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1 Introduction

Flavour Changing Neutral Current (FCNC) processes receive the leading Standard Model

(SM) contributions from one-loop diagrams only, often with additional suppression factors

originating from the Glashow-Iliopoulos-Maiani (GIM) mechanism [1]. It makes them

sensitive to possible existence of new weakly-interacting particles with masses ranging up

to O(100 TeV). Significant deviations from the SM predictions are observed in the GIM-

unsuppressed FCNC processes mediated by the b→ sµ+µ− transition (see, e.g., the recent

summary in ref. [2]). On the other hand, no deviations are seen in the closely related b→ sγ

transition, despite higher accuracy of both the measurements and the SM predictions in

its case.

The physical observable giving the strongest constraints on the b → sγ amplitude is

the inclusive Bsγ branching ratio, i.e. the CP- and isospin- averaged branching ratio of

B̄ → Xsγ and B → Xs̄γ decays, with B̄ and B denoting (B̄0 or B−) and (B0 or B+),

respectively. The states Xs and Xs̄ are assumed to contain no charmed hadrons. Bsγ is

being measured [3–8] with Eγ > E0 for E0 ∈ [1.7, 2.0] GeV, and then extrapolated to the

conventionally chosen value of E0 = 1.6 GeV to compare with the theoretical predictions

(that would be less accurate at higher E0). The current experimental world average for

Bsγ at E0 = 1.6 GeV reads (3.32± 0.15)× 10−4 [9], which corresponds to an uncertainty of

around ±4.5%. With the full Belle-II dataset, the world average uncertainty at the level of

±2.6% is expected [10, 11]. Achieving a similar accuracy in the SM predictions is essential

for improving the power of Bsγ as a constraint on Beyond-SM (BSM) theories. It is the

goal of the calculations we describe in what follows.

The SM prediction for Bsγ (see refs. [12, 13]), is based on the formula

B(B̄ → Xsγ)Eγ>E0 = B(B̄ → Xc`ν̄)

∣∣∣∣V ∗tsVtbVcb

∣∣∣∣2 6αem

π C
[P (E0) +N(E0)] , (1.1)
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where αem = αon shell
em , while the so-called semileptonic phase-space factor C is given by

C =

∣∣∣∣VubVcb

∣∣∣∣2 Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
. (1.2)

Its numerical value is determined [14] using the Heavy Quark Effective Theory (HQET)

methods from measurements of the B̄ → Xc`ν̄ decay spectra. The quantity P (E0) is

defined through the following ratio of perturbative inclusive decay rates of the b quark:

Γ[b→ Xp
s γ]Eγ>E0

|Vcb/Vub|2 Γ[b→ Xp
ueν̄]

=

∣∣∣∣V ∗tsVtbVcb

∣∣∣∣2 6αem

π
P (E0), (1.3)

with Xp
s and Xp

u denoting all the possible charmless partonic final states in the respective

decays (Xp
s = s, sg, sqq̄, . . .). The non-perturbative contribution from N(E0) in eq. (1.1) is

estimated1 at the level of around 4% of Bsγ . To achieve O(3%) precision in P (E0), evalua-

tion of the Next-to-Next-to Leading (NNLO) QCD corrections to this quantity is necessary.

Perturbative calculations of P (E0) are most conveniently performed in the framework

of an effective theory obtained from the SM via decoupling of the W boson and all the

heavier particles. The relevant weak interactions are then given by the following Lagrangian

density2

Lweak =
4GF√

2
V ?
tsVtb

8∑
i=1

Ci(µb)Qi. (1.4)

Evaluation of the Wilson coefficients Ci to the NNLO accuracy
(
O(α2

s )
)

at the renormaliza-

tion scale µb ∼ mb required computing electroweak-scale matching up to three loops [15],

and QCD anomalous dimensions up to four loops [16]. Since Ci in the SM have no imagi-

nary parts, one can write the perturbative decay rate as

Γ(b→ Xp
s γ) =

G2
F m

5
b, pole αem

32π4
|V ∗tsVtb|

2
8∑

i,j=1

Ci(µb)Cj(µb)Ĝij , (Ĝij = Ĝji), (1.5)

where Ĝij come from interferences of amplitudes with insertions of the operators Qi and

Qj . The dominant NNLO effects come from Ĝ17, Ĝ27 and Ĝ77 that originate from the

operators

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL), Q2 = (s̄LγµcL)(c̄Lγ
µbL), Q7 =

emb

16π2
(s̄Lσ

µνbR)Fµν .

(1.6)

Whereas Ĝ77 has been known up to O(α2
s ) since a long time [17–21], no complete NNLO

calculation of Ĝ17 and Ĝ27 at the physical value of the charm quark mass mc has been final-

ized to date. Instead, calculations of these quantities at mc � mb [22, 23] and mc = 0 [13]

gave a basis for estimating their physical values using interpolation [13]. The related un-

certainty in Bsγ (due to the mc-interpolation only) has been estimated at the level of ±3%,

1See section 3 for details on the current uncertainty budget.
2For simplicity, we refrain here from displaying those terms in Lweak that matter for subleading elec-

troweak or CKM-suppressed effects only. Such effects have been included in the numerical analysis of

refs. [12, 13].
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Figure 1. Sample Feynman diagrams contributing to Ĝ
(2)
27 at O(α2

s ). The vertical dotted lines

indicate possible unitarity cuts. The dotted, dashed and solid propagators correspond to quarks

with masses 0, mc and mb, respectively.

which places it among the dominant contributions to the overall theoretical uncertainty

(see section 3).

To calculate the interferences Ĝij at the physical value of mc, it is convenient to

express them in terms of propagator diagrams with unitarity cuts. Examples of such four-

loop diagrams contributing to Ĝ27 at O(α2
s ) are shown in figure 1, with the light quarks

(u, d, s) treated as massless. Similar diagrams for Ĝ17 differ from the Ĝ27 ones by simple

colour factors only. For definiteness, we shall focus on Ĝ27 in what follows.

By analogy to what has been done in the Ĝ77 case [17–21], evaluation of O(α2
s ) contri-

butions to Ĝ27 is performed in two steps. First, no restriction on the photon energy Eγ is

assumed. Next, one performs the calculation for Eγ < E0, which requires considering dia-

grams with three- and four-body cuts only. The desired result Ĝ
Eγ>E0

27 = Ĝ
anyEγ
27 −ĜEγ<E0

27

is then obtained without necessity of determining the differential photon spectrum close to

the endpoint Emax
γ = 1

2mb.

In the present paper, we describe our calculation of Ĝ
(2)
27 in

Ĝ27 =
αs

4π
Ĝ

(1)
27 +

(αs

4π

)2
Ĝ

(2)
27 +O(α3

s ) (1.7)

at the physical value of mc, and with no restriction on Eγ . Final results are presented for

contributions originating from diagrams with closed fermion loops on the gluon lines, like

those in the first row of figure 1. They undergo separate renormalization and are gauge

invariant on their own, so they serve as a useful test case for our calculation of the complete

Ĝ
(2)
27 . Most of such contributions have already been determined in the past [24–27] and

implemented in the phenomenological analysis [12, 13]. We confirm the published results,

and supplement them with a previously uncalculated piece. Some of the previous results

have been obtained by a single group only, which makes our verification relevant.

The article is organized as follows. In the next section, our algorithm for evaluation

of the complete Ĝ
(2)
27 is sketched, and the current status of the calculation is summarized.

Next, we focus on the closed fermionic loop contributions, displaying our numerical results

and comparing them with the literature wherever possible. In section 3, the SM prediction

for the branching ratio is updated, taking into account the recently improved estimates of

– 3 –
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non-perturbative effects [28]. We conclude in section 4. In the appendix, large-z expansions

of our final results are presented, and one of the counterterm contributions is discussed.

2 The NNLO contribution to Ĝ27

The quantity Ĝ
(2)
27 is given by a few hundreds of four-loop propagator diagrams with uni-

tarity cuts, as those presented in figure 1. We generate them using QGRAF [29] and/or

FeynArts [30, 31]. After performing the Dirac algebra with the help of FORM [32], we ex-

press the full Ĝ
(2)
27 in terms of several hundred thousands scalar integrals grouped in O(500)

families.3 Next, the Integration By Parts (IBP) identities [33–35] for each family are gen-

erated and applied using KIRA [36, 37], as well as FIRE [38, 39] and LiteRed [40, 41]. In

effect, Ĝ
(2)
27 becomes a linear combination of Master Integrals (MIs). The IBP reduction

is the most computer-power demanding part of the calculation, with O(1 TB) RAM nodes

and weeks of CPU time needed for the most complicated families.

After setting the renormalization scale squared to µ2
b = eγm2

b/(4π) (with γ being the

Euler-Mascheroni constant), the MIs are multiplied by appropriate powers of mb, to make

them dimensionless. They depend on two parameters only: the dimensional regularization

parameter ε, and the quark mass ratio z = m2
c/m

2
b . In each family separately, the MIs

Mk(z, ε) satisfy the Differential Equations (DEs)

d

dz
Mk(z, ε) =

∑
l

Rkl(z, ε)Ml(z, ε), (2.1)

where the rational functions Rkl(z, ε) on the r.h.s. are determined [42–44] from the IBP,

too.4 Similar equations are explicitly displayed in eq. (3.6) of ref. [45] where ultraviolet

counterterm contributions to Ĝ
(2)
27 have been determined.

We solve the DEs using the same method as in refs. [26, 45, 46]. The MIs are ex-

panded in ε to appropriate powers, with the expansion coefficients being functions of z

only. Boundary conditions for these functions at large z are found using asymptotic ex-

pansions [47]. Next, the variable z is treated as complex, and the DEs are numerically

solved along half-ellipses in the z-plane, to bypass singularities on the real axis.

In practice, the codes q2e and exp [48, 49] are used to determine the asymptotic

expansions at large z. Coefficients at subsequent powers of 1/z are given in terms of one-,

two- and three-loop single-scale integrals, either massive tadpoles or propagator-type ones

with unitarity cuts (see figure 2). Only at the level of the latter integrals, we perform

cross-family identification, which gives us O(50) essentially different and non-vanishing

integrals. They are evaluated [50] using various techniques, in particular the Mellin-Barnes

one. Once the large-z expansions are found, numerical solutions of the DEs starting from

the boundary at z = 20 are worked out using the code ZVODE [51] upgraded to quadrupole-

double precision with the help of the QD [52] computation package. Half-ellipses of various

sizes are considered to test the numerical stability.

3Integrals in a family differ only by indices, i.e. the powers to which the propagators and/or irreducible

numerators are being raised.
4Getting a closed system of such DEs usually requires including several new MIs w.r.t. those entering

the expression for Ĝ
(2)
27 .
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Figure 2. Sample three-loop propagator-type integrals that parameterize large-z expansions of the

MIs. Massless and massive internal propagators are denoted by dotted and solid lines, respectively.

The thin dotted lines indicate the unitarity cuts.

massless, 2-body

z
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Figure 3. Contributions to Ĝ
(2)
27 from diagrams with closed loops of massless fermions — see the

text. They have already been multiplied by nl = 3, i.e. the number of flavours we treat as massless.

At present, our IBP reduction for the full Ĝ
(2)
27 is (almost) completed, and the evaluation

of the boundary conditions is being finalized [50]. However, for the diagrams with closed

fermionic loops (as the ones in the first row of figure 1), the DEs are already solved, and we

are ready to present the final results. They are plotted in figures 3 and 4 as functions of z.

The displayed results correspond to various contributions to Ĝ
(2)
27 renormalized in the

MS scheme with µ2
b = m2

b (or, equivalently, in the MS scheme with µ2
b = eγm2

b/(4π)).

The renormalization has been performed with the help of the counterterm contributions

evaluated5 in refs. [45, 46]. In all the plots, the black dots correspond to numerical solutions

that we have obtained using the DEs. Dots corresponding to the physical value of z are

5In the charm loop case (the right plot in figure 4), we had to rely on our so-far unpublished results for

the UV counterterms — see the appendix.
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Figure 4. Contributions to Ĝ
(2)
27 from diagrams with closed loops of massive fermions — see

the text.

Figure 5. Diagrams corresponding to the last (lower) plot in figure 3.

bigger and highlighted in red. Blue dots of similar size on the left boundaries of each plot

indicate the z → 0 limits for each contribution, known from the calculation in ref. [13]. Thin

dashed curves continuing to large values of z describe our large-z expansions evaluated up

to O(1/z2) (see the appendix). The dash-dotted vertical lines indicate the cc̄ production

threshold at z = 1/4, in the vicinity of which neither the large-z nor the small-z expansions

are expected to converge well.

In figure 3, three distinct contributions from diagrams with closed massless fermion

loops are presented. The first (upper left) plot corresponds to diagrams with two-body

cuts. The thin dashed line in the small-z region shows the analytic expansion in powers of

z evaluated in ref. [25]. It is the only case for which such an expansion is known. The solid

blue curve shows the numerical fit corresponding to eq. (3.2) of ref. [26] where a numerical

method (identical to ours) has been used.

The second (upper right) plot of figure 3 shows all the four-body-cut contributions

except the diagrams displayed in figure 5. The latter diagrams have been skipped6 in eval-

uating the photon spectrum in the Brodsky-Lepage-Mackenzie (BLM) [53] approximation

6Arguments in favour of not including them in the BLM approach can be found below eq. (12) of

ref. [24]. They are correlated via renormalization group with tree-level b → sqq̄γ matrix elements of the

penguin four-quark operators.
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by the authors of refs. [24, 27]. The solid blue curve is based on the numerical fit from

eq. (3.6) of ref. [13] that corresponds to no restriction on Eγ , and has been obtained as a

by-product of the calculation in ref. [27].

The third (bottom) plot in figure 3 corresponds to the very diagrams from figure 5.

In this case, no numerical result valid for arbitrary mc has existed prior to our present

calculation. For z < 1
4 , we can describe our findings by the following fit:

∆4-b��BLM
m=0 Ĝ

(2)
27 = 3

[
0.164+0.13z

1
2 −21.51z+68.10z

3
2 −46.12z2 +(−3.23z+18.23z2) lnz

]
.

(2.2)

It is shown as a solid blue curve in the considered plot. A quick look at figure 5 is sufficient

to realize that ∆4-b��BLM
m=0 Ĝ

(2)
17 = −1

6∆4-b��BLM
m=0 Ĝ

(2)
27 , due to the identity T aT bT a = −1

6T
b for the

SU(3)c generators. The same relative colour factor is valid for all the plots in figures 3 and 4.

Figure 4 shows contributions to Ĝ
(2)
27 from diagrams with closed loops of quarks with

masses mb (left) and mc (right). Only the two-body cuts are included. The solid blue

lines correspond to the numerical fits from eqs. (3.3) and (3.4) of ref. [26]. In these cases,

no four-body cuts are allowed, as the state Xp
s in eq. (1.5) is assumed to contain no

charm quarks. We do not consider three-body cuts here, as their effect can be included by

multiplying the well-known three-body contribution to Ĝ
(1)
27 by finite coefficients originating

from7 ZOS
G Z2

g − 1. The corresponding term in eq. (3.8) of ref. [13] comes at the end of the

first line of the expression for K
(2)
27 .

As evident from the plots, our results are in perfect agreement with all the previously

available expansions and fits. It is particularly important in the massive case (figure 4)

where our verification comes as the first one from an independent group. Let us note that

the contribution displayed in the right plot of figure 4 affects Bsγ by around −2.1%, which

should be compared to the current (±4.5%) and expected future (±2.6%) experimental

accuracies mentioned in section 1. The massless results from the upper two plots of figure 3

have already been cross-checked before.

As far as the new contribution (the third plot in figure 3) is concerned, it has so far

been included in the interpolated part of the NNLO correction, and resulted in a tiny effect,

around one per-mille of the decay rate only. Now we remove it from the interpolated part

and replace by the fit in eq. (2.2). It turns out that the interpolation estimate was correct

within ∼10% of the considered contribution, so the effect remains tiny.

3 Updated SM predictions for Bsγ and Rγ

In the present section, we work out updated SM predictions for Bsγ , as well as for the

ratio Rγ ≡ B(s+d)γ/Bc`ν̄ , where Bc`ν̄ is the CP- and isospin-averaged branching ratio of the

inclusive semileptonic decay. Our main motivation for performing an update right now is

not due to the NNLO corrections evaluated in the previous section. The new contribu-

tion is tiny, while the sizeable ones (that we have confirmed) were already included in the

7ZOS
G stands for the on-shell renormalization constant of the gluon wave-function, while Zg renormalizes

the QCD gauge coupling in the MS scheme.

– 7 –
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phenomenological analysis of ref. [13]. However, there has been an important progress in es-

timating non-perturbative effects (see below). An update of the SM prediction should thus

be performed right now, even though the mc-interpolation uncertainty remains essentially

unchanged.

The first improvement in estimating the non-perturbative effects becomes possible

thanks to the new Belle measurement of the isospin asymmetry

∆0− ≡
Γ[B̄0 → Xsγ]− Γ[B− → Xsγ]

Γ[B̄0 → Xsγ] + Γ[B− → Xsγ]
= (−0.48± 1.49± 0.97± 1.15)% [54]. (3.1)

In the SM, the dominant contribution to this asymmetry arises from a process where no

hard photon but rather a hard8 gluon is emitted in the b-quark decay [55]. Next, the

gluon scatters on the valence quark, which results in emission of a hard photon. Instead

of the valence quark, also a sea quark (u, d or s) can participate in such a Compton-like

scattering. Taking this fact into account, one can write the decay rates as

Γ[B−→ Xsγ] ' A+BQu + CQd +DQs,

Γ[B̄0 → Xsγ] ' A+BQd + CQu +DQs, (3.2)

where Qu,d,s denote electric charges of the quarks participating in the Compton-like scatter-

ing, while the quantities A, . . . , D are given by interferences of various quantum amplitudes

whose explicit form is inessential here. Since the considered effect gives only a small correc-

tion to the decay rate (B,C,D � A), quadratic terms in Qu,d,s have been neglected above.

We have also neglected isospin violation in the quark masses (mu 6= md) and in the electro-

magnetic corrections to the B̄-meson wave functions (suppressed by extra powers of αem).

The leading term A contains the dominant contribution originating from the operator

Q7. The corrections B, C, D are suppressed w.r.t. A both by g2
s (as the gluon is hard)

and by Λ/mb, with Λ ∼ ΛQCD. The latter suppression can be intuitively understood by

realizing that the gluon scatters on remnants of the B̄ meson, i.e. on a diluted target whose

size scales like 1/Λ. Such a suppression is confirmed in refs. [55, 56] where the Soft-Collinear

Effective Theory (SCET) has been applied to analyze non-perturbative corrections to Bsγ .

From eq. (3.2), one easily obtains the isospin-averaged decay rate

Γ ' A+
1

2
(B + C)(Qu +Qd) +DQs ≡ A+ δΓc, (3.3)

and the isospin asymmetry

∆0− '
C −B

2Γ
(Qu −Qd). (3.4)

It follows that the relative correction to the isospin-averaged decay rate that arises due to

the considered effect reads

δΓc
Γ
' (B + C)(Qu +Qd) + 2DQs

(C −B)(Qu −Qd)
∆0− =

Qu +Qd
Qd −Qu

[
1 + 2

D − C
C −B

]
∆0−, (3.5)

where, in the last step, Qs = −Qu − Qd has been used. The second term in the square

bracket vanishes in the SU(3)F limit, i.e. when the three lightest quarks are treated as

8With momentum of order mb but possibly much smaller virtuality.
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mass-degenerate. In this limit, as observed in ref. [57], δΓc/Γ and ∆0− are related to each

other in a simple manner that is free from non-perturbative uncertainties. The authors of

ref. [56] suggested ±30% as an uncertainty estimate stemming from the SU(3)F -violating

effect in eq. (3.5). Following this suggestion, we find

δΓc
Γ

= −1

3
(1± 0.3)∆0− = (0.16± 0.74)%, (3.6)

where the experimental errors from eq. (3.1) were combined in quadrature, giving

∆0−=(−0.48±2.12)%; next, the multiplicative factor was taken into account as follows [58]:

(1± 0.3)(−0.48± 2.12)% =
(
−0.48±

√
2.122 + (0.3 · 0.48)2 + (0.3 · 2.12)2

)
%. (3.7)

In the above considerations, we have treated the measured ∆0− in eq. (3.1) as al-

ready extrapolated from the experimental cutoff of E0 = 1.9 GeV down to our default

E0 = 1.6 GeV, even though no such extrapolation has actually been done in ref. [54], i.e.

eq. (3.1) corresponds to E0 = 1.9 GeV. A devoted analysis would be necessary to estimate

the extrapolation effects in this case. However, we expect such effects to be negligible w.r.t.

the experimental uncertainties in eq. (3.1).

If the uncertainty on the r.h.s. of eq. (3.6) is treated as 1σ of a Gaussian distribution,

then the 95% C.L. range is [−1.3,+1.6]%. The corresponding9 range [−1.4,+2.0]% in sec-

tion 3.5 of ref. [28] is somewhat wider due to a different method of combining uncertainties

and using the PDG [59, 60] central value of −0.6% for ∆0−. When determining our SM

predictions below, we calculate Bsγ without including the photon emission from the va-

lence/sea quarks and, in the final step, we multiply by
(
1 + δΓc

Γ

)
, employing the number

from the r.h.s. of eq. (3.6).

Another important non-perturbative correction to be considered arises in the interfer-

ence of Q1,2 and Q7. Its presence in the inclusive B̄ → Xsγ rate was first pointed out in

ref. [61]. It amounts to around +3% of Bsγ , as established in ref. [62] at the leading order

of an expansion in powers of mbΛ/m
2
c . The corresponding leading contribution to N(E0)

in eq. (1.1) reads

δNV = −
µ2
G

27m2
c

C7(µb)

(
C2(µb)−

1

6
C1(µb)

)
, (3.8)

where µ2
G ' 0.3 GeV2 is one of the HQET parameters that matter in the determination

of C in eq. (1.2). Since mbΛ/m
2
c is not a small parameter, the authors of ref. [56] argued

that no expansion in its powers can be used at all. Instead, they estimated the considered

correction in the framework of SCET, where essential constraints on models of the relevant

soft function came from moments of the semileptonic B̄ → Xc`ν̄ decay spectra. A recent

update of these estimates in ref. [28] implies that δNV (3.8) needs to be multiplied by

κV = 1− 27m2
cΛ17

mbµ
2
G

= 1.2± 0.3. (3.9)

The final numerical value above has been derived by us from ranges for Λ17 given in ref. [28],

assuming that these ranges can be interpreted as 1σ ones. The remaining parameters on

9Our δΓc/Γ and their Fexp
78 are estimated in a similar way.
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which κV depends were set to the values corresponding to the widest range for Λ17 in

ref. [28].

Since the expression for δNV (3.8) is calculated at the leading order in QCD only,

the renormalization scheme for m2
c in the denominator is unspecified. We assume that the

corresponding uncertainty is included in the overall ±3% higher-order one that is being

retained the same as in ref. [13]. As the total effect from δNV amounts to around 3% in

Bsγ , uncertainties due to scheme-dependence of mc in δNV can safely be treated this way.

In our numerical calculations, the quark masses and HQET parameters are included with

a full correlation matrix (see appendix D of ref. [13]), except for the very mc in δNV that

is now fixed to 1.17 GeV. The parameter κV (3.9) will be treated as uncorrelated.

Apart from the two effects we have discussed above, the authors of ref. [56] identified

a third source of uncertain contributions to N(E0) that arise at the order O(Λ/mb). They

come proportional to |C8(µb)|2, where C8 is the Wilson coefficient of the gluonic dipole

operator

Q8 =
gsmb

16π2
(s̄Lσ

µνT abR)Gaµν . (3.10)

Previous estimates of these corrections in refs. [63, 64] focused on large collinear loga-

rithms ln mb
ms

that are present in the corresponding contributions to P (E0). In ref. [13],

such logarithms were varied in the range [ln 10, ln 50] '
[
ln mB

mK
, ln mB

mπ

]
, which served as a

crude estimate of the very uncertain but otherwise small contributions to Bsγ where light

hadron masses are the physical collinear regulators. However, according to ref. [56], possi-

ble non-perturbative effects that come multiplied by |C8(µb)|2 can be unrelated to collinear

logarithms, and affect Bsγ by relative corrections in the range [−0.3, 1.9]% with respect to

the mb
ms

= 50 case, for µb = 1.5 GeV and E0 = 1.6 GeV. Numerically, we can reproduce this

range by performing a replacement

ln
mb

ms
→ κ88 ln 50 with κ88 = 1.7± 1.1 (3.11)

in all the perturbative contributions proportional to |C8(µb)|2.

In the following, we shall treat the quantities δΓc
Γ (3.6), κV (3.9) and κ88 (3.11) on

equal footing with all the other parameters that Bsγ depends on. Since they account for

all the non-perturbative effects estimated in refs. [28, 56], we shall no longer include the

overall ±5% non-perturbative uncertainty that entered the analysis of ref. [13] as an input

from ref. [56]. This way we determine our updated SM predictions for Bsγ and Rγ in the

SM, namely

Bsγ = (3.40± 0.17)× 10−4 and Rγ = (3.35± 0.16)× 10−3, (3.12)

for E0 = 1.6 GeV. The overall uncertainties have been obtained by combining in quadrature

the ones stemming from higher-order effects (±3%), interpolation in mc (±3%), as well as

the parametric uncertainty where all the non-perturbative ones are now contained. Not

only δΓc
Γ , κV and κ88 but several other inputs parameterize non-perturbative effects, too,

namely the collinear regulators (see above), as well as the HQET parameters that enter

either directly or via the semileptonic phase-space factor C (1.2). In the Bsγ case, our
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parametric uncertainty amounts to ±2.5% at present. All the input parameters listed in

appendix D of ref. [13] have been retained unchanged.

The overall uncertainty in Rγ (3.12) amounts to ±4.8%, noticeably improved w.r.t. to

±6.7% in ref. [12]. The main reason for the improvement comes from the updated estimate

in ref. [28] of the non-perturbative uncertainty that stems from Λ17 in eq. (3.9). Further

improvement requires removing the mc-interpolation, and re-considering the higher-order

and parametric uncertainties. If they remain unchanged, the expected future accuracy in

the SM prediction for Bsγ amounts to
√

32 + 2.52 % ' 3.9%, still somewhat behind the

experimental expectation of ±2.6% that was mentioned above eq. (1.1).

In many BSM theories, extra additive contributions ∆C7,8 to the Wilson coefficients

of the operators Q7 (1.6) and Q8 (3.10) at the electroweak matching scale µ0 are the only

relevant reason for shifting Bsγ and Rγ away from the SM predictions. So long as no

accidental cancellations occur, effects due to ∆C7,8 must be small whenever the current

experimental constraints are satisfied. At such points in the BSM parameter spaces, Bsγ
and Rγ can accurately be calculated from the following simple linearized expressions

Bsγ × 104 = (3.40± 0.17)− 8.25 ∆C7 − 2.10 ∆C8 ,

Rγ × 103 = (3.35± 0.16)− 8.08 ∆C7 − 2.06 ∆C8 , (3.13)

where µ0 = 160 GeV has been chosen. The above equations are updates of similar ones in

eq. (10) of ref. [12]. Analytic formulae for the Wilson coefficients at µ0 in a wide class of

BSM theories can be found in ref. [65].

In the specific case of the Two-Higgs-Doublet Model, eq. (3.13) can be replaced by

expressions including all the NLO and NNLO QCD matching corrections [66]. The resulting

95% C.L. lower bound from Rγ on the charged Higgs boson mass in Model-II, evaluated

along the same lines10 as in ref. [67], yields 800 GeV.

4 Summary

We reported on our calculation of the NNLO QCD corrections to Bsγ without interpolation

in mc, and presented final results for contributions originating from propagator diagrams

with closed fermion loops on the gluon lines. They correspond either to the two-body (sγ)

or four-body (sqq̄γ) final states. In all the previously investigated cases, we confirmed the

results from the literature, some of which had been obtained by a single group only. The

new part comes from four diagrams with four-particle cuts that had not been determined

before, as they are not included in the BLM approximation. Their contribution turns out

to be tiny (∼ 0.1% of the decay rate) and quite well reproduced by our former interpolation

algorithm.

In view of the recent progress in estimating the non-perturbative contributions,

we performed an update of the phenomenological analysis within the SM. The ob-

tained results yield Bsγ = (3.40±0.17)×10−4 and Rγ ≡B(s+d)γ/Bc`ν̄ = (3.35±0.16)×10−3

10The corresponding bound in the conclusions of ref. [67] amounted to 580 GeV.
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for E0 = 1.6GeV. The main improvement in the uncertainty came from the analysis in

ref. [28] where non-perturbative effects in the Q1,2-Q7 interference were re-analyzed.

The next contribution to suppressing the overall theoretical uncertainty is expected

from the calculation of Ĝ
(2)
17 and Ĝ

(2)
27 for E0 = 0 and at the physical value of mc, thereby

removing the need for mc-interpolation in these quantities.
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Note added in the proofs. While the present article was being reviewed for publication,

a new paper [68] on non-perturbative effects in the Q1,2-Q7 interference appeared on the

arXiv. To replace the estimates of ref. [28] by those of ref. [68] in our approach, one

would need to use κV = 1.7± 0.8 in eq. (3.9). This would shift our prediction for Bsγ from

(3.40±0.17)×10−4 to (3.45±0.19)×10−4, and strengthen the constraint on MH± even more.

However, the extreme values of Λ17 in ref. [68] originate from soft function models with

quite a rich structure. Such soft functions are related to energy-momentum distributions of

gluons inside the QCD ground states (B mesons), in which case encountering large numbers

of extrema and zero points seems unlikely. Therefore, our preference is to retain κV as it

stands in eq. (3.9) for evaluating the SM predictions for Bsγ and Rγ .

A Large-z expansions and Ĝ
(1)
47 with charm loops

In this appendix, we present large-z expansions of the renormalized contributions to Ĝ
(2)
27

plotted in figures 3 and 4. They are shown by the thin dashed lines reaching large values

of z in the corresponding plots. For the three plots in figure 3 that describe contributions

from diagrams with closed loops of massless fermions, the respective expansions read

∆2-b
m=0Ĝ

(2)
27 = 3

[
27650

6561
+

112

243
L+

8

9
L2+

1

z

(
10427

30375
− 8

135
π2− 572

18225
L+

38

405
L2
)

+
1

z2

(
19899293

125023500
− 8

405
π2− 1628

893025
L+

86

2835
L2
)]

+O
(

1

z3

)
,

∆4-b BLM
m=0 Ĝ

(2)
27 = 3

[
1

z

(
41

108
− 10

243
π2
)

+
1

z2

(
487

3375
− 2

135
π2
)]

+O
(

1

z3

)
,

∆4-b��BLM
m=0 Ĝ

(2)
27 = 3

[
− 32

729
(1+L)+

1

z

(
− 941

7290
+

16

1215
π2
)

+
1

z2

(
− 10852

212625
+

44

8505
π2
)]

+O
(

1

z3

)
,

(A.1)

where L = ln z. The first expression above coincides with eq. (5.3) of ref. [22].
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For the closed bottom loops (the left plot in figure 4), we find

∆2-b
m=mb

Ĝ
(2)
27 =

62210

6561
+

160

729
π2− 16π

9
√

3
−16S2+

(
464

81
+

160

729
π2− 16π

9
√

3
−16S2

)
L+

8

9
L2 (A.2)

+
1

z

(
−30991

10125
+

656

3645
π2+

4π

45
√

3
+

64

405
ζ3+

4

5
S2−

32972

18225
L+

38

405
L2
)

+
1

z2

(
−38874763

25004700
− 8

1701
π2+

26π

525
√

3
+

64

2835
ζ3+

12

35
S2−

864896

893025
L− 418

2835
L2
)

+O
(

1

z3

)
,

where S2 = 4
9
√

3
Im
[
Li2
(
eiπ/3

)]
. Finally, for the closed charm loops (the right plot in

figure 4), the large-z expansion reads

∆2-b
m=mc

Ĝ
(2)
27 =

11018

6561
+

128

243
L+

200

243
L2+

1

z

(
5714

54675
+

7

81
ζ3+

2146

18225
L+

52

405
L2

)
+

1

z2

(
− 62075113

428652000
+

469

5184
ζ3−

41987

893025
L+

92

2835
L2

)
+O

(
1

z3

)
. (A.3)

Our results in eqs. (A.2) and (A.3) agree with the numerical ones in eqs. (A.1) and (A.2)

of ref. [26]. Analytical expressions for the leading terms agree with the findings of ref. [23].

Determining the renormalized results plotted in figures 3 and 4 required taking

into account Ĝ
(1)bare
47 , i.e. three-loop counterterm diagrams with vertices proportional to

Q4 = (s̄LγµT
abL)

∑
q(q̄γ

µT aq). An expression for this quantity in eq. (2.4) of ref. [13]

contains no contributions from closed loops of charm quarks, as all the other results in

section 2 of that paper. Such contributions arise in the two-body channel only. They take

the form

∆2-b
m=mc

Ĝ
(1)bare
47 =

16

81ε
− 4

243
+

264π2 − 2186

729
ε+ 2Re

[
b(z) + εb̃(z)

]
+O(ε2). (A.4)

Small-z expansion of the function b(z) has been given in eq. (3.9) of ref. [69], while the

large-z expansion of Re b(z) can be found eq. (5.2) of ref. [22]. As far as b̃(z) is concerned,

we obtain the following expansions:

Re b̃(z) =
1144

729
− 46

243
π2− 8

243
L− 2

81
L2+

1

z

(
10957

60750
+

212

2025
L+

1

15
L2

)
+

1

z2

(
491839

41674500
+

134

33075
L+

2

63
L2

)
+O

(
1

z3

)
,

Re b̃(z) =

(
44

3
− 16

9
π2− 40

9
ζ3+

16

9
L− 8

9
L2

)
z+

(
304

81
− 128

27
ln2− 32

27
L

)
π2z

3
2

+

(
53

3
− 20

27
π2+

14

3
L− 32

27
π2L+

10

9
L2− 4

9
L3

)
z2− 80

27
π2z

5
2

+

(
6830

729
− 292

243
π2+

80

27
ζ3+

68

243
L+

64

81
π2L− 124

27
L2+

16

9
L3

)
z3+

88

135
π2z

7
2

+

(
1944727

121500
− 304

405
π2+

32

9
ζ3−

17239

2025
L− 80

27
L2+

16

9
L3

)
z4+

272

2835
π2z

9
2

+

(
34017647

833490
− 1018

189
π2+

80

9
ζ3−

113308

3969
L− 182

27
L2+

40

9
L3

)
z5+O

(
z

11
2

)
. (A.5)

No explicit expressions for the expansions of b̃(z) have so far been published, even though

this function must have been used for UV renormalization in ref. [26].
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[27] M. Misiak and M. Poradziński, Completing the Calculation of BLM corrections to B̄ → Xsγ,

Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685] [INSPIRE].

[28] A. Gunawardana and G. Paz, Reevaluating uncertainties in B → Xsγ decay, JHEP 11

(2019) 141 [arXiv:1908.02812] [INSPIRE].

[29] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279

[INSPIRE].
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