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ABSTRACT: We apply the formalism of amplitude symmetries to the angular distribution
of the decays B — D*{v for £ = e, u, 7. We show that the angular observables used to
describe the distribution of this class of decays are not independent in absence of New
Physics contributing to tensor operators. We derive sets of relations among the angular
coefficients of the decay distribution for the massless and massive lepton cases which can
be used to probe in a very general way the consistency among the angular observables and
the underlying New Physics at work. We use these relations to access the longitudinal
polarisation fraction of the D* using different angular coefficients from the ones used by
Belle experiment. This in the near future can provide an alternative strategy to measure
FE* in B — D*rv and to understand the relatively high value measured by the Belle
experiment. Using the same symmetries, we identify three observables which may exhibit
a tension if the experimental value of F ,? " remains high. We discuss how these relations can
be exploited for binned measurements. We also propose a new observable that could test
for specific scenarios of New Physics generated by light right-handed neutrinos. Finally
we study the prospects of testing these relations based on the projected experimental

sensitivity of new experiments.
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1 Motivation

Over the last six years, the hints of a tension with respect to Standard Model (SM) expec-

tations have been growing concerning two different classes of b-quark decays, generically

described as b-anomalies.

On the one hand, the interest of neutral-current b — sup transitions was highlighted by

the measurement of B — K™*uu angular observables, and in particular the observable called
P! [1] exhibiting discrepancies with respect to the SM at the level of 3.70 [2-6]. Consistent



deviations appeared in other channels such as B — Kpuu and B; — ¢pup (mainly for
the branching ratios), but also in a different type of observable, namely Lepton Flavour
Universality Violating (LFUV) observables probing the universality of the lepton coupling
in b — séf comparing ¢ = e and ¢ = pu. Recent experimental updates have confirmed the
presence of these deviations at the level of 2.5¢0 [7-9]. Global fits within an Effective Field
Theory (EFT) approach performed on the large set of observables available have shown the
remarkable consistency of the deviations observed, which can be explained through various
New Physics (NP) scenarios affecting only a limited number of operators by shifting the
short-distance physics encoded in Wilson coefficients. For instance, in refs. [10, 11], it
was shown that adding NP to one or two Wilson coefficients is sufficient to obtain an
improvement of the fit with respect to the SM (measured by the corresponding pull) by
more than 50.

On the other hand, charged-current b — cfv transitions have also exhibited deviations
in LFUV observables comparing ¢ = 7 and lighter leptons. First measured as deviating
significantly from the SM in 2012 [12, 13|, the relevant ratios Rp and Rp+ have been
updated regularly, leading to a recent decrease of the deviation with respect to the Standard
Model down to 3.1 [14-18]. Additional observables have been considered for B — D*rv
concerning the polarisation of both the D* meson [19] and the 7 lepton [20, 21]. If the
latter agrees with the SM within large uncertainties, the precise Belle measurement of
the integrated Fi) " yields a relatively high value compared to the SM prediction, which
appears difficult to accommodate with NP scenarios, as can be seen in refs. [22-27] which
considered a wide set of NP benchmark points.

While neutral-current anomalies hinted at in a large set of channels and observables
can be caused by small NP contributions competing with the SM ones generated at the
loop level, charged-current anomalies seen in two LFUYV ratios should correspond to much
larger NP contributions able to compete with tree-level SM processes. In this sense, the
latter were much more unexpected and should be scrutinised in more detail, in order to
confirm their existence.

In this note we pay close attention to the decay B — D*fv governed by the quark
level transition b — /v with ¢ = 7 and ¢ = e, u, and more specifically to its angular
distribution. Depending on the NP hypotheses chosen, we will identify a set of symmetries
for the massless (electron and muon) and massive (tau) distributions that will lead us to
find a set of dependencies or relations among the angular coefficients of the distribution. A
similar exercise was done in refs. [28-30] for the case of the decay mode B — K*uu. Here
we will follow closely the detailed work in ref. [28] to use the symmetries of the distribution
in order to show that depending on the assumptions of the type of NP at work and the
mass of the leptons, not all angular coefficients are independent. These relations can be
used in the case of the B — D*/v decay as a way of cross-checking the consistency of the
measurements of angular observables,! but also to provide orientation on which kind of NP
can be responsible for deviations with respect to the SM observed in these observables.

!An alternative approach is illustrated in ref. [31] in the case of B — p(a1)fv semileptonic decays
where the study of specific NP operators extending the SM effective hamiltonian and the large-energy
limit of form factors allows one to disentangle the role of the possible new structures in the differential
4-body distribution.



These relations among the observables, based on the symmetries of the angular distri-
bution, lead to a new way of measuring FE " for B — D*rv, relying on different coefficients
of the distribution compared to the direct measurement performed by the Belle experiment.
This can provide a different handle for experimentalists to cross-check the polarisation frac-
tion and confirm or not its high value. Such an alternative extraction of the longitudinal
D* polarisation can also be useful if instabilities occur when extracting the p.d.f. of angular
observables due to values of F' LD " beyond physical boundaries for instance.? We will pro-
vide general expressions for the relations among observables but we will focus mainly on a
baseline case without tensor contributions® (for the benchmark points analysed in ref. [24],
the presence of tensor operators decreases the value of Fi) " for B — D*rv substantially,
increasing the discrepancy with the measured value). On the other hand, we will consider
the contribution of the pseudoscalar operator that can help to increase FE " and bring it
closer to the Belle measurement, as found in ref. [24]. We will also discuss the simplified
case where there are no large NP phases in the Wilson coefficients, i.e. when we assume
the coefficients are real or the NP phases are small.

In section 2 we recall the structure of the angular distribution and define the most
relevant observables following ref. [24]. In section 3 we describe the formalism and explain
how to count the number of symmetries and dependencies for each particular case and
we work out the dependencies in the massless and massive cases, paying special attention
to the presence of pseudoscalar operators. In section 4 these dependencies are used to
determine FP" (or equivalently F27) in terms of the other observables in various ways
and we discuss the impact of binning when using these relations. In section 5 we discuss a
possible signature of the presence of light right-handed neutrinos in the absence of tensors
and imaginary contributions using the different determinations of F' f) . And in section 6
the expected experimental sensitivity of forthcoming experiments is discussed. We give our
conclusions in section 7. In appendix A some details on the derivation of the exact massive
dependencies are provided. Finally, illustrations of the binning effects for the relations
discussed in this article are given in appendix B.

2 B — D*¢v angular distribution

2.1 Effective Hamiltonian and angular observables

The angular distribution for B — D*/v has been extensively studied in the literature [33—
39]. We will base our studies on the studies in ref. [24]. Assuming that there are no light
right-handed neutrinos, the distribution can be computed using the effective Hamiltonian:

Heg = V2GpVa [(1+ gv)(E9b) (CLy*vi) + (=1 + g.a) (@7u75b) (L v) (2.1)
+ 9s(eb)(€rvr) + gp(eysb) (Cryr)
+ gr(€owb)(Lra* vL) + gr5(€0,y5b) (Cro™ vL)] + h.c.

2This problem has already occurred in the case of the angular analysis of B — K*ut ™ the fit to CMS
data [5] used to extract P;, P and F, altogether from the data has exhibited instabilities that forced the
authors of ref. [5] to include additional information on Ff, rather than leave it free in the fit.

3See ref. [32] for the impact of tensor operators on Rp+ and other observables.



As it can be seen, we do not include right-handed neutrinos at this stage, which will be
discussed later on. One may also use the equivalent notation of refs. [22, 23] (for instance)

G _ _ _ _
Heg = 472‘/517 (14 gv,)(€Lrubr) (€' vr) + gvi (CrYubr) €Ly vr) (2.2)
+ 9s;, (ERbL)(ERVL) + 9sy (ELbR)(ZRVL) + 911 (ERU/WbL)(ERU’WVL)] + h.c.
with the corresponding effective coefficients

GV, A = gvy £ 9v; gs,p = 9gsy £ gs; gr = —915 = 917, - (2.3)

The resulting angular distribution is

d*‘T 9 2 .9 2 - 2
ddeosOndeostudx — 327r{11(3cos Op+Iissin“0p+ [Igccos O0p+Isssin HD] cos 20, (2.4)

+ [IGC cos?0p+ I sin® ¢9D] cosf;+ [13 cos2x—+1g sin2x] sin?6,sin%6p

+ [14 cos x+ 13 sinx] sin 26, sin 20 p + [15 cosx+I7sinx] sin@esiHQHD} ,

where the angular coefficients I; = I;(¢?) are given in ref. [24]:

~ m2 ~ m2 ~
I :2N[\HO |2+q;]HJ\2+2q;\Ht]2}, (2.5)
N 12 F—12) o T2 2
hs =+ 3(|HL )P + [HZ| )+?(]H+| +|HI]?) |, (2.6)
T2 T 2
Ly =2N|—|Hy |? + ?|H0 2|, (2.7)
N ~_ ~ m2 , - 8
I =5 []H+\2 +|HZ)? - ?j(\Hin + ]H+\2)] , (2.8)
~ ~ m2 ~ ~
I3 = —2NRe [H;H:* - QinHj*] (2.9)
q
~ ~ ~ 2 ~ ~ ~
I; = NRe [(H; + YA - %(ij + Hi)HJ*] (2.10)
~ ~ ~ m2 ~ ~ ~
Is = 2N Re [(H+ —HO)Hy™ — q—;(Hi + HY) ;‘] : (2.11)
m2 ~ o~
Is. = 8Nq—; Re[H Hf], (2.12)
Ios =2N(|HL [ — [HZ) (2.13)
~ ~ ~ 2 ~ ~ ~
I; = 2N Im[(H+ +H-)Hy™* - mTf(Hi - H*)H;} : (2.14)
q
~ ~ ~ m2 ~ ~ ~
Ig = NIm {(H; — HO)Hy* — —L(H - H*)HSF*} (2.15)
q
~ ~ m2 ~ ~
Iy = —2N Im [H;H:* — ;Hin*} (2.16)
q



where N is a normalisation

m2 2
q%é*(q?)( —q;) , (2.17)

G| Vap)?

N = B * —_—
ProPrag(2m)3m?,

with Agp+(q?) = mb + mb. + ¢* — 2(mEm%. + m%q¢® + m%.¢?) and the amplitudes H
correspond to linear combinations of transversity amplitudes for various currents. We can
write them in the following way to make the dependence on m, explicit:

By 2 s m -2

mr=m-2YYH, B o=H-2"H,, =YL, (2.18)
my Vq? my

where i = 0, +, — and H; correspond to vector and axial currents whereas Hy; correspond

to tensor currents, and Hp combines two amplitudes H; and Hp:

m
= —ZZH,: + Hp (2.19)

Vi

The H; amplitudes depend on form factors and on ¢, but not on the lepton mass. In

Hp

particular, the presence of 1/my in .F~IZ+ means that the discussion of the limit my, — 0
should be considered after expressing all the angular coefficients in terms of H;.

2.2 Observables

Contrary to B — K*¢¢ [1, 40], there are no specific discussions to consider concerning the
possibility of optimised observables, since all B — D* form factors either vanish or yield
the same Isgur-Wise function £ in the heavy quark limit, so any ratio of angular observables
is appropriate to reduce uncertainties from form factors. We thus take almost the same
list as ref. [24] for the 12 observables that form a basis:*

0; = {AO,A&A4,A5,A63,A7,A8,A9,AFB,RA,B,FE*,dF/dq2 } (2.20)

Compared to ref. [24], we do not include the observable Ay, in this list because it is related
to the 7 polarisation and requires one coefficient not included in the angular distribution.
Instead we must introduce an additional observable (not included in ref. [24]) so that the
numbers of angular coefficients and observables match. We may choose for instance:

1
AQ == W(I]_g"‘[]_s) (221)

We recall here the definition of the observables defined in ref. [24] that will play an impor-
tant role in this article:

e The differential decay rate
ar 1
dg2 4

4Further discussions of this differential decay rate can be found in ref. [41] including CP-violating ob-

(3L1c + 6115 — Ioe — 21a5) (2.22)

servables and in ref. [42] when D* subsequently decays either to D7 or to D~.



e The longitudinal and transverse D* polarisation decay rates:

. dl'p/dq? 1 1
F — — (311 — 12 2.23
L dl'/dq® — dT'/dg? 7 Bhe — Iac) (2.23)
. . dTp/dg? 1 1
Fp = ppr = /e (3115 — Ins) (2.24)

T dU/dg?  dT/dq?2

In order to make a more explicit contact with the integrated longitudinal polarisation
we also introduce FP" = (dT'r/dq?)/T and FP" = (d'7/dq?)/T, where T = I'(B —
D*tv) with ¢ = 1, p, e.

e The ratio R4 g describing the relative weight of the various angular coefficients in
the partial differential decay rate with respect to 6y, in analogy with the longitudinal
polarisation fraction

_dTa/dg® 1 (Iie+ 2L — 31z — 612,)

R 2y _ i

(2.25)

Eqgs. (2.22), (2.23) and (2.24) are the “standard definitions” of dI'/dq?, FP" and ER" re-
spectively, and they are used to determine these observables with this particular functional
dependence of the angular coefficients 1.

Similarly to the discussion in ref. [43], the definition of observables integrated over a
bin (or over the whole phase space) requires some care. Experimentally, the measurement
yields the integrated angular coefficients (I} ), with the definition®

2

(mp—mp=*)
(X)e = / dq® X (2.26)

2
my

where the subscripts ¢ and 0 indicate the massive case (with my) and the massless case
respectively. We can then define the “standard” integrated longitudinal and transverse
polarisations

. 1
(FP7)e = ap Btlie)e = (Tac)e) (2.27)
. 1
(e = 5p(3(Dshe — (Tas)e) (2.28)
The Belle measurement is actually (FP")Belle = 0.60 + 0.09.

2.3 Global fits

At this stage, a brief overview of our current understanding of the possible NP contributions
is useful. Global fits to b — c7v favour overwhelmingly a NP contribution through a real gy,
for b — ctv, as it allows one to modify the tauonic branching ratios involved in Rp and Rp+
by the same amount without altering the angular observables, in agreement with the current
data (apart from F'P" already discussed) [22-24]. For real contributions, scenarios based

®Notice that the definition of (I;) in ref. [24] is normalised with T'(B — D*{v), while we prefer to keep
the dependence on I'( B — D*{v) explicit.



purely on scalar and pseudoscalar contributions exhibit some tension with the B, lifetime,
depending on the relative size of the contribution allowed for B. — 7v in the total lifetime,
which requires the pseudoscalar contribution to be somewhat small [44-46]. Similarly, real
tensor contributions are disfavoured, as they tend to decrease the longitudinal polarisation
of the D* meson compared to the SM [24], when the first measurement from the Belle
experiment indicated a value higher than SM expectations [19]. If gy, is allowed as well as
contributions of other operators, the former is dominant and the other operators (scalar,
pseudoscalar, tensors) are subleading. Other constraints on b — c7v come from direct
searches at LHC involving mono-7 jets [47]. The corresponding bounds are again much
tighter on tensor operators than on vector or scalar operators.

Some of these scenarios allow large imaginary parts [22-24], with a similar hierarchy
of scenarios as in the real case. However, one must take into account that such large imag-
inary parts are allowed due to the limited number of observables. Additional observables
could bring a dramatic modification of the landscape of the allowed scenarios, restrict-
ing the possible size of imaginary parts and the applicability of scenarios currently viable
severely. Indeed some of the NP scenarios favour large imaginary parts so that there are no
interferences between the SM and NP contributions, which add up in quadrature only (see
for instance the scenario of a purely imaginary gs, discussed in ref. [48]). Restricting the
size of these imaginary parts would enhance the interferences between SM and NP parts
and would restrict the viability of the NP models where these interferences are negative.

This trend is confirmed by model-dependent analyses. Most of the models with a
single-particle exchange aiming at reproducing the data in b — cfv do not generate ten-
sor contributions, apart from the scalar SU(2)-doublet leptoquark Ra (as illustrated, for
instance, in ref. [49]) which however generates much larger contributions to gg, (i.e. gs
and gp) than to gr, (i.e. gr and grs). This effect is enhanced by the running from the
NP scale (1TeV) down to the my scale (reducing the tensor contribution by ~ 20% and
increasing the scalar contribution by ~ 80%), so that scalar contributions are likely to be
larger than the tensor contributions if the latter are present [22]. In refs. [22, 23], a model
with a single Ry leptoquark with complex couplings was shown to have a lower SM-pull
than other NP scenarios once the constraint from the B, lifetime was taken into account.
In ref. [48], a viable model with the Rs leptoquark was proposed in combination with the
S leptoquark, leading to (large real) vector couplings as well as (large imaginary) scalar
and (smaller imaginary) tensor couplings.

We will thus consider as a baseline scenario that tensor contributions are subleading
compared to other operators. We will also consider that the imaginary parts of the am-
plitudes can be neglected. In the SM as well as in the case of real NP, the only phase
comes from the CKM matrix element, and it is actually the same for all the amplitudes.
Under our baseline scenario, for instance, the angular coefficients corresponding to imag-
inary parts (I7gg9) are either small or vanishing, as well as any imaginary contribution.
For completeness we will provide full expressions for the relations among the coefficients
including these terms (see appendix A for the general expressions in the massive case).



3 Relations among angular coefficients

3.1 Symmetries and dependencies

The decay B — D*fv has a rich angular structure, and it is interesting to investigate
whether all the angular observables defined in the previous section are independent, fol-
lowing the same steps as in refs. [28-30, 40] for B — K*¢¢. We can consider the angular
coefficients as being bilinears in

A = {Re[Hy), Im[Hy), Re[H ], Im[H ], Re[H_], Im[H_], (3.1)
Re[Hr), Im[Hr ], Re[Hr ], Im[Hr ], Re[H ], Im[Hr ], Re[Hp], Im[Hp]}

An infinitesimal transformation will be given by
A=A+4 (3.2)

For the infinitesimal transformation to leave the coefficients I unchanged, the vector 5
has to be perpendicular to the hyperplane spanned by the set of gradient vectors ﬁIi
(with the derivatives taken with respect to the various elements of /T) If the I; are all
independent, the gradient vectors should span the whole space available for the coefficients,
i.e. the dimension of the space for the gradient vectors should be identical to the number
of angular coefficients.

One can define:

e The number of coefficients n., given directly by the angular distribution

e The number of dependencies ng, given by the difference between the number of
angular coefficients I; and the dimension of the space given by the gradient vectors
(provided by the rank of the matrix M;; = V;I;)

e The number of helicity/transversity amplitudes n4, leading to 2n4 real degrees
of freedom

e The number of continuous symmetries n; explaining the degeneracies among angu-
lar coefficients

One has the following relation
Ne —Ng = 2N4 — N (3.3)

which we can investigate in various cases for B — D*{rv summarised in table 1.

As discussed above, the assumption of no tensor contributions seems favoured by the
current global fits and we will stick to this assumption. In this case it is expected according
to table 1 the existence of 5 or 6 relations. The presence or absence of the pseudoscalar
operator does not modify the outcome of the analysis and the number of dependencies
in the massive case due to eq. (2.19). However, we find interesting to discuss its effect
separately as it was found in ref. [24] that such a pseudoscalar contribution can help to
alleviate the tension in FE* for B — D*7v.



myg | Tensor ops. | Pseudoscalar op. | Coefficients | Dependencies | Amplitudes | Symmetries
0 No No 11 6 3 1
0 No Yes 11 ) 4 2
0 Yes No 11 0 6 1
0 Yes Yes 12 0 7 2
#£0 No No 12 5 4 1
#0 No Yes 12 5 4 1
#0 Yes No 12 0 7 2
#£0 Yes Yes 12 0 7 2

Table 1. Symmetries and dependencies among the B — D*{v angular observables depending on
the mass of the lepton and the contribution of tensor and pseudoscalar operators.

We can now explore the dependence relations between angular coefficients, depending
on the lepton mass, the presence of pseudoscalar and tensor operators. These relations can
be used as a consistency test among the observables if all of these observables are measured
in order to check the very general assumptions made to derive them. If these relations are
not fulfilled, it means that there is an issue with one or more of the measurements or some of
the underlying assumptions (negligible NP in tensor operator, negligible imaginary parts)
are not correct. Such tests are completely independent of any assumption on the details of
the NP model or the hadronic inputs.

3.2 Massless case with no pseudoscalar operator and no tensor operators

The expressions for the angular observables become in terms of the amplitudes themselves

I, = 2N x |Hp|? (3.4)
ha= o < B[|H,+ [H_ (3.5)
e = 2N x (=1)[Ho|? (3.6)
by =3 [P+ B (37)
I3 = —2N x Re[H, H*] (3.8)
I, = N [Re[HoH’ + Re[HoH* ] (3.9)
Is = 2N [Re[HoH} — Re[HoH*]] (3.10)
Ise =0 (3.11)
Igs = 2N [|Hy|* — |H-|] (3.12)
Iz = 2N [~Im[HoH}] — Im[HoH*]| (3.13)
Is = N [-Im[HoHY] + Im[HoH*]] (3.14)
Iy = —2N x Im[H, H*] (3.15)

In this case, the only continuous symmetry that can be found is simply

Hy — e Hy, H_ —e“H_, H, — e“H, (3.16)



and only 5 of the 11 observables® are independent and 6 dependencies are found. Conse-
quently, one can invert the system to determine the value of the real and imaginary parts
of the amplitudes in terms of some of the angular coefficients, and re-express the other
ones in terms of the same angular coefficients leading to the following relations:

Le=—Iy (3.17)
I = 315 (318)
430y, = —AI? + I? — I? 4 AL (3.19)
—2IgIs, = IsI7 — AL 14 (3.20)
1 2

_4I2c <2163 + 3113> = (214 + 15)2 + (I7 + 218)2 (321)

1 2 9 9
—Abe | —5los + 3N | = (—=2Ly + I5)" + (I7 — 2I3) (3.22)

These relations can be used as a consistency test among the observables if all of these
observables are measured, under the hypothesis that we have outlined (negligible lepton
mass, negligible pseudoscalar and tensor operators).

Another way of exploiting these equations consists in combining the non-trivial rela-
tions egs. (3.19)(3.22) under the assumption that I7 g9 = 0 (taking all imaginary parts to
be zero). For future use under this assumption we reorganise these equations, allowing us

to make contact with the massive ones later on:
4 1

1 1

1§ = =3 hishe + 5ol (3.24)
2

I = —5120(2113 + 313) (3.25)

One of the dependencies disappears once I7g9 = 0 is taken.

3.3 Massless case with pseudoscalar operator but no tensor operators

The same relations between angular observables and amplitudes hold as in the previous
case, apart from
L. = 2N [|Ho|* + 2|Hp|?] (3.26)

One can see that the two symmetries are
Hy — “Hy, H_ —e“H_, H, — e“H, Hp — ¢ Hp, (3.27)

Again, by inverting the system one can obtain the same relations as in the massless
case without pseudoscalar contributions, see egs. (3.18)—(3.22), except for eq. (3.17) which
is not fulfilled.

Like in the previous case, these relations can be used as a consistency test among the
observables if all of these observables are measured, under the hypothesis that we have
outlined (negligible lepton mass, negligible tensor operators).

5Notice that there are 11 coefficients in this case: Is. = 0 and consequently there are 11 observables
since App and Ags are proportional.

~10 -



3.4 Massive case with pseudoscalar operator but no tensor operators

The symmetries in the massive case with pseudoscalar operator but no tensors are in prin-
ciple a simple extension of the analogous massless case. However, obtaining the expression
of the dependencies in the massive case is a rather non-trivial task. The absence of tensors
implies that there is no distinction between “+” and “-” components of I—NIZJr and H . (see

eq. (2.18)) and the only surviving symmetry in this case is
Hy — e“Hy, H_—e“H , H, »¢“H,, H;—¢e°Hy, Hp—e“Hp (3.28)

One finds five dependencies in this case, which are identified by solving the system of
non-linear equations. The first one is trivial:

m2 m2
0 =1 <1 - q;) — I, (3 + q;) (3.29)

and the other exact four non-trivial dependencies are detailed in appendix A.

We will consider the simplifying case where all Wilson coefficients are real so that
I789 and all imaginary contributions can be neglected (see appendix A for the general
case without these assumptions). The remaining four dependencies are then simplified
substantially

2\ 2 2 2
21 1,
2o _mﬁ) ( L ) I 3.30

_ 128(2115(771? - @)+ I3(m§ +3¢%))
2(m?2 + 3¢?)

2 (3.31)

12 = [—4scdselos(my — ¢°)*(mf + 3¢%) + I5.(m§ — ¢°)? [2Ii(m] — ¢°) + I3(m + 3¢°)]
—1615.4" [2L1s(—m} + ¢*) + Is(mf + 3¢%)]] / [812c(mi — ¢*)*(mf + 3¢%)]  (3.32)

15, = =8mj [Lieloc(—mf + ¢*) + I.(mf + ¢*)] / [(m] — ¢*)?] (3.33)

The first three equations above are the generalisation of eqs. (3.23)—(3.25) in the massive
case while the last equation is new: it would vanish in the massless limit with no tensors.
These relations can be used as a consistency test among the observables if all of these
observables are measured, under the hypothesis that we have outlined (no tensor operators,
imaginary contributions negligible).

The last two equations can be combined to get rid of the .7626 term and obtain the
massive counterpart of eq. (3.25):

12 = [4(m} — ¢*)*Tis(m} (Iie— Toe) — 2¢° Iae) +2(m +3¢7) (m (I — Toe) —2q* Ie
—myq*(Iie+Ioe)) Is — (mf —q*)*(mi+3¢%) IscLos| | [20m; —q®)* (m7+3¢%)]  (3.34)

Eq. (3.33) has obviously no counterpart in the massless case, as it vanishes then.”

"In the massive case, this relation provides access to a sum of two related observables Ags and Arpg:

\/IICIQC 7q I22c(m3+q2)>f

2(Ags)e + 9(ArB)e = 2fF
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3.5 Cases with tensor operators

In the massive case with tensors the degeneracy between the H ;r and H ; is broken and two
symmetries are identified. The symmetries are better described in terms of the tilde-fields:

HS —é°H-, HS —éPHY,  H —PH,. (3.35)

)

Unfortunately there are no dependencies in this case. The same is true in the massless case.

4 Expressions of the D* polarisation

In the previous section, we have obtained several relationships between the angular coef-
ficients under various hypotheses, assuming that tensor contributions are negligible. We
can use these relations in order to obtain alternative determinations of the longitudinal
polarisation Fg ", From section 4.2 to section 4.4, we will provide these exact relationships
in their binned form, but the corresponding unbinned versions have exactly the same form.

4.1 Massless case without pseudoscalar operator

For completeness we discuss the case with zero mass and no pseudoscalar operator, but
still including all imaginary terms. Egs. (3.17)—(3.18) are trivial. Egs. (3.19)—(3.22) can
be rewritten in terms of observables providing different determinations of F é) T

RASFD = 2(A3 — A2) — (4]~ AY) (4.1)
T AGFD = 3A5A7 + %2144,48 (4.2)

(FP' = S (43 + 43) + o (43 + 43)| Rao (4.3)
AppFP" =1 (A4A5 — A7 Ag) (4.4)

We recall that A; are defined from the angular observables up to a numerical normalisation
given in ref. [24]. A similar set of expressions can be written for F LD *, /L and A Fp rather
than Fi) ", A; and App, respectively, by substituting the normalization in terms of dI'/dq?
by the integrated decay rate I'. These expressions can then be binned trivially, however
they are rather cumbersome to use. In the following two subsections we will restrict to the
case of removing any imaginary contribution corresponding to our baseline scenario that
will be relevant to the extraction of F}? "

4.2 Massless case without imaginary contributions

Using egs. (3.18) and (3.23) we obtain one of the important results of this article:

~ * ]. 1 ~ * ~ *
(ER™ = f<2,/I§ + 11625>° where (P g =1 — (FP™) (4.5)

This expression can be used as an alternative way to determine the integrated F]—? "
in the massless case (without imaginary contributions but allowing for the presence of
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pseudoscalars) from experiment instead of the traditional determination in terms of I
and Ios in eq. (2.27) and eq. (2.28).

This expression can be generalised to the case of smaller bins spanning only part of
the whole kinematic range, leading to

SO 1 1., ..
(PR = 22| BB+ 12,0 (46)

where ¢ means that the integral in eq. (2.26) is taken over the bin ¢ with a narrower
[qu,mim qiz,max] range.8
If we restrict further to the case without pseudoscalars (in this case I;. = —Io. is
fulfilled), we obtain further expressions using egs. (3.24) and (3.25):
1 12— 412

(FP )0 = F<4713>0 (4.7)

1 | 2 1 | I?
= f<RA’B (Ig + 4R,:B -I—I:,?) >0 = f<RA’B (—Ig + ﬁz +I§>>0 (48)

where R4 p is positive and non-vanishing by construction.

4.3 Massive case with pseudoscalar operator but without imaginary contri-
butions

In this case, we focus on eqgs. (3.29), (3.30) and (3.31) to derive new descriptions of FP”"

since eq. (3.32) is too involved to provide a useful alternative approach to F'P". Egs. (3.29)
and (3.30) yield:

(FP")e = 11(\/(14 I3)° + %(B I6s)* ) where (Ef" )y =1— (FP"), (4.9)

where we define the auxiliary kinematic quantities (whose value in the massless case is two)

2 2 2
2
A=t B=2+"L (4.10)
q* —m; q

One can write an equivalent equation to eq. (4.9) for narrower ¢® bins similary to the
previous section. In the case of eq. (3.31) we do not substitute Is., leading to:

2
@Fnzl—@Fnzﬁm(@—ﬁi)e (4.11)

Relating this equation with the massless case is not straightforward given that in the
massless case o, was substituted (before integrating) in terms of F' LD “and R A,B-

$Notice that (FP Yo + (FR )0 = 1 holds because the integration is performed over the whole kinematic
range. For the observables (FP ) and (FR" )4 shown in figures 1-9, this is no longer the case due to the
normalisation of F£™ and FE": (FP™)i + (FR™)i = (dT/dg®)}y/T < 1. Tt is trivial to check that a different
normalisation for Ff) " and FTD " would only affect the normalisation 1/T" appearing in the binned expressions.
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4.4 Cases with pseudoscalar operator and imaginary contributions

This corresponds to the most complete expression allowing for the presence of pseudoscalars
and also imaginary parts, but no tensors. This can be achieved, as in the previous section,
by using I and I instead of I1. and Io. as a starting point. The corresponding expression
in the massless case is:

~ * 1 1 ~ * ~ *
(ER™yy = f<2, [ 12 4+ 12 + ZIgs>0 where  (EP")g =1 — (FP™) (4.12)

and in the massive case

)= LA + (AL + LBR)) where  (FP) =1 () (419

Similar expressions can be written for (")} defined for narrower ¢> bins. These
expressions represent the most general alternative ways to determine the massless and
massive polarisation fractions. Compared to the previous case, one can see that the pres-
ence of imaginary contributions comes simply from the additional Iy term in eqs. (4.12)
and (4.13), see also eq. (A.10) in appendix A.

Within this more general framework, egs. (3.29) and (A.10) yield the following simple
relation among the observables defined in section 2.2:

(@1 (FP7)?)e = (o (A§ + 213) + 3 (2165)2» (4.14)

where A; stands for the observables A; normalised to T rather than dI'/d¢?, x; = (m2—q?)?,
zo = 4n%(m? + 2¢)? and x5 = 4x132/(7297%¢") (Ag vanishes in the absence of large
imaginary contributions). This relation implies that the large (small) value of FP" (FR")
requires a corresponding suppression in A3 + A2, in Ags or both. For this reason it would
be particularly interesting to have available predictions in specific models for this couple of
observables in case that the unexpectedly large value of this polarisation fraction remains.

4.5 Binning

We have obtained these alternative expressions for (EP"), (or (F:2"),) assuming that there
are no tensors and (in some cases) no large imaginary contributions at short distances.
From now on we introduce the notation (F£" ), (or (FP"21),) to refer to eq. (4.13) as
the alternative way to extract FX" (or FP"). In the absence of imaginary contributions
we will use the notation (EF2° alt)EFO corresponding to eq. (4.9). In the massless case we
denote (F:P" 2t for eq. (4.12) and (FR" 2= for eq. (4.5).

Experimentally we have to consider binned versions of these expressions, which are
nonlinear functions of the angular coefficients. Since the binned angular coefficients are
the only quantities measured, we should be careful that f((Iz),) # (f(Ix))¢ when f is
non-linear. From an experimental perspective there are two ways to proceed: i) measure
the coefficients I3 and Igs of the massless or massive distribution in very small bins in order
to reconstruct a ¢? dependence of these functions, so that we can perform the integration

in eq. (4.5) for the massless case or in eq. (4.9) in the massive case (or their counterparts
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including imaginary parts eq. (4.12) and eq. (4.13)); 4i) use an unbinned measurement
method (as was done for B — K*puu [50]) to determine the ¢? dependence of the coefficients
and introduce the obtained expressions inside eq. (4.5) or eq. (4.9) as explained above.

Both approaches are however difficult to implement when the statistics is low, and one
has to choose between the extraction of the whole angular distribution and the study of the
¢ dependence of simpler observables like the decay rate. Currently, the measurements are
integrated over the whole kinematic range, which constitutes a single bin for the analysis.

By comparing with our exact results, we will thus investigate the accuracy of the
approximation f((Ix)¢) = (f(Ix))e, which requires the following transformation on the
unbinned expressions:

dUx/dg®> — (dUx /d¢®) I = (L)  wl; = (wl)  wI? = (V]w]L)?  (4.15)

where w stands for any positive weight depending on m and ¢?. This leads to the following
“approximate formulae” in the massless case, starting from eq. (4.12):

- 1 1
(B )0 = FQ\/U?))% + (I9)g + 7 (Tos)g (4.16)
and in the massive case, starting from eq. (4.13):
~ 1 1
(Fp ) ~ F\/ (ALs)? + (ALo)} + (B 16 (4.17)

In the massive case, one should measure the I; and multiply each event by a numerical
factor A for I3, Ig and B for Igs.

Similarly, in the absence of imaginary parts, we obtain the approximate binned ex-
pression, starting from eq. (4.9):

. _ 1 1
<F:P alt>é9—0 ~ 1"\/<A ]3>% + Z<B ]65>§ (4.18)

and the approximate expression for <F713 "¢ starting from eq. (4.11)

2 2
L (13 - 22)» ~1 [(AI:W 9 fjf;f;g

. . . ~ *\ g .
All these expressions have a corresponding expression for <F7’? )¢ for narrower bins where

(4.19)

()¢ is transformed into ()} corresponding to the integration over the narrow bin i.

In order to get an idea of the accuracy of these approximate relations, we perform the
following numerical exercise. We consider a set of benchmark points corresponding to the
best-fit-points of the 1D and 2D NP hypotheses in refs. [22, 23]. Among the 1D hypotheses,
the most favoured one is assuming NP in gy, , followed by NP in gg,. Specifically we will
take for this numerical analysis as benchmark points the best-fit-points of the following
four different NP hypotheses (in each case, the remaining couplings are set to zero):

(R1) : gv, = 0.07 (4.20)
(R2) : gsy = 0.09 (4.21)
(R3) : gs, =0.07 (4.22)
(R4) : gs, = 4gr = —0.03 (4.23)
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where the values are given at the scale 4 = 1TeV, and we run them down to the scale
= my [22, 23, 51]. For 2D hypotheses, there is a wider range of relevant possibilities, and

we select the following ones:”
(R5) : (9vy.,9s, = —4g7) = (0.10, —0.04) (4.24)
(R6) — (RT) : (98r-9s,) = (0.21,—0.15) or (—0.26,—0.61) (4.25)
(RS) : (9vy,9s5) = (0.08,—0.01) (4.26)
(C0) — (CO)*: gs;, = 4g9r = —0.06 £¢0.31 (4.27)

where once again we run these coefficients down to p = my,.

In ref. [24], a set of benchmark points is determined by considering the best-fit points
of different scenarios with one free complex parameter. The resulting 2D benchmark points
(in each case, the remaining couplings are set to zero) at the scale u = m; are:

(C1) gv, = 0.07 — i0.16 (4.28)
(C2):  gvy = —0.01-140.39 (4.29)
(C3):  gs, =0.29—1i0.67 (4.30)
(C4) g5, = 0.19 4 90.08 (4.31)
(C5) gr =0.11 —0.18 (4.32)

) gv = 0.20 +0.19 (4.33)
CT):  ga=0.69+il.04 (4.34)
) gs = 0.17 —i0.16 (4.35)
) gp = 0.58 +i0.21 (4.36)

In the following we will check the relations given in the previous sections against these
benchmark scenarios. We have used the binned approximation of the relations using 6
bins of equal length as shown in figure 1. On the one hand, this allows us to test the
quality of the binned approximation. On the other hand, we can check the impact of
the assumptions used in order to derive the various relations: for instance, checking the
expressions obtained for real NP contributions in section 4.3 in the case of the scenarios
(C0) — (C9) with complex parameters provides an estimate of the impact of realistic NP
imaginary contributions on these expressions.

We need to choose a set of form factors to evaluate the hadronic contributions and to be
able to test how accurate the relations remain within the binned approximation discussed
above, taking into account possible unexpected NP contributions (imaginary parts, tensor
contributions). Since our goal is only to check the accuracy of this approximation for the

9Even though (C0) and (C0)* are formally different scenarios corresponding to opposite imaginary parts,
they yield the same results for our observables which are not sensitive to the sign of the imaginary part.

0For completeness, we quote (C8) although this NP scenario has no impact on B — D*fv and is thus
equivalent to the SM for our purposes.
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various NP benchmark points it is enough to work using a simplified setting. For this
reason, we refrain from using form factors obtained by elaborate combinations of heavy-
quark effective theory [52-55] sum rules and lattice simulations [22, 24, 56-64] and we
stick to the simpler quark model in ref. [65] without attempting to assign uncertainties to
these computations.

A sample of the results is shown in figures 1, 2 and 3 to illustrate the accuracy of the
determinations from eqs. (4.17) (taking into account the contribution from imaginary parts)
and (4.18) or (4.19) (neglecting this contribution). Additional scenarios are considered in
appendix B. In order to be more precise, the relative errors of the approximate binned
expression for FQQ “alt with respect to 1571_? " are given in tables 2 and 3. Let us add that
the I; are integrated with the kinematical weight A or B defined in eq. (4.10) for the
evaluation of the massive expressions whenever needed. We obtain the following results for
the benchmark points considered:

e The binned approximation works very well in all cases when testing the relations
in the case of scenarios where they are expected to hold. Conversely, when one
considers a NP scenario with significant tensor contributions (like (C0) or (C'5)), the
expressions are off by ~ 70% in the worst cases. Only when the NP contribution to
the tensor coefficients is very small (|g7| < 1), the expressions work quite well, for
example ~ 5% for (R4).

e When we consider NP scenarios for the 7 lepton with complex values for the Wilson
Coefficients but without tensor contributions, i.e. (C1) — (C4) and (C6) — (C9), the
expressions hold with errors at the percent level. This occurs even when we consider
the expressions meant for real coefficients (section 4.3). We stress again that this
does not apply to scenarios with tensor contributions such as (C0) and (C5).

e We also tested the massless expressions in the case of NP scenarios affecting light
leptons at the same level as the 7 lepton. Such scenarios are ruled out by the cur-
rent data, but they provide a further check of the robustness of our expressions. In
these cases, the expressions that do not contain the angular coefficients containing
imaginary parts of the amplitudes (I7g9) (section 4.2) are off by ~ 20% at worst.
The agreement can be restored once we generalise the corresponding expressions
so that they include these angular coefficients (section 4.4), where we find a per-
fect agreement.

e In the first bin of most of the massless expressions, the relations are not completely
fulfilled, with a difference up to 10% due to binning effects enhanced at the endpoint
of the massless distribution.

This study shows that the expressions derived above under the assumption of no imag-
inary NP contributions and no tensor contributions in sections 4.2 and 4.3 work very well
even in the binned approximation. They are very accurate even in the presence of imagi-
nary NP contributions. Their simple generalization including imaginary parts in section 4.4
are as expected to be even more accurate also in the binned approximation. Finally, all
relations fail in the presence of large tensor contributions.
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4.6 Decision tree

We have proposed different ways of determining FE i (or Fql? *) which can be compared to
the usual definition, based on the existing symmetries if additional assumptions are made
about the nature of NP (no tensors, real contributions). One may then wonder how to
interpret the situation when the determination of F:,Q " in a narrow bin in the case of the
tau lepton yields different results from eq. (4.9) and from the traditional determination.
While we have provided different possible determinations we will focus on eq. (4.9) because
it includes pseudoscalar contributions and it is easily generalised in the presence of phases,
see eq. (4.13). There are three possible conclusions:

1) Our first hypothesis is the absence (or negligible size) of tensors. In the presence of
tensors, there are no dependencies among the angular observables, and we cannot
use eq. (4.9) to determine F? ", This first possibility seems to be in disagreement
with the study in [24] that shows that tensors tend to substantially worsen the sit-
uation reducing even further the value of FP" (or increasing FJQ*). If needed, this
question can be tested by probing the relationships shown in section 3 among the
angular coefficients.

2) The second hypothesis is the absence of large imaginary parts. In this case one can
generalise the expression eq. (4.9) to the presence of imaginary parts to get eq. (4.13),
simply substituting:

(AI3)? = (AI3)* + (ATy)” (4.37)

and similarly for the massless case. This simple substitution covers the presence of
large phases but of course at the cost of measuring also Ig. Alternatively one can
also measure I7 g9 which are sensitive to large imaginary parts and determine if they
differ from zero in a significant way.

3) The third option is the presence of an experimental issue in the determination of FE "
in the traditional way for B — D*7rv. The alternative determination proposed here
could help to determine the problem to be fixed and whether this second determina-
tion is also in disagreement not only with the SM but also with NP models.

5 Impact of the presence of light right-handed neutrinos

We turn now to the analysis of a case beyond the framework considered up to now, namely,
the presence of light right-handed neutrinos (RHN) entering the decay b — ¢7. The inclu-
sion of light RHN was discussed in refs. [37, 66-75] as a way to obey all phenomenological
constraints as well as cosmological and astrophysical limits. Here we will follow closely
the recent discussion in ref. [75] and we will use the results presented there to generalise
our expressions.

If one neglects neutrino masses, the b — ¢7v decay probability is given by an incoherent
sum of the contributions from left- and right-handed neutrinos. This introduces a substan-
tial change in the structure of the angular distribution, requiring a separate discussion.

- 21 —



The inclusion of RHN leads to a more general dimension-six effective Hamiltonian (see
ref. [75] for the definitions of the operators):

"GV AB=L,R

FVeb

Het = 5 O+ Y. CipOis (5.1)
X=S,V.T

The Wilson coefficients are defined in such a way that C4z = 0 in the SM. Eq. (17) of
ref. [75] provides a translation table between our helicity basis and the transversity basis
used in that reference.

The inclusion of RHN requires us to consider left and right chiralities of the leptonic
current, while the hadronic current is not modified. Consequently the coefficients of the
angular distribution get modified (see ref. [75]):

where the relative sign depends on the angular observable considered, and I;(L) and I;(R)
involve different helicity amplitudes including C* and C® Wilson coefficients respectively.
The total number of amplitudes entering the distribution gets thus enlarged from 7 to 14
(two of the helicity amplitudes always come in the same combination).

We can now discuss the impact of RHN on our previous discussion. Let us assume that
there are neither tensor nor imaginary contributions, but that RHN are indeed present.
We can compare the two determinations of F’{? ": the standard definition in eq. (2.28) and
the alternative determination in eq. (4.9). The following relation holds:

~ k| 2 ~D* a — 2
(FR) = (Fp ™00, 64 (Crr(L+CT) = CriCrr)°

— = AF = — D) P} 2 2 (53)

((BAgs)?)~ P ((1+CY)" —Ofg —Cpp” +Cpp)?

where Ag, refers to the observable including left and right components defined by

~ 271
A s/t — T 5 1 s/t 4
(o) =5 1) (54)
In order that the previous expression becomes useful we have checked that eq. (5.3) still
holds in the following binned form:!
i * 2 =~ * a — 2
(FP))" = (B b= 655
<BA68>12-

Notice that given that Af" is always positive, eq. (5.5) implies that an experimental deter-
mination using (F£" )19=0 should always be found equal or smaller than the “standard”
(ER™), in absence of tensors and imaginary contributions.

We derived this expression assuming the hypotheses above and using the fact that

eq. (3.29) is valid in presence of RHN while eq. (3.30) holds if the constraint

Clr(1+CyL) — CpChr =0 (5.6)

1We have scanned over a range of values of the RHN coefficients CXL,LR,RL,RR to compare eq. (5.3)
and eq. (5.5). The result of this test clearly indicates that for combinations of RHN resulting in reasonably
small values of Ar < 1, the two expressions agree up to 0(1073) corrections in all bins.
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is imposed. In other words, only if this constraint is fulfilled, <FT “alt) can be interpreted
as the physical transverse polarization fraction.

In ref. [75] several interesting scenarios are identified which are able to fulfill the con-
straints from Bp.—75, Rp,p*, FLD* and 7371_3*:

1) The scenario with the highest pullgy corresponds to scenario 3 (V,,) with NP only in
CYp- Since CY; = CYp = C}, = 0 in this scenario, eq. (5.6) is fulfilled and A¥ = 0.
However, in this scenario the NP contributions to F]f) cancel exactly and the tension
with the experimental value is not relaxed.

2) A second interesting scenario is called 4b (®3) in ref. [75]. This scenario can be
generated by a two Higgs doublet model and it yields non-zero values for C’}g( with
X = LL,LR,RL,RR. Assuming Bp,_,;5 < 30%, this scenario is able to relax the
tensions of all observables including F LD " Since this scenario yields NP contributions
only in Cz-S it fulfills automatically the constraint, leading to A¥ = 0.

3) In scenario 1 of ref. [75], there are two solutions with non-vanishing values for
CXL, Lr.rR 8 well as Cf r.rR and C}QR. One of the two solutions has a tensor contri-
bution compatible with zero at 1o. If we take this solution to remain under our initial
hypothesis of the absence of tensor contributions we obtain A ~ 10~3 (central value
of b.f.p) if C%L = 0, which, obviously, cannot be detected. In ref. [75] the coefficient
C’%L is neglected because it is lepton-flavour universal within SMEFT and it cannot
help to accommodate any of the deviations observed with LFUV observables. How-
ever, assuming the best-fit point of this scenario does not change when non-vanishing
values of CEL are allowed, we find that A can be much larger when C’XL approaches

:t\/(l +CY)? - C’XRQ + C%Rz, leading to a rather visible effect.

In summary, a difference between the two measurements of F2~ (or FP") in absence
of tensors and imaginary contributions could be attributed, barring experimental issues, to
contributions coming from RHN. For some RHN scenarios, this would generate a non-zero
value for AF.

6 Experimental sensitivity

Our analysis is based on the possibility of performing a full angular analysis of the B —
D*fv with a reasonable accuracy to check the relationships derived among angular observ-
ables. There is a major experimental challenge associated to the difficulty of measuring
angular distributions of semitauonic decays due to the loss of the two neutrinos, one from
the B decay and the other from the subsequent 7 decay, making it difficult to reconstruct
the 7 direction. This problem arises both when the 7 decays into a pion or a lepton [36, 37].
A novel approach [38] has been proposed using the three-prong 7+ — 77 t7n~ i, decay
instead of the muonic 7 decay and a multidimensional template fit able to measure the
coefficients of the angular distribution. We can use the numerical results from ref. [38]
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to compare the expected experimental sensitivity of Ff) " using the standard definition in
eq. (2.28) with the one using the alternative determination in eq. (4.9).!2

Taking the results of the template fit for the 50 fb~! collider scenario given in table 11
and figure 10 of ref. [38] and applying the transformation described in eq. (4.15) we can
obtain a rough estimate of the sensitivity of (F 'Dxalty1o=0 " Obtaining this estimate is not
straightforward since (Ff) * a1t>179:0 includes not only the angular observables I3 and Igs but
also the kinematic factors A and B. As mentioned in section 4.5, experimentalists can
measure directly A I3, and B Igs following the same binning as the angular observables
arising in the differential branching ratio. In order to get a rough idea of these quantities
in the absence of a dedicated experimental study including estimates of Als and Blgs,
we study the ratios (A I3)/(I3) and (B Iss)/(lss) and how they change in the presence of
NP. Scanning the parameter space, we find these ratios to be rather independent of the
NP considered. We find that (AI3)/(I3) ~ 4.1 and (Blss)/{Iss) ~ 2.4, leading to our

approximate determination of the binned observables

<A I3>exp ~ 4.1<Ig>exp <B Iﬁs>exp ~24 <165>exp (6.1)

It is important to emphasise that this approximation would not be needed for future
experimental measurements as long as A I3, Aly and B Igs are measured directly.

Under these approximations and considering the uncertainties and correlations given
for the 50 fb~! collider scenario in ref. [38], we obtain the following rough estimate for the
alternative determination for the SM case considered in this reference

(FPrefe=D | =047 4+0.12 (6.2)

to be compared with the standard determination
(FP*) 5o a1 = 0.45 £ 0.01 (6.3)

The alternative determination suffers from the larger errors of the angular observables in-
volved in its definition, in comparison with the standard determination which is dominated
by I1s with a smaller uncertainty than the other angular observables, as show in figure 10
of ref. [38].

These uncertainties would be enough to identify discrepancies coming from tensor
contributions, such as our scenario C5. The smaller differences between the two determi-
nations coming from other types of scenarios (such as Wilson coefficients with imaginary
parts) could not be distinguished and the two determinations should yield similar results.
Conversely, it means that our relations will provide a non-trivial experimental cross-check
of the angular analyses projected in ref. [38], unless large tensor contributions are present.

12We refrain from using the more complete alternative definition in eq. (4.13) because the ratio (A Iy)/(Io)
necessary to get the rough estimate described in the text is not properly defined in the SM.

— 24 —



7 Conclusions

The charged-current B — D*{v transition has been under scrutiny recently, as it exhibited
a deviation from the SM in the LFUV ratio Rp~ comparing the branching ratios £ = 7 and
lighter leptons. Moreover, the polarisation of both the D* meson and the 7 lepton have
been measured for B — D*7v. If the latter agrees with the SM within large uncertainties,
the Belle measurement of F' LD " yields a rather high value compared to the SM prediction,
which appears difficult to accommodate with NP scenarios.

We could understand better this situation by considering in more detail the angular
observables that could be extracted from the differential decay rate, as described in ref. [24].
We applied the formalism of amplitude symmetries of the angular distribution of the decays
B — D*lv for £ = e, u, 7. We showed that the set of angular observables used to describe
the distribution of this class of decays are not independent in absence of NP contributing
to tensor operators. We derived sets of relations among the angular coefficients of the
decay distribution for the massless and massive lepton cases. These relations can be used
to probe in a very general way the consistency among the angular observables and the
underlying NP at work, and in particular whether it involves tensor operators or not.

We used these relations to access the integrated longitudinal polarisation fraction of
the D* using different angular coefficients from the ones used by Belle experiment. This
in the near future can provide an alternative strategy to measure Ff) " for B — D*rv and
to understand the relatively high value measured by Belle. We presented expressions in
egs. (4.12) and (4.13) for the massless and massive case that cover the most general NP
scenario including also pseudoscalars and imaginary contributions, with the only exception
of tensor contributions.

We then studied the accuracy of these expressions if only binned observables are avail-
able, or if they are used in the case of scenarios beyond the assumptions made in their
derivation (imaginary contributions, tensor contributions). We used several benchmark
points corresponding to best-fit points from global fits to b — c7v observables, relying
on a simple quark model for the hadronic form factors for this exploratory study. The
expressions derived under the assumption of no imaginary NP contributions and no tensor
contributions work very well even in the binned approximation. They are very accurate
even in the presence of imaginary NP contributions. As expected, their generalisations,
derived assuming the presence of imaginary contributions, are very well behaved also in
the binned approximation. All relations fail in the presence of large tensor contributions,
where no dependencies can be found among the angular observables.

Besides presenting the most general expressions for F' LD " in the massless and massive
case, we also derived a relation among observables (1213,9,65 and F' LD ") that are potentially
interesting from the NP point of view if the deviation in F' E " is confirmed. Having specific
model building predictions for these observables would be highly interesting. We also
discussed the impact of the presence of light right-handed neutrinos. We showed that we
could test their presence in some specific cases under the hypothesis that there are no tensor
nor imaginary contributions, by comparing our two determinations of FE*. Moreover,
under this hypothesis, the sign of the difference between the two determinations is fixed.
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We have explored alternative determinations of F LD " based on our symmetries. In the
absence of tensor contributions, these determinations based on other angular observables
are fulfilled very accurately. This provides an important cross check for the experimental
measurements: if our relations are not fulfilled by the experimental measurements, this
would mean either a problem on the experimental side or the presence of large tensor con-
tributions. Using recent projections on the experimental prospects for the measurements of
angular observables, we find that these relations could be checked with an accuracy of 0.1
in the scenario of a 50 fb~! hadron collider, which would be enough to spot a scenario with
tensor contributions and would provide an interesting cross-check of the determination of
the angular observables.

These additional measurements needed for this extraction make obviously this deter-
mination more challenging experimentally, but they can help to corner the kind of NP
responsible for this high value or to understand the experimental problem responsible for
this unexpected value of the D* polarisation. We hope that our results will be of partic-
ular interest once the LHCb and Belle IT experiments are able to analyse the B — D*{v
decays in more detail and thus to provide us with a more detailed picture of the intriguing
deviations currently observed in b — ¢fv transitions.
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A Explicit dependencies in the massive case

In this appendix we provide the detailed methodology followed and the full expressions
of the dependencies among the angular coefficients in the massive case with no tensor
contributions. It is useful to define the following four combinations in order to obtain
compact expressions:

Rsq=Re(Hy)*Re(H-), I;q=Im(Hy)+Im(H-) (A1)

One can solve the system of equations in terms of the variables defined above and find
a twofold solution:

1 Lig?
Ry=——— A2
® " Hogq®—m? (#-2)

1 ng2
ljg=———"— A3
" Hy q> —m? (A.3)
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Rd _ (_1)n q2 (I4ng2 + Hgfg(q2 — m?))
VH3(@2 = md)2\ [~ 1qt + HY(m? — ) [([H_ 2 + |HL[2) (m} — ¢2) + Isg?)]
(A.4)

Ly Bt B — ) [(H_ P+ [HoP)(m — ) + Is?)]

H§(q* — mj)?

I, = (

(A.5)

with n = 0,1. However, this sign ambiguity product of the twofold nature of the solution
can be fixed, since physical combinations prevent interference terms that could be problem-
atic. This set of solutions can be used to determine the square of the four amplitudes once
Hy is fixed to be real and positive through the symmetry of the angular distribution. One
can also rewrite the real and imaginary parts of H; in terms of the variables in eq. (A.1)
and Hy:

¢* [I7 I+ IsRq — 2Ho (12 + R3)]
Zm% (I4ls + RsRy)

q2 [—I5Id + IRy + 2H0(Ide — RSIS)]

2m§ (I4ls + RsRy)

Re(H;) = —

(A.6)

Im(H;) = (A.7)
With these definitions, one can find the whole set of dependencies among angular coeffi-
cients. Besides the trivial dependency eq. (3.29), there are four more relations which are
obtained by taking combinations of the modulus of H , H_ and Re(H;), Im(H;).

The first non-trivial relation can be derived from the sum |H|? + |H_|?:

0= AR Dl — g% AL (I )0 — )+ 30
(20502 + 21312 — AL Ik Ty + Doo(I12 + 12)] (m2 + 3q2)2} (A.8)
where
a = (mj — ¢*)*(m} +3¢°) 2115 ae(m} — ¢%) + (TacIs — 213) (mf + 3¢°)] (A.9)

From |H, |*|H_|? one can obtain the second dependency:

2\ 2 2 2

21 I
0= —J2_7J2 _ My _ =ls _ I6s A.10
3 9+< q2 3+m%/q2 4 ( )

The third one follows from [Re(Hy)]?:

8¢* )
= % {211512617(7713 — @) + (IoeI3I7 — 21317 + 2140515 — In I5Io)(mj + 3q2)}

Isslee  4¢*
- {626 — L (41,13, (m} — ) + Al Docl(Locls = 203) (] — %) (] + 3¢°)

0

2
AR+ ) = AR+ 1) + G+ ) +32P) | A

with a defined in eq. (A.9).
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Finally, the last dependency is related to [Im(H;)]?:
0 = 25615,(IsI7 — I5Is)*(mj — ¢*)*q"
% [Iie(mi = ¢*)* + 8IieTpem (—mj + ¢%) + 8I5,mi (mi} + q*)]
+ [64b — 64(Laly — Is1)*(mf — ¢*)*¢° + L5, (m — ¢*)°* (Ige(m — ¢*)?
+ 8L Ioemi (—mi + ¢°) + 813, m7 (m7 + c12))]2 (A.12)
with

2¢"2(2NsTocIs(m} — ¢2) + (—2L(I7 + I3) + Loe(I3 1y + Islo)) (m3 + 3¢°))?

b=
(m? + 3¢%) (215 I2c(m3 — ¢%) + (TocI3 — 213F)(m3 + 3¢?))

(A.13)

As a final comment, let us remark that these dependencies among angular coefficients
yield egs. (3.30)—(3.33) when one considers only real Wilson coefficients, so that all imagi-
nary contributions and I7g 9 can be neglected.

B Comparison of the binned expressions in benchmark NP scenarios

Following the setup of section 4.5, we illustrate in figure 4 to figure 9 the errors induced
on the binning by the approximation eq. (4.15) on relations derived using the amplitude
symmetries under various assumptions on the NP scenario in the 7 lepton case. We follow
same convention as in figure 1.

We provide the relative errors for selected scenarios in tables 2 and 3.
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-~ BN\ s 0 44) | (44,57 | [5.7,6.9] | 69,82] | [8.2,9.4] | [9.4,10.7] | [m2, (mp — mp+)?]
SM 0.03% |0.03% |01% | 0.04% |0.09% | 0.4% 1%
1 0.03% |0.03% |01% | 0.04% | 0.09% | 0.4% 1%
o 0% | 30% 30% 20% 20% 20% 20%
3 0.03% |0.03% |01% | 0.04% | 0.09% | 0.4% 1%

Table 2. Relative difference in percent of the approximate binned expression of <F7’? *alty - with
respect to the “standard” (FTD *)- for the SM and different NP scenarios. It corresponds to the
relative difference in between the orange and blue bins displayed in figure 1 (normalised by the
“standard” <FQQ *); i.e. the orange bins). The bins in the first 6 columns correspond to the division of
the kinematic range ([m2, (mp—mp-)?]) in 6 equally sized intervals. The last column corresponds to
the whole kinematic range (not displayed in figure 1). Notice that, as expected, this approximation
works better for smaller bins. The scenario C0 is displayed as an example of a scenario with tensor
contributions where, as expected, the two determinations should yield different results.

Bin
1. 1. . . . . 1 .1,8. .9, 10. — )2
Scenario [0,1.8] | [1.8,3.6] | [3.6,5.3] | [5.3,7.1] | [7.1,8.9] | [8.9,10.7] | [0, (mpB — mp~)~]

SM 0.08% | 0.04% 0.1% 0.05% 0.1% 0.4 % 2%

Table 3. Relative difference in percent of the approximate binned expression of (]*:'7’? *alty ) with
respect to the “standard” (1:"7’? *Yo for the SM. It corresponds to the relative difference in between
the orange and blue bins displayed in figure 1 (normalised by the “standard” (157’? *)o i.e. the
orange bins). The bins in the first 6 columns correspond to the division of the kinematic range
([0, (mp —mp~)?]) in 6 equally sized intervals. The last column corresponds to the whole kinematic
range (not displayed in figure 1). Notice that, as expected, this approximation works better for

smaller bins.

— 35 —



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1]

2]

[12]

[13]

[14]

[15]

S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of B — K*{1{~
observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794| [INSPIRE].

LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay
B — K*9u* =, Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [NSPIRE].

LHCD collaboration, Angular analysis of the B — K*ut = decay using 3fb~1 of integrated
luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].

ATLAS collaboration, Angular analysis of BY — K*p™u~ decays in pp collisions at
s =8 TeV with the ATLAS detector, ATLAS-CONF-2017-023.

CMS collaboration, Measurement of the Py and P, angular parameters of the decay
BY — K*0u*u~ in proton-proton collisions at \/s = 8 TeV, CMS-PAS-BPH-15-008.

BELLE collaboration, Angular analysis of B® — K*(892)°¢*¢~, arXiv:1604.04042
[INSPIRE].

LHCDb collaboration, Test of lepton universality using BT — K010~ decays, Phys. Rev.
Lett. 113 (2014) 151601 [arXiv:1406.6482] [NSPIRE].

LHCb collaboration, Test of lepton universality with B® — K*°¢+¢~ decays, JHEP 08
(2017) 055 [arXiv:1705.05802] [INSPIRE].

BELLE collaboration, Lepton-Flavor-Dependent Angular Analysis of B — K*{T4~, Phys.
Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].

B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New
Physics in b — s€T4~ transitions in the light of recent data, JHEP 01 (2018) 093
[arXiv:1704.05340] InSPIRE].

M. Alguer6 et al., Emerging patterns of New Physics with and without Lepton Flavour
Universal contributions, Eur. Phys. J. C 79 (2019) 714 [Addendum ibid. 80 (2020) 511]
[arXiv:1903.09578] [iNSPIRE].

BABAR collaboration, Evidence for an excess of B — D)1~ decays, Phys. Rev. Lett. 109
(2012) 101802 [arXiv:1205.5442] [INSPIRE].

BABAR collaboration, Measurement of an Excess of B — D™ 7~ Decays and Implications
for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

BELLE collaboration, Measurement of the branching ratio of B — D™ 7t~ relative to
B — D™~ 5, decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014
[arXiv:1507.03233] [iNSPIRE].

LHCb collaboration, Measurement of the ratio of branching fractions
B(BY — D**77u,)/B(B® — D**u~1,), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid.
115 (2015) 159901] [arXiv:1506.08614] INSPIRE].

LHCbD collaboration, Measurement of the ratio of the B® — D*~7%v, and B — D*~pu'tv,
branching fractions using three-prong T-lepton decays, Phys. Rev. Lett. 120 (2018) 171802
[arXiv:1708.08856] [INSPIRE].

— 36 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP05(2013)137
https://arxiv.org/abs/1303.5794
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5794
https://doi.org/10.1103/PhysRevLett.111.191801
https://arxiv.org/abs/1308.1707
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1707
https://doi.org/10.1007/JHEP02(2016)104
https://arxiv.org/abs/1512.04442
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.04442
https://cds.cern.ch/record/2258146
https://cds.cern.ch/record/2256738
https://arxiv.org/abs/1604.04042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.04042
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
https://arxiv.org/abs/1406.6482
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.6482
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
https://arxiv.org/abs/1705.05802
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05802
https://doi.org/10.1103/PhysRevLett.118.111801
https://doi.org/10.1103/PhysRevLett.118.111801
https://arxiv.org/abs/1612.05014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.05014
https://doi.org/10.1007/JHEP01(2018)093
https://arxiv.org/abs/1704.05340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05340
https://doi.org/10.1140/epjc/s10052-019-7216-3
https://arxiv.org/abs/1903.09578
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.09578
https://doi.org/10.1103/PhysRevLett.109.101802
https://doi.org/10.1103/PhysRevLett.109.101802
https://arxiv.org/abs/1205.5442
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.5442
https://doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.0571
https://doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.03233
https://doi.org/10.1103/PhysRevLett.115.111803
https://arxiv.org/abs/1506.08614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.08614
https://doi.org/10.1103/PhysRevLett.120.171802
https://arxiv.org/abs/1708.08856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.08856

[17]

[18]

[19]

[20]

[21]

BELLE collaboration, Measurement of R(D) and R(D*) with a semileptonic tagging method,
arXiv:1904.08794 [INSPIRE].

HFLAV collaboration, Averages of b-hadron, c-hadron and T-lepton properties as of 2018,
arXiv:1909.12524 [INSPIRE].

BELLE collaboration, Measurement of the D*~ polarization in the decay B® — D*~7tu,,
arXiv:1903.03102 [INSPIRE}.

BELLE collaboration, Measurement of the T lepton polarization and R(D*) in the decay
B — D*7~ U, Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [NSPIRE].

BELLE collaboration, Measurement of the T lepton polarization and R(D*) in the decay
B — D*7~ D, with one-prong hadronic T decays at Belle, Phys. Rev. D 97 (2018) 012004
[arXiv:1709.00129] InSPIRE].

M. Blanke et al., Impact of polarization observables and B. — Tv on new physics
explanations of the b — ctv anomaly, Phys. Rev. D 99 (2019) 075006 [arXiv:1811.09603]
[INSPIRE].

M. Blanke, A. Crivellin, T. Kitahara, M. Moscati, U. Nierste and 1. Nisandzi¢, Addendum to
“Impact of polarization observables and B. — Tv on new physics explanations of the b — ctv
anomaly”, Phys. Rev. D 100 (2019) 035035 [arXiv:1905.08253] [INSPIRE].

D. Becirevié, M. Fedele, 1. Nisandzi¢ and A. Tayduganov, Lepton Flavor Universality tests
through angular observables of B — DY\T decay modes, arXiv:1907.02257 [INSPIRE].

C. Murgui, A. Penuelas, M. Jung and A. Pich, Global fit to b — cTv transitions, JHEP 09
(2019) 103 [arXiv:1904.09311] [INSPIRE].

P. Asadi and D. Shih, Maximizing the Impact of New Physics in b — ctv Anomalies, Phys.
Rev. D 100 (2019) 115013 [arXiv:1905.03311] [INSPIRE].

R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jager and J. Martin Camalich, Revisiting the
new-physics interpretation of the b — crv data, JHEP 12 (2019) 065 [arXiv:1905.08498]
[INSPIRE].

U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay
mode B — K*°¢*¢~, JHEP 10 (2010) 056 [arXiv:1005.0571] [INSPIRE].

J. Matias and N. Serra, Symmetry relations between angular observables in B® — K*utu~
and the LHCb P} anomaly, Phys. Rev. D 90 (2014) 034002 [arXiv:1402.6855] InSPIRE].

L. Hofer and J. Matias, Exploiting the symmetries of P and S wave for B — K*u*u~, JHEP
09 (2015) 104 [arXiv:1502.00920] [INSPIRE].

P. Colangelo, F. De Fazio and F. Loparco, Probing New Physics with B — p(770){~ ¥, and
B — a1(1260)¢~ g, Phys. Rev. D 100 (2019) 075037 [arXiv:1906.07068] [INSPIRE].

P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in
B — D™D, decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].

M. Duraisamy and A. Datta, The Full B — D*1~ v, Angular Distribution and CP-violating
Triple Products, JHEP 09 (2013) 059 [arXiv:1302.7031] NSPIRE].

M. Duraisamy, P. Sharma and A. Datta, Azimuthal B — D*7~ v, angular distribution with
tensor operators, Phys. Rev. D 90 (2014) 074013 [arXiv:1405.3719] [INSPIRE].

- 37 —


https://arxiv.org/abs/1904.08794
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08794
https://arxiv.org/abs/1909.12524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.12524
https://arxiv.org/abs/1903.03102
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.03102
https://doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00529
https://doi.org/10.1103/PhysRevD.97.012004
https://arxiv.org/abs/1709.00129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.00129
https://doi.org/10.1103/PhysRevD.99.075006
https://arxiv.org/abs/1811.09603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.09603
https://doi.org/10.1103/PhysRevD.100.035035
https://arxiv.org/abs/1905.08253
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08253
https://arxiv.org/abs/1907.02257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02257
https://doi.org/10.1007/JHEP09(2019)103
https://doi.org/10.1007/JHEP09(2019)103
https://arxiv.org/abs/1904.09311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.09311
https://doi.org/10.1103/PhysRevD.100.115013
https://doi.org/10.1103/PhysRevD.100.115013
https://arxiv.org/abs/1905.03311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03311
https://doi.org/10.1007/JHEP12(2019)065
https://arxiv.org/abs/1905.08498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08498
https://doi.org/10.1007/JHEP10(2010)056
https://arxiv.org/abs/1005.0571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.0571
https://doi.org/10.1103/PhysRevD.90.034002
https://arxiv.org/abs/1402.6855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6855
https://doi.org/10.1007/JHEP09(2015)104
https://doi.org/10.1007/JHEP09(2015)104
https://arxiv.org/abs/1502.00920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.00920
https://doi.org/10.1103/PhysRevD.100.075037
https://arxiv.org/abs/1906.07068
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07068
https://doi.org/10.1103/PhysRevD.87.074010
https://arxiv.org/abs/1302.1042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.1042
https://doi.org/10.1007/JHEP09(2013)059
https://arxiv.org/abs/1302.7031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.7031
https://doi.org/10.1103/PhysRevD.90.074013
https://arxiv.org/abs/1405.3719
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.3719

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of
B — D™/, decays and search of New Physics, Nucl. Phys. B 946 (2019) 114707
[arXiv:1602.03030] [INSPIRE].

R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of
B — DYWr= (= £~ 0w, )0, Phys. Rev. D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].

Z. Ligeti, M. Papucci and D.J. Robinson, New Physics in the Visible Final States of
B — D®ry, JHEP 01 (2017) 083 [arXiv:1610.02045] [INSPIRE].

D. Hill, M. John, W. Ke and A. Poluektov, Model-independent method for measuring the
angular coefficients of B® — D*~7T v, decays, JHEP 11 (2019) 133 [arXiv:1908.04643]
[INSPIRE].

J. Aebischer, T. Kuhr and K. Lieret, Clustering of B — D™t~ kinematic distributions
with ClusterKinG, JHEP 04 (2020) 007 [arXiv:1909.11088] INSPIRE].

J. Matias, F. Mescia, M. Ramon and J. Virto, Complete Anatomy of By — K*°(— Kr)éte~
and its angular distribution, JHEP 04 (2012) 104 [arXiv:1202.4266] [INSPIRE].

B. Bhattacharya, A. Datta, S. Kamali and D. London, CP Violation in B® — D*t =,
JHEP 05 (2019) 191 [arXiv:1903.02567] [iNSPIRE].

P. Colangelo and F. De Fazio, Scrutinizing B — D* (D) £V, and B — D* (D) (" vy in
search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].

S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables
for the binned analysis of B — K % u*u~ at large recoil, JHEP 01 (2013) 048
[arXiv:1207.2753] [INSPIRE].

X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D(*))
anomalies and its phenomenological implications, JHEP 08 (2016) 054 [arXiv:1605.09308]
[INSPIRE].

R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B, Constrains Explanations
for Anomalies in B — D™ tv, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676]
[INSPIRE].

A.G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of B, — 70 from LEP1
and consequences for R(D™)) anomaly, Phys. Rev. D 96 (2017) 075011 [arXiv:1708.04072]
[INSPIRE].

A. Greljo, J. Martin Camalich and J.D. Ruiz-Alvarez, Mono-r Signatures at the LHC
Constrain Ezplanations of B-decay Anomalies, Phys. Rev. Lett. 122 (2019) 131803
[arXiv:1811.07920] [INSPIRE].

D. Becirevié, I. Dorsner, S. Fajfer, N. Kosnik, D.A. Faroughy and O. Sumensari, Scalar
leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev.
D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].

M. Tanaka and R. Watanabe, New physics in the weak interaction of B — D™ 75, Phys.
Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

U. Egede, M. Patel and K.A. Petridis, Method for an unbinned measurement of the ¢
dependent decay amplitudes ofﬁo — K*%u*u= decays, JHEP 06 (2015) 084
[arXiv:1504.00574] [INSPIRE].

— 38 —


https://doi.org/10.1016/j.nuclphysb.2019.114707
https://arxiv.org/abs/1602.03030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.03030
https://doi.org/10.1103/PhysRevD.94.094021
https://arxiv.org/abs/1602.07671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.07671
https://doi.org/10.1007/JHEP01(2017)083
https://arxiv.org/abs/1610.02045
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02045
https://doi.org/10.1007/JHEP11(2019)133
https://arxiv.org/abs/1908.04643
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04643
https://doi.org/10.1007/JHEP04(2020)007
https://arxiv.org/abs/1909.11088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11088
https://doi.org/10.1007/JHEP04(2012)104
https://arxiv.org/abs/1202.4266
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.4266
https://doi.org/10.1007/JHEP05(2019)191
https://arxiv.org/abs/1903.02567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.02567
https://doi.org/10.1007/JHEP06(2018)082
https://arxiv.org/abs/1801.10468
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.10468
https://doi.org/10.1007/JHEP01(2013)048
https://arxiv.org/abs/1207.2753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.2753
https://doi.org/10.1007/JHEP08(2016)054
https://arxiv.org/abs/1605.09308
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.09308
https://doi.org/10.1103/PhysRevLett.118.081802
https://arxiv.org/abs/1611.06676
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.06676
https://doi.org/10.1103/PhysRevD.96.075011
https://arxiv.org/abs/1708.04072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.04072
https://doi.org/10.1103/PhysRevLett.122.131803
https://arxiv.org/abs/1811.07920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.07920
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1103/PhysRevD.98.055003
https://arxiv.org/abs/1806.05689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05689
https://doi.org/10.1103/PhysRevD.87.034028
https://doi.org/10.1103/PhysRevD.87.034028
https://arxiv.org/abs/1212.1878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.1878
https://doi.org/10.1007/JHEP06(2015)084
https://arxiv.org/abs/1504.00574
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.00574

[51]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. Gonzélez-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution
of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777
[arXiv:1706.00410] [INSPIRE].

N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation,
Phys. Lett. B 232 (1989) 113 [nSPIRE].

N. Isgur and M.B. Wise, Weak transition form-factors between heavy mesons, Phys. Lett. B
237 (1990) 527 [InSPIRE].

A F. Falk and M. Neubert, Second order power corrections in the heavy quark effective
theory. 1. Formalism and meson form-factors, Phys. Rev. D 47 (1993) 2965
[hep-ph/9209268] [INSPIRE].

B. Grinstein and Z. Ligeti, Heavy quark symmetry in p_,pyw spectra, Phys. Lett. B 526
(2002) 345 [Erratum ibid. 601 (2004) 236] [hep-ph/0111392] [INSPIRE].

C. Boyd, B. Grinstein and R.F. Lebed, Model independent extraction of —V(cb)— using
dispersion relations, Phys. Lett. B 353 (1995) 306 [hep-ph/9504235] [INSPIRE].

I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of B — D(x) lepton
anti-neutrino form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INnSPIRE].

P. Gambino, T. Mannel and N. Uraltsev, B — D* at zero recoil revisited, Phys. Rev. D 81
(2010) 113002 [arXiv:1004.2859] [INSPIRE].

P. Gambino, T. Mannel and N. Uraltsev, B — D* Zero-Recoil Formfactor and the Heavy
Quark Expansion in QCD: A Systematic Study, JHEP 10 (2012) 169 [arXiv:1206.2296]
[INSPIRE].

N. Gubernari, A. Kokulu and D. van Dyk, B — P and B — V' Form Factors from B-Meson
Light-Cone Sum Rules beyond Leading Twist, JHEP 01 (2019) 150 [arXiv:1811.00983]
[INSPIRE].

C. Bernard et al., The B — D*{v form factor at zero recoil from three-flavor lattice QCD: A
model independent determination of |Vep|, Phys. Rev. D 79 (2009) 014506
[arXiv:0808.2519] [INSPIRE].

FERMILAB LATTICE and MILC collaborations, Update of |V.y| from the B — D*{v form
factor at zero recoil with three-flavor lattice QCD, Phys. Rev. D 89 (2014) 114504
[arXiv:1403.0635] [INSPIRE].

J. Harrison, C. Davies and M. Wingate, |V| from the B® — D**{~ ¥ zero-recoil form factor
using 2+ 1+ 1 flavour HISQ and NRQCD, PoS LATTICE2016 (2017) 287
[arXiv:1612.06716] [INSPIRE].

F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of
semileptonic B decays to D and D*: R(D™), |Vu| and new physics, Phys. Rev. D 95 (2017)
115008 [Erratum ibid. 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].

D. Melikhov and B. Stech, Weak form-factors for heavy meson decays: An update, Phys.
Rev. D 62 (2000) 014006 [hep-ph/0001113] [INSPIRE].

P. Asadi, M.R. Buckley and D. Shih, It’s all right(-handed neutrinos): a new W model for
the Rp anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].

A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D™) from W' and right-handed
neutrinos, JAEP 09 (2018) 169 [arXiv:1804.04642] INSPIRE].

-39 —


https://doi.org/10.1016/j.physletb.2017.07.003
https://arxiv.org/abs/1706.00410
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00410
https://doi.org/10.1016/0370-2693(89)90566-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB232%2C113%22
https://doi.org/10.1016/0370-2693(90)91219-2
https://doi.org/10.1016/0370-2693(90)91219-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB237%2C527%22
https://doi.org/10.1103/PhysRevD.47.2965
https://arxiv.org/abs/hep-ph/9209268
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9209268
https://doi.org/10.1016/S0370-2693(01)01517-9
https://doi.org/10.1016/S0370-2693(01)01517-9
https://arxiv.org/abs/hep-ph/0111392
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0111392
https://doi.org/10.1016/0370-2693(95)00480-9
https://arxiv.org/abs/hep-ph/9504235
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9504235
https://doi.org/10.1016/S0550-3213(98)00350-2
https://arxiv.org/abs/hep-ph/9712417
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9712417
https://doi.org/10.1103/PhysRevD.81.113002
https://doi.org/10.1103/PhysRevD.81.113002
https://arxiv.org/abs/1004.2859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.2859
https://doi.org/10.1007/JHEP10(2012)169
https://arxiv.org/abs/1206.2296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.2296
https://doi.org/10.1007/JHEP01(2019)150
https://arxiv.org/abs/1811.00983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00983
https://doi.org/10.1103/PhysRevD.79.014506
https://arxiv.org/abs/0808.2519
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.2519
https://doi.org/10.1103/PhysRevD.89.114504
https://arxiv.org/abs/1403.0635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.0635
https://doi.org/10.22323/1.256.0287
https://arxiv.org/abs/1612.06716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.06716
https://doi.org/10.1103/PhysRevD.95.115008
https://doi.org/10.1103/PhysRevD.95.115008
https://arxiv.org/abs/1703.05330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05330
https://doi.org/10.1103/PhysRevD.62.014006
https://doi.org/10.1103/PhysRevD.62.014006
https://arxiv.org/abs/hep-ph/0001113
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0001113
https://doi.org/10.1007/JHEP09(2018)010
https://arxiv.org/abs/1804.04135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.04135
https://doi.org/10.1007/JHEP09(2018)169
https://arxiv.org/abs/1804.04642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.04642

[68] D.J. Robinson, B. Shakya and J. Zupan, Right-handed neutrinos and R(D™)), JHEP 02
(2019) 119 [arXiv:1807.04753] [INSPIRE].

[69] A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ubaldi, Combined explanations of
B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092 [arXiv:1807.10745]
[INSPIRE].

[70] J. Heeck and D. Teresi, Pati-Salam explanations of the B-meson anomalies, JHEP 12 (2018)
103 [arXiv:1808.07492] [iNSPIRE].

[71] P. Asadi, M.R. Buckley and D. Shih, Asymmetry Observables and the Origin of Rp
Anomalies, Phys. Rev. D 99 (2019) 035015 [arXiv:1810.06597] INSPIRE].

[72] K.S. Babu, B. Dutta and R.N. Mohapatra, A theory of R(D*, D) anomaly with right-handed
currents, JHEP 01 (2019) 168 [arXiv:1811.04496] INSPIRE].

[73] D. Bardhan and D. Ghosh, B -meson charged current anomalies: The post-Moriond 2019
status, Phys. Rev. D 100 (2019) 011701 [arXiv:1904.10432] [INSPIRE].

[74] J.D. Gémez, N. Quintero and E. Rojas, Charged current b — ¢t anomalies in a general W’
boson scenario, Phys. Rev. D 100 (2019) 093003 [arXiv:1907.08357] [INSPIRE].

[75] R. Mandal, C. Murgui, A. Pefniuelas and A. Pich, The role of right-handed neutrinos in
b — ¢ anomalies, arXiv:2004.06726 [INSPIRE].

40 —


https://doi.org/10.1007/JHEP02(2019)119
https://doi.org/10.1007/JHEP02(2019)119
https://arxiv.org/abs/1807.04753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04753
https://doi.org/10.1007/JHEP10(2018)092
https://arxiv.org/abs/1807.10745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.10745
https://doi.org/10.1007/JHEP12(2018)103
https://doi.org/10.1007/JHEP12(2018)103
https://arxiv.org/abs/1808.07492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.07492
https://doi.org/10.1103/PhysRevD.99.035015
https://arxiv.org/abs/1810.06597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.06597
https://doi.org/10.1007/JHEP01(2019)168
https://arxiv.org/abs/1811.04496
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.04496
https://doi.org/10.1103/PhysRevD.100.011701
https://arxiv.org/abs/1904.10432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.10432
https://doi.org/10.1103/PhysRevD.100.093003
https://arxiv.org/abs/1907.08357
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08357
https://arxiv.org/abs/2004.06726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06726

	Motivation
	bar(B) –> D**(*) l bar(nu) angular distribution
	Effective Hamiltonian and angular observables
	Observables
	Global fits

	Relations among angular coefficients
	Symmetries and dependencies
	Massless case with no pseudoscalar operator and no tensor operators
	Massless case with pseudoscalar operator but no tensor operators
	Massive case with pseudoscalar operator but no tensor operators
	Cases with tensor operators

	Expressions of the D* polarisation
	Massless case without pseudoscalar operator
	Massless case without imaginary contributions
	Massive case with pseudoscalar operator but without imaginary contributions
	Cases with pseudoscalar operator and imaginary contributions
	Binning
	Decision tree

	Impact of the presence of light right-handed neutrinos
	Experimental sensitivity
	Conclusions
	Explicit dependencies in the massive case
	Comparison of the binned expressions in benchmark NP scenarios

