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1 Introduction

The work of Seiberg and Witten [1, 2] on four-dimensional N = 2 SU(2) supersymmetric

gauge theories using holomorphy and electric-magnetic duality has revolutionized our un-

derstanding of non-perturbative dynamics in quantum field theory. After a quarter century

of hard work, the Seiberg-Witten solution has been generalized to a large class of N = 2

theories.

The Coulomb moduli space M, parameterized by a set of gauge-invariant order pa-

rameters u = {u1, · · · , ur}, is a complex manifold whose dimension is the rank r of the

gauge group. At a generic point inM, the gauge group is broken to a maximal torus U(1)r.

We can choose a duality frame with local special coordinates a = {a1, · · · , ar}, and the
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low energy effective theory is described in terms of r abelian vector multiplets. The per-

turbative corrections to the low energy effective prepotential F arise only at the one loop

order, while non-perturbative corrections are entirely from instantons. It is remarkable

that F can be solved exactly, and the solution is elegantly encoded in the Seiberg-Witten

geometry. At singular loci D = {Ds} in M extra massless particles appear.

Meanwhile, the achievement of Seiberg and Witten has also led to enormous advances

in the theory of four-manifolds. Following the earlier development of topological field

theory pioneered by Witten [3], the famous Donaldson invariants of four-manifolds [4] can

be interpreted physically as correlation functions in the topologically twisted N = 2 SU(2)

super-Yang-Mills theory. With the understanding of the low energy effective dynamics of

the theory, an alternative formulation of the Donaldson invariants was conjectured in terms

of the Seiberg-Witten invariants [5]. Subsequently, a physical derivation of the conjecture

was given in [6] and later extended and clarified in [7–20].

The path integral of the topologically twisted low energy effective theory on a curved

four-manifold X receives two different contributions, one from an integral over the Coulomb

branch (often called the u-plane integral), and the other from Seiberg-Witten invariants

associated to extra massless particles. Hence, the Donaldson-Witten partition function

ZDW, which is a generating function of the Donaldson invariants, takes the form

ZDW = Zu +
∑
s

ZSW,s, (1.1)

where Zu is the contribution from the u-plane, and ZSW,s is the Seiberg-Witten contribution

from the singular locus Ds. When b1(X) = 0 and b+2 (X) = 1, the expression of Zu is given

by

Zu = Ku

∫
[dadā]A(u)χB(u)σΨ [K] . (1.2)

The normalization factor Ku is chosen so that Zu is dimensionless. The measure factor

A(u)χB(u)σ is holomorphic in u, and encodes the couplings of the low energy effective

theory to topological invariants of the background gravitational field, where χ and σ are

the Euler characteristic and the signature of the four-manifold, respectively,

χ =
1

32π2

∫
trR ∧ R̃, σ =

1

24π2

∫
trR ∧R. (1.3)

The term Ψ [K] comes essentially from the evaluation of the photon partition function of

the low energy effective abelian gauge theory, and takes the form of a Siegel-Narain theta

function with kernel K depending on the inserted observables [19, 20].

It was found by Shapere and Tachikawa [21] that the functions A and B appearing

in the topologically twisted theory can be used to compute the central charges of the

physical N = 2 superconformal theory that corresponds to a superconformal point in the

Coulomb moduli space of an N = 2 supersymmetric gauge theory. By definition, the c

and a central charges are coefficients of the Weyl tensor and the Euler density associated

with the curvature of the background gravitational field in the conformal anomaly,〈
Tµµ
〉

=
c

16π2
(Weyl)2 − a

16π2
(Euler) , (1.4)
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where the Weyl tensor and the Euler density associated with the curvature of the back-

ground gravitational field are given by

(Weyl)2 = R2
µνρσ − 2R2

µν +
1

3
R2, (Euler) = R2

µνρσ − 4R2
µν +R2. (1.5)

We introduce a background SU(2)R gauge connection with field strength W a
µν . We can get

the anomaly for the U(1)R-current Rµ from the conformal anomaly using the superconfor-

mal algebra [22–24],

∂µRµ =
c− a

8π2
RµνρσR̃

µνρσ +
2a− c

8π2
W a
µνW̃

µν
a . (1.6)

We perform a topological twist by setting the SU(2)R gauge connection equal to the self-

dual part of the spin connection. Integrating the anomaly equation (1.6) over the four-

manifold, we obtain the U(1)R anomaly of the vacuum

∆R = 2 (2a− c)χ+ 3cσ. (1.7)

On the other hand, if there are r free vector multiplets and h free neutral hypermultiplets

in the low energy effective theory, we can also read the U(1)R anomaly from the low energy

effective action on the curved manifold. The U(1)R anomalies of a free vector multiplet

and a free hypermultiplet are 1
2 (χ+ σ) and 1

4σ, respectively. If the U(1)R-charges of A

and B are R(A) and R(B), respectively, then the U(1)R anomaly of the vacuum is also

given by

∆R = R(A)χ+R(B)σ +
r

2
(χ+ σ) +

h

4
σ. (1.8)

Combining (1.7) and (1.8), we obtain the central charges

a =
1

4
R(A) +

1

6
R(B) +

5

24
r +

1

24
h, c =

1

3
R(B) +

1

6
r +

1

12
h. (1.9)

Our interest in the u-plane integral also comes from the study of the non-trivial six-

dimensional N = (2, 0) superconformal theories, whose existence is one of the most striking

predictions of string theory [25–27]. We can realize the six-dimensional N = (2, 0) theory of

type AN−1 using a stack of N parallel M5-branes [28]. After compactifying on a Riemann

surface C with punctures, we can obtain a four-dimensionalN = 2 supersymmetric field the-

ory T 4d
N [C] [29–32]. Such theories are called the N = 2 theories of class S. In particular, for

N = 2 superconformal theories of class S, the space of coupling constants can be identified

with Teichmüller space, the universal covering space of the moduli space of complex struc-

tures of punctured Riemann surfaces. Moreover, the ultraviolet S-duality group is identified

with the group of large diffeomorphisms acting on C that leave its complex structure fixed.

The low energy effective theory of T 4d
N [C] on the Coulomb branch is governed by a

single smooth M5-brane wrapped on the Seiberg-Witten curve Σ ⊂ T ∗C [30], which is an

algebraic curve depending on the Coulomb branch order parameters u, the masses mf of

the hypermultiplets, as well as the cutoff Λ for asymptotically free theories or the ultraviolet

coupling τUV for superconformal theories. The low energy dynamics of a single M5-brane is

governed by a six-dimensional N = (2, 0) abelian tensor multiplet, which can be described

– 3 –
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using an action principle [33–40]. Now we put the six-dimensional N = (2, 0) abelian

theory T 6d on X × Σ. The R-symmetry group of T 6d is Spin(5)R, which has a subgroup

Spin(3)R×Spin(2)R ∼= SU(2)R×U(1)R. Let SU(2)′+ and U(1)′Σ be the diagonal subgroups

of SU(2)+×SU(2)R and U(1)Σ×U(1)R, respectively. We can apply the standard procedure

of topological twisting1 and replace the holonomy group SU(2)− × SU(2)+ of X and the

holonomy group U(1)Σ of Σ with SU(2)− × SU(2)′+ and U(1)′Σ, respectively. In order to

compute the partition function of T 6d on X × Σ, we can either first compactify T 6d on Σ

to obtain the low energy effective theory T 4d
IR [Σ] of the ultraviolet theory T 4d

N [C] on X with

Donaldson-Witten twist, or first compactify T 6d on X to get a two-dimensional N = (0, 2)

theory T 2d [X] on Σ with half-twist [41, 42]. Because of the topological nature of the setup,

the integrand of the u-plane integral of T 4d
IR [Σ] on X should coincide with a correlation

function in T 2d [X] on Σ. Therefore, we can deduce A and B using this correspondence by

changing the topology of X. The relation of four-manifold invariants with two-dimensional

N = (0, 2) has been discussed in [43–46]. In spite of this work, the full derivation of the

Coulomb branch integrals for topologically twisted class S theories remains to be completed.

We will leave a discussion of this interesting topic for another occasion.

Based on the requirements of holomorphy, the U(1)R R-symmetry, and the single-

valuedness of the integrand of Zu, the general forms of A and B were predicted to be [6,

7, 9, 21, 47]

A = α

(
det

dui
daj

) 1
2

, B = β∆
1
8 . (1.10)

Here ∆ is the physical discriminant, which is a holomorphic function with first order zeroes

at the locus {us} where extra particles becomes massless. For SU(2) gauge theories, we

normalize ∆ as

∆ =
∏
s

(u− us) . (1.11)

The physical discriminant can be different from the mathematical discriminant of the

Seiberg-Witten curve for two reasons [21]. First, the Seiberg-Witten curve is not unique

for a given N = 2 gauge theory [48–50]. Different forms give the same solution to the low

energy effective theory and the same BPS spectrum, but may give different mathematical

discriminants. Second, it is not guaranteed that all the cycles of the Seiberg-Witten curve

correspond to physical states, and if some zeroes of the mathematical discriminant do not

indicate the appearance of extra massless particles, we should not include them when we

compute ∆.

1We would like to emphasize that we use Lie groups rather than Lie algebras in the procedure of

topological twisting: this procedure requires the introduction of a bundle with connection associated with

the R-symmetry group, and together with an isomorphism of bundles such that relevant connections are

mapped to each other under the isomorphism. In the study of the Donaldson-Witten theory, the required

SU(2)R bundle might not exist, but the SO(3)R bundle associated to the adjoint representation always

exists. One can choose an isomorphism of this adjoint bundle with the bundle of self-dual two-forms. Then

one puts a connection on the adjoint SO(3)R bundle so that under this isomorphism we get the Levi-Civita

connection on the self-dual two-forms. In our case, however, one must choose a Spin(5)R bundle together

with a reduction of the structure group to Spin(3)R × Spin(2)R.
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The overall multiplicative factors α and β in (1.10) are constants on the Coulomb

branch that have not been determined yet. In principle, they can depend on the theory,

the masses of hypermultiplets, and also on the cutoff Λ for asymptotically free theories or

the ultraviolet coupling τUV for superconformal theories. For the SU(2) super-Yang-Mills

theory, we need to choose (Ku, α, β) so that the partition function (1.1) matches precisely

with known results of Donaldson invariants from the mathematical literature. The choice

made in [20] is that2

Ku = 2−
5
2 Λ−3, α = 2

1
8 e−

πi
8 π−

1
2 , β = 2

5
8 e−

πi
8 π−

1
2 . (1.13)

For other theories, there is no mathematical result to compare with. It was predicted in [9]

that the N -dependence of α and β in the SU(N) super-Yang-Mills theory should be

α(N) = eκ
(α)
1 N+κ

(α)
2 N2

, β(N) = eκ
(β)
1 N+κ

(β)
2 N2

, (1.14)

where κ
(α,β)
1 and κ

(α,β)
2 are N -independent constants that can depend on Λ. It was also

argued in [14] that α and β are independent of masses for asymptotically free theories.

Up to now, almost nothing has been known about α and β for superconformal theories.

It is certainly interesting to figure out how α and β depend on the parameters of the

theory, especially on the conformal manifold for superconformal theories. It was proposed

by Labastida and Lozano [12] that for the SU(2) N = 2∗ theory3

Kuα
χβσ = −4i

π
2

3
8
χ+ 21

16
σµ2χ+3ση (τUV)−3χ− 3

2
σm

1
8
σ, (1.17)

so that the Donaldson-Witten partition function ZDW in the massless limit coincides with

the Vafa-Witten partition function [51] on K3 manifolds. The function µ was not deter-

mined since 2χ + 3σ = 0 for K3 manifolds. Clearly, at least one of Ku, α and β must

depend nontrivially on τUV. We expect that for general superconformal theories of class

S, α and β are automorphic forms on the Teichmüller space.

Given the importance of A and B, it is definitely beneficial to cross-check the pre-

diction (1.10) using other approaches. In this paper, we shall specify the gravitational

background to be the Ω-background of R4 ∼= C2 and apply the powerful instanton counting

2We have rescaled here the Λ and a of [20] to compare their α and β to ours,

ΛKMMN =
√

2Λ, aKMMN =
a√
2
, (1.12)

while uKMMN = u.
3In order to compare the α and β of [12] to ours, we need to rescale the m, u and a of [12] by

mLL =
√

2m, uLL = 2u, aLL = 2a. (1.15)

We should also notice that the discriminant used in [12] is the mathematical discriminant of the Seiberg-

Witten curve, which is related to the physical discriminant ∆ used in this paper by

∆LL = 8η (τUV)12 ∆. (1.16)
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techniques [52] to compute A and B. Our strategy is to expand the exact partition function

Z in the Ω-background around the flat space limit ε1, ε2 → 0,

ε1ε2 logZ = −F + (ε1 + ε2)H+ ε1ε2 logA+
ε2

1 + ε2
2

3
logB + · · · , (1.18)

where ε1 and ε2 are two deformation parameters of the Ω-background, and · · · includes

higher order terms in ε1, ε2 that are irrelevant to our problem. The leading term coincides

with the low energy effective prepotential F [52]. This gives us an opportunity to derive

rigorously the Seiberg-Witten geometry for a large class of N = 2 theories. In fact, by the

saddle point analysis, the partition function Z in the limit ε1, ε2 → 0 is dominated by a

particular instanton configuration determined by the limit shape equations, whose solution

leads to the Seiberg-Witten curve [53–57]. A priori, we cannot rule out the next-to-leading

order term H, but it vanishes in every example we will be dealing with. The identification

of the next two terms follows from the equivariant Euler characteristic and the equivariant

signature of C2 [58],

χ
(
C2
)

= ε1ε2, σ
(
C2
)

=
ε2

1 + ε2
2

3
. (1.19)

Hence from the partition function Z we can directly compute A and B, and determine

α and β from first principles.4 Similar expansions were performed in [60, 61], leading to

a modular anomaly equation. However, they simply disregarded the a-independent terms

and the important U(1) factors in their analysis. These terms can be ignored when we are

only interested in the dynamics of the theory, but they are crucial to our problem.

There is an important subtlety regarding the normalization involved in our analysis.

Since the partition function Z is naturally normalized to have vanishing mass dimension,

we see that the mass dimensions of A and B are zero. On the other hand, in the standard

normalization of the u-plane integral, A and B have nonzero mass dimensions. In order

to resolve this problem, we notice that we only consider the situation b1(X) = 0 and

b+2 (X) = 1. Therefore, we have χ+ σ = 4, and there is a normalization ambiguity [17]

(Ku, α, β) ∼
(
κ−4Ku, κα, κβ

)
. (1.20)

We can use this ambiguity to relate the results computed from Z with those appearing in

Zu. Notice that the ratio β/α is unambiguous.

To illustrate our method, we shall mainly focus on the simple examples of SU(2) gauge

theories. We can write down the partition function Z explicitly up to an arbitrary order of

the instanton number. We then compare our results with those computed using the Seiberg-

Witten curve. In this way, we successfully confirm the prediction (1.10), and obtain the

overall factors α and β. We also confirm (1.10) and (1.14) for the SU(N) super-Yang-Mills

theory.

The rest of the paper is organized as follows. In section 2 we summarize the useful

results of the partition function of the four-dimensional N = 2 supersymmetric gauge

4In fact, the information of A and B can be extracted from Z using two linearly independent limits for

the ε1 and ε2. For example, we can use the topological string limit ε+ → 0 and the Nekrasov-Shatashvili

limit ε2 → 0 [59].

– 6 –
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theory in the Ω-background. In section 3 we consider the SU(2) super-Yang-Mills theory.

In section 4 we deal with the SU(2) theory with an adjoint hypermultiplet. In section 5

we study the SU(2) gauge theory with four fundamental hypermultiplets. In section 6 we

analyze A and B in the SU(N) super-Yang-Mills theory. We conclude in section 7 with a

discussion of some subtleties of our results as well as an outlook of future directions. In

appendix A we discuss the definition and the expansion of the special function γε1,ε2 (x; Λ).

In appendix B we review how to compute the period integrals on an elliptic curve. In

appendix C we collect a few essential aspects of the theory of modular forms and Jacobi

theta functions. In appendix D we review Weierstrass’s elliptic function.

2 Partition function in the Ω-background

Let us consider the four-dimensional N = 2 supersymmetric gauge theory with gauge group

G = SU(N) and massive hypermultiplets5 in a representation R of G. We can decompose

R into irreducible representations of G,

R =
⊕
f

Rf . (2.1)

We require the beta function of the gauge coupling constant g to be non-positive so that

we can have a well-defined microscopic theory,

Λ
∂g

∂Λ
= − g3

16π2
(2N − 2T (R)) ≤ 0, (2.2)

where Λ is the cutoff scale, and T (R) is the quadratic Casimir of the representation R

satisfying T (R1 ⊕R2) = T (R1) + T (R2). In this paper, we are mainly interested in the

adjoint and fundamental representations,

T (adj) = N, T (fund) =
1

2
. (2.3)

For asymptotically free theories, we define the instanton counting parameter q to be

q = Λ2N−2T (R). (2.4)

For superconformal theories we have the ultraviolet complexified coupling

τUV =
ϑUV

2π
+

4πi

g2
UV

, (2.5)

where ϑUV and gUV are the ultraviolet theta angle and gauge coupling constant, respec-

tively, and we define

q = e2πiτUV . (2.6)

We choose the vacuum expectation value of the scalar field φ in the vector multiplet to be

the local special coordinates a on the Coulomb branch,

a = 〈φ〉 = diag (a1, · · · , aN ) . (2.7)

5In this paper, we always consider full hypermultiplets. See [57, 62, 63] for work on half-hypermultiplets

in the Ω-background.
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It is useful to introduce the Ω-deformation of the theory [52, 64], so that the Poincaré

symmetry of R4 ∼= C2 is broken in a rotationally covariant way, while still preserving a

particular linear combination of supercharges

Q = Q̄+ ΩµQµ. (2.8)

Here Q̄ and Qµ are the scalar and vector supercharges in the topologically twisted N = 2

theories [3], and Ωµ∂µ is the Killing vector generating the U(1)2 isometry of C2,

Ωµ∂µ = iε1

(
z1

∂

∂z1
− z̄1

∂

∂z̄1

)
+ iε2

(
z2

∂

∂z2
− z̄2

∂

∂z̄2

)
. (2.9)

The supersymmetric action in the Ω-background can be constructed from the flat space

action by replacing φ by an operator [65]

φ 7→ φ+ ΩµDµ. (2.10)

We also define

ε± =
ε1 ± ε2

2
. (2.11)

Clearly, the Ω-background is closely related to the topological twist, since Q will become

the usual scalar supercharge Q̄ used in the topologically twisted theory when we take the

limit ε1, ε2 → 0.

Using the powerful localization techniques, the partition function Z in the Ω-

background can be calculated exactly and is given by a product of the classical, one-loop

and instanton contributions [52],

Z = ZclZ1−loopZ inst. (2.12)

It is convenient to start with the gauge group U(N). The classical contribution is given by

Zcl (a, q; ε1, ε2) = q
− 1

2ε1ε2

∑N
i=1 a

2
i . (2.13)

The one-loop contributions of the vector multiplet and the hypermultiplet in the funda-

mental or adjoint representation are given by

Z1−loop,vec =
∏
i<j

exp [−γε1,ε2 (ai − aj ; Λ)− γε1,ε2 (ai − aj − 2ε+; Λ)] , (2.14)

Z1−loop,fund =
N∏
i=1

exp [γε1,ε2 (ai +m− ε+; Λ)] , (2.15)

Z1−loop,adj =

N∏
i,j=1

exp [γε1,ε2 (ai − aj +m− ε+; Λ)] , (2.16)

where the definition and basic properties of the special function γε1,ε2 (x; Λ) are given

in appendix A. For asymptotically free theories, it is convenient to absorb the classical

contribution into the one-loop contribution by redefining Λ. Notice that we do not include

– 8 –
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the contributions from i = j for the vector multiplet but we should include them for the

adjoint hypermultiplet.

The instanton partition function is given by

Z inst =

∞∑
k=0

qk
∫
Mk

e (Ematter →Mk) , (2.17)

where Mk is the moduli space of framed noncommutative U(N) instantons on C2 with

instanton charge k,6 and e (Ematter →Mk) is the equivariant Euler class of the matter

bundle whose fiber is the space of the virtual zero modes for the Dirac operator associated

with the hypermultiplet in the instanton background. Z inst can be evaluated using the

equivariant localization formula. The fixed points in M = ∪kMk are labeled by N -tuple of

Young diagrams ~Y =
{
Y (1), · · ·Y (N)

}
, and the equivariant Euler class at fixed points can

be computed from the equivariant Chern characters. Then Z inst is reduced to a statistical

sum over Young diagrams,

Z inst =
∑
~Y

q|~Y |zvec

(
a, ~Y

)∏
f

z
Rf
hyper

(
a,mf , ~Y

)
, (2.18)

where
∣∣∣~Y ∣∣∣ is the total number of boxes in N Young diagrams. We introduce the conversion

operator ε which maps characters into weights,

ε

{∑
i

nie
xi

}
=
∏
i

xnii , (2.19)

and the dual operator ∨, (∑
i

nie
xi

)∨
=

(∑
i

nie
−xi

)
. (2.20)

The contributions from the vector multiplet and the hypermultiplet in the fundamental or

adjoint representation can be written compactly as [52, 56, 66]

zvec

(
a, ~Y

)
= ε

{
−NK∨~Y − e

2ε+K~YN
∨ + PK~YK

∨
~Y

}
, (2.21)

zfund
hyper

(
a,m, ~Y

)
= ε

{
em+ε+K~Y

}
, (2.22)

zadj
hyper

(
a,m, ~Y

)
= ε

{
em−ε+

(
NK∨~Y + e2ε+K~YN

∨ − PK~YK
∨
~Y

)}
, (2.23)

where

N =

N∑
i=1

eai , (2.24)

K~Y =
N∑
i=1

∑
(x,y)∈Y (i)

eai+ε1(x−1)+ε2(y−1), (2.25)

P = (1− eε1) (1− eε2) . (2.26)

6Here the noncommutative deformation is introduced to resolve the singularities of the moduli space

due to point-like instantons.
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This expression of Z inst can reproduce the standard expression in terms of arm and leg

lengths using combinatorial formulas [67, 68].

It is worth emphasizing that the masses mf appearing in (2.15), (2.16), (2.22), (2.23)

differ from the masses m′f in the original paper [52, 53] by a constant shift of ε+ [69–71],

mf = m′f + ε+. (2.27)

This shift is due to the fact that the scalars in a hypermultiplet become spinors in the

Donaldson-Witten twist, and the Dirac complex is the Dolbeault complex twisted by the

square-root of the canonical bundle of the four-manifold. This shift can often be ignored

in many applications of the Ω-background, since it will not modify the dynamics of the

theory on flat space where ε+ = 0. However, the functions A and B are defined in the

Donaldson-Witten twist, and it is necessary to use mf as the mass parameters.

When we move from the gauge group U(N) to SU(N), we have to modify carefully the

partition function in the Ω-background. First of all, we need to set

N∑
i=1

ai = 0. (2.28)

In particular, for G = SU(2), we take

〈φ〉 =

(
a 0

0 −a

)
. (2.29)

Second, while the tensor product fund⊗ fund of the fundamental and the anti-fundamental

representations gives the adjoint representation for the group U(N), we have to subtract

the trivial representation to get the adjoint representation for the group SU(N). Therefore,

the one-loop contribution of the SU(N) adjoint hypermultiplet is given by (2.16) divided

by exp [γε1,ε2 (m− ε+; Λ)]. Finally, we need to factor out the residual contribution of the

U(1) ⊂ U(N) gauge field from the instanton partition function,

Z inst
U(N) = Z inst

SU(N)Z
inst
extra. (2.30)

The explicit expression of Z inst
extra was first proposed in [72], and later derived from the non-

perturbative Dyson-Schwinger equations [66, 73, 74]. For the SU(2) gauge theory with one

adjoint hypermultiplet of mass m, we have

Z inst
extra =

[ ∞∏
n=1

(1− qn)

]− 2
ε1ε2

(m+ε−)(m−ε−)

, (2.31)

and for the SU(2) gauge theory with four fundamental hypermultiplets of masses

m1,m2,m3,m4, we have7

Z inst
extra = (1− q)

2
ε1ε2

(
m1+m2

2
+ε+

)(
m3+m4

2
+ε+

)
. (2.32)

7We consider here four fundamental hypermultiplets rather than two fundamental and two anti-

fundamental hypermultiplets as in [72]. The factor Z inst
extra breaks the Spin(8) symmetry of the masses.

However, the breaking only affects the low energy effective prepotential F in the expansion (1.18), and

leads to a constant shift in F .

– 10 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
0

In the following three sections, we will focus on SU(2) gauge theories. For this gauge

group, we can also take the advantage of the equivalence SU(2) ∼= Sp(1) and directly per-

form the computation using the Sp(1) gauge theory [54, 75–77]. It is known that the Sp(1)

instanton moduli space looks rather different from the SU(2) instanton moduli space [78].

Nevertheless, it was shown in [62] that these two partition functions agree, possibly up to

an a-independent factor and after a nontrivial mapping of parameters. Therefore, if (1.10)

can be demonstrated using the SU(2) partition function, it automatically holds if we use the

Sp(1) partition function. We should also not worry about the a-independent factor, since α

and β depend on the precise microscopic definition of the theory. The choice made in this

paper is a natural choice of ultraviolet regularizations, and it turns out to be consistent

with all the previous results.

3 The SU(2) super-Yang-Mills theory

The simplest but most important example is the SU(2) super-Yang-Mills theory.

3.1 Expansion of the partition function

The partition function of the theory in the Ω-background is given in section 2 with

Z inst
extra = 1.

It is straightforward to compute the expansion (1.18). The leading term gives the low

energy effective prepotential F ,

F = −4a2

(
log

(
2a

Λ

)
− 3

2

)
+

Λ4

2a2
+

5Λ8

64a6
+

3Λ12

64a10
+

1469Λ16

32768a14
+O

(
Λ20

a18

)
, (3.1)

from which we can compute the Coulomb moduli order parameter u [79, 80],

u =
1

2

〈
Trφ2

〉
=

1

4
Λ
∂F
∂Λ

= a2 +
Λ4

2a2
+

5Λ8

32a6
+

9Λ12

64a10
+

1469Λ16

8192a14
+O

(
Λ20

a18

)
. (3.2)

The next-to-leading order term H = 0. In fact, the perturbative contribution vanishes

because of the expansion (A.6) of the function γε1,ε2 (x; Λ), and the instanton contribution

also vanishes since Z inst is invariant under (ε1, ε2)→ (−ε1,−ε2). The second order terms

in the expansion (1.18) are

logA =
1

2
log

(
2a

Λ

)
− Λ4

4a4
− 19Λ8

64a8
− 47Λ12

96a12
− 15151Λ16

16384a16
+O

(
Λ20

a20

)
, (3.3)

logB =
1

2
log

(
2a

Λ

)
− 3Λ4

8a4
− 63Λ8

128a8
− 55Λ12

64a12
− 55335Λ16

32768a16
+O

(
Λ20

a20

)
. (3.4)

3.2 Comparison to the prediction

In order to compare our results computed from the partition function in the Ω-background

to the prediction (1.10), we consider the Seiberg-Witten curve

y2 =
(
x2 − u

)2 − 4Λ4, (3.5)
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with the Seiberg-Witten differential λ determined by

∂λ

∂u
=

1

2πi

dx

y
. (3.6)

Using the result of the period integral (B.6), we have

da

du
=

1

2πi

∮
A

dx

y

=
(√

u− 2Λ2 +
√
u+ 2Λ2

)−1

2F1

1

2
,

1

2
, 1,

(√
u− 2Λ2 −

√
u+ 2Λ2

√
u− 2Λ2 +

√
u+ 2Λ2

)2


=
1

2
√
u

+
3Λ4

8u5/2
+

105Λ8

128u9/2
+

1155Λ12

512u13/2
+

225225Λ16

32768u17/2
+O

(
Λ20

u21/2

)
. (3.7)

Using techniques from the theory of elliptic curves, one can express the observable da/du

as a function of the complex structure τ of the curve (3.5) in closed form,8

Λ
da

du
=

1

4
θ2(τ)2, (3.8)

where θ2 is one of the Jacobi theta functions defined in (C.10).

Integrating with respect to u, we get

a(u) =
√
u− Λ4

4u3/2
− 15Λ8

64u7/2
− 105Λ12

256u11/2
− 15015Λ16

16384u15/2
+O

(
Λ20

u19/2

)
, (3.9)

and its inverse function is

u(a) = a2 +
Λ4

2a2
+

5Λ8

32a6
+

9Λ12

64a10
+

1469Λ16

8192a14
+O

(
Λ20

a18

)
. (3.10)

As a function of τ , u reads
u(τ)

Λ2
= 4

θ3(τ)4

θ2(τ)4
− 2. (3.11)

Returning to the results for the instanton partition function in the Ω-background,

we recognize that the expansion in (3.10) matches with the result (3.2). From (3.7), we

determine

log

(
du

da

)
= log(2a)− Λ4

2a4
− 19Λ8

32a8
− 47Λ12

48a12
− 15151Λ16

8192a16
+O

(
Λ20

a20

)
. (3.12)

On the other hand, the singularities of the Coulomb branch are at u = ±2Λ2 where we have

extra massless BPS states. Therefore the physical discriminant is given by ∆ = u2 − 4Λ4,

whose logarithm is given by

log ∆ = 4 log(a)− 3Λ4

a4
− 63Λ8

16a8
− 55Λ12

8a12
− 55335Λ16

4096a16
+O

(
Λ20

a20

)
. (3.13)

8This equation and (3.11) appear different from those in [20] due to the different normalizations of a, Λ

and τ .
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By comparing (3.12) and (3.13) with A and B given in (3.3) and (3.4), respectively,

we find

A = Λ−
1
2

(
du

da

) 1
2

, B =
√

2Λ−
1
2 ∆

1
8 , (3.14)

which reproduce (1.10). We also match the unambiguous ratio with (1.13),

β

α
=
√

2 =
2

5
8 e−

πi
8 π−

1
2

2
1
8 e−

πi
8 π−

1
2

. (3.15)

Finally, we note that we can express τ = 1
4πi

∂2F
∂a2

as an expansion in Λ/a using (3.1). Sub-

stitution of this expansion in (3.8) and (3.11) reproduces the expansions in (3.7) and (3.11).

4 The SU(2) N = 2∗ theory

The simplest N = 2 superconformal theory is the N = 4 super-Yang-Mills theory, which is

the N = 2 gauge theory with one adjoint hypermultiplet. We turn on the N = 2 invariant

bare mass term and the resulting theory is often called the N = 2∗ theory. In this section,

we take the gauge group G = SU(2), and denote the mass by m. In the class S construction,

this theory arises by compactifying the six-dimensional (2, 0) theory of type A1 on a torus

with one puncture.

4.1 Expansion of the partition function

We can compute the expansion (1.18) of the partition function in the Ω-background. The

leading term is the low energy effective prepotential F . Up toO
(
q5
)
, it is given explicitly by

F = a2 log q +m2

(
log

2a

Λ
+

1

2
log

m

Λ
− 3

4

)
+
m4

a2

(
− 1

48
+

1

2
q +

3

2
q2 + 2q3 +

7

2
q4 +O

(
q5
))

+
m6

a4

(
− 1

960
− 3

4
q2 − 4q3 − 45

4
q4 +O

(
q5
))

+
m8

a6

(
− 1

10752
+

5

64
q2 +

5

2
q3 +

1095

64
q4 +O

(
q5
))

+O
(
m10

a8

)
, (4.1)

where we organize F as a series in inverse powers of a2. Because of the S-duality of the

ultraviolet theory, we expect that the q-series in each parentheses is the first few terms of

a quasi-modular form, which can be written in terms of the Eisenstein series E2, E4 and

E6. Indeed, we can complete the q-series to get

F = a2 log q +m2

(
log

2a

Λ
+

1

2
log

m

Λ
− 3

4

)
− m4E2

48a2

−
m6
(
5E2

2 + E4

)
5760a4

−
m8
(
175E3

2 + 84E2E4 + 11E6

)
2903040a6

+O
(
m10

a8

)
. (4.2)
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The appearance of the quasi-modular form E2 is unavoidable in order for F to transform

properly under S-duality [81]. The Λ dependent part of F is

F ∼ −3

2
m2 log Λ. (4.3)

If we weakly gauge the U(1) flavor symmetry, then m can be viewed as the vacuum expec-

tation value of the corresponding vector multiplet. The hypermultiplet transforms in the

adjoint representation of the gauge group SU(2). From the N = 2 preserving superpotential

W =
√

2TrQ̃ΦQ+mTrQ̃Q, (4.4)

we know that the hypermultiplet has charge ±1 under this U(1). We can get the coefficient

of the one-loop beta function for the U(1) coupling constant from

Λ
∂3F

∂Λ∂m2
= −3, (4.5)

where the sign is opposite to that of an asymptotically free theory, and 3 is the dimension

of the adjoint representation of SU(2).

Using the derivatives of the Eisenstein series (C.5), we obtain the Coulomb branch

order parameter

u =
1

2

〈
Trφ2

〉
= q

∂F
∂q

= a2 +
m4
(
−E2

2 + E4

)
576a2

+
m6
(
−5E3

2 + 3E2E4 + 2E6

)
34560a4

+
m8
(
−35E4

2 + 7E2
2E4 + 10E2

4 + 18E2E6

)
2322432a6

+O
(
m10

a8

)
, (4.6)

which is independent of Λ.

We then go beyond the leading order in the expansion (1.18). It is interesting that we

still have H = 0 in the presence of the adjoint hypermultiplet. At the second order, we

have two terms which are our main interest,

logA =
1

2
log

2a

Λ
+
m4

a4

(
−1

4
q− 3

2
q2 − 3q3 − 7q4 +O

(
q5
))

+
m6

a6

(
3

2
q2 + 12q3 + 45q4 +O

(
q5
))

+
m8

a8

(
−19

64
q2 − 12q3 − 3405

32
q4 +O

(
q5
))

+O
(
m10

a10

)
, (4.7)

and

logB =
3

4
log

2a

Λ
+

1

8
log

m

Λ
+
m2

a2

(
− 1

32
+

3

4
q +

9

4
q2 + 3q3 +

21

4
q4 +O

(
q5
))

+
m4

a4

(
− 1

256
− 3

8
q− 81

16
q2 − 39

2
q3 − 843

16
q4 +O

(
q5
))

+
m6

a6

(
− 1

1536
+

195

64
q2 +

75

2
q3 +

12465

64
q4 +O

(
q5
))

+
m8

a8

(
− 1

8192
− 63

128
q2 − 441

16
q3 − 83097

256
q4 +O

(
q5
))

+O
(
m10

a10

)
. (4.8)
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Similar to the treatment of F , we complete each q-series into a quasi-modular form,

logA =
1

2
log

2a

Λ
+
m4
(
E2

2 − E4

)
1152a4

+
m6
(
5E3

2 − 3E2E4 − 2E6

)
34560a6

+
m8
(
203E4

2 − 28E2
2E4 − 67E2

4 − 108E2E6

)
9289728a8

+O
(
m10

a10

)
, (4.9)

logB =
3

4
log

2a

Λ
+

1

8
log

m

Λ
− m2E2

32a2
−
m4
(
E2

2 + E4

)
512a4

−
m6
(
25E3

2 + 48E2E4 + 17E6

)
138240a6

−
m8
(
1225E4

2 + 3332E2
2E4 + 1055E2

4 + 1948E2E6

)
61931520a8

+O
(
m10

a10

)
. (4.10)

We can get the pure N = 2 super-Yang-Mills theory from the N = 2∗ theory by taking

a certain decoupling limit. This limit is not manifest in (4.2) since it is written in the limit

m/a→ 0. The expression of F in the limit m/a→∞ is given by

F = m2

(
3

2
log
(m

Λ

)
− 9

4

)
+ a2 log

qm4

Λ4
− 4a2

(
log

(
2a

Λ

)
− 3

2

)
+q

m4

2a2
+ q2

(
5m8

64a6
− 3m6

4a4
+

3m4

2a2

)
+O

(
q3,

a

m

)
. (4.11)

Therefore, if we take the limit

m→∞, q→ 0, qm4 = Λ4, (4.12)

the effective prepotential (4.11) becomes (3.1) up to a constant,

FN=2∗ → FSYM +m2

(
3

2
log
(m

Λ

)
− 9

4

)
, (4.13)

and the relation between the order parameters uN=2∗ and uSYM is given by

uN=2∗ → uSYM −
3m2

8
. (4.14)

Similarly, we can consider the limit (4.12) for logA and logB,

logA =
1

2
log

(
2a

Λ

)
− q

m4

4a4
− q2

(
19m8

64a8
− 3m6

2a6
+

3m4

2a4

)
+O

(
q3,

a

m

)
→ 1

2
log

(
2a

Λ

)
− Λ4

4a4
− 19Λ8

64a8
+O

(
Λ12

a12

)
, (4.15)

logB =
1

2
log

(
2a

Λ

)
+

3

8
log
(m

Λ

)
− q

(
3m4

8a4
− 3m2

4a2

)
−q2

(
63m8

128a8
− 195m6

64a6
+

81m4

16a4
− 9m2

4a2

)
+O

(
q3,

a

m

)
→ 1

2
log

(
2a

Λ

)
+

3

8
log
(m

Λ

)
− 3Λ4

8a4
− 63Λ8

128a8
+O

(
Λ12

a12

)
. (4.16)

Hence we have

AN=2∗ → ASYM, BN=2∗ →
(m

Λ

) 3
8
BSYM. (4.17)
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4.2 Comparison to the prediction

In order to compare our results with the prediction (1.10), we take the Seiberg-Witten

curve and the Seiberg-Witten differential to be [30–32]

t2 = ũ− νm2℘ (z; τUV) , λ = tdz, (4.18)

where the parameter ũ in the curve is the same as u up to an additive constant,

ũ = u+m2h (τUV) , (4.19)

and ℘ (z; τUV) is Weierstrass’s elliptic function (see appendix D for its basic properties). We

see from the curve (4.18) that ũ is modular under the ultraviolet S-duality transformation.

The adjustable numerical constant ν depends on the normalization and will be fixed later.

In fact, (4.18) is a special example of the Seiberg-Witten geometry constructed using the

elliptic Calogero-Moser integrable system [82, 83].

We can extract a (ũ) in the usual way from the period integral,

a (ũ) =
1

π

∮
A

√
ũ− νm2℘ (z; τUV)dz

=
√
ũ

(
1− νm2

2ũ
P1 −

ν2m4

8ũ2
P2 −

ν3m6

16ũ3
P3 −

5ν4m8

128ũ4
P4 +O

(
m10

ũ5

))
, (4.20)

where we define

Pn =
1

π

∮
A
℘n (z; τUV) dz, (4.21)

whose explicit expressions are given in appendix D. We can solve ũ in terms of a by

inverting (4.20),

ũ = a2 + νm2P1 −
ν2m4

(
P2

1 − P2

)
4a2

+
ν3m6

(
2P3

1 − 3P1P2 + P3

)
8a4

−
5ν4m8

(
4P4

1 − 8P2
1P2 + P2

2 + 4P1P3 − P4

)
64a6

+O
(
m10

a8

)
= a2 − νm2E2

3
+
ν2m4

(
−E2

2 + E4

)
36a2

+
ν3m6

(
−5E3

2 + 3E2E4 + 2E6

)
540a4

+
ν4m8

(
−35E4

2 + 7E2
2E4 + 10E2

4 + 18E2E6

)
9072a6

+O
(
m10

a8

)
, (4.22)

which matches (4.6) if we choose

ũ = u− m2E2

12
, ν =

1

4
. (4.23)

In fact, one can give a closed form expression for ũ as function of τ and τUV [71],

ũ(τ, τUV) = −m
2

4

e1(τUV)2(e2(τ)− e3(τ)) + cyclic

e1(τUV)(e2(τ)− e3(τ)) + cyclic
, (4.24)

where the ej are defined in (D.5). Note ũ is a modular form of weight 0 in τ and weight 2

in τUV.
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Using (4.22), we can compute

log

(
du

da

)
= log

(
dũ

da

)
= log 2a+

m4
(
E2

2 − E4

)
576a4

+
m6
(
5E3

2 − 3E2E4 − 2E6

)
17280a6

+
m8
(
203E4

2 − 28E2
2E4 − 67E2

4 − 108E2E6

)
4644864a8

+O
(
m10

a10

)
. (4.25)

From the relation (4.14), we know that in the limit (4.12),(
du

da

)
N=2∗

→
(
du

da

)
SYM

. (4.26)

As function of τ and τUV, da/du can be expressed as

da

du
=

1

4mη(τUV)6

(
θ4(τ)4 θ3(τUV)4 − θ3(τ)4 θ4(τUV)4

) 1
2 , (4.27)

where η is the Dedekind eta function given in (C.6).

There are three singularities on the Coulomb branch where we have extra massless

particles. From (4.18) we know that the singularities are at points

ũ =
m2

4
ei, i = 1, 2, 3, (4.28)

where ei are defined in (D.3). Therefore, the physical discriminant ∆ is given by

∆ =

3∏
i=1

(
ũ− m2

4
ei

)
= ũ3 − m2

4
(e1 + e2 + e3) ũ2 +

m4

16
(e1e2 + e1e3 + e2e3) ũ− m6

64
e1e2e3

= ũ3 − m4E4

48
ũ− m6E6

864
, (4.29)

which using (4.24) can be written as

∆ = (2m)6 η(τUV)24 η(τ)12

(θ4(τ)4θ3(τUV)4 − θ3(τ)4θ4(τUV)4)3 . (4.30)

Substituting (4.22) into (4.29), we obtain

log ∆ = 6 log a− m2E2

4a2
−
m4
(
E2

2 + E4

)
64a4

−
m6
(
25E3

2 + 48E2E4 + 17E6

)
17280a6

−
m8
(
1225E4

2 + 3332E2
2E4 + 1055E2

4 + 1948E2E6

)
7741440a8

+O
(
m10

a10

)
. (4.31)

In the decoupling limit (4.12),

∆N=2∗ →
(
u− m2

4

)(
u− 2Λ2

) (
u+ 2Λ2

)
→ −m

2

4
∆SYM. (4.32)
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Comparing (4.25), (4.31) with (4.9), (4.10), we find that

A = Λ−
1
2

(
du

da

) 1
2

, B = 2
3
4m

1
8 Λ−

7
8 ∆

1
8 . (4.33)

We can get the unambiguous ratio

β

α
= 2

3
4m

1
8 Λ−

3
8 . (4.34)

Similar to the Λ dependence of the prepotential (4.3), the strange Λ dependence of β/α can

be understood as a remnant of gravitational couplings of the weakly gauged U(1) flavor

symmetry. In fact, we can see from (A.6) that the remnant contribution of the adjoint

hypermultiplet to αχβσ is Λ−
3
8 , which precisely gives the Λ dependence in β/α.

On the other hand, from (1.17) we have

β

α
= 2

15
16µη (τUV)

3
2 m

1
8 . (4.35)

Combining (4.34) and (4.35), we get

µ = 2−
3
16 Λ−

3
8 η (τUV)−

3
2 . (4.36)

Therefore,

Kuα
χβσ = −4i

π
2

3
4
σΛ−

3
4
χ− 9

8
ση (τUV)−6χ−6σm

1
8
σ. (4.37)

Finally, we can express τ = 1
4πi

∂2F
∂a2

as a series in a using (4.1). Substitution of this series

in the closed expressions (4.24), (4.27) and (4.32) matches with the expansions (4.22), (4.25)

and (4.31).

4.3 Mass parameter

As stressed in section 2, we need to be very careful about the masses (2.27). We would

like to show explicitly in this theory that we need the mass m rather than m′ to get the

sensible result from the point of view of the u-plane integral.

It is interesting to notice that the instanton partition function Z inst is a-independent

if we take either the limit m → 0 or m′ → 0. In fact, this is what we expect, since in the

massless limit we recover the N = 4 super-Yang-Mills theory, and there is no instanton

corrections when we study the dynamics of the theory.

However, if we identify m′ rather than m as the mass of the hypermultiplet, we can

again naively compute the expansion (1.18). The leading term will not change, and is still

given by the prepotential. The next-to-leading order term H no longer vanishes,

H = −m′ log
2a

Λ
− 1

2
m′ log

m′

Λ
+
m′

2

+
m′3

a2

(
1

24
− q− 3q2 − 4q3 +O

(
q4
))

+O
(
m′5

a4

)
. (4.38)
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Moreover, we have

logA = −1

8
log

(
m′2

Λ2

)
+
m′2

a2

(
1

16
− 3

2
q− 9

2
q2 − 6q3 +O

(
q4
))

+
m′4

a4

(
1

128
− 1

4
q +

33

8
q2 + 27q3 +O

(
q4
))

+O
(
m′6

a6

)
, (4.39)

and

logB = −1

8
log

(
m′2

Λ2

)
+
m′2

a2

(
1

16
− 3

2
q− 9

2
q2 − 6q3 +O

(
q4
))

+
m′2

a4

(
1

128
− 3

8
q +

27

8
q2 +

51

2
q3 +O

(
q4
))

+O
(
m′6

a6

)
. (4.40)

Clearly, A and B will violate the general forms (1.10).

On the other hand, we can compute the U(N) partition function of the N = 2∗ theory

with the limit m′ → 0 on a compact manifold, and the partition function is known to be the

generating function of the Euler characteristic of the moduli space of unframed semi-stable

equivariant torsion-free sheaves [51]. An explicit example of the U(2) partition function on

CP2 was given in [84, 85], and the result was given in terms of mock modular forms.

For K3 manifolds we have 2χ+ 3σ = 0. If we express χ and σ of the Ω-background of

C2 in terms of ε1 and ε2 using (1.19), we get

0 = 2χ+ 3σ = 2 (ε1ε2) + 3

(
ε2

1 + ε2
2

3

)
= (2ε+)2 . (4.41)

Hence, m′ = m and we no longer need to distinguish between the Donaldson-Witten twist

and the Vafa-Witten twist. This is the reason why (1.17) can make sense.

5 The SU(2) theory with fundamental hypermultiplets

Now we consider the SU(2) gauge theory with Nf ≤ 4 fundamental hypermultiplets. We

will mainly focus on the Nf = 4 case which is superconformal, and we turn on mass

deformations with four masses m1,m2,m3,m4. In the class S construction [31, 32], the

SU(2) gauge theory with four fundamental hypermultiplets arises by compactifying the

six-dimensional (2, 0) theory of type A1 on a sphere with four punctures. There are three

cusps in the moduli space where we have weakly coupled descriptions of the theory. For

each cusp we can define a cross ratio of the four punctures. This cross ratio is identified

with the instanton counting parameter q = e2πiτUV for that weak-coupling description.

5.1 Expansion of the partition function

Similar to the previous cases, we can compute the expansion (1.18). Here we introduce the

shorthand notation J K to indicate the sum of all terms that make m1,m2,m3,m4 totally

symmetric. For example,

q
m2

1

y
=

4∑
i=1

m2
i ,

q
m2

1m
2
2

y
=
∑
i<j

m2
im

2
j . (5.1)
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We also define

Pfm = m1m2m3m4. (5.2)

The Spin(8) flavor symmetry is broken by the masses down to a Weyl group of the Spin(8)

symmetry, and the above combinations of masses are Weyl-group invariant. The explicit

expression of the low energy effective prepotential F is given by

F = a2

(
log

q

16
+

q

2
+

13q2

64
+

23q3

192

)
+

q
m2

1

y
log
( a

Λ

)
+

(
(m1m2 +m3m4)

(
1

2
q +

1

4
q2 +

1

6
q3

)
+

1

64

q
m2

1

y (
q2 + q3

))
+

1

a2

(
− 1

12

q
m4

1

y
+

1

64

q
m2

1m
2
2

y (
q2 + q3

)
+Pfm

(
1

2
q +

1

4
q2 +

11

64
q3

))
+O

(
q4,

m6
i

a4

)
. (5.3)

Note that the Weyl group symmetry is broken by the a-independent expression in the

second line above. This is not surprising since we broke the symmetry by moving to a

weak-coupling cusp.9 Similar to the previous example, it is interesting to analyze the Λ

dependence of F
F ∼ −

q
m2

1

y
log Λ. (5.4)

Now we should weakly gauge the Spin(8) flavor symmetry group, which has a subgroup

U(1)4. We view mi as the vacuum expectation value of the ith U(1) vector multiplet. The

hypermultiplet transforms in the fundamental representation of the gauge group SU(2) and

has charge ±1 under this U(1). We can get the coefficient of the one-loop beta function

for the ith U(1) coupling constant from

Λ
∂3F

∂Λ∂m2
i

= −2. (5.5)

Again the sign is opposite to that of an asymptotically free theory, and 2 is the dimension

of the fundamental representation of SU(2).

The Coulomb branch order parameter u is

u =
1

2

〈
Trφ2

〉
= q

∂F
∂q

= a2

(
1 +

q

2
+

13q2

32
+

23q3

64

)
+

1

2
(m1m2 +m3m4)

(
q + q2 + q3

)
+

q
m2

1

y( 1

32
q2 +

3

64
q3

)
+

1

a2

(q
m2

1m
2
2

y( 1

32
q2 +

3

64
q3

)
+Pfm

(
1

2
q +

1

2
q2 +

33

64
q3

))
+O

(
q4,

m6
i

a4

)
. (5.6)

9In the Sp(1) gauge theory description, the Weyl group of the Spin(8) symmetry is preserved in the

weak-coupling limit. This does not lead to a contradiction because the a-independent part of F has no

effect on the low energy effective action and is therefore not physical.

– 20 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
0

Notice that this definition of u breaks the Weyl group symmetry acting on the masses. We

can define a new Coulomb branch order parameter u′ which is invariant under the Weyl

group symmetry by subtracting an a-independent constant from u,

u′ = u− q (m1m2 +m3m4)

2(1− q)
. (5.7)

In this example, the vanishing of H is a little nontrivial. It is crucial that we factor

out the residual contribution Z inst
extra.

We have two interesting terms at the second order,

logA =
1

2
log

(
2a

Λ

)
+

q

4
+

9q2

64
+

19q3

192

− 1

a4

(
1

64

q
m2

1m
2
2

y (
q2 + q3

)
+Pfm

(
1

4
q +

1

8
q2 +

3

32
q3

))
+O

(
q4,

m6
i

a6

)
, (5.8)

and

logB =
3

2
log
( a

Λ

)
+

1

2
log 2 +

3q

8
+

27q2

128
+

19q3

128

+
1

a2

(q
m2

1

y(
−1

8
+

3

256
q2 +

3

256
q3

))
+

1

a4

(
− 3

64

q
m2

1m
2
2

y (
q2 + q3

)
−Pfm

(
1

16
+

3

8
q +

3

16
q2 +

3

16
q3

))
+O

(
q4,

m6
i

a6

)
. (5.9)

5.2 Comparison to the prediction

Now we would like to compare our explicit results of A and B with the prediction (1.10).

If all the hypermultiplets are massless, the Seiberg-Witten curve is given by [2]

y2 =

3∏
i=1

(x− ei (τSW) û) , (5.10)

which describes the double cover of a sphere with four punctures. The argument τSW of

ei coincides with the complex structure of the curve, and is the same as the low energy

effective coupling τeff . It takes value in the upper half plane which is the universal cover

of the punctured sphere parameterized by q. The coupling τSW is related to the coupling

τUV by [86],

e2πiτUV =
θ2 (τSW)4

θ3 (τSW)4 = 16q
1
2
SW−128qSW +704q

3
2
SW−3072q2

SW +11488q
5
2
SW +O

(
q3

SW

)
, (5.11)

where qSW = exp (2πiτSW).

– 21 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
0

When we turn on masses, the curve proposed by Seiberg and Witten [2] is

y2 = W1W2W3 +A (W1T1 (e2 − e3) +W2T2 (e3 − e1) +W3T3 (e1 − e2))−A2N,

Wi = x− eiû− e2
iR,

A = (e1 − e2) (e2 − e3) (e3 − e1) ,

R =
1

2

q
m̂2

1

y
,

T1 =
1

12

q
m̂2

1m̂
2
2

y
− 1

24

q
m̂4

1

y
,

T2,3 = ±1

2
Pfm̂− 1

24

q
m̂2

1m̂
2
2

y
+

1

48

q
m̂4

1

y
,

N =
3

16

q
m̂2

1m̂
2
2m̂

2
3

y
− 1

96

q
m̂4

1m̂
2
2

y
+

1

96

q
m̂6

1

y
. (5.12)

Here the argument of ei is still τSW, but it is no longer the complex structure of the

curve, and therefore is different from the low energy effective coupling τeff . In principle,

we can compare our results computed from the partition function Z with the curve (5.12).

However, it turns out that the parameter û and the masses m̂i in the curve (5.12) are

related to u and mi used in Z in a complicated way [87, 88],

û = hu (u, q,mi) , m̂i = hi (q,mi) . (5.13)

Due to this problem, it is complicated to compare our results directly with this form of the

Seiberg-Witten curve.

A more conceptual reason why the Seiberg-Witten curve (5.12) is not suitable for the

instanton counting is the following. Since the Seiberg-Witten curve (5.12) is obtained from

a mass deformation of (5.10), the parameters appearing in (5.12) are measured in the limit

m̂i → 0, or equivalently a→∞, and τSW is defined as

τSW =
1

2πi

∂2F
∂a2

∣∣∣∣
m̂i=0

. (5.14)

On the other hand, the partition function Z is computed as a series expansion in q, and

the convergence of the series requires that q is small. All the parameters appearing in

Z are naturally measured in the limit q → 0, which is also the degenerate limit of the

punctured sphere in the class S construction. Two limits q→ 0 and a→∞ are the same

for asymptotically free theories, but in general are different for superconformal theories.

To make life simple, we would like to work with another Seiberg-Witten curve. Our

choice of the Seiberg-Witten curve is constructed from the qq-characters of the theory. The

fundamental qq-character of the SU(2) gauge theory with Nf ≤ 4 fundamental hypermul-

tiplets is given by [66, 89]

X(x) = Y (x+ 2ε+) + qY(x)−1

Nf∏
i=1

(x+mi + ε+) , (5.15)
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where the observable Y(x) is the quantum corrected characteristic polynomial of φ in the

Ω-background,

Y(x) = x2 exp

(
−
∞∑
n=1

1

nxn
Trφn

)
= x2 − 1

2
Trφ2 +O

(
x−1

)
. (5.16)

Although the expectation value of Y(x) contains singularities in x, X(x) satisfies the non-

perturbative Dyson-Schwinger equation [66],

〈X(x)〉 = T(x), (5.17)

where T(x) is a quadratic polynomial in the variable x and can be fixed by comparing the

large x expansions of both sides. For example, for Nf = 4 we have

T(x) =
〈
(X(x))+

〉
= (x+ ε1 + ε2)2 − ũ+ q

(
x2 +

(
4∑
i=1

mi

)
x+ ũ

)
, (5.18)

where (·)+ means the polynomial part of the Laurent series, and ũ is identified with u up

to an additive constant,

ũ = u+
∞∑
n=1

qnfn (mi) . (5.19)

It is not difficult to work out fn explicitly. However, we should notice that in the proof

of the non-perturbative Dyson-Schwinger equation we consider U(N) gauge theories, and

the relation between ũ and u will be modified when we restrict ourselves to gauge group

SU(N). The Seiberg-Witten curve is given by taking the flat space limit ε1, ε2 → 0,

Y +
q
∏Nf
i=1 (x+mi)

Y
= T (x), (5.20)

where

Y = 〈Y(x)〉 , T (x) = lim
ε1,ε2→0

T(x) = (1 + q)x2 + q

(
4∑
i=1

mi

)
x− (1− q) ũ, (5.21)

and the canonical Seiberg-Witten differential is given by

λ = x
dY

Y
. (5.22)

It is convenient to perform a change of variables,

y =
2Y − T (x)

1− q
, (5.23)

so that the Seiberg-Witten curve becomes

y2 =

(
T (x)

1− q

)2

− 4q

(1− q)2

Nf∏
i=1

(x+mi) . (5.24)
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The right hand side of (5.24) is now a monic polynomial in x of degree four. The curve (5.24)

can be viewed as a hybrid of the Seiberg-Witten curve (5.12) and the class S curve [31, 32].

It describes a torus rather than a punctured sphere, but the parameters are measured in

the same way as those in the class S curve. The Seiberg-Witten differential λ is determined

by
∂λ

∂ũ
=

1

2πi

dx

y
, (5.25)

whose period integral gives
∂a

∂ũ
=

1

2πi

∮
A

dx

y
. (5.26)

Using the result reviewed in appendix B, we can write down the exact result of the

period integral (5.26) in terms of the hypergeometric function. We then expand it as

∂a

∂ũ
=

1

ũ1/2

(
1

2
− q

8
− 7q2

128
− 17q3

512

)
(5.27)

+
1

ũ3/2

(q
m2

1

y( 1

128
q2 +

5

512
q3

)
− Jm1m2K

(
1

8
q +

3

32
q2 +

41

512
q3

))
+

1

ũ5/2

(q
m2

1m
2
2

y( 9

128
q2 +

63

512
q3

)
+ Pfm

(
3

8
q +

3

4
q2 +

531

512
q3

)
+

q
m2

1m2m3

y( 3

32
q2 +

81

512
q3

)
−

q
m3

1m2

y( 3

512
q3

))
+O

(
q4,

m6
i

ũ7/2

)
.

We integrate (5.27) over ũ to get a (ũ), and then solve the inversion ũ(a),

ũ = a2

(
1 +

q

2
+

13q2

32
+

23q3

64

)
+

(q
m2

1

y( 1

32
q2 +

3

64
q3

)
− 1

2
Jm1m2K

(
q + q2 + q3

))
+

1

a2

(q
m2

1m
2
2

y( 1

32
q2 +

3

64
q3

)
+Pfm

(
1

2
q +

1

2
q2 +

33

64
q3

))
+O

(
q4,

m6
i

a4

)
, (5.28)

which matches u computed in (5.6) up to a-independent terms. It is easy to compute

log

(
du

da

)
= log

(
dũ

da

)
= log (2a) +

q

2
+

9q2

32
+

19q3

96

− 1

a4

(
1

32

q
m2

1m
2
2

y (
q2 + q3

)
+Pfm

(
1

2
q +

1

4
q2 +

3

16
q3

))
+O

(
q4,

m6
i

a6

)
. (5.29)

There are 6 singularities on the Coulomb moduli space for the SU(2) gauge theory with

Nf = 4 fundamental hypermultiplets. Unlike the previous case, it is complicated to write
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down the explicit expressions of the discriminant loci where we have extra massless BPS

states. What we can do is to compute the physical discriminant ∆ from the mathematical

discriminant ∆̂ of the Seiberg-Witten curve (5.24) by dividing the ũ6 coefficient of ∆̂,

∆ =
∆̂

Coeff ũ6
(

∆̂
) . (5.30)

Then ∆ is indeed a monic polynomial in ũ of degree 6. We can compute

log ∆ = 12 log (a) + 3q +
27q2

16
+

19q3

16

+
1

a2

(q
m2

1

y(
−1 +

3

32
q2 +

3

32
q3

))
+

1

a4

(
−3

8

q
m2

1m
2
2

y (
q2 + q3

)
−Pfm

(
1

2
+ 3q +

3

2
q2 +

3

2
q3

))
+O

(
q4,

m6
i

a6

)
. (5.31)

By comparing (5.29), (5.31) with the explicit calculation in the Ω-

background (5.8), (5.9), we find that

A = Λ−
1
2

(
du

da

) 1
2

, B =
√

2Λ−
3
2 ∆

1
8 . (5.32)

We see that the explicit dependence on q disappears. Therefore, we confirm (1.10), and we

find the unambiguous ratio
β

α
=
√

2Λ−1. (5.33)

Similar to the previous case, it is easy to check that we cannot get (1.10) if we use m′f
rather than mf as the mass parameters. The strange Λ dependence of β/α can be again

understood as a remnant of gravitational couplings of the weakly gauged Spin(8) flavor

symmetry. Each fundamental hypermultiplet contributes a factor of Λ−
1
4 to β/α, and we

have four fundamental hypermultiplets.

It is straightforward to perform the same computation in asymptotically free theories

with Nf ≤ 3 fundamental hypermultiplets. The Seiberg-Witten curve can be constructed

in the same way from the fundamental qq-character. The expansion (1.18) matches (1.10)

for each case, and the overall factors α and β depend on Λ but not on masses.

6 Perturbative analysis in SU(N) super-Yang-Mills theory

In this section, we will study A and B in the SU(N) super-Yang-Mills theory. In particular,

we would like to check the prediction (1.14). For the purpose of determining α and β, it is

sufficient to neglect the complicated instanton contributions and use only the perturbative

part of the partition function.
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The one-loop partition function is given by

Z1−loop =
∏
i<j

exp [−γε1,ε2 (ai − aj ; Λ)− γε1,ε2 (ai − aj − 2ε+; Λ)] , (6.1)

with the constraint

N∑
i=1

ai = 0. (6.2)

We can expand (6.1) around the flat space limit (1.18) using (A.6),

F1−loop =
∑
i<j

(
(ai − aj)2 log

(
ai − aj

Λ

)
− 3

2
(ai − aj)2

)
,

H1−loop = 0,

logA1−loop =
1

2

∑
i<j

log

(
ai − aj

Λ

)
,

logB1−loop =
1

2

∑
i<j

log

(
ai − aj

Λ

)
. (6.3)

We take the Seiberg-Witten curve to be [90, 91]

y2 = (〈det (x− φ)〉)2 − 4Λ2N , (6.4)

with the Coulomb branch order parameters

un =

〈
1

n
Trφn

〉
, n = 2, · · · , N. (6.5)

Ignoring the instanton corrections, the Seiberg-Witten curve degenerates to y2 =

(〈det (x− φ)〉)2, and un are simply given by the classical result,

un =
1

n

N∑
i=1

ani . (6.6)

We take a2, · · · , aN as independent parameters. Then we have

(
dui
daj

)1−loop

= ai−1
j − ai−1

1 , (6.7)
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and consequently

det

(
dui
daj

)1−loop

=

∣∣∣∣∣∣∣
a2 − a1 · · · aN − a1

...
. . .

...

aN−1
2 − aN−1

1 · · · aN−1
N − aN−1

1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0

a1 a2 − a1 · · · aN − a1

...
...

. . .
...

aN−1
1 aN−1

2 − aN−1
1 · · · aN−1

N − aN−1
1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

a1 a2 · · · aN
...

...
. . .

...

aN−1
1 aN−1

2 · · · aN−1
N

∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(ai − aj) . (6.8)

Meanwhile, the perturbative discriminant is given by

∆1−loop =

∏
i<j

(ai − aj)2

2

. (6.9)

By comparing with (6.3), we reproduce the expression (1.10),

A = Λ−
N(N−1)

4 det

(
dui
daj

) 1
2

, B = Λ−
N(N−1)

4 ∆
1
8 . (6.10)

Hence, we obtain

α = β = Λ−
N(N−1)

4 , (6.11)

which confirms the prediction (1.14). This also matches our result (3.14) when N = 2.

The overall numerical constants of β are different due to the different normalization of the

discriminant ∆.

7 Discussions and outlook

In this paper, we use the partition function in the Ω-background to compute explicitly

the low energy effective couplings A and B to topological invariants of the background

gravitational field in four-dimensional N = 2 supersymmetric gauge theories with gauge

group SU(2). We also study the SU(N) super-Yang-Mills theory at the perturbative level.

Our results confirm the previous predictions. We also determine the ratio of the overall

factors β/α. For SU(2) theory with either an adjoint hypermultiplet or four fundamental

hypermultiplets, we find that β/α is independent of τUV. Nevertheless, Kuα
χβσ can still be

a nontrivial function of τUV. It would be interesting to have a better understanding of this
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fact. Since β/α naturally shows up in the blowup formula [6, 7], it may be useful to analyze

carefully the behavior of the u-plane integral under blowups for superconformal theories.

There is no conceptual problem in extending our computation to any other N = 2

theory whose partition function in the Ω-background can be calculated. Technically, our

brute force expansion in q can be rather complicated. It would be very interesting to see

whether one could directly obtain the all-instanton results using methods of topological

recursion [92, 93]. A possible strategy is to use the theory of qq-characters [66, 74, 94–96],

and generalize the derivation presented in [73, 89]. This will be discussed in the future.

We should also point out that A and B were exactly computed for the SU(2) super-

Yang-Mills theory [58, 68] and the SU(2) gauge theory with one fundamental hypermulti-

plet [69] using the partition function in the Ω-background of the blowup Ĉ2. This blowup

approach is also powerful enough to determine the contact terms in the u-plane integral.

We shall discuss the generalization of this approach to other gauge theories in a sepa-

rate paper. Unfortunately, this blowup approach is not always useful for superconformal

theories due to the lack of an important vanishing theorem.

The supersymmetric localization method allows us to provide a contour integral for-

mula for the exact partition function of N = 2 supersymmetric gauge theories on com-

pact toric four-manifolds [97–99], generalizing the pioneering work of Pestun [100]. It was

shown in [84, 85] that the equivariant Donaldson invariants can be calculated by explicitly

evaluating the contour integral for U(2) super-Yang-Mills theory on CP2. These equivari-

ant Donaldson polynomials correctly reproduce ordinary Donaldson invariants in the limit

ε1, ε2 → 0. It would be interesting to have a better understanding of these computations

from the point of view of the u-plane integral, and to perform similar computations with

hypermultiplets.
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A Special function γε1,ε2 (x; Λ)

The special function γε1,ε2 (x; Λ) is defined through the zeta function regularization,

γε1,ε2 (x; Λ) =
d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dt

t
ts

e−xt

(eε1t − 1) (eε2t − 1)
. (A.1)

It is related to Barnes’ double Gamma function Γ2 (x| ε1, ε2) by

γε1,ε2 (x; 1) = log Γ2 (x+ ε1 + ε2| ε1, ε2) . (A.2)

Let us define {cn, n ∈ N} by

1

(eε1t − 1) (eε2t − 1)
=
∞∑
n=0

cn
n!
tn−2, (A.3)
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where

c0 =
1

ε1ε2
, c1 = −ε1 + ε2

2ε1ε2
, c2 =

ε2
1 + 3ε1ε2 + ε2

2

6ε1ε2
. (A.4)

Then the expansion of γε1,ε2 (x; Λ) around the flat space limit ε1, ε2 → 0 can be computed

using analytic continuation,

γε1,ε2 (x; Λ) =
d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

dt

∞∑
n=0

cn
n!
ts+n−3e−xt

=
d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∞∑
n=0

cn
n!

Γ(s+ n− 2)x2−s−n

=
1

ε1ε2

(
−1

2
x2 log

(x
Λ

)
+

3

4
x2

)
− ε1 + ε2

2ε1ε2

(
x log

(x
Λ

)
− x
)

−ε
2
1 + 3ε1ε2 + ε2

2

12ε1ε2
log
(x

Λ

)
+

∞∑
n=2

cn
n(n− 1)(n− 2)

x2−n. (A.5)

In this paper, we need the expansions of the following two combinations

γε1,ε2 (x; Λ) + γε1,ε2 (x− 2ε+; Λ)

=
1

ε1ε2

(
−x2 log

(x
Λ

)
+

3

2
x2

)
− ε2

1 + 3ε1ε2 + ε2
2

6ε1ε2
log
(x

Λ

)
+ · · · ,

×γε1,ε2 (x− ε+; Λ)

=
1

ε1ε2

(
−1

2
x2 log

(x
Λ

)
+

3

4
x2

)
+
ε2

1 + ε2
2

24ε1ε2
log
(x

Λ

)
+ · · · . (A.6)

Notice that there is no ε1+ε2
ε1ε2

-term in the expansion of both combinations.

B Period integrals on elliptic curves

A general elliptic curve can be written as

y2 = x4 − c1x
3 + c2x

2 − c3x+ c4 = (x− r1) (x− r2) (x− r3) (x− r4) , (B.1)

where

cn =
∑

1≤i1<···<in≤4

ri1 · · · rin . (B.2)

We assume that r1 < r2 < r3 < r4 are all real. The general case can be obtained by

analytic continuation. We define the A-cycle and the B-cycle to enclose the cut [r1, r2] and

[r2, r3], respectively. The period integrals of the holomorphic one-form are

Πγ =
1

2πi

∮
γ

dx

y
=

1

2πi

∮
γ

dx√
(x− r1) (x− r2) (x− r3) (x− r4)

, γ = A,B. (B.3)

In this paper, we only need the period integral ΠA over the A-cycle. In order to compute

the integral, we consider a useful variable change

x =
(r2 − r1) r4t+ (r4 − r2) r1

(r2 − r1) t+ (r4 − r2)
, (B.4)
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so that x = r1, r2, r3, r4 are mapped to t = 0, 1, 1
κ ,∞, with

κ =
(r1 − r2) (r3 − r4)

(r1 − r3) (r2 − r4)
. (B.5)

Then we have

ΠA = [(r1 − r3) (r2 − r4)]−
1
2

1

π

∫ 1

0

dt√
t (1− t) (1− zt)

= [(r1 − r3) (r2 − r4)]−
1
2 2F1

(
1

2
,

1

2
, 1, κ

)
, (B.6)

where we used the integral representation of hypergeometric function

2F1 (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(β)

∫ 1

0
dxxβ−1 (1− x)γ−β−1 (1− xz)−α . (B.7)

We also define the discriminant ∆ of the elliptic curve to be

∆ =
∏
i<j

(ri − rj)2

= −27c2
4c

4
1 − 4c3

3c
3
1 + 18c2c3c4c

3
1 + c2

2c
2
3c

2
1 + 144c2c

2
4c

2
1

−4c3
2c4c

2
1 − 6c2

3c4c
2
1 + 18c2c

3
3c1 − 192c3c

2
4c1 − 80c2

2c3c4c1

−27c4
3 + 256c3

4 − 4c3
2c

2
3 − 128c2

2c
2
4 + 16c4

2c4 + 144c2c
2
3c4. (B.8)

In general, the expression for the roots can be rather complicated. Moreover, in the

formula (B.6), the four roots r1, r2, r3, r4 are not on equal footing. Using the quadratic

transformation identity of the hypergeometric function [101],

2F1 (α, β, 2β; z) = (1− z)−
1
2
α

2F1

(
1

2
α, β − 1

2
α, β +

1

2
;− z2

4(1− z)

)
, (B.9)

with α = β = 1
2 , we get

ΠA = ξ−
1
4 2F1

(
1

4
,

1

4
, 1, κ̃

)
, (B.10)

where

ξ = (r1 − r3) (r2 − r3) (r1 − r4) (r2 − r4) ,

κ̃ = − κ2

4(1− κ)
= − ∆

4ξ3
. (B.11)

We see that the formula (B.10) is now symmetric in r1, r2 and r3, r4, but not in all of

them. We can further apply the cubic transformation identities of the hypergeometric

function [101],

2F1

(
3α,

1

3
− α, 2α+

5

6
; z

)
= (1− 4z)−3α

2F1

(
α, α+

1

3
, 2α+

5

6
;

27z

(4z − 1)3

)
, (B.12)
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with α = 1
12 to obtain

ΠA = ρ−
1
4 2F1

(
1

12
,

5

12
, 1,

27∆

4ρ3

)
, (B.13)

where

ρ = ξ +
∆

ξ2
=

1

4

∑
i<j

(ri − rj)2

2

− 3

4

∑
i<j

(ri − rj)4 = c2
2 − 3c1c3 + 12c4. (B.14)

This formula makes all the roots completely symmetric. Furthermore, we no longer need to

solve the roots for a given elliptic curve in order to obtain the period ΠA, thereby making

the computation much simpler.

C Modular forms and theta functions

Eisenstein series. Let τ ∈ H and q = e2πiτ . The Eisenstein series E2k is defined by

E2k =
1

2ζ(2k)

∑
m,n∈Z

(m,n) 6=. (0,0)

1

(m+ nτ)2k

= 1 +
2

ζ (1− 2k)

∞∑
n=1

n2k−1qn

1− qn

= 1 +
2

ζ (1− 2k)

∞∑
n=1

σ2k−1(n)qn, (C.1)

where σp(n) is the divisor sum, the sum of the pth powers of the divisors of n. The following

explicit expansions of the Eisenstein series are useful,

E2 = 1− 24
∞∑
n=1

σ1(n)qn = 1− 24q − 72q2 − 96q3 − 168q4 +O
(
q5
)
,

E4 = 1 + 240

∞∑
n=1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + 17520q4 +O
(
q5
)
, (C.2)

E6 = 1− 504
∞∑
n=1

σ5(n)qn = 1− 504q − 16632q2 − 122976q3 − 532728q4 +O
(
q5
)
.

The Eisenstein series E2k is a modular form of weight 2k under the SL(2,Z) modular

transformation for k ≥ 2,

E2k

(
aτ + b

cτ + d

)
= (cτ + d)2k E2k (τ) , a, b, c, d ∈ Z, ad− bc = 1. (C.3)

The space of modular forms of SL(2,Z) forms a ring that is generated by E4(τ) and E6(τ).

For k = 1, E2 is quasi-modular,

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2 (τ) +

6

πi
c (cτ + d) . (C.4)
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All quasi-modular forms can be expressed as polynomials of E2, E4 and E6. The derivatives

of the Eisenstein series are given by

q
dE2

dq
=
E2

2 − E4

12
,

q
dE4

dq
=
E2E4 − E6

3
,

q
dE6

dq
=
E2E6 − E2

4

2
. (C.5)

Dedekind eta function. The Dedekind eta function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) = q
1
24φ(q), (C.6)

where φ(q) is called the Euler function. Under the generators of SL(2,Z), η(τ) transforms

as

η(τ + 1) = e
πi
12 η(τ), η

(
−1

τ

)
=
√
−iτη(τ). (C.7)

The derivative of η(τ) is related to E2 by

q
d

dq
log η(τ) =

E2

24
. (C.8)

We also use the expansion

log φ(q) =
∞∑
n=1

log (1− qn) = −q − 3

2
q2 − 4

3
q3 − 7

4
q4 +O

(
q5
)
. (C.9)

Jacobi theta functions. The Jacobi theta functions are defined for two complex vari-

ables z ∈ C and τ ∈ H as

θ1 (z; τ) = i
∑
n∈Z

(−1)nwn+ 1
2 q

1
2(n+ 1

2)
2

,

θ2 (z; τ) =
∑
n∈Z

wn+ 1
2 q

1
2(n+ 1

2)
2

,

θ3 (z; τ) =
∑
n∈Z

wnq
1
2
n2
,

θ4 (z; τ) =
∑
n∈Z

(−1)nwnq
1
2
n2
, (C.10)

where w = e2πiz and q = e2πiτ . When evaluated at z = 0, θ1(0; τ) = 0 and θj(τ) = θj(0; τ)

for j = 2, 3, 4 satisfy

θ2(τ)4 + θ4(τ)4 = θ3(τ)4, θ2(τ)θ3(τ)θ4(τ) = 2η3(τ). (C.11)

They are also related to the Eisenstein series E4 and E6 by

E4 =
1

2

(
θ8

2 + θ8
3 + θ8

4

)
, E6 =

1

2

(
θ4

2 + θ4
3

) (
θ4

3 + θ4
4

) (
θ4

4 − θ4
2

)
, (C.12)
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The transformation of θj(τ) under the generators of SL(2,Z) are

θ2

(
−1

τ

)
=
√
−iτθ4(τ), θ2(τ + 1) = e

πi
4 θ2(τ)

θ3

(
−1

τ

)
=
√
−iτθ3(τ), θ3(τ + 1) = θ4(τ),

θ4

(
−1

τ

)
=
√
−iτθ2(τ), θ4(τ + 1) = θ3(τ). (C.13)

D Weierstrass’s elliptic function

Let z be a coordinate of the torus, which can be viewed as the complex plane with the

identification z ∼ z + π ∼ z + πτ . We define Weierstrass’s elliptic function ℘ (z; τ) to be a

meromorphic function in the complex plane with a double pole at each lattice point,

℘ (z; τ) = ℘ (z;π, πτ)

=
1

z2
+

∑
m,n∈Z

(m,n) 6=(0,0)

[
1

(z +mπ + nπτ)2 −
1

(mπ + nπτ)2

]
, (D.1)

satisfying the doubly periodic condition,

℘ (z; τ) = ℘ (z + π; τ) = ℘ (z + πτ ; τ) . (D.2)

The function ℘ (z; τ) satisfies the differential equation(
℘′
)2

= 4℘3 − g2℘− g3 = 4 (℘− e1) (℘− e2) (℘− e3) , (D.3)

where

g2 =
4

3
E4 (τ) , g3 =

8

27
E6 (τ) , (D.4)

and the roots e1, e2, e3 can be expressed in terms of Jacobi theta functions as

e1 =
1

3

(
θ4

3 + θ4
4

)
,

e2 = −1

3

(
θ4

2 + θ4
3

)
,

e3 =
1

3

(
θ4

2 − θ4
4

)
. (D.5)

The modular discriminant ∆ is defined as

∆ = g3
2 − 27g2

3 = (2π)12 η24 (τ) . (D.6)

When ∆ > 0, all three are real and it is conventional to choose e1 > e2 > e3.

The function ℘ (z; τ) is related to the Jacobi theta function by

℘ (z; τ) = − d2

dz2
log θ1 (z; τ)− 1

3
E2, (D.7)
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where the constant term is fixed by comparing the Laurent expansion of ℘ (z; τ) at z = 0,

℘ (z; τ) =
1

z2
+
g2

20
z2 +

g3

28
g3z

4 +O
(
z6
)
, (D.8)

and the Laurent expansion of log θ1 (z; τ).

We are interested in calculating the integrals

Pn =
1

π

∮
A
℘ndz, (D.9)

where we define the A-cycle to be 0 ≤ z ≤ π. By definition, we have

P0 =
1

π

∮
A
dz = 1, (D.10)

P1 =
1

π

∮
A
℘dz =

1

π

∮
A

(
− d2

dz2
log θ1 (z; τ)− 1

3
E2

)
dz = −1

3
E2. (D.11)

For n = 2, we can obtain from the derivative of (D.3) that

2℘′′ = 12℘2 − g2, (D.12)

from which we get

P2 =
1

π

∮
A
℘2dz =

1

π

∮
A

(
1

6
℘′′ +

1

12
g2

)
dz =

1

12
g2. (D.13)

The period integrals Pn for n ≥ 3 can be derived recursively [102]. In fact, using (D.12)

we have

Pn =
1

π

∮
A
℘ndz

=
1

π

∮
A
℘n−2

(
1

6
℘′′ +

1

12
g2

)
dz

=
1

6π

∮
A
℘n−2℘′′dz +

1

12
g2Pn−2. (D.14)

Integrating by parts the first term and substituting (D.3) gives∮
A
℘n−2℘′′dz = − (n− 2)

∮
A
℘n−3

(
4℘3 − g2℘− g3

)
dz

= − (n− 2)

∮
A

(
4℘n − g2℘

n−2 − g3℘
n−3
)
dz. (D.15)

Therefore, we obtain the following recurrence relation

Pn =
2n− 3

8n− 4
g2Pn−2 +

n− 2

4n− 2
g3Pn−3, n ≥ 3. (D.16)

Here we list the first few explicit expressions for Pn, n ≥ 2, as polynomials in E2, E4 and E6,

P2 =
1

9
E4,

P3 = − 1

15
E2E4 +

4

135
E6,

P4 =
5

189
E2

4 −
8

567
E2E6,

P5 = − 7

405
E2E

2
4 +

16

1215
E4E6. (D.17)
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[61] M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat

kernel and S-duality in N = 2 theories, JHEP 11 (2013) 123 [arXiv:1307.6648] [INSPIRE].

[62] L. Hollands, C.A. Keller and J. Song, From SO/Sp instantons to W-algebra blocks, JHEP

03 (2011) 053 [arXiv:1012.4468] [INSPIRE].

[63] L. Hollands, C.A. Keller and J. Song, Towards a 4d/2d correspondence for Sicilian quivers,

JHEP 10 (2011) 100 [arXiv:1107.0973] [INSPIRE].

[64] G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun.

Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

[65] N. Nekrasov and E. Witten, The omega deformation, branes, integrability and Liouville

theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

[66] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and

qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].

[67] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series,

American Mathematical Society, U.S.A. (1999).

[68] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1. 4-dimensional pure gauge

theory, Invent. Math. 162 (2005) 313 [math.AG/0306198].

[69] L. Gottsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki’s

formula and instanton counting, Publ. Res. Inst. Math. Sci. Kyoto 47 (2011) 307

[arXiv:1001.5024] [INSPIRE].

[70] T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2∗ super

Yang-Mills on S4, JHEP 03 (2012) 017 [arXiv:1004.1222] [INSPIRE].

[71] M.-X. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid

N = 2 theories, Annales Henri Poincaré 14 (2013) 425 [arXiv:1109.5728] [INSPIRE].

[72] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from

four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[73] S. Jeong and X. Zhang, BPZ equations for higher degenerate fields and non-perturbative

Dyson-Schwinger equations, arXiv:1710.06970 [INSPIRE].

– 38 –

https://arxiv.org/abs/1211.2240
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2240
https://doi.org/10.1103/PhysRevD.100.125015
https://arxiv.org/abs/1910.10104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.10104
https://arxiv.org/abs/math.AG/0311058
https://inspirehep.net/search?p=find+EPRINT+MATH/0311058
https://doi.org/10.1142/9789814304634_0015
https://arxiv.org/abs/0908.4052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
https://doi.org/10.1007/JHEP04(2013)039
https://arxiv.org/abs/1302.0686
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0686
https://doi.org/10.1007/JHEP11(2013)123
https://arxiv.org/abs/1307.6648
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6648
https://doi.org/10.1007/JHEP03(2011)053
https://doi.org/10.1007/JHEP03(2011)053
https://arxiv.org/abs/1012.4468
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4468
https://doi.org/10.1007/JHEP10(2011)100
https://arxiv.org/abs/1107.0973
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0973
https://doi.org/10.1007/PL00005525
https://doi.org/10.1007/PL00005525
https://arxiv.org/abs/hep-th/9712241
https://inspirehep.net/search?p=find+EPRINT+hep-th/9712241
https://doi.org/10.1007/JHEP09(2010)092
https://arxiv.org/abs/1002.0888
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0888
https://doi.org/10.1007/JHEP03(2016)181
https://arxiv.org/abs/1512.05388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05388
https://doi.org/10.1007/s00222-005-0444-1
https://arxiv.org/abs/math.AG/0306198
https://arxiv.org/abs/1001.5024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.5024
https://doi.org/10.1007/JHEP03(2012)017
https://arxiv.org/abs/1004.1222
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.1222
https://doi.org/10.1007/s00023-012-0192-x
https://arxiv.org/abs/1109.5728
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5728
https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
https://arxiv.org/abs/1710.06970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06970


J
H
E
P
0
6
(
2
0
2
0
)
1
5
0

[74] N. Nekrasov, BPS/CFT correspondence V: BPZ and KZ equations from qq-characters,

arXiv:1711.11582 [INSPIRE].

[75] M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with

classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

[76] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[77] F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP

10 (2004) 037 [hep-th/0408090] [INSPIRE].

[78] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Construction of instantons,

Phys. Lett. A 65 (1978) 185 [INSPIRE].

[79] M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory, Phys. Lett. B

357 (1995) 342 [hep-th/9506102] [INSPIRE].

[80] R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of

gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].

[81] J.A. Minahan, D. Nemeschansky and N.P. Warner, Instanton expansions for mass deformed

N = 4 super Yang-Mills theories, Nucl. Phys. B 528 (1998) 109 [hep-th/9710146]

[INSPIRE].

[82] E. D’Hoker and D.H. Phong, Calogero-Moser systems in SU(N) Seiberg-Witten theory,

Nucl. Phys. B 513 (1998) 405 [hep-th/9709053] [INSPIRE].

[83] E. D’Hoker and D.H. Phong, Spectral curves for super Yang-Mills with adjoint

hypermultiplet for general Lie algebras, Nucl. Phys. B 534 (1998) 697 [hep-th/9804126]

[INSPIRE].

[84] M. Bershtein, G. Bonelli, M. Ronzani and A. Tanzini, Exact results for N = 2

supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson

invariants, JHEP 07 (2016) 023 [arXiv:1509.00267] [INSPIRE].

[85] M. Bershtein, G. Bonelli, M. Ronzani and A. Tanzini, Gauge theories on compact toric

surfaces, conformal field theories and equivariant Donaldson invariants, J. Geom. Phys.

118 (2017) 40 [arXiv:1606.07148] [INSPIRE].

[86] T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct integration of the topological

string, JHEP 08 (2007) 058 [hep-th/0702187] [INSPIRE].

[87] N. Dorey, V.V. Khoze and M.P. Mattis, On N = 2 supersymmetric QCD with four flavors,

Nucl. Phys. B 492 (1997) 607 [hep-th/9611016] [INSPIRE].

[88] P.C. Argyres and S. Pelland, Comparing instanton contributions with exact results in N = 2

supersymmetric scale invariant theories, JHEP 03 (2000) 014 [hep-th/9911255] [INSPIRE].

[89] S. Jeong and X. Zhang, A note on chiral trace relations from qq-characters, JHEP 04

(2020) 026 [arXiv:1910.10864] [INSPIRE].

[90] A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2

supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048]

[INSPIRE].

[91] P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2

supersymmetric SU(N) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057]

[INSPIRE].

– 39 –

https://arxiv.org/abs/1711.11582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.11582
https://doi.org/10.1088/1126-6708/2004/05/021
https://arxiv.org/abs/hep-th/0404125
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404125
https://doi.org/10.1007/s00220-004-1189-1
https://arxiv.org/abs/hep-th/0404225
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404225
https://doi.org/10.1088/1126-6708/2004/10/037
https://doi.org/10.1088/1126-6708/2004/10/037
https://arxiv.org/abs/hep-th/0408090
https://inspirehep.net/search?p=find+EPRINT+hep-th/0408090
https://doi.org/10.1016/0375-9601(78)90141-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A65,185%22
https://doi.org/10.1016/0370-2693(95)00920-G
https://doi.org/10.1016/0370-2693(95)00920-G
https://arxiv.org/abs/hep-th/9506102
https://inspirehep.net/search?p=find+EPRINT+hep-th/9506102
https://doi.org/10.1088/1126-6708/2004/04/008
https://arxiv.org/abs/hep-th/0403057
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403057
https://doi.org/10.1016/S0550-3213(98)00314-9
https://arxiv.org/abs/hep-th/9710146
https://inspirehep.net/search?p=find+EPRINT+hep-th/9710146
https://doi.org/10.1016/S0550-3213(97)00763-3
https://arxiv.org/abs/hep-th/9709053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9709053
https://doi.org/10.1016/S0550-3213(98)00630-0
https://arxiv.org/abs/hep-th/9804126
https://inspirehep.net/search?p=find+EPRINT+hep-th/9804126
https://doi.org/10.1007/JHEP07(2016)023
https://arxiv.org/abs/1509.00267
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00267
https://doi.org/10.1016/j.geomphys.2017.01.012
https://doi.org/10.1016/j.geomphys.2017.01.012
https://arxiv.org/abs/1606.07148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07148
https://doi.org/10.1088/1126-6708/2007/08/058
https://arxiv.org/abs/hep-th/0702187
https://inspirehep.net/search?p=find+EPRINT+hep-th/0702187
https://doi.org/10.1016/S0550-3213(97)00132-6
https://arxiv.org/abs/hep-th/9611016
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611016
https://doi.org/10.1088/1126-6708/2000/03/014
https://arxiv.org/abs/hep-th/9911255
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911255
https://doi.org/10.1007/JHEP04(2020)026
https://doi.org/10.1007/JHEP04(2020)026
https://arxiv.org/abs/1910.10864
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.10864
https://doi.org/10.1016/0370-2693(94)01516-F
https://arxiv.org/abs/hep-th/9411048
https://inspirehep.net/search?p=find+EPRINT+hep-th/9411048
https://doi.org/10.1103/PhysRevLett.74.3931
https://arxiv.org/abs/hep-th/9411057
https://inspirehep.net/search?p=find+EPRINT+hep-th/9411057


J
H
E
P
0
6
(
2
0
2
0
)
1
5
0

[92] B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions,

JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].

[93] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,

Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].

[94] N. Nekrasov, BPS/CFT correspondence II: instantons at crossroads, moduli and

compactness theorem, Adv. Theor. Math. Phys. 21 (2017) 503 [arXiv:1608.07272]

[INSPIRE].

[95] N. Nekrasov, BPS/CFT correspondence III: gauge origami partition function and

qq-characters, Commun. Math. Phys. 358 (2018) 863 [arXiv:1701.00189] [INSPIRE].

[96] N. Nekrasov, BPS/CFT correspondence IV: σ-models and defects in gauge theory, Lett.

Math. Phys. 109 (2019) 579 [arXiv:1711.11011] [INSPIRE].

[97] N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, JHEP 09 (2012) 033

[arXiv:1206.6359] [INSPIRE].

[98] D. Rodriguez-Gomez and J. Schmude, Partition functions for equivariantly twisted N = 2

gauge theories on toric Kähler manifolds, JHEP 05 (2015) 111 [arXiv:1412.4407]

[INSPIRE].

[99] G. Festuccia, J. Qiu, J. Winding and M. Zabzine, Twisting with a flip (the art of

pestunization), Commun. Math. Phys. 377 (2020) 341 [arXiv:1812.06473] [INSPIRE].

[100] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
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