = NF = 4, has 1d subspace preserving c = 5
2

N = 3 SU(2)4

2 NS = 1, NF = 3, 76 U(1)2 × SU(3) SU(3) a = 39
16 ,

NF = 10, ×SU(10) has 1d subspace preserving c = 23
8

N = 3 U(1)× SU(3)× SO(10)

and 1d subspaces preserving

SU(3)M+1 × SO(10− 3M)

for M = 1, 2, 3

3 NS = 1, NAS = 2, 1 U(1)3 × SU(2) U(1)2 × SU(2)× SO(14) a = 7,

NF = 3, NF = 14, ×SU(3) c = 8

N = 5 ×SU(14)

4 NS = 1, NAS = 1, 1 U(1)3 U(1)2 ×USp(2N − 4) a = 14N2−9
48 ,

NF = 2N − 4, ×SU(2N − 4) ×SO(2N + 4) c = 8N2−3
24

NF = 2N + 4, ×SU(2N + 4)

N 6= 3

5 NS = 1, NAS = 3, 2 U(1)2 × SU(3) U(1)× SO(16) a = 159
16 ,

NF = 16, ×SU(16) has 1d subspace preserving c = 89
8

N = 6 U(1)3 × SO(16)

Table 5. Cases involving an SU(N) gauge group with symmetric chiral fields, but no adjoint

chirals.

• In case 2 the SU(3) rotating the fundamentals is unbroken while the one rotating

the anti-fundamentals is broken to SO(10 − 3M) × SU(3)M × U(1)M . For M = 0

one does not need the anti-baryon superpotential, and an additional U(1) can be

preserved. It is interesting to not that the SO(7)×SU(3)2 case can be further broken

to G2 × SU(3)2 on a 2d subspace.

• In case 3 the symmetries are embedded as follows: SO(14) ⊂ SU(14) and the SU(2)

is the diagonal of the antisymmetric SU(2) and SO(3) ⊂ SU(3).

4.1.4 Cases with only antisymmetrics and fundamentals

We next consider the cases where there are only chiral fields in the antisymmetric and

fundamental representation, or their conjugate. We list the theories solving (3.1) and (3.2)

in C.1.4. Most of these are IR free. However once superpotentials are turned on some have

interacting conformal manifolds. We list the cases where this is non-trivial, together with

some of their properties in tables 6 and 7.

Let us make several specific comments about the various cases.

• In case 1 the generically preserved U(1) groups are part of the Cartan of each

USp(6) ⊂ SU(6) group. The U(1)2 that is preserved on the subspace are different and

are combinations of the Cartans of each SU(3) group and the intrinsic U(1) groups.
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F a, c

1 NAS = NAS = 3, 23 U(1)3 × SU(3)2 U(1)2 a = 159
16 ,

NF = NF = 6, ×SU(6)2 has 1d subspace preserving c = 89
8

N = 6 U(1)2 ×USp(6)2

2 NAS = NAS = 3, 73 U(1)3 × SU(3)2 ∅ a = 7,

NF = NF = 6, ×SU(6)2 has 1d subspace preserving c = 8

N = 5 SU(2)

3 NAS = 3, NAS = 2, 28 U(1)3 × SU(2) SU(2)2 a = 81
8 ,

NF = 7, NF = 9, ×SU(3)× has 1d subspace preserving c = 23
2

N = 6 SU(7)× SU(9) SU(2)3

4 NAS = 3, NAS = 2, 67 U(1)3 × SU(2) ∅ a = 341
48 ,

NF = 7, NF = 8, ×SU(3)× has 1d subspace preserving c = 197
24

N = 5 SU(7)× SU(8) U(1)5 × SU(2)3 ×USp(4)

5 NAS = NAS = 2, 11 U(1)3 × SU(2)2 SU(2)10 a = 165
16 ,

NF = NF = 10, ×SU(10)2 has 4 1d subspaces preserving c = 95
8

N = 6 U(1)2 ×G1 ×G2 where

G1, G2 = USp(8)× SU(2)

or USp(6)×USp(4)

6 NAS = NAS = 2, 29 U(1)3 × SU(2)2 ∅ a = 173
24 ,

NF = NF = 9, ×SU(9)2 has 4 1d subspaces preserving c = 101
12

N = 5 U(1)4 ×G1 ×G2 where

G1, G2 = USp(6)× SU(2)

or USp(4)2

7 NAS = 4, 82 U(1)2 × SU(4) U(1) a = 223
48 ,

NF = NF = 8, ×SU(8)2 has 1d subspaces preserving c = 133
24

N = 4 U(1)4 ×USp(4)4

8 NAS = 3, NAS = 1, 56 U(1)3 × SU(3) U(1)×USp(8) a = 165
16 ,

NF = 8, NF = 12, ×SU(8) has 1d subspace preserving c = 95
8

N = 6 ×SU(12) U(1)3 ×USp(8)2 ×USp(4)

9 NAS = 3, NAS = 1, 39 U(1)3 × SU(3) U(1) a = 173
24 ,

NF = 8, NF = 10, ×SU(8) has 1d subspace preserving c = 101
12

N = 5 ×SU(10) U(1)4 ×USp(6)2 ×USp(4)

10 NF = NF = 9, 7 U(1)× SU(9)2 ∅ a = 21
8 ,

N = 3 has 1d subspace preserving c = 13
4

SU(3)6

Table 6. Cases involving an SU(N) gauge group with fundamental and antisymmetric chiral

fields only.
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11 NAS = NAS = 4, 15 U(1)3 × SU(2)2 SU(2)2 a = 153
16 ,

NF = NF = 2, ×SU(4)2 has 1d subspace preserving c = 83
8

N = 6 U(1)4 × SU(2)2

12 NAS = 5, NAS = 3, 26 U(1)2 × SU(3) ∅ a = 153
16 ,

NF = 4, ×SU(4) has 1d subspace preserving c = 83
8

N = 6 ×SU(5) U(1)5 ×USp(4)

13 NAS = 4, NAS = 3, 21 U(1)3 × SU(3)2 ∅ a = 39
4 ,

NF = 3, NF = 5, ×SU(4) has 1d subspace preserving c = 43
4

N = 6 ×SU(5) U(1)4 × SU(2)

14 NAS = 6, NF = 12, 273 U(1)× SU(6) ∅ a = 159
16 ,

N = 6, ×SU(12) has 1d subspace preserving c = 89
8

U(1)4 ×USp(8)×USp(4)

15 NAS = 5, NAS = 1, 136 U(1)3 × SU(2) SU(2) a = 159
16 ,

NF = 2, NF = 10, ×SU(5) has 1d subspaces preserving c = 89
8

N = 6 ×SU(10) U(1)3 × SU(2)2 ×USp(8),

U(1)3 × SU(2)×USp(4)

×USp(6), SU(2)3

16 NAS = 4, NAS = 2, 55 U(1)3 × SU(2) SU(2)2 a = 159
16 ,

NF = 4, NF = 8, ×SU(4)2 has 1d subspace preserving c = 89
8

N = 6 ×SU(8) U(1)4 ×USp(4)×USp(8)

17 NAS = 4, NAS = 2, 20 U(1)3 × SU(2) U(1)3 × SU(2) a = 7,

NF = 5, NF = 7, ×SU(4)× has 1d subspace preserving c = 8

N = 5 SU(5)× SU(7) U(1)4 × SU(2)2 ×USp(4)

18 NAS = 5, 152 U(1)2 × SU(5)2 U(1) a = 341
48 ,

NF = 5, NF = 10, ×SU(10) has 1d subspace preserving c = 197
24

N = 5 U(1)5 × SU(2)5

19 NAS = 4, NAS = 1, 72 U(1)3 × SU(4) U(1) a = 341
48 ,

NF = 6, NF = 9, ×SU(6) has 1d subspace preserving c = 197
24

N = 5 ×SU(9) U(1)3 × SU(2)2 ×USp(8)

Table 7. Cases involving an SU(N) gauge group with fundamental and antisymmetric chiral fields

only, continued.

• In case 2 the SU(2) is embedded as SO(3) ⊂ SU(3) where it is in the diagonal of

SU(3)2 and SU(6)2, where for the latter we use the embedding 6SU(6) → 6SU(3).

• In case 3 one breaks SU(9)→ SU(3)3 × U(1)2 → SO(3)3 × U(1)2, and then take the

diagonal SU(2) of the three SO(3) groups. The other two SU(2) groups are embedded

as SU(2)2 × U(1)2 ⊂ SU(7), and these are the ones generally preserved. The rest of

the symmetries are broken completely.

• In case 4 the USp(4) is embedded as USp(4)×U(1)3 ⊂ SU(7), and the SU(2)3 is em-

bedded as SU(2)3×U(1)4 ⊂ SU(8). The U(1)5 are combinations of the intrinsic U(1)3,

the Cartans of SU(2) and SU(3), and the U(1) commutants in the non-abelian groups.
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• In case 5 the maximal breaking is SU(10) → SU(2)5 for both SU(10) groups. The

minimal breaking involves either SU(10) → U(1) × SU(2) × USp(8) or SU(10) →
U(1)×USp(4)×USp(6) for each SU(10) group. There are then 4 distinct subspaces,

one for each choice. The U(1)2 are then the combinations of the commutant and

intrinsic U(1) groups.

• Similarly, in case 6 the minimal breaking involves either SU(9) → U(1)2 × SU(2) ×
USp(6) or SU(9) → U(1)2 × USp(4)2 for each SU(9) group. There are then 4 dis-

tinct subspaces, one for each choice. The U(1)4 are then the combinations of the

commutant and intrinsic U(1) groups.

• In case 7 the minimal breaking involves SU(8) → U(1) × USp(4)2 for each SU(8)

group. The SU(4) is broken to its Cartan. The U(1)4 are then three combinations of

the commutant and intrinsic U(1) groups, and one of the intrinsic U(1) groups which

is never broken on the conformal manifold.

• In case 8 the USp(4) and one of the USp(8) are embedded inside USp(4)×USp(8)×
U(1) ⊂ SU(12), and the second USp(8) which is also the one generally preserved is

embedded inside USp(8) ⊂ SU(8). The U(1)3 are combinations of the intrinsic U(1)3,

and the U(1) commutant in the non-abelian group. One of the intrinsic U(1)’s is the

one preserved generally.

• In case 9 the USp(4) and one of the USp(6) are embedded inside USp(4)×USp(6)×
U(1) ⊂ SU(10), and the second USp(6) is embedded inside USp(6)×U(1)2 ⊂ SU(8).

The U(1)4 are combinations of the intrinsic U(1)3, and the U(1) commutants in the

non-abelian groups. One of the intrinsic U(1)’s is the one preserved generally.

• In case 10 the minimal breaking is SU(9)→ U(1)2 × SU(3)3 for both SU(9) groups.

• In case 11 the SU(2) groups rotating the fundamentals and their conjugates cannot

be broken. It is possible to preserve some of the Cartan of the SU(4) groups on

subspaces of the conformal manifold.

• In case 12 the breaking is SU(4) → USp(4) and the other non-abelian groups are

broken down to the Cartan.

• In case 13 the SU(2) is embedded as SU(2) × U(1)3 ⊂ SU(5). The U(1)4 are combi-

nations of the Cartans of SU(3)2 and SU(4), and the U(1) commutants in SU(5).

• In case 14 the USp(8) and the USp(4) are embedded as USp(8) × USp(4) × U(1) ⊂
SU(12). The U(1)4 are combinations of the intrinsic U(1), the Cartan of SU(6), and

the U(1) commutant in the non-abelian group.

• In case 15 one breaks SU(10) → SU(2) × USp(8) × U(1) for the first 1d subspace,

SU(10) → USp(4) × USp(6) × U(1) for the second 1d subspace. For the third 1d

subspace one breaks SU(10) → SU(5) × SU(2) such that 10 → (5,2), then taking

the diagonal of the remaining SU(5) and of SU(5)F breaking it as SU(5) → SU(2)
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such that 5SU(5) → 5SU(2). The additional SU(2) for all of these cases is the intrinsic

one and is also preserved generally. The U(1)3 in the first two 1d subspaces are

combinations of the intrinsic U(1)3, the Cartan of SU(5), and the U(1) commutant

in SU(10).

• In case 16 the USp(4) is embedded as USp(4) ⊂ SU(4)F , and the USp(8) is em-

bedded as USp(8) ⊂ SU(8). The U(1)4 is a combination of the SU(4)AS and SU(2)

Cartans and the intrinsic U(1) groups. The SU(2)2 generally preserved is embedded

as SU(2)2 ⊂ USp(4).

• In case 17 one breaks SU(7)→ USp(4)×SU(3)×U(1)→ USp(4)×SO(3)×U(1) and

taking the diagonal SU(2) of this SO(3) and SU(2)AS to get the generally preserved

SU(2). In addition one breaks SU(5)→ SU(3)×U(1)2 → SO(3)×U(1)2 and SU(4)→
SU(2) × U(1)2 and takes the diagonal SU(2) of these SO(3) and SU(2). The U(1)4

is a combination of the intrinsic U(1) groups and the U(1) commutants in the non-

abelian groups. The generally preserved U(1)3 are a combination of the U(1) coming

from the breaking USp(4) → SU(2)2 → SU(2) → U(1) and the U(1)4 preserved on

the 1d subspace.

• In case 18 one of the intrinsic U(1) groups cannot be broken on the conformal man-

ifold. On the special subspace, the preserved symmetry includes U(1)4 × SU(2)5,

where the SU(2)5 is embedded as SU(2)5×U(1)4 ⊂ SU(10), and the U(1) groups are

a combination of the intrinsic U(1)’s, the Cartan of the two broken SU(5) groups and

the U(1) commutants in the non-abelian groups.

• In case 19 the USp(8) is embedded as USp(8)×U(1) ⊂ SU(9). In addition one breaks

SU(6)→ SU(3)×SU(2)×U(1)2 → SO(3)×SU(2)×U(1)2 and SU(4)→ SU(2)×U(1)2

and take the diagonal SU(2) of SO(3) and the SU(2) ⊂ SU(4). The U(1)3 groups are

a combination of the intrinsic U(1)’s, and the U(1) commutants in the non-abelian

groups. The generally preserved U(1) is a combination of the above 1d subspace

U(1)3.

4.2 Exotic cases

Finally we consider representations which are only possible for low values of N . The full

list of possibilities appears in table 8. As can be seen, there are only a handful of cases

extending up to SU(12). Most of these cases are the rank 3 antisymmetric, and a few rank

4 antisymmetric as well. The groups SU(4) and SU(5) have a few more exotic choices.

We first review the list of possible superpotentials. We begin with the case of SU(4).

Here we have two types of twenty dimensional representations. The 20 and 20 are the

product of the fundamental and the antisymmetric. The antisymmetric product of either

the 20 or the 20 can be coupled to the antisymmetric and the symmetric product of either

can be coupled to either the symmetric or its conjugate. The 20 can also couple to an anti-

fundamental and an antisymmetric or conjugate symmetric, and likewise for the conjugate.

As usual, the product of the 20 and 20 can couple to the adjoint, and also to the 20′.
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Group Label Dimension Dynkin � Casimir Reality

SU(4) (1, 1, 0), (0, 1, 1) 20,20 13
2 7,−7 Complex

SU(4) (0, 2, 0) 20′ 8 0 Real

SU(5) (1, 0, 1, 0), (0, 1, 0, 1) 45,45 12 6,−6 Complex

SU(6) (0, 0, 1, 0, 0) 20 3 0 Pseudo-real

SU(7) (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0) 35,35 5 2,−2 Complex

SU(8) (0, 0, 1, 0, 0, 0, 0), 56, 15
2 5, Complex

SU(8) (0, 0, 0, 0, 1, 0, 0) 56 −5

SU(8) (0, 0, 0, 1, 0, 0, 0) 70 10 0 Real

SU(9) (0, 0, 1, 0, 0, 0, 0, 0), 84, 21
2 9, Complex

(0, 0, 0, 0, 0, 1, 0, 0) 84 −9

SU(9) (0, 0, 0, 1, 0, 0, 0, 0), 126, 35
2 5, Complex

(0, 0, 0, 0, 1, 0, 0, 0) 126 −5

SU(10) (0, 0, 1, 0, 0, 0, 0, 0, 0), 120, 14 14, Complex

(0, 0, 0, 0, 0, 0, 1, 0, 0) 120 −14

SU(11) (0, 0, 1, 0, 0, 0, 0, 0, 0, 0), 165, 18 20, Complex

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 165 −20

SU(12) (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), 220, 45
2 27, Complex

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 220 −27

Table 8. Various group theory data for SU(N) representations associated with tensors with more

than two indices. Here the group entry stands for the group in question, and the label entry

stands for the standard Dynkin label of the representation. The remaining entries list the dimen-

sion, Dynkin index (AKA quadratic Casimir), cubic Casimir and the reality properties of each

representation.

Finally the 20 can also linearly couple to an adjoint or 20′ and a fundamental, and likewise

for the conjugate.

The 20′ is the symmetric traceless product of two antisymmetrics. It has a cubic

symmetric coupling, and being a real representation, its anti-symmetric square can couple

to the adjoint. It can also linearly couple to the symmetric square of the antisymmetric,

adjoint, symmetric and conjugate symmetric representations.

For SU(5) we can have the 45 which appears only in one combination with

anti-fundamentals. There are no cubic superpotentials that involve only these two

representations.

For N = 6− 12, we can also have the three index antisymmetric representation. This

representation can couple to the product of an anti-fundamental and conjugate antisym-

metric, and likewise for the complex conjugate. Like all other representations, the product

with its conjugate can be coupled to the adjoint. There are a few special cases. For N = 6,

the representation is pseudo-real so it can couple linearly to the fundamental and anti-

symmetric and also to the anti-fundamental and conjugate antisymmetric. Its symmetric

product can be coupled to the adjoint representation. For N = 7 and N = 8, we can

couple its antisymmetric square to the fundamental and antisymmetric representations,

respectively, and likewise for the conjugate. Finally, for N = 9 there is an antisymmetric

cubic coupling, though this won’t play a role here.

– 28 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

Matter dimM Gfree
F Ggen

F a, c

1 G = SU(4), 1 U(1)4 × SU(2) U(1)2 × SU(2) a = 61
16 ,

N20 = 1, NS = 1, c = 31
8

NAS = 1,

NF = 1, NF = 2

2 G = SU(4), 2 U(1) ∅ a = 85
24 ,

N20′ = 1, NAd = 1 c = 10
3

3 G = SU(4), 1 U(1)× SU(4) SU(2)2 a = 179
48 ,

N20′ = 1, NAS = 4 c = 89
24

4 G = SU(4), 2 U(1)3 × SU(2)3 SU(2)2 a = 61
16 ,

N20′ = 1, NAS = 2, has a 1d subspace c = 31
8

NF = NF = 2 preserving U(1)× SU(2)2

5 G = SU(6), 1 U(1)3 × SU(2) SU(2)2 a = 437
48 ,

N20 = 3, NAd = 1, ×SU(3) c = 227
24

NAS = 1, NF = 2

6 G = SU(6), 3 U(1)× SU(2)2 ∅ a = 425
48 ,

N20 = 2, NAd = 2 has 1d subspace c = 215
24

preserving U(1)2

7 G = SU(6), 3 U(1)3 × SU(2)2 U(1)× SU(2)2 a = 37
4 ,

N20 = 2, NAd = 1, ×SU(4) has a 1d subspace c = 39
4

NAS = 2, NF = 4 preserving U(1)2 ×USp(4)

8 G = SU(6), 2 U(1)4 × SU(2)× U(1)2 × SU(2) a = 151
16 ,

NAd = 1, N20 = 2, SU(3)× SU(5) has 1d subspace c = 81
8

NAS = 1, preserving U(1)3 ×USp(4)

NF = 3, NF = 5 also has 1d subspace

preserving U(1)2

×SU(2)× SU(3)

Table 9. Cases involving an SU(N) gauge group with ‘exotic’ matter.

The only other possible representation is the four index antisymmetric representation,

which is possible for N = 8, 9. Its generic coupling is to the symmetric square of the

conjugate antisymmetric and to the product of the conjugate three index antisymmetric

and an anti-fundamental. For N = 8, it is a real representation, so all these couplings are

also possible for the non-conjugate representation. Also the antisymmetric square can be

coupled to the adjoint, though this won’t play a role here. For N = 9, we can also couple

its symmetric square to the fundamental. In that case it can also be coupled to the product

of the two and three index antisymmetric representations, though this also won’t play a

role here.

We list the many theories which are anomaly free and have vanishing one loop beta

function in appendix C.1.5. All that is now left is to find out which cases support a con-

formal manifold. We list the cases where this is so, together with some of their properties,

in tables 9 and 10.

Let us make several comments about the cases in tables 9 and 10.

• In case 1 only two of the intrinsic U(1) groups are broken.
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Matter dimM Gfree
F Ggen

F a, c

9 G = SU(6), 2 U(1)3 × SU(2)2 SU(2) a = 9,

N20 = 1, NAd = 2, c = 37
4

NAS = 1, NF = 2

10 G = SU(6) 5 U(1)3 × SU(2) U(1)3 a = 147
16 ,

N20 = 1, NAd = 2 ×SU(3)2 has 1d subspace preserving c = 77
8

NF = NF = 3 U(1)2 × SU(3)

11 G = SU(6) 12 U(1)3 × SU(3) U(1) a = 451
48 ,

N20 = 1, NAd = 1 ×SU(6) has 1d subspace preserving c = 241
24

NAS = 3, NF = 6 U(1)×USp(6)

12 G = SU(6), NAd = 1, 1 U(1)4 × SU(6) U(1)× SU(2) a = 469
48 ,

N20 = 1, NAS = 1, ×SU(8) ×SU(6) c = 259
24

NF = 6, NF = 8

13 G = SU(6), 12 U(1)5 × SU(2)2 ∅ a = 451
48 ,

NAd = 1, N20 = 1, ×SU(4) has 1d subspace preserving c = 241
24

NAS = 1, NAS = 2, U(1)× SU(2)×USp(4)

NF = 4, NF = 2

14 G = SU(6), NAd = 1, 7 U(1)4 × SU(2)× U(1) a = 115
12 ,

N20 = 1, NAS = 2, SU(3)× SU(7) has 1d subspace preserving c = 125
12

NF = 7, NF = 3 U(1)2 ×USp(6)

also has 1d subspace

preserving U(1)2

×SU(3)×USp(4)

15 G = SU(6), N20 = 1, 3 U(1)4 × SU(3)4 U(1) a = 461
48 ,

NAS = NAS = 3, has 1d subspace preserving c = 251
24

NF = NF = 3 U(1)5

Table 10. Cases involving an SU(N) gauge group with ‘exotic’ matter, continued.

• In case 3 the unbroken symmetry is embedded as SO(4) ⊂ SU(4).

• In case 4 the unbroken SU(2) symmetries are the ones rotating the fundamentals and

antifundamentals. On a 1d subspace, a combination of the Cartan of SU(2)AS and

one of the intrinsic U(1) groups also remains unbroken.

• In case 5 one of the preserved SU(2) groups is SU(2)F while the other is SO(3) ⊂
SU(3).

• In case 6 one of the preserved U(1) groups is the Cartan of SU(2)20 while the other

is a combination of the intrinsic U(1) and the Cartan of the other SU(2).

• In case 7 the preserved symmetries are embedded as: SO(4) ⊂ SO(5) ⊂ SO(6) =

SU(4). The always preserved U(1) is the Cartan of SU(2)20, while the one preserved

on a subspace is a combination of the Cartan of SU(2)AS and one of the intrinsic

U(1) groups.
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• In case 8 the USp(4) symmetry in the first 1d subspace is embedded as U(1) ×
USp(4) ⊂ SU(5). The SU(2) symmetry in the second 1d subspace is embedded as

SU(3)× SU(2)×U(1) ⊂ SU(5), and the SU(3) is the diagonal of the intrinsic SU(3)

and the one embedded in SU(5).

• In case 9 the preserved SU(2) is SU(2)F .

• In case 10 the preserved SU(3) is the diagonal one.

• In case 11 the preserved USp(6) is embedded as USp(6) ⊂ SU(6).

• In case 12 one breaks SU(8) → U(1) × SU(2) × SU(6) where the preserved SU(6) is

the diagonal one.

• In case 13 the SU(2) groups is SU(2)F while the USp(4) group is embedded as

USp(4) ⊂ SU(4). This case also has a 1d subspace where one preserves U(1)2×SU(2),

where now the SU(2) is one of the two SU(2) groups in SU(4) under the same em-

bedding.

• In case 14 the USp(6) in the first 1d subspace is embedded as USp(6)×U(1) ⊂ SU(7).

In the second 1d subspace the USp(4) groups is embedded as USp(4)×SU(3)×U(1) ⊂
SU(7) where the preserved SU(3) is the diagonal one.

• In case 15 the SU(3)F and SU(3)AS are reduced to the diagonal SU(3) and the same

for the conjugate SU(3)’s. The U(1)’s contained in the 1d subspace are the Cartans

of the two diagonal SU(3)’s and one of the intrinsic ones. The same intrinsic U(1) is

the one generally preserved.

5 G = USp(2N)

We shall next consider the case of group G = USp(2N).

5.1 Generic cases

Like for SU type groups, for generic N , the condition 3.2 can only be satisfied by represen-

tations containing at most two indices. These are the symmetric (adjoint), antisymmetric

and fundamental. We have summarized the relevant group theory data on these in table 11.

All of these representations are real or pseudo-real and so there is no cubic anomaly con-

straint. For sufficiently low N , some other representations are possible. We shall refer to

the cases using them as exotic cases, and discuss them in the next section. Cases made

from the above mentioned representations will be dubbed generic cases, and considered in

this section, even if some of them are only possible for small N .

We next wish to discuss the possible superpotential terms one can add. Groups of type

USp do not have a cubic Casimir, and so there is no cubic symmetric superpotential term

for adjoints. There are, however, cubic superpotentials coupling the symmetric square of

the adjoints to the antisymmetric, and the anti-symmetric square of the antisymmetrics to

the adjoint. Also, with the exception of USp(4), antisymmetrics do have a cubic symmetric
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Symbol Label Dimension Dynkin index Reality

F (1, 0, 0, . . . , 0) 2N 1
2 Pseudo-real

AS (0, 1, 0, . . . , 0) N(2N− 1)− 1 N − 1 Real

S (2, 0, 0, . . . , 0) N(2N + 1) N + 1 Real

Table 11. Various group theory data for USp(2N) representations associated with tensors with at

most two indices. Here the label entry stands for the standard Dynkin label of the representation,

and the symbol entry provides the shorthand symbol that will be employed for that representation

throughout this article. Additionally, the dimension, Dynkin index and the reality properties of the

representation are listed.

superpotential, and as such all conformal cases involve antisymmetrics. Additionally, the

adjoint and antisymmetric representations can couple to two fundamentals in a symmetric

or antisymmetric manner, respectively.

The only exceptional case is N = 2, where there is no cubic symmetric superpoten-

tial term for the antisymmetric representation. As a result these cases are usually not

conformal.

We next examine the possible cases. We begin by listing the possible solutions to

conditions (3.2) for generic N :

1. NS = 2, NF = 2N + 2

2. NS = 2, NAS = 1, NF = 4

3. NS = 1, NAS = 1, NF = 2N + 6

4. NAS = 3, NF = 12

5. NAS = 2, NF = 2N + 10

6. NAS = 1, NF = 4N + 8

7. NF = 6N + 6

Besides these, there are several solutions that exist only for small N :

1. NS = 2, NAS = 3, N = 2

2. NS = 2, NAS = 2, NF = 2(3−N), N = 2, 3

3. NS = 1, NAS = 5, NF = 2, N = 2

4. NS = 1, NAS = 3, NF = 2(5−N), N = 2, 3, 4, 5

5. NAS = 9, N = 2

6. NAS = 8, NF = 2, N = 2

7. NAS = 7, NF = 4, N = 2
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Matter dimM Gfree
F Ggen

F a, c

1 NS = 1, NAS = 1, N + 4 U(1)2× U(1)N+3 a = 26N2+21N−1
48 ,

NF = 2N + 6 (5 for SU(2N + 6) for N > 2 has a 1d c = 14N2+15N−1
24

N = 2) subspace preserving

SO(2N + 6− 2x)

×USp(2x) for x < N − 1

for N ≥ 2 has a 1d

subspace preserving U(1)

×USp(2N − 2)× SO(8)

2 NS = 2, NAS = 3, 1 U(1)× SU(2) U(1)× SU(2) a = 125
48 ,

N = 2 ×SU(3) c = 65
24

3 NS = 2, NAS = 2, 1 U(1)× SU(2)2 U(1)2 a = 259
48 ,

N = 3 c = 133
24

4 NS = 1, NAS = 5, 1 U(1)2 × SU(2) U(1)× SU(2) a = 133
48 ,

NF = 2, N = 2 ×SU(5) ×USp(4) c = 73
24

5 NS = 1, NAS = 3, 7 U(1)× SU(3) ∅ a = 341
24 ,

N = 5 has a 1d subspace c = 44
3

preserving SU(2)

6 NS = 1, NAS = 3, 10 U(1)2 × SU(2) U(1) a = 457
48 ,

NF = 2, N = 4 ×SU(3) has a 1d subspace c = 241
24

preserving SU(2)2

7 NS = 1, NAS = 3, 19 U(1)2 × SU(3) ∅ a = 23
4 ,

NF = 4, N = 3 ×SU(4) has a 1d subspace c = 25
4

preserving U(1)× SU(2)

×USp(4)

8 NS = 1, NAS = 3, 27 U(1)2 × SU(3) ∅ a = 139
48 ,

NF = 6, N = 2 ×SU(6) has a 1d subspace c = 79
24

preserving U(1)× SU(2)4

Table 12. Cases involving a USp(2N) gauge group with symmetric chiral fields.

8. NAS = 6, NF = 6(3−N), N = 2, 3

9. NAS = 5, NF = 4(4−N), N = 2, 3, 4

10. NAS = 4, NF = 2(7−N), N = 2, 3, 4, 5, 6, 7

Finally, we need to consider the possible superpotentials and perform the Kähler quo-

tient. There are several different cases where this is non-trivial so we shall split them to

two groups. The cases involving symmetric chirals appear in table 12, while those without

appear in tables 13 and 14.

Let us make several comments about the cases in table 12.

• Case 1 is pretty involved. Besides the 1d subspace preserving SO(2N+6), for N 6= 2,

there is also a 1d subspace preserving USp(2x)×SO(2N+6−2x) for x ≤ N−1, where

when the inequality is saturated, one preserves an extra U(1) on this 1d subspace.
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For N = 2, we are missing one operator and so only the case where the inequality is

saturated is possible. The symmetries then are embedded as USp(2x)×SO(2N +6−
2x) ⊂ SU(2x)×SU(2N +6−2x)×U(1) ⊂ SU(10). The U(1) that is preserved on the

x = N − 1 subspace is a combination of the commutant and intrinsic U(1) groups.

The Cartans of USp(2x) × SO(2N + 6 − 2x) cannot be broken on the conformal

manifold.

• In case 2 the preserved SU(2) is the diagonal of SU(2)S and SO(3) ⊂ SU(3)AS . The

U(1) cannot be broken.

• In case 3 the U(1) and a combination of the Cartans of the SU(2) groups is preserved.

• In case 4 the breaking goes as USp(4) ⊂ U(1)× SU(4) ⊂ SU(5). The USp(4), SU(2)

and some combination of the commutant and intrinsic U(1) groups are preserved.

• In case 5 the embedding is SU(2) ⊂ SU(2)×U(1) ⊂ SU(3).

• In case 6 the preserved SU(2) groups are the one rotating the fundamentals and the

SU(2) ⊂ SU(2)×U(1) ⊂ SU(3). The Cartan of the SU(2) rotating the fundamentals

cannot be broken.

• In case 7 the symmetries are embedded as follows USp(4) ⊂ SU(4), SU(2) ⊂ SU(2)×
U(1) ⊂ SU(3). There is also a 1d subspace preserving the SO(4) ⊂ SU(4), SU(2) ⊂
SU(2)×U(1) ⊂ SU(3) symmetry.

• In case 8 the symmetries are embedded as USp(2) × SO(4) ⊂ SU(6) and SU(2) ⊂
SU(2)× U(1) ⊂ SU(3). The preserved U(1) is a combination of the commutant and

intrinsic U(1) groups.

Let us make several comments about the cases in tables 13.

• In case 9 for N ≥ 4 you can preserve the USp(12) ⊂ SU(12), where when the

inequality is saturated an additional combination of the intrinsic U(1) and the Cartans

of SU(3) can be preserved. For N ≥ 3 you can preserve the USp(6)2 ⊂ SU(12) and a

U(1) that is a combination of the commutant and intrinsic U(1) groups. For N ≥ 2

you can preserve the USp(4)3 ⊂ SU(12) and a U(1)2 that are combinations of the

commutant and intrinsic U(1) groups. For N = 3 one can preserve USp(8)×USp(4) ⊂
SU(12) and a U(1)2 that are combinations of the commutant and intrinsic U(1)

groups. The N = 2 case is special in that there are less superpotentials, but they are

all uncharged under the intrinsic U(1). As a result the conformal manifold is smaller

in this case, and an additional U(1) is always preserved with respect to the N > 2

cases. The N = 2 case also has a 1d subspace preserving U(1) × SU(3) × SU(2)2

with the symmetry embedded as SU(3) × SO(4) ⊂ SU(3) × SU(4) ⊂ SU(12) such

that 12 → (3,2,2), with the preserved SU(3) the diagonal of this and the one

acting on the antisymmetrics. The N = 2 case also has a 1d subspace preserving

U(1)×SU(2)×USp(6) with the symmetry embedded as SU(2)×USp(6) ⊂ SO(12) ⊂
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Matter dimM Gfree
F Ggen

F a, c

9 NAS = 3, 56 U(1)× SU(3) ∅ (U(1) for N = 2) a = 8N2+10N−1
16 ,

NF = 12 (47 for ×SU(12) for N > 4 has a 4d subspace c = 4N2+8N−1
8

N = 2) preserving USp(12)

for N = 4 has a 1d subspace

preserving U(1)×USp(12)

for N ≥ 3 has a 1d subspace

preserving U(1)×USp(6)2

for N = 3 has a 1d

subspace preserving U(1)2

×USp(4)×USp(8)

for N ≥ 2 has a 1d subspace

preserving USp(4)3 ×U(1)2

(USp(4)3 ×U(1)3 for N = 2)

10 NAS = 2, N + 6 U(1)× SU(2) SU(2)N+5 a = 26N2+27N−2
48 ,

NF = 2N + 10, (6 for ×SU(2N + 10) (U(1)× SU(2)8 for N = 3) c = 14N2+21N−2
24

N 6= 2 N = 3) for N > 7 has a 2d subspace

preserving USp(2N + 10)

for N = 7 has a 1d

subspace preserving

U(1)×USp(2N + 10)

for N = 4, 5, 6 has a 3d

subspace preserving

two USp subgroups

for N > 3 has a 1d

subspace preserving U(1)

×USp(8)×USp(2N + 2)

for N = 3 has a 1d subspace

preserving U(1)2 ×USp(8)2

Table 13. Cases involving a USp(2N) gauge group with only fundamental and antisymmetric

chiral fields.

SU(12) such that 12 → (2,6), with the preserved SU(2) being the diagonal of this

and the one coming from the breaking SU(3) → SO(3) of the SU(3) acting on the

antisymmetrics.

• Case 10 behaves similarly to case 9. For N ≥ 7 one can always preserve the USp(2N+

10) ⊂ SU(2N + 10), where when the inequality is saturated, one can also preserve an

additional U(1) which is a combination of the Cartan of the SU(2) and the intrinsic

U(1). For N > 2 one can preserve two USp subgroups inside SU(2N+10). In any case

the SU(2)N+5 ⊂ USp(2N + 10) ⊂ SU(2N + 10) is always preserved. For N > 3 one

can preserve USp(8)×USp(2N +2) ⊂ SU(2N +10) and a U(1) that is a combination

of the commutant and intrinsic U(1) groups. For N = 3 the superpotential coupling

the antisymmetrics and two flavors is not charged under the U(1). As a result,

the cubic one coupling the antisymmetrics is marginally irrelevant and there are
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Matter dimM Gfree
F Ggen

F a, c

11 NAS = 6, 21 SU(6) ∅ a = 91
16 ,

N = 3 has 1d subspace c = 49
8

preserving SU(3)

12 NAS = 5, 11 SU(5) ∅ a = 153
16 ,

N = 4 has 1d subspace c = 81
8

preserving SU(2)

13 NAS = 5, 25 U(1)× SU(4) ∅ a = 283
48 ,

NF = 4, ×SU(5) has a 1d subspace c = 157
24

N = 3 preserving U(1)3 ×USp(4)

14 NAS = 4, 5 SU(4) ∅ a = 435
16 ,

N = 7 has a 1d subspace c = 225
8

preserving U(1)2

15 NAS = 4, 8 U(1)× SU(2) SU(2) a = 493
24 ,

NF = 2, N = 6 ×SU(4) has a 1d subspace c = 259
12

preserving U(1)2 × SU(2)

16 NAS = 4, 14 U(1)× SU(4)2 U(1) a = 237
16 ,

NF = 4, has a 1d subspace c = 127
8

N = 5 preserving U(1)2 ×USp(4)

17 NAS = 4, 29 U(1)× SU(4) ∅ a = 10,

NF = 6, N = 4 ×SU(6) has 1d subspace c = 11

preserving U(1)2 ×USp(6)

18 NAS = 4, 53 U(1)× SU(4) ∅ a = 293
48 ,

NF = 8, N = 3 ×SU(8) has 1d subspace c = 167
24

preserving U(1)3 ×USp(8)

Table 14. Cases involving a USp(2N) gauge group with only fundamental and antisymmetric

chiral fields, continued.

less superpotentials, and the U(1) is never broken on the conformal manifold. Here

there is a 1d subspace preserving the USp(8)2 ⊂ U(1) × SU(8)2 ⊂ SU(2N + 10),

and an additional U(1) which is a combination of the Cartan of the SU(2) and the

commutant U(1).

Let us make several comments about the cases in tables 14.

• In case 11 the embedding is SU(3) ⊂ SU(6) such that 6→ 6.

• In case 12 the embedding is SU(2) ⊂ SU(5) such that 5→ 5.

• In case 13 the symmetry is embedded as USp(4) ⊂ SU(4). The U(1)3 are a combi-

nation of the SU(5) Cartans and the intrinsic U(1).

• In case 14 the SU(4) is broken to three U(1)’s and the preserved U(1)2 are two

of these.
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Group Label Dimension Dynkin index Reality

USp(4) (0, 2) 14 7 Real

USp(4) (1, 1) 16 6 Pseudo-real

USp(6) (0, 0, 1) 14′ 5
2 Pseudo-real

USp(8) (0, 0, 1, 0) 48 7 Pseudo-real

USp(8) (0, 0, 0, 1) 42 7 Real

USp(10) (0, 0, 1, 0, 0) 110 27
2 Pseudo-real

Table 15. Various group theory data for USp(2N) representations associated with tensors with

more than two indices. Here the group entry stands for the group in question, and the label entry

stands for the standard Dynkin label of the representation. The remaining entries list the dimension,

Dynkin index (AKA quadratic Casimir) and the reality properties of each representation.

• In case 15 the SU(2) is the one rotating the fundamentals. The SU(4) is broken to

three U(1)’s and the preserved U(1)2 are two of these.

• In case 16 the symmetry is embedded as SO(2) ⊂ SO(3) ⊂ SO(4) ⊂ SO(5) =

USp(4) ⊂ SU(4). The SU(4) is broken to three U(1)’s and the preserved U(1)2 are

two of these.

• In case 17 the symmetry is embedded as USp(6) ⊂ SU(6). The SU(4) is broken to

three U(1)’s and the preserved U(1)2 are two of these.

• In case 18 the symmetry breaking pattern is as follows: USp(8) ⊂ SU(8), U(1)2 ⊂
SU(3) ⊂ U(1)× SU(3) ⊂ SU(4) plus an additional U(1) that is a combination of the

commutant and intrinsic ones.

5.2 Exotic cases

Finally we consider representations which are only possible for low values of N . The full

list of possibilities appears in table 15. As can be seen, there are only a handful of cases

extending up to USp(10).

We first review the list of possible superpotentials. We begin with the case of USp(4).

Here the two additional representations have no analogues for higher N . The 14 has a cubic

symmetric invariant, which proves useful for getting conformal theories. Additionally, it

by definition can be coupled to the symmetric product of two antisymmetrics, but also can

couple to the symmetric product of two symmetrics. Finally, the antisymmetric product

can couple to the symmetric as it is a real representation.

The 16, however, has no cubic symmetric invariant. By definition, it can be coupled

to a fundamental and an antisymmetric, and its symmetric square can be coupled to

a symmetric as it is a pseudo-real representation. Additionally, it can also be coupled

to a fundamental and a symmetric, and its anti-symmetric square can be coupled to an

antisymmetric.

For USp(6), USp(8) and USp(10) we have the thee-index traceless anti-symmetric

representation. This representation has only a limited number of possible cubic superpo-

tentials. The basic ones are the ones coupling it to a fundamental and an antisymmetric,
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Matter dimM Gfree
F Ggen

F a, c

1 G = USp(4) 1 U(1)× SU(2) U(1) a = 19
8 ,

N14 = 1, NAS = 2 c = 9
4

2 G = USp(4) 1 U(1)2 × SU(2) SU(2) a = 39
16 ,

N14 = 1, NAS = 1, c = 19
8

NF = 2

3 G = USp(6) 4 U(1)3 × SU(2)2 ∅ a = 11
2 ,

N14′ = 2, NS = 1, has a 1d subspace c = 23
4

NAS = 1, NF = 2 preserving U(1)× SU(2)

4 G = USp(6) 8 U(1)3 × SU(7) ∅ a = 35
6 ,

N14′ = 1, NS = 1, has a 1d subspace c = 77
12

NAS = 1, NF = 7 preserving SO(7)

5 G = USp(8) 1 U(1)2 ∅ a = 145
16 ,

N48 = 1, NS = 1, c = 73
8

NAS = 1

Table 16. Cases involving a USp(2N) gauge group with ‘exotic’ matter.

and the one coupling its symmetric square to a symmetric, owning to its pseudo-reality.

For rank 4 and above, its antisymmetric square can be coupled to an antisymmetric.

The only remaining representation is the four-index traceless anti-symmetric represen-

tation of USp(8). By definition, it can couple to the symmetric square of the antisymmetric

and to a fundamental and a thee-index anti-symmetric. As it is a real representation, its

anti-symmetric square can be coupled to a symmetric, though that will not be of use here.

We list the exotic cases solving the condition (3.2) in appendix C.2.2. All that is now

left is to find out which cases support a conformal manifold. We list the cases where this

is so, together with some of their properties, in table 16.

Let us make some comments about table 16.

• For case 3 the SU(2) is the one rotating the fundamentals.

• For case 4 there is also a 2d subspace preserving USp(6).

6 G = SO(N)

We shall next consider the case of group G = SO(N).

6.1 Generic cases

Like the previous cases, for generic N , the condition 3.2 can only be satisfied by represen-

tations containing at most two indices. These are the symmetric, antisymmetric (adjoint)

and fundamental. We have summarized the relevant group theory data on these in table 17.

All of these representations are real, so there is no cubic anomaly constraint. For suffi-

ciently low N , some other representations are possible. We shall refer to the cases using

them as exotic cases, and discuss them in the next section. Here we only consider cases
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Symbol Label Dimension Dynkin index Reality

V (1, 0, 0, . . . , 0) N 1 Real

AS (0, 1, 0, . . . , 0) N(N−1)
2 N − 2 Real

S (2, 0, 0, . . . , 0) N(N+1)
2 − 1 N + 2 Real

Table 17. Various group theory data for SO(N) representations associated with tensors with at

most two indices. Here the label entry stands for the standard Dynkin label of the representation,

and the symbol entry provides the shorthand symbol that will be employed for that representation

throughout this article. Additionally, the dimension, Dynkin index and the reality properties of the

representation are listed.

with N > 6. Cases with lower N , are locally identical to same of the previously discussed

groups and so were already considered there, notably, SO(5) = USp(4) and SO(6) = SU(4).

We next wish to discuss the possible superpotential terms one can add. Groups of type

SO do not have a cubic Casimir, with the exception of N = 6, and so there is no cubic

symmetric superpotential term for adjoints. There are, however, cubic superpotentials

coupling the symmetric square of the adjoints to the symmetric, and the anti-symmetric

square of the symmetrics to the adjoint. Also the symmetrics do have a cubic symmetric

superpotential, and as such all conformal cases involve symmetrics. Additionally, the

adjoint and symmetric representations can couple to two fundamentals in a antisymmetric

or symmetric manner, respectively.

We next examine the possible cases. We begin by listing the possible solutions to

conditions (3.2) for generic N :

1. NS = 2, NV = N − 10

2. NS = 1, NAS = 1, NV = N − 6

3. NS = 1, NV = 2N − 8

4. NAS = 2, NV = N − 2

5. NV = 3N − 6

Finally, we need to consider the possible superpotentials and perform the Kähler quo-

tient. The results are summarized in table 18.

Let us make some comments.

• In case 2 the USp(2M) × SO(N − 6 − 2M) preserved symmetries are embedded in

SU(N − 6), and there is a 1d subspace with this breaking for every 0 ≤M ≤ bN−62 c.
On a generic point, these symmetries are further broken to their Cartan subalgebra.

6.2 Exotic cases

Finally we consider representations which are only possible for low values of N . The full

list of possibilities appears in table 19. Most of these are spinors which can be added

up to N = 18. For N < 10, there are also several other representations like three index

antisymmetric ones.
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Matter dimM Gfree
F Ggen

F a, c

1 NS = 2, N − 9 U(1)× SU(2) ∅ a = 13N2−27N−4
96 ,

NV = N − 10 ×SU(N − 10) for N > 10 has a 2d c = 7N2−21N−4
48

subspace preserving

SO(N − 10)

2 NS = 1, NAS = 1, bN−42 c U(1)2× U(1)b
N−6

2 c a = 13N2−21N−2
96 ,

NV = N − 6 SU(N − 6) has a 1d subspace c = 7N2−15N−2
48

preserving USp(2M)

×SO(N − 6− 2M)

for any 0 ≤M ≤ bN−62 c
3 NS = 1, 1 U(1)× SO(2N − 8) a = 7N2−12N−1

48 ,

NV = 2N − 8 SU(2N − 8) c = 4N2−9N−1
24

Table 18. Cases involving an SO(N) gauge group with ‘generic’ matter.

Group Label Dimension Dynkin Reality

SO(7) (0, 0, 1) 8 1 Real

SO(7) (0, 0, 2) 35 10 Real

SO(7) (1, 0, 1) 48 14 Real

SO(8) (0, 0, 1, 0), (0, 0, 0, 1) 8S , 8C 1 Real

SO(8) (0, 0, 2, 0), (0, 0, 0, 2) 35S , 35C 10 Real

SO(8) (0, 0, 1, 1), (1, 0, 0, 1), (1, 0, 1, 0) 56V , 56S , 56C 15 Real

SO(9) (0, 0, 0, 1) 16 2 Real

SO(9) (0, 0, 1, 0) 84 21 Real

SO(10) (0, 0, 0, 1, 0), (0, 0, 0, 0, 1) 16, 16 2 Complex

SO(11) (0, 0, 0, 0, 1) 32 4 Pseudo-real

SO(12) (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1) 32, 32′ 4 Pseudo-real

SO(13) (0, 0, 0, 0, 0, 1) 64 8 Pseudo-real

SO(14) (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1) 64, 64 8 Complex

SO(15) (0, 0, 0, 0, 0, 0, 1) 128 16 Real

SO(16) (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1) 128, 128′ 16 Real

SO(17) (0, 0, 0, 0, 0, 0, 0, 1) 256 32 Real

SO(18) (0, 0, 0, 0, 0, 0, 0, 1, 0), 256, 32 Complex

(0, 0, 0, 0, 0, 0, 0, 0, 1) 256

Table 19. Various group theory date for SO(N) representations associated with spinors and tensors

with more than two indices. Here the group entry stands for the group in question, and the label

entry stands for the standard Dynkin label of the representation. Additionally, the dimension,

Dynkin index and the reality properties of the representation are listed.
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We next review the list of possible superpotentials. First, we consider the spinors. The

behavior of these states vary depending on N with a periodicity of 8, and so the discussion

on these will be separated to various cases. Nevertheless, there are a few properties that are

shared by all cases. First the only possible superpotentials must involve an even number of

spinors, and so we are limited to terms quadratic in the spinors. These can then interact

with either the vector or antisymmetric representation, but not with the symmetric. The

exact manner of interaction depends on N mode 8, which we next explore.

We first consider the case of N odd, where there is a single spinor representation. There

are then superpotentials coupling two spinors to the adjoint and vector representations,

where the symmetry properties of the product varies with N . The spinor representation

is real for N = 7, 9 and pseudo-real for N = 11, 13, where here and in what follows all

numbers are mode 8. As a result, for N = 7, 9 the antisymmetric spinor product can be

coupled to the adjoint while for N = 11, 13, the symmetric spinor product can. Similarly,

the vector coupling is symmetric for N = 9, 11 and antisymmetric for N = 7, 13.

Next we turn to the case of even N , where there are two spinor representations. If

N = 4n+2, then these are complex representations, and the product of the spinor with the

conjugate spinor couples with the adjoint. The square of either of them couples to the vec-

tor, where it is symmetric for N = 10 and antisymmetric for N = 14. For N = 4n there are

two self-conjugate spinor representations where the product of one with the other couples

to the vector. The square of either of them couples to the adjoint, where it is symmetric

for N = 12 and antisymmetric for N = 8, as these have different reality conditions.

For SO(7), SO(8) and SO(9) we also have the three-index anti-symmetric represen-

tation, and for SO(8) also the representations related to it via triality. For N = 8, 9 it

does not have a symmetric cubic invariant, which combined with its high contribution to

the Beta function, impedes a Kähler quotient so we need not consider them any further.

However, for SO(7), there is a symmetric cubic invariant, making this representation vi-

able. Additionally, it can couple to the symmetric square of both the adjoint and spinor

representations, and its antisymmetric square can couple to the adjoint representation.

For SO(7) we also have the representation of dimension 48. However, it does not

posses a cubic symmetric invariant, which together with its high Dynkin index, is sufficient

to rule it out for our porpuses, redeeming us from the need to consider it further. The only

other representation is the self-dual and anti self-dual four-index anti-symmetric represen-

tations of SO(8). These are related by triality to the symmetric of SO(8), the 35v, and so

the possible superpotentials can be generated by applying the triality transformation on

these cases.

We list all the cases solving the condition (3.2) in appendix C.3.2. All that is now

left is to find out which cases support a conformal manifold. As there are a lot of cases,

we have split the results across multiple tables. Specifically, table 20 shows the cases with

G = SO(7), SO(8), table 21 shows the cases with G = SO(9) and some of the G = SO(10)

cases, and table 22 shows the remaining cases with G = SO(10).

Let us make some comments about the cases in table 20.

• In case 1 the SU(2)5 is embedded in SU(10). Its commutant is U(1)4, which combines

with the Cartan of SU(5) to give four of the preserved U(1) groups. The final one is

the intrinsic U(1) in the theory, which is also the one preserved generically.
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Matter dimM Gfree
F Ggen

F a, c

1 G = SO(7) 102 U(1)× SU(5) U(1) a = 19
3 ,

N8 = 10, NV = 5 ×SU(10) has a 1d subspace c = 89
12

preserving U(1)5 × SU(2)5

2 G = SO(7), NS = 1 1 U(1)2 × SU(2) U(1)× SU(2)2 a = 65
12 ,

N8 = 2, NV = 4 ×SU(4) c = 67
12

3 G = SO(7), NS = 1 1 U(1)2 × SU(3)2 SU(2) a = 87
16 ,

N8 = 3, NV = 3 c = 45
8

4 G = SO(7), NS = 1 1 U(1)2 × SU(2) U(1)2 × SU(2)2 a = 131
24 ,

N8 = 4, NV = 2 ×SU(4) c = 17
3

5 G = SO(7), NAS = 1 1 U(1) ∅ a = 245
48 ,

N35 = 1 c = 119
24

6 G = SO(7), N35 = 1 2 U(1)2 × SU(4) U(1)2 a = 263
48 ,

N8 = 4, NV = 1 has a 1d subspace c = 137
24

preserving U(1)2 × SU(2)

7 G = SO(7), N35 = 1 1 U(1)× SU(5) USp(4) a = 11
2 ,

N8 = 5 c = 23
4

8 G = SO(8), N8S
= 6 111 U(1)2 × SU(6)3 U(1)2 a = 33

4 ,

N8C
= 6, NV = 6 has a 1d subspace c = 19

2

preserving U(1)4 × SU(3)2

9 G = SO(8), 1 U(1)2 × SU(2) SU(2) a = 331
48 ,

NS = 1, NAS = 1, c = 163
24

N8S
= 2

10 G = SO(8), NS = 1, 4 U(1)3 × SU(2)2 U(1) a = 117
16 ,

N8S
= 2, N8C

= 2, ×SU(4) has a 1d subspace c = 61
8

NV = 4 preserving U(1)× SU(2)2

11 G = SO(8), NS = 1, 1 U(1)3 × SU(6) U(1)2 ×USp(4) a = 117
16 ,

N8S
= 1, N8C

= 1, c = 61
8

NV = 6

Table 20. Cases involving an SO(7) or SO(8) gauge group with ‘exotic’ matter.

• In case 2 one of the SU(2) is the one rotating the spinors, while the other is embedded

in SU(4) as SO(3) × U(1) ⊂ SU(4). The U(1) is a combination of the intrinsic U(1)

groups and the commutant of the SU(2) in SU(4).

• In case 3 the SU(2) is embedded as SO(3) ⊂ SU(3), where the SU(3) is the diago-

nal one.

• In case 4 the SU(2)2 is embedded in SU(4), where its commutant is U(1). This U(1)

combines with the Cartan of the SU(2) to give one of the preserved U(1) groups,

while the other is one of the intrinsic U(1) groups in the theory.

• In case 6 the preserved symmetry is embedded as SO(2) × USp(2) ⊂ SU(4), while

the remaining U(1) is a combination of the commutant and one of the intrinsic
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U(1) groups. This combination can be further broken while also breaking USp(2)

to its Cartan.

• In case 7 the USp(4) is embedded as SO(5) ⊂ SU(5).

• In case 8 the SU(3)2 symmetry is embedded in the diagonal SU(6) group of the SU(6)3

part. Its commutant is U(1) for each SU(6) of which the diagonal combination

is broken. Additionally, the two intrinsic U(1) groups are preserved on the entire

conformal manifold.

• In case 10 the SU(2)2 is the diagonal of the intrinsic SU(2)2 = SO(4) and SO(4) ⊂
SU(4).

• In case 11 the USp(4) is embedded in SU(6) as SO(5) ⊂ SU(5) ⊂ SU(6). The

additional preserved U(1) group is the one acting on the two spinors with opposite

charges, and some combination of the intrinsic U(1) groups and the commutant of

SO(5) in SU(6).

Let us make some comments about the cases in table 21.

• In case 12 the U(1) part of the global symmetry at the free point is always preserved

on the conformal manifold. In the 1d subspace preserving an additional U(1)×SU(3)

the symmetry is embedded as follows. Consider the U(1) × SU(6) subgroup of both

SU(7) groups. Then the SU(3) is embedded in both SU(6) groups such that 6SU(6)1 →
6SU(6)2 → 6SU(3), and the U(1) is a combination of the two commutant U(1) groups

in the SU(7)groups.

• In case 13 the U(1) acting only on the vector and spinor is preserved.

• In case 14 one of the SU(2) groups is the diagonal combination of SO(4) ⊂ SU(4)

and the other is embedded as SO(3) ⊂ SU(3).

• In case 15 the symmetry is embedded as SO(3) × SO(3) ⊂ SO(6) ⊂ SU(6) with one

also being locked on the SO(3) ⊂ SU(3). The SO(3) not locked on the subgroup of

the SU(3) group cannot be broken on the conformal manifold.

• In case 16 the SO(7) is a subgroup of SU(8) such that 8→ 7 + 1, and the U(1) is a

combination of the intrinsic and commutant U(1) groups.

• In case 17 the SU(3) is the diagonal one in the embedding SU(3) ⊂ SU(8) such that

8→ 8. There is also a 1d subspace preserving U(1)8, where the U(1)7 factor is some

diagonal combination of the Cartans of the two SU(8) groups.

• In case 18 the symmetry is embedded as follows. Consider the U(1) × SU(6) and

U(1)×SU(2)×SU(6) subgroups of SU(7) and SU(8) respectively. Then the SU(3) is

embedded in the SU(6) groups as 6SU(6) → 6SU(3) for both groups, and the U(1)3 is

some combination of the abelian part of the free point global symmetry, the Cartan of

the SU(2) in SU(8) and the U(1) commutants in the non-abelian symmetries. There
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Matter dimM Gfree
F Ggen

F a, c

12 G = SO(9), 100 U(1)× SU(7)2 U(1) a = 499
48 ,

N16 = 7, NV = 7 has a 1d subspace c = 283
24

preserving U(1)2 × SU(3)

13 G = SO(9), 1 U(1)3 U(1) a = 143
16 ,

NS = 1, NAS = 1, c = 71
8

N16 = 1, NV = 1

14 G = SO(9), NS = 1, 10 U(1)2 × SU(3) ∅ a = 113
12 ,

N16 = 3, NV = 4 ×SU(4) has a 1d subspace c = 59
6

preserving SU(2)2

15 G = SO(9), NS = 1, 3 U(1)2 × SU(2) SU(2) a = 227
24 ,

N16 = 2, NV = 6 ×SU(6) has a 1d subspace c = 119
12

preserving SU(2)2

16 G = SO(9), NS = 1, 1 U(1)2 × SU(8) U(1)× SO(7) a = 19
2 ,

N16 = 1, NV = 8 c = 10

17 G = SO(10), 162 U(1)× SU(8) U(1) a = 613
48 ,

N16 = 8, NV = 8 ×SU(8) has a 1d subspace c = 343
24

preserving U(1)× SU(3)

18 G = SO(10), N16 = 7, 100 U(1)2 × SU(7) U(1)2 a = 613
48 ,

N16 = 1, NV = 8 ×SU(8) has a 1d subspace c = 343
24

preserving U(1)3 × SU(3)

19 G = SO(10), N16 = 6, 90 U(1)2 × SU(2) U(1) a = 613
48 ,

N16 = 2, NV = 8 ×SU(6) has a 1d subspace c = 343
24

×SU(8) preserving U(1)3 × SU(3)

20 G = SO(10), N16 = 5, 72 U(1)2 × SU(3) U(1) a = 613
48 ,

N16 = 3, NV = 8 ×SU(5) has a 1d subspace c = 343
24

×SU(8) preserving U(1)8

21 G = SO(10), N16 = 4, 66 U(1)2 × SU(4)2 U(1) a = 613
48 ,

N16 = 4, NV = 8 ×SU(8) has a 1d subspace c = 343
24

preserving U(1)4 × SU(2)4

22 G = SO(10), 1 U(1)3 U(1) a = 67
6 ,

NS = 1, NAS = 1, c = 133
12

N16 = 1, N16 = 1

23 G = SO(10), 1 U(1)3 × SU(2) U(1) a = 45
4 ,

NS = 1, NAS = 1, c = 45
4

N16 = 1, NV = 2

Table 21. Cases involving an SO(9) or SO(10) gauge group with ‘exotic’ matter.
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are no superpotentials charged under the U(1) group acting on both spinors with

the same charge, and it is never broken on the conformal manifold. Another U(1)

in the U(1)3 part has 21 superpotential terms charged under it all with the same

sign, and as a result, it is also never broken and the charged superpotential terms are

marginally irrelevant. There is also a 1d subspace preserving U(1)8, where the U(1)7

factor is some combination of the Cartans of the SU(8) and SU(7), as well as one of

the U(1) groups.

• Case 19 behaves similarly to case 18. The SU(3) is again embedded inside the SU(6)

and the SU(6) ⊂ SU(8) such that 6SU(6) → 6SU(3), and the U(1)3 is some combination

of the abelian part of the free point global symmetry, the Cartan of the commutant

and intrinsic SU(2) groups and the U(1) commutant in the SU(8). Here only the

symmetry acting on both spinors with the same charge is preserved. There is also

a 1d subspace preserving U(1)8, where the U(1)7 factor is some combination of the

Cartans of the SU(8), SU(6) and SU(2), as well as one of the U(1) groups.

• For case 20, there is a 1d subspace preserving U(1)8, where the U(1)7 factor is some

combination of the Cartans of the SU(8), SU(5), SU(3), and one of the U(1) groups.

Again, the symmetry acting on both spinors with the same charge cannot be broken.

• In case 21 the breaking is as follows. Both SU(4) groups are broken as SU(4) → U(1)×
SU(2)2, and the SU(8) group is broken as SU(8)→ U(1)× SU(4)2 → U(1)× SO(4)2.

The 1d subspace is then given by locking the SU(2)4 ⊂ SU(8) on the SU(2)4 ⊂ SU(4)2

and also locking the U(1) commutant in SU(8) with the U(1) acting on the spinors

with opposite charges. Like in the other cases, the symmetry acting on both spinors

with the same charge cannot be broken. There is also a 1d subspace preserving

U(1)8, where the U(1)7 factor is some combination of the Cartans of the SU(8), the

two SU(4) groups and one of the U(1) groups.

• In case 22 the symmetry acting on the spinors with opposite charges cannot be broken.

• In case 23 the preserved U(1) is the diagonal combination of the Cartan of the SU(2)

and the U(1) acting only on the spinor and vectors.

Let us make some comments about the cases in table 22.

• In case 24 the breaking is SU(4)Spinor → U(1) × SU(2)2, SU(4)V → SO(4) with

the SU(2)2 ⊂ SU(4)Spinor locked on the SO(4) ⊂ SU(4)V . The U(1) acting on the

spinor and vector only cannot be broken on the conformal manifold. There is also

a 1d subspace preserving U(1)4, where the U(1)3 factor is some combination of the

Cartans of the two SU(4) groups.

• In case 25 there is a 1d subspace preserving U(1)4, where the U(1)3 factor is some

combination of the Cartans of the SU(4), SU(3) and one of the U(1) groups. The U(1)

acting on the spinor and vector only, as well as a combination of the U(1) acting on

the spinors and a Cartan of the SU(4) cannot be broken on the conformal manifold.
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Matter dimM Gfree
F Ggen

F a, c

24 G = SO(10), 10 U(1)2 × SU(4)2 U(1) a = 563
48 ,

NS = 1, has a 1d subspace c = 293
24

N16 = 4, NV = 4 preserving U(1)2 × SU(2)2

25 G = SO(10), 2 U(1)3 × SU(3) U(1)2 a = 563
48 ,

NS = 1, N16 = 3, ×SU(4) has a 1d subspace c = 293
24

N16 = 1, NV = 4 preserving U(1)4

26 G = SO(10), 2 U(1)3 × SU(2)2 U(1) a = 563
48 ,

NS = 1, N16 = 2, ×SU(4) has a 1d subspace c = 293
24

N16 = 2, NV = 4 preserving U(1)4

27 G = SO(10), 13 U(1)2 × SU(3) ∅ a = 189
16 ,

NS = 1, ×SU(6) has a 1d subspace c = 99
8

N16 = 3, NV = 6 preserving U(1)× SU(2)

also has a 2d subspace

preserving a

different SU(2)

28 G = SO(10), 6 U(1)3 × SU(2) U(1) a = 189
16 ,

NS = 1, N16 = 2, ×SU(6) has a 1d subspace c = 99
8

N16 = 1, NV = 6 preserving U(1)× SU(2)

29 G = SO(10), 3 U(1)2 × SU(2) USp(4) a = 571
48 ,

NS = 1, ×SU(8) has a 1d subspace c = 301
24

N16 = 2, NV = 8 preserving SU(2)×USp(4)

30 G = SO(10), 1 U(1)3 × SU(8) U(1)2 × SU(4) a = 571
48 ,

NS = 1, N16 = 1, c = 301
24

N16 = 1, NV = 8

31 G = SO(10), 1 U(1)2 × SU(10) U(1)× SO(9) a = 575
48 ,

NS = 1, N16 = 1, c = 305
24

NV = 10

32 G = SO(11), 2 U(1)3 ∅ a = 329
24 ,

NS = 1, NAS = 1, c = 41
3

N32 = 1, NV = 1

33 G = SO(12), 2 U(1)3 × SU(2) U(1) a = 793
48 ,

NS = 1, NAS = 1, has a 1d subspace c = 397
24

N32 = 1, NV = 2 preserving SU(2)

Table 22. Cases involving an SO(10), SO(11) or SO(12) gauge group with ‘exotic’ matter.

• In case 26 the U(1)4 consists of the U(1) acting on the spinor and vector only, which

is never broken, and the U(1)3 factor, which is some combination of the Cartans of

the SU(4), the two SU(2) groups, and the other U(1).

• In case 27 the symmetries are embedded as follows: first we reduce the SU(3) to

SU(2) × U(1) for the 1d subspace and to SO(3) for the 2d subspace. The SU(6) is

then broken to U(1)2×SU(2) for the 1d subspace, embedded such that 6→ 3+2+1,

and U(1)× SU(2) for the 2d subspace, embedded such that 6→ 5 + 1. We then lock
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the two SU(2) groups to the diagonal. The preserved abelian symmetry on the 1d

subspace is a combination of the commutant and intrinsic U(1) groups.

• In case 28 the breaking is as follows: first we take SU(6)→ SO(6)→ SO(3)× SO(3)

then we further break one SO(3) to its SO(2) subgroup, which is the U(1) that is

preserved generically, and the other SO(3) is broken to the diagonal group with the

intrinsic SU(2), becoming the SU(2) that remains at a special point on the conformal

manifold.

• In case 29 the breaking is as follows: we take SU(8) → SO(8) → SO(5) × SO(3),

where the SO(5) is the group preserved generically. The special preserved SU(2) is

the diagonal of the SO(3) and the intrinsic SU(2).

• In case 30 the breaking is as follows: SU(8) → SU(6) × SU(2) × U(1) → SO(6) ×
SO(2)×U(1), where the SU(4) is the SO(6) and the two U(1) groups are combinations

of the commutant and intrinsic U(1) groups.

• In case 31 the breaking is as follows: SU(10) → SO(10) → SO(9). The U(1) is

a combination of the commutant of SO(9) in SU(10) and one of the intrinsic U(1)

groups.

• In case 33 the generically preserved U(1) is the Cartan of the SU(2) group.

7 G = E6, E7, E8, F4, G2

Finally we consider the case of exceptional groups. The list of possible representations

consistent with condition (3.2) appears in table 23. All of these groups have no cubic

Casimir, and as a result there is no cubic symmetric invariant using adjoints. The only

cases then with a conformal manifold when adjoint matter is involved are the N = 2 ones,

so we only consider here cases without adjoints. The properties of the conformal theories

are summarized in table 24.

E8. Here the only available representation is the adjoint and so the only case consistent

with condition (3.2) is the N = 4 one.

E7. Here the only other representation is the fundamental, which do not posses a cubic

invariant. As a result the only possible conformal cases are the N = 2 and the N = 4 ones.

For convenience we shall write the possible purely N = 1 solutions to (3.2):

1. N133 = 2, N56 = 3

2. N56 = 9

E6. Here the only other representation is the fundamental and its complex conjugate.

These posses a symmetric cubic invariant which allows for conformal theories made only

from these representations. In fact, as there is no cubic Casimir, there is no constraint in

having any combination of these. As a result, the possible cases are:

1. N27 = N27 = 6
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Group Label Dimension Dynkin index Reality

G2 (1, 0) 7 1 Real

G2 (0, 1) 14 4 Real

G2 (2, 0) 27 9 Real

F4 (0, 0, 0, 1) 26 3 Real

F4 (1, 0, 0, 0) 52 9 Real

E6 (1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1) 27, 27 3 Complex

E6 (0, 1, 0, 0, 0, 0) 78 12 Real

E7 (0, 0, 0, 0, 0, 0, 1) 56 6 Pseudo-real

E7 (1, 0, 0, 0, 0, 0, 0) 133 18 Real

E8 (0, 0, 0, 0, 0, 0, 0, 1) 248 30 Real

Table 23. Various group theory data for representations of the exceptional groups. Here the group

entry stands for the group in question, and the label entry stands for the standard Dynkin label

of the representation. Additionally, the dimension, Dynkin index and the reality properties of the

representation are listed.

2. N27 = 7, N27 = 5

3. N27 = 8, N27 = 4

4. N27 = 9, N27 = 3

5. N27 = 10, N27 = 2

6. N27 = 11, N27 = 1

7. N27 = 12

For convenience we shall also write the possible purely N = 1 solutions to (3.2) which

are not conformal:

1. N78 = 2, N27 = N27 = 2

2. N78 = 2, N27 = 3, N27 = 1

3. N78 = 2, N27 = 4

4. N78 = 1, N27 = 5, N27 = 3

5. N78 = 1, N27 = 6, N27 = 2

6. N78 = 1, N27 = 7, N27 = 1

7. N78 = 1, N27 = 8
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F4. This case is similar to the E6 one in that the only other representation is the funda-

mental and it possess a symmetric cubic invariant. Unlike the previous case, though, it is

real. This allows for conformal theories made only from the fundamental representation.

The possible purely N = 1 solutions to (3.2) are:

1. N52 = 2, N26 = 3

2. N26 = 9

From these, only the last is conformal.

G2. In this case we have two possible representations besides the adjoints, these are the 7

dimensional fundamental representation and the 27 dimensional symmetric representation.

The former has a cubic antisymmetric invariant, while the latter has two cubic symmetric

invariants. These allows us to build conformal theories when only these representations

are used. The possible purely N = 1 solutions to (3.2) are:

1. N14 = 2, N7 = 4

2. N7 = 12

3. N27 = 1, N7 = 3

From these, only the last two are conformal.

Let us make several comments about specific cases,

• In all these cases the superpotentials are in three index symmetric or antisymmetric

representations. For E6 and F4 we use the symmetric cases.

• Here the basic preserved subgroups are embedded as: U(1)2 ⊂ SU(3) as the Cartan,

SU(2) ⊂ SU(5) such that 5 → 5, SU(3) ⊂ SU(6) such that 6 → 6, SU(3) ⊂ SU(8)

such that 8 → 8 and SU(3) × SU(3) ⊂ SU(9) such that 9 → (3,3). In the other

cases these are used as subgroups. For G2 the SU(3)4 are just the four independent

SU(3) groups in SU(12) for the first case, and the SU(2) in the last case is embedded

in SU(3) as 3→ 3.

8 Extended supersymmetry

Let us now discuss here conformal manifolds with weakly coupled loci with extended su-

persymmetry. The possible conformal Lagrangians, even with non-simple gauge groups,

with N > 1 supersymmetry in four dimensions were analyzed in [31] and here we add

the analysis of the conformal manifold for the cases with a simple gauge group. All such

models have a 1d subspace of the conformal manifold which preserves the full extended

supersymmetry of the free point. Some of them have additional directions which preserve

only N = 1 supersymmetry. For the N = 4 cases these are the well studied β and γ

deformations, see e.g. [3, 4, 78].
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Matter dimM Gfree
F Ggen

F a, c

1 G = E6 41 U(1)× SU(6)2 ∅ a = 171
8 ,

N27 = N27 = 6 has a 1d subspace c = 93
4

preserving SU(3)2

2 G = E6, N27 = 7 46 U(1)× SU(5) ∅ a = 171
8 ,

N27 = 5 ×SU(7) has a 1d subspace c = 93
4

preserving SU(2)× SU(3)

3 G = E6, N27 = 8 61 U(1)× SU(4) ∅ a = 171
8 ,

N27 = 4 ×SU(8) has a 1d subspace c = 93
4

preserving U(1)2 × SU(3)

4 G = E6, N27 = 9 86 U(1)× SU(3) ∅ a = 171
8 ,

N27 = 3 ×SU(9) has a 1d subspace c = 93
4

preserving U(1)2 × SU(3)2

5 G = E6, N27 = 10 121 U(1)× SU(2) ∅ a = 171
8 ,

N27 = 2 ×SU(10) has a 1d subspace c = 93
4

preserving SU(3)2

6 G = E6, N27 = 11 166 U(1)× SU(11) ∅ a = 171
8 ,

N27 = 1 has a 1d subspace c = 93
4

preserving SU(3)2

7 G = E6, N27 = 12 221 SU(12) ∅ a = 171
8 ,

has a 1d subspace c = 93
4

preserving U(1)2 × SU(3)2

8 G = F4, N26 = 9 85 SU(9) ∅ a = 117
8 ,

has a 1d subspace c = 65
4

preserving SU(3)2

9 G = G2, N7 = 12 77 SU(12) ∅ a = 35
8 ,

has a 1d subspace c = 21
4

preserving SU(3)4

10 G = G2, N27 = 1 3 U(1)× SU(3) SU(2) a = 29
8 ,

N7 = 3 has a 2d subspace c = 15
4

preserving SU(3)

Table 24. Cases involving an exceptional gauge group.

8.1 Special unitary groups

Let us first discuss N = 4 SU(N) gauge theories. This case was widely studied in the past.

The theory has three fields in the adjoint representation. For N > 2 we have marginal

operators in the 10 + 1 of the global SU(3) symmetry group. For N = 2 only the singlet is

there. The dimension of the conformal manifold is three for N > 2 and is one for N = 2.

On the direction parameterized by the singlet, N = 4 supersymmetry is preserved and

in particular the SU(3) symmetry. Along another direction, the so called β deformation,

a U(1) × U(1) global symmetry can be preserved. On a generic point of the conformal

manifold all the global symmetry is broken.
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In tables 25 and 26 we write all the purely N = 2 cases with a single SU(N) gauge

symmetry that solve (3.1) and (3.2). All cases have one adjoint chiral field coming from

the vector multiplet and we do not write it in the table. In addition, all the theories have

a 1d subspace preserving N = 2 supersymmetry, some cases have additional 1d subspaces

preserving N = 1 supersymmetry and we note it explicitly.

Let us make several comments about specific cases,

• In case 2 the generically preserved SU(2N), for N > 3, is the diagonal of the two

intrinsic SU(2N) groups. This space is also the N = 2 preserving one. This space

also exists for N = 3, but then there is also a 1d subspace preserving N = 1 and

SU(3)4 which is embedded as SU(3)2 ×U(1) ⊂ SU(6) in both SU(6) groups.

• The conformal manifold in case 3, being an N = 2 superconformal gauge theory with

a simple gauge group, has an N = 2 preserving 1d subspace. The preserved symmetry

on this subspace is U(1)3×SU(N+2), where the SU(N+2) is the diagonal of the two

intrinsic SU(N+2) groups. This group is then broken as SU(N+2)→ USp(N+2)→
SU(2)

N+2
2 when N is even, and as SU(N+2)→ U(1)×USp(N+1)→ U(1)×SU(2)

N+1
2

when N is odd in general. For even N > 6 we have an additional 1d subspace

preserving N = 1 and U(1) × USp(N + 2)2, where both USp(N + 2) groups are

embedded as USp(N + 2) ⊂ SU(N + 2) in both SU(N + 2) groups. For N = 6 we

find a similar 1d subspace preserving U(1)2 ×USp(8)2 instead.

• In case 4 there is an N = 2 preserving 1d subspace, on which an U(1)2×SU(2)×SU(6)

global symmetry is preserved. The SU(6) here is the diagonal of the two intrinsic

SU(6) groups.

• In case 5 the N = 2 preserving subspace preserves a U(1)3 × SU(2) × SU(4) global

symmetry, where both SU(4) and SU(2) groups are the diagonal of the two intrinsic

SU(4) and SU(2) groups, respectively. Has an additional 1d subspace preserving N =

1 and U(1)2×USp(4)2, where both USp(4) groups are embedded as USp(4) ⊂ SU(4)

in both SU(4) groups. For N = 5 we have another N = 1 1d subspace preserving

U(1)3×SU(2)2, where we break both SU(4)→ SO(3)×U(1), and identify the diagonal

SU(2) of SU(2)AS and SO(3)F and the same for the conjugates.

• In case 6 the 1d subspace preserving N = 2 supersymmetry also preserves a U(1)2×
USp(4) × SU(4) global symmetry, where the SU(4) is the diagonal of SU(4)F and

SU(4)F , while we break SU(4)AS → USp(4). This case also has an additional 1d

subspace preserving N = 1 and U(1)2×SU(2)×USp(4)2, where both USp(4) groups

are embedded as USp(4) ⊂ SU(4) in SU(4)F and SU(4)F , while we break SU(4)AS →
SU(2)2 ×U(1)→ SU(2)×U(1)2.

• In case 7 the N = 2 preserving 1d subspace also preserves a U(1)3×SU(N−2) global

symmetry, where the SU(N−2) is the diagonal of the two intrinsic SU(N−2) groups.

Also has an additional 1d subspace preserving N = 1 and U(1)× SO(N − 2)2, where

both SO(N − 2) groups are embedded as SO(N − 2) ⊂ SU(N − 2) in both intrinsic

SU(N − 2) groups.
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Matter dimM Gfree
F Ggen

F a, c

1 G = SU(2), 1 U(1)× U(1)× SO(8) a = 23
24 ,

NF = 8 SU(8) c = 7
6

2 G = SU(N), 1 U(1)2× U(1)2 × SU(2N) a = 7N2−5
24 ,

NF = NF = 2N, (7 for SU(2N)2 (∅ for N = 3) c = 2N2−1
6

N > 2 N = 3) for N = 3 has an N = 1 1d

subspace preserving SU(3)4

3 G = SU(N),
⌊
N+4
2

⌋
U(1)4× U(1)1+(Nmod 2) a = 13N2+3N−10

48 ,

NAS = NAS = 1, (8, 6 for SU(N + 2)2 ×SU(2)b
N+2

2 c c = 7N2+3N−4
24

NF = NF = N + 2 N = 5, 6) (U(1), SU(2)4

N > 4 for N = 5, 6)

for even N > 6 has an N = 1

1d subspace preserving

U(1)×USp(N + 2)2

for N = 6 has an N = 1 1d

subspace preserving

U(1)2 ×USp(8)2

4 G = SU(4), 22 U(1)3× ∅ a = 35
8 ,

NAS = 2, SU(2)× c = 5

NF = NF = 6 SU(6)2

5 G = SU(N), 7 U(1)4× U(1)2 a = 6N2+3N−5
24 ,

NAS = NAS = 2, (29, 14 for SU(2)2× (∅,U(1) for N = 5, 6) c = 3N2+3N−2
12

NF = NF = 4 N = 5, 6) SU(4)2 has an N = 1 1d

N > 4 subspace preserving

U(1)2 ×USp(4)2

for N = 5 also has an N = 1

1d subspace preserving

U(1)3 × SU(2)2

6 G = SU(4), 23 U(1)3× U(1)2 a = 103
24 ,

NAS = 4, SU(4)3 has an N = 1 1d c = 29
6

NF = NF = 4 subspace preserving

U(1)2 × SU(2)×USp(4)2

7 G = SU(N), N − 1 U(1)4× U(1) (∅ for N = 3) a = 13N2−3N−10
48 ,

NS = NS = 1, (3 for SU(N − 2)2 has an N = 1 1d c = 7N2−3N−4
24

NF = NF = N − 2 N = 3) subspace preserving

U(1)× SO(N − 2)2

Table 25. Cases involving an SU(N) gauge group with extended supersymmetry. All cases also

have an adjoint chiral field in addition to the matter written in the table.
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Matter dimM Gfree
F Ggen

F a, c

8 G = SU(N), 2 U(1)4 U(1)2 (∅ for N = 6) a = 6N2−5
24 ,

NS = NS = 1, (3 for (U(1)3× c = 3N2−2
12

NAS = NAS = 1 N = 6) SU(2)

for N = 4)

9 G = SU(4), 2 U(1)3× U(1)×USp(4)× SU(2) a = 101
24 ,

NAS = 6, SU(6)× has an N = 1 1d c = 14
3

NF = NF = 2 SU(2)2 subspace preserving

U(1)×USp(4)× SU(2)2

10 G = SU(4), 1 U(1)× U(1)×USp(8) a = 33
8 ,

NAS = 8 SU(8) c = 9
2

11 G = SU(5), 4 U(1)4× U(1) a = 155
24 ,

NAS = NAS = 3, SU(3)2 c = 83
12

NF = NF = 1

12 G = SU(6), 12 U(1)2× ∅ a = 55
6 ,

NAS = NAS = 3 SU(3)2 has an N = 1 1d c = 115
12

subspace preserving

U(1)4

13 G = SU(6), 1 U(1)3× U(1)2 × SU(9) a = 239
24 ,

N20 = 1, SU(9)2 c = 67
6

NF = NF = 9

14 G = SU(6), 7 U(1)5× ∅ a = 115
12 ,

N20 = 1, SU(5)2 has an N = 1 1d subspace c = 125
12

NAS = NAS = 1, preserving U(1)2 ×USp(4)2

NF = NF = 5

15 G = SU(6), 8 U(1)5× ∅ a = 221
24 ,

N20 = 1, SU(2)2 c = 29
3

NAS = NAS = 2,

NF = NF = 1,

Table 26. Cases involving an SU(N) gauge group with extended supersymmetry, continued.

• In case 8 the N = 2 preserving 1d subspace also preserves a U(1)3 global symmetry

for N 6= 4, which is enhanced to U(1)2 × SU(2) for N = 4.

• In case 9 the N = 2 preserving 1d subspace also preserves a U(1)2×USp(6)× SU(2)

global symmetry, where the SU(2) is the diagonal of the two intrinsic SU(2) groups

while we break SU(6)→ USp(6). The generally preserved USp(4) group is embedded

as USp(4)×U(1) ⊂ USp(6). In the N = 1 1d subspace we break SU(6)→ USp(4)×
U(1).

• In case 10 one breaks SU(8)→ USp(8).

• In case 11 the N = 2 preserving 1d subspace also preserves a U(1)3 × SU(3) global

symmetry, where the SU(3) is the diagonal of the two intrinsic SU(3) groups.
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Matter dimM Gfree
F Ggen

F a, c

16 G = SU(6), 2 U(1)5 U(1) a = 53
6 ,

N20 = 1, c = 107
12

NS = NS = 1,

NF = NF = 1

17 G = SU(6), 1 U(1)3 × SU(2) U(1)3 × SU(6) a = 77
8 ,

N20 = 2, ×SU(6)2 c = 21
2

NF = NF = 6

18 G = SU(6), 7 U(1)5 × SU(2)3 ∅ a = 37
4 ,

N20 = 2, has an N = 1 1d subspace c = 39
4

NAS = NAS = 1, preserving U(1)2 × SU(2)2

NF = NF = 2

19 G = SU(6), 1 U(1)3 × SU(3)3 U(1)2 × SU(2)× SU(3) a = 223
24 ,

N20 = 3, c = 59
6

NF = NF = 3

20 G = SU(6), 1 U(1)× SU(4) U(1)× SU(2)2 a = 215
24 ,

N20 = 4 c = 55
6

21 G = SU(7), 1 U(1)4 × SU(4)2 U(1)3 × SU(4) a = 101
8 ,

N35 = N35 = 1, c = 53
4

NF = NF = 4

22 G = SU(8), 1 U(1)4 U(1)3 a = 379
24 ,

N56 = N56 = 1, c = 95
6

NF = NF = 1

Table 27. Cases involving an SU(N) gauge group with extended supersymmetry, continued.

• In case 12 the N = 2 preserving 1d subspace also preserves a U(1)2 × SU(3) global

symmetry, where the SU(3) is the diagonal of the two intrinsic SU(3) groups.

• In case 13 the SU(9) is the diagonal of the two intrinsic SU(9) groups.

• In case 14 the N = 2 preserving 1d subspace also preserves a U(1)3 × SU(5) global

symmetry, where in the SU(5) is the diagonal of the two intrinsic SU(5) groups. In

the N = 1 1d subspace we break both SU(5)→ USp(4)×U(1).

• In case 15 the N = 2 preserving 1d subspace also preserves a U(1)3 × SU(2) global

symmetry, where the SU(2) is the diagonal of the two intrinsic SU(2) groups.

• In case 16 the N = 2 preserving 1d subspace also preserves a U(1)3 global symmetry.

• In case 17 the SU(6) is the diagonal of the two intrinsic SU(6) groups. In addition

one breaks SU(2)→ SO(2).

• In case 18 the N = 2 preserving 1d subspace also preserves a U(1)4 × SU(2) global

symmetry, where the SU(2) is the diagonal of the intrinsic SU(2)F and SU(2)F groups.

In addition one breaks SU(2)20 → SO(2) in both subspaces.
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Matter dimM Gfree
F Ggen

F a, c

1 G = USp(2N), 1 U(1)× U(1) a = N(14N+9)
24 ,

Nf = 4N + 4 SU(4N + 4) ×SO(4N + 4) c = N(4N+3)
6

2 G = USp(2N), 31 U(1)2 × SU(2) ∅ a = 12N2+12N−1
24 ,

NAS = 2, Nf = 8 (27 for ×SU(8) for N > 3 has an N = 1 c = 6N2+9N−1
12

N = 2) 2d subspace preserving

U(1)×USp(8)

for N = 3 has an N = 1

1d subspace preserving

U(1)2 ×USp(8)

3 G = USp(4), 3 U(1)2 U(1)3 × SU(2) a = 17
6 ,

NAS = 4, Nf = 4 ×SU(4)2 has an N = 1 1d c = 19
6

subspace preserving

U(1)2 × SU(2)×USp(4)

4 G = USp(4), 1 U(1)× SU(6) U(1)×USp(6) a = 65
24 ,

NAS = 6 c = 35
12

5 G = USp(4), 2 U(1) U(1) a = 29
12 ,

N16 = 1 c = 7
3

Table 28. Cases involving a USp(2N) gauge group with extended supersymmetry. All cases also

have an adjoint chiral field in addition to the matter written in the table.

• In case 19 the SU(3) is the diagonal of the intrinsic SU(3)F and SU(3)F groups. In

addition one breaks SU(3)20 → SO(3), where the SU(2) is the SO(3).

• In case 20 one breaks SU(4)20 → SO(4), where the SU(2)2 is the SO(4).

• In case 21 the SU(4) is the diagonal of the two intrinsic SU(4) groups.

8.2 Symplectic groups

Here we take the group to be USp(2N). The case of N = 4 is trivial as there is no

symmetric cubic invariant of the adjoint (symmetric) representation. Thus, there is only a

1d subspace preserving N = 4 and the full SU(3) symmetry exchanging the three adjoints.

All the purely N = 2 cases have one adjoint chiral field coming from the vector multiplet

and we do not write it down in the table. All of the theories have a single N = 2 preserving

direction. As in the special unitary cases some of the cases have additional N = 1 preserving

1d subspaces.

Let us make several comments about specific cases,

• In case 1 one breaks SU(4N + 4)→ SO(4N + 4).

• In case 2 the N = 2 preserving 1d subspace also preserves a U(1) × SU(2) × SO(8)

global symmetry, where one breaks SU(8) → SO(8). For N ≥ 3, there is also an

N = 1 2d subspace along which one breaks SU(8)→ USp(8) and SU(2)→ U(1). For

N = 3, it also contains a 1d subspace where an additional U(1) can be preserved.
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Matter dimM Gfree
F Ggen

F a, c

6 G = USp(6), 14 U(1)× SU(4) ∅ a = 133
24 ,

NAS = 4 has an N = 1 1d c = 35
6

subspace preserving

U(1)3

7 G = USp(6), 1 U(1)2 U(1)× SO(11) a = 145
24 ,

N14′ = 1, Nf = 11 ×SU(11) c = 41
6

8 G = USp(6), 12 U(1)3 × SU(2) ∅ a = 45
8 ,

N14′ = 1, ×SU(3) c = 6

NAS = 2, Nf = 3

9 G = USp(6), 1 U(1)2 × SU(2) U(1)2 × SU(4) a = 137
24 ,

N14′ = 2, Nf = 6 ×SU(6) c = 37
6

10 G = USp(6), 1 U(1)2 × SU(3) U(1)× SU(2) a = 43
8 ,

N14′ = 3, Nf = 1 c = 11
2

11 G = USp(8), 1 U(1)2 × SU(6) U(1)× SU(4) a = 19
2 ,

N48 = 1, Nf = 6 c = 10

Table 29. Cases involving a USp(2N) gauge group with extended supersymmetry, continued.

• In case 3 the N = 2 preserving 1d subspace also preserves a U(1)× SU(2)2×USp(4)

global symmetry, where one breaks SU(4)F → SO(4), and the SU(2)2 is the SO(4).

In addition, one breaks SU(4)AS → USp(4). One can further continue and break

the SO(4) to its Cartan, and U(1) × USp(4) → U(1) × SU(2)2 → U(1) × SU(2).

For the N = 1 1d subspace one instead breaks SU(4)F → USp(4) and SU(4)AS →
SU(2)×U(1)2.

• In case 4 one breaks SU(6)→ USp(6).

• In case 6 the N = 2 preserving 1d subspace also preserves a U(1) × USp(4) global

symmetry, where one breaks SU(4)→ USp(4). For the N = 1 1d subspace one breaks

SU(4)→ U(1)3.

• In case 7 one breaks SU(11)→ SO(11).

• In case 8 the N = 2 preserving 1d subspace also preserves a U(1) × SU(2)2 global

symmetry, where one breaks SU(3)→ SO(3), which is one of the SU(2) groups, while

the other is the intrinsic SU(2)AS group.

• In case 9 one breaks SU(6)→ SO(6), where the SU(4) is the SO(6). In addition one

breaks SU(2)→ SO(2), where one of the U(1)2 groups is the SO(2) and the other is

a combination of the intrinsic U(1) groups.

• In case 10 one breaks SU(3)→ SO(3), where the SU(2) is the SO(3).

• In case 11 one breaks SU(6)→ SO(6), where the SU(4) is the SO(6).

– 56 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

Matter dimM Gfree
F Ggen

F a, c

1 G = SO(N), 1 U(1) U(1) a = N(7N−9)
48 ,

Nv = 2N − 4 ×SU(2N − 4) ×USp(2N − 4) c = N(2N−3)
12

2 G = SO(7), 1 U(2x) U(1)×USp(2x) a = 140+x
24 ,

N8 = 2x, ×U(10− 2x) ×USp(10− 2x) c = 77+x
12

Nv = 10− 2x

3 G = SO(8), 1 U(2x)×U(2y)× U(1)×USp(2x) a = 47
6 ,

N8S
= 2x,N8C

= 2y, U(12− 2x− 2y) ×USp(2y)× c = 26
3

Nv = 12− 2x− 2y USp(12− 2x− 2y)

4 G = SO(9), 1 U(1)2 × SU(2x) U(1)×USp(2x) a = 243−2x
24 ,

N16 = 2x, ×SU(14− 4x) ×USp(14− 4x) c = 135−2x
12

Nv = 14− 4x

5 G = SO(10), 1 U(x)2 U(1)2 × SU(x) a = 305−4x
24 ,

N16 = N16 = x, ×U(16− 4x) ×USp(16− 4x) c = 85−2x
6

Nv = 16− 4x

6 G = SO(11), 1 U(1)2 × SU(x) U(1)× SO(x) a = 187−3x
12 ,

N32 = x, ×SU(18− 4x) ×USp(18− 4x) c = 209−6x
12

Nv = 18− 4x

7 G = SO(12), 1 U(x)×U(y)× U(1)× SO(x) a = 225−4x−4y
12 ,

N32 = x,N32′ = y, U(20− 4x− 4y) ×SO(y)× c = 63−2x−2y
3

Nv = 20− 4x− 4y USp(20− 4x− 4y)

8 G = SO(13), 1 U(1)2 × SU(x) U(1)× SO(x) a = 533−20x
24 ,

N64 = x, ×SU(22− 8x) ×USp(22− 8x) c = 299−20x
12

Nv = 22− 8x

9 G = SO(14), 1 U(1)3 × SU(8) U(1)2 ×USp(8) a = 575
24 ,

N64 = N64 = 1, c = 151
6

Nv = 8

Table 30. Cases involving an SO(N) gauge group with extended supersymmetry. All cases also

have an adjoint chiral field in addition to the matter written in the table.

8.3 Orthogonal groups

Here we take the group to be SO(N). The case of N = 4 is trivial as there is no symmetric

cubic invariant of the adjoint (antisymmetric) representation. Thus, there is only a 1d

subspace preserving N = 4 and the full SU(3) symmetry exchanging the three adjoints.

All the N = 2 cases have one adjoint chiral field coming from the vector multiplet and we

do not write it down in the table. All of the theories have only a single N = 2 preserving

direction.

Let us make several comments about specific cases,

• In case 1 one breaks SU(2N − 4)→ USp(2N − 4).

• In case 2 one breaks SU(2x) → USp(2x), and SU(10 − 2x) → USp(10 − 2x) when

x < 5.
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Matter dimM Gfree
F Ggen

F a, c

1 G = E8, N248 = 3 1 SU(3) SU(3) a = 62,

N = 4 c = 62

2 G = E7, N133 = 3 1 SU(3) SU(3) a = 133
4 ,

N = 4 c = 133
4

3 G = E7, N133 = 1 1 SU(6)×U(1) SU(4)×U(1) a = 833
24 ,

N56 = 6 N = 2 c = 217
6

4 G = E6, N78 = 3 1 SU(3) SU(3) a = 39
2 ,

N = 4 c = 39
2

5 G = E6, N78 = 1 1 SU(4)2 ×U(1)2 SU(4)×U(1)2 a = 83
4 ,

N27 = N27 = 4 N = 2 c = 22

6 G = F4, N52 = 3 1 SU(3) SU(3) a = 13,

N = 4 c = 13

7 G = F4, N52 = 1 1 SU(6)×U(1) USp(6)×U(1) a = 169
16 ,

N26 = 6 N = 2 c = 91
6

8 G = G2, N14 = 3 1 SU(3) SU(3) a = 7
2 ,

N = 4 c = 7
2

9 G = G2, N14 = 1 1 SU(8)×U(1) USp(8)×U(1) a = 49
12 ,

N7 = 8 N = 2 c = 14
3

Table 31. Cases involving an exceptional gauge group with extended supersymmetry. All cases

also have an adjoint chiral field in addition to the matter written in the table.

• In case 3 one breaks SU(2x)→ USp(2x), SU(2y)→ USp(2y), and SU(12−2x−2y)→
USp(12− 2x− 2y) when the groups are non vanishing.

• In case 4 one breaks SU(2x)→ USp(2x), and SU(14− 4x)→ USp(14− 4x).

• In case 5 one takes the diagonal SU(x) of SU(x)16 and SU(x)16. In addition, one

breaks SU(16− 4x)→ USp(16− 4x) when x < 4.

• In case 6 one breaks SU(x)→ SO(x), and SU(18− 4x)→ USp(18− 4x).

• In case 7 one breaks SU(x) → SO(x), SU(y) → SO(y), and SU(20 − 4x − 4y) →
USp(20− 4x− 4y) when the groups are non vanishing.

• In case 8 one breaks SU(x)→ SO(x), and SU(22− 8x)→ USp(22− 8x).

• In case 9 one breaks SU(8)→ USp(8).

8.4 Exceptional groups

With exceptional gauge groups we can only have one dimensional conformal manifolds on

which the supersymmetry is preserved. The reason is that none of these groups has a cubic

symmetric invariant of the adjoint representation, or any other cubic invariant containing

at least two adjoints, and thus the only exactly marginal superpotential is the N = 2 one.
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Let us make several comments about specific cases,

• In case 3 one breaks SU(6)→ SO(6), where the SU(4) is the SO(6) group.

• In case 5 the SU(4) is the diagonal of the two intrinsic SU(4) groups.

• In case 7 one breaks SU(6)→ USp(6).

• In case 9 one breaks SU(8)→ USp(8).

9 Epilogue

In this paper we have obtained a rich variety of conformal gauge theories with a simple

gauge group. Let us end the discussion with two simple examples of further possible

developments of the results presented in the paper. First we will discuss an IR duality

connecting one of the conformal theories we have obtained to a somewhat simpler non-

conformal gauge theory. Second, we will discuss an N = 1 extension of the conformal

manifolds of A type class S theories by gauging the symmetry of a maximal puncture with

an N = 1 vector multiplet and two adjoint chiral superfields.

9.1 An IR duality

Some of the conformal theories we have classified might be related by IR dualities, of the

sort first discussed in [57], to other models. As an example let us consider the USp(4) =

Spin(5) theory with two fields, q and q̃, in the five dimensional two index anti-symmetric

representation and one field, φ, in the 14. We have obtained that this is a conformal theory

with a one dimensional conformal manifold with a U(1) symmetry preserved on a generic

locus. The superpotential is W = qq̃φ + φ3 and under the preserved U(1)a, φ is neutral

while q is charged +1 and q̃ charged −1. The TrRU(1)2a anomaly is −10
3 , the conformal

anomalies are a = 19
8 and c = 9

4 , while the rest of the ‘t Hooft anomalies vanish. The free

fixed point has an SU(2)a ×U(1)b symmetry such that U(1)a is the Cartan of SU(2)a and

under U(1)b the fields q and q̃ have charge +1 while φ has charge −2
7 . This means that

the marginal operators q2φ, q̃2φ, and qq̃φ are in the 3 of SU(2)a and have charge 12
7 under

U(1)b. The marginal operator φ3 is a singlet of SU(2)a and has charge −6
7 under U(1)b.

There is a single independent invariant we can build out of 3 12
7

and 1− 6
7
, implying that

the conformal manifold is one dimensional. The Cartan of SU(2)a is not broken on the

conformal manifold.

Now, let us consider an SU(4) gauge theory with two fields in the ten dimensional

two index symmetric representation, field Q in 10 and field Q̃ in 10. We also add a

gauge singlet field Φ coupling through a superpotential W = ΦQQ̃. The superconformal

R-charges of the fields Q and Q̃ computed by a maximization [79] is 1
3 meaning that QQ̃ is

a free field [80]. The superpotential removes this operator in the IR [81] (see also e.g. [82]).

The superpotential has a non-anomalous U(1) symmetry under which Q is charged +1
2 and

Q̃ is charged −1
2 . The TrRU(1)2 anomaly is −10

3 , the conformal anomalies are a = 19
8 and
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c = 9
4 , while the rest of the ‘t Hooft anomalies vanish. This matches perfectly the USp(4)

theory. Computing the superconformal index in both duality frames we obtain,

1 +

(
a+

1

a

)2

x4 +

(
a+

1

a

)2(
n+

1

n

)
x7 +

(
a4 +

1

a4
+ a2 +

1

a2
+ a+

1

a
+ 4

)
x8

−
(
n+

1

n

)
x9 +

(
1 +

(
2 + a2 +

1

a2
+ a+

1

a

)(
n2 +

1

n2
+ 1

))
x10

+

(
n+

1

n

)(
a4 +

1

a4
+ 3a2 +

3

a2
+ a+

1

a
+ 5

)
x11 (9.1)

+

(
a6 +

1

a6
+ a4 +

1

a4
+ a3 +

1

a3
+ 2a2 +

2

a2
+ 2−

(
n2 +

1

n2

)(
1 + a+

1

a

))
x12

+ · · · ,

where we define p/q = n2 and pq = x6, while a is the fugacity for U(1)a. Note that at order

pq, at which we should observe the contribution of marginal operators minus the conserved

currents [83], we have a zero. However, as we have the U(1)a symmetry conserved current,

which contributes −1 at order pq, there has to be a +1 contribution which comes from the

exactly marginal deformation.

9.2 Extending the conformal manifolds of class S with two adjoints

Let us consider general N = 2 class S [12] theory corresponding to compactification of

the 6d AN−1 type (2, 0) theory on a genus g Riemann surface with s maximal punctures.

From N = 1 perspective these theories have a U(1)t global symmetry which is the Cartan

of the 6d SU(2) global symmetry, in addition to the (1, 0) R-symmetry, that the (2, 0)

models have. Each puncture contains a moment map operator Mi which is in the adjoint

representation of the SU(N)i symmetry associated to the i’th puncture. The moment map

operators have the superconformal R-charge assignment 4/3 and are charged +1 under the

U(1)t symmetry. We also note that dimension r Coulomb branch operators have R-charge

assignment 2
3 r and have U(1)t charge −r. The anomalies of the SU(N)i symmetry are

those of N free hypermultiplets in the fundamental representation of SU(N) using this

R-charge. Let us consider the case of N > 2 and gauge the SU(N) symmetry associated

to one of the punctures with an addition of two adjoint fields X and Y . The gauging

is conformal for N > 2 with the superconformal R-symmetry of the adjoint fields being
2
3 . The U(1)t charge of the adjoint fields is −1

4 . Note that we have an SU(2)a symmetry

rotating the two adjoint fields. To explore the conformal manifold we need to turn on some

superpotentials which will break the SU(2)a × U(1)t symmetry, to which we turn next.

The most general marginal superpotential built from operators charged under the gauged

symmetry of the puncture is,

W = M (X + Y ) +
(
X3 + Y 3 +X2Y + Y 2X

)
. (9.2)

Here M is the moment map operator associated with the puncture. Note that the model has

also dimension 3 Coulomb branch operators charged −3 under U(1)t which is marginal. The
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first term in the superpotential above is a doublet of SU(2)a and has U(1)t charge 3
4 while

the second term is 4 of SU(2)a with U(1)t charge −3
4 . We can easily compute the Kähler

quotient and see that it has dimension one sub-locus which preserves a linear combination

of U(1)a and U(1)t. We can use the SU(2)a symmetry to choose this combination to be

U(1)t− 3
4
a ≡ U(1)t′ and thus the superpotential we turn on is,9

W = λ1M X + λ2Y
2X . (9.3)

Note that out of the 6 superpotential terms in (9.2) the operators M Y and X2Y recombine

with the conserved currents of SU(2)a, while Y 3 and X3 have charges 2 and −4 respectively

under U(1)t′ . The dimension three Coulomb branch operators also have U(1)t′ . We can in

principle further break U(1)t′ but we will refrain from doing so. Note also that out of the

two independent combinations of the form (9.3) one recombined with one of the broken

conserved current and one remains exactly marginal. The gauging with the deformation

preserving U(1)t′ thus produces a theory with (3g − 3 + s) + g + 1 exactly marginal defor-

mations, where the first 3g− 3 + s come from the complex structure moduli of the original

class S theory and g from the flat connections of the U(1)t symmetry [19, 83]. Performing

this procedure for the other punctures we add one exactly marginal dimension per puncture

and the preserved symmetry is U(1)t− 3
4

∑s
i=1 ai

≡ U(1)t′ . If we apply the procedure to all

punctures, the theory will have 3g − 3 + 2s+ g exactly marginal deformations. Note that

the original class S model has a duality group acting on the conformal manifold and as our

procedure extends this manifold, we expect this duality also to act after the extension. It

is tempting to entertain the possibility that applying the procedure outlined here one can

interpret the resulting model as corresponding to genus g surface but now with 2s punc-

tures of some sort (say s of one kind and s of another) which would mean that the duality

group would be the mapping class group of such a surface. It would be very interesting to

understand the structure of the conformal manifold in more detail.
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A N = 1 superconformal index

In this appendix we give some definitions on the N = 1 superconformal index [60–62],

in addition to some related notations, and useful results. In four dimensions the index is

defined as a trace over the Hilbert space of the theory quantized on S3,

I (µi) = Tr(−1)F e−βδe−µiMi , (A.1)

where δ , 1
2

{
Q,Q†

}
, with Q one of the Poincaré supercharges, and Q† = S its conjugate

conformal supercharge,Mi are Q-closed conserved charges and µi their associated chemical

potentials. The non-vanishing contributions come from states with δ = 0 making the index

independent on β, since states with δ > 0 come in boson/fermion pairs.

The full contribution for a chiral superfield in the fundamental representation of SU(N)

or USp(2N) with R-charge r can be written in terms of elliptic gamma functions, as follows

Iχ(SU(N)) ≡
N∏
i=1

Γe

(
(pq)

1
2
rzi

)
,

Iχ(USp(N)) ≡
N∏
i=1

Γe

(
(pq)

1
2
rz±1i

)
,

Γe(z) , Γ (z; p, q) ≡
∞∏

n,m=0

1− pn+1qm+1/z

1− pnqmz
, (A.2)

where {zi} with i = 1, . . . , N are the fugacities parameterizing the Cartan subalgebra of

SU(N), with
∏N
i=1 zi = 1 or USp(2N). In addition, we will often use the shorten notation

Γe
(
xy±n

)
= Γe (xyn) Γe

(
xy−n

)
. (A.3)

In a similar manner we can write the full contribution of the vector multiplet in the

adjoint of SU(N) or USp(2N), together with the matching Haar measure and projection

to gauge singlets as

IV (SU(N)) =
κN−1

N !

∮
TN−1

N−1∏
i=1

dzi
2πizi

∏
k 6=`

1

Γe(zk/z`)
· · · ,

IV (USp(2N)) =
κN

2NN !

∮
TN

N∏
a=1

dza
2πiza

1

Γe
(
z±2a
) ∏

1<a<b<N

1

Γe
(
z±1a z±1b

) · · · , (A.4)

where the dots denote that it will be used in addition to the full matter multiplets trans-

forming in representations of the gauge group. The integration is a contour integration

over the maximal torus of the gauge group. κ is the index of U(1) free vector multiplet

defined as

κ , (p; p)(q; q), (A.5)

where

(x; y) ,
∞∏
n=0

(1− xyn) (A.6)

is the q-Pochhammer symbol.
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B Algorithm for finding conformal manifolds and full calculation exam-

ples

In the bulk of the paper we have given the results for the analysis of the conformal manifold

for a variety of cases, but have not provided details for how the calculation is done. In this

appendix we will provide such details and illustrate them with a variety of examples. The

general algorithm we will use is:10

1. Pick a theory consistent with conditions (3.1) and (3.2).

2. List all the marginal operators invariant under the gauge symmetry, these operators

must be cubic in our case.11

3. The next stage is to find at least one exactly marginal operator. The problem of

finding such operators can be mapped to finding operators composed of the above

marginal operators that are invariant under the flavor symmetry of the theory. This

is done in order to prove that the Kähler quotient isn’t empty. It is convenient here

to separate the global symmetry into its abelian and non-abelian parts, and consider

each in turn:

(a) First look for invariants under the abelian symmetries, this can be easily found

after assigning non-anomalous charges to all the fields, by finding operators of

vanishing charge. If no operators are found, then there is no conformal manifold.

(b) Next, one should look for powers of the operators invariant under the abelian

symmetries that will give invariants under the non-abelian symmetries. When

taking powers of the marginal operators one should only consider the symmetric

product as these are bosonic operators. If no such operator can be found, then

there is no conformal manifold.

4. With the exactly marginal operator at hand one needs to find the symmetry preserved

by this operator. This can be done by considering what keeps a given representation

fixed. Some examples are:

(a) A fundamental breaks SU(N) to SU(N − 1) which is the group fixing a chosen

fundamental.

(b) The subgroup of SU(N) fixing a chosen symmetric matrix is SO(N) and an

antisymmetric matrix is USp(N) for N even.
10Such algorithms can be applied more generally to approach the problem of analyzing a Kähler quotient.

One notable example of physical use is the analysis of the Higgs branch of N = 2 theories, which can be

described as a hyperkähler quotient. The methods used here then, also have parallels in the analysis of

such Higgs branches, see [90].
11Here we ignore the marginal operator associated with the gauge coupling constant, and similarly we

ignore the anomalous symmetry when listing the global symmetry of the theory. This comes about as the

gauge coupling of the simple gauge groups discussed here becomes marginally irrelevant as it recombine

with the broken current operator associated with the anomalous symmetry. However, it should be noted

that in some quiver theories, the number of anomalous symmetries may be smaller than the number of

coupling constants, in which case the analysis should be done more carefully.
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5. Some cases are more intricate then the ones above, and one needs to rely on group

theory branching rules and verify the breaking using the next stage. Another possi-

bility is taking a diagonal combination of two symmetries.

6. Next, we verify that the chosen subgroup of the flavor symmetry is the preserved one

under the chosen exactly marginal operator. This is done by breaking the symmetries

of all the currents and marginal operators under the alleged preserved symmetry,

and checking that all the broken currents are eaten by the marginal operators. The

remaining singlet operators give the dimension of the subspace on the conformal

manifold preserving the chosen symmetry. In a more algebraic manner we break the

operators Ops→ Opsnew and break the currents that are in the adjoint representation

of the flavor symmetry Gf as AdjGf
→ AdjGnew ⊕ b.c. and need to verify that the

broken currents b.c. appear in Opsnew and remove them.

7. Finally one should take the remaining operators and symmetry and go back to stage

3 of the algorithm. This recursive process stops when no additional exactly marginal

operators can be found or when the flavor symmetry is broken completely.

Next, we shall illustrate this algorithm using various examples, of cases both with and

without a Kähler quotient. We will use this opportunity to further clarify various aspects

of the calculation.

B.1 Examples of cases with no Kähler quotient

We shall first consider cases where there is no Kähler quotient.

B.1.1 Lack of a Kähler quotient due to no marginal operators

The most trivial way for a Kähler quotient to be non-existent is that there are no marginal

operators, that is the list of all marginal operators, which we determine in step 2, is empty.

Examples of this include a USp(2N) gauge theory with 6(N + 1) fundamental chiral fields,

an SO(N) gauge theory with 3(N −2) vector chiral fields and an SU(N) gauge theory with

3N chiral fields in the fundamental and anti-fundamental representations, for N 6= 3.

B.1.2 Lack of a Kähler quotient due to abelian symmetries

A common reason for a Kähler quotient to be non-existent is due to the abelian symmetries.

This happens when there is a non-anomalous U(1) global symmetry under which the charges

of all marginal operators have the same sign, and thus there is no Kähler quotient. As a

simple example, consider the case of an SU(5) gauge theory with six antisymmetric chiral

fields, three conjugate antisymmetric chiral fields and three anti-fundamental chiral fields.

We can define two non-anomalous U(1) groups, say U(1)x × U(1)y. A convenient choice

is to take one, say U(1)x, to act only on the antisymmetric and conjugate antisymmetric

chiral fields, with charge +1 for the former and −2 for the latter, and take the other, U(1)y,

to act only on the conjugate antisymmetric and anti-fundamental chiral fields, with charge

+1 for the former and −3 for the latter. The theory has two marginal operators, given by
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Representation Number of fields U(1)x U(1)y U(1)b U(1)a

20 1 2 3 0 0

AS 1 −3 −1 0 1

AS 1 0 2 0 −1

F 11 0 −1 1 0

F 11 0 −1 −1 0

Table 32. Matter content and assigned charges for an SU(6) gauge theory.

AS ×F 2
and AS

2×F , both of which have negative charge under U(1)y. As a result there

is no quotient in this case.

As another simple example, we consider an SU(N) gauge theory with three antisym-

metric chiral fields, three conjugate antisymmetric chiral fields, six fundamental chiral fields

and six anti-fundamental chiral fields. We can define a non-anomalous U(1) group acting

on the antisymmetric and conjugate antisymmetric chiral fields with charge 2, and on the

fundamental and anti-fundamental chiral fields with charge −(N − 2). For N > 6, the

only marginal operators are given by AS×F 2
and AS×F 2, and these both have negative

charge under this U(1). As a result, there is no Kähler quotient in these cases.

While, in the two examples we have shown, it was readily apparent that there is

no quotient under the abelian groups, in some cases, depending on the choice of U(1)

groups, this may be more obscure. As an example, consider an SU(6) gauge theory with

the following combination of chiral fields, and a specific choice of U(1) groups, shown in

table 32.

Here we list the representations of the chiral fields that participates in this case, the

number of chiral fields charged under each representation, and their charges under a choice

of four non-anomalous U(1) groups. There are six different marginal operators that we can

turn on: AS3, AS
3
, AS×F 2

, AS×F 2, 20×AS×F and 20×AS×F . We can write down

their charges under the four U(1) symmetries. For this it is convenient to use fugacities,

where we use the fugacity i for U(1)i. In this way, if the charge of the operator under U(1)i
is qi then we write its charges under all symmetries concisely as

∏
i i
qi . In this notation,

the charges of the operators under the U(1) symmetries are:

a3

y3x9
,
y6

a3
,
b2

a
,

a

b2x3y3
,
aby

x
,
x2y4

ab
.

Here it is not immediately apparent that there is no quotient, even though this is

indeed the case. One way to see this is to redefine U(1)y → U(1)′y − U(1)x, which we

can implement on fugcities by taking y → y′

x . Then the first and last two operators have

negative charge under U(1)x, while the third and fourth one have zero charges, and as

these two alone don’t have a quotient under the remaining abelian symmetries, there is

indeed no quotient. A more general approach is as follows. Say there is a quotient, then

we can find a set of positive integers ni such that
∏
iO

ni
i = 1, where Oi are the charges of

the operators in fugacities. We can then form a set of linear equations, number of which

is the number of U(1) groups, providing restrictions on the set of numbers ni. Then, there
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is a quotient under the abelian symmetries if and only if there is a non-trivial solution for

ni positive integers. In this case, it is possible to show with a little algebra that there is

no such solution.

In many cases it is possible to know immediately if there is no quotient under the

abelian symmetries thanks to the following observation. Say we have ni chiral fields charged

under the gauge symmetry in the representation Ri, with Dynkin index TRi , then the

contribution of these to the mixed gauge-U(1)R anomaly, which in turn is related to the

one loop beta function, is −niTRi
3 . The contribution of all the other chiral fields, from the

fact that U(1)R is anomaly free, is −h∨G +
niTRi

3 . We also note that if we define a U(1) to

act on all of the ni chiral fields with the same charge, qi, then its contribution to the mixed

anomaly between this global U(1) and the gauge symmetry is qiniTRi , and in particular

is proportional to its contribution to the mixed gauge-U(1)R anomaly. There is a similar

relation also for the remaining chiral fields. We then note the following:

1. If we have a collection of chiral fields whose contribution to the mixed gauge-U(1)R
anomaly (equivalently, to the beta function) is the same as two adjoint chiral fields,

then we can define a U(1) symmetry such that all chiral fields in this collection have

charge 1, while all other chiral fields have charge −2. It then also follows that if

we have a collection of chiral fields whose contribution to the mixed gauge-U(1)R
anomaly is greater than that of two adjoint chiral fields, then if we define a U(1)

symmetry such that all chiral fields in this collection have charge 1, then for it to

be anomaly free, all other chiral fields must have charge greater than −2. In this

case, the only marginal operator with positive charge under this symmetry is the one

when all three chiral fields that build this operator belong to this collection. All other

operators have negative charge.

2. If we have a collection of chiral fields whose contribution to the mixed gauge-U(1)R
anomaly (equivalently, to the beta function) is the same as one adjoint chiral field,

then we can define a U(1) symmetry such that all chiral fields in this collection have

charge 2, while all other chiral fields have charge −1. It then also follows that if

we have a collection of chiral fields whose contribution to the mixed gauge-U(1)R
anomaly is greater than that of one adjoint chiral field, then if we define a U(1)

symmetry such that all chiral fields in this collection have charge 2, then for it to be

anomaly free, all other chiral fields must have charge greater than −1. In this case,

the only marginal operator with positive charge under this symmetry is the one when

at least two chiral fields that build this operator belong to this collection. All other

operators have negative charge.

With these observations in mind, it is straightforward to immediately show that in

all three examples there is no quotient. In our first example, we had an SU(5) gauge

theory with six chiral fields in the antisymmetric representation and three chiral fields

in the conjugate antisymmetric representation. On one hand, these together contribute

more than two adjoints to the gauge-U(1)R anomaly, while on the other hand, there is

no marginal superpotential made solely from these fields, and so there is no quotient.
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Similarly in our second example, we had an SU(N) gauge theory with three chiral fields in

the antisymmetric representation. When N > 6, these together contribute more than one

adjoint to the gauge-U(1)R anomaly. However, there is no marginal superpotential made

from two or more of these fields, and so there is no quotient. Finally, we have the third

example, with the matter content given in table (32). Here it is a bit trickier, but we can

again notice that the contribution to the gauge-U(1)R anomaly of the chiral fields in the

fundamental, the anti-fundamental and the three index antisymmetric is greater than two

adjoints while there is no marginal superpotential made solely from these fields. Therefore,

we can again conclude that there is no quotient. In this way it is possible to immediately

rule out many cases.

B.1.3 Lack of a Kähler quotient due to non-abelian symmetries

There can be instances where it is possible to find a quotient under the abelian symmetries,

but it is impossible to find one under the non-abelian symmetries. This usually happens

due to one of the following two reasons:

1. For an SU(N) group with only n operators in the fundamental representation, there

is a quotient if and only if n ≥ N .

2. For an SU(N) with only a single operator in the antisymmetric representation, there

is a quotient if and only if N is even.

As an example, we consider a Spin(18) gauge theory with a single chiral field in the

spinor representation and 16 chiral fields in the vector representation. In this case there

is a single marginal operator made from the product of the vector and the symmetric

product of the spinor chiral fields. The global symmetry consists of an SU(16) acting

on the vector chiral fields and a U(1), which can be chosen so as to act on the spinor

chiral field with charge 1 and on the vector chiral fields with charge −2. The marginal

operator then is uncharged under the U(1), but is in the fundamental representation of

the SU(16). In this case then, it is trivial that there is a quotient under the U(1), but as

there is only one operator in the fundamental of SU(16), there is no quotient under the

non-abelian symmetry.

B.1.4 Lack of a Kähler quotient due to a combination of abelian and non-

abelian symmetries

The last case where there is no quotient is when there is a quotient under both the abelian

and non-abelian symmetries, but these are mutually exclusive. As a simple example of this,

consider an SU(6) gauge theory with four antisymmetric chiral fields, a single chiral field

in the conjugate antisymmetric representation, five fundamental chiral fields and eleven

anti-fundamental chiral fields. There are four marginal operators: AS3, AS
3
, AS × F 2

,

AS × F 2. The free point global symmetry is U(1)3 × SU(4) × SU(5) × SU(11). It is

straightforward to show that there is a quotient under the abelian symmetries, if it is

allowed to use all four operators. However, the only operator charged under the SU(5) is

AS × F 2, which is in its antisymmetric representation, and as there is no quotient for a
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single antisymmetric of SU(5), it is in fact marginally irrelevant. The remaining three have

a quotient under the non-abelian symmetries, however, it is impossible to have a quotient

under the abelian symmetries with only these three operators. Therefore, although there is

a quotient under both the abelian and non-abelian symmetries, there is no quotient under

both simultaneously.

Finally, as a more complicated example we consider an SU(6) gauge theory with a

single chiral field in its 20 representation, four chiral fields in the antisymmetric represen-

tation, a single chiral field in the conjugate antisymmetric representation, two chiral fields

in the fundamental representation and eight chiral fields in the anti-fundamental represen-

tation. The symmetry of the free point is U(1)4 × SU(4) × SU(2) × SU(8), and we assign

charges under the non-anomalous U(1) groups as follows. We assign charge (1, 0, 0, 0) to

the chiral field in the 20, (0, 1, 0, 0) to the AS chiral fields, (0, 0, 1, 0) to the AS chiral

field, (1, 0, 2, 3) to the F chiral fields and (−1,−2,−1,−1) to the F chiral fields, under

U(1)x × U(1)y × U(1)z × U(1)a. The marginal operators and their representations under

the flavor symmetries are

A = AS × F 2 ∼ (4,1,28)x−2y−3z−2a−2

B = AS × F 2 ∼ (1,1,1)x2z5a8

C = AS3 ∼
(
20′′,1,1

)
y3

D = AS
3 ∼ (1,1,1) z3

E = 20×AS × F ∼ (1,1,8) y−2a−1

G = 20×AS × F ∼ (4,2,1)x2yz2a4 , (B.1)

where we again use fugacities to represent charges for abelian groups. Here the representa-

tions under the non-abelian groups are ordered in the same order as the symmetries were

listed when we noted the free point symmetry.

Like in the previous cases, we seek first an invariant under the abelian symmetries.

We attempt to find one by writing down the constraints of zero charge under each U(1)

as linear equations in the number of times we use each operator, and look for positive

integer solutions. Using this, we find that the only invariant operators under the abelian

symmetries are powers of AC2E2G. Next we would like to build an invariant under the non-

abelian symmetries. Focusing first on building an SU(8) invariant, we find two marginal

operators transforming under the SU(8) symmetry A and E. In the case of operator E,

it transforms only under the SU(8) out of the non-abelian symmetries forcing us to take

its symmetric power only. Taking n copies of the operator invariant under the abelian

symmetries we will take E2n sym, giving us an operator transforming under the 2n index

symmetric representation of SU(8) which is represented by a Young tableau with a single

row of length 2n. To get an SU(8) invariant, we must contract this representation with the

conjugate 2n index symmetric representation of SU(8), represented by a Young tableau of

seven rows of length 2n. Generating such a representation requires at least 7n copies of the

two index antisymmetric representation, while we only have n such copies. We see then

that while we can generate an invariant under the abelian part of the global symmetry, it

is impossible to make an invariant under the full symmetry from these abelian invariants.
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Similarly, we note that while it is possible to generate invariants under the non-abelian

part of the global symmetry, it is impossible to make an invariant under the full symmetry

from these non-abelian invariants. Therefore, in this case it is impossible to generate an

invariant under the full flavor symmetry, meaning there are no exactly marginal operators

and the conformal manifold is empty.

B.2 Examples of cases with a Kähler quotient

After showing some examples without a Kähler quotient, we move on to show various

examples of cases with a Kähler quotient. We shall start with a few standard examples,

to illustrate the basic features, and then move on to show a few more examples with

interesting features.

B.2.1 Simple examples with a Kähler quotient

In the first example we look at the first case of table 2 ignoring the case of N = 3 for

simplicity. This is a theory of an SU(N) gauge group with two adjoint chiral fields and

NF = NF = N . One can verify it obeys (3.1) and (3.2). The symmetry of the free point

is U(1)2 × SU(2)× SU(N)2, and we assign charges under the non-anomalous U(1) groups

as follows. We assign charge (0,+1) to the adjoints and (±1,−2) to the fundamentals and

anti-fundamentals under U(1)x×U(1)y. The marginal operators and their representations

under the flavor symmetries are

A = Ad3 ∼ (4,1,1) y3 ,

B = Ad× F × F ∼
(
2,N ,N

)
y−3 , (B.2)

where we again use fugacities to represent charges under U(1) symmetries, and order the

non-abelian symmetries in the same order in which the symmetries were presented when

we introduced the symmetry at the free point.

An invariant under the abelian symmetries is the operator AB. An invariant under

the non-abelian symmetries can be constructed by taking N such copies, and contracting

both the SU(N) indices with epsilon tensors to create an invariant under both. As for the

SU(2), the 2 and 4 representations need to be taken to the N -th symmetric power and

multiplied to generate an SU(2) invariant.

The fact that the invariant under both SU(N) groups is generated by a baryon of a

bifundamental implies that the subspace preserves the diagonal SU(N), while both the

representations under SU(2) imply that it is at least broken to U(1)a. The marginal

operators under this breaking

(4,1,1) y3 ⊕
(
2,N ,N

)
y−3 → (1) y3

(
a3 + a+ a−1 + a−3

)
⊕
(
AdSU(N) ⊕ 1

)
y−3

(
a+ a−1

)
. (B.3)

When we insert operators into the superpotential, we break the symmetry to the

subgroup such that the inserted operators are uncharged under the preserved subgroup.

For the case at hand, to get a Kähler quotient we need to insert both the operators A and

B, and so the preserved symmetry must be such that at least one component of each is a
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singlet. This does not yet hold in (B.3), implying that we need to break more symmetry.

The minimal choice is to break one of the U(1) groups by the identification

y3a−1 = 1⇒ a = y3 . (B.4)

This implies that we are inserting into the superpotential the component with charge

y3a−1 of A and with charge y−3a of B. It is important to note that indeed AB is a singlet

as required.

Breaking the symmetry further according to the identification above, the marginal

operators are

→ (1)
(
y12 + y6 + 1 + y−6

)
⊕
(
AdSU(N) ⊕ 1

) (
1 + y−6

)
. (B.5)

Next we write down the broken currents

b.c. = (1)
(
y6 + 1 + y−6

)
⊕
(
AdSU(N)

)
. (B.6)

In the first term there are the currents of the SU(2), where we have used the relation a =

y3. The second term arises as we lose an SU(N) group from the breaking of SU(N)×SU(N)

to the diagonal SU(N) group.

The broken current can only become so by absorbing a marginally irrelevant operator.

As a result some of the marginal operators in (B.5) must in fact be marginally irrelevant

and eaten by the broken currents. Indeed, we see that there are marginal operators with

the correct charges to be eaten. This is an important consistency check that this breaking

can exist.

The remaining marginal operators after being eaten by broken currents are

(1)⊕ (1)
(
y12 + y−6

)
⊕
(
AdSU(N)

)
y−6. (B.7)

We see that we are left with one singlet, meaning one exactly marginal operator, and thus

there is a 1d subspace on the conformal manifold preserving U(1)2 × SU(N) symmetry.

This is again an important consistency check, as there must always be at least one singlet

corresponding to the exactly marginal operator that we have turned on.

We next consider turning on additional marginal operators. For that we look for

a collection of operators, among the remaining marginal operators on this 1d subspace,

with a Kähler quotient under the preserved symmetry on that subspace. Looking at the

remaining operators one can easily see that we can generate another singlet by combining

the two operators (1) y12 and (1) y−6 breaking U(1)y. The remaining operators after the

symmetry breaking and the reduction of the broken current are

2 (1)⊕
(
AdSU(N)

)
. (B.8)

Thus, we have an additional direction preserving U(1) × SU(N) together with the one we

already found preserving a higher amount of symmetry.

Next, we can break SU(N)→ SU(N − 1)×U(1) to find

3 (1)⊕
(
AdSU(N−1)

)
, (B.9)
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with an additional direction preserving U(1)2×SU(N−1). We can keep breaking SU(N−1)

in the same manner serially until the SU(N) has been completely broken down to its Cartan

subalgebra. This will result in an N+1 dimensional conformal manifold preserving U(1)N .

In the end of this process we are left only with exactly marginal operators, and the full

conformal manifold is found.

Another example. Next, we wish to further illustrate our method with another exam-

ple. In this example we look at case 27 appearing in table 22. This is a theory of an SO(10)

gauge group with one two index traceless symmetric chiral field, three spinor chiral fields

and six vector chiral fields. One can verify it obeys (3.2). The symmetry of the free point

is U(1)2 × SU(3) × SU(6), and we assign charges under the non-anomalous U(1) groups

as follows. We assign charge (1, 0) to the spinor chirals, (0, 1) to the symmetric chirals

and (−1,−2) to the vector chirals under U(1)x×U(1)y. The marginal operators and their

representations under the flavor symmetries are

A = S × V 2 ∼
(
1,21

)
x−2y−3

B = S3 ∼ (1,1) y3

C = 162
SO(10) × V ∼

(
6,6

)
xy−2 . (B.10)

An operator invariant under the abelian symmetries is given by A3B7C6. The easiest way

to form an invariant under the non-abelian symmetries is taking two copies of A3B7C6,

that is to consider instead A6B14C12, and then each operator can be multiplied with itself

to form a singlet. For A, we use the SU(6) invariant given by the determinant of the

symmetric matrix, which is a sixth order symmetric invariant, and in fact it is the only

SU(6) invariant that can be generated from a single symmetric matrix of SU(6). For B,

this is immediate as it is a singlet under the non-abelian symmetries. Finally for C, we

take twice the sixth totally antisymmetric product for both the SU(3) and SU(6) indices,

so that the total product is symmetric, which gives a singlet under both symmetries.

The antisymmetric contractions imply we should identify a diagonal SU(3) symmetry.

This requires first breaking SU(6) → SU(3) and then take the diagonal of this SU(3) and

the intrinsic one. This indeed gives a component in C with a singlet under the non-abelian

groups. We next need to have a singlet component under the non-abelian groups also in

operator A. For this we note that the two index (conjugate) symmetric representation 21

of SU(6) breaks to the symmetric 6 and the 15′ representations of SU(3). As this does not

give us a singlet we need to further break the SU(3) to SU(2), which can be accomplished

by taking either SU(3)→ SO(3) or SU(3)→ SU(2)×U(1)z. As we have taken the diagonal

group with an SU(3) subgroup of SU(6), this implies that we should also break the SU(6)

accordingly. Here it is important to note that while the commutant of the chosen SU(3)

subgroup in SU(6) is empty, and the commutant of SU(2) in SU(3) is either empty or

U(1)z, depending on the choice of embedding, the commutant of SU(2) in SU(6) is larger.

Specifically, if we break SU(3) → SO(3), then we should break SU(6) → U(1)a × SU(2)

such that 6 → a5SU(2) + 1
a5

, while if we break SU(3) → SU(2) × U(1)z, then we should

break SU(6)→ U(1)a×U(1)b×SU(2) such that 6→ a3SU(2)+ b
a2SU(2)+ 1

ab2
. The marginal
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operators under these breakings are(
1,21

)
x−2y−3 ⊕ (1,1) y3 ⊕

(
6,6

)
xy−2

1st → (5)x−2y−3a−2 ⊕ (4)x−2y−3b−1 ⊕ (3)x−2y−3(b2 + a2b−2)

⊕ (2)x−2y−3(b−1 + a2b)⊕ (1)x−2y−3(a−2 + a2b4)⊕ (1) y3 ⊕ (5)xy−2z2a−1

⊕ (4)xy−2
(
z2ab−1 + z−1a−1

)
⊕ (3)xy−2

(
z2a−1 + ab2z2 + ab−1z−1 + a−1z−4

)
⊕ (2)xy−2

(
z2ab−1 + ab2z−1 + z−1a−1 + ab−1z−4

)
⊕ (1)xy−2

(
z2a−1 + ab−1z−1 + ab2z−4

)
, (B.11)

2nd →
(
a−2(9⊕ 5⊕ 1) + a45 + a101

)
x−2y−3 ⊕ (1) y3

⊕
(
a−1(9⊕ 7⊕ 5⊕ 3⊕ 1) + 5(a5 + a−1) + a51

)
xy−2 , (B.12)

where the first and second refer to the breaking SU(3) → SU(2)×U(1) and SU(3)→ SO(3),

respectively. The underlined operators are non-abelian singlets that represent the operators

to be added to the superpotential, and as such form a quotient as dictated by the found

invariant operator. We next need to break the abelian symmetries such that all these

operators are singlets under these symmetries as well. In the second case, this dictates

that all the abelian symmetries are to be completely broken, while in the first case, we are

to identify

x−2y−3a−2 = x−2y−3a2b4 = y3 = xy−2z2a−1 = xy−2a1z−1b−1 = 1

⇒ y = 1, z = a = b−1 = x−1 . (B.13)

The resulting marginal operators are

1st → 2 (5)⊕ (4)
(
x3 + 2x−3

)
⊕ (3)

(
4 + x6 + x−6

)
⊕ 3 (2)

(
x3 + x−3

)
⊕ (1)

(
5 + x6

)
, (B.14)

2nd → 2 (9)⊕ (7)⊕ 5 (5)⊕ (3)⊕ 5 (1) . (B.15)

Next we write down the broken currents

b.c.1st → (5)⊕ (4)
(
x3 + x−3

)
⊕ 4 (3)⊕ 3 (2)

(
x3 + x−3

)
⊕ 4 (1) , (B.16)

b.c.2nd → (9)⊕ (7)⊕ 4 (5)⊕ (3)⊕ 3 (1) . (B.17)

The remaining marginal operators after being eaten by the broken currents are

1st → (5)⊕ (4)x−3 ⊕ (3)
(
x3 + x−3

)
⊕ (1)x6 ⊕ (1) , (B.18)

2nd → (9)⊕ (5)⊕ 2 (1) . (B.19)

We see that we are left with one singlet in the first case and two singlets in the second

case, and thus there is a 1d subspace of the conformal manifold preserving U(1) × SU(2)

symmetry and a 2d subspace preserving only a different SU(2) symmetry.
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Looking at the remaining operators we see various representations under the remain-

ing symmetries that break them completely, leaving us with a 16 	 3 = 13 dimensional

conformal manifold on which no symmetry is generically preserving. In the end of this

process we are left only with exactly marginal operators, and the full conformal manifold

is found.

Yet another example. In this example we look at the eighth case of table 12. This is

a theory of a USp(4) gauge symmetry with one adjoint chiral field, three chirals in the two

index traceless antisymmetric representation and six fundamental chirals. One can verify

that it obeys (3.2). The symmetry at the free point is U(1)×SU(3)×SU(6), and we assign

charges under the non-anomalous U(1) groups as follows. We assign charge (1, 0) to the

adjoint chiral, (0, 1) to the antisymmetric chirals and (−1,−1) to the fundamental chirals

under U(1)x × U(1)y. The marginal operators and their representations under the flavor

symmetries are

A = S2 ×AS ∼ (3,1)x2y

B = S ×AS2 ∼
(
3,1

)
xy2

C = S × F 2 ∼ (1,21)x−1y−2

D = AS × F 2 ∼ (3,15)x−2y−1. (B.20)

There are two invariants under the abelian symmetries given by the operators AD and BC.

An invariant under the non-abelian symmetries can be constructed by taking two copies of

AD and four copies of BC all with symmetric contractions. In total the invariant operator

is A2B4C4D2.

We have both the symmetric and antisymmetric representation under the SU(6) flavor

symmetry group, and thus we expect the breaking of SU(6) → SU(n)× SU(6− n)× U(1)

where one of the special unitary subgroups will be broken to a symplectic group by the

antisymmetric representation and the other to an orthogonal group by the symmetric

representation. The initial breaking is determined by the relation between the numbers

of the two representations in the invariant operator. In our case it is SU(6) → SU(4) ×
SU(2) × U(1)a where the SU(4) is broken to SO(4), which we take to be SU(2)2, and the

SU(2) remains unbroken as it is the same as USp(2). As for the SU(3), it is broken by the

fundamentals as SU(3)→ SU(2)×U(1)z. The marginal operators under this breaking are

(3,1)x2y ⊕
(
3,1

)
xy2 ⊕ (1,21)x−1y−2 ⊕ (3,15)x−2y−1

→ (1,1,1,1)x2yz−2 ⊕ (2,1,1,1)x2yz ⊕ (1,1,1,1)xy2z2

⊕ (2,1,1,1)xy2z−1 ⊕ (1,1,1,3)x−1y−2a−4 ⊕ (1,2,2,2)x−1y−2a−1

⊕ (1,3,3,1)x−1y−2a2 ⊕ (1,1,1,1)x−1y−2a2

⊕(1,1,1,1)x−2y−1z−2a−4 ⊕ (1,2,2,2)x−2y−1z−2a−1

⊕ (1,3,1,1)x−2y−1z−2a2 ⊕ (1,1,3,1)x−2y−1z−2a2

⊕ (2,1,1,1)x−2y−1za−4 ⊕ (2,2,2,2)x−2y−1za−1

⊕ (2,3,1,1)x−2y−1za2 ⊕ (2,1,3,1)x−2y−1za2. (B.21)
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Here the symmetries are broken as 3SU(3) → z (2,1,1,1) + 1
z2

, 6SU(6) → a (1,2,2,1) +
1
a2

(1,1,1,2). We have underlined four operators that are singlets under the non-abelian

parts of the preserved global symmetry, each one a component of one of the four marginal

operators A, B, C and D. These should represent the components we expect to be turned

on when going on the subspace corresponding to the invariant combination that we found,

and indeed these have a quotient under the U(1) symmetries. As the symmetry preserved

by the subspace must be such that these operators transform as a singlet under it, we

see that some of the U(1) groups need to be identified with one another. In this case the

required identifications are

x2yz−2 = xy2z2 = x−1y−2a2 = x−2y−1z−2a−4 = 1⇒ x = z−2, y = z2, a = z−1 . (B.22)

Breaking the symmetry further according to the identification above, the marginal opera-

tors are

→ 4 (1,1,1,1)⊕ (2,1,1,1)
(
2z3 + z−3

)
⊕ (1,2,2,2)

(
z3 + z−3

)
⊕ (1,1,1,3) z6 ⊕ (1,3,3,1)⊕ (1,3,1,1) z−6 ⊕ (1,1,3,1) z−6

⊕ (2,2,2,2)⊕ (2,3,1,1) z−3 ⊕ (2,1,3,1) z−3 . (B.23)

Next we write down the broken currents

b.c. = 3 (1,1,1,1)⊕ (2,1,1,1)
(
z3 + z−3

)
⊕ (1,2,2,2)

(
z3 + z−3

)
⊕ (1,3,3,1) .(B.24)

Here the first term comes from the fact we lost three abelian symmetries in the above

identification, the second term comes from the breaking of SU(3) → SU(2)×U(1)z and the

last two come from the breaking of SU(6)→ SO(4)×USp(2)×U(1)a.

The remaining marginal operators after being eaten by the broken currents

→ (1,1,1,1)⊕ (1,1,1,3) z6 ⊕ (1,3,1,1) z−6 ⊕ (1,1,3,1) z−6

⊕ (2,1,1,1) z3 ⊕ (2,2,2,2)⊕ (2,3,1,1) z−3 ⊕ (2,1,3,1) z−3 . (B.25)

We see that we are left with one singlet, meaning one exactly marginal operator, and thus

there is a 1d subspace on the conformal manifold preserving U(1)×SU(2)4 global symmetry.

Looking at the remaining operators one can continue and generate singlets breaking

the symmetry completely as there are multiple representations under each SU(2). The end

result is thus

1⊕ 3⊕ 3⊕ 3⊕ 2⊕ 16⊕ 6⊕ 6	 4× 3	 1 = 27 . (B.26)

The result is a 27 dimensional conformal manifold preserving no global symmetry on a

generic point. In the end of this process we are left only with exactly marginal operators,

and the full conformal manifold is found.
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B.2.2 Cases with marginally irrelevant operators due to unbreakable symme-

tries

So far all the examples we discussed with a Kähler quotient had either exactly marginal

operators or marginally irrelevant operators that are eaten by broken symmetries. However,

there can be cases where there is a conformal manifold, but we have marginally irrelevant

operators due to them being charged under a symmetry under which there is no quotient.

These cases then look like a combination of the previous cases in this subsection, and the

cases of the previous subsection. Like the previous cases in this subsection, they have

a non-trivial quotient, and so a conformal manifold, but when going on it, the space of

marginal operators that we can turn on eventually resembles that of the cases in the

previous subsection. In these cases, the dimension of the conformal manifold is not equal

to the number of marginal operators minus the number of broken currents. Like in the

previous subsection, the eventual lack of a quotient can be due to the abelian symmetries,

the non-abelian symmetries or both.

As a simple example of this case, we look at the fourth case of table 5. The theory here

is an SU(N) gauge theory with a single symmetric chiral field, a single chiral field in the

conjugate antisymmetric, 2N − 4 fundamental chiral fields and 2N + 4 anti-fundamental

chiral fields. This theory has U(1)3×SU(2N−4)×SU(2N+4) global symmetry. We assign

charges under the non-anomalous U(1) groups as follows. We assign charges (N−2, 0, 2) to

the symmetric chiral, (−N − 2, 0, 2) to the conjugate antisymmetric chiral, (0, N + 2,−1)

to the fundamental chirals and (0,−N + 2,−1) to the anti-fundamental chirals under

U(1)a ×U(1)b ×U(1)c. The marginal operators and their representations under the flavor

symmetries are

A = AS × F 2 ∼ ((N − 2)(2N − 5),1) b2(N+2)a−(N+2)

B = S × F 2 ∼ (1, (N + 2)(2N + 5)) b−2(N−2)aN−2, (B.27)

where we assume that N > 6. We shall relax that assumption later. The interesting feature

in this model is that the two marginal operators are charged only under a single combination

of the U(1) groups. We can form a non-abelian invariant from both operators by taking

the determinant of the antisymmetric or symmetric matrix. As a result the operator

A2(N−2)B2(N+2) is invariant under the full global symmetry, and a quotient exists. Since

we are inserting an operator in the symmetric representation of SU(2N + 4) and another

in the antisymmetric representation of SU(2N − 4), the former global symmetry then is

broken to SO(2N+4), while the latter is broken to USp(2N−4). Similarly, U(1)a and U(1)b
are broken to the combination defined by a = b2. We can next decompose the operators

into representations of the preserved global symmetry, write down the broken currents and

identify the marginally irrelevant operators, similarly to what was done in the previous

examples. One then finds that there is only one exactly marginal operator, the rest eaten

by the broken symmetries. As this is similar to the previous examples, we will not present

the analysis in detail here.

The different aspect enters when we consider cases with N < 7. In these cases there are

additional marginal operators so we might expect there to be a larger conformal manifold.
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Field U(1)x U(1)y U(1)z U(1)a

Ad 0 0 5 5

AS 0 1 0 −3

AS 0 −2 0 −4

F 7 0 2 −4

F −5 0 −10 0

Table 33. Matter content and assigned charges for an SU(6) gauge theory.

However, with the exception of N = 3, in all other cases these additional operators are

actually marginally irrelevant as these are charged under the remaining U(1) groups, such

that there is no quotient. For instance, consider N = 6. The additional marginal operator

in this case is

C = AS
3 ∼ (1,1) c6a−24, (B.28)

and there is indeed no quotient.

In the example we have shown above, the unbreakable symmetries were one of the

intrinsic U(1) symmetries, and so the issue was readily apparent. However, there are

cases where the unbreakable symmetry is some combination of the abelian and non-abelian

symmetries, and its existence is not immediately apparent. As an example, we look at

the sixth case of table 3. This is a theory of an SU(6) gauge theory with one adjoint

chiral, two antisymmetric chirals, one conjugate antisymmetric chiral, five fundamental

chirals and seven anti-fundamental chirals. One can verify it obeys (3.1) and (3.2). The

symmetry of the free point is U(1)4×SU(2)×SU(5)×SU(7), and we assign charges under

the non-anomalous U(1) groups as shown in table 33.

The marginal operators and their representations under the flavor symmetries are

A = Ad3 ∼ (1,1,1) z15a15

B = Ad× F × F ∼
(
1,5,7

)
x2z−3a

C = Ad×AS ×AS ∼ (2,1,1) y−1z5a−2

D = AS × F 2 ∼
(
2,1,21

)
x−10yz−20a−3

E = AS × F 2 ∼ (1,10,1)x14y−2z4a−12

G = AS3 ∼ (4,1,1) y3a−9

I = AS
3 ∼ (1,1,1) y−6a−12 . (B.29)

There are several invariants one can build under the abelian symmetries, and we will focus

on the operators AB5C4DG and A3BC2D3E2G.

One invariant under the non-abelian symmetries can be constructed from one copy of

AB5C4DG, by contracting the indices of both the SU(5) and SU(7) groups in B5 with the

respective epsilon tensors to create an invariant under the SU(5) and the 21 representation

under SU(7). The latter can then be contracted with the 21 of SU(7) in D. Taking C

to the fourth symmetric power gives the 5 representation of SU(2) that can be contracted

with the 2 and 4 representations to generate an SU(2) invariant.
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Another invariant under the non-abelian symmetries can be constructed from one

copy of A3BC2D3E2G. This is again done by contracting the indices with the epsilon

tensor, where for SU(5) we use the two antisymmetric representations in E2 and the single

fundamental in B, which is also used for the SU(7) with the three conjugate antisymmetric

representations in D3. Finally for the SU(2), we can multiply the 3 coming from C2, with

the two 4 representations coming from D3 and G to form an SU(2) singlet.

In the invariant operator AB5C4DG, we use an SU(5)× SU(7) baryon, implying that

a diagonal SU(5) is conserved out of the one coming from the breaking of SU(7) → SU(5)×
SU(2)×U(1)c and the intrinsic SU(5). As for the intrinsic SU(2), the presence of operators

charged only under it imply that the SU(2) is at least broken to U(1)b. In the invariant

operator A3BC2D3E2G we use only symmetric contractions, so we don’t expect diagonal

combinations of groups. The use of a single SU(5) × SU(7) bifundamental implies these

break as SU(5)→ SU(4)×U(1)c and SU(7)→ SU(6)×U(1)d. In addition the presence of

operators in the antisymmetric representations under the SU(5) and SU(7) groups imply

further breakings as SU(6)→ USp(6) and SU(4)→ USp(4). The intrinsic SU(2) is at least

broken to U(1)b for the same reasons mentioned before. The marginal operators under the

two breakings

(1,1,1) z15a15 ⊕
(
1,5,7

)
x2z−3a⊕ (2,1,1) y−1z5a−2 ⊕

(
2,1,21

)
x−10yz−20a−3

⊕ (1,10,1)x14y−2z4a−12 ⊕ (4,1,1) y3a−9 ⊕ (1,1,1) y−6a−12

1st → (1,1) z15a15 ⊕ (24⊕ 1,1)x2z−3ac−2 ⊕ (5,2)x2z−3ac5

⊕(1,1) y−1z5a−2
(
b+ b−1

)
⊕
(
10,1

)
x−10yz−20a−3

(
b+ b−1

)
c−4

⊕
(
5,2

)
x−10yz−20a−3

(
b+ b−1

)
c3 ⊕ (1,1)x−10yz−20a−3

(
b+ b−1

)
c10 (B.30)

⊕ (10,1)x14y−2z4a−12 ⊕ (1,1) y3a−9
(
b3 + b+ b−1 + b−3

)
⊕ (1,1) y−6a−12 ,

2nd → (1,1) z15a15 ⊕ (4,6)x2z−3acd−1 ⊕ (4,1)x2z−3acd6 ⊕ (1,6)x2z−3ac−4d−1

⊕(1,1)x2z−3ac−4d6 ⊕ (1,1) y−1z5a−2
(
b+ b−1

)
⊕(1,14⊕ 1)x−10yz−20a−3

(
b+ b−1

)
d−2 ⊕ (1,6)x−10yz−20a−3

(
b+ b−1

)
d5

⊕ (4,1)x14y−2z4a−12c−3 ⊕ (5⊕ 1,1)x14y−2z4a−12c2

⊕(1,1) y3a−9
(
b3 + b+ b−1 + b−3

)
⊕ (1,1) y−6a−12 , (B.31)

where we underlined the operators containing singlets under the non-abelian symmetries.

These are designated to be the marginal operators inserted in the superpotential, and as

such have a quotient under the abelian groups, in accordance with the invariant operators

we found. Here, in the first case we have used the breaking 7SU(7) → 1
c2

(5,1) + c5 (1,2),

2SU(7) → b+ 1
b while in the second we have used the breaking 7SU(7) → 1

d (1,6) + d6 (1,1),

5SU(5) → c (4,1)+ 1
c4

(1,1), 2SU(7) → b+ 1
b . Finally, we need to identify some of the abelian

symmetries with one another so that the underlined operators become true singlets. This

will give us the abelian symmetry preserved by these operators. For the first operator
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AB5C4DG we find the identifications

z15a15 = x2z−3ac−2 = y−1z5a−2b = x−10yz−20a−3b−1c10 = y3a−9b−3 = 1

⇒ z = a = 1 , b = y , c = x . (B.32)

For the second operator A3BC2D3E2G we find the identifications

z15a15 = x2z−3ac−4d6 = y−1z5a−2b = x−10yz−20a−3b−1d−2

= x14y−2z4a−12c2 = y3a−9b = 1

⇒ z = y−2 , a = y2 , b = y15 , c = x−7y17 , d = x−5y10 . (B.33)

Breaking the symmetry further according to the identification above, the marginal opera-

tors are

1st → (1,1)
(
y6 + y4 + 2y2 + 5 + y−2 + y−6

)
⊕ (24,1)⊕ (5,2)x7

⊕
(
5,2

)
x−7

(
y2 + 1

)
⊕ (10,1)x14y−2 ⊕

(
10,1

)
x−14

(
y2 + 1

)
, (B.34)

2nd → (1,1)
(
2y30 + 6 + 3y−30 + y−60

)
⊕ (4,6) y15 ⊕ (1,14)

(
y30 + 1

)
⊕ (5,1)

⊕ (4,1)
(
x−35y85 + x35y−85

)
⊕ (1,6)

(
x35y−70 + x−35y100 + x−35y70

)
. (B.35)

Next we write down the broken currents

b.c.1st → (1,1)
(
y2 + 4 + y−2

)
⊕ (24,1)⊕ (5,2)x7 ⊕

(
5,2

)
x−7 , (B.36)

b.c.2nd → (1,1)
(
y30 + 5 + y−30

)
⊕ (5,1)⊕ (1,14)

⊕ (4,1)
(
x−35y85 + x35y−85

)
⊕ (1,6)

(
x−35y70 + x35y−70

)
. (B.37)

The remaining marginal operators after being eaten by the broken currents

1st → (1,1)⊕ (1,1)
(
y6 + y4 + y2 + y−6

)
⊕
(
5,2

)
x−7y2

⊕ (10,1)x14y−2 ⊕
(
10,1

)
x−14

(
y2 + 1

)
, (B.38)

2nd → (1,1)⊕ (1,1)
(
y30 + 2y−30 + y−60

)
⊕ (4,6) y15 ⊕ (1,14) y30 ⊕ (1,6)x−35y100 . (B.39)

We see that we are left with one singlet in each case, meaning one exactly marginal operator,

and thus there is a 1d subspace on the conformal manifold preserving U(1)2×SU(2)×SU(5)

symmetry and a 1d subspace preserving U(1)2 ×USp(4)×USp(6) symmetry.

Looking at the remaining operators of the first case one can easily see that we can

generate another singlet by combining the two operators (1,1) y6 and (1,1) y−6 breaking

U(1)y. The remaining operators after the symmetry breaking and the subtraction of the

broken current are

4 (1,1)⊕
(
5,2

)
x−7 ⊕ 2

(
10,1

)
x−14 ⊕ (10,1)x14. (B.40)

Thus, we have additional three directions preserving U(1) × SU(2) × SU(5) together with

the one we already found preserving a higher amount of symmetry.
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Next, we can break U(1) × SU(2) × SU(5) → U(1) × SU(2) × (USp(4)×U(1)a′) and

identify a′ = x−7 in a similar procedure to the one we did before to find

6 (1,1)⊕ 2 (5,1)⊕ (4,2)⊕ (4,1)x−35 ⊕ (1,2)x−35, (B.41)

giving two additional directions preserving U(1) × SU(2) × USp(4). One can continue

breaking the symmetry as follows U(1) × SU(2) × USp(4) → U(1) × SU(2) × SU(2)2 →
U(1)×SU(2)3 → U(1)×SU(2)2 → U(1)×SU(2)→ U(1)2 and find the remaining operators

12⊕ 3x−35
(
y′ + y′−1

)
. (B.42)

Thus, we find a 12 dimensional conformal manifold preserving U(1)2 on a general point.

We cannot break the symmetry any more because we are left only with exactly marginal

operators and operators that cannot combine to form a singlet of the flavor symmetry.

The latter ones are then marginally irrelevant operators. We note that the U(1) symmetry

responsible for the irrelevancy is a non-trivial combination of the intrinsic U(1) groups

and Cartan elements in the non-abelian groups, given by the identifications in (B.32) and

a′ = x−7. The presence of such symmetries may not be immediately apparent, but can be

uncovered through the process of successive breakings as done here. Finally, we note that

we can get to the same end result, (B.42), also by successive breakings from the second 1d

subspace we found.

B.2.3 Cases with a complex subspace structure

We have seen by now various cases defined for a group with variable rank where the

existence and behavior of the conformal manifold depends on the rank. Usually, this is

due to the existence of additional operators at special ranks. Occasionally, this is due

to some marginal operators becoming singlets under some symmetries at special ranks.

Interestingly, there are also cases where there is a conformal manifold for every rank,

sometimes also with the same dimension and generically preserved symmetry for every rank,

but the subspace structure of the conformal manifold is sensitive to the rank of the gauge

group. This occurs where the identity of the independent invariants, but not necessarily

their number, depends on the rank. The existence of these subspaces is important when

considering quiver theories, as then it might be necessary to know which symmetries can

be gauged without completely lifting the conformal manifold, and so it is useful to also

consider these details.

As an example we consider case 9 in table 13. This is a theory of a USp(2N) gauge

theory with three antisymmetric traceless chiral fields, and twelve fundamental chiral fields.

The symmetry of the free point is U(1)c × SU(3) × SU(12), and we assign charges under

the non-anomalous U(1)c group as follows. We take the antisymmetric chiral fields to have

charge 2, and the fundamental chiral fields to have charge −(N − 1).

We then have the following marginal operators

A = AS3 ∼ (10,1) c6

B = AS × F 2 ∼ (3,66) c−2(N−2) . (B.43)
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Here, we have assumed that N > 2. The case of N = 2 is special as then the operator A

does not exist, and we will not consider it in detail here.

As there is only one U(1) group, it is straightforward to find abelian invariants. The

more interesting question, is finding the non-abelian invariants. From A, we can build the

two SU(3) invariants A4 and A6. These are positively charged under U(1)c, and as B is

negatively charged under U(1)c, if we can find a non-abelian singlet made just from it then

there is a quotient. Indeed, the combination B12 contains a singlet, where the SU(3) indices

are contracted with the epsilon tensor to form an SU(3) invariant, and the SU(6) indices

are contracted in a mixed symmetry product given by the Young diagram made from three

rows of four boxes each. This ensures that the full product is symmetric. We then see that

there is indeed a quotient, and using similar methods as in the previous sections, one can

show that there is a 56 dimensional conformal manifold, on a generic point of which the

global symmetry is completely broken, regardless of N .

An interesting question then is what symmetries can be preserved on special sub-

spaces. As we are inserting a marginal operator in the 10 of SU(3), it should be bro-

ken at least to its Cartan. The effect of B is subtler. Generically, a single operator

in the antisymmetric of an SU(2k) group breaks that group to USp(2k). If there are

two independent operators in the antisymmetric representation of SU(2k) group, then

that group is broken to USp(2n) × USp(2k − 2n), and so forth. In this case, we needed

to use a third rank antisymmetric contraction for the SU(6) indices in B, due to the

need to make the operator SU(3) invariant. This suggests that the breaking pattern is

SU(12) → USp(2k) × USp(2l) × USp(12 − 2k − 2l) for some numbers k and l. However,

we can ask whether it is possible to preserve more symmetry, specifically, whether we can

preserve the full USp(12) subgroup of SU(12).

In order to have such a subspace, we need to form the quotient using the totally sym-

metric, determinant type, invariant for the antisymmetric of SU(6). We then consider the

operator B6, and contract the SU(6) indices fully symmetrically. This then forces us to

contract also the SU(3) indices in the fully symmetric matter, which leads to the six index

symmetric tensor representation of SU(3). To form an SU(3) invariant, we multiply this

with the operator A6, which contains the conjugate six index symmetric tensor representa-

tion. The resulting operator has the U(1)c charge −12(N−4). We then have three possible

behaviors depending on the value of N . If N > 4 then the operator we found has negative

charge and together with the SU(3) invariant A3, we have a quotient. In these cases there

is a subspace of the conformal manifold preserving the USp(12) subgroup of SU(12). If

N = 4 then it is invariant under the full global symmetry, and gives a quotient by itself.

We then expect a 1d subspace, spanned by this combination, preserving U(1) × USp(12),

where the extra U(1) is expected as the quotient requires one operator less and so we

expect one less marginally irrelevant operator and one more conserved current. Finally, if

N < 4 then this operator is also positively charged and there is no quotient of this type,

implying that we can not preserve the USp(12) subgroup of SU(12) on any subspace on

the conformal manifold.

Finally, it is possible to show that we can get a quotient fixing two independent anti-

symmetric matrices for any N > 2, so in those cases the minimal number of USp subgroups
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of SU(12) that can be preserved is two. For N = 2, as we do not have the operator A,

we must make an invariant from B alone and so the minimal number of USp subgroups

of SU(12) that can be preserved is three. The N = 2 case also has various other special

subspaces preserving various subgroups of SU(3)× SU(12), see [28] for a detailed example

of one such subspace.

C Lists of models with vanishing beta function

In this appendix we summarize all possible strictly N = 1 solutions of conditions (3.1)

and (3.2). For the complete list, these should be supplemented by the N = 2 and N = 4

solutions in [31]. The list is organized by gauge group and matter representation, in the

same vein as done in the bulk of the paper.

C.1 Special unitary groups

Here we summarize solutions when the gauge group is SU(N).

C.1.1 Cases with two adjoints

Here we summarize solutions when the matter content contains two chiral fields in the

adjoint representation. The possible solutions to conditions (3.1) and (3.2) for generic

N are:

1. NF = NF = N

2. NAS = 1, NF = 3, NF = N − 1

3. NAS = NAS = 1, NF = NF = 2

Here we have suppressed the two adjoints for brevity, but we remind the reader that

they are also part of the matter content. Also, for chiral choices there are two possibilities

given by complex conjugation and we have only written one, as they are physically the

same differing merely by redefining the SU(N) generators.

Besides these, there are several solutions that exist only for small N :

1. NAS = 2, NF = 6−N, NF = N − 2, N = 5, 6

2. NAS = 3, NF = NF = 1, N = 4

3. NAS = 4, N = 4

4. NAS = 2, NAS = 1, NF = 1, N = 5

Here we have only listed cases that do not reduce to one of the generic families.

C.1.2 Cases with a single adjoint

Here we summarize solutions when the matter content contains one chiral field in the

adjoint representation, but that only have N = 1 supersymmetry. The possible solutions

to conditions (3.1) and (3.2) for generic N are then:

1. NS = NS = 1, NAS = 1, NF = 1, NF = N − 3
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2. NS = 1, NAS = 1, NF = 2N

3. NS = 1, NAS = 1, NF = N − 4, NF = N + 4

4. NS = 1, NAS = 2, NF = N − 5, NF = 7

5. NS = 1, NF = N − 3, NF = 2N + 1

6. NAS = 2, NAS = 1, NF = 5, NF = N + 1

7. NAS = 2, NF = 6, NF = 2N − 2

8. NAS = 1, NF = N + 3, NF = 2N − 1

Here we have suppressed the adjoint for brevity, but we remind the reader that it is

also part of the matter content. Also, for chiral choices there are two possibilities given

by complex conjugation and we have only written one, as they are physically the same

differing merely by a redefining the SU(N) generators. We also note that while for generic

N these models have only N = 1 supersymmetry, for some this is enhanced to N = 2 for

low values of N .

Besides these, there are several solutions that exist only for small N :

1. NS = 1, NAS = 3, NF = N − 6, NF = 10−N, N = 6, 7, 8, 9, 10

2. NAS = 7, NF = NF = 1, N = 4

3. NAS = 5, NF = 15− 3N, NF = 2N − 5, N = 4, 5

4. NAS = 4, NAS = 2, NF = 2, N = 5

5. NAS = 4, NAS = 1, NF = 1, NF = 4, N = 5

6. NAS = 4, NF = 12− 2N, NF = 2N − 4, N = 5, 6

7. NAS = 3, NAS = 2, NF = 7−N, NF = 3, N = 5, 6, 7

8. NAS = 3, NAS = 1, NF = 8−N, NF = N, N = 5, 6, 7, 8

9. NAS = 3, NF = 9−N, NF = 2N − 3, N = 5, 6, 7, 8, 9

Here we have only listed cases that do not reduce to one of the generic families.

C.1.3 No adjoints, with symmetrics

Here we summarize solutions when the matter content contains chiral fields in the symmet-

ric representation, but no chiral fields in the adjoint representation. The possible solutions

to conditions (3.1) and (3.2) for generic N are:

1. NS = 2, NS = 2, NF = N − 4, NF = N − 4

2. NS = 2, NS = 1, NAS = 2, NF = N − 7, NF = 5

3. NS = 2, NS = 1, NAS = 1, NF = N − 6, NF = N + 2

4. NS = 2, NS = 1, NF = N − 5, NF = 2N − 1

5. NS = 2, NAS = 3, NF = N − 9, NF = 11

6. NS = 2, NAS = 2, NF = N − 8, NF = N + 8
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7. NS = 2, NAS = 1, NF = N − 7, NF = 2N + 5

8. NS = 2, NF = N − 6, NF = 3N + 2

9. NS = 1, NS = 1, NAS = 2, NAS = 2, NF = 2, NF = 2

10. NS = 1, NS = 1, NAS = 2, NAS = 1, NF = 3, NF = N − 1

11. NS = 1, NS = 1, NAS = 2, NF = 4, NF = 2N − 4

12. NS = 1, NS = 1, NAS = 1, NAS = 1, NF = N, NF = N

13. NS = 1, NS = 1, NAS = 1, NF = N + 1, NF = 2N − 3

14. NS = 1, NS = 1, NF = 2N − 2, NF = 2N − 2

15. NS = 1, NAS = 2, NAS = 3, NF = 8

16. NS = 1, NAS = 2, NAS = 2, NF = 1, NF = N + 5

17. NS = 1, NAS = 2, NAS = 1, NF = 2, NF = 2N + 2

18. NS = 1, NAS = 2, NF = 3, NF = 3N − 1

19. NS = 1, NAS = 1, NAS = 3, NF = N − 3, NF = 9

20. NS = 1, NAS = 1, NAS = 2, NF = N − 2, NF = N + 6

21. NS = 1, NAS = 1, NAS = 1, NF = N − 1, NF = 2N + 3

22. NS = 1, NAS = 1, NF = N, NF = 3N

23. NS = 1, NAS = 3, NF = 2N − 6, NF = 10

24. NS = 1, NAS = 2, NF = 2N − 5, NF = N + 7

25. NS = 1, NAS = 1, NF = 2N − 4, NF = 2N + 4

26. NS = 1, NF = 2N − 3, NF = 3N + 1

As previously, for chiral choices there are two possibilities given by complex conjugation

and we have only written one, as they are physically the same, differing merely by redefining

the SU(N) generators.

Besides these, there are several solutions that exist only for small N :

1. NS = 2, NAS = 4, NF = N − 10, NF = 14−N, N = 10, 11, 12, 13, 14

2. NS = 2, NS = 1, NAS = 3, N = 8

3. NS = 1, NS = 1, NAS = 3, NF = 7−N, NF = 2N − 5, N = 5, 6, 7

4. NS = 1, NS = 1, NAS = 4, NF = 4, N = 5

5. NS = 1, NS = 1, NAS = 5, NF = 1, NF = 1, N = 4

6. NS = 1, NS = 1, NAS = 6, N = 4

7. NS = 1, NS = 1, NAS = 3, NAS = 1, NF = 6−N, NF = N − 2, N = 5, 6

8. NS = 1, NS = 1, NAS = 3, NAS = 2, NF = 1, N = 5

9. NS = 1, NAS = 3, NF = 6−N, NF = 3N − 2, N = 5, 6
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10. NS = 1, NAS = 3, NAS = 1, NF = 11, N = 5

11. NS = 1, NAS = 1, NAS = 4, NF = N − 4, NF = 12 − N, N = 5, 6, 7, 8,

9, 10, 11, 12

12. NS = 1, NAS = 1, NAS = 5, NF = N − 5, NF = 15− 2N, N = 5, 6, 7

13. NS = 1, NAS = 1, NAS = 6, N = 6

14. NS = 1, NAS = 4, NF = 2N − 7, NF = 13−N, N = 5, 6, 7, 8, 9, 10, 11, 12, 13

15. NS = 1, NAS = 5, NF = 2N − 8, NF = 16− 2N, N = 5, 6, 7, 8

16. NS = 1, NAS = 6, NF = 2N − 9, NF = 19− 3N, N = 5, 6

17. NS = 1, NAS = 7, NF = 2, N = 5

Here we have only listed cases that do not reduce to one of the generic families.

C.1.4 No adjoints, no symmetrics, but antisymmetrics and fundamentals

Here we summarize solutions when the matter content contains chiral fields in the funda-

mental and antisymmetric representations (and their conjugates), but no chiral fields in

any other representation. The possible solutions to conditions (3.1) and (3.2) for generic

N are:

1. NAS = NAS = 3, NF = NF = 6

2. NAS = 3, NAS = 2, NF = 7, NF = N + 3

3. NAS = NAS = 2, NF = NF = N + 4

4. NAS = 3, NAS = 1, NF = 8, NF = 2N

5. NAS = 3, NF = 9, NF = 3N − 3

6. NAS = 2, NAS = 1, NF = N + 5, NF = 2N + 1

7. NAS = 2, NF = N + 6, NF = 3N − 2

8. NAS = NAS = 1, NF = NF = 2N + 2

9. NAS = 1, NF = 2N + 3, NF = 3N − 1

10. NF = NF = 3N
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As previously,for chiral choices there are two possibilities given by complex conjuga-

tion and we have only written one, as they are physically the same differing merely by a

redefining the SU(N) generators.

Besides these, there are several solutions that exist only for small N :

1. NAS = 12, N = 4

2. NAS = 11, NF = NF = 1, N = 4

3. NAS = NAS = 5, NF = NF = 10− 2N, N = 4, 5

4. NAS = 5, NAS = 4, NF = 11− 2N, NF = 7−N, N = 4, 5

5. NAS = 6, NAS = 3, NF = 3, N = 5

6. NAS = NAS = 4, NF = NF = 8−N, N = 4, 5, 6, 7, 8

7. NAS = 5, NAS = 3, NF = 12− 2N, NF = 4, N = 5, 6

8. NAS = 6, NAS = 2, NF = 1, NF = 5, N = 5

9. NAS = 7, NAS = 1, NF = 6, N = 5

10. NAS = 7, NF = 21− 4N, NF = 3N − 7, N = 4, 5

11. NAS = 6, NAS = 1, NF = 2, NF = 7, N = 5

12. NAS = 5, NAS = 2, NF = 13− 2N, NF = N + 1, N = 5, 6

13. NAS = 4, NAS = 3, NF = 9−N, NF = 5, N = 5, 6, 7, 8, 9

14. NAS = 6, NF = 18− 3N, NF = 3N − 6, N = 5, 6

15. NAS = 5, NAS = 1, NF = 14− 2N, NF = 2N − 2, N = 5, 6, 7

16. NAS = 4, NAS = 2, NF = 10−N, NF = N + 2, N = 5, 6, 7, 8, 9, 10

17. NAS = 5, NF = 15− 2N, NF = 3N − 5, N = 5, 6, 7

18. NAS = 4, NAS = 1, NF = 11−N, NF = 2N − 1, N = 5, 6, 7, 8, 9, 10, 11

19. NAS = 4, NF = 12−N, NF = 3N − 4, N = 5, 6, 7, 8, 9, 10, 11, 12

Here we have only listed cases that do not reduce to one of the generic families.

C.1.5 Exotic cases

Here we summarize solutions when the matter content contains chiral fields in at least one

of the exotic representations in table 8. The possible solution for equations (3.2) and (3.1)

in this case are:

SU(4).

1. N20 = 1, NS = 1, NAS = 2, NF = 1

2. N20 = 1, NS = 1, NAS = 1, NF = 2, NF = 1

3. N20 = 1, NS = 1, NF = 3, NF = 2

4. N20 = 1, NAS = 2, NF = 7
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5. N20 = 1, NAS = 1, NF = 1, NF = 8

6. N20 = 1, NF = 2, NF = 9

7. N20′ = 1, NAd = 1

8. N20′ = 1, NAS = 4

9. N20′ = 1, NAS = 3, NF = NF = 1

10. N20′ = 1, NAS = 2, NF = NF = 2

11. N20′ = 1, NAS = 1, NF = NF = 3

12. N20′ = 1, NF = NF = 4

SU(5).

1. N45 = 1, NF = 6

SU(6).

1. N20 = 6

2. N20 = 5, NAS = 1, NF = 2

3. N20 = 5, NF = NF = 3

4. N20 = 4, NAS = 2, NF = 4

5. N20 = 4, NAS = NAS = 1, NF = NF = 2

6. N20 = 4, NAS = 1, NF = 3, NF = 5

7. N20 = 4, NF = NF = 6

8. N20 = 3, NAd = 1, NAS = 1, NF = 2

9. N20 = 3, NS = NS = 1, NF = NF = 1

10. N20 = 3, NS = 1, NF = 10

11. N20 = 3, NAS = NAS = 2, NF = NF = 1

12. N20 = 3, NAS = 3, NF = 6

13. N20 = 3, NAS = 2, NAS = 1, NF = 2, NF = 4

14. N20 = 3, NAS = 2, NF = 3, NF = 7

15. N20 = 3, NAS = NAS = 1, NF = NF = 5

16. N20 = 3, NAS = 1, NF = 6, NF = 8

17. N20 = 3, NF = NF = 9

18. N20 = 2, NAd = 2

19. N20 = 2, NAd = 1, NAS = 2, NF = 4

20. N20 = 2, NAd = 1, NAS = 1, NF = 3, NF = 5

21. N20 = 2, NS = NS = 1, NAS = NAS = 1
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22. N20 = 2, NS = NS = 1, NAS = 1, NF = 1, NF = 3

23. N20 = 2, NS = NS = 1, NF = NF = 4

24. N20 = 2, NS = 1, NAS = 1, NF = 12

25. N20 = 2, NS = 1, NAS = 3, NF = 4

26. N20 = 2, NS = 1, NAS = 2, NF = 1, NF = 7

27. N20 = 2, NS = 1, NAS = 1, NF = 2, NF = 10

28. N20 = 2, NS = 1, NF = 3, NF = 13

29. N20 = 2, NAS = x, NAS = 3, NF = 9− 3x, NF = 3− x, x = 0, 1, 2, 3

30. N20 = 2, NAS = x, NAS = 2, NF = 10− 3x, NF = 6− x, x = 0, 1, 2

31. N20 = 2, NAS = x, NAS = 1, NF = 11− 3x, NF = 9− x, x = 0, 1

32. N20 = 2, NAS = 4, NF = 8

33. N20 = 2, NF = NF = 12

34. N20 = 1, NAd = 2, NAS = 1, NF = 2

35. N20 = 1, NAd = 2, NF = NF = 3

36. N20 = 1, NAd = 1, NS = 1, NF = 10

37. N20 = 1, NAd = 1, NAS = x, NAS = 2, NF = 7−3x, NF = 3−x, x = 0, 1

38. N20 = 1, NAd = 1, NAS = 3, NF = 6

39. N20 = 1, NAd = 1, NAS = 1, NF = 6, NF = 8

40. N20 = 1, NS = NS = 1, NAS = 2, NAS = 1, NF = 2

41. N20 = 1, NS = NS = 1, NAS = 2, NF = 1, NF = 5

42. N20 = 1, NS = NS = 1, NAS = NAS = 1, NF = NF = 3

43. N20 = 1, NS = NS = 1, NAS = 1, NF = 4, NF = 6

44. N20 = 1, NS = 1, NAS = 5, NF = NF = 1

45. N20 = 1, NS = 1, NAS = 4, NF = 2, NF = 4

46. N20 = 1, NS = 1, NAS = x, NAS = 3, NF = 3− 3x, NF = 7−x, x = 0, 1

47. N20 = 1, NS = 1, NAS = x, NAS = 2, NF = 4−3x, NF = 10−x, x = 0, 1

48. N20 = 1, NS = 1, NAS = x, NAS = 1, NF = 5−3x, NF = 13−x, x = 0, 1

49. N20 = 1, NS = 1, NAS = x, NF = 6− 3x, NF = 16− x, x = 0, 1, 2

50. N20 = 1, NAS = x, NAS = y, NF = 15−3x−y, NF = 15−x−3y, x+3y ≤
15, 3x+ y ≤ 15, x ≥ y
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SU(7).

1. N35 = N35 = 2, NF = NF = 1

2. N35 = 3, NF = 3, NF = 9

3. N35 = 3, NAS = 2, NF = NF = 1

4. N35 = 3, NAS = 1, NF = 2, NF = 5

5. N35 = 2, N35 = 1, NAS = NAS = 1, NF = 2

6. N35 = 2, N35 = 1, NAS = 1, NF = 1, NF = 6

7. N35 = 2, N35 = 1, NAS = 1, NF = 4, NF = 3

8. N35 = 2, N35 = 1, NF = 5, NF = 7

9. N35 = 2, NAd = 1, NAS = 1, NF = 1, NF = 2

10. N35 = 2, NAd = 1, NF = 2, NF = 6

11. N35 = 2, NS = NS = 1, NF = 4

12. N35 = 2, NS = 1, NAS = 2, NF = 2, NF = 1

13. N35 = 2, NS = 1, NAS = 1, NF = 6, NF = 2

14. N35 = 2, NS = 1, NF = 10, NF = 3

15. N35 = 2, NAS = 2, NAS = 1, NF = 7

16. N35 = 2, NAS = 1, NAS = 3, NF = 2

17. N35 = 2, NAS = 1, NAS = 2, NF = 3, NF = 4

18. N35 = 2, NAS = 1, NAS = 1, NF = 4, NF = 8

19. N35 = 2, NAS = 3, NF = 6, NF = 1

20. N35 = 2, NAS = 2, NF = 7, NF = 5

21. N35 = 2, NAS = 1, NF = 8, NF = 9

22. N35 = 2, NAS = 2, NF = 1, NF = 11

23. N35 = 2, NAS = 1, NF = 5, NF = 12

24. N35 = 2, NF = 9, NF = 13

25. N35 = N35 = 1, NAd = 1, NAS = 1, NF = 3

26. N35 = N35 = 1, NS = NS = 1, NF = NF = 2

27. N35 = N35 = 1, NS = 1, NAS = 1, NF = 8

28. N35 = N35 = 1, NS = 1, NF = 1, NF = 12

29. N35 = N35 = 1, NAS = NAS = 2, NF = NF = 1

30. N35 = N35 = 1, NAS = 2, NAS = 1, NF = 2, NF = 5

31. N35 = N35 = 1, NAS = 2, NF = 3, NF = 9

32. N35 = N35 = 1, NAS = 1, NF = 7, NF = 10
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33. N35 = N35 = 1, NAS = NAS = 1, NF = NF = 6

34. N35 = N35 = 1, NF = NF = 11

35. N35 = 1, NAd = 2, NF = 1, NF = 3

36. N35 = 1, NAd = 1, NS = 1, NF = 9

37. N35 = 1, NAd = 1, NAS = 1, NAS = 2, NF = 2, NF = 1

38. N35 = 1, NAd = 1, NAS = 2, NF = 8

39. N35 = 1, NAd = 1, NAS = NAS = 1, NF = 3, NF = 5

40. N35 = 1, NAd = 1, NAS = 2, NF = 6, NF = 2

41. N35 = 1, NAd = 1, NAS = 1, NF = 4, NF = 9

42. N35 = 1, NAd = 1, NAS = 1, NF = 7, NF = 6

43. N35 = 1, NAd = 1, NF = 8, NF = 10

44. N35 = 1, NS = NS = 1, NAS = 2, NF = 4

45. N35 = 1, NS = NS = 1, NAS = NAS = 1, NF = 1, NF = 3

46. N35 = 1, NS = NS = 1, NAS = 1, NF = 2, NF = 7

47. N35 = 1, NS = NS = 1, NAS = 1, NF = 5, NF = 4

48. N35 = 1, NS = NS = 1, NF = 6, NF = 8

49. N35 = 1, NS = 1, NAS = NAS = 1, NF = 13

50. N35 = 1, NS = 1, NAS = 1, NF = 1, NF = 17

51. N35 = 1, NS = 1, NAS = 4, NF = 1, NF = 2

52. N35 = 1, NS = 1, NAS = 3, NF = 2, NF = 6

53. N35 = 1, NS = 1, NAS = 2, NF = 3, NF = 10

54. N35 = 1, NS = 1, NAS = 1, NF = 4, NF = 14

55. N35 = 1, NS = 1, NF = 5, NF = 18

56. N35 = 1, NS = 1, NAS = 4, NF = 3

57. N35 = 1, NS = 1, NAS = 3, NAS = 1, NF = 3

58. N35 = 1, NS = 1, NAS = 3, NF = NF = 4

59. N35 = 1, NS = 1, NAS = 2, NAS = 1, NF = 7, NF = 1

60. N35 = 1, NS = 1, NAS = 2, NF = 8, NF = 5

61. N35 = 1, NS = 1, NAS = NAS = 1, NF = 11, NF = 2

62. N35 = 1, NS = 1, NAS = 1, NF = 12, NF = 6

63. N35 = 1, NS = 1, NAS = 1, NF = 15, NF = 3

64. N35 = 1, NS = 1, NF = 16, NF = 7

65. N35 = 1, NAS = x,NAS = y,NF = 15−4x−y,NF = 17−x−4y, 4x+y ≤ 15, 4y+x ≤
17
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SU(8).

1. N70 = 2, NF = NF = 4

2. N56 = 2, NS = 1, NAS = 1, NF = 2

3. N56 = 2, NS = 1, NF = 5, NF = 3

4. N56 = 2, NAS = 2, NF = 2, NF = 4

5. N56 = 2, NAS = 1, NF = 3, NF = 9

6. N56 = 2, NF = 4, NF = 14

7. N56 = N56 = 1, NAS = NAS = 1, NF = NF = 3

8. N56 = N56 = 1, NAS = 1, NF = 4, NF = 8

9. N56 = N56 = 1, NF = NF = 9

10. N70 = 1, N56 = 1, NAS = 1, NF = 3, NF = 4

11. N70 = 1, N56 = 1, NF = 4, NF = 9

12. N70 = 1, NAd = 1, NAS = NAS = 1

13. N70 = 1, NAd = 1, NAS = 1, NF = 1, NF = 5

14. N70 = 1, NAd = 1, NF = NF = 6

15. N70 = 1, NS = NS = 1, NF = NF = 4

16. N70 = 1, NS = 1, NAS = 3

17. N70 = 1, NS = 1, NAS = 2, NF = 1, NF = 5

18. N70 = 1, NS = 1, NAS = 1, NF = 2, NF = 10

19. N70 = 1, NS = 1, NF = 3, NF = 15

20. N70 = 1, NAS = NAS = 2, NF = NF = 2

21. N70 = 1, NAS = 2, NAS = 1, NF = 3, NF = 7

22. N70 = 1, NAS = 2, NF = 4, NF = 12

23. N70 = 1, NAS = NAS = 1, NF = NF = 8

24. N70 = 1, NAS = 1, NF = 9, NF = 13

25. N70 = 1, NF = NF = 14

26. N56 = 1, NAd = 1, NS = 1, NF = 7

27. N56 = 1, NAd = 1, NAS = 1, NF = 1, NF = 10

28. N56 = 1, NAd = 1, NAS = NAS = 1, NF = 5

29. N56 = 1, NAd = 1, NAS = 2, NF = 4, NF = 1

30. N56 = 1, NAd = 1, NAS = 1, NF = 5, NF = 6

31. N56 = 1, NAd = 1, NF = 6, NF = 11

32. N56 = 1, NS = NS = 1, NAS = 1, NF = 3, NF = 4
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33. N56 = 1, NS = NS = 1, NF = 4, NF = 9

34. N56 = 1, NS = 1, NAS = 3, NF = 5

35. N56 = 1, NS = 1, NAS = 2, NF = 1, NF = 10

36. N56 = 1, NS = 1, NAS = 1, NF = 2, NF = 15

37. N56 = 1, NS = 1, NF = 3, NF = 20

38. N56 = 1, NS = 1, NAS = 3, NF = 5

39. N56 = 1, NS = 1, NAS = 2, NAS = 1, NF = 4, NF = 1

40. N56 = 1, NS = 1, NAS = 2, NF = 5, NF = 6

41. N56 = 1, NS = 1, NAS = 1, NAS = 1, NF = 9, NF = 2

42. N56 = 1, NS = 1, NAS = 1, NF = 10, NF = 7

43. N56 = 1, NS = 1, NAS = 1, NF = 14, NF = 3

44. N56 = 1, NS = 1, NF = 15, NF = 8

45. N56 = 1, NAS = x,NAS = y,NF = 14−5x−y,NF = 19−x−5y, 5x+y ≤ 14, 5y+x ≤
19

SU(9).

1. N126 = 1, NS = 1, NF = 8

2. N126 = 1, NAS = NAS = 1, NF = 5

3. N126 = 1, NAS = 1, NF = 1, NF = 11

4. N126 = 1, NAS = 2, NF = 5

5. N126 = 1, NAS = 1, NF = NF = 6

6. N126 = 1, NF = 7, NF = 12

7. N84 = N84 = 1, NAS = 1, NF = 5

8. N84 = N84 = 1, NF = NF = 6

9. N84 = 1, NAd = 1, NS = 1, NF = 4

10. N84 = 1, NAd = 1, NAS = 2, NF = 1

11. N84 = 1, NAd = 1, NAS = 1, NF = 2, NF = 6

12. N84 = 1, NAd = 1, NF = 3, NF = 12

13. N84 = 1, NS = 1, NF = 22

14. N84 = 1, NS = NS = 1, NF = 1, NF = 10

15. N84 = 1, NS = NS = 1, NAS = 1, NF = 4

16. N84 = 1, NS = 1, NAS = 2, NAS = 1, NF = 1

17. N84 = 1, NS = 1, NAS = NAS = 1, NF = 6, NF = 2

18. N84 = 1, NS = 1, NAS = 2, NF = 1, NF = 7
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19. N84 = 1, NS = 1, NAS = 1, NF = 7, NF = 8

20. N84 = 1, NS = 1, NAS = 1, NF = 12, NF = 3

21. N84 = 1, NS = 1, NF = 13, NF = 9

22. N84 = 1, NAS = x,NAS = y,NF = 12 − 6x − y,NF = 21 − x − 6y, 6x + y ≤ 12,

6y + x ≤ 21

SU(10).

1. N120 = N120 = 1, NF = NF = 2

2. N120 = 1, NS = 1, NAd = 1

3. N120 = 1, NS = 1, NAS = NAS = 1, NF = NF = 2

4. N120 = 1, NS = 1, NAS = 1, NF = 3, NF = 9

5. N120 = 1, NS = 1, NAS = 1, NF = 9, NF = 3

6. N120 = 1, NS = 1, NF = NF = 10

7. N120 = 1, NAS = 1, NAS = 2, NF = 8

8. N120 = 1, NAS = 1, NAS = 1, NF = 1, NF = 15

9. N120 = 1, NAS = 1, NF = 2, NF = 22

10. N120 = 1, NAS = 3, NF = 6, NF = 2

11. N120 = 1, NAS = 2, NF = 7, NF = 9

12. N120 = 1, NAS = 1, NF = 8, NF = 16

13. N120 = 1, NF = 9, NF = 23

SU(11).

1. N165 = 1, NS = 1, NAS = 1, NF = 5, NF = 3

2. N165 = 1, NS = 1, NF = 6, NF = 11

3. N165 = 1, NAS = 3, NF = 2, NF = 1

4. N165 = 1, NAS = 2, NF = 3, NF = 9

5. N165 = 1, NAS = 1, NF = 4, NF = 17

6. N165 = 1, NF = 5, NF = 25

SU(12).

1. N220 = 1, NS = 1, NAS = 1, NF = 3

2. N220 = 1, NS = 1, NF = 1, NF = 12

3. N220 = 1, NF = 27
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C.2 Symplectic groups

Here we summarize solutions when the gauge group is USp(2N).

C.2.1 Generic cases

Here we list the theories which we dubbed generic. We begin by listing the possible solutions

to conditions (3.2) for generic N :

1. NS = 2, NF = 2N + 2

2. NS = 2, NAS = 1, NF = 4

3. NS = 1, NAS = 1, NF = 2N + 6

4. NAS = 3, NF = 12

5. NAS = 2, NF = 2N + 10

6. NAS = 1, NF = 4N + 8

7. NF = 6N + 6

Besides these, there are several solutions that exist only for small N :

1. NS = 2, NAS = 3, N = 2

2. NS = 2, NAS = 2, NF = 2(3−N), N = 2, 3

3. NS = 1, NAS = 5, NF = 2, N = 2

4. NS = 1, NAS = 3, NF = 2(5−N), N = 2, 3, 4, 5

5. NAS = 9, N = 2

6. NAS = 8, NF = 2, N = 2

7. NAS = 7, NF = 4, N = 2

8. NAS = 6, NF = 6(3−N), N = 2, 3

9. NAS = 5, NF = 4(4−N), N = 2, 3, 4

10. NAS = 4, NF = 2(7−N), N = 2, 3, 4, 5, 6, 7

C.2.2 Exotic cases

Here we list the theories with vanishing beta functions which we dubbed exotic.

USp(4).

1. N14 = 1, NAS = 2

2. N14 = 1, NAS = 1, NF = 2

3. N14 = 1, NF = 4

4. N16 = 1, NAS = 3

5. N16 = 1, NAS = 2, NF = 2

6. N16 = 1, NAS = 1, NF = 4

7. N16 = 1, NF = 6

– 93 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

USp(6).

1. N14′ = 1, NS = 2, NF = 3

2. N14′ = 2, NS = 1, NAS = 1, NF = 2

3. N14′ = 1, NS = 1, NAS = 1, NF = 7

4. N14′ = 4, NAS = 1

5. N14′ = 4, NF = 4

6. N14′ = 3, NAS = 2, NF = 1

7. N14′ = 3, NAS = 1, NF = 5

8. N14′ = 3, NF = 9

9. N14′ = 2, NAS = 3, NF = 2

10. N14′ = 2, NAS = 2, NF = 6

11. N14′ = 2, NAS = 1, NF = 10

12. N14′ = 2, NF = 14

13. N14′ = 1, NAS = 4, NF = 3

14. N14′ = 1, NAS = 3, NF = 7

15. N14′ = 1, NAS = 2, NF = 11

16. N14′ = 1, NAS = 1, NF = 15

17. N14′ = 1, NF = 19

USp(8).

1. N48 = 1, NS = 1, NAS = 1

2. N42 = 1, NS = 1, NAS = 1

3. N42 = 1, NS = 1, NF = 6

4. N48 = 2, NF = 2

5. N48 = 1, N42 = 1, NF = 2

6. N42 = 2, NF = 2

7. N48 = 1, NAS = 2, NF = 4

8. N48 = 1, NAS = 1, NF = 10

9. N48 = 1, NF = 16

10. N42 = 1, NAS = 2, NF = 4

11. N42 = 1, NAS = 1, NF = 10

12. N42 = 1, NF = 16
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USp(10).

1. N110 = 1, NAS = 1, NF = 1

2. N110 = 1, NF = 9

C.3 Orthogonal groups

Here we summarize solutions when the gauge group is SO(N).

C.3.1 Generic cases

Here we list the possible generic solutions for equation (3.2).

1. NS = 2, NV = N − 10

2. NS = 1, NAS = 1, NV = N − 6

3. NS = 1, NV = 2N − 8

4. NAS = 2, NV = N − 2

5. NV = 3N − 6

C.3.2 Exotic cases

Here we list the possible exotic solutions for equation (3.2). Here we write cases up to the

outer automorphism of the selected SO group.

SO(7).

1. N8 = M, NV = 15−M

2. NAS = 1, N8 = M, NV = 10−M, M odd

3. NAS = 2, N8 = M, NV = 5−M

4. NS = 1, NAS = 1, N8 = 1

5. NS = 1, N8 = M, NV = 6−M

6. NAS = 1, N35 = 1

7. N35 = 1, N8 = M, NV = 5−M

8. N48 = 1, N8 = 1

9. N48 = 1, NV = 1

SO(8).

1. N8S = M, N8C = L, NV = 18−M − L, M ≥ L ≥ 18−M − L

2. NAS = 1, N8S = M, N8C = L, NV = 12 −M − L, M ≥ L ≥ 12 −M −
L,M and L not both even

3. NAS = 2, N8S = M, N8C = L, NV = 6−M − L, M ≥ L ≥ 6−M − L

4. NS = 1, NAS = 1, N8S = 2

– 95 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
9

5. NS = 1, NAS = 1, N8S = 1, NV = 1

6. NS = 1, NAS = 1, N8S = 1, N8C = 1

7. NS = 1, N8S = M, N8C = L, NV = 8−M − L, M ≥ L

8. N56v = 1, NV = 3

9. N56v = 1, NV = 2, N8S = 1

10. N56v = 1, NV = 1, N8S = 2

11. N56v = 1, NV = 1, N8S = 1, N8C = 1

12. N56v = 1, N8S = 3

13. N56v = 1, N8S = 2, N8C = 1

SO(9).

1. N16 = M, NV = 21− 2M

2. NAS = 1, N16 = M, NV = 14− 2M, M odd

3. NAS = 2, N16 = M, NV = 7− 2M

4. NS = 1, NAS = 1, N16 = 1, NV = 1

5. NS = 1, N16 = M, NV = 10− 2M

6. N84 = 1

SO(10).

1. N16 = M, N16 = L, NV = 24− 2M − 2L,M ≥ L

2. NAS = 1, N16 = M, N16 = L, NV = 16− 2M − 2L,M > L

3. NAS = 2, N16 = M, N16 = L, NV = 8− 2M − 2L,M ≥ L

4. NS = 1, NAS = 1, N16 = 2

5. NS = 1, NAS = 1, N16 = 1, N16 = 1

6. NS = 1, NAS = 1, N16 = 1, NV = 2

7. NS = 1, N16 = M, N16 = L, NV = 12− 2M − 2L,M ≥ L

SO(11).

1. N32 = M, NV = 27− 4M

2. NAS = 2, N32 = 2, NV = 1

3. NAS = 2, N32 = 1, NV = 5

4. NS = 1, NAS = 1, N32 = 1, NV = 1

5. NS = 1, N32 = M, NV = 14− 4M
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SO(12).

1. N32 = M, N32′ = L, NV = 30− 4M − 4L, M ≥ L

2. NAS = 2, N32 = 2, NV = 2

3. NAS = 2, N32 = 1, N32′ = 1, NV = 2

4. NAS = 2, N32 = 1, NV = 6

5. NS = 1, NAS = 1, N32 = 1, NV = 2

6. NS = 1, N32 = M, N32′ = L, NV = 16− 4M − 4L, M ≥ L

SO(13).

1. N64 = M, NV = 33− 8M

2. NAS = 2, N64 = 1, NV = 3

3. NS = 1, N64 = 2, NV = 2

4. NS = 1, N64 = 1, NV = 10

SO(14).

1. N64 = M, N64 = L, NV = 36− 8M − 8L,M ≥ L

2. NAS = 1, N64 = M, N64 = L, NV = 24− 8M − 8L,M > L

3. NAS = 2, N64 = 1, NV = 4

4. NS = 1, NAS = 1, N64 = 1

5. NS = 1, N64 = 2, NV = 4

6. NS = 1, N64 = 1, N64 = 1, NV = 4

7. NS = 1, N64 = 1, NV = 12

SO(15).

1. N128 = 2, NV = 7

2. N128 = 1, NV = 23

3. NAS = 1, N128 = 1, NV = 10

4. NS = 1, N128 = 1, NV = 6

SO(16).

1. N128 = 2, NV = 10

2. N128 = 1, N128′ = 1, NV = 10

3. N128 = 1, NV = 26

4. NAS = 1, N128 = 1, NV = 12

5. NS = 1, N128 = 1, NV = 8
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SO(17).

1. N256 = 1, NV = 13

SO(18).

1. N256 = 1, NV = 16

2. NAS = 1, N256 = 1

C.4 Exceptional groups

Here we summarize the possible solutions for equation (3.2) when the gauge group is one

of the exceptional groups.

G2.

1. N14 = 2, N7 = 4

2. N7 = 12

3. N27 = 1, N7 = 3

F4.

1. N52 = 2, N26 = 3

2. N26 = 9

E6.

1. N78 = 2, N27 = N27 = 2

2. N78 = 2, N27 = 3, N27 = 1

3. N78 = 2, N27 = 4

4. N78 = 1, N27 = 5, N27 = 3

5. N78 = 1, N27 = 6, N27 = 2

6. N78 = 1, N27 = 7, N27 = 1

7. N78 = 1, N27 = 8

8. N27 = N27 = 6

9. N27 = 7, N27 = 5

10. N27 = 8, N27 = 4

11. N27 = 9, N27 = 3

12. N27 = 10, N27 = 2

13. N27 = 11, N27 = 1

14. N27 = 12
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E7.

1. N133 = 2, N56 = 3

2. N56 = 9
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