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proposed by Sanches and Weinberg for identifying boundary operators which are local in

the bulk, which also applies to certain regions that lie beyond the reach of HRT surfaces

by taking advantage of the lightsheets which bound entanglement wedges. We identify the

caustics which terminate these lightsheets in conical deficit and BTZ black hole spacetimes
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to more unexpected features in the shapes of entanglement wedges.
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1 Introduction

Holography has provided insights into the emergence of locality in quantum gravity. Early

work on this topic includes the reconstruction of bulk operators using causal approaches [1,

2]. However, Ryu-Takayanagi (RT) surfaces [3] reach outside of the region causally con-

nected to a boundary subregion [4–6] and so it was appreciated that they must have some

role to play in reconstructing the bulk from the boundary. Regions that are not crossed

by RT surfaces, or their covariant generalisations due to Hubeny-Rangamani-Takayanagi

(HRT) [7], are known as an entanglement shadows [8, 9]. However, the precise meaning of

these regions is not fully understood.

In recent years, an understanding of subregion-subregion duality in holography has

lead to a new perspective on bulk locality. It has been understood that boundary locality

leads to a well defined notion of local algebras of operators and that this local algebra can

be associated to an appropriate algebra of bulk operators localised in the entanglement

wedge associated with that boundary subregion [10–12].

In this picture, HRT surfaces separate a bulk Cauchy slice into two parts, each recon-

structible from complementary regions on the boundary. Because entanglement shadows

can be contained in entanglement wedges, those bulk regions do not seem to be an obstruc-

tion to the reconstruction of the bulk from the boundary in this regard.
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This analysis does not however have anything to say about whether the operators are

localised at points in the bulk, it just restricts them to the entanglement wedge. Nonethe-

less, this machinery can be used to identify local operators [13–16]. An operator that can

be reconstructed independently in different boundary regions must lie in the intersection

of the entanglement wedges of those regions. Therefore if a family of boundary regions

can be found such that the intersection of their entanglement wedges includes only a single

point in the bulk, then an operator that can be reconstructed in any of those regions must

be localised at that point [15]. This work defined the localisable region as the set of bulk

points that can be identified in this way. Not all points in the bulk need to have this

property and so the points that do not are known as non-localisable. The existence of local

operators in semi-classical quantum gravity at non-localisable points cannot be established

using this method. We will see that in some cases, causal reconstruction methods can be

used to reconstruct operators in the non-localisable region. However, these causal methods

only provide locality order by order in perturbation theory and lead to various confusions

which were resolved using entanglment wedge reconstruction methods in [10, 12]. When

the non-localisable region is behind a horizon it is not clear how to establish the existence

of local operators.

The boundaries of entanglement wedges, which include the HRT surface, play an im-

portant role in the determination of the localisable region. However, the boundary of

entanglement wedges also include the lightsheets emanating from the HRT surface towards

the boundary and [15] proposed methods for localising points on these lightsheets. Clearly

the non-localisable region is not in general the same as the entanglement shadows that

were considered in [8, 9], but their interpretations have some similarities and we will see

that they do coincide in some cases.

1.1 Set-up

Let us start by collecting the necessary notation. We will consider spacetimes, M , which are

asymptotically AdS. Given an achronal subregion R of the boundary, the set of points on

the boundary spacetime for which every inextensible causal curve passing through the point

also crosses R is called the boundary domain of dependence of R, D[R]. The future/past

domain of dependence of R are denoted by D±[R]. Let J±[S] denote the causal future/past

of the subset S of our spacetime. It was argued in [6, 17, 18] that a bulk field φ(x) can be

reconstructed, to leading order in 1/N , on a boundary subregion D[R] whenever x lies in

the so-called causal wedge,

WC(R) = J +[D[R]] ∩ J −[D[R]]. (1.1)

of the subregion R. This bulk reconstruction method is known as causal wedge

reconstruction.

We will denote the HRT surface anchored on a region R by γR. This HRT surface

can be taken to lie on a Cauchy slice of the bulk, ΣR. It separates this Cauchy slice into

HR, the homology region connecting R to γR, and H ′R. WE(R) ≡ D[HR] is known as the

entanglement wedge of R and is the bulk region dual to R in what is known as entanglement

wedge reconstruction or subregion-subregion duality [10–12].
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In [15], a criterion was proposed for diagnosing whether a typically non-local boundary

operator φ acting on a given code subspace G (dual to an unknown bulk spacetime) corre-

sponds to a local operator in the bulk. We will briefly summarise their proposal and recall

the purpose of the localisable region, but refer to [15] for further details. The argument is

based on the map Q which associates the following set of boundary regions with φ

Q(φ) = {R ∈ R|φ is reconstructable in R}. (1.2)

This map defines equivalent classes [φ], where φ1 ∼ φ2 if and only if Q(φ1) = Q(φ2). On

these equivalent classes, one can associate the ordering [φ1] ≤ [φ2] if Q(φ1) ⊆ Q(φ2). A set

of operators [φ] 6= [1G] with the property that for every operator φ′ such that [φ] ≤ [φ′] we

also have [φ′] ∈ {[φ], [1G]}, are called superficially local. This boundary characterisation of

operators on the code subspace encodes the general intuition that the more local a bulk

operator is, the more boundary regions it can be reconstructed on. In some sense, the

superficially local operators in [φ] are as local in the bulk as it can be using the map Q.

However, not all superficially local operators are true local bulk operators.1

The localisable region of the bulk (whose semi-classical Hilbert space is dual to the

code subspace) is the subspace of bulk points for which superficial locality implies true bulk

locality. A useful (bulk) criterion to determine if a bulk point p belongs to the localisable

region is proved as theorem III.1 in [15], which will be a central tool in this work. It

requires the existence of a subset of the collection of all boundary regions such that the

intersection of their entanglement wedges contains only the point p, that is there is some

family of boundary regions R0 such that⋂
R∈R0

WE(R) = {p} . (1.3)

In some asymptotically AdS spacetimes, such as pure AdS, the localisable region is the

entire bulk. In that case, superficial locality coincides with locality.

Points which are not in the localisable region are known as non-localisable. By taking

the converse of (1.3), a non-localisable point is one such that there exists another point q

so that

p ∈WE(R) =⇒ q ∈WE(R) , (1.4)

for all R ∈ R0. Operators at these two points cannot be split into different entanglement

wedges, so that the argument for bulk micro-causality in [10–12] does not apply.

In a simple spacetime such as global AdS3, where a Cauchy slice is completely probed

by RT surfaces, finding a set of boundary regions with a single bulk point in the intersection

of their entanglement wedges can be very simple. Namely, one can consider a bulk point as

the intersection of two spatial geodesics. Because each geodesic is the set of points in the

intersection of the two entanglement wedges bounded by that geodesic, the intersection

of those four entanglement wedges contain only one bulk point. This is very similar to

the intuition used to reconstruct bulk operators using invariance under modular flows

1Note that the reverse is also true.
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Figure 1. This figure is based on figure 3 of [15] demonstrating how to localise a point inside

the entanglement shadow in the conical deficit spacetime. It depicts a conformal diagram, where

light rays move at 45◦, of a (r, t) slice of this spacetime with deficit angle 2π/3. The entanglement

shadow is shown in gray. Four HRT surfaces associated to large boundary regions are drawn in

blue. The boundaries of the corresponding entanglement wedges are shown, in green and purple

for HRT surfaces centered at θ = 0 and θ = π respectively. This boundary is set by a light ray

departing the HRT surface and reaching the defect at r = 0. Behind the defect a caustic forms

reaching the boundary at the other side of the cylinder. Provided that the corner between the light

ray and the caustic is not too sharp, one can use such a set of boundary regions to localise a point

in the entanglement shadow of a conical deficit.

proposed in [14]. However, such an arguments only works for spacetimes entirely probed

by RT surfaces, i.e. spacetimes without an entanglement shadow. It was argued in [15]

that, even in the presence of an entanglement shadow, the entire bulk is in the localisable

region when entanglement wedges probe the entire spacetime. This argument was based on

an implicit assumption on the geometry of entanglement wedges, namely that the future

and past boundaries of a cross-section of the entanglement wedge as depicted in figure 1

are monotonic. In that case, it was argued that a set of entanglement wedges as shown in

figure 1 would be sufficient to localise a point in the entanglement wedges of conical deficit

spacetimes.

In this work, we investigate this assumption by deriving the precise form of entangle-

ment wedges and the caustics bounding them in asymptotically-AdS3 geometries using the

embedding space formalism. This will allow us to identify the non-localisable regions in

some simple spacetimes by using the techniques proposed in [15]. As the lightsheets bound-

ing entanglement wedges include caustics, an understanding of their shape is required to

determine the extent of these non-localisable regions.

In section 2, we study entanglement wedges in the conical deficit geometry. We find an

unexpected behaviour of the caustics bounding the entanglement wedges for deficit angles

– 4 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
6

π ≤ ∆θ < 2π which implies a breakdown of the general analysis proposed in [15]. In this

case, the non-localisable region coincides with the region not probed by HRT surfaces. For

smaller deficit angles, the caustics have the behaviour anticipated by [15] and the whole

spacetime is localisable.

In section 3, we derive the shape of some of entanglement wedges in the maximally

extended two-sided BTZ black hole. Again, we will start by understanding the shape of the

entanglement wedges and the caustics bounding them in this spacetime. HRT surfaces that

stretch from one boundary to the other, which correspond to boundary regions including

components in both boundaries, allowed [15] to localise points behind the horizon. Yet there

is a region near the singularity that is not localisable. We prove a lemma demonstrating

that entanglement shadows hidden behind event horizons lead to non-localisable regions.

When given access to only one asymptotic region, as is the case for black holes formed

by collapse, we find that there is a non-localisable region near the horizon which coincides

with the entanglement shadow present in that case.

2 Conical deficit

The conical deficit spacetime is obtained by identifying the global angular coordinate θ of

AdS3 with θ + 2πα, with 0 < α < 1. Defining a new angular coordinate with the usual

2π periodicity, while simultaneously rescaling the other global coordinates, one obtains the

conical deficit metric,

ds2 = −
(
r2 + α2

)
dt2 +

dr2

r2 + α2
+ r2dθ2. (2.1)

Determining the localisable region of a conical deficit spacetime necessitates under-

standing the HRT surfaces and corresponding entanglement wedges associated to arbitrary

boundary regions. These geometric constructs can be considered in the embedding space

formalism, where AdS3 is understood as a hyperboloid embedded in R2,2. We will use the

convention that this space has signature (−,−,+,+). The AdS hyperboloid is defined by

X2 = −L2, where L is the AdS scale. This hyperboloid has a closed timelike curve which

must be unravelled by taking its universal cover. We will work in units where L = 1.

Global coordinates on AdS3 can be used to parametrise this hyperboloid as follows

XA
global(r, t, θ) =

(√
r2 + 1 cos t,

√
r2 + 1 sin t, r sin θ, r cos θ

)
. (2.2)

The metric of AdS3 in global coordinates is the one induced by the embedding of the

hyperboloid into flat R2,2,

ds2 = dX · dX = −
(
r2 + 1

)
dt2 +

dr2

r2 + 1
+ r2dθ2 . (2.3)

The identification of the angular coordinate required to obtain the conical deficit space-

time can be understood directly in the embedding space if one considers hyperpolar coor-

dinates on R2,2 of the form

(r1 cos τ, r1 sin τ, r2 sinφ, r2 cosφ) . (2.4)

– 5 –
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The action of φ→ φ+ 2πα preserves the hyperboloid X2 = −1. Once this identification is

restricted to the hyperboloid, parametrised by (2.2), it reproduces the usual identification

of θ with θ + 2πα. The vector normal to 3-planes of constant φ0 is given by

Pplane(φ0) = (0, 0, cosφ0,− sinφ0) , (2.5)

and under the identification of the angular coordinate θ ∼ θ+ 2πα, the points X satisfying

X · Pplane(φ0) = 0 are being identified with those at X · Pplane(φ0 + 2πα) = 0.

A fundamental region of this identification can be covered by using global coordinates

rescaled as

θglobal = αθcone , tglobal = αtcone , rglobal =
rcone
α

, (2.6)

with 0 < θ < 2π. This leads to a parametrisation of the AdS hyperboloid by

XA
cone(r, t, θ) =

1

α

(√
r2 + α2 cosαt,

√
r2 + α2 sinαt, r sinαθ, r cosαθ

)
. (2.7)

The metric induced by the embedding into R2,2 reproduces the conical deficit metric (2.1).

2.1 HRT surfaces

In AdS3, HRT surfaces are given by spacelike geodesics. The geodesics of a conical deficit

spacetime can be obtained from the AdS3 geodesics subject to the appropriate identifica-

tions. In the ambient R2,2 planes intersecting the hyperboloid X2 = −1 give the relevant

geodesics [19, 20]. Such a plane is spanned by the R2,2 vectors corresponding to a point on

the geodesic, X0, as well as the tangent at this point, X1. Given a geodesic

γµ(λ) = (r(λ), t(λ), θ(λ)) , (2.8)

the points on the geodesic are given by XA
cone(γ(λ)), so that

X0 = XA
cone(γ(λ0)) and X1 ∝ ∂λXA

cone(γ(λ0)) (2.9)

for a given reference point λ0. For example, a geodesic with2

γµ(λ0) = (r0, 0, 0) , (2.10)

∂λγ
µ(λ0) =

(
− η
√
r20 + α2,

η√
r20 + α2

,
1

r0

)
. (2.11)

has

X0 = XA
cone(r0, 0, 0) =

1

α

(√
r20 + α2, 0, 0, r0

)
, (2.12)

X1 = ∂λγ
µ(λ0)∂µX

A
cone(r0, 0, 0) =

(
−η r0

α
, η, 1,−η

√
r20 + α2

α

)
. (2.13)

2This tangent vector, ∂λγ
µ(λ0), is chosen for future convenience. Note that it has unit length and points

in the ∂θ direction for η = 0. For η 6= 0 this HRT surface is anchored to an interval that is not centered at

θ = 0.
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This plane can also be described by the plane spanned by the vectors orthogonal to it,

its normal space. A co-dimension 2 HRT surface always has a 2-dimensional normal plane.

The 2-dimensional space normal to the HRT surface has one timelike and one spacelike

direction, therefore the normal plane in R2,2 can be described either by a timelike and a

spacelike unit vector (S, T ) such that S2 = 1, T 2 = −1 and S · T = 0 or by a pair of null

vectors (N1, N2) such that N2
1 = 0, N2

2 = 0 and N1 · N2 = −2. These two descriptions

are related by N1 = T + S and N2 = T − S. The HRT surface itself lives on a 2-plane

spanned by X0 and X1, with X2
0 = −1 and X2

1 = 1. so that (X0, X1, S, T ) form an

orthonormal basis for R2,2. The intersection of this 2-plane with the AdS hyperboloid

leads to a parametrisation of the HRT surface as

Y (ξ) = sec ξX0 + tan ξX1 for − π

2
< ξ <

π

2
. (2.14)

The HRT surface reaches the boundary for ξ = ±π
2 . These boundary points are described

by the null rays X0±X1 in the ambient R2,2. In terms of the parametrisation given in (2.13),

the boundary points of HRT surfaces are described by the null rays in the direction of

X0 ±X1 =

(√
r20 + α2 ∓ ηr0

α
,±η,±1,

r0 ∓ η
√
r20 + α2

α

)
. (2.15)

The conformal boundary of AdS3 is given by null rays, Z2 = 0 with Z ∼ λZ. In terms of

the coordinates used to describe the conical deficit, this is

ZAcone(t, θ) ∝ lim
r→∞

α

r
XA

cone(r, t, θ) = (cosαt, sinαt, sinαθ, cosαθ) . (2.16)

Comparing these two expressions gives the endpoints of the boundary interval to which

our HRT surface is attached

θ± = ± 1

α
arctan

α

r0 ∓ η
√
r20 + α2

, t± = ± 1

α
arctan

ηα√
r20 + α2 ∓ ηr0

. (2.17)

This characterisation of the spacelike geodesics in AdS3 allows us to construct the

HRT surface anchored to a boundary interval. For the conical deficit spacetime, we can

similarly construct all of the candidate HRT surfaces by looking at all the surfaces anchored

to images of the boundary points at the edges of the boundary region. The true HRT surface

is the one of minimal length. This condition causes conical deficit spacetimes to develop

an entanglement shadow, a bulk region that no HRT surface can reach, around the conical

singularity at r = 0. The minimal radius probed by the HRT surfaces can be found to

be [8]

rmin = α cotα
π

2
. (2.18)

A few HRT surfaces together with the entanglement shadow are drawn in figure 2 for

α = 1/2. Any simply connected boundary subregion has the same HRT surface as its

complement. The red geodesic in figure 2 can be therefore be thought of as the HRT

surface to the black or the yellow subregion of the boundary. Note that the entanglement

shadow is included in the homology surface of the black boundary region, in contrast to

HR of the yellow boundary region.
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(a)
(b)

Figure 2. A constant time slice of conical AdS3 with α = 1/2 is shown. The boundary is pulled

to a finite value by using the radial coordinate, ρ = arctan r. The entanglement shadow is shown

in gray. A few representative HRT surfaces are shown in orange, blue and red on the fundamental

domain in (a). The same geodesics are shown on the covering space (AdS3) in (b) together with

their images. The fundamental domain is obtained by identifying points under a rotation by π.

The presence of this region unprobed by HRT surfaces makes the determination of the

localisable region more subtle than in AdS3. [15] suggested that those entanglement shadows

nevertheless belong to the localisable region because, by their theorem III.1, the geometric

objects that matter in the determination of the localisable region are entanglement wedges.

They argued, based on their figure 3, that the entire spacetime was localisable. This

argument is recapped in our figure 1. We will now construct the entanglement wedges in

the conical deficit spacetime in order to verify whether the behaviour depicted in this figure

in generic.

2.2 Entanglement wedges

Given an HRT surface, the entanglement wedge can be obtained by lightsheet construction

outlined in [7]. The idea is that from each point on the HRT surface two light rays are

shot orthogonally to the HRT surface in the direction of the HR hypersurface (one future-

and one past-directed). The collection of these light rays together with the boundary

causal diamond of the HRT surface forms the boundary of the entanglement wedge. In

this construction, one should take into account that the lightsheet must be terminated

whenever light rays intersect. Such intersections are called caustics. In this section, we will

derive the location of the lightsheets and caustic analytically. In appendix A, a numerical

approach to this construction is summarised for the case of a conical deficit, which is also

applicable to other spacetimes.

The light rays generating the lightsheet are null geodesics and so they can be described

by a 2-plane in R2,2 spanned by a timelike unit vector Y (ξ) where the null ray leaves the

HRT surface and a null tangent vector N . This light ray must be orthogonal to the HRT

– 8 –
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surface so that N ·X1 = 0. This means that N must live on the 2-plane normal to the HRT

surface so that each of the two lightsheets are generated by one of the two null vectors

spanning the normal plane, N1 and N2,
3

Li(λ, ξ) = Y (ξ) + λNi , for λ > 0 and i = 1, 2 . (2.19)

For the conical deficit, explicit expressions for this lightsheet can be obtained. We

will focus on the entanglement wedges of boundary intervals covering more than half of the

boundary, so that the lightsheets will initially point towards decreasing r. The construction

of the lightsheets of the complementary region (of size smaller than half the boundary) is

straightforward and similar, although these regions will not have caustics in the bulk for

conical deficits.

We shall parametrise the HRT surface by the location of the point whose future light

ray along the lightsheet will hit the conical singularity at r = 0. Without loss of generality,

we can choose coordinates such that this point lies at t = 0 and θ = 0. Therefore,

X0 =

(√
r20 + α2

α
, 0, 0,

r0
α

)
, (2.20)

as before. We will now choose a basis for embedding space by pushing forward the tangent

space of this point. By pushing forward the unit vectors in each coordinate direction, we

can construct the following embedding space vectors

R =
√
r20 + α2∂rX

A
cone(r0, 0, 0) = α−1

(
r0, 0, 0,

√
r20 + α2

)
, (2.21)

T =
1√

r20 + α2
∂tX

A
cone(r0, 0, 0) = (0, 1, 0, 0) , (2.22)

Θ =
1

r0
∂θX

A
cone(r0, 0, 0) = (0, 0, 1, 0) . (2.23)

Taken together, (X0, T, R, Θ) form an orthonormal basis for R2,2. Using this basis, we can

provide an intuition for the parametrisation of the HRT surfaces that we used in (2.13). The

future-directed light ray leaving X0, which will hit the conical singularity, is characterised

by the fact that it will leave the HRT surface in a null direction with no angular component.

Since the metric has no cross terms or θ dependence, a geodesic that starts with no velocity

in the θ direction will never acquire one. This inward pointing future-directed null vector,

orthogonal to X0, with no angular component can be constructed as

N1 = T −R . (2.24)

We want to construct an HRT surface such that the null ray in this direction will be the

generator of the lightsheet leaving from X0. Therefore, this null vector must be one of the

3Note that the same two null vectors N1 and N2 generate the normal space along the entire HRT surface.

In AdS, the normal space rotates as we move along the HRT surface. However the HRT surfaces lift to

planes in R2,2 where parallel transport is trivial. The rotation of the normal space in AdS therefore comes

from pulling back these fixed vectors through the map (2.7). This was discussed in [21].
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Ni characterising the space orthogonal to the X0–X1 plane. We must therefore choose X1

so that it is orthogonal to this vector. A general spacelike unit vector orthogonal to both

X0 and N1 can be parametrised by a single parameter η ∈ R,

X1 = Θ + η (T −R) . (2.25)

For η = 0, this tangent vector has no component in the time direction, so the resulting

HRT surface will stay at a fixed time. One can therefore think of η as parametrising the

tilt of the boundary interval away from the constant time slice.

The final null vector completing our orthonormal frame is determined by the require-

ment that it be (i) orthogonal to X0 and X1, (ii) null and (iii) satisfy N1 ·N2 = −2,

N2 = (η2 − 1)R− (η2 + 1)T − 2ηΘ . (2.26)

The future lightsheet is therefore located at

L1(ξ, λ) = sec ξ X0 + tan ξΘ + (λ+ η tan ξ)T − (λ+ η tan ξ)R ,

=

(√
r20 + α2 sec ξ − r0(λ+ η tan ξ)

α
, λ+ η tan ξ, (2.27)

tan ξ,
r0 sec ξ −

√
r20 + α2(λ+ η tan ξ)

α

)
,

and is shown in figure 3 for a few cases.

This lightsheet must be terminated whenever two generators cross, so that Li(λ1, ξ1) =

Li(λ2, ξ2). In the case of AdS3, that is α = 1, the planes in R2,2 containing these generators

intersect only along the null ray Ni, which corresponds to the boundary point at the tip

of the boundary causal diamond associated to the region on which the HRT surface is

anchored. This is the fact that in AdS, the lightsheets are free of caustics in the bulk and

terminate at the tip of the boundary causal diamond.

The new ingredient in the conical deficit spacetime is the identification. When the

interval covers more than half of the boundary, this leads to new solutions to Li(λ1, ξ1) =

Li(λ2, ξ2) as two vectors can be related by the identification. Recall that this identifi-

cation corresponds to a rotation by 2πα of φ in the hyperpolar coordinates (2.4), which

parametrises the angle in the positive signature coordinates of R2,2.

In general, identifying a caustic requires tuning three of the four parameters

(ξ1, λ1, ξ2, λ2). However, in this case we can exploit symmetries in our set-up to simplify

our task. From the explicit expression for LA1 , we see that L3
1 is odd in ξ. Since we can ap-

ply our identification symmetrically under a X3 → −X3 reflection by identifying the plane

Pplane(πα) with Pplane(−πα), we should look for caustics where the lightsheets reach these

planes. We find a caustic where L1(λ1, ξ) ·Pplane(πα) = 0 and L1(λ2,−ξ) ·Pplane(−πα) = 0.

This occurs at

λ1 = −
Y (ξ) · Pplane(πα)

N1 · Pplane(πα)
, λ2 = −

Y (−ξ) · Pplane(−πα)

N1 · Pplane(−πα)
. (2.28)
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(a) α = 1
2 , r0 = 2, η = 0.5

(b) α = 1
2 , r0 = 2, η = 0.5

(c) α = 2
3 , r0 = 2.5, η = 0 (d) α = 1

3 , r0 = 2.5, η = 0

Figure 3. Plots of the lightsheet bounding the entanglement wedges corresponding to intervals,

shown in yellow, that cover more than half of the boundary. The HRT surface is displayed in blue.

A few light rays generating the lightsheet are drawn in purple. The light ray that hits the conical

singularity at r = 0 is drawn in green and the caustic where the lightsheet terminates is in red. In

(a) and (b) the front and top view respectively of the full lightsheet which bounds the entanglement

wedge of a non-equal time slice HRT surface is displayed, with the dashed lines in (b) referring to

the past lightsheet and the solid lines to the future lightsheet. For α = 1
2 , the caustic is at constant

t. In (c) and (d) only the future lightsheet is displayed, so as to reduce clutter.
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The caustic is located at

L1(λ1, ξ) =

(
α sec ξ − r0 cotπα tan ξ√

r20 + α2
,
r0 sec ξ + α cotπα tan ξ√

r20 + α2
, tan ξ,− cotπα tan ξ

)
,

L1(λ2,−ξ) =

(
α sec ξ − r0 cotπα tan ξ√

r20 + α2
,
r0 sec ξ + α cotπα tan ξ√

r20 + α2
,− tan ξ,− cotπα tan ξ

)
.

(2.29)

In terms of the coordinates covering the conical deficit defined in (2.7), L1(λ1, ξ) and

L1(λ2,−ξ) are located at θ = ±π respectively along the same curve,4

t(r) =
1

α

(
arctan

√
α2 + r2 sin2 πα

r cosπα
− arctan

α

r0

)
, (2.30)

confirming that this is a caustic.

There is a simple expression for ∂rt(r), which makes manifest its definite sign:

∂rt(r) = − α cosπα

(r2 + α2)
√
α2 + r2 sin2 πα

. (2.31)

This result has three interesting features. The first is that it does not depend on η

used to parametrise the tilt of the HRT surface. The caustic leaves the conical singularity

at r = 0 and moves towards the boundary at constant θ. It hits the boundary at the future

tip of the boundary causal diamond, at θ = ±π and

t(r =∞) = π − 1

α
arctan

α

r0
. (2.32)

That the caustic does not depend on η reflects the fact that its shape does not depend

on whether the past tip of the boundary causal diamond is at the same angular position

as the future tip. In effect, we have chosen our coordinates so that the future caustic and

the future tip of the causal diamond all lie at θ = ±π. In these coordinates, the choice

of r0 and η determine where the past tip will lie. By the time reflection symmetry of the

metric, it must be that the caustic on the past lightsheet also lies at the angle of the past

tip. Hence for tilted HRT surfaces, the past caustic will not lie at θ = ±π anymore, as

illustrated in figure 3(a) and 3(b).

The second feature is that its shape does not depend on r0. The only effect of r0 is to

shift the caustic in t, as the value of r0 determines the position of the future tip where the

caustic meets the boundary.

The last feature is that t(r) is monotonic, since (2.31) does not change sign as a function

of r. t(r) is decreasing for 0 < α < 1
2 and increasing for 1

2 < α < 1, as shown in figure 4.

For α = 1
2 , the caustic is flat since ∂rt(r) = 0. Moreover, the difference between the time

at which the radial light ray reaches the singularity and the time of the future tip of the

boundary causal diamond can be seen to be

t(∞)− t(0) = π − π

2α
.

4The branch of arctan which has range [0, π] must be used. This branch ensures that t(r) is continuous

as α is varied near α = 1
2
.
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t

arctan r

(a) α = 1
2

t

arctan r

(b) α = 2
3

t

arctan r

(c) α = 1
3

Figure 4. A side view of the entanglement wedge for regions covering more than half of the

boundary in the conical deficit for various values of α. The HRT surface is depicted in blue, the

ingoing light ray in green, the caustic in red and the interior of the entanglement wedge is shaded

in light blue.

Lightsheets of intervals containing less than half of the boundary can be constructed

in a similar way and are shown for completeness in figure 5.

2.3 Localisable region

Let us now turn to determining the localisable region in the conical deficit spacetime. The

argument given in [15] for localisability in the conical deficit, reviewed in our figure 1,

assumed that t(r) describing the caustics is monotonically increasing, but we have seen

that this is not the case for 0 < α ≤ 1/2. In particular, this assumption does not hold for

any of the conical deficit spacetimes obtained by a Zn identification, which have α = 1
n [22].

These are the spacetimes where entwinement was proposed as a quantity that could probe
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Figure 5. Plot of the lightsheet bounding the entanglement wedge corresponding to an interval,

shown in yellow, that covers less than half of the boundary with r0 = 1.1, η = 0 and α = 1/3. A

few light rays generating the lightsheet are drawn in purple.

inside the entanglement shadow [8, 23, 24].

We have found that t(r) is indeed monotonically increasing for conical deficits 1
2 < α <

1, so their argument goes through and we conclude that the entire spacetime is localisable.

However, for 0 < α ≤ 1
2 this is not the case. In those cases, we can show that there is a

non-localisable region coinciding with the entanglement shadow as follows. Points inside

the entanglement shadow are only inside the entanglement wedge of boundary intervals

that cover more than half of the boundary. These entanglement wedges are bounded by

the radial light ray heading from the HRT surface directly to the conical singularity along a

direction θ = θ0 and by the caustic at θ = θ0±π. Since t(r) is monotonically decreasing for

both the caustic and the ingoing light ray, these entanglement wedges will always include

a whole interval [0, r] at fixed time t(r) and θ. Therefore any entanglement wedge that

includes a point (r∗, t∗, θ∗) along this ingoing light ray or the caustic will also include all the

points (r, t∗, θ∗) with r < r∗. By theorem III.1 of [15], this implies that the point (r∗, t∗, θ∗)

cannot be localisable.

Although points inside the entanglement shadow are not in the localisable region, the

total radial extent of an operator near the conical singularity can be determined from where

it can be reconstructed on the boundary.5 The obstruction is that an operator supported

on a ring at fixed radius can be reconstructed in exactly the same regions as an operator

that is supported on the disk inside this ring.

2.4 Disconnected boundary regions

To complete the argument that the entanglement shadow is not in the localisable region for

0 < α ≤ 1
2 , we should also analyse regions with multiple disconnected components. Start

with the 2 interval case, where the region on the boundary is R = I1 ∪ I2.

5We would like to thank Sean Weinberg for emphasising this fact in correspondence on this topic.
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The boundary of this boundary region, ∂R, consists of 4 points. The HRT surface

must be anchored at these 4 points, and therefore has two components, each consisting

of a spatial geodesic connecting two boundary points. There are two possible ways of

connecting the 4 boundary points: either the spatial geodesics connect the endpoints of

each interval independently or they connect the intervals to each other. In the first case, the

homology surface is the union of two disconnected homology surfaces, each corresponding

to a homology surface associated to a single interval of less than half the boundary circle.

This situation only has the trivial caustics at the tips of the two boundary diamonds. In the

second case, the homology surface connects the two intervals across the bulk and includes

the central region around the conical singularity. This situation is the more interesting one

with non-trivial caustics.

The caustic in this situation is depicted in figure 6 and can be seen to form a Y-

shape. It generically starts at the conical deficit and moves outwards until it splits into

two branches, one going to each of the future tips of the two boundary diamonds. A

first branch gets formed by the lightsheet emanating from the HRT surface closest to the

singularity, where light rays near the radial generator of the lightsheet meet on the other

side of the deficit, much as in the single interval case. The other branches come from

where the second lightsheet meets this one. The first branch follows exactly the analysis in

the previous sections, with the appropriate HRT surface connecting the pair of boundary

points that are further apart. The other two branches can be found by looking for the

intersection of the lightsheets.

Denote the two HRT surfaces and lightsheets by (a) and (b), where (a) is the one which

meets the deficit first and leads to the first branch of the caustic. In the ambient R2,2, the

two HRT surfaces are parametrised by

Y (a)(ξ(a)) = sec ξ(a)X
(a)
0 + tan ξ(a)X

(a)
1 , (2.33)

Y (b)(ξ(b)) = sec ξ(b)X
(b)
0 + tan ξ(b)X

(b)
1 , (2.34)

and the lightsheets are

L(a)(ξ(a), λ(a)) = Y (a)(ξ(a)) + λ(a)N
(a)
1 , (2.35)

L(b)(ξ(b), λ(b)) = Y (b)(ξ(b)) + λ(b)N
(b)
1 . (2.36)

Notice that these lightsheets are simply the intersection of the 3-plane generated by

(X0, X1, N1) with the AdS hyperboloid X2 = −1. Therefore, the new branch of the caustic

will occur along the intersection of these 3-planes. The 3-plane generating the lightsheet

is specified by

N1 · L = 0 . (2.37)

Therefore the intersection of the lightsheets occurs when

N
(a)
1 · L(b)(ξ(b), λ(b)) = 0 , or N

(b)
1 · L

(a)(ξ(a), λ(a)) = 0 . (2.38)
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Figure 6. The entanglement wedge of a disconnected boundary region R, shown in yellow, on the

constant time slice t = 0, for α = 1
2.2 . The HRT surfaces are at r

(a)
0 = 0.8, r

(b)
0 = 3.5, θ

(a)
0 = 0,

θ
(b)
0 = π and are shown in blue. The caustic, depicted in red, forms a Y-shape that is monotonically

decreasing in time as a function of r. The green lines represent the two radial light rays starting

from the HRT surfaces and meeting the caustic. The purple lines bound the future boundary causal

diamonds. Left. The complete entanglement wedge seen from the side. Right. The caustic seen

from the top. The gray segment is a boundary region R′ associated to γ(a) alone. The position of

the tips of the boundary causal diamonds for the two interval boundary region are illustrated with

red dots while the gray dot shows the position of the tip of the single causal diamond of region R′.

These two conditions are the same and must be satisfied at the same points in R2,2, so

whichever is more convenient can be used. These conditions are easily solved in terms of

the parameter along each generator where this intersection can occur,

λ
(a)
∗ = −N

(b)
1 · Y (a)(ξ(a))

N
(b)
1 ·N

(a)
1

, and λ
(b)
∗ = −N

(a)
1 · Y (b)(ξ(b))

N
(a)
1 ·N (b)

1

. (2.39)

The last step is to figure out whether each generator is terminated first by crossing the

opposite lightsheet or intersecting with an image of the same lightsheet under the iden-

tification required to produce the conical deficit. This amounts to combining the correct

branches of the solutions to (2.28) and (2.39). When doing so, we have implemented the

effects of the conical deficit by considering all of the relevant images.

Let us now return to the question of whether the entanglement shadow near the conical

deficit is in the localisable region. Since no HRT surfaces pass through the entanglement

shadow, the only possibility for localisation is if a region whose entanglement wedge includes

the conical singularity has a caustic on the future lightsheet with increasing t(r). This

caustic departs the singularity where the first light ray on one of the lightsheets meets it.

We denoted by γ(a) the HRT surface which emitted this light ray. One can also identify a

single interval, R′, such that γ(a) is its HRT surface and such that its entanglement wedge

also includes the conical singularity, as shown in figure 6. The lightsheet bounding the
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entanglement wedge of R′ also includes this same light ray that hits the conical singularity.

We saw that t(r) parametrising the caustic on the lightsheet of R′ was decreasing since,

from (2.33), the time of the future tip of the boundary causal diamond associated to R′,

tR′(r =∞), was earlier than tR′(r = 0) where the light ray hit the conical singularity,

tR′(r = 0) ≥ tR′(r =∞) . (2.40)

Since R ⊂ R′, the time of the future tips of the causal diamonds associated to I1 and I2,

must be less than tR′(r =∞). We therefore expect the branches of the caustic connecting

these tips to the branch starting at the conical singularity at tR′(r = 0) = tR(r = 0) to be

decreasing. In any case, the behaviour right near the conical deficit is controlled by the

branch of the caustic that matches that found in the single interval case. Therefore any

entanglement wedge constructed in this way includes the same points in the near deficit

region and they are not useful in a family of wedges that localises a point through (1.3).

More boundary regions leads to more richness in the possible caustics, but it seems

unlikely to us that they will allow us to localise points inside the entanglement shadow. The

behaviour of the entanglement wedge near the conical singularity will always be controlled

by the first lightsheet to reach it wrapping around the deficit. This leads to the sharp

corners we have observed which impede localisability. We can also see that adding more

boundary regions will only force the tips of the boundary diamonds, where the caustics

must reach the boundary, to earlier times which is not conducive to the type of geometry

required to localise new bulk points.

2.5 Causal reconstruction in the conical deficit spacetime

It is interesting to note that causal reconstruction in the conical deficit spacetime also

behaves differently for 0 < α ≤ 1
2 , where the non-localisable region appears, than for

1
2 < α ≤ 1 where the central region is localisable.

It should first be emphasised that the conical deficit spacetime has no horizons, so

that the entire interior can be reconstructed using causal methods when we have access to

the entire boundary [1, 2, 6, 17, 18]. Since we have an example of a spacetime without a

horizon but with a non-localisable region, this demonstrates that being in the localisable

region cannot be a necessary condition for whether a local operator can be reconstructed

in the boundary theory. However, the conical deficit spacetime for 0 < α ≤ 1
2 does exhibit

a certain type of fragility towards causal reconstruction: omitting even a point from the

boundary region means that the causal wedge will no longer include a region around the

conical singularity. On the other hand, for 1
2 < α ≤ 1, the causal reconstruction of the

central region is robust in the sense that the causal wedge corresponding to omitting a

single point from the boundary still includes an open region around the conical singularity.

This can be diagnosed by studying a light ray departing from the conical singularity

and seeing how long it takes to reach the boundary. The causal diamond corresponding

to the entire boundary minus a point terminates at t = π, where the boundary light rays

emitted from the omitted point cross at the other side of the boundary circle. In order for

the region near the conical singularity to be reconstructible using causal methods, a light
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ray departing from it must reach the boundary at t < π so that it stays within this causal

wedge. A radial outgoing light ray starting at (r0, t0, θ0) in the conical deficit spacetime

follows

t(r) = t0 +
1

α

(
arctan

α

r0
− arctan

α

r

)
. (2.41)

Setting r0 = 0 and t0 = 0, we see that a radial light ray departing from the conical

singularity reaches the boundary at a time t = π
2α confirming the picture discussed above.

3 BTZ black hole

In this section we will consider localisability in the BTZ black hole. Localisability in

two-sided eternal black holes was considered by [15] and our analysis will confirm their

results. We start by proving a lemma valid in any number of dimensions which provides

a sufficent condition for identifying non-localisable regions inside entanglement shadows

behind horizons. Turning to the case of the 3-dimensional BTZ black hole, we will find

the caustics bounding the entanglement wedges of regions comprising the entirety of one

boundary in addition to part of the other. Since these caustics do not impede the innermost

light ray from reaching the singularity, the picture form [15] goes through unchanged. We

will then comment on localisability in the one-sided BTZ, where we will conclude that the

entanglement shadow is non-localisable.

3.1 Localisability of entanglement shadows behind horizons

In the conical deficit spacetime, [15] proposed a technique, that was reviewed in figure 1,

for localising points that cannot be reached by HRT surfaces but that lie on the intersection

of lightsheets approaching the point from a future and a past direction. In this section,

we will prove that a region cannot be localised if there are no HRT surfaces in its future

light-cone. This provides a connection between regions which are not probed by extremal

surfaces, S, and localisability in the sense of [15]: a neighbourhood U ⊂ M such that

J+(U) ⊂ S is not localisable.

Many spacetimes are known to have regions that are not probed by extremal surfaces [8,

9, 25]. However, the region near an asymptotically AdS boundary will always be probed by

extremal surfaces attached to small boundary regions.6 This means that S, the region not

probed by extremal surfaces a.k.a. the entanglement shadow, cannot reach the asymptotic

boundary. If the future of a neighbourhood is to be contained within the entanglement

shadow S, and therefore not reach the asymptotic boundary, the spacetime must contain

a horizon. Our lemma therefore applies to spacetimes with event horizons, although as we

saw in section 2 in the conical deficit spacetime, event horizons are not necessary for the

existence of a non-localisable region.

Lemma 1. Let U ⊂ M be an open neighbourhood of M such that J+(U) ∩ γR = ∅ for all

boundary subregions R. Then U ⊂ Loc(M)c: this neighbourhood is not localisable.

6See for example [26] for a discussion of surfaces attached to such small regions.
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Proof. We will argue by contradiction. Suppose there exists p ∈ U that is localisable.

Theorem III.1 from [15] tells us that this is true if and only if there is a family of boundary

regions, R0, such that ⋂
R∈R0

WE(R) = {p} . (3.1)

Now consider another point q ∈ U ∩ J−(p), q 6= p. This intersection must be non-

empty since U is open. Since no HRT surface can intersect the future of q, any of the HRT

surfaces, γR, anchored to a region R ∈ R0 must either enter the past of q or else be entirely

spacelike separated from q. In either case, it is possible to choose the Cauchy slice of the

bulk, ΣR, which the HRT surface γR separates into HR and H ′R, such that q lies to the

future of ΣR.7

p ∈ WE(R) implies that p ∈ D(HR). In fact p ∈ D+(HR), since p is in the future

of q and therefore p must also be the future of HR ⊂ ΣR. But then, any past-directed

causal curve starting at q, Γ−q , could be continued to the future along a causal curve

connecting q to p. Since any inextensible past-directed causal curve through p must cross

HR (p ∈ D+(HR)), any such Γ−q must cross HR as well. This means that q ∈ D+(HR)

and so that q ∈ WE(R) for all R ∈ R0, in contradiction to the assumption that p is

localisable.

By simply inverting future and past we can prove another lemma.

Lemma 2. Let U ⊂ M be an open neighbourhood of M such that J−(U) ∩ γR = ∅ for all

boundary subregions R. Then U ⊂ Loc(M)c.

Thus we see that entanglement shadows provide an obstruction to localisability if they

include the entire future or past of a region. The technique proposed by [15] and depicted

in figure 1, for localising points inside entanglement shadows requires that both the future

and the past of the point in question reach outside the entanglement shadow. These lemmas

show that this is necessary.

3.2 Entanglement wedges in the BTZ black hole

To identify the entanglement wedges and hence the non-localisable region of BTZ, we will

use a similar approach to the previous section on the conical deficit spacetime and describe

it as a quotient of AdS3. For the case of non-rotating BTZ, the identification required for

taking this quotient can be obtained by an identification of the ambient R2,2, which once

restricted to the AdS hyperboloid gives the correct identification. This will allow us to

again obtain a closed form expression for the location of the caustic bounding the relevant

entanglement wedges.

The identification required to obtain BTZ is most easily described in different (hyper-

bolic) hyperpolar coordinates on R2,2 of the form

(r1 sinh τ, r2 coshµ, r1 cosh τ, r2 sinhµ) , (3.2)

7See for example [5] for a discussion of the freedom in choosing this Cauchy slice.
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where the required identification is µ ∼ µ + 2πR. R is the horizon radius in the resulting

BTZ measured in units where L = 1.

This identifies the plane at X ·Pplane(µ0) = 0 with that at X ·Pplane(µ0+2πR) = 0 where

Pplane(µ0) = (0, sinhµ0, 0, coshµ0) . (3.3)

Note that the identification required to describe rotating BTZ has a more complicated form

and it is not immediately obvious that there is a simple identification of embedding space

that restricts correctly to the X2 = −1 hyperboloid to reproduce it.

A fundamental domain of this quotient can be covered by coordinates (u, v, θ),

XA
BTZ(u, v, θ) =

(
v + u

1 + uv
,
1− uv
1 + uv

cosh(Rθ),
v − u
1 + uv

,
1− uv
1 + uv

sinh(Rθ)

)
. (3.4)

The metric induced from this embedding is the BTZ metric in Kruskal-like coordinates8

ds2 = dXBTZ · dXBTZ =
−4dudv +R2(1− uv)2dθ2

(1 + uv)2
. (3.5)

In these coordinates, the singularity is at uv = 1 and the right exterior region is u < 0 and

v > 0. The boundary is located at 1 + uv = 0. A time coordinate can be introduced so

that u = −e−Rt and v = eRt at the boundary, which is associated to the null rays

ZABTZ(t, θ) ∝ 1 + uv

2
XA
BTZ(u, v, θ)

∣∣
u=−e−Rt, v=eRt (3.6)

= (sinhRt, coshRθ, coshRt, sinhRθ) . (3.7)

Now we wish to identify the entanglement wedges associated to two types of regions:

connected regions contained in the right boundary, as well as the complement of this type of

region, which includes the entirety of the left boundary plus a part of the right asymptotic

region. Denote the region of interest by A. In either case, the corresponding HRT surface

is anchored to the right boundary at ∂A and the entanglement wedge is bounded by

the radially outward or inward pointing lightsheets respectively from the HRT surface.

Regions contained entirely in the right boundary will have HRT surfaces that stay within

one fundamental domain of the identification, so they will not develop any new caustics

beyond the one at the tip of the boundary diamond. We will therefore focus mostly on

the complement type regions. The future-directed lightsheets associated with these regions

depart the HRT surface in the ∂u direction and the past-directed one towards −∂v. We will

focus on the future-directed lightsheet in what follows. As was the case in the last section,

the past-directed lightsheet can be understood by exploiting the time reflection symmetry

of this metric.

The lightsheet is obtained by following null geodesics orthogonal to each point on the

HRT surface to generate a co-dimension 1 surface. Similar to our experience with the

conical deficit spacetime, since the metric is rotationally invariant and has no dθ cross

8The BTZ black hole was introduced in [27]. The embedding of BTZ into R2,2 using these coordinates

is reviewed in [28].
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terms, a null geodesic that leaves the surface with no ∂θ component to its velocity will fall

directly into the singularity in a radial direction. The most important question will then

be whether this null generator continues until it hits the singularity or whether nearby

generators are bent inwards to cross this ray and form a caustic before this can happen.

We will again label the HRT surfaces by the point which emits this radial light ray.

This point is described by a vector X0(u0, v0, θ0) in the form of (3.4), such that X2
0 =

−1. We can set θ0 = 0 by using the rotational symmetry. The tangent space of the BTZ

spacetime can be embedded in embedding space by pushing it forward through the map

in (3.4). Similar to the approach taken in the last section, the image of the vectors ∂u,

∂v and ∂θ along with X0, can be normalised to produce an orthonormal frame for the

embedding space (X0, U, V,Θ),

X0 =

(
u0 + v0
1 + u0v0

,
1− u0v0
1 + u0v0

,
v0 − u0
1 + u0v0

, 0

)
, (3.8)

U =

(
1− v20

1 + u0v0
,
−2v0

1 + u0v0
,
−1− v20
1 + u0v0

, 0

)
, (3.9)

V =

(
1− u20

1 + u0v0
,
−2u0

1 + u0v0
,

1 + u20
1 + u0v0

, 0

)
, (3.10)

Θ =
(

0, 0, 0, 1
)
. (3.11)

We now repeat the approach used in the previous section for determining the lightsheet

in terms of the ambient R2,2. The first orthogonal null vector defining HRT surface must

be chosen to point in the ∂u direction. This means that N1 = U .

Now we must determine X1 and N2. We will use a similar parametrisation where

X1 = Θ + ηU, N2 = −2ηΘ− V − η2U , (3.12)

so that η = 0 describes the surface lying on a constant time slice and η ∈ R0 describes a

boosted or tilted surface.

The resulting HRT surface

Y (ξ) = sec ξX0 + tan ξX1 , (3.13)

is obtained by imposing Y 2 = −1 within the X0–X1 plane.

The lightsheets are given by

Li(λ, ξ) = Y (ξ) + λNi , (3.14)

L1(λ, ξ) =

(
(u0 + v0) sec ξ +

(
1− v20

)
(λ+ η tan ξ)

1 + u0v0
,

(1− u0v0) sec ξ − 2ηv0 tan ξ − 2λv0
1 + u0v0

,

(v0 − u0) sec ξ − η
(
1 + v20

)
tan ξ − λ

(
1 + v20

)
1 + u0v0

, tan(ξ)

)
. (3.15)

By the same argument as before, new bulk caustics only occur due to the identifications

required to take the quotient to obtain BTZ from AdS3. This rules out the possibility

that the caustic cuts off the inward pointing light ray before it hits the singularity, since
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the singularity is reached within a fundamental domain of the identification. Instead the

caustics will extend from the singularity back to the boundary where the generators on

opposite sides of the radial light ray meet at the surface fixed by the identification. This

time the last component of L1 is odd under ξ → −ξ, so that the caustic occurs on the

identified planes Pplane(πR) and Pplane(−πR).

The solutions to L1(λ1, ξ) · Pplane(πR) = 0 and L1(λ2,−ξ) · Pplane(−πR) = 0 are

λ1 = −
Y (ξ) · Pplane(πR)

N1 · Pplane(πR)
, λ2 = −

Y (−ξ) · Pplane(−πR)

N1 · Pplane(−πR)
. (3.16)

The caustic is located at

L1(λ1, ξ) =

((
v20 + 1

)
sec ξ +

(
v20 − 1

)
cothπR tan ξ

2v0
, cothπR tan ξ,(

v20 − 1
)

sec ξ +
(
v20 + 1

)
cothπR tan ξ

2v0
, tan ξ

)
, (3.17)

L1(λ2,−ξ) =

((
v20 + 1

)
sec ξ +

(
v20 − 1

)
cothπR tan ξ

2v0
, cothπR tan ξ,(

v20 − 1
)

sec ξ +
(
v20 + 1

)
cothπR tan ξ

2v0
,− tan ξ

)
.

In the hyperpolar coordinates of (3.2), L1(λ1, ξ) and L1(λ2,−ξ) are located at µ = ±πR
respectively, which are to be identified, confirming that this is the location of a caustic.

This can be related to a position in the Kruskal-like coordinates by inverting (3.4). This

determines the future caustic to lie along θ = ±π at

v(u) = v0
uv0 + coshπR

1 + uv0 coshπR
. (3.18)

This is illustrated in figure 7(b). Notice that (3.18) is independent of both the boost of the

boundary region, η, and of u0. Similarly to the result we found in the conical deficit, the

caustic only depends on the location of the future tip of the boundary causal diamond. By

following the caustic out to the boundary, that is comparing the light ray in the direction of

lim
ξ→π

2

sinhπR

tan ξ
L1(λ1, ξ) =

((
v20 + 1

)
sinhπR+

(
v20 − 1

)
coshπR

2v0
, coshπR, (3.19)(

v20 + 1
)

coshπR+
(
v20 − 1

)
sinhπR

2v0
, sinhπR

)
,

to our parametrisation of the boundary, (3.7), we see that this future tip is located at

θ = ±π and

t(r =∞) = π +
1

R
log v0 . (3.20)
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(a) Schwarzschild-like (r, θ) diagram

u v

(b) Penrose diagram

Figure 7. The red line represents the future caustic of a boundary region in the one- and two-sided

BTZ black hole. The boundary region, shown in yellow, comprises more than half of the t = 0 slice

of the right boundary and the complete left boundary time slice. The HRT surface is shown in blue

and is chosen at r0 = 1. A few representative orthogonal light rays are drawn in purple in (a) and

meet at the caustic. The radial light ray reaching the singularity is shown in green. The horizon is

chosen at R = 0.5 and is indicated in dashed orange.

3.3 Localisability in two-sided BTZ

In this section we will discuss the localisable region in the two-sided eternal BTZ black

hole. This region will be quite different from that in the one-sided BTZ black hole that

could be formed by collapse, due to the existence of spacelike geodesics stretching from

one boundary to the other. In the two-sided case, the entanglement shadow is behind the

horizon near the singularity. In fact, the entire spacetime is probed by spacelike geodesics

stretching between the two boundaries, but the length of these geodesics grows as they

approach the singularity. Since regions to which these geodesics can be anchored also

admit candidate extremal surfaces consisting of disconnected geodesics that stay outside of

the horizon, these disconnected geodesics will dominate once the geodesic that crosses gets

close enough to the singularity. This leads to an entanglement shadow near the singularity

in the interior of the black hole [9].

This entanglement shadow behind the horizon allows us to use our lemma 1 to argue

that there is a non-localisable region near the horizon. In particular, given the explicit

form of the entanglement wedges of regions that include the entire left boundary as well

as a subregion of the right boundary derived in the previous section (see figure 7(b)), we

confirm that everything to the left, on the conformal diagram, of the central ingoing light

ray that hits the singularity is included in the entanglement wedge. This confirms the

picture in figure 5 used by [15] in their argument establishing the non-localisability of a

region near the singularity of the two-sided BTZ.
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3.4 Localisability in one-sided BTZ

If we only have access to one boundary of the BTZ black hole, then there is a region

near the horizon that cannot be reached by HRT surfaces, much as in the conical deficit

spacetime [9, 25]. Here again we could try to use the strategy proposed by [15] for the

conical deficit to localise points in this region. However, from figure 8 we can see that this

strategy will not work for the same reasons that it failed for 0 < α ≤ 1
2 in the conical

deficit. To analyse this, it is useful to introduce Schwarzschild-like coordinates covering

the exterior region of BTZ. These have the form

XA
BTZ′ =

(√
r2 −R2

R
sinhRt,

r

R
coshRθ,

√
r2 −R2

R
coshRt,

r

R
sinhRθ

)
, (3.21)

ds2 = dXBTZ′ · dXBTZ′ = −(r2 −R2)dt2 +
dr2

r2 −R2
+ r2dθ2 . (3.22)

These coordinates are related to the Kruskal-like ones by9

r

R
=

1− uv
1 + uv

, v =

√
r −R
r +R

eRt , (3.23)

eRt =

√
v

−u
, u =−

√
r −R
r +R

e−Rt . (3.24)

An example of a caustic in BTZ is shown in figure 7 in both set of coordinates.

In the previous section, our HRT surfaces were parametrised by (u0, v0). We can use

the time-translation symmetry of the metric in Schwarzschild-like coordinates to fix t0 = 0.

This means that u0 = −v0 and

r0 = R
1 + v20
1− v20

. (3.25)

Applying this change of coordinates to the expression for the caustics obtained

in (3.18), the caustic is found to lie at

t(r) =
1

R

(
arctanh

√
R2 + r2 sinh2 πR

r coshπR
− arctanh

R

r0

)
, (3.26)

∂rt(r) = − R coshπR

(r2 −R2)
√
R2 + r2 sinh2 πR

. (3.27)

This expression makes explicit that t(r) is a monotonically decreasing function of r > R

which diverges as r → R, as shown in figure 8. Note that (3.26) can also be found

from (2.30) by analytically continuing α→ iR.

This implies that any entanglement wedge whose caustic passes through the point

(r∗, t∗, θ∗), will include all the points along a line at fixed t going inwards from this point,

that is the points

(r, t∗, θ∗) for r ∈ (R, r∗) . (3.28)

By the same logic used in the conical deficit spacetime, this demonstrates that the non-

localisable region of the one-sided BTZ black hole coincides with the entanglement shadow.

9The Schwarzschild-like coordinates cover the right exterior region, where v > 0 and u < 0.
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t

arctan r

Figure 8. The time dependence of the caustic outside the horizon of a BTZ black hole as a function

of r, with a horizon of radius R = 0.5 for an HRT surface with r0 = 1. The solid red line is the

caustic and the orange dashed line depicts the location of the horizon.

4 Outlook

In this work we studied the detailed form of the caustics bounding the entanglement wedges

in simple spacetimes. Entanglement wedges play an essential role in understanding the

emergence of bulk locality [10–12] and in the diagnosis of bulk locality from the error

correcting structure of holography proposed in [15], the shape of the caustics bounding

these entanglement wedges is important in determining the bulk region for which local

bulk operators can be identified as local using boundary techniques.

Our analysis of the detailed form of these caustics revealed unexpected features that

contradicts the assumptions in some of their analysis, while confirming those made in

other parts. In particular, in the setting of asymptotically AdS3 spacetimes, we find a

non-localisable region near the horizon of a one-sided BTZ black hole and near conical

singularities with sufficiently large angular deficits which coincides with the entanglement

shadow. In the conical deficit, the non-localisable region appears when the caustics bend

sufficiently sharply away from the trajectory of the light rays approaching the conical

singularity leading to a sharp corner in the entanglement wedge near the conical singularity.

It would be interesting to better understand the caustics appearing on the boundaries of

entanglement wedges in higher dimensions. Since the lightsheets will be higher dimensional

objects, there is a more complicated zoo of caustics that could occur with the possibility

of lower dimensional caustics where higher dimensional caustics pinch off. There is also

a variety of boundary regions that can be considered, whereas a 2-dimensional boundary

only admits intervals. Less symmetric boundary regions will generally lead to the presence

of more caustics, even in empty AdS space. A better understanding of the possible shapes

of these caustics is required to understand the entanglement wedges in these geometries

with all the ensuing implications for understanding bulk locality.

The study of the caustics in more complicated settings, such as higher dimensions will

require numerical techniques. Finding the locations of caustics becomes the problem of

finding where light rays cross in the bulk. As the number of dimensions grows the number

of parameters which must be tuned for this to occur grows as well, not to mention that
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even finding the HRT surfaces, which emit these lightsheets, in higher dimensions requires

solving PDEs rather than ODEs. In appendix A, we discuss a numerical approach to

determining the caustics in the simple setting we studied in this work. This numerical

approach was used to confirm our analytic results and provides a starting point for further

studies in more complicated settings.
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A Numerical approach to the lightsheet construction

We demonstrate the numerical approach to the (future) lightsheet construction of the

entanglement wedge for boundary regions comprising more than half of a spatial slice

(possibly not a constant time slice) of a conical deficit spacetime, based on [7].

We are given a spatial geodesic anchored on a boundary region in a conical deficit. The

lightsheet starting from the geodesic and reaching the boundary diamond associated to the

boundary region can be found by computing light rays orthogonal to the HRT surface and

pointing towards the boundary region of interest. The fact that light rays are null leads

to a constraint in the form of a differential equation obtained by setting the line element

to (2.1) to zero. Using an affine parameter λ, this is

0 = −
(
α2 + r(λ)2

)(dt(λ)

dλ

)2

+
1

α2 + r(λ)2

(
dr(λ)

dλ

)2

+ r(λ)2
(
dθ(λ)

dλ

)2

. (A.1)

This can be turned into a first order ordinary differential equation by using conserved

quantities associated to Killing vectors of the spacetime. The metric (2.1) depends neither

on t nor on θ, which leads to two Killing vectors ∂t = δµt ∂µ and ∂θ = δµθ ∂µ, and their

associated conserved quantities

E =− gρµδµt
dxρ(λ)

dλ
= −gtt

dt(λ)

dλ
=
(
α2 + r(λ)2

) dt(λ)

dλ
(A.2)

and

Pθ =− gρµδµθ
dxρ(λ)

dλ
= −gθθ

dθ(λ)

dλ
= −r(λ)2

dθ(λ)

dλ
. (A.3)

The equation describing lightlike geodesics in a conical deficit therefore becomes(
dr(λ)

dλ

)2

= E2 −
P 2
θ

r(λ)2
(
α2 + r(λ)2

)
. (A.4)
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The ratio between E and Pθ is fixed up to a sign by the demand that the light ray be

orthogonal to the HRT surface given by (rex(θ), tex(θ)). To see this one realises that since

the surface has two dimensions less than the spacetime it is fixed by two constraints. Namely

ϕ1(x
µ) = tex(θ)− t = 0 (A.5)

and

ϕ2(x
µ) = rex(θ)− r = 0. (A.6)

Any vector orthogonal to the surface must be a linear combination of the covariant deriva-

tives of the two constraints ∇νϕ1 and ∇νϕ2. The components with lowered indices of a

generic such vector, N , can thus be written as

Nν = ∇νϕ1 + µ±∇νϕ2, (A.7)

With the constraints (A.5) and (A.6) this becomes

Nν = δθνt
′
ex(θ0)− δtν + µ±(δθνr

′
ex(θ0)− δrν), (A.8)

where the angle θ0 indicates on which point on the HRT surface the light ray starts.

Saying the light ray parametrised by xµ(λ) is orthogonal to the HRT surface means

that the components of the tangent vector, dxµ(λ)
dλ , are of this form, i.e. Nµ = dxµ(λ)

dλ . One

thus obtains the ratio between Pθ and E,

Pθ
E

=
−gθθ dθ(λ)dλ

−gtt dt(λ)dλ

∣∣∣∣∣
λ=λ0

= −µ±r′ex(θ0)− t′ex(θ0). (A.9)

To determine µ± one can exploit the null norm of (A.8)

0 =gµνNµNν = gtt + µ2±g
rr +

(
t′ex(θ0) + µ±r

′
ex(θ0)

)2
gθθ (A.10)

such that

µ± =
−gθθr′ex(θ0)t

′
ex(θ0)±

√
−gtt(grr + r′ex(θ0)2gθθ)− grrgθθt′ex(θ0)2

grr + r′ex(θ0)2gθθ
. (A.11)

The two roots reflect the possibility to have a lightsheet that points to either of the

two boundary regions associated to the geodesic. The largest boundary region cor-

responds to the choice of µ+. The light rays (r(λ), θ(λ), t(λ)) forming the lightsheet

(r(λ, θ0), θ(λ, θ0), t(λ, θ0)) can then be solved for numerically by setting E = 1, as this

amounts to a choice of the affine parameter for the light rays, and solving (A.4) with the

following conditions:

• r(0) = rex(θ0)

• t(0) = tex(θ0)

• θ(0) = θ0
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• t′(λ) = −g−1tt

• θ′(λ) = r−2(λ) (µ+r
′
ex(θ0) + t′ex(θ0)).

These light rays determine the lightsheet, except that they must be terminated when

they cross. This is an equation of the form

(r(λ1, θ1), θ(λ1, θ1), t(λ1, θ1)) = (r(λ2, θ2), θ(λ2, θ2), t(λ2, θ2)) . (A.12)

This can be solved numerically by fixing the generator of interest by fixing θ1 and sweeping

through the other parameters, namely the other generator with which it intersects, θ2,

and where along these generators the intersection occurs, (λ1, λ2). For these 2-dimensional

lightsheets, the caustics will be localised along a 1-parameter family of points.
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