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ABSTRACT: We study the non-relativistic expansion of general relativity coupled to matter.
This is done by expanding the metric and matter fields analytically in powers of 1/c?
where ¢ is the speed of light. In order to perform this expansion it is shown to be very
convenient to rewrite general relativity in terms of a timelike vielbein and a spatial metric.
This expansion can be performed covariantly and off shell. We study the expansion of
the Einstein-Hilbert action up to next-to-next-to-leading order. We couple this to different
forms of matter: point particles, perfect fluids, scalar fields (including an off-shell derivation
of the Schréodinger-Newton equation) and electrodynamics (both its electric and magnetic
limits). We find that the role of matter is crucial in order to understand the properties
of the Newton-Cartan geometry that emerges from the expansion of the metric. It turns
out to be the matter that decides what type of clock form is allowed, i.e. whether we have
absolute time or a global foliation of constant time hypersurfaces. We end by studying
a variety of solutions of non-relativistic gravity coupled to perfect fluids. This includes
the Schwarzschild geometry, the Tolman-Oppenheimer-Volkoff solution for a fluid star, the
FLRW cosmological solutions and anti-de Sitter spacetimes.
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1 Introduction

Nature is relativistic at a fundamental level but nonetheless it often effectively appears
to us as non-relativistic (NR). This typically happens in many-body or condensed mat-
ter type systems but it can also be true for gravitational phenomena. General relativity
(GR) can often be well-approximated by a theory of non-relativistic gravity such as the
post-Newtonian (PN) approximation. Hence, uncovering the mathematical description
of non-relativistic geometries, their dynamics and interaction with matter (classical and
quantum) is a very relevant subject. In this paper, building on earlier work by [1-4], we
try to systematically build up a geometrical language that allows us to formulate certain
gravitational problems in a manifestly non-relativistic manner.

This work is mainly foundational and therefore not so much concerned with applica-
tions. Nevertheless we will show that the Friedmann equations, the Tolman-Oppenheimer-
Volkoft (TOV) fluid star and the usual effects due to the Schwarzschild geometry can all
be captured by the theory of non-relativistic gravity described here. More generally we
expect this approach to be relevant whenever the gravitational interaction can effectively
be treated as instantaneous.

1.1 Background and motivation

Recent years have seen a revival in the study of non-relativistic gravity and its formulation
in terms of Newton-Cartan (NC) type geometries. NC geometry was originally introduced
by Cartan in 1923 [5, 6] (see also e.g. [7, 8]) to geometrise Newton’s laws of gravitation,
following the successful use of pseudo-Riemannian geometry in the formulation of Einstein’s
theory of general relativity. The recent developments in non-relativistic gravity have been
spurred in part by modern advances leading towards a more general understanding of non-
relativistic geometry. This includes in particular the discovery of a torsionful generalisation
of NC geometry, which allows for a non-closed clock form and was first observed as the
boundary geometry in the context of Lifshitz holography [9-11]. Besides being relevant
in various non-relativistic gravity theories (see e.g. [12-18]) this geometry, called (type I)
torsional Newton-Cartan (TNC) geometry in [4], plays an important role as the background
geometry to which non-relativistic field theories naturally couple [19-22]. It furthermore
appears in the context of non-relativistic string theory [23-27] (see also references [28-32]
for related theories involving string Newton-Cartan (SNC) geometry).

Importantly, a novel version of TNC geometry (denoted as type II) was uncovered in [4]
and shown to arise directly from a careful analysis of the large speed of light expansion
of pseudo-Riemannian geometry, as considered also in [3] following earlier work [1, 2].
Correspondingly, it was found that type II TNC geometry is the correct framework to
describe General Relativity (GR) in the non-relativistic limit. In particular, this geometry
allows us to formulate a non-relativistic gravity action [4] (see also [33, 34]) in any spacetime

! This action has the property that the equations of motion (EOMs) contain

dimension.
the Poisson equation of Newtonian gravity, thus providing for the first time an action

principle for Newton’s laws of gravity. Moreover, it generalises the latter by allowing for the

!See also [35] for a non-relativistic action using first-order formalism, and [36] for related perspectives.



effects of gravitational time dilation due to strong gravitational fields. The connection with
Newtonian gravity follows since type II geometry (just like type I) reduces to standard NC
geometry when time is absolute. It was furthermore shown in [33] that the three classical
tests of GR, namely perihelion precession, deflection of light and gravitational red-shift,
are passed perfectly by this extension of Newtonian gravity since it includes gravitational
time dilation effects even though retaining a non-relativistic causal structure.

There are several motivations to study non-relativistic gravity as the dynamical theory
of non-relativistic geometry. First and foremost, as already mentioned above, it appears in
a 1/c? expansion of GR and is thus a relevant limit of a celebrated and well-tested theory.
Moreover, it paves the way for a covariant formulation of the post-Newtonian expansion, to
any order in principle. Even more so, it generalises this expansion since to a given order in
1/c? the theory retains all-order effects in Newton’s constant Gy. Central to all this, is the
appearance of a symmetry principle [4, 33], which naturally arises from the 1/¢? expansion
of the Poincaré algebra. The mathematical framework is that of Lie algebra expansions?
which precisely determines the local symmetry algebra of the “effective geometry” at any
given order in 1/c?. In this way, type II TNC geometry arises from gauging a novel non-
relativistic algebra that differs from the Bargmann algebra, while gauging the Bargmann
algebra yields standard NC geometry [43]. For clarity, we emphasise here that there are
other non-relativistic gravity theories than the one considered in this paper, arising from
gauging type I or related avatars of NC geometry which, though not directly connected to
General Relativity, are interesting in their own right from a more general perspective.

Going beyond the classical level, there are even more fundamental reasons to pursue a
deeper insight into non-relativistic gravity theories, including the specific one considered in
this paper, which arises from GR. One question is whether these theories have their own UV
completion in terms of a non-relativistic quantum gravity theory. This in turn is interesting
since the construction of such non-relativistic quantum gravity theories could provide an
alternate route towards (relativistic) quantum gravity, as opposed to approaching the latter
from either the classical GR or quantum field theory perspective. In fact, the question of a
UV completion of non-relativistic gravity theories in terms of non-relativistic string theory
has recently received a lot of attention [23-29, 31, 32, 44-47]3 (see also [46, 50-53] for
a relation to double field theory). Related to this, another relevant application is that
classical non-relativistic gravity may have an important role to play in novel types of
holographic dualities (see e.g. [16, 18]). Finally, it is relevant to mention that for fixed
backgrounds, non-relativistic geometry has proven to be useful for understanding aspects
such as energy-momentum tensors, Ward identities, hydrodynamics and anomalies in the
context of non-relativistic field theories, which are ubiquitous in condensed matter and
biological systems (see e.g. [54-59]).

1.2 Outline and summary of the main results

In this paper we give a comprehensive treatment of non-relativistic gravity and its coupling
to matter as it appears from the large speed of light expansion of GR. In particular, we first

2See for example references [37-39] and also the recent applications [33, 40-42].
3These non-relativistic string theories can be considered to be the generalisation of the Gomis-Ooguri
non-relativistic action [48] (see also [49]) to arbitrary backgrounds.



provide in section 2 a detailed treatment of various aspects of the 1/¢? expansion of GR.
We will do this both from the geometric point of view, involving expanding the Lorentzian
metric, as well as the algebraic perspective, which makes use of a Lie algebra expansion
of the Poincaré algebra. From the geometric side, it will be convenient to first write the
metric g, in a certain “pre-non-relativistic” parameterisation as g, = —CZTMTI, + 11
where T}, is the timelike vielbein and II,, a spatial tensor, i.e. a symmetric tensor with
signature (0,1,...,1). One finds that type II TNC geometry arises from the leading order
(LO) and the next-to-leading order (NLO) fields in the 1/c? expansion of T, and II,,,. In
particular, the LO fields are the timelike vielbein 7, and symmetric spatial tensor h,, with
signature (0,1,...,1) familiar from standard NC geometry. These are then accompanied
by two further gauge fields, m, and ®,,, respectively, which appear at NLO in the 1/ c?
expansion of T, and II,.

This set of four spacetime tensors, together with their gauge transformation properties
defines type II TNC. The gauge transformations consist of the 1/c? expansions of the
diffeomorphisms of GR as well as the local Lorentz transformation that acts on 7), and
IT,,. The latter lead to local Galilean boosts and their subleading counterparts. The
former lead to diffeomorphisms plus gauge transformations (originating from the NLO
terms in the 1/c® expansion of the diffeomorphisms of GR) acting on the NLO fields m,,
and ®,,. We note that in NC geometry the torsion is determined by the properties of
7,: d7 = 0 corresponds to zero torsion (absolute time), 7 A dr = 0 twistless torsion (i.e.
twistless torsional Newton-Cartan (TTNC) geometry with a foliation in terms of equal
time hypersurfaces) and no condition on 7 having arbitrary torsion (full TNC geometry).

Just as in [4] we distinguish between type I and type II TNC geometry. Type I
is reserved to refer to the more familiar torsional Newton-Cartan geometry that can be
viewed as originating from the gauging of the Bargmann algebra [43] while type II is
reserved for the version of Newton-Cartan geometry that originates from the gauging of
the expansion of the Poincaré algebra as discussed in [4] as well as the present paper. The
difference between the two consists of a) the gauge transformation properties of m, and
b) the fact that in type II there is an extra field, namely ®,, which is not present in type
I TNC geometry. We note that when the clock 1-form 7, is closed the type I and type II
gauge transformations of m, agree and that furthermore the ®,, field decouples on shell
from the equations of motion of Newton-Cartan gravity. This explains why the type II
structure was not manifestly present in older approaches to TNC gravity. Nevertheless
it is important to understand the structure of the Bianchi identities of TNC gravity as
we discuss further in appendix C.2. Type II TNC geometry arises from gauging a non-
relativistic algebra that originates from a Lie algebra expansion, which can be viewed as
tensoring the Poincaré algebra with the polynomial ring in ¢”, with ¢ = ¢2, truncated
at NLO order (quotienting the algebra by removing all levels strictly higher than level
1). The resulting algebra has twice as many generators as the Poincaré algebra and has
the Galilei algebra as a subalgebra, corresponding to the LO algebra (level zero). In this
algebra the mass generator N (which is the level 1 Hamiltonian) is not central anymore,
see equation (2.82) and so the Bargmann algebra is not a subalgebra.



We also display the structure that follows from expanding relativistic Lagrangians in o,
where the Lagrangians can be the Einstein-Hilbert (EH) Lagrangian itself or that of matter
coupled to GR. The resulting equations of motion exhibit a cascading structure, such that
at any given order the equations of motion include those of the previous order plus a set
of new equations for the extra fields that appear at that given order. This is an important
feature as it implies that there is a unique Lagrangian describing the geometric fields that
arise at a given order in the 1/c? expansion and that this Lagrangian can be obtained by
computing the corresponding order in the expansion of the relativistic Lagrangian one is
interested in.

In order to perform the 1/c? expansion of the Einstein-Hilbert Lagrangian it is very
useful to express it first in terms of the fields 7}, and II,,,. This rewriting involves the choice
of a connection that is different from the Levi-Civita connection. This new connection has
the property that at leading order in the 1/c? expansion it provides us with a useful Newton-
Cartan connection. In this way we can rewrite the EH Lagrangian in a form that makes
it substantially easier to perform a large speed of light expansion. The general structure
and properties at any given order in the 1/c? expansion is then studied in section 3. We
work out in detail the expansion of the EH Lagrangian up to next-to-next-to-leading order
(NNLO). The leading order action has the property that its equations of motion restrict
the clock 1-form to be hypersurface orthogonal. This means that the geometry admits a
foliation in terms of equal time hypersurfaces, with Riemannian geometry on these spatial
slices, a case that is known in the literature as TTNC geometry [9]. This result is interesting
by itself as it shows that the dynamics restricts on shell to non-relativistic geometries that
are causally well-defined (at least locally) [60]. One of the main results of the paper is
the derivation of the NNLO Lagrangian, which is the Lagrangian that involves the type
II TNC fields described above as well as NNLO fields. However we show that, in case
we truncate the expansion after the NLO, we are allowed, without loss of generality, to
impose the TTNC condition off shell via a Lagrange multiplier. We refer to the resulting
Lagrangian as non-relativistic gravity (NRG). It is presented in equation (3.29). We also
present the equations of motion that result from this action.

In our earlier paper a Lagrangian on these type II TNC fields was obtained via an-
other method, which we review here including many details that were not given in [4].
This method employs the type II TNC gauge symmetries and constructs the unique two-
derivative action respecting this symmetry, starting with the correct kinetic term required
for Newton’s law of gravitation and then completing the full action. The result is presented
in equation (3.67). We also give the resulting form of the equations of motion that fol-
low from that action. We furthermore show that, as expected, the two Lagrangians (3.29)
and (3.67) are identical. The difference between the two non-relativistic Lagrangians stems
from the fact that slightly different geometric variables are used. Depending on taste and
type of application, one can work with either one of them.

In section 4 we discuss the general properties of matter coupled to type II TNC geom-
etry. We work out the 1/c? expansion of the energy-momentum tensor and relate this to
the responses, with respect to variations of the fields of the type II TNC geometry, of the
Lagrangians one obtains by expanding some matter Lagrangian order by order. We use



this to derive the general matter coupled equations of motion for non-relativistic gravity.
We also derive the form of the Ward identities resulting from various gauge invariances.
These provide the analogue of the conservation of the relativistic energy-momentum tensor
in the non-relativistic regime. We end section 4 by specifying what happens in the simpler
case when the clock 1-form 7, is closed which leads to NC gravity. We reproduce the
well-known equations of motion of Newtonian gravity in equation (4.60).

We then proceed with a detailed analysis of the non-relativistic expansion and coupling
of various types of well-known relativistic matter systems in section 5. In this section it
will become clear that it is the matter sector that decides whether the geometry must have
a closed clock 1-form, i.e. no torsion or whether TTNC geometry is allowed. We start with
the simplest case, namely that of a point particle. Already here the expansion exhibits a
rich structure, revealing that there are two distinct cases depending on whether one has
absolute time or one considers the more general case of TTNC geometry. For both cases
the geodesic equation is obtained. We briefly consider the case of adding an electric charge
and the role of the Lorentz force. As an illustration of the difference between Lorentzian
and Newton-Cartan geometries and the role of geodesics we also include a brief analysis
of two-dimensional Rindler spacetime. Here, we will also see an example of the fact that
because of the analytic structure of the 1/c? expansion, given a relativistic spacetime and
two different charts that are related by a diffeomorphism that is not analytic in ¢, the 1/c?
expansion of the two charts will give rise to distinct, i.e. non-gauge equivalent charts of
two non-relativistic spacetimes.

After this we treat the expansion of perfect fluids and show that there are different
regimes depending on how we expand the energy and pressure as a function of 1/c%. We
then turn to various important field theory examples, namely the case of a complex and a
real scalar field as well as electrodynamics. In the case of a complex scalar field we show how
we can expand this in 1/¢? such that we end up with the Lagrangian for the Schrédinger-
Newton equation. This novel off shell description of the Schrédinger-Newton system in-
cludes fields whose equations of motion tell us that the clock 1-form must be closed. In the
case of electrodynamics it is well-known that there are two limits, a magnetic and an elec-
tric limit depending on how we expand the gauge connection. We discuss the Lagrangian
descriptions of both the magnetic and the electric expansion of Maxwell’s theory.

A detailed and more extensive study of solutions is left for the future, but we conclude
the paper by presenting some of the simplest solutions of the non-relativistic gravity ac-
tion in section 6. In our list of solutions we first discuss two different expansions of the
Schwarzschild solution depending on whether we treat the mass parameter as constant or
as being of order ¢? when we expand in 1/c?, following [3]. In the former case we obtain
the well-known NC solution for a massive point particle while in the latter case we find a
non-trivial TTNC geometry with spherical symmetry. We then proceed by studying the
geodesics in this spherically symmetric TTNC background and we observe that the geodesic
equations of motion for orbital motion around a centre are the same as in GR. This can be
used to show that we can describe the three classical tests of GR using this non-relativistic
perspective [33]. Next we obtain the non-relativistic analogue of the TOV equation. The
main result here is that the resulting equations are again the same as in GR. Thus, the



physical structure of fluid stars can be correctly described by non-relativistic gravity. We
conclude by analysing cosmological Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric solutions for which it is shown that, in parallel with the results above for massive
objects, non-relativistic gravity yields the same Friedmann equations as one would obtain
from GR. We end the section with some comments about the NR expansion of anti-de
Sitter (AdS) spacetime in various coordinates.

The paper is concluded with a discussion and outlook in section 7.

Many of the more technical details are collected in various appendices. In appendix A
we discuss our notation and conventions. Appendix B provides a review of the main ele-
ments of type I TNC geometry. Newtonian gravity is presented in C. This appendix also
includes a discussion about the null reduction of GR (which is invariant under type I NC
gauge transformations) to contrast it with Newtonian gravity. We present an argument
showing that Newtonian gravity cannot originate from a type I NC gauge invariant the-
ory. Appendix D contains a collection of many useful identities in TNC geometry without
restriction on the type of clock 1-form we use. A large number of variational identities, nec-
essary for obtaining the equations of motion of the non-relativistic Lagrangians discussed
in the main text are also collected in appendix D. The final appendix E contains many
useful results that apply to TTNC geometries.

2 Expansion generalities

In this first section we set up the framework for working with 1/c? expansions of field
theories and geometry in a systematic way. A very useful so-called “pre-non-relativistic”
parameterisation of Lorentzian geometry is defined. This gives a convenient starting point
for studying non-relativistic (NR) expansions of the geometry in both vielbein and metric
formalisms. We then continue to show that a 1/c? expansion of a Cartan connection
taking values in the Poincaré algebra reveals the underlying NR local symmetry algebra of
non-relativistic gravity (NRG). With the tools needed to study 1/c? expansions of general
Lagrangians then fully developed, we are prepared for tackling the Einstein-Hilbert (EH)
Lagrangian and general relativity (GR). Finally, we also study Ward identities (WIs) and
equations of motion (EOMs) in “pre-non-relativistic” parameterisation.

2.1 Non-relativistic expansions

The distinguishing feature of non-relativistic (NR) physics is that in tangent space the
light-cone is flattened out completely because of the causal structure of spacetime. In
Lorentzian geometry the slope of the light-cone is 1/¢, with ¢ denoting the speed of light.
This means that in order to relate this to non-relativistic physics we need to perform an
expansion around ¢ = oco. With ¢ being dimensionful, what is meant more precisely by
this statement is that we set ¢ = ¢/y/o, with o a small dimensionless parameter which in
the non-relativistic expansion is expanded around 0. For convenience we choose units in
which ¢ = 1. We will consider in this paper the most conventional case of expanding in
even powers of 1/c, i.e. in ¢ = 1/c?. Thus, up to an overall factor of ¢ to some power,



actions and equations of motion of relativistic gravity and matter theories are studied in a
1/c? expansion.?

We begin by discussing some general considerations related to the expansions of the
fields [34]. Our starting assumption is that, up to an overall power of ¢ which will be
factored out, any field ¢’ (x; o) (with I a shorthand for all spacetime and/or internal indices)

is analytic in ¢ such that it enjoys a Taylor expansion around o = 0,

0 (50) = bl (@) + 0l (1) + 0%l (2) + O(c%), (2.1)

where qb{n) (z) indicates that this is the coefficient of ¢=". We will apply this expansion to
both the spacetime fields of relativistic gravity as well as other types of relativistic (bosonic)
fields that couple to relativistic geometry.

The first main interest of this paper is to consider the expansion of general relativity
(GR) itself, and hence we first turn to applying it to the fields characterising a (d + 1)-
dimensional Lorentzian manifold, which are taken here to be the relativistic vielbeine E/f,
with spacetime indices ;. = 0...d and tangent space indices A = 0...d. Importantly, we
need to explicitly choose the overall factors of ¢ in these, such that the remaining fields have
the expansion (2.1) starting at order o°. The light-cone structure of the spacetime implies
that the timelike vielbeine should scale different with ¢ as compared to the spacelike ones.
Thus we write the vielbeine and their inverses as

Ej} = cT, 04 + £507, (2.2)
EY = —c7tTreY + 869 (2.3)
where the flat metric is nap = diag (—1,1,...,1). Hence the spatial tangent space indices

a,b are raised and lowered with the Kronecker delta. We will denote this way of parame-
terising the vielbeine as the pre-non-relativistic parameterisation of Lorentzian geometry.
The fields T),, T", &, &l are assumed to be analytic in o = 1/c? and exhibit the Taylor ex-
pansion (2.1). Since the relativistic vielbeine satisfy the completeness relations Englfl =0y
and ELE;! = 67 we have the relations

T4 =0, TrEL=0, T,TF=-1, ErE)=20), ELEL=06L+T'T,. (2.4)

The vielbeine transform under the gauge transformations of general relativity as
6E;? = EEEﬁ‘ + A4 BEE , where =F is a vector field generating the diffeomorphisms and
A p = 7T A5 0% + LA A6 + A%,6716Y% corresponds to the generator of infinitesimal lo-
cal Lorentz transformations, where A 45 = —Ap4 and where we defined A% = ¢~ 'A;. The
factors of ¢! follow from demanding that the local Lorentz transformations respect the ap-
pearance of ¢ in (2.2) and (2.3). The inverse vielbeine transform as 0EY, = L=Ef — AP 4Bl
We thus find

0Ty = LTy, + ¢ 2AED (2.5
61 = L2€i + AT, + AE, (2.6
OTH = L=TH + APEF (2.7
0K = Lzl — APoEf + 2N TH . (2.8

“See [61] for a study that also includes odd powers in 1/c.



In terms of the geometric fields defined in (2.2), (2.3), the Lorentzian metric and its
inverse take the form

g = 1apELE] = =T, T, + 0 ELE7 (2.9)
1
g =nPELEY, = —5T'T" + suwErEY (2.10)

We will define the spatial part of the metric and its inverse as
™ = §oekey . T = 6uELE]. (2.11)
These transform under the gauge transformations as

6y = L2l + AT,E5 + ATLE, (2.12)
STIM = L2TTMY + ¢ 2N THEY + ¢ 2N TV EX . (2.13)

Note that we have the relations
T,I0" =0, T, =0, T, T = -1, I, 07 =6, +T"T,, . (2.14)

We will see in section 2.6 that the pre-non-relativistic form of the metric in (2.9) enables
to recast GR in a form that significantly simplifies its non-relativistic expansion.

The main goal at this stage is thus to rewrite GR in terms of fields whose 1/¢ expan-
sion starts at order ¢’ and whose leading order fields are unconstrained. Note that the
metric (2.9) does not satisfy these criteria because g,,, starts at order ¢® with a leading
order term that is constrained to be a product of two 1-forms. We thus need to write the
Einstein-Hilbert (EH) Lagrangian in terms of the fields 7}, and II,,. To this end it will
prove convenient to work with a different connection than the usual Levi-Civita connection
and consider what happens to the curvature of the spacetime with explicit factors of ¢
appearing due to (2.9). In the following we will denote the power in 1/¢ with an overscript
and leave the fields T}, and £} unexpanded (see also appendix A for notation conventions).

We can write the Christoffel connection I'f, = %gp A (Ougur + Ovgur — Orguv) as

) 23 O 29,
,=c Ch,+Ch +c=Ch,. (2.15)
Here we define o
wa = C[jl, + Sﬁy , (2.16)
with Cﬁy the “pre-non-relativistic” connection
1
Cf, =-T°0,T, + §HPC’ (Oullyg + 0,116 — 0,11,,,) (2.17)
and the remaining terms given by
(=2 1 1
wa = §T”Hp” (05T, — 0, Ty) + §T,,H”” (0T — 0uT5) (2.18)
1
Sﬁl, = QTP (0T, — 0,1, — T, LrT, — T, L7T},) , (2.19)
(z)p 1 1z
Cuu = iT LI, (2.20)



where all the Lie derivatives are with respect to T#. We emphasise that there is still the
implicit ¢ dependence of the background fields, which will be dealt with later.

It will be useful in the following to use the torsionful connection Cf, in (2.17) for
©)
calculating covariant derivatives. We denote this by V,, and the associated Riemann tensor

© ©)
R, is defined in the usual way. The covariant derivative V,, obeys

© © vp © y 1 vp ©)
V#TV =0, V#H =0, VHT = §H ETHpuy VHHVP = T(V‘CTHp)u . (221)

The Ricci tensor Ry, associated with the Levi-Civita connection is 1/c?-expanded as

PR 5 (=2 (©) )
Ry=c Ry +c R+ Ry +c "Ry, (2.22)
where

Ry = ST, 1,1 T, T, 2.2

;,LI/_Z;,LV apd fo s (3)
(=2 © (—21)/ (=2 y (—21)/ A\ (=2 y \ 2
R,uo - VVC;,LO' + CMO— A C}J)\SVO' - Cl/o’ X 20[;“/} Ao (224)
©) © 2 @y 2 @y © © A\ y
RMU = RMU - C,u)\ vo Ccr)\Cu,u - VILSVO' + VVS;LO' - 20[#1}]5)\0' ’ (225)
@ © @
Ryuo = V,C%, . (2.26)

It is useful to note from (2.19) that SﬁyT” = 0 and that the C-connection satisfies

Ch, = ~LrT, + 8, log \/~det (~ToTs + Tlag). (2.27)

One can furthermore derive that the components of the Ricci tensor obey

(=2) 1
"R, = iﬂaBHP”TapTﬂg, (2.28)
(-2)
TFTYR,, =0, (2.29)
© ©)
"R, = "R, , (2.30)
©) ©
THTYR,, = TMTY Ry, , (2.31)
2
"R, =0, (2.32)
@)
TFTYR,, =0, (2.33)
where we defined
T = 0,1, — 0,1}, . (2.34)

Identities (2.29), (2.30) are only true up to a total derivative and we point out that inte-
gration by parts gives an extra term proportional to torsion:

©
E7'9,(EX") =V, X" + T, TX", (2.35)



for any vector field X* and where the integration measure is given by

cE=+—g= c\/—det (—TaTp + ap) - (2.36)

It follows that the Ricci scalar associated with the Levi-Civita connection takes the follow-
ing form when expressed in terms of pre-non-relativistic fields and the C-connection

2 1 ©

©
R = ZH“”HpO—T‘upTyg —'I— HMVRHZ/ - ETMTVR,LLU . (2.37)
This result will be useful when we expand the Einstein-Hilbert Lagrangian in section 2.6.

2.2 Vielbeine

By assumption the fields are taken to be analytic in o = 1/c? and they thus admit a Taylor
expansion. For the vielbeine this means that they can be expanded to subleading orders as

T,=7,+c*my,+c*B,+0(c?), (2.38)
gl =el 4+l + 0. (2.39)

For the inverse vielbeine we have

TH = o" 4 ¢ 2 (v“vpmp — efv”wﬁ) +0(c™), (2.40)

EW =el 42 (vFmg — efjegﬂ';) +0(c™), (2.41)

where m, = efm, as well as the 1/c? expansion of the completeness relations (2.4). The
leading order fields in (2.38), (2.39) satisfy the completeness relations

Tuep =0, ole =0, mof=-1, eg‘ei =00, el =1 ok, (2.42)

which are simply the leading order counterparts of (2.14).

Let us now turn our attention towards the gauge transformation of the various fields.
The components of the infinitesimal local Lorentz transformation A4 g and diffeomorphism
generating vector =# are expanded as

=P PO, (2.43)
A =X+ 2% + O(c™Y), (2.44)
A% = \% + CiQO'ab + 0(674) s (2.45)

where A% = ¢~ 'A% This ensures that the gauge transformations respect the 1/c? expan-
sion of the fields. The interpretation is that &* is a diffeomorphism generating vector field,
while (# (being subleading) generates gauge transformations that act on the subleading
fields m,, and . They will be studied in more detail below. In particular, we will see that
A% is a local Galilean (Milne) boost and 7n? its subleading version, while the parameter A%,
corresponds to a local spatial rotation and ¢%, its subleading version.

It is important to realise that because of the analytic structure of the 1/c* expansion,
given a relativistic spacetime and two different charts that are related by a diffeomorphism

~10 -



that is not analytic in ¢, the 1/c? expansion of the two charts will give rise to distinct, i.e.
non-gauge equivalent charts of two non-relativistic spacetimes. We shall give two examples
of this in sections 5.2.1 and 6.6 for the 1/c? expansion of 2-dimensional Rindler spacetime
and of anti-de Sitter (AdS) spacetime in any dimension.

Expanding the parameters and fields in (2.5)—-(2.6) leads to the following transforma-
tions deduced from collecting terms order by order in 1/c%:

0Ty = LeTy,
dmy, = Lemy, + Loy + Aa€l

de = Leef, + A7 + Ayl

omy, = Lemy, + Leey, + A*my, + 01, + )\abwz + J“bez )

For the inverse vielbeine the leading order terms transform as

dvt = Levt 4+ Nl (2.50)
et = Leek + N\lel . (2.51)

In appendix B we give a review of (torsional) Newton-Cartan (NC) geometry.® By
contrasting this with the 1/c? expansion of a Lorentzian geometry we see from (2.46)-
(2.49) that there are two noticeable differences. The first one is the transformation rule for
m,,. This agrees with equation (B.3) only when 7, is closed. Secondly the 1/c? expansion
gives us a new field, namely 7. For these reasons we will refer to the geometry originating
from the 1/c? expansion as type II NC geometry and the version of NC geometry reviewed
in appendix B as type I NC geometry.

2.3 Metric

In section 2.2 we found that T),, T* are expanded as in equations (2.38) and (2.40), respec-
tively. The fields II,,,,, [T, defined in (2.11), admit the following 1/c? expansions

M, = hyy + ¢ 20, + O0(c™?), (2.52)
" = R 4 2 (2hﬂ%“>mp - hﬂﬂh”%pg) + O, (2.53)
where we defined, in terms of the vielbeine of section 2.2, the spacetime tensors
hyw = 5abeﬁeg, (2.54)
hH = §ebelel | (2.55)
P = Oap (efﬁrfi + eﬁwﬁ) i (2.56)

With these conventions the expansion of the metric (2.9) can be written concisely as

G = —CQTMT,, + }_Lu,, + c_2ff>w, +0(c™), (2.57)
g =R — 72 (8MY + WPRYO D, ) 4 (2@%”@ + Y“”) +0(c9), (2.58)

5The relation between the vielbeine e, and hy,, used in appendix B is given in the equation (2.54).
Equation (2.55) gives a similar result for the inverses.
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where we defined the tensors

P = By — 27, (2.59)
ot = ot — hHPmy,, (2.60)
- 1
¢ = —v'my, + §h“"mum,, , (2.61)
Py = Ppy — mymy, — 2B(,7, (2.62)
and we have
T Y =0. (2.63)

We will not need any other components of Y#”. Notice that the contribution from the
O(c™) term in T}, the next-to-next-to-leading order (NNLO) field By, enters in @, .

The leading order (LO) terms in the expansion of the metric and its inverse define the
metric structures of the non-relativistic geometry. This is thus given by the clock form via
7,7, and the inverse spatial metric h*” which has rank d and thus one zero eigenvalue.
Its kernel is spanned by 7,. The objects v* and h,, are not metric tensors because they
transform under the Milne boosts with parameter A* as can be seen from equations (2.48)
and (2.50). We have the Milne boost invariant relations

T =0, ViR, =0, Tt = —1, huph?” = 5Z + "7, (2.64)

The next-to-leading order (NLO) fields m,,, ®,,, are to be thought of as gauge fields in this
context. The 1-form m,, is related to the Newtonian potential

= —vk'm,,. (2.65)

The NLO field @, is less well-known but also appeared in our previous work [4].

Under a diffeomorphism generated by Z¢ the metric transforms as dg,, = L=g,.-
Expanding the transformation of the metric using Z* as given by (2.43) we find that the
fields in the expansions (2.57)—(2.58) transform as

0Ty = LeTy (2.66)
Shyy = L'JLW — T LeTy — T Loy, (2.67)
ORMY = LM, (2.68)

oM = Leot — WP LeT,, (2.69)

0 = Le® — Loy, (2.70)
6Py = Le®py + Lchy . (2.71)

Some of the fields appearing in the expansion of the vielbeine transform under Milne boosts
with parameter A*. The combinations BW, o and (i’/w that appear in the metric are all
Milne boost invariant. In fact they are also invariant under the spatial rotations A%, and the
subleading transformations with parameters n* and ¢%, that appear in the transformation
of ;.
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Depending on the setting we will either work with the fields that appear in the expan-
sions of T, and II,,, i.e. 74, my, hy, and ®,, or we will work with the fields that appear
in the expansion of the metric, i.e. 7, B/w and @W. The transformations of the first set of
fields can be readily found from the results in this and the previous section and we have

(Sh#l/ = Eé'h‘uy + Tu)\y + Tl/)\/l, 5 (2,72)
dmy = Lemy + Ay + OuA — Aay, + R (o (0,7 — OuTy) (2.73)
5B, = Le®, + 22q (T(,uﬂz) + m(uef/‘)) 20068, + 20K + Vi + Vilu,  (274)

where A, = €\, is the Galilean boost parameter which obeys v# X, = 0, 7, is the parameter
for subleading boosts and where we wrote the subleading diffeomorphisms (* as

M= —Avk +h"G, . (2.75)
We furthermore defined the torsion vector
ay, = LoyTy, (2.76)

and the extrinsic curvature

1
Ky = =5 Lol (2.77)

It is convenient to define a covariant derivative with respect to the torsionful connection
I, defined as the leading order of Cf, (2.17):

. 1

re, =00 _,=—v0um + §hpcr (Ophwo + Ouhye — Oshyw) - (2.78)
This is the minimal collection of terms that transforms as an affine connection under dif-
feomorphisms, the remaining terms in the expansion of the Levi-Civita connection are
tensorial. f‘ﬁy is a Newton-Cartan metric compatible connection satisfying the proper-
ties (D.2)—(D.5), but it does transform under local Galilean boosts.

2.4 Poincaré algebra

It is well-known that the properties of Lorentzian geometry can be understood by starting
from a Cartan connection that takes values in the Poincaré algebra. It is therefore natural to
study the 1/c? expansion from this algebraic point of view using the method of Lie algebra
expansions. The latter has been considered e.g. in [37-39] and recently been applied to the
1/c? expansion of the Poincaré algebra in [33] and subsequently in [40, 41, 62].

Writing the Poincaré generators as Tt = {H, P,, Ba, Jab }, where H is the Hamiltonian,
P, the spatial momenta, B, the Lorentz boost and J,; the spatial rotations and re-instating
all factors of o in the structure constants, the Poincaré algebra becomes

[H7 Ba] = Paa [Paa Bb] = U(SabH [Baa Bb] = _O-Jab)
[Jaba Pc] - 6{1ch - 5bcPa 5 [Jaln Bc] - 5acBb - 5cha 5
[Jabs Jed] = SacTbd — ObeJad — SadJbe + ObaJac - (2.79)
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The Cartan connection is
1
A, = HT, + P&} + BaQ," + §Jab§2“ab, (2.80)

where the boost connection 2,* and rotation connection Qﬂab together form the usual
Lorentz connection. Let us schematically write this as A, = TI.Ai. If we now expand the

@2n
gauge connections Aﬁ =3 U”Aﬁ then we obtain the new generators Tl(n) =Tr®d",

where n > 0 will be referred to as the level. One then obtains an algebra by expanding in
the basis of generators T, with nonzero commutation relations of the form [33]

[H@n) (n)} plm+n) [Pgm), Bén)}zéabmmm) [Bgm)7 B{gn)}:_ Jc(lgwnm’

IS5 PO = 0P = 0y P 150, BOY| = 60 BT — b, BEE,

ab

IS T8 ] = Gac ) = e ) = Baa T G IS (2.81)

We can quotient out all generators with level n > L for some L which amounts to
truncating the 1/c? expansion. At the lowest level L = 0 the algebra is isomorphic to
the Galilean algebra when identifying H = HO P, = Péo), G, = B((IO), Jap = Jég), where
G, is the Galilean boost generator. At the next level L = 1 we have furthermore the
generators N = H(l), T, = Pél), B, = Bgl), S = J(gz). Written out in detail the non-zero

commutation relations of the algebra obtained by modding out all levels n > 1 are

[H,Ga] = [Pa s Gb] = Néab,
[N, Ga] = [H,Bg] =T, [Sab s Pe] = dacTy — OpcTa
[Sab , Ge] = 0acBy — dpeBa, (Ga,Gp] = —Sap,
[Jab s Xe] = dacXp — 0peXa (2.82)
[Jab s Jed] = 5achd Obedad — SadJbe + ObdJac »
[Jab s Sed] = SacSbd — ObeSad — 6adShe + ObdSac ,

where X, denotes P,, T,, G, and B,.

In particular one finds that N = H® is not central and the Bargmann algebra is not a
subalgebra. This algebra was determined in [4] to be the relevant local symmetry algebra
of type II Newton-Cartan geometry. As pointed out in [33], the fact that one does not
get the Bargmann algebra, gives a group theoretical perspective on the difference between
type I and type II Newton-Cartan geometry.

Let us briefly review how we can obtain type II NC geometry by gauging (2.82). This
procedure has previously been studied in [12, 43] for other local symmetry algebras and is
a powerful way to construct relevant non-relativistic geometries.® Consider first a Cartan
connection A,, that takes values in the algebra (2.82):

1 1
Ay = Hry + Paels + Nmy + Toml + Gawy,® + BaQ," + 5.]ab(,uﬂb + 5Sabﬂlﬂb , (2.83)

6See also [63] on gauging of the Schrodinger algebra.
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whose adjoint transformation is given by
dAd AM = aMA + [A'u , A] = Hépq Ty + P,oaq eZ + Ndag my + Tudaa 7TZ + ..., (2.84)

where daq denotes the adjoint transformations. Define a new set of transformations via

6Tu = 0Ad Tu — g/Rw/(H) ) (2'85)
b6t = baq el — € Ry (P), (2.86)
6mu = dad my, — fVRM,,(N) - CVR/W(H) ’ (2'87)
- (2.88)

(57TZ = 0Ad ﬂz — &R, (1)
In here R, (X) denotes a curvature corresponding to generator X, defined by
Fu =0,A,—0,A,+ A, A
= HR,y(H) + PRy (P) + NRy(N) + TuRp*(T) + ... | (2.89)

from which the R, (X)’s can be determined. Without loss of generality” as there as many
parameters we can take for A (appearing in the adjoint transformation) the following gauge
transformation

AN=HE 1, + P&’el + N (§"my +C"1)) + T, (§77), + (Vel) + G (€"w,* + \Y)
1
+ Ba (gygya + guwya + na) + §Jab <£waab + )\ab)
1
5w (€0 4 ™ 4 o) (2.90)

If we now compute 07, etc as defined in (2.85)—(2.88) we reproduce the transformations of

a
I

of Lorentzian geometry to subleading order can be viewed as the gauging of the level 1

Tus My, €, and 75 given in equations (2.46)—(2.49). This shows that the 1/c? expansion
expansion of the Poincaré algebra. More generally, this procedure can be used to any order
in the 1/c? expansion to obtain the relevant geometric fields describing gravity to that
particular order.

2.5 Lagrangians

We now present the systematics of the 1/c? expansion of a given theory at the Lagrangian
level. Consider a Lagrangian that is a function of some field ¢(x; o) and its derivatives, i.e.
L = L(o,$,0,¢) where we also allow for an explicit dependence on the speed of light. We
now want to expand the Lagrangian and ¢ according to (2.1). Further below we generalise
this to a Lagrangian depending on multiple fields. The explicit ¢ dependence can for
example come from the expansion of the background metric or matter fields as well as
from parameters appearing in the kinetic or potential terms. Assuming the overall power
of the Lagrangian is 0= V/2 = ¢V, we define £(0) = o™V/2L(0, ¢, d,$) such that L starts at
order zero. Now we can Taylor expand £(o) around o = 0, i.e.

F(o) = £(0) + o£/(0) + %azﬁ"(()) + 0%, (2.91)

"Note that this is related by a redefinition of parameters to an arbitrary linear combination of the gen-
erators.
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where the prime denotes differentiation with respect to 0. We have

d 96 0 00,6 0
do ao— T 9006 " 00 90,6 (2.92)
so that
o Of 060L 09,6 O
F(o) = £(0) + o (80 Y o090 T o aam) B (2.93)

5 oL 9L(0) dL(0)
=L(0)+0o (80 o= + ) a¢ 0 + 0u(2) 8a“¢(0)> e (2.94)

Hence we can write an expansion in o = 1/c? as

( N) (2 N)

- (4-N)
L(c?¢,0,0) = NL(o) =N Lo+ Lapo + N Lanpo + 0N, (2.95)

where all the c-dependence is in the prefactors. The task is then to determine the coeffi-
cients. These can be found to be given by

v
Lo = L(0) = ﬁLo(ﬁb , 0ud(0)) 5 (2.96)
. N )
@-N) . oL 0 Lro d Lro
Lo =L'(0)= —| + + 9
NLO (0) or| b(2) b, O @) 90,010,
oF 5Ly
LO
_ N . 2.97
or| b2) 5910) (2.97)

Hence we see that the equation of motion (EOM) of the subleading field of the subleading
action is the EOM of the leading field of the leading action. A very similar calculation
gives for the NNLO Lagrangian

- (=N)
(4—N) _1 - B 16‘27[: 1) 8£ (5£LO
NNLO = 25 (0)= 200%| ¢(2) 510 90 = lo=0 ¢(4) 500,
[, oz 0Ly 2Ly
¢2 LO ¢ LO +8 (Z) 8V¢ LO
[ ae, R0 550 5@ DD 5E,00)0 0000 |
(2.98)

The second line forms the second variation of the LO Lagrangian and is a quadratic form
involving the Hessian of the LO Lagrangian. It can be shown that

5 4£N) 5 (2ZN)
NNLO NLO
= 2.99
09(2) 99 (0) (2.99)

Combining this with the fact that the EOM of ¢4 gives the EOM of the LO Lagrangian
we see that the NNLO Lagrangian reproduces all of the EOM of the NLO Lagrangian.
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When there is more than one field ¢ then we also get mixed derivatives of the LO
Lagrangian in the second line of (2.98). We can generalise the result by adding an index I
to ¢ as follows at NNLO

=) =)

(“-N) 15 10°L 5 oL §Lro 1 9% L1o
Lanto = 5L£7(0) = 52 om0 + Oy~ lo=0 + Sy 7> + 5 |00yl 5 2
MO 2907170 T 9 60}, 9o |70 T 9 doly, 2| PP agl 067
0211 2 Lr
+ 201 0y 1 + Dl Dy Ty L0 ] : (2.100)
BT g1 0(0u0]y) DT P 0(0,08)0(0,07],)

and similar at pre-leading orders.

The expansion can be straightforwardly extended to include higher orders in ¢. Doing
so we will find relations analogous to (2.99), i.e. lower-order EOM are reproduced when
going to higher orders.

2.6 Einstein-Hilbert Lagrangian

As a first step towards a 1/c? expansion of the Einstein-Hilbert (EH) Lagrangian, we must
discuss its dimensionful normalisation. When we write g,,, in terms of T, and II,,,, the line
element maintains its property that its dimension is L? with L = length. Thus T, dx* has
the dimension of length (if we set ¢ = 1) or time (if we keep ¢) and II,, dz*dz” has the
dimension of L2. The measure Ed?xzdt defined in (2.36) has dimensions TLY. Since we
have /—g = c¢E we take the EH action to be

3

- 167Gy

/ddxdt\/?gR. (2.101)

Using the results of section 2.1, in particular equation (2.37), we find that the EH La-
grangian can now be written as

C6 5

Lry = ———L(0,T,11,0 2.102

EH 167Gy (O’, y Ly )7 ( )
where E(J, T,11,0) only depends on fields analytic in o. The prefactor of c® follows from
the fact that the Ricci scalar is order ¢ and \/—g is order ¢. In here £ can be written as

L=E iHWHWTM,TW + JH’“V(]%)W, - JQT“T”(}%W : (2.103)
This is the form of the EH Lagrangian to which we can apply the results (2.95)-(2.100).
At this stage, without the expansion of the fields T}, and II,,, equation (2.103) is
completely equivalent to the Einstein-Hilbert Lagrangian. This form of the Lagrangian is
crucial as it establishes a starting point for a non-relativistic expansion of general relativity.
In principle one could expand it to any desired order, keeping a manifest non-relativistic
symmetry structure at each order. This is expected to be closely related to the usual
post-Newtonian expansion of general relativity, except that we here work in a manifestly

covariant framework and do not make the assumption that the fields are weak.
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We define the variation of the Einstein-Hilbert action as

6

c
81G N

1
0LEH = — E <E55TM + QES‘”&HW) , (2.104)
and the coupling to matter through a given matter Lagrangian Limat = Lmat(0, ¢, 0,0)
starting at order O(cV) with variations defined as

mat

1
8Lmat = ¢VE (El’jlatéT“ + 5EW 5H,w> , (2.105)

where we left out the variations of the matter fields. This gives the Einstein field equations
of motion in the form

El =8rGncN OE!

b B = STGNN O

mat *

(2.106)

The equations of motion satisfy two Ward identities as a consequence of diffeomorphism
invariance of the action as well as invariance under local Lorentz transformations acting

on T, and II,,, as expressed in equation (2.12).

2.6.1 Energy-momentum conservation

Diffeomorphism invariance implies the equivalent of the divergencelessness of the usual

Einstein tensor, namely
© ; © » y 1 "
Lo\ Vu+LrTy ) By + 1y | Vo + LoT, | EYY + EJT,, + §T'DE9 LI, =0. (2.107)
Under a local Lorentz transformation the equations transform into each other as
¢PEYES+ BYYTES = 0. (2.108)

Likewise the matter Lagrangian must be invariant under diffeomorphisms and local Lorentz
transformations that act simultaneously on the matter fields and on the geometric fields
they couple to. On shell this leads to the relativistic conservation law for energy-momentum
conservation as derived from diffeomorphism invariance of (2.105) (where we leave out
the diffeomorphisms acting on the matter fields which is justified on shell as these are
proportional to the matter equations of motion),

(©) ©) 1
1, <Vu + ﬁTTu) Erlilat + 1L, <Vu + ﬁTTu) Eri,;t + EgatTHP + iTpErlgajatﬁTHlW =0,
(2.109)
with projections
© " 1w
0=(Vu+2L7T, | By, + §Emat£TH;w’ (2.110)
© Y

0=11"I1,, ( V,+ LT, | B, +T1°°T,,EY . . (2.111)

The 1/c? expansion of these results will be studied in section 4.2.
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Assuming that the matter fields are inert under the local Lorentz transformation we
find that for the matter currents we have (off shell)

0=c 2B &+ Ebn T.E . (2.112)
The currents Ef ., E!”. are related to the usual Hilbert energy-momentum tensor

TH via

-1
c 1
OLmat = —5V/=gT" 09 = S ET" (—2¢*T,0T), + 611,
Lo

=NE <El’jlat5Tu + 2Egat5HW) , (2.113)

so that
By = —¢ NP2 T, (2.114)
Evphy = Newr (2.115)

where the latter equation follows from writing II,,, in terms of the spatial vielbeine and
varying those. This is clearly consistent with the Lorentz boost Ward identity (2.112) which
is of course nothing other than the symmetry of the Hilbert energy-momentum tensor. The
power of ¢ in the first equality of (2.113) is fixed by demanding that the Einstein equation
reads G, = %T w- The conservation equation (2.109) is equivalent to that of the
Hilbert energy-momentum tensor

vV, =0, (2.116)

where the covariant derivative is taken with respect to the Levi-Civita connection.

2.6.2 The pre-Poisson equation

An interesting combination of the equations of motion comes from a particular rescaling
of the metric components:

0T, = awT),, 611, = BwlIl,, , (2.117)

where o and [ are numbers. We keep the scalar function w arbitrary. To find the equation
of motion of w the following results are useful

d
0y log B = <a+25>w, (2.118)
Ow (H‘“’H”“TWT,,U) =2(a— ,B)wH“”Hp”TM,TW , (2.119)
1
0,Cf, = —aT T, + BTy, D)0 — 5 BT T Dot (2.120)
(©) (©) ©)
Ow <H‘“’RW> = —BwH‘“’RW — (d—1)pwll?? <Vp + ﬁTTp> LT, , (2.121)

©

L© L© d—2 ©
8 (T“T RW> = —20wWT*T" Ry, — (a + 2/3) WV, (T”wV,ﬁ“) S (2122)
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If we now set

a=—(d—2), 68=2, (2.123)
one obtains
6
OwlEH = — d—1)wFE
wbEH 87rGN( Jw
1 v o v © 2 V(C)
X ZH“ n°T,,Te + o™\ V, + L7T, | L7T, + oc“T'T Ry, | - (2.124)

Expressing the left hand side using the chain rule in terms of variations of the Lagrangian
with respect to the T}, and II,, and using the Einstein equations (2.106) this this can be
seen to be equivalent to

8tGncN 0 [—(d—2)E!, T, + EX 11,,] =

mat mat
©

1 ©)
—(d-1) <4H“”HP"TWTW + ol (vu + ETTM> LrT, + azT“T”R,W> . (2.125)

It will turn out that this equation, when expanded in o = ¢ =2

, contains important equations
like the Poisson equation and the sourcing of Newton-Cartan torsion. This will be shown

in section 3.1.3.

3 Non-relativistic gravity

In this section we will use the results of the previous section to obtain the action and
equations of motion (EOMs) that result from the 1/c? expansion of general relativity
(GR). In particular we will focus on the theory that governs the dynamics of the leading
order (LO) and next-to-leading order (NLO) fields in the expansion of the metric. For
definiteness we refer to this as “non-relativistic gravity” (NRG). As was shown already
in [4] this includes Newtonian gravity but goes beyond it, as it also includes geometries
with gravitational time dilaton.® We discuss in this section two distinct methods to obtain
non-relativistic gravity. We start with the direct approach which uses the 1/c? expansion.
Alternatively one can follow a symmetry-based route which uses gauge invariance, from
which a unique two-derivative action can be obtained given a kinetic term that is required
to include Newtonian gravity. Satisfyingly, we will show that the two methods lead to the
same action, though in a slightly different form.

3.1 Theory from 1/c? expansion

3.1.1 General structure

In this section we want to determine the Lagrangian that arises when we expand the
fields in (2.103) using the methods of section 2.5. This means that we will end up with
a theory that is expressed in terms of the fields (;5{0) = {7u, huv}, qb(IQ) = {my, ®,»} and

8We emphasise that our methods can be used in principle to obtain the dynamics of the fields appearing
to any order in the large speed of light expansion of GR.
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(ﬁf 0= {B,, ¥ }. In the next section we will rederive similar results in terms of the fields
Tis B,“,, i)W that appear in the expansion of the metric.
The 1/c? expansion of the Einstein-Hilbert (EH) Lagrangian will take the form

s (GO ) , 2 3
Len =c | Lo+ 0 Lnro +0° Lanro +O(07) | . (3.1)

We now define for n € N, including zero, the equations of motion of h,g and 7, of the
N"LO Lagrangian as

(2n—6)
1 @”ﬁ%::__6715 LNn1.0 (3.2)
160Gy " Shop '
(2n—6)
1 <2"7§):_6—1Mﬂ 53
StGy T 0T '

where the Galilean boost invariant integration measure of both type I and type II Newton-
Cartan (NC) geometry is given by

e = (—det (—1,7, + h,w))l/2 . (3.4)

These equations of motion will also appear in the 1/c? expansion of Ef, Ef”, defined as
the response to the variations of T}, and II,,, respectively (see (2.104)). We will give the
explicit relationship between the two in section 3.1.3.

When we go beyond leading order (for which n = 0) we encounter subleading fields in

the Lagrangian. For example (EiILO depends on both LO fields 7, h,, as well as on the
NLO fields m, and ®,, etc. At order N"LO there are 2(n + 1) fields, each of which has its
own equation of motion. However, the equations of motion that appear at order N*~1LO
are all reproduced at the nth order, see for example (2.99). The additional equations
appearing at order n that are not already present at order n — 1 involve the nth order
subleading fields. For the NLO fields we define in analogy with (3.2)

(2n—6)
1 (2n7é5)5 _ _6_1 5 EN"LO (3 5)
167Gy * §®n5 '
5(2n76)
1 @9 _10 Lnn»ro
= - _— 3.6
StGy ™ ¢ ome (3.6)

(=6 (=6)
where Géﬁ = Gy, = 0 because ®,,,, m, do not appear at the leading order. In particular

because of (2.99) we have

25 CHe (6
G =6y =a", (3.7)
A _tn o

The structure of the expansion of the equations of motion is summarised in figure 1.
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Figure 1. Structure of the equations of motion in the 1/¢? expansion, of which many will enter in
the Lagrangian at subleading orders. Because of the way the EH Lagrangian is expanded and the
property (2.99) there will only be two new EOMs at each order to solve, the remaining ones being

recursively equal to those of the previous order. Notice that when we impose TTNC off shell, all
the outermost equations are zero since the LO EOMs are o 7 A d7 as explained in section 3.1.2.

3.1.2 NNLO Lagrangian: non-relativistic gravity
Using (2.96) we find the leading order part of the EH Lagrangian Lgy given by (2.102) to be

(=6) E 1 e

1 NN

Lro=—++— -1I"1"T,,T, = 3.9
L0~ T6rGy 4 wetve| T 16mGy 4 TupTve s (3:9)
where we defined
Ty = OuTy — OuTy, . (3.10)
With the above conventions we can then write the variation of the leading order La-
grangian:
(=6) 1 (*6& 1(*6&5
5£LO = _87TGN6 GTéTOé + §Gh 6haﬁ s (311)
where the leading order equations of motion are
s 1 1
Ghe — — " W T o b SRR R T (3.12)
G4 = Tppepp o 4 g hvppe L e=10), (cht o 1
=3 TupTuvet™ + 20 Typ + 2¢ Ou (e Tup) - (3.13)

(-6
Contracting GZTL with 7, tells us that on shell
PR T, Te = 0. (3.14)

As this is a sum of squares it implies that h#"h#?7,, = 0 and thus that 7 Ad7 = 0 on shell.
This is the Frobenius integrability condition for the existenc of a foliation with normal
1-form 7 = NdT where N and T are scalars. This implies that there is a foliation of the
Newton-Cartan spacetime in terms of hypersurfaces of absolute simultaneity, foliated by
leaves of constant 1. The on shell geometry arising from the expansion is thus a twistless
torsional Newton-Cartan (TTNC) geometry [9] (albeit of type II but that distinction only
affects the gauge fields defined on the geometry described by the LO fields 7, and hy, ).
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This completes the discussion of the LO Lagrangian. We will continue with the
NLO Lagrangian which can be obtained from (2.97) generalised to include multiple fields.
From (2.97), (2.102) and (2.103) we can see that one first of all needs to compute the
derivative of (2.103), which gives

oL

— ET™R
do| "

=0
where we recall that RW is defined in (A.8). Using (2.97) this combines with the leading
order EOMs contracted with the subleading fields so that we obtain

= eh" Ry, (3.15)

o=0

(24) e
NLO — —
© I7G N

We will refer to this Lagrangian as the Lagrangian of Galilean gravity. This theory was

gy Gy L
—§h R“y + GT my + §Gh q)/ﬂ, . (316)

studied in [64] using a first-order formalism. Equation (3.16) can be related to the La-
grangian appearing in that work by a specific choice of the undetermined Lagrange multi-
pliers that appears. That theory also has the scaling properties described in section 2.6.2.
All the leading order equations of motion are included in the NLO Lagrangian as they are
obtained by varying with respect to the subleading fields. The 7, and h,, equations of

motion are
=9 1 . . .«
Gl =3 [2 (h"PhY7 — W PP )N K py +0" WP R+ (Vi +2ay,) h“"h””Fpa} o, (317)
o § 1 . . .
G = hiPhve (RW—QhWh“ARHA— (Vutau) av+huwh™ (Vitag) aA> o, (318)

where the dots denote terms that vanish on shell upon using the m, and ®,, equations
of motion. These extra terms can easily be calculated from m, and ®,, variations of the
(=9 (=2) (=4 (=2
NNLO Lagrangian (3.20) below using G¢ = G%, and G%ﬁ = Géﬁ.
The NNLO Lagrangian is found from (2.98). For that we need the second order
derivative of £ which reads
L
do?

© .
= —2ET'TYR,, = —2ev"v" Ry, . (3.19)

o=0

o=0
Consider the general form of the Lagrangian (2.98). Adapted to the case of the EH La-
grangian we have the general result

N ! Ho¥ R O (en Rt Doy (eh IR
NNLO = 167Gy (—ev vl + maa (6 uu) + aﬁéhcxﬁ (6 uu))
5L 5L 1 9L, 9L,
p 9LLo Okro 1 O7LLo o, LO
MR e Tl UL i et mep T
1 9r, 0°L, 9L,
TR R JOcdliad LORNEY S il SR UP . e atlind LN
2 P Dby T B e 0B,y T B, 0(0,m)
(—6)
1 0*L10
) vilto .2
RO S o By (3.20)
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The term in square brackets is the second variation of the LO Lagrangian and we used

(=6)
that L0 does not depend on derivatives of hy,. The field v, is the NNLO field in the
expansion of II,,,,. The term in square brackets is given by

e
167G N

[.]= (ih“”h”"F#prg + %@hl‘ph”aTwFpg + ih“@mhﬂﬂh”mﬁm
—h“o‘hwhm@ngwFaﬁ + h“amav*BFﬁwhWTW + imahaﬁv"’@mh“phwmy%a
—mah* B WP B g T T + é@hﬁwmhﬂphwwrpg - %fb@gvh"ﬁ [ e
+3i2 (ha%aﬁ)Q PR T Ty — %6havh“%ﬁq)whﬂph”mﬂpg

%mé D shH PP D s hY o T T e + %h“”h”‘5<1>75<1>a5hpﬁh”07uy7pa

1
+1h“o‘hpﬁ<l>a5h'”h"5 cpygruyTp(f) : (3.21)

where
Fu = 0ymy — 0ymy, — aymy, + aymy, (3.22)

which can be thought of as the field strength of m, (for the torsional U(1) transforma-
tion (2.73)). The terms in (3.21) can be written as

e

L= 167G x

1
<4h“ph”"FWFpa + huphVUTMVXpU) : (3.23)

where X, is some tensor. With the help of the results of appendix D.4.3 it can be shown
that (for general 7,,)

% (eh™ Ry) = e (—v®h*™ Ry, — 2 (WPR7® — hP7hH) V. K o) (3.24)

Sy (eh" R,,) = eh#*h"? [ — R+ %hwhm’épa + (Vi +ay) ay — hpwh? (V, +ay) aq
1. .

- §Vp (UpTw,):| +e(Vy +2ay,) (h“”hp(av5)7p0> ) (3.25)

where we used that (D.35) yields

5Tf‘fw = —UPV”(ST,, + WP K070 (3.26)

- 1 1 1
only, = §vﬁhpamy(5haﬁ - iv’\hp"ngdhw — iv)‘hp”ﬁwéhl,/\

1 . § §
+ 5hﬂff (Vubhuo + Vibhue — Vobhu) (3.27)

We note that the term in square brackets in (3.25) is symmetric in a8 due to the fact that
the antisymmetric part of the Ricci tensor is

V, (0PTw) - (3.28)

N |

Ry = Vipay) —
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The reason we do not need to use X,, is as follows. The terms involving the NNLO
fields B,, and 1), are both also of the form eh*’h"°7,, X,,. Furthermore the EOM of the
NNLO fields lead to the familiar condition h#*?h*?7,,, = 0. This means that any variation
of en*”h”7,, X, that is proportional to h*?h"?7,, = 0 does not contribute on shell. It
turns out that the only variation of eh*h"?1,, X, that contributes on shell is the variation
of 7, except for the special case o7, = {17, for arbitrary 2. Put another way, terms of
the kind h*’h"?7,,X,; can be ignored except for variations of the type h*”d1,. These
variations give us an equation for B, and so one arrives at the important conclusion that
if we only care about EOM for the NLO fields we can ignore the term eh#*’h*?7,, X, in
the NNLO Lagrangian as well as the terms involving the NNLO fields. Effectively we can
set W*?h"?1,, = 0 i.e. impose the TTNC condition 7 A d7 = 0 off shell. If we do this we
are only allowed to vary 7, as 67, = Q7.

This procedure gives us what we call the non-relativistic gravity (NRG) Lagrangian:

2 e 1
— - - = wp Vo _
LNrG = LNNLO TAdT:o+ 167G n 2Cpah h¥? (0,1, — 0y Ty)
- 16;GN RPRY K K po — (WY K ) —2my, (BPRY — Y PV K o

vV 1 v 1 v
+®hH RW—I—Zh“ph "FuprU+§(pgh“ph 70y —0yTy)

. . 1 .
_(I)pahuphua (Ruy_vuay_ap,au_2h,u,yhﬁ)\Rm\+h,U»V€16,% <€hl€)\a)\>)] ’ (329)

where ® = —v#m,, is the Newtonian potential. We added a Lagrange multiplier term to
enforce the TTNC condition and also used the identity

VA Ry = (W K ) — BPR O K K e + V) (0P K ) (3.30)

In order to obtain (3.29), which is one of the central results of this paper, we worked out
the variations of the first line of (3.20) using the TTNC condition. In the next subsection
it will be shown that this Lagrangian is equivalent to the one given in our previous work [4]
which was obtained from gauge symmetry principles. It is clear that the expansion of
the Einstein-Hilbert Lagrangian in ¢ = 1/¢? can be done systematically using the above
framework. There is nothing, except computational complexity, that prevents an expansion
to any given order in o, yielding more and more relativistic corrections to non-relativistic
gravity. We will discuss applications of this approach further in section 7.

3.1.3 Equations of motion

We derive here the equations of motion based on the variations of Lyrg with respect to
Tus Puy, my and @, where for the 7, variation we only consider 7, = {7, with { an
arbitrary function.
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Because TTNC is imposed off shell a number of identities that applies to TTNC geome-
try has to be used in the process, which we have collected in appendix E. With these identi-
ties at hand, the variations that need to be done are straightforward albeit slightly tedious.

The variation of NRG in terms of the LO and NLO fields can be written as

e
I7G N

1w 1w
SLNRG = (ggam + Gl oy + S G by + G 5<PW> . (3.31)

We denoted the responses with caligraphic symbols to distinguish them from the variations

of the full NNLO Lagrangian in which the TTNC condition has not been imposed, i.e.
(=2)
G = Gy|radr=0 for the field ¢.

Ignoring diffeomorphisms and using TTNC, it follows from (2.66)—(2.71) that h,, and
the subleading fields transform as

Shyy = AuTy + ATy (3.32)
dmy = Ay + A — Aay, + W7 (pa,T, (3.33)
RHPRY7 5, = WPRY (Aymy, 4+ Aymy, + 20K, + VG + Vi) (3.34)

where v# ), = 0. We define the spatial projector P as

PY =06 +0"T,. (3.35)

The Ward identity for Galilean boost invariance with parameter A, is given by
P?(Gh + 1.6 +m,Gh") = 0. (3.36)

We can use this to simplify the process of varying h,, which is by far the most laborious
variation. We can write

1 1
59 Ol = S G} PLP Iy, — G 7, Py oh Sl (3.37)

We see that the part in front of the v#dh,, variation is fixed by the Ward identity (3.36).
We can thus without any loss of generality restrict ourselves to the P-projected variation

Sphps = PHPY6hy, . (3.38)
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One finds after a bit of work that the equations of motion are given by
1

WOy =— 9
+my, [(Vu+2a,) PR Fye—2 (R*PhY — W hP7 )V, K o |
—2 (PR — " hP7) Ky (V ptag) mo+ (R R — W hP7 )V, V@ o

3
[(hWKW)Q—hNPhWKWKWJrZhﬂPhWFWFPU

S (RW - ;hwh“Rm> | (3.39)
Gv = % (2 (W7 =W RO7) VK o 0 W0 Ry (V20,0 WPR By |, (3.40)
Go? = hHPh° (RW — %hwh’“}?m —(Vutau) ap+huh™ (Vieta) a/\) , (3.41)

Gl PPl = —%haﬂ (PR R B7) K K po =V (0 (W0 =B ) K, )

—HOTRIIR Ky (V) my A ROV (0N (V) my )

= %v s (0 (BB R 1) (V4 a) )

FHPROT K g b (Vb ) oy, — (R0 = ROORO ) W0, N K

_pe (haph5”+hﬁphw> My (VK pg—V y K o)

- % (RBP4 WP ) 7 Ky (B + 2am, — 2a,m,)

+ %h“a WP F oy — éhaﬂ S I

+®hH P <RW — ;huyhp"Rp(,) +h P (V,+ay) (Votas) ®

- % (nono? 1) (V4 ay) (V4 a,)

- % (noneone i PR — e (R LR ) ) @y (V+ay)

1 ) | .
—ShH (PR 1R 0, @+ Sh (nen? 1) 0,9, @,

1 . 1 o1 i
" (R G T P R s SHO @ n (RW - Zh#,,h”"Rpo)
1 i ]
— W (RBP4 h ) (V) (V+a,) B
1+ L he T8 Ryt LA ROB (Vo+ay) (Votas)®
9 po uv 9 p p o o KA
WP pPB Ve o e preol » 1 aBpuppvo »
~( FRPRORT) @ o R S HE RPN D o R
1 . .
51 (BR BT R ) (Vb a) (Vota,) B
+ (RO R LR ) (V0 ay) (Vitay) @ (3.42)

These equations are somewhat lengthy and perhaps they would be easier to handle in a
first-order formalism at the price of working with more fields. This will be studied further
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in upcoming work [65]. We will see in section 3.2.2 that the equations of motion acquire a
more compact form if one uses boost-invariant fields. Finally, it can be shown that when
dr = 0 it follows that ®,, decouples and that there are drastic simplifications as we will
be studied further in section 4.4.

There are three Ward identities (WIs) that result from invariances under the LO and
NLO diffeomorhisms. The latter are the gauge transformations with parameters A and (,.
For the A-transformation we find

(V. +2a,) G — K,,Gh =0, (3.43)

while for ¢, we obtain
(Vo +ay) GE — G rh*Pa, = 0. (3.44)

An important role will be played by two equations that can be obtained from various
contractions of the above equations of motion. The first of these is the combination

— (d = 2)7uG" + hyGh = (d— D" (Vy +ay) ay = (d— 1)e” 9, (eha,) . (3.45)

We note that TTNC implies 7 = NdT where N is like a non-relativistic lapse function
and that this in turn implies h**a, = h** N='9, N so that the right hand side of the above
equation is the Laplacian of the non-relativistic lapse function. When we study matter
couplings in the next section this will tell us something about what type of matter sources
TTNC torsion. The second equation follows from the following combination

- (d_ 2)7'“9’7‘_‘ - (d_ 2)m/.l,g#1 +h,u,yg;fy +¢,m/g$lj =

(d—1) {v“v”RW —|—vp (vph‘“’ (V,ﬁ-au) my) —i—ih”ph”"FWFpg—Fh“” (V,ﬁ-au) (v,,—i—ay) P
— (neonee - %h’“’hp") (Vuta,) (0@ po+2m, K ) | (3.46)

Equation (3.46) contains the Laplacian of the Newtonian potential ®. When d7 = 0 and
hence a, = 0 the field ®,, decouples from this equation. When coupling this equation to
matter we will be able to identify the sources of Newtonian gravity.

Given the simplicity of (3.46) in comparison to the h,, equation of motion one might
wonder if there exists a simpler way to obtain this result. The answer is affirmative and
this conclusion can be obtained by going back to (2.125). To show this we need to expand
the Einstein equation in powers of 1/c2. We can relate the 1/¢? expansion of the Einstein
equations E}Y, Elf defined through (2.106) to the EOMs defined through (3.2). When
TTNC is imposed off shell we find the non-vanishing orders to give

42W —2 (—4)

Gg =B, (3.47)
( 4) (=2 (= 4)
G“ =Gk =E", (3.48)
(-2 1 (=9
ZW = E“” + <<1> + ha5q>a5> Eh (3.49)
(=2 (=2 (—4)
Gt = E“ + <q> + ha%a5> (3.50)
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where the ¢ + %h“ﬁ ®,5 terms originate from expanding \/—g. In deriving this result we
expanded Ej and E}" as

i _Bh o G Bh 4 oEh 3
Bl = El+oEy + 0B+ O(0”). (3.51)

The notation follows from (2.104) which has an overall factor of ¢® and this is why we

start with (Eg . Since we work here with off shell TTNC it follows that (Eﬁg = 0. Similar
statements apply to E4” mutatis mutandis.

When expanding the anisotropic scaling equation (2.125) in GR in section 2.6 we see
that at LO it reproduces the TTNC condition while at NLO it gives rise to (3.45). Finally
at the NNLO it reproduces (3.46).

3.2 Theory from gauge invariances
3.2.1 Lagrangian

In the previous section we derived the Lagrangian of non-relativistic gravity from the 1/c?
expansion of the Einstein-Hilbert Lagrangian. In this section we will derive the same
result using a different method. Starting with the field content that originates from the
1/c? expansion of the metric we will derive a (two-derivative) Lagrangian that has all the
gauge invariances associated with the type II NC gauge transformations of these fields.

We will work with manifestly Galilean boost invariant quantities, i.e. 7, Ay, P (and
their inverses 9* and h*") as well as @, (see equations (2.59)—(2.62) for their definitions).
These fields transform as in (2.66)—(2.71). In this section we will mostly be concerned with

the A = 7,(* part of the these transformations which can be rewritten as

Samy, = 0,A — Aay, (3.52)
PRV 57D p = 2ARMPRYT K 4y (3.53)

where we defined the boost invariant torsion vector and the extrinsic curvature?

CALM = [’177—# s (354)

1 -
Ky = =5 Lohy (3.55)

Furthermore we will work with the Galilean boost invariant connection f’fw defined in
equation (B.9). We will refer to this as the torsional U(1) gauge transformation to contrast
it with the type I Bargmann U(1) gauge transformation with parameter o.

We will assume that the Lagrangian is at most second order in derivatives and that it
has at least the kinetic term @“ﬁ”RW. We will simply add terms until we obtain invariance
under all the desired non-relativistic symmetries (2.73)—(2.74) with off shell TTNC condi-
tion 7 Ad7T = 0 imposed. This was the original approach used to find the action presented
in our previous work [4].

El

9We have in previous work defined ‘a,’ as what we here call G,. However, since we usually encounter
spatial contractions of it, for which h*”a, = h""a,, we can be relaxed about their difference. A conversion

table between various notations can be found in appendix A.3.
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If we ignore the field ®,,, the only difference between type I and type II NC geometry is
the type II transformation of m, under the A-transformation which should be contrasted
with the type I o transformation given in (B.3). Note that for zero torsion the type II
transformation of m, reduces to the Bargmann U(1) gauge transformation.

Type I NC geometry can be obtained by null reduction as detailed in appendix C.1.
Since from the point of view of the fields 7, m, and h,, the difference between type I and
type 11 is just one term in the transformation rule of m, we will work with the reasonable
assumption that to build a type II invariant action the non-relativistic gravity Lagrangian
should contain the term G““. This is the uu component of the ‘null uplifted’ Einstein
tensor GMN (see appendix C.1 for more details). This term indeed contains the kinetic
term 0H oY RW we would like there to be. The other terms in the Lagrangian can be found by
demanding that they cancel the non-invariance of G under the type II A-transformation.

To this end let us consider the transformations of G under the variation of my,.
We start with the transformation of the connection I'f, defined in (B.9). Using TTNC
throughout we have

5mqu = % (&,LLTI/ + &VT,u) hpa(smg - THTyhpo—dg’[))\(smA
4 5 (Vo + o) by — (9, + ) 6]
b S (Vo) by — (T 4 ) 0, (3.56)

Using this result as well as equation (C.16) it follows that for the ur component of the
(d + 2)-dimensional Ricci tensor Ry we have

A = | - = oa A A
OmBRy = (Vp + ap) 5mI‘6W) — 7T hP7a,a,0"0m )y
1 _ 1 _
— §Tuhp”dpv,,5mg — §Tyh”‘7&pvu5mg. (3.57)

This implies that
AR 8, Ry = 0, (3.58)

a result that will be useful later. It also implies (up to a total derivative) that when taking
my, to transform under the torsional U(1) one has

. o 1 o
VO R, = e 0, (eha,) oD + AKX
_ 1
+AK,, <h“ph”"&p&0 - Zh“”hp"dp&g) : (3.59)

Using
R = QUMQUNRMN = ﬁuﬁyﬁim/ - 2(@6_18# (ehay) (3.60)

where in the second equality we used (C.17), we find

A . 1 . 1
OAR™ = 2R (9, A~y A)+ 5 1" iy, 60 B+ AR, (h‘“’h”” - 2h“”h”> Qplig - (3.61)
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In other words since h*¥§,,a, = 0 we can write this as
. 1. 1_ 1 ~
oa | R™ — ifbh“”duéy — §<I>W <h“ph”" — 2h“”h””) &pda] =2RM"" (OuA — auA) . (3.62)

We can straightforwardly replace R*“ in (3.62) by G because for TTNC R is inde-
pendent of m, (for TNC it would vary into R“uém# but for TTNC RF, = 0). Finally,
since for TTNC we also have that 4, G* = 0, which follows essentially from (3.58), we
can subtract 5/\&)#,,@“" from both sides of (3.62). Putting it all together we obtain the
transformation rule with respect to the type II A-transformation,

oA [G“u -~ %éh““&udu + @, G — %éw (hﬂﬂhwapag — ;h“”h’”&pdaﬂ
=2G"" (9, A — a,A) + 20K, G (3.63)
It then follows that the Lagrangian given by
L=e¢ [—GW + %(i)h’“’&”d,, S ((QW - éhw’h”aapag + 1h“”h””&p&g>} . (3.64)

is invariant under the torsional U(1) transformation (3.52)—(3.53) (after partial integration)
by virtue of the Bianchi identity (C.15). We can then write

. . . 1 .
G = PR G o = MR Rpy — SR, (3.65)

where ﬁtw, and R are given in (C.16) and (C.19), respectively. In terms of more intrinsically
defined objects this can be rewritten using (up to total derivatives)

G — %@A)h’“’auay — 0" Ry — O Ry = (WK ) = PR K K o — DHY R,
(3.66)
as follows from (C.20) and (C.21).
The Lagrangian (3.64) (with a restored prefactor 1/16mG ) can finally be written as
what we will call the (primed) Non-Relativistic Gravity Lagrangian.

e
Lhne =
NRG ™ 167Gy

— 910 Ry, + ®hM Ry — B o hP RV <RW — Vb — a,a,

1 _
= 5™ R + b0, (eh“’\d,\>> . (3.67)
The Lagrangian (3.67) has an additional gauge symmetry which reads
WP §c®py = hPHY7 (Vplo + Volp) o 0c® = R a,(, . (3.68)

In order to show this we need to use two identities. The first one is the N = v component
of the Bianchi identity VuGMN = 0, which can be written as

_ o1 1 1 -
(Vu+a,) GH — §hvpape—1aﬂ ("7 g)+ JhPaph! Gty + S aph" Ry =0 (3.69)
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The second one is the identity

(@u + &u) (h“ph”"&pdg — ;h””hp”dp&0> = h”pdpeflé)u (ehay) — %h”pdph”"du&g.
(3.70)
The ¢ transformations together with the A-transformation make the Lagrangian invariant
under (2.66)—(2.71). It is interesting to note that, as shown above, the Lagrangian is
fixed already by the A-invariance, with the ( transformations appearing as an extra gauge
symmetry. This completes the construction of a Lagrangian that is invariant under the
type II gauge transformations.

3.2.2 Equations of motion

The details of the variational calculus of the action (3.67) can be found in appendix E. A
number of identities that applies to TTNC geometry has to be applied in the process. If
we define

! __ ¢ Y S P lh ;uz_lgu*
OLNRG = g (gq)&b Gud0" + S G, Oh — SG8 5%y | | (3.71)
one finds after a bit of work that the EOMs are given by
1=
g(i:‘ — §h R/_“/
_ _ 1 _
Gy = h'Ph"" (Rpo — tyto = Vo) = 5h" (W7 Rpo — 2¢710, (eh”ay))
hpugﬁ = hP"0" Ry,
A N N
"G =BGy — 5<I>,wgg> + G h Bue 19, (el a,) — SR By (Vpao + Gpac)
1 _ 1 o 1 _ _
+35 (WK ,0)° - ihf’fff;,“f(p,dzg,A = Vi [0 (VBuo = V)]
«@ a1 V0 F 1 o V& — T A
Goh = (h“ hEp,, — h B q>W> (710, (e aq) — Gg)
1 af F v aF x e 1 o F a E ~Q
Sh R GE — Wy, G — 1B, 68" 4 Sh DG + 8GE”

1 _ _ _ _ _
+5h7 (B Rw)® = WOPR Ry Ko | = ¥, 600 R Ry, — 69RO Ry,
= WORI,0,% — W R (0,0, + 3,0, ) + hPNY,0,8

A 1 _ _ _
+2h°P R 4,0, ® — §ha5h’“’hp“ (Vi+a) (Vy+a,) Puo

1 _ _ .1 o
+ §h“5h“”h’” (Vi +ay) Vo®pr — ih“ah”ﬁhp"vuv,,@pg : (3.72)

<

_ _ 1
+ h“ahVﬂhPU (Vp + &p) < (M(I),,)g — 5

where we found it convenient to split the # variation in two terms h”“gfj and @“Qﬁ. We
only need to consider the variation Pﬁ“Pyﬁ 0h* because this projection is the one where the
NNLO fields decouple. This is taken care of by contracting the gﬁyéh’“’ € 0Ly variation
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with the inverse spatial metrics g,‘jﬁ = pHopvB QZV. By taking the trace of Qgﬁ and using
ﬁ“gﬁ we find the equation analogous to (3.46),

(d = 2)0"G2 + hu G + ®,u,GL =

_ _ R 1 _ _
(d—1) [0"0" Ry — (Vy + ay) (h“”&y (@ — 2hﬂ”c1>p(,> + hﬂ”hﬂ"ap@o)] . (3.13)

3.3 Equality of Lnrg and Ly

The two actions (3.29) and (3.67) are equivalent. To see this one can express all Galilean
boost invariant fields 7, h#*", 0¥, ?LW, <i>, CTDW in terms of the fields 7, K, v¥, hyy, my,
®,,, and B, although the latter will drop out when we use TTNC off shell. To make the
comparison we also have to change the connection and the Ricci tensor associated to it.
The difference between the two connections is (for TTNC geometries)

- . 1
Ff;u - F;);u = _ihAgTu (&/mg — Oy + aymye — aamu)
1
- §h’\gry (Oumg — Ogmy + apme — agmy,) . (3.74)

Assuming 7 A d7 = 0 we can use some of the results derived in appendix E. In particular
the following relations are useful

_ 1, 1,
N O (KMV + §(VM + a,)m, + E(V” + a,,)mu) , (3.75)
WY Ry, = W'PhY R, (3.76)
W, = h'a, . (3.77)

A straightforward calculation then shows that the Lagrangian (3.67) is equal to (3.29).
In deriving the actions we see that they arise from two different (but of course closely
connected) approaches: the 1/c? expansion makes it obvious how the NRG theory is related
to KEinstein’s theory of general relativity. On the other hand, from the perspective of
gauging the algebra, the second approach makes it clear what the role of the local symmetry
algebra is.

We can also relate the equations of motion of the two Lagrangians to each other by
changing the basis of the variational calculus as:

N 1
0P = hm,, <v” - 2h””m,,> Shpe + POPOT, — 0POM,, (3.78)
§0H = —0PhHSh,y 4 (DRHP + vHiP) 67, — WHPSm,, (3.79)
ShH" = —hPHRY S hpe + (VHR7P 4 0V RIP) b7, (3.80)
5&)“” = 5(I);w — 2m(M5m,,) — QT(M(SBV) — 2B(H57—V) . (3.81)

When TTNC is imposed, B, and its variation decouple in the projections we are interested
in. Inserting these variations in (3.71) and equating with (3.31), we can read off the
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following relation between the EOMs

GP7, =Gy ® — Gt (3.82)

G, = Ggd” — GLhM — GE7my, (3.83)
1 .

Gr7 = —2Gs h*Pm,, (M - Qh")”my> — 2G04 Gh hHe RV (3.84)

It can be checked that these relation obey the Galilean boost Ward identity (3.36).

3.4 Comments on imposing 7T AdT = 0 and dv = 0 with a Lagrange multiplier

We have seen that the TTNC condition is imposed via the NNLO fields. Alternatively we
can enforce this condition with a Lagrange multiplier by adding the term

e 1
Liyv = m§fpoh“phw(aﬂn —0uTy), (3.86)
to the Lagrangian where (., = —(,,. When varying the measure or 7, (in the direction

along 7,) in this expression we do not find any new contributions to the on shell equations
of motion because of the TTNC condition enforced by (. On the other hand the varia-
tion h#*97, leads to an equation of motion for (,, which is decoupled from all the other

equations.
If we take instead 1
€ vV
Lin = oG2S Ours = umia), (3.87)
with (*¥ = —("* unconstrained then the equation of motion of (*¥ enforces a NC geometry

with d7 = 0. However the field (*” does not decouple from the equations of motion. This
is because it now also appears in the equation of motion for €2 defined as 47, = €17,,. This
is what happens in the 3D Chern-Simons (CS) actions for extended Bargmann algebras
where (" = €*"P(, in which (, is associated with the central extension of the 3D Bargmann
algebra [15, 16, 18, 66]. See also references [67-70] for recent work on related CS theories.

We conclude that setting dr7 = 0 with a Lagrange multiplier does not lead to the
equations of motion that are obtained from the on shell 1/c? expansion of GR with dr
put to zero by hand. However, it does provide us with an alternative theory obtained by
adding L), to (3.64) for an unconstrained ¢#¥. Since in this theory on shell d7 = 0 we
can remove all terms with @, since they can be absorbed into the ¢*” term. Doing so leads
to the following Lagrangian

_ e
N 167Gy

_ _ . _ A 1
MR Ky K py — (B K ) + WY R, — B, 6" + 20‘”7“,,} . (3.88)
The interesting feature of this theory is that it is Bargmann U(1) invariant since all the
non-invariance is proportional to d7 which can be compensated for by an appropriate

transformation of ¢(*. The ®,,, term can be rewritten using (C.16) and a, = 0 to

_ . _ _ 1- _
®,,G" = &, WP h"° (R,w — 2hpgh)‘”RM> : (3.89)

~ 34—



The term in parenthesis is the Einstein tensor of the Riemannian geometry of the constant
time slices. If we are in 241 dimensions then this vanishes identically and by writing
(M = etP(, we recover the CS model for the extended Bargmann algebra. Hence (3.88)
can be thought of as a novel higher-dimensional generalisation of the CS model.

We have thus found two different classes of theories. As it turns out only the one based
on the torsional U(1) symmetry has a pure GR origin, while the Bargmann invariant case
requires already in 3D to consider GR coupled to a pair of U(1) gauge fields [15]. In 4D
the ¢*” can be dualised to another 2-form, B, say, which has a 1-form gauge symmetry.

In other words in 4D we can write
e 1

7Gx ie’meW (0pTe — O5Tp) (3.90)

which means that there is a gauge symmetry 0B, = 0,3, — 0,%,.

4 Coupling to matter

In this section we discuss the coupling of matter to the non-relativistic gravity (NRG)
action obtained in the previous section. We consider this by expanding a generic matter
Lagrangian using the same methods as used for the Einstein-Hilbert (EH) Lagrangian.
This will enable us to find the sourced equations of motion in the 1/c? expansion, and
in particular those of NRG. We also discuss Ward identities (WIs) of the sources that
follow from leading and subleading order diffeormphisms as well as the expansion of the
relativistic conservation laws of the energy-momentum tensor. In order to make contact
with the alternate (or primed) formulation of NRG, we will also discuss the boost-invariant
currents that source the equations of motion in that case. Finally, we show how the Poission
equation of Newtonian gravity can be obtained from NRG coupled to matter.

4.1 Expansion of the matter Lagrangian

Consider any matter Lagrangian Liyat = Lmat(c?, ¢, 0u¢) where ¢ is a generic matter field
with the spacetime indices suppressed. Let us suppose that the most leading term in the
1/c? expansion is of order ¢V. Since the Einstein-Hilbert Lagrangian is at most of order c®
we assume N < 6.

The expansion of the matter Lagrangian is performed using the general methods of
section 2.5 as:

Lomat (027 ¢7 8;1(;5) = CNZmat (0')
NV N-2% N—44Z N—6
=c Emat,LO+c ﬁmat,NLO"i_C Emat,NNLO+O(C ) . (41)
At each order n € N including zero, we define matter currents as responses to varying the
geometric fields as

@by o 5@2:; N"LO
Th = z€ 6]7,0;5 9 (42)
(2n7é\7)7 1 (5(272;\12‘; N"LO
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Figure 2. Structure of the currents in the 1/c? expansion of the matter Lagrangian similar to
figure 1, but with 7 A d7 = 0 imposed off shell. For this to be consistent, the leading order currents
and those related to them by variational calculus identities must be zero.

and similarly for the subleading fields mutatis mutandis as summarised in figure 2. For

Ng GV

n =10 we have T = T% = 0 since the next-to-leading order (NLO) fields do not appear

at leading order (LO). Furthermore because of (2.99) we have the relations

@My (N
T =149 (4.4)
(2*1(\37{) (*Noz

T, =17, (4.5)

and similarly for the more subleading fields.

These currents are natural to work with as they allow us to write the expansion of
matter coupled general relativity to any desired order. The equations of motion (EOMs)
with matter couplings at a given order 2m > —6 then becomes

2m
G%ﬁ = 87rGNT&B (4.6)
(2m) (2m)
G =8rGNTY, (4.7)
2m
Giﬁ = 87rGNT&*3 (4.8)
@m) @m)
G, =8rGNTY, (4.9)

and so on for even more subleading fields that we will not consider in this paper.

Notice that G&’B

—6 (—6)
&B To‘ = 0 in order to avoid acausal non-relativistic Newton-Cartan (NC) spacetimes.

Go‘ o 7 A dT so it is necessary to have matter with N < 4 such that

We will see in the next section that N < 4 in all the examples we have encountered.
Because of the above analysis we will for the rest of this section restrict to matter
with NV < 4 and study how they can source the NRG sector of the 1/c? expansion of full
general relativity (GR). Recall that the NRG Lagrangian is defined to be the next-to-next-
to-leading order (NNLO) Lagrangian with the off shell twistless torsional Newton-Cartan
(TTNC) condition 7 A d7 = 0. This term appears at order O(c?) and is therefore sourced

(=2)

by Lmat- We will likewise impose TTNC and define the currents as follows
(-2) » » 1 1
0 Liat|radr=0 = e | TFOT, + ThHom, + 5771 Ohy + 57&) 0P | - (4.10)

We again use the notation that when we are dealing with TTNC off shell, the variations
of the matter Lagrangian at order O(c?) are denoted by (suppressing spacetime indices)
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(=2
Tylrndr—o0 = Ty for the field ¢. If N = 2 the LO matter Lagrangian is of order O(c?).

Therefore in that case 73" = T, = 0. When N = 4 the LO matter Lagrangian is of order
O(c*) and the NLO matter Lagrangian is the one that couples to NRG. In the latter case

the responses 74" and T/, are generically nonzero. The equations of motion of matter
coupled NRG are

GP = 8nGNT (4.11)
TaGY = 8nGNTL TS, (4.12)
GoP = 8nGNTE”, (4.13)
Gy =81GNT,y (4.14)

where the left hand sides are given by (3.39)—(3.42).

We can also relate the 1/c? expansion of the relativistic energy-momentum tensors EX

and E"”. defined in (2.105) to the expansion (4.4)—(4.5) and related equations. Analogously

mat
to section 3.1.3 the relations are

(-2 1 (—4
T = B+ (4 317001 ) Bl (415)
(-2 1 (-4
7;” = Emat + <(I) + 2h046q)a6> Egtnat ’ (416)
vV (_4 v
T =B, (4.17)
(-4
TH=FE_..- (4.18)

In deriving this result we expanded E}, as
E! —(E + (EZ‘ + 0O 4.19
mat = “~mat 0 Lat (U ) ) ( : )

and similarly for Ef,. To explain the notation we refer to (2.105) (where we factored out
cN with N = 4).

4.2 Ward identities

The matter sector must be invariant under the gauge transformations that act simultane-
ously on the geometric objects as well as on the matter fields. Since the latter variations are
proportional to the matter equations of motion we can ignore these terms at the expense of
being able to only derive on shell Ward identities. We can derive these on shell Ward iden-
tities from applying the transformation laws (2.66), (2.71)—(2.74) acting on the geometric
fields in (4.10) and requiring invariance of the matter action up to the matter equations of
motion. The structure of the tower of WIs that follows from this is summarised in figure 3.
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Figure 3. Structure of the Ward identities (WIs): at each order there are LO WIs generated by
the LO vector field £&# through the Lie derivative L. The subleading vector field (* generates a WI
through L., which is equivalent to the LO WI at LO. Similarly £, at NNLO generates a WI which
is equivalent to the LO WI at NLO. This works similarly for subsubleading vector field Ef‘ 1) and
is systematically extended to higher orders in the expansion. Hence, when working at a particular
order, energy-momentum conservation of the previous orders in the expansion is always included
at that given order.

Diffeomorphism invariance of (4.10) implies that we have the following conservation
law: !0
0=1,(Vu+2a,) T/ +my (Vu+2a,) TE A+ hpw (Vi +au) T+ @p (Vi +ay) TE
— apTu T + Fup T — apmy Ty — TPKWEW + <vu‘1)pv - ;qu)u'/> U
— (au1p) — Th0)) v’\fb,\ﬂ:{f” ) (4.20)
The v” and hP? projections are:
0=—(Vu+2a,) (T} —v"®,TE") — @ (Vu + 2a,) TE + 0P F,TE + KT
— %ﬁv (PYPI®,0) T4 (4.21)
0="h"m, (V+2a,) TE+hhy (Vi +a,) T+ 07, (V,+a,) T4
— WP a,m, TF 4 WO F,,TE — ha,m,TE+ h*° (v,@py - ;vp%) T (4.22)
In the first equation we used
_%Tgmv@w - —%7:{)“%1, (PLPI®,, — 21,000,
- _%Tg”cv (PEPI® o) + Tg" a0 ®,, (4.23)

and in the second equation we used TM7:I/:V = 0, a property that will be derived further
below.

In addition the subleading diffeomorphism gives another conservation equation between
the currents. This is the same as the conservation equation at NLO because of (4.4)—(4.5).
Explicitly we have

0 =17y (Vyut+2a,) T + hpw (Vi + a) Tg" = apmu Tl = 1, K, Tg" (4.24)

Diffeomorphisms commute with the TTNC condition.
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The two projections along v” and h”?, i.e.

(Vu+2a,) TE - KT =0, (4.25)
(vy + a,,) 7%”’ — Tomh*Pa, =0, (4.26)

give the matter counterparts of the equations (3.43) and (3.44). The v” projection agrees
with the leading order term in the expansion of (2.110). To show this we used (4.19)
and (4.15)—(4.18). Likewise the h” projection agrees with the leading order term in the
expansion of (2.111).

Finally the Galilean boost Ward identity is

Ten +To ey, + Ty (Tumy +mypey) = 0. (4.27)

This can be read as saying that the spatial components of 7.}, are completely determined
in terms of the other currents. This is the matter counterpart of (3.36) provided that
T, = 0. We can show that we always have that T2 7,e% = 0: this follows from as a
Ward identity for the subleading Galilean boosts with parameter 7, (see equation (2.74)).
Later, in equation (4.53), we will see that when we assume that the order O(c?) matter
Lagrangian does not depend on the NNLO field B, for the case with off shell TTNC that
this in fact implies that ’7%”7# = 0. This will be assumed to hold throughout.

Note that the h*? projection of the diffeomorphism Ward identity, equation (4.22),
only contains h*?h*?®,, (to see this we need to use that 74“7, = 0) which is the part
of ®,, that appears in the NRG Lagrangian. On the other hand the v” projection (4.21)
contains v*h"’®,,, which does not appear in the NRG Lagrangian. The terms involving
vi®,,, will therefore drop out from the Ward identity. They must cancel against v#®,,
contributions to the currents. More specifically the combination 7 — vpfbpl,T{ﬁ”' does not
depend on v#®,,. This can be seen by using that the matter Lagrangian is at most of
order ¢* so that at NLO, which is ¢?, the field ®,,, appears linearly in a term of the form
hH*PRY?®,, X )» where X,, depends on the matter fields. It is straightforward to see that
then T — vP®,, 7" is independent of vH®,,,.

4.2.1 Expansion of the Hilbert energy-momentum tensor

We collect here a few general remarks about the 1/c? expansion of the Hilbert energy-
momentum tensor 7"”. From equations (2.114) and (2.115) we can see that for the case
N = 4 (which is the highest value N can have for a causal spacetime, referring back to our
earlier discussion in the beginning of the section)

T,T" = O(c?), (4.28)
I, TI7PTH = O(c*) . (4.29)
Hence we expand T as
=) §=2) © 4
TH = A TR 4 TR TR + O(c™?), (4.30)
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(=9
where 7, 7" = 0. More specifically equations (2.114) and (2.115) tell us that

(=2 (=4
T = —T"7, —T"m,, (4.31)

(

o o (4.32)
o 2 © L. g -2, "

TH = =T B, = THmy, = T"7, — | @+ Sh™ap | | T"7, +Tm, |, (4.33)

By T = b T 4 (4 298,y ) b T 4.34
up ' p up + +2 aB | up ) (4.34)

where we used (4.19) as well as (4.15)—(4.18).
At the leading order the Ward identity derived from the conservation law (2.116) is
given by
_ (=9 (=2
(Vi +au) T 4+ W aer,T,TH = 0. (4.35)
This equation is identical to (4.26). At NLO we find

-1 o v e e G e e D
€10, (€T ) + Tl 79 + Tl TP £ Th) T LTV ) TH =0, (4.36)

Contracting this with 7, we find
— (=2) _ (=9
(Vyu+2a,) n,T" + K,/ TH =0, (4.37)
which is the same as (4.25). We used the expansion of the Christoffel connection I'f,
discussed in appendix E.3. To show equality with (4.25) we used equation (3.75).
4.3 Boost invariant currents
The matter currents that naturally couple to the boost invariant NRG formulation of the

NNLO Lagrangian (3.67) are defined as

=2 . s 1 v s
0Ly = —e <7&)5® — T 60" + 5'Ehyéhu — 5’7&’: 5<I>W> , (4.38)

so that the equations of motion in the presence of matter become

Gs = 8nGNT; (4.39)
Gh = 8rGNT,! (4.40)
G, =8rGNT,, . (4.41)
GL = 8nGNTL" . (4.42)

Like for the geometry part, we can use the variational relations (3.78)—(3.81) to express
the boost invariant currents in terms of the currents defined from varying the set of fields
Toas My Py @yt

= Ty + T (BRH 4 00) — Tho " — TL°B, (4.43)
= Tyof — 7;f’h“p —TLme (4.44)
o 1 02 o vo
TP = —2Tym, b (W - 2h”>”my) — 2720 Ph 4 T RHP R (4.45)
e T (4.46)
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The presence of the NNLO field B, in (4.43) does not need to concern us as this is in
agreement with the fact that only the 7, variation in the direction of 7, does not couple
to NNLO fields (see the discussion of section 3.1.3). The 7, projection of (4.43) vanishes
provided 7,747 = 0.

A set of currents that have all indices up and that is boost invariant is defined by using

as independent variables 7, h,, @, i.e.
(- 1 o 1 o=
0 Lonar = e | THOT, + 57}1 Shyw + 57&) 0@, | . (4.47)

Using (3.81) and
5BW = Ohyw — 27(,0my,y — 2my, 07y, (4.48)

we can relate them to the other currents via

TP =TP = T ms — T By , (4.49)
Th = TP — Tm, . (4.50)

T ey =T €, (4.51)
Ta7 =T (4.52)

The variation with respect to the NNLO field By, is 7, 73" Since we will assume that there
will be no B,, dependence in the matter Lagrangian with off shell TTNC it follows that

7, T = 0. (4.53)

One could also formulate the equations of motions by varying the gravity Lagrangian with
respect to 7, i_zw,, éw,, but we shall refrain from doing that.

4.4 Newtonian gravity

In section 3.4 it was shown that we cannot add a Lagrange multiplier to enforce dr = 0.
We will see in the next section that the situation 7 Adr = 0 versus d7 = 0 is decided on by
the nature of the 1/c? expansion of the matter Lagrangian. This happens via equations of
motion imposed by the matter fields. The matter equations of motion may sometimes force
dm = 0. We will see this happening for a massive point particle, certain approximations of
perfect fluids and for the Schrodinger field approximation to a massive complex scalar field.

In this section we will study the necessary conditions on the matter sector in order
that d7 = 0 is compatible with the equations of motion of gravity coupled to matter.

The special properties that the matter currents must satisfy can be understood com-
pletely from the scaling equation (3.45) which after using the Einstein equations becomes,

87GN (—(d—2) 7, TH+hu TEY) = (d— 1) (V,+ay,) a, = (d—1)e 19, (eha,) . (4.54)

This gives an equation for the non-relativistic lapse function N defined as 7 = NdT since
h*a, = W N~19,N. It then follows that if there is to be no torsion the matter must
satisfy the necessary condition

(d — 2)7, T = hy T . (4.55)
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Existence of non-trivial solutions to e~'d, (eh*”a,) = 0 depends on boundary condi-
tions and topology of the manifold. This is crucial in establishing a twistless torsionful
Schwarzschild-type vacuum solution to the EOMs in section 6.3.

When a,, = 0 the trace equation (3.46) simplifies to

871Gy (—(d — 2T — (d — 2)m, T + hu T + S TEY)

. - - 1 -
= (d—1) [v"0" Ry, + RV, (vPV,my) + PRy Fo + WV 10,
— (2h*PRY7 — WPV, (M K o) | = (d — 1)0"0Y Ry, . (4.56)

By changing the connection to (B.9) all terms on the right hand side combine to form the
scalar o*oY RW.

For matter coupled Newtonian gravity what the examples in the next section will show
is that in those cases the most leading order in the expansion of the matter Lagrangian is
of order ¢ which guarantees that the currents 7,5 and 7&5'} are both zero. In that case the
equations (4.56) together with the m, and ®,, equations of motion are all independent of
®,,,. Hence for matter coupled Newtonian gravity the m, and ®,, equations of motion
together with (4.56) can be used to solve for the fields 7,,, h,, and m,. When that happens
®,,, decouples from the other fields 7, h,,, and m,,. In the next section we will see examples
of this. The left hand side of (4.56) contains 7, 7" which, as we will later see, is minus the
mass density —p that enters in the geometric Poisson equation (C.29). In particular it is
not a Bargmann mass as we elaborate on in appendix C.2. When d7 = 0 and the currents
T and T3 are both zero the equations of motion of matter coupled Newtonian gravity
are simply (after some rewriting)

. 1 .
hP" v Ry — §h’“’h”“V#Fpo =0, (4.57)
h*PR" R, =0, (4.58)
[,V Loy vo S (Y, P 8GN n v
vtv RMV—i_Zh h FMVFpg—i-Vu (h (Y pr) = ﬂ (—(d—2)7‘u7; +h/ﬂ’7;1 ) . (459)

This can equivalently be written as

_ 8mG N
B =41

(—(d - 2)7, T + hponpg) TuTy - (4.60)

We will see explicit realisations of this equation in the next section.

5 Examples of matter couplings

In this section we study some canonical examples of matter that can be put on type
IT Newton-Cartan (NC) geometries and their coupling to non-relativistic gravity (NRG):
point particles, fluids, scalar fields and electrodynamics. We always start with a 1/c?
expansion of their relativistic parent and derive the equations of motion (EOMs). Their
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currents and Ward identities (WIs) are studied and we comment on what kind of NRG the
theories can source. For the point particles we see that there is basically a branching into
the usual non-relativistic (NR) particle and a novel type of particle motion that lives on
a twistless torsional Newton-Cartan (TTNC) geometry and couples to torsion. To get a
better conceptual understanding of the latter we study the motion on Rindler spacetime.
Perfect fluids, which will play a distinguished role later on in section 6, are then studied
with and without an extra U(1) current. We then turn to both real and complex scalar
fields and see, among other results, that we can derive Schrédinger-Newton theory as a
special case. The 1/¢? expansion of Maxwell electrodynamics yields novel magnetic and
electric theories on (type II) TTNC geometry that we study. Finally we see how we can
obtain Galilean electrodynamics (GED) on torsionless NC geometry.

5.1 Point particles
5.1.1 Lagrangian

The proper time particle Lagrangian is
L N1/2
L= —me (—gWX”X”> . (5.1)

In here X#(\) are the embedding scalars and A is the geodesic parameter. Expanding the

metric according to (2.57) we obtain the 1/c¢? expansion of the Lagrangian
: Ry XXV
L=-—mr, Xt 4+ Z0wE 2 L0, (5.2)
2 Tpo

We still need to expand the embedding scalars according to (2.1):
1
Xt =ah+ Syt + O(c™). (5.3)
c

This is necessary for otherwise we would overconstrain the equations of motion for X*.
Note that 7, is a function of X and so we need to expand

1, _
muymm@+§y@%m+0@%. (5.4)
We obtain
1 B , TR
L=-mcr,i"+m <—Tﬂg)“ — &"y" 0T, + 2“?;) +0(c7?), (5.5)
Tpd

where all functions 7, and hy,,, depend on z#()). The leading order (LO) Lagrangian is

(=2)
Lio = —m7,a". (5.6)

After a partial integration the next-to-leading order (NLO) Lagrangian becomes

© » 1 by, ita”
£NLO =m ((&,Tu — uTy) €T y“ + 2“7'llpxp> . (57)

This is the Lagrangian of a particle on type II TNC geometry.
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The equations of motion (EOMs) of the LO Lagrangian are
" (Opmy — Op1y) =0, (5.8)

which is correctly reproduced by the EOMs of y* in the subleading Lagrangian. On a
TTNC background this becomes

ita, =0,  itr.a,=0. (5.9)

Since we assumed that 7,## # 0 the equations of motion force a, = 0. On a fixed NC
background the action is the same as the standard point particle action on type I TNC
geometry [13, 43, 71].

Further notice that the LO action is order ¢? and that this couples to the next-to-next-
to-leading order (NNLO) gravity action. The NLO particle action therefore only backreacts
to the N3LO gravity action where it will source NNLO fields. This means that we can solve
the geodesic equation before we backreact the solution.

If we restrict ourselves to TTNC backgrounds we can rewrite (5.7) to

1 h,,zHs” .
LNr =m <2H7_pj3p — my(z, y)xu) ; (5.10)
where
mu(xv y) = mu + Tuyyau - auTuyV . (511)

This observation is useful for computing the z* equation of motion. This turns out to be
identical to the type I geodesic equation on a background with d7 = 0 (which is forced upon
us by the y* equation of motion). In a gauge in which 7,&# = 1 this equation is given by

P+ T avi =0, (5.12)

where the connection depends on m(x,y) which on shell is identical to m, since a, = 0.
In other words the y* field has decoupled from the leading and subleading equations of
motion, (5.8) and (5.12) respectively. One could thus say that y* is a Lagrange multiplier
for the condition a, = 0.

5.1.2 Newtonian gravity coupled to point particles

Consider the NRG Lagrangian coupled to the LO point particle Lagrangian. They couple
to each other because they both appear at order ¢?. The combined system is what we call
Newton-Cartan gravity (NCG) coupled to a point particle,

e

167Gy

WPRY K K o — (W K )? = 2my, (WPRY — WP )V K o

Lnca =

. 1 1
QW Ry + HPR Fyy Fog + 5o (O, — 0,7,)
. . 1 .
— B hP R (RW Vot = auay = Shuh™ Ry + e 0, (eh“aA)> ]

— m/d)\ d(x —x(N))T, 2t (5.13)
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The equations of motion consist of (4.60) where
:—m/d)\ 2= 2) s (5.14)

and 771” Y = 0 as is easily obtained from the variations of (5.6). In a worldline gauge for
which 7,2# = 1 we thus have

p=—1,TH = m/d)\ W (5.15)

Besides the NC equations of motion there are additional decoupled equations of motion for
the field ®,, as well as the Lagrange multiplier. The latter can be replaced by the NNLO
fields by replacing the gravity part of the above Lagrangian by the NNLO Lagrangian of
the expansion of the EH Lagrangian. Finally there is the x* equation of motion which
enforces d7 = 0. This thus gives a complete off shell description of NC gravity with a point
particle source.

5.1.3 On shell expansion

Equations (5.8) and (5.12) can also be obtained from an on shell expansion by starting
with the relativistic geodesic equation

Xt 4+TH XYXP =0, (5.16)

where gw,X“X” = —c? and by expanding X# = x#4. ... The gauge choice gWX“X” = —c?
tells us that 7,4 = 1. The leading order term in the expansion of (5.16) tells us that
a, = 0. Using this result the new leading order expansion of (5.16) gives us (5.12), so in
this manner we never needed to work with y* at the level of the EOM.

The 7, projection of (5.12) is trivially satisfied using that 7,4* = 1. This suggests
that we should expand (5.16) to one further subleading order and project that equation

with 7, to find something nontrivial. Indeed doing so leads to

d? = .y . -
e (Tuyt) + Kpit'a” 4+ 2240, = 0. (5.17)
Furthermore from gWX LXV = —¢2 we also learn that
d o .
o (Tuy") = Shuw " (5.18)
We thus find 4 /1.
Y ( Ry dta? + 2<1>> + K, @ti” =0, (5.19)

which is the expression for energy conservation: consider for example the geometry 7 = dt,
hdatdz” = d#? and m = ®(x)dt with ® time independent. In this case (5.19) becomes

d (1. - _\ _
dA( z- x—l—tI))—O, (5.20)

which is the classical expression for energy conservation for a particle moving in a time-
independent Newtonian potential.
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5.1.4 Fluid description

Instead of using embedding coordinates we can also say that the geodesics correspond to
the integral curves of a parallel transported unit normalised vector field U*, i.e.

UV, Ut = UP (8,U" +Th,U") =0, (5.21)

where everything is a function of the spacetime coordinates x* which are not expanded in
1/c. We can then expand U*, which obeys g, U*U” = —c?, according to (2.1) as

Ut =uH + c*2u’é) +0(c™), (5.22)
where 7,u* = 1 and Tuulé) = %Ewu“u”. We obtain for d7 = 0 the equations
0=u'"V,u", (5.23)
1- . _
0=u"0, (2hpgupug + 2<I>> + K utu”, (5.24)

where the latter results from the 7, projection of the subleading equation. If we multiply
these equations with p given in (5.15) then we obtain equations (5.12) and (5.19). Using
that V,(pU*) = 0 at leading order implies V,(pu”) = 0 we can also write these as fluid-
type conservation equations, i.e.

0=V, (pu'u”) , (5.25)

0

_ 1. . _
Vu {p <2hp(,upu" + 2@) u“] + K, putu . (5.26)

The latter equation is identically satisfied given the mass-momentum conservation equa-
tion (5.25).
5.1.5 Coupling to electrodynamics

We can easily generalise the action to couple the particle to the 1/c? expansion of a back-
ground electromagnetic potential A,, whose dynamics we study further in section 5.5. The
expansion of the electromagnetic potential is assumed to be a 1/¢? expansion to match the
orders of the expansion of the point particle Lagrangian (5.2), so that

Ay (X) = AT (@) + AD (2) + P 0,A 2 () + O(c7?). (5.27)

Expanding the usual electric coupling to electrodynamics with electric charge ¢ then yields
Lem = ¢c® A2 (2)it + q [Agm (2)a* + F{Diry? | + O(c7?). (5.28)

The resulting total Lagrangian for a massive point particle with mass m and charge g is
hence expanded as

Liot = ENR,pp + Lem = 2 <qu(L_2) — mm) i

5 , m by, #HiY o) . 5
+ (qu(u ) — mpr) THyP + 2 + qAL Vit + O(c7?). (5.29)
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In order to cancel the leading order term, we see that we need to take A,(f2) = %Tu. In

that case also the term that gives coupling to torsion at the next-to-leading order vanishes

and we get
m hy, TH Y

ﬁtot,A(*ﬁ:%r =3 + qALO)x'“ +0(c?). (5.30)

TpaP
This is exactly the Lagrangian of a (type I) Newton-Cartan particle coupled to electrody-
namics [28, 43]. Notice that there is now no y” dependence enforcing torsionlessness so
that these particles can propagate in torsionful geometry.!!

We return to the 1/¢? expansion of Maxwell electrodynamics in section 5.5.

5.2 TTNC geodesics

In the previous subsection we studied the 1/c¢? expansion of the massive point particle

Lagrangian and concluded that this is only consistent on a background with d7 = 0. This

begs the question what about point particles moving on a torsionful NC geometry.
Consider again the action

S = —mc/d/\\/—guy(X)X“XV. (5.31)

This action is worldline reparameterisation invariant with respect to § X* = §X #. The X*
equation of motion is given by

X7X° . ..
5y — i < (X“ + FgVXPXV) ~0. (5.32)
gn)\XHXA

If we fix the worldline reparameterisations by setting
guwX'X" = -C?, (5.33)
where C' is any constant, then the geodesic equation becomes
X418 (X)X XP =0. (5.34)
Any solution to this equation obeys

S (gwXrir) =0, (5.35)

so only the sign in (5.33) is not automatic. Since we are dealing with a massive point
particle we will take it to be timelike.
The norm of the timelike tangent vector is

. . . 2 . .
gu X1 X" = = (T,(X)X") "+ T (X) X" XY < 0. (5.36)

1A similar feature is observed in the coupling of non-relativistic strings including a background B-
field [27].
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In the previous subsection we took T),(X)X* = O(c?) and I, (X)X* = O(c"). Here we
will instead take the following starting point

T.(X)XF =0(c), T (X)X*=0(), (5.37)

where both are expanded in a series of 1/c. We can achieve this by expanding the em-
bedding scalar as

1
XH =gk 4 Ey“ +0(c?). (5.38)

The leading order equation obtained from (5.34) and the expansion of the Christoffel sym-
bols (E.21) is
(r,@")> h*ag = 0. (5.39)

For NC geometry this is automatic but for TTNC geometry this gives 7,2 = 0. In the
latter case the only way to keep the tangent vector X* timelike is for there to be a term
at order 1/c.

Using
1
Tu(X) = 1u(2) + Eypapm(x) + (’)(072) , (5.40)
we find
. 1
Tu(X)XH = - (Tu¥t + &Hy" 0, 1,) + 0(6_2)
1/d

= <d>\ (Tuy") — iy@ﬂ;ﬂ;“) +0(c?). (5.41)

This gives

.. d 2

GuXH XY = — (d)\ (Tuy™) — il’a,ﬁuy“> + hudti” + O0(ct) <0, (5.42)

where 7, and h, are functions of z#. We conclude that in the large c limit

d 2
F= (dA (Tuyt) — :b”a,,ruy“> — hyita” = C?, (5.43)

where we took C? in (5.33) to be independent of c. Using (5.34), (E.21)-(E.22), (5.38)
and (5.41) we find that the leading order geodesic equation is

§ d 2
# +T),a"i" + ha, (d)\ (Tuy") — :i:”a,,my“) =0, (5.44)

where we used that I'},3"i? = I'},3"i”. By contracting (5.34) with 7,(X) and expanding
up to order O(c!) we furthermore obtain

d
S log (N (7 + 8y 0,7)) = 0, (5.45)

where we used 7 = NdT'. Here T is a time function. This equation exists in any coordinate
system, i.e. both N and T are scalar functions of the coordinates.
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Equations (5.44) and (5.45) can also be obtained from an action with (5.43) appearing
as a gauge fixing condition. To see this we will set 7,4¥ = 0 off shell. The leading term in
the expansion of (5.31) is given by

1/2
S = / dAL = —me / dA [(Tuyﬂ ity 0, = hitat] (5.46)

We will define the Lagrangian as
L =—mcF'/?. (5.47)

The Lagrangian is a function of x#, y* and their derivatives. The EOMs can be written as

d OF 11dF OF oF
0= 0 9i 2F N0~ 0uh’ (5-48)
d OF 11dF OF oF
_dof Lldrol ofF 4
0= Do 2Fdrog ~ o (5.49)

The y* EOM can be written as
F

d
—lo =0, 5.50
ax N2 1,9+ + :b#y”@,,rﬂf (5:50)

where we used that for any TTNC geometry h*¥a, = h**N~19,N. This follows from
7, = NO,T. This agrees with equation (5.45) when F' = constant which is what was
assumed in deriving (5.45). Let the integration constant be a, then we find

d 2
¢ F = N? (19" 4 iy’ 9,7,)* = N* [d)\ (y”@uT)} , (5.51)

which we note is manifestly positive as required in (5.43). A useful identity is

d d
Tyt + &Py o, = — (tuy") — 2aTuy" = N— (y"0,T) . (5.52)
dA dA
The z* equation of motion comes out to be
. S 1 dF . . .
i A ﬁax“ + (Tug" 4 7 0,7,)* W a, = 0. (5.53)

We will now choose a gauge in which F is constant with F' = ¢® = C?. This implies that

d
Tt + ity 0T, = N~ — o (y"0,T) = N2, (5.54)
Equation (5.43) becomes
L .. 1. 1
§h,/pl'yxp — §N 2 = —502 . (555)

The x* equation of motion simplifies to
. 1
Pt T Vil = th&,N_Q . (5.56)
The last two equations together with

Tt =0, (5.57)
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determine the geodesics in a TTNC background. Note that m, and hence the Newtonian
potential does not appear. Instead we now have a force that is dictated by minus the
gradient of —%N ~2 which plays the role of potential energy. The fact that C? > 0 (for
massive relativistic point particles moving below the speed of light) means that we only
have bound states in this potential field. The last equation is automatically satisfied if one
contracts it with 7, or h,.z".

The fact that 7,4" = 0 means that we cannot replace the A geodesic parameter with
coordinate time. This makes a particle interpretation challenging. The objects probe only
the LO fields 7, and h,,,, which is dictated by local Galilean symmetries and perhaps one
should think of these particles as (massless) Galilean particles. In section 6.3.1 we shall see
how the above is realised explicitly for the case of a spherical symmetric Schwarzschild-type
twistless torsional Newton-Cartan (TTNC) background. Regardless of conceptual difficul-
ties, one nevertheless obtains the same orbits as from the relativistic geodesic equation in
Schwarzschild spacetime. Finally we note that the LO Lagrangian (5.46) is O(c) and so
backreactions of this object would require that we include odd powers of 1/c¢ in the metric
expansion [61].

5.2.1 Rindler spacetime

To illustrate the difference between Lorentzian and Newton-Cartan geometries and the role
of geodesics we make a slight digression and study here the simple case of 2-dimensional
Rindler spacetime. In section 6 we will consider many more examples of solutions of non-
relativistic gravity.

Consider the 2D Lorentzian line element

ds? = —c2dt? + dz?. (5.58)

Perform the following coordinate transformation
ct = Rsinh(cT), x = Rcosh(cT), (5.59)
where T has dimensions of inverse velocity and R has dimensions of length. We then find
ds? = —?R*dT? + dR?. (5.60)

This is 2D Rindler spacetime. It corresponds to the left and right wedges of a lightcone
with centre at (¢,2) = (0,0). Lines of constant 7" are straight lines through the origin since

¢
< — tanh(cT), (5.61)

T

and lines of constant R are hyperbolae since
? — 2 = R?. (5.62)
In the sense of type II NC geometry the metrics (5.58) and (5.60) give rise to

r=dt, h = dz?, m =0, d=0, (5.63)

— 50 —



and
r=RAT, h=dR?*, m=0, d=0. (5.64)

Since the first of these has dr = 0 and the second has 7 Adr = 0 but dr # 0 they are clearly
not diffeomorphic spacetimes. We thus learn that diffeomorphic spacetimes in Lorentzian
geometry can correspond to non-diffeomorphic spacetimes in NC geometry. The reason in
this case is because the diffeomorphism (5.59) is not analytic in 1/c. Strictly speaking the
notion of diffeomorphism that we are using here is more properly called an isometry since
the spaces are related by a diffeomorphism which relates the metrics.

We would like to understand the type II NC limit (5.64) of Rindler spacetime. Since the
clock 1-form components vanish at R = 0 we need to check if this is in fact a coordinate
singularity. To this end we will perform the same coordinate transformation (5.59) as
before. We will take ¢ = ¢/e where ¢ is numerically equal to the speed of light and e is
some dimensionless small quantity. The 1/¢ expansion then becomes an expansion around
e =0. We will set ¢ =1 (so that 7 has dimensions of length), and write

t = Rsinh(T), x = Rcosh(T). (5.65)

We then have the time-like and space-like vielbeins

T t —t T
= RAT = dt — dz, e=dR= dt + dz, (5.66
T ‘/ZL'Q—LQ ‘/.%'2—t2 z € ‘/x2_t2 .1‘2—t2 r ( )

where we write h = ee for the metric on spatial slices.

The lines ¢t = 4z correspond to T" = +oo. Since the total lapse of time (i.e. f,yT
along some curve 7) is the same in all coordinate systems we can see that future and past
infinity correspond to T" = +o00, i.e. t = +x, with the exception of the origin R = 0 or
what is the same (¢,x) = (0,0). The lapse of time along a curve with constant R = Ry is
Ry frgf dT from some initial to some final time. Clearly this goes to infinity for 7; — —oo
and Tt — oo. That means that in the ¢, x coordinates we can consider ¢ = £z to represent
the boundaries of spacetime except at the origin.

To understand what happens at the origin consider a straight line ¢ = ax where || < 1.
It follows from (5.66) that along such a curve the components of 7 become

- sign(z) . _ asign(z) (5.67)

while for those of the 1-form e we get

asign(x) sign(z)
—— Cr = ——.
V1—a? RV g

Let us consider first the time-like vielbein 7. We see that the values of the components of 7

(5.68)

€t =

depend on the direction with which one approaches the origin and secondly when passing
through the origin the sign changes. Thus we observe a discontinuous change in 7 and 7,
when passing through the origin. For example if we consider a curve along the ¢t = 0 axis
then o = 0 so that we jump from 7w = 1 and 7, = 0 to » = —1 and 7, = 0. Since we
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think of 7 as the normal to constant time (here T') hypersurfaces we see that the direction
of time is reversed. Going up in the right Rindler wedge is going to the future and in the
left Rindler wedge going to the future means going down. This is simple to visualise by
drawing a straight line T' = constant through the origin. When moving it forward in time
on the right means that it is going down on the left. We do not observe such a feature
with the h ‘metric’ because it is quadratic in e and so the sign functions disappear. So as
we go through the origin the metrics 7 and h depend on the direction through the origin
and the sign of 7 is flipped. To summarise the type II TNC version of Rindler spacetime
can be visualised as the two Rindler wedges of Minkowski spacetime joined at the origin
and with the Milne patches of Minkowski spacetime removed entirely.

We continue by considering the geodesics in this spacetime. From the expansion of the
timelike geodesics we find, using equations (5.55)—(5.57),

d 7

T=0, oY —R?, R?=R?2_(C2. (5.69)
In terms of the parameter A we have
_ 1 1+ C%(\ = \o)
R*=C"2—C%*\— \p)? Tyl = log |- i—% 5.70

For finite values of the geodesic parameter A\ we reach y? = +o00. We can also write the
solutions as

E

o

We cannot view these solutions as curves that are entirely described in terms of the space-

T="Tp, Rcosh(y” —yd) = (5.71)

time coordinates 1" and R. The reason is that we can only replace the geodesic parameter
by y” but the latter is a worldline scalar y” that is the subleading embedding function for
the coordinate T'.

If we were to define (note that due to the appearance of y” this is not a coordinate
transformation)

# = Rcoshy!, { = Rsinhy’ , (5.72)
then for y(:)F =0 we get Z =1/C and for yg # 0 we get

1 1

0

(5.73)
These are straight lines with slopes larger than +1 or less than —1, i.e. the timelike geodesics
of Minkowksi spacetime. However in the sense of NC geometry that interpretation is lost.

From the point of view of type II NC geometry the field y” is just a Lagrange multiplier
in the action for a massless Galilean particle. Hence the only real type II geodesics are
those for which T" = constant. In the sense of an approximation of relativistic geodesics the
field yT is of course important and simply captures the NLO effect, correctly reproducing
the straight line geodesics of Minkowski spacetime.

~52 -



5.3 DPerfect fluids

We continue our study of the 1/c? expansion of matter systems by presenting the case of
a perfect relativistic fluid.
We expand the normalised fluid velocity according to (2.1) as

1 _
U“ = Uu + gU?Z) + O(C 4) . (574)
Then the normalisation condition

g UrUY = —c* | (5.75)

together with the expansion (2.57) of the metric implies the relations

Tt =1, (5.76)
1.
Tuu‘é) = §h,wu“u”. (5.77)

This means that the relativistic fluid velocity admits the expansion
2 1 1 p,,0 A v —4
U,=c -1+ 2 —Tu§hpgu uw’ +hyuu’ | +0( 7)) . (5.78)

Next we turn to the relativistic energy-momentum tensor

_E+P

™
2

UrUY + Pgh (5.79)

where F and P are the relativistic internal energy and pressure. We will assume that these
quantities have an expansion given by

E=Cc"E_y+PE_y+ Eg) +0(c™?), (5.80)
P =c"P_yy+ PPy + Py +0(c?). (5.81)

The energy-momentum tensor expands according to (4.30), which using (5.74) and the
expansion of the inverse metric in (2.58) gives

(—4

)
TH = P_gyh*", (5.82)
=2 —
T = (B(_g) + P_y)) ufu” — Py (00" 4+ h*PhY7 @55 ) + P_gy)hH (5.83)
©
T = (E(_Q) + P(_Q)) utu” + (E(_4) + P(_4)) (u“u@) +u ué)>
+ Poyht™” = Py (049" + WPR7®,) + Py (200676 V) . (5.84)

We can use the results of section 4.2 for the expansion of the relativistic energy-
momentum conservation equation. The Ward identity (4.35) becomes

W8, Py + (B(_gy + P_py) W a, =0, (5.85)
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while the subleading equation contracted with 7, (see (4.37)) gives
u“@uE(,At) + (E(,4) + P(,4)) (?u + au) ut =0. (5.86)

We observe that the quantity P_y) is a ‘pressure’ needed to balance the force due to torsion.
If P4y = E(_yy = P_3) = 0 we find that we must have a;, = 0 and hence dr = 0.
In that case (4.37) becomes a mass conservation equation with F(_,) the mass density.
We set E(_j) = n for mass density and F) = P for pressure. Then the conservation
equation (4.35) becomes

vV, T =0, (5.87)

where 2
TH = TH = Ph* 4 nufu” . (5.88)

This is the Cauchy stress-mass tensor. Equation (5.87) describes mass-momentum conser-
vation. Contracting (5.87) with 7, leads to the mass conservation equation V,(nu*) = 0.
The coupling to Newton-Cartan gravity (4.60) can be found by considering (4.33) and (4.34)
which tells us that

TH = —nut, hu, TH = 0. (5.89)
The subleading conservation equation (4.36) with a, = 0 can be written as
_
”w _
VT + Lo WTP” + o), T =0. (5.90)

If we contract this with 7, we obtain

1_ . _ _
Vi < [2hpgupua+2<1>} nu“+73f)“> + K, T4V, ((Em) +7P) u“+nuf;)) T =0.

(2)pp
(5.91)
The relativistic conservation equations for a perfect fluid V,T*” = 0 when projected with
U, give
V.,[(E+P)U" =U"0,P, (5.92)
which at subleading order leads to
Vi ((Eioy +P) w + nufy ) + Tl nu” = w6, P (5.93)

Combining this with (5.91) we obtain
_ 1. . _
Vi ([2hpgupua + 2@] nut + P@“) + KT +ut9,P =0. (5.94)

This equation is independent of u/: 5 and for zero pressure it reduces to the fluid description
of the non-relativistic particle given in (5.26). It can be shown that upon using (5.87) it is
identically satisfied. In other words the energy conservation couples the LO fluid variables
to the NLO fluid variable ué).

In order to obtain the standard equations for a massive Galilean (Bargmann) fluid we
need to include a relativistic conserved U(1) current J# = QU*. We expand the charge
density as

Q=cn+ Q) +0(c?), (5.95)
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then for d7 = 0 the leading term in V,J#* = 0 is V,(nu*) = 0 while the subleading term

reads
_ (2) _
V. (nu’@) + i nu” = =V, (Quoyu”) - (5.96)

Combining this with (5.93) we obtain
Vi ((Bo) = Qo) +P) u') = u9,P. (5.97)
If we use this to eliminate u*9,P from (5.94) we obtain
_ 1 _ . _
Vu <<5 +P+ 2nhpgupu‘7> ut + 20nut + P@”) + K, T =0, (5.98)

where we defined & = E () — Q(g). Using (5.94) this can be rewritten as

Vo (€ +P)u) — w8, P =0. (5.99)

Defining the covariant energy-momentum tensor for a non-relativistic Bargmann fluid

(NR) 1 - _
TH, = — <5 +P+ th,{,\u”u)‘) u'T, + nuthypu? + PoL (5.100)
and extracting the energy current
(NR)
EH =0"TH, (5.101)
we find the energy conservation equation
VuEF+ THEK,, =0. (5.102)

What we thus see is that in the case of the 1/c? expansion of the relativistic perfect
fluid without the U(1) current we find mass and momentum conservation at leading order
but the energy conservation equation couples to the subleading field u’é). On the other
hand, when there is a U(1) current present one can find a limit in which all the usual non-
relativistic fluid equations (on a type I NC geometry), i.e. mass, momentum and energy
conservation, are obtained, forming a closed set of equations. In the case of the point
particle this distinction did not arise because there is no internal energy. We note that
various non-relativistic fluids have been studied in the literature, see for example [54—

59, 72, 73).

5.4 Scalar fields

5.4.1 Complex scalar field

Consider the action of a complex scalar field

S=—¢! /ddHa:\/Tg (9" 0,00, ¢* +m>pp*) . (5.103)
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We split the field in terms of its modulus and phase according to ¢ = %gpei&g so that

1 1
57 (TH,p)° — 51_[‘“’8,#)8,,(,0

c2

S = /dd+1xE

2 c? m 2 ¢! ny L 59

where we used (2.9) and (2.11). Next we expand the modulus and phase of ¢ according to

0 =)+ 2p@) + ¢ o + 0%, (5.105)
0= 9(0) + 6_29(2) + 6_49(4) + O(C_4) . (5.106)

The expansion of the Lagrangian is
£=c"Tro+ Laro + O (5.107)
The leading order Lagrangian is given by

L1o = —%e%)hwaﬂe(o)aﬁ(o) : (5.108)

so that the ¢(g) equation of motion tells us that
h* 8,000,009y = 0. (5.109)

This condition is a sum of squares, so it implies
h* 8,00y =0. (5.110)

As explained in section 2.5, this condition will be repeated at any order of the Lagrangian
through the equations of motion of the most subleading field in the expansion of ¢.
With these comments, we can determine the NLO Lagrangian to be

=2 1 R 1 y
Lnio=¢ (—(p%o)h’“’auﬁ(o)ayg(g) +§<,0%0) (Ul‘auﬁ(o))2 _ ,mQ(p%O) —80(0)90(2)h“ 6,u9(0)61/9(0)

2
%gpfo)h#ﬂh’f”épgaue(o)a,,e(o) —%go%o) <<i>+;hpoq>pa> hwaue(o)a,,e(o)) . (5.111)
Using that h#*79,0p) = 0 (which now follows from the ¢ () EOM), the EOM of (g is,
0" 0,00y = Tm. (5.112)
Equations (5.110) and (5.112) then imply that

1
T,u = :FEaue(O) s (5113)

so that 7 is exact. The LO matter Lagrangian is O(c*) but it does not source gravity
at that order due to (5.110). The first sourcing of gravity appears at O(c?). We thus
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couple (3.29) to (5.111). This means that the coupling of the matter Lagrangian (5.104)
to the EH Lagrangian will give rise to Newtonian gravity coupled to a scalar field in the

large speed of light expansion.
The NNLO Lagrangian is
0)

P R 1 . 2 v 1
Fxo = ¢ (q’ “a ‘I)’”> <290?o> (0"0u600))” = £l Dby Dubi2) 27”290?0))

+e <;h“”8uﬁp(0)3u90(0) - @%o)hwau‘g(maue(z;) - %SO%o)hWaue(?)aVe(?)
~20(0) @) " 0u0(0)D02) + 210y 0ubi0)" Dubi2) + P(0)P(2) (" Fubie))”
{0 B e 0u0(0)Df(2) — M P(0)P(2) — Py (@“%9(0))2)

+ et Y 0,60000) — 5exh™ 080,000 (5.114)

where Y# is defined in (2.58) and where we added a Lagrange multiplier x to enforce
h*"8,,0(0)0,0(0) and where we ignored all terms quadratic in h*”9,,0g) = 0. The field x
is given by @%2) + 2¢(0)p(4)- The term @%O)Y“”E)MG(O)E)VH(O) only contributes to the 6
equation of motion because Y#" is of the form hHPY,” + h¥PY,} as it obeys 7,7, YH" = 0.
Since we will not concern ourselves with NNLO fields we did not write out the Y#" term.
The x and ¢(y) equations of motion set 99,0y = +m. We will take the plus sign. The
0(4) equation of motion is automatically satisfied. The 6, equation of motion becomes

O (—mealyy o + el " 0,605 ) = 0. (5.115)
Finally the ¢(g) equation of motion is
e o), (eh‘“’@,,gp(o)) — )M 0u8(2)0,02) + 2mp()0" 0,0 2) — 2m2<,0(0)<i) =0. (5.116)
If we restrict the NNLO Lagrangian (5.114) to (5.110) and (5.112) we obtain the Schrédinger
Lagrangian

A

ﬁSch =e <mg0%0)17“8“9(2) — %h“yaugp(o)&,go(o) — %cp%o)h“”aﬁ(g)@yﬁ(g) — mQQD%O)q)> N
(5.117)
whose equations of motion are (5.115) and (5.116).
The diffeomorphisms generated by Z# = £#+c~2¢#+O(c™%) (where (* = —AD*+h* ()
act on 69 as
802y = £10,0(2) — mA . (5.118)
Hence if we define the wavefunction ¢ = /me g ¢ then this wavefunction satisfies the
Schrédinger equation on a type I NC background with d7 = 0. In other words equa-
tions (5.115) and (5.116) can be combined into the complex Schrédinger equation

1 1 .
— 10Oy — §iwe‘18# (ed") + %e—laﬂ (e d,1h) — mdep = 0. (5.119)

For previous approaches to formulating the Schrodinger equation on Newton-Cartan space-
times, see also [11, 20, 74-76].
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5.4.2 Schrodinger-Newton theory

Let us next consider the coupling of the complex scalar field to gravity. The variation
of (5.111) with respect to my,, ®,, and hy,, all give zero upon using h**9,,0() = 0. On the
other hand the 7 variation in the direction of 7 gives

(=2)
1 6Lnro

o
e 0Ty

T, T} = —m2g0%0) = —myp*. (5.120)

Consider the NRG Lagrangian coupled to the NLO scalar Lagrangian. They couple to
each other because they both appear at order ¢?. The combined system is

e

Lne =
NS 167G N

WPR K K o — (W K )2 =2y, (WP RYT = BP7) N LK

. 1 1
+Oh" R, + Zh“ph”C’FWFW%— iCpgh“phW(f)uTy —0uTy)

. .« 1 .
— &, hHPh"? <RW —Vyua,—aya, — ihwh”)‘Rm +hwe_18n (eh’”\aA)> ]

1

v 1 N 2 v
+e (—@%o)h“ 3u9(0)3u9(2)+580%o) (9" 0uf(0)) _§m290%0)_¢(0)@(2)hu 9u0(0)900)

1 - 1 ~ 1 =
+590%0)h“ph”"@pa@w(o)aﬁ(o)—590%0) <‘I’+2hpaq)pa> h“”8#9(0)8V0(0)> . (5121

If we include the next order in the expansion and restrict to EOM containing at most NLO
fields we obtain the Schrodinger-Newton theory.

This theory is essentially the scalar field analogue of the massive point particle theory
of section 5.1.2. The Lagrangian for the actual Schrédinger equation appears at O(c?) and
so the backreaction problem is considerably simplified. One first solves the equations of
motion of the Newtonian gravity (4.60) with source given by (5.120), i.e.

_ d—2
R, = 87rGNﬁmw1/)*TMT,, ) (5.122)
This leads to a Newtonian potential that then appears at the next order in the Schrodinger
equation giving rise to the well-known Schrédinger-Newton equation.

To see this more explicitly, choose a background that solves (5.122), i.e.

T =dt, h =dZ-d¥, m = &dt, (5.123)
where
d—2 .

If we take d = 3 we can solve (using a Green’s function) for ® to give

P = —mGN/d%’W. (5.125)

|7 — 7|
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The Schrodinger equation (5.119) becomes the Schrodinger-Newton equation:

10 (t, x) = <— m?Gy /d3 RS %T ””) O(t,z). (5.126)

There is an extensive literature on the subject of the Schrédinger-Newton equation 77—

82]. It appears in many different experimental, numerical and theoretical studies, including
applications to quantum interference [83, 84] and laboratory tests of quantum gravity
aspects [85, 86].

5.4.3 Real scalar field

We briefly consider the case of a real Klein-Gordon scalar field with Lagrangian

= 1F< " 0,00, + V(o )) (5.127)

where we assume that the potential V' does not depend on c¢ explicitly. Let us expand the
scalar field ¢ as

¢ = e +¢ e + 0, (5.128)
The 1/c? expansion of the Lagrangian then becomes
© @ .
L=Lio+c¢ “Lnro+0(c7), (5.129)
where we find
© 1.,
£LO =€ 5h’u 8,u¢ l,gb(o) - V((p(o)) > (5.130)

@ 1. 1,
Lnro =e <—h””3u¢(o)0u¢(2) — 3 OW0ud0) (o) + 5 (¥ ()’

1 Vo F 1 VPO F
+§ (hﬂﬂh (ppO' - Eh“ hP (I)pa) 8u¢(0)8l/¢(0) - V/((,O(O))QO(Q)> . (5131)

In a Kaluza-Klein reduction it would be more natural to give the scalar field Lagrangian
the same prefactor as the EH Lagrangian. In that case we have to multiply (5.127) by
167TG . When we do this the LO scalar field Lagrangian couples to Galilean gravity, i.e.
the NLO Lagrangian in the expansion of the EH Lagrangian.

5.5 Electrodynamics

Non-relativistic versions of electrodynamics have been investigated in various formulations
in the literature [87-92]. In this section we will consider the 1/c? expansion of Maxwellian
electrodynamics.

Consider the Maxwell Lagrangian

1
Liax = —@\/TQQWJQWF,WFW (5.132)
where F,, = 0,A, — 0,A,. We will expand A, as

Ay =PA0? + A + 0(c7?), (5.133)
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following our general expression (2.1). The expansion of the transformation of A, under
diffeomorphisms and gauge transformations (expanded as ¥ = 2¢(=2) + ¢(0) + O(¢72)),
yields the transformations of the LO and NLO vector fields

SAGY = L AT + 9,007 (5.134)
SAQ) = LAY + £ AT + 9,00 (5.135)

The Maxwell Lagrangian thus starts at order O(c?), so that

) )
Latax = €' Latax, 10 + € Latax,NLo + O(°) (5.136)

with the LO and NLO Lagrangians

(=9 e

EMax, LO = _ZhMPhVUF;EIjZ)F[E;Z) ) (5137)
2 Lworve p-2p) 1 (4 Liasg Hppvo p(=2) fr(=2)
Litax,NLO = € MR, T Ey = | @+ Sh T Rag | PR EL T,

Loy (svpo | prvapoBa (=2) (—2)
+5h (vv + hveh %B) FGARGD| (5.138)

The A,(fQ) equations of motion at LO and NLO are
0=0, <eh“ph”"Fp(;2)> : (5.139)

- 1 -
0= a,u (6 [h“phVUFlgg) + (CI) + zhaﬁq)aﬂ) h‘uphVUnga_Q)

) . (5.140)

As usual, the AELO) equation of motion of the NLO Lagrangian is the same as the AEL_Q)

(e

_ opPl (@V]{)ff + hV}ah05§a5> Fp(—Q)

equation of motion of the LO Lagrangian.

The NLO action (5.138) is similar but not the same as the covariantised version of
Galilean electrodynamics (GED) presented in [93]. We here have additional couplings to
<i>, CIJW,, that were not present in this previous work. The reason is that GED is naturally
formulated on a (type I) Newton-Cartan background and obtained through a different non-
relativistic limit: to obtain GED one takes a strict ¢ — oo limit where a different scaling of
the temporal and spatial components of the gauge field is allowed in addition to an extra
coupling to a real scalar field. We shall see later that it is also possible to obtain GED via
a 1/c? expansion.

5.5.1 Magnetic theory

It is useful to decompose the leading order Maxwell field

ACY = 0P ACDr, 4 ACDebet = —or, + A, (5.141)
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separating the temporal and spatial components since v“/lu = 0. It follows that its field
strength F, o is basically the magnetic field strength tensor. On the other hand the temporal
component ¢ is closely related to the electric potential. The transformation of ¢ and /vlu
under diffeomorphisms and gauge transformations are:

0p = Le@ + 170002 (5.142)
§Ay =LA, + elendro ™. (5.143)

They both transform under the U(1) gauge transformation, but with temporal and spatial
derivatives, respectively.
We find that the LO and NLO Lagrangians can be written in these variables as

(=4
Lmag, LO = _Zh“phygF Fpo- ) (5144)

(=2 1 .
Linag, NLO = € 2h“ph”"F JFO — = <q> 4 Lhesg, ) RV By oy

1
+ SR hP R Fy Fo + (0t 0,) & (9 + ay) &
1 .
+3 W (6707 By Fpo + 20" Fyy (0, + ay) @)] . (5.145)

As the O(c') term is non-zero, spacetime torsion will be sourced in the gravity
EOMs (4.11)—(4.14). The LO and NLO equations of motion (5.139)-(5.140) when TTNC
is imposed become

0 =0, (eh"”h’"F,,) , (5.146)

. 1 _ 5 - .
0=20, <e [h“ph”"Fp(g) - (cb - 2haﬁq>aﬁ) hHPRYO By — 20RO RB D 5 Fyy
_Qhﬂ[uvu]( o pg+ (8, + a,) @]) ) (5.147)

Since the spatial component of the gauge field dominates the expansion we refer to this
as the magnetic limit. The equation of motion for ¢ is given by the 7, projection of the
latter, which gives

(Ou — ay) [en*? (07 Fpo + (0, + ap) ¢)] = 0. (5.148)

When 7 A d7 = 0 equations (5.146) and (5.148) are the same as in the magnetic limit
of Maxwell’s equations coupled to TTNC geometry studied in [93]. In addition we still
have the equation from the spatial projection of the equation of motion (5.147), which is
not present in that work. However, this is the only equation to involve the subleading
gauge field AELO), so we do not lose compatibility with the magnetic limit. The reason
for the extra equation is that the magnetic limit studied in [93] is not the same kind of
non-relativistic expansion as done here. In the previous work we scaled the temporal and
spatial components of the gauge field differently and took ¢ — oo as a strict limit (on shell),

which projects out the extra equation that appears here.
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5.5.2 Electric theory

Let us now see how the electric limit of Maxwell’s equations studied in [93] fits into the
non-relativistic expansions studied here.

First we impose off shell that

AT = o, (5.149)

and let all gauge transformations start at order O(1) so that ¢ is a scalar transforming as
0 = L¢p. Using off shell TTNC and FW = 0 we find that the Maxwell Lagrangian (5.132)
now starts at order O(c?) and expands as

(=2 ©)

fcelec = C2 Lelec, Lo + Lelec, NLO + 0(0_2) s (5.150)
where
(=2 e ”
£elec,LO = §h'u (au + au) ' (8u + au) ©w, (5151)

(0) 1- 1 _
Lelee,NLO = € —§‘I)h’w (Op +au) v (0, +ay) o+ Zhaﬁ@aﬁhw (Op+au) @0, +ay) e

1 vh = 1 vo
Ll BB (0 + a) @ (B, + ay) o — JhHeh FOFY

—1#5" FO) (9, + a,.) 90] . (5.152)

The LO equation of motion is
(Op —ay) [eh? (0, + ap) p] = 0. (5.153)

The AELO) equation of motion is
9, (¢ [R7 ESD — (woiw — w0 9+ )] ) =0, (5,154
Contracting (5.154) with 7, reproduces the LO equation of motion which is thus contained
as a NLO equation of motion as expected. For d7 = 0 equation (5.154) agrees with the

electric limit of Maxwell’s equations coupled to NC geometry as studied in [93]. In addition
we have the variation of the NLO action w.r.t. ¢ which gives

F= 1 viaBF apvB & INY
0= (8, —ay) [e (h“ B hHh B, 5+h 5%5) (Ov+ay) p+eh 5" F9 | (5.155)

This latter equation does not appear in the on shell strict ¢ — oo limit of the electric limit
of Maxwell’s equations. Similar to the previous section the origin of this extra equation
can be traced back to the fact that here we are performing an expansion as opposed to
taking a limit as in [93].
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5.5.3 Galilean electrodynamics

We would like to obtain Galilean electrodynamics (GED) from a 1/c? expansion of a
relativistic theory. To do this we couple relativistic electrodynamics with gauge field A,
to a massless real free scalar ¥ and study a particular expansion. Consider then the
decomposition

A, = —chpTM + flu — QTu + X7y + O(c™?), (5.156)
U=—co+cx+0(c?). (5.157)

We split the O(1) component of A, along 7, into two scalars: ¢ that transforms under
gauge transformations and x that does not transform under gauge transformations. The
expansion of the gauge parameter starts at order O(1). The resulting transformations of
the fields are

dp = Leyp, (5.158)
0p = Lep — v LTy + 17000, (5.159)
ox = Lex — Lew, (5.160)
§A, =LA+ LA, — gpefbe;\ECT,\ + eZeﬁ@Aa. (5.161)

The sum of the relativistic Lagrangians (5.127) (with ¢ replaced by ¥ and no potential
term) and (5.132) starts at order O(c?) and yields:

(=2 1
‘CLO = eh’“’augo <8l, + 2al,> @Y, (5162)

© 1 o _ 1
LnLo =€ [_4h“pthuuFPg + WPV E, (ap =+ ap) w+ 5 (@uau@)Z

1. v v
_Q(I)h“ [(@L + au) 00y +ay) o+ 8%08%0} — pxh* Vyuay,
1 - 1 _
+5 <h“°‘h”ﬁ<1>a5 — 2h’“’h0‘5<1>a5> 0,00, — (8, +au) o (8, +a) ¢]|, (5.163)
where we defined

Fuy = Fuy — 20, (¢7)) (5.164)
and with TTNC off shell we have h*’h*? [, = h“ph”"FW. We see that in the leading
order Lagrangian the term with two derivatives cancels out, leaving just a single spatial
derivative and torsion vector terms.

The leading order equation of motion from the ¢ variation is

Ph*'N a4, =0, (5.165)

consistent with what one gets at NLO by varying x as it should be. We must have either
¢ =0 or W"V,a, = e 9, (eh" a,) — W a,a, = 0. In particular a, = 0 < dr =0 is a
solution. o

When d7 = 0 we obtain GED exactly as it appears in [93] with Ln1.0 = Lgep and

1 o _ 1 .
e 'Lapp = =R B Fpo + WP EuOpp + 5 (0"0,)* — DI D, 00,0, (5.166)

and the subleading scalar x and the field (i)alg decouple.
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6 Solutions of non-relativistic gravity

In this section we will consider solutions to the non-relativistic gravity (NRG) theory.
Here we will explicitly demonstrate that it is much richer than just Newtonian gravity.
We see that many of the canonical general relativity (GR) solutions are also exact solu-
tions to NRG. The discussion is initiated by looking at isometries of twistless torsional
Newton-Cartan (TTNC) spacetimes and how to do gauge fixing. The 1/c? expansion of
the Schwarzschild solution is studied first and done in two different ways: a) A weak field
expansion related to the Post-Newtonian expansion and b) a strong field expansion that
will be an exact torsionful solution of NRG. For the latter we also study the geodesics,
which turn out to be the same as in GR, albeit conceptually different. Next the Tolman-
Oppenheimer-Volkoff (TOV) fluid star is studied and we show that the TOV equation can
be derived entirely in our NR framework. We then look at cosmological solutions and
show that the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime is also an exact
solution of NRG. We conclude this section by discussing inequivalent spacetimes that arise
from different 1/c? expansions of the anti-de Sitter (AdS) spacetime.

6.1 Isometries and gauge fixing

The geometric fields 7, h,,, m, and ®,, transform according to studied in section 2.3
by (2.46), (2.71), (2.72) and (2.73). An isometry is a transformation which leaves the fields
unchanged, that is (with 7 A d7 = 0):

0=071, = LeTy s (6.1)
0="0hu = Lehy + muh + Ty, (6.2)
0=omy = Lemy + O\ — ay A+ 7,00,y + Ay (6.3)

0 = h*PhY7 6@, = PRV (Le®p + 20K 0 + Vil + Vi ly) - (6.4)

We can also say that these are diffeomorphisms generated by K* for which there exist A,
A and ¢, such that

LrgT, =0, (6.5)
Lgmy = —0uN+ ayA —1,h"Pa,(, — Ay, (6.6)
cKhuu = *Tu)\u - Tu)\u ) (67)
RPRY L@y, = —hHPR" (2AK 4 + VG + V() - (6.8)

By fixing diffeomorphisms and Milne boosts we can always write
Tudat = Ndt, (6.9)
hypdatda” = y;;da'da’ (6.10)

where 2# = (t,2%). This means that

ot = —N"1ot (6.11)
R = 4515 (6.12)
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Demanding that d7; = 0, dhy = dhy; = 0 leads to the residual gauge transformations
(using (2.46) and (2.72))

;68 =0, (6.13)
A =0, (6.14)
/\i = —N_l’yijatfj . (6.15)

The nonzero components transform as

SN =¢'O;N + 0, (¢'N) (6.16)
0vij = EXOkij + Yin05E" + Y 0iE" + €0y . (6.17)

The residual gauge transformations act on m,, as

Smy = £'0imy +mi0&' + 0i(A + E'my) + 40N (G + Amy) (6.18)
om; = §t8tmi + gjc‘)jmi + mjf)igj + N@Z(N_IA) — N‘leﬁtgj . (619)

We have defined the general notion of a Killing vector and discussed a convenient
gauge for the leading order (LO) fields. In principle one could next study ansétze that
preserve certain symmetries, but instead we will simply discuss a number of solutions to
the equations of motion (EOMs).

For the special case of solutions of the LO theory that are also exact solutions of GR,
i.e. for which m, = 0 and ®,, = 0 the equations of motion (4.11)-(4.14), where the left
hand side is given by (3.39)-(3.42), reduce to

1 1

-5 (W™ K )+ ST Ky K pr = 8TG N T, (6.20)
. 1 .

(RPR =D BPT) N K gy + 50 WY Ry =87 GN T, (6.21)

. 1 . - -
hHPpve (RW—Qhwh“ARM— (Vitay) ay+hh™ (Vi+ay) a)\> =8tGNTE?,  (6.22)

1 .
= SHP (WORYT =W 1) K Ky =V (0 (P =P ) K, ) = 87 G TR PP,
(6.23)
where K, = ﬁ@thw. We will study solutions of these matter coupled equations in the
last two subsections. We refer to [36] for more details and comments about the structure
of the equations of motion in the gauge (6.9) and (6.10).
6.2 Weak gravity expansion of the Schwarzschild metric

One way to generate solutions to non-relativistic gravity is by considering the 1/c? expan-
sion of GR. Therefore, let us consider the Schwarzschild metric with factors of ¢ restored:

2 2 -1
ds? = —2 (1= 290m ) g2y (12260 e 20, (6.24)
c3r c2r S
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We can perform two different physically relevant expansions depending on how we
treat the mass parameter as a function of ¢?. The first option is to take m constant as
we expand. In that case, by comparing to (2.58), (2.58), we can read off the fields in the
expansion of the Lorentzian metric as

T,dat = dt, (6.25)
mydat = —GNdet = ddt, (6.26)
hypdatda” = dr? + r?dQgs , (6.27)
®,, dztdz” = QGTder? = —20dr?. (6.28)

The result is a flat torsionless Newton-Cartan spacetime with non-zero subleading fields
my, and ®,,. One can verify that this is a vacuum solution of the EOMs (3.39)—(3.42).
The solution is expressed in terms of the Newtonian potential ® = —v#*m, = —Gnym/r. In
this case the 1/c? expansion does not terminate. The expansion of the temporal vielbein is
completely captured by 7, and m, (with B, and further subleading fields equal to zero),
while the 1/c? expansion of the spatial part of the metric does not terminate. In fact the
higher order spatial fields CIJ,(LL,) encoding the remaining post-Newtonian effects all take the

simple form
2G Nm

@Eﬁ,")dx“dx” = ( > dr? = (—2®)"dr?, (6.29)

where n € N and @L%) = ®,,,. When all the fields in the expansion are resummed, we obtain
the Lorentzian metric again. Since the torsion is zero, the expansion is really describing
weak gravitational fields. From the study of geodesics in section 5.1 we see that the geodesic
equation simply becomes (5.19). In particular at this order in the expansion we do not see
any terms that would give rise to the deflection of light etc., i.e. everything agrees with the
prediction of Newtonian gravity.

6.3 Strong gravity expansion of the Schwarzschild metric

The situation is quite different if we perform an expansion of the Schwarzschild metric (6.24)
where we take the mass to be of order ¢? so that M = m/c?> = constant as was done in [3].
This is a strong gravity expansion of the Schwarzschild metric, i.e. one not captured by
Newtonian gravity, but still described as a Newton-Cartan geometry.

This provides us with a different approximation of GR as compared to the post-

Newtonian expansion. In this case the expansion terminates at NLO and the geometry
is described the by the LO fields

Tudat = /1— QG]TV M i, (6.30)
mydzt =0, (6.31)
hydatde” = (1 - QGJTV M > - dr? + r2dQge (6.32)
¢, dztda” = 0. (6.33)



This is a torsionful Newton-Cartan spacetime which is actually a solution of the equations
of motion of the NLO Lagrangian (3.16) in the expansion of the EH Lagrangian (Galilean
gravity) as it does not involve the subleading fields.

This is a vacuum solution with torsion. In section 6.4 we will show that this can be
viewed as the exterior solution of a fluid star which can be interpreted as a source for the
torsion.

6.3.1 Geodesics in static and spherically symmetric backgrounds

Let us consider the results of section 5.2 and apply them to the case of geodesics in the
torsionful geometry (6.30)—(6.33). This will lead to the results reported in [33].

We will start with a slightly more general case than the one in (6.30)—(6.33) and
consider a geometry with spherical symmetry which can be written as

rdat = N(r)dt, hydetds” = ;de'da? = R*(r)dr?® + r? (d{92 + sin? 49d¢2) . (6.34)
The relevant equations for geodesic motion are given in (5.55)—(5.57). The time component
of (5.56) is automatically satisfied because of 7,4* = 0 which implies £ = 0. The spatial
components obey

R o 1 .. 3
i+ 5’721 (O5vkt + Oyjt — Oryj) &7 2" = 3V 0N z. (6.35)

We will consider motion in the equatorial plane only, i.e. 6 =0and 0 = m/2. In this
case (6.35) reduces to

1 1
0=7#+ 5R*%?,R%'«? —r B3R - §R*28TN’2 , (6.36)

. . d .
0=+ 2 tgi=r25 <r2¢) : (6.37)

dA
The latter equation can be integrated to 7’2(;'5 = [. This has been used in the first equation.

Equation (5.55) becomes
N=2=C?+ RY(r)i? +r2¢?, (6.38)

which can be rewritten as
P+ C?R? - N 2R 2+ R %% =0. (6.39)

The A derivative of this equation gives (6.36). Conversely, integrating (6.36) gives (6.39)
with integration constant C2. The geodesic equations have an overall scale symmetry which
involves rescaling the geodesic parameter A and thus the angular momentum [ as well as
N~2 (which in 7 can be compensated by rescaling t). This means that the value of C? is
not important. The only thing that matters is whether it is zero, positive or negative. For
timelike geodesics it should be positive.

We now specialise to the geometry described by (6.30)—(6.33) where we will call 73 =
2G N M the Schwarzschild radius (treated as independent of ¢). Let us restrict attention to
geodesics for which ¢ # 0 then after rearranging we find

dr\? ot 5\ (C?
(d;) = % — (1 - %) (l2r4 + r2> . (6.40)
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This is a well-known equation describing planetary motion (for C? > 0) in the Schwarzschild
geometry including the effects of the perihelion precession. It also captures the phenomenon
of light deflection (for C? = 0). For more discussion we refer to [33].

6.4 Tolman-Oppenheimer-Volkoff equation

In this section we will show that the Tolman-Oppenheimer-Volkoff (TOV) equation for
the hydrostatic equilibrium of a spherically symmetric isotropic body (fluid star) can be
derived entirely within the non-relativistic gravity framework.

The solution we are after is known to be static, and hence we need K, = 0. From the
equations of motion (6.20)—(6.23) we infer that the sources must obey

TH=0, Thoo', TMPIP)=0. (6.41)

From the boost Ward identity (4.27) we also learn T} VPﬁTI, = 0. In order not to source
any subleading orders we can fulfil these conditions if we take a perfect fluid as defined
in section 5.3 with only E(_4) and P_4) nonzero. This can be seen to follow from equa-
tions (4.32)—(4.34) We furthermore take for the fluid velocity

Ut = —ot| (6.42)
so that he fluid energy-momentum tensor reads
TH = ®E(_gyv"v” + ' P_gyhH* . (6.43)
The equations of motion (6.20)—(6.23) then reduce to

1
6—18# (eh#l/a,/) = 87TGNH (dP(_4) + (d - 2)E(_4)) 5 (644)

WPRY (R — (Vo + ) @) = 87Gyh?””

— (B = Pey) - (6.45)
It can be shown that the 1/c? expansion found in [3] agrees with equations (6.44) and (6.45).
The fluid equations of motion are (5.85) and (5.86).

Let us now turn to the most general d = 3 static spherically symmetric ansatz for the
spacetime geometry that follows from using the results of section 6.1 and requiring the
relevant isometries, summarized by

7 = N(r)d, = e*g!,, (6.46)
ot = —em gl (6.47)
h = diag (O, 6_2B(T), 1/r%,1/(r* sin® 9)) , (6.48)
(6.49)

hy, = diag (O, et28() 12 12 gin? 6?) ,

where a(r) and B(r) are arbitrary functions. The same ansatz can be obtained from the
1/c? expansion of the corresponding analysis for a Lorentzian metric 9w using Birkhoft’s
theorem.
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Inserting the static spherically symmetric ansatz into (6.44) and (6.45) we find that
the equations of motion take the form

e 26 (ro/’ +ra? —rd B+ 20/)

. =4rGyN (3P(,4) + E(,4)) , (6.50)
=208 (_ . 24/ 1ol 2
e ( ro’ + €‘+TCXB ro ) :47TGN (E(,4) —P(,4)) , (651)
e 28 (—ra/ +rp' + e -1
( ) ) _ AnGy (B_qy — P_g)) - (6.52)
From these we can solve for P_y), E(_4) to find
—28
c [25’ 4l (e% - 1)} = 87GNE(_y) = 87Gnc B, (6.53)
e % —1( .2 —4
" [20/ —r (e A 1)} =8rGNP_y) =8TGNc P, (6.54)

where we restored the full energy and pressure according (5.80) and (5.81) in the last
equalities.

It is convenient to define a function M (with dimensions of mass over velocity squared)
through
1
42

E(y M (r) . (6.55)

The solution to the first equation can be written as

e =1— SUISE / s°E(_y) (s)ds. (6.56)

T 0

The conservation equation (5.85) gives us
Py =~/ (P-g + B-y) - (6.57)

This conservation equation is exactly the same as the one that appears in the relativistic
case. With this one finds that the remaining equations can be rewritten as

(6.58)

r2

Gy oM r)GN>_1
r )

P'=——2(P+E) (M(r) + 4nr*c™*P) <1 _ 2M(

after reinstating factors of ¢2. This is exactly the relativistic TOV equation for a stellar

body of mass of the order of ¢?, i.e. for which M (r) = mc(;) is order ¢V, with m the dimensions

of mass. This is the same point of view as taken in [3] and in section 6.3 of this paper.
We thus conclude that the physical structure of stellar bodies can be described com-

pletely by non-relativistic (strong) gravity. Its description does not require the principle of

relativity.
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6.5 Cosmological solutions and Friedmann equations

We will next show that Friedmann-Lemaitre-Robertson-Walker (FLRW) solution solves
the LO equations of motion (6.20)—(6.23). Using again the form (6.9), (6.10) for the LO
fields, we can show that in this case we must have

N=1 y ”)/ij = a2(t)01'j s (6.59)

where o;; is constant in time and describes a maximally symmetric space in d dimensions.
We assume that the scale factor a is independent of c. It follows that the acceleration and
extrinsic curvature satisfy '
a
ay, = 0, K;w = *h;w , (660)
a
where the dot denotes differentiation with respect to time. The equations of motion (6.20)—
(6.23) then reduce to

1 1) 2
—5d(d—1) <Z> = 8GN, T, (6.61)
1 .

iv”h’”Rpg =8rGnNT,, ., (6.62)

. 1 § -
WIPRY? Ry, — ShP W Ry, = STONTEY (6.63)
—ld(d—l) a Qho‘ﬁ—(d—l)haﬁg @) _ gxay T PO PP (6.64)

2 a at \a) =N Sty '

Just like in the previous subsection we will translate this set of equations into conditions
on the 1/c? expansion of a perfect fluid. Using equations (4.32)—(4.34) it follows that we
need to take a perfect fluid as defined in section 5.3 with only E(_y), P_y), E(_2) and P_y)
nonzero. For the fluid velocity we will take again

Ut = —ot. (6.65)
This means that the fluid energy-momentum tensor takes the form
T = C4P(_4)hlw + C2E(_4)’UM’UV + C2P(_2)hlw + E(_Q)UMUV . (6.66)

The above equations of motion then simplify further to the set of equations

1 a\?
2k
5= 87GN (P_ay + E(_y)) (6.68)
0=dP_y4 + (d— 2)E(,4) , (6.69)
d [(a
—(d— 1)£ <a> =81GyN (P(,Q) + E(,Q)) , (6.70)
where k = —1,0, 1 depending whether the spatial metric o;; in 7;; = a® (t)oij is a maximally

symmetric space of constant negative, zero or positive curvature. The third equation follows
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from the absence of a source for torsion. We see that the sources for the spatial derivatives
are P_4) and E(_4) while the sources for the time derivatives are P_y) and E_y).

After resumming the energy E and pressure P according to (5.80) and (5.81), one
obtains the Friedmann equations for a d + 1-dimensional cosmological spacetime. It is
straightforward to see that for d = 3 one can put these equations in the conventional form

. 2 2
a\” 8rGn ck
<a> o 3¢2 E a(t)?’ (6:71)
d [a a\’ 47TGN

The cosmology one obtains from non-relativistic gravity thus agrees with the (relativistic)
Friedmann equations obtained from GR. If the spatial curvature k£ vanishes, then the
spacetime can be sourced by a perfect fluid with E_4) = P4 = 0.

These equations were derived from an Einstein equation written as G, = S”CCIN
In the presence of a cosmological constant A this is also written as G, + Agu, = SWGN T ’

If we define T}, = EICEPI U,U, + P'g,, then we have the relations P’ = P + %A and
E =F - %A. In the case of de Sitter spacetime we have a = exp (Ht) where H
is the constant Hubble parameter and k£ = 0. This leads to By = P4 = 0 and
B g =—Py =g sothat B = —P = 32 = €A with A = 3. The de Sitter
radius is ¢/H. This 1mphes that £/ = 0 = P’ as it should.

The leading order fluid conservation equations are given by (5.85) and (5.86), reflecting

that the quantities E(_4), P(_s) (which are nonzero for k # 0) are homogeneous and that
energy is conserved. The subleading conservation equations similarly become:

0=h"0,P g, (6.73)

0=V, [Boyuu’] + Pou’ WP Ky, = (6.74)
a

0= u“c‘)uE(,g) + da (E(,Q) + P(,Q)) , (6.75)

and when we rewrite these in terms of F and P, they are equivalent to the conservation
equations appearing in GR. For different and more canonical approaches to Newtonian
cosmology, see references [94-99].

6.6 1/c? expansion of AdS spacetimes

As a final example of general interest we consider the 1/c? expansion of AdSy,; and illus-
trate the dependence on the coordinates that are chosen before taking the limit.

The AdS;41 metric in global coordinates (with factors of ¢ restored) is
ds® = —c? cosh® pdt? + 1% (dp® + sinh? pdQ7_,) , (6.76)

where [ is the AdS radius, p > 0 is dimensionless and ¢ has dimensions of time (if we keep
¢) or length (if we set ¢ = 1). In this coordinate system we can use again (2.58), (2.58) to
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read off the corresponding type II NC geometry

Tudat = cosh pdt , (6.77)
hudatdz” = 17 (dp?® + sinh® pdQF_;) | (6.78)
my, =0, (6.79)

¢, =0. ( )
Obviously the 1/c? expansion terminates immediately. This NC spacetime is torsionful

with torsion vector given by
ay,dz! = tanh pdp . (6.81)

On the other hand because this coordinate system is static the extrinsic curvature vanishes,
i.e. K,, = 0. The same can be done starting with Poincaré coordinates, also leading to
the result that the spacetime obtained from the 1/c? expansion is torsionful.

However, the situation is different in FLRW coordinates. In this case the metric takes
the form

T
ds? = —?dT? + 12 cos? (Cl> dsZ, (6.82)

where ds]%ld is the metric of hyperbolic d-space which has k = —1 with k& defined in the
previous subsection. In order to obey the 1/c? expansion ansatz of the metric [ cannot
depend on ¢ but then the argument of the scale factor a = [ cos (%) depends on c. The
[ prefactor in a is necessary in order that (6.71) gives E = —P = %A with A = —l%
so that £/ = 0 = P’, as it should, with £’ and P’ defined at the end of the previous
subsection. This is different from what we found in the de Sitter case with A = 3%2 where
the de Sitter radius ¢/H was chosen to be of order ¢. Comparing to (2.9), we conclude
that the spatial part II,,, in (6.82) cannot be expanded analytically in 1/c?.

Let us consider a slightly different coordinate system for AdS by defining r = [ sinh p,

leading to the metric

r2
12

2 2 r? 2 dr? 2 102
ds® = —c 1+l—2 de —i—1+ +redQy_ . (6.83)

If we replace 12 by —I? this gives us to the static patch of de Sitter spacetime. If we now
define [ = & with H independent of ¢ and we treat both signs of 12 at the same time we find
2 21,2 2.2 7,2 dr? 2102

ds® = —c°dt :FHTdt +1:|:7HQ7‘2+T de—l? (684)
c2
where the upper sign is for AdS and the lower sign is for dS spaces. Expanding this to
NLO the resulting NC geometry can be read off as

1
r=dt,  hydatde’ =d7F-d¥, m= i§H2£2dt, (6.85)

where we left out ®,, and where we transformed to Cartesian coordinates. Such a NC
geometry is known as the Newton-Hooke spacetime. In [100] we showed that such a space-
time can be written in the form of a non-relativistic FLRW geometry with flat spatial slices
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by a sequence of NC gauge transformations. For the AdS case, i.e. the upper sign in (6.85),
one can show using the techniques of [100] that this can be written as

r=dt’, h,datde” = cos?(Ht)dz - da’ m =0, (6.86)

where we transformed h,,, and m,, using a Galilean boost and abelian gauge transformation
and where we furthermore transformed the coordinates. For the dS case we similarly find

r=dt',  h,detda” =e*dF - dT,  m/=0. (6.87)

These should however not be confused with the FLRW spacetimes discussed above as the
latter result from a different 1/c? expansion.

We conclude that, starting with the Lorentzian AdS spacetime one encounters a situ-
ation similar to the two different 1/c? expansions of the Schwarzschild geometry discussed
at the beginning of this section. In that case, the difference depends on how the mass as
a function of ¢? is treated. In analogy, we see here that the expansion depends on how we
treat the cosmological constant as a function of ¢2.

7 Discussion and outlook

The main purpose of this paper has been the development of non-relativistic gravity (NRG)
as it appears from a large speed of light expansion of general relativity (GR). We have
given a detailed introduction to the underlying geometry, which we dubbed type II Newton-
Cartan (NC) geometry. We have presented the gauge transformations of the fields and how
they can be thought of as arising from the gauging of an algebra that in turn can be obtained
from an algebra expansion of the Poincaré algebra. We defined the Lagrangian of NRG to
be given by the next-to-next-to-leading order (NNLO) Lagrangian in the 1/¢? expansion of
the Einstein-Hilbert Lagrangian in which we impose the twistless torsional Newton-Cartan
(TTNC) condition for a global foliation in terms of constant time slices with the help of
a Lagrange multiplier. We derived this Lagrangian using two different methods: by direct
1/c? expansion and by using gauge invariance under type II gauge transformations. We
have subsequently discussed the resulting equations of motion and the coupling to matter.
We have furthermore described some of the main examples of matter couplings, i.e. point
particles, perfect fluids, real and complex scalar fields and electrodynamics. Finally, we
have presented some of the simplest solutions of non-relativistic gravity (coupled to a
perfect fluid) and commented on their physical relevance.

Open problems and future directions. As a first avenue of further analysis, under-
standing NRG from a Hamiltonian perspective would tell us more about the number of
degrees of freedom. This can be achieved by the usual counting of the phase space dimen-
sion and constraints per spacetime point. The Hamiltonian perspective would furthermore
provide us with natural candidates for the definition of asymptotic charges such as mass, en-
ergy, momentum, angular momentum etc. In this light it would for example be interesting
to see what would happen with asymptotic symmetry groups in the non-relativistic regime.
This might help us in understanding if NRG has the potential to admit a holographic dual
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description. For example in the case of the AdS/CFT correspondence one could wonder
about what happens with the Brown-Henneaux analysis in 3 dimensions [101, 102] when we
expand in 1/c? or what happens to the fluid/gravity correspondence [103, 104] in the non-
relativistic (NR) expansion. One could also examine how to implement the 1/c? expansion
in the bulk at the level of the boundary theory of known dualities. More generally, it is
interesting to speculate whether there is a relation with the entropic and emergent gravity
ideas of [105, 106] which are also connected to Newtonian gravity and modifications thereof.

Another perspective on the theory would be provided by performing a detailed analysis
of the linearised spectrum (for example around flat NC space). We do not expect that the
theory has propagating degrees of freedom, and hence we expect that the gravitational in-
teractions are instantaneous as in Newtonian gravity. Nevertheless, it would be interesting
to understand the structure of the propagators and how the theory would behave from a
perturbative QFT point of view. Obviously, it would be important to study further 1/c?
expansions of relativistic solutions in detail. This will teach us more about the conceptual
nature of non-relativistic gravity. In particular it would be interesting to see how the 1/c?
expansion of the Kerr geometry fits into this framework. This is a sufficiently general
spacetime to study in order to understand if there is a notion of a non-relativistic black
hole. We can then also hopefully shine some more light on the correct interpretation of the
geodesics studied in section 5.2.

It is clear from the analysis presented here that if one were to continue the expansion
of the Einstein-Hilbert (EH) Lagrangian beyond NNLO it would quickly become very
challenging. We expect that performing the same analysis in first order formalism should
be more suited to a higher order expansion. As we have stressed in this paper, we know
the underlying symmetry principle at any given order along with the systematics of the
expansion of the EH action, but one needs to develop an efficient way to extract results.
To this end we plan to pursue the analysis of the 1/c¢ expansion in first order formalism
in [65]. In this connection see also the references [35, 40, 41]. A related point that needs to
be addressed is the question about the status of the odd powers of 1/¢. These have been
discarded in this work as a simplifying assumption, but ultimately we need to understand
their physical significance. In this light we refer to [61].

One of the possible applications of a higher order analysis would be to make contact
with the post-Newtonian approximation. In particular it would be of interest to construct
a map relating non-relativistic gravity in our formalism to more conventional PN param-
eterisations since it goes beyond the approximation where the torsion is zero and encodes
strong field effects more naturally. Importantly, there may be relevant domains of valid-
ity in physical processes, such as the early phase of inspirals of compact objects, where
non-relativistic gravity can either give new results or alternative methods to check known
results. Examining the two-body problem in non-relativistic gravity will thus be important
as well. In another direction, it would be worthwhile to obtain the action and equations of
motion at higher order in the 1/c? expansion.

It would of course also be important to examine how the non-relativistic action is
related to string theory. The current state-of-the-art includes non-relativistic strings that
probe type I NC geometry, as well as the closely related string Newton-Cartan (SNC)
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geometry. It would thus be very interesting to uncover how strings couple to the type 11
NC geometry and in particular whether the beta-functions of this putative theory reproduce
our NRG theory. More generally, it would be interesting to see how branes couple to type
IT TNC geometry differently from type I TNC geometry as studied in [107, 108].

Finally there are of course various other open issues one could consider, for example
the coupling of a non-relativistic spinning particle to type II TNC, fermionic matter ac-
tions and adding spacetime supersymmetry.'?> With the richness of non-relativistic physics
demonstrated so far there are certainly still numerous other interesting studies to be done.
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A Notation and conventions

The number of spatial dimensions is denoted by d. For indices we use the following;:

e a,b,... are spatial (tangent space) indices, a = 1,...,d.

e A B,... (beginning of alphabet) are Lorentzian (tangent space) indices, A =0,1,...,d.

e [, v,...are coordinate indices, p =0, ...,d.

M, N, ... (middle of alphabet) are coordinate indices of Lorentzian metrics used in null
reductions, N =0,1,...,d,d+ 1.

(n)
A superscript of the type X indicates the order of some coefficient of a Laurent/Taylor

expansion in 1/¢ for some object X (c¢). There is one exception to this rule. When expanding
a field ¢ whose 1/c? expansion starts at order ¢” we write instead

¢ = Py + ¢ 2pa) + ¢ oy + 0. (A1)

12Qupersymmetric actions for other types of non-relativistic gravity theories, e.g. with Bargmann sym-
metry, have been considered in [13, 15, 42, 109, 110].
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A.1 Acronyms

AdS anti-de Sitter. 6, 11, 64

CS Chern-Simons. 34, 35

EH Einstein-Hilbert. 4, 6, 8, 17, 21, 35, 74, 83

EOM equation of motion. 1, 6, 16, 20, 36, 43, 44, 65

FLRW Friedmann-Lemaitre-Robertson-Walker. 6, 64, 70

GED Galilean electrodynamics. 43

GR general relativity. 1, 6, 7, 20, 36, 64, 73, 81

LO leading order. 3, 12, 20, 36, 43, 65

NC Newton-Cartan. 1, 11, 21, 36, 42, 73, 78

NCG Newton-Cartan gravity. 44

NLO next-to-leading (or subleading) order. 3, 12, 20, 36, 43

NNLO next-to-next-to-leading (or subsubleading) order. 4, 12, 36, 44, 73
NR non-relativistic. 1, 6, 43, 74

NRG non-relativistic gravity. 4, 6, 20, 25, 35, 42, 64, 73

PN post-Newtonian. 1

SNC string Newton-Cartan. 1, 75

TNC Torsional Newton-Cartan, i.e. 7 AdT #0. 1, 3, 77, 78
TOV Tolman-Oppenheimer-Volkoff. 1, 64

TTNC Twistless torsional Newton-Cartan, i.e. 7 Adr = 0. 3, 4, 22, 36, 43, 50, 64, 73, 78

WI Ward identity. 6, 28, 35, 38, 43
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A.2 Curvature

For any torsionful connection Fﬁ,, with covariant derivative V,, the Riemann tensor R,,,”
and torsion tensor 1, are universally defined through

[vu; VV] XO' = R,ul/apo - TpuuvaU ) <A2)
Vi, Vo | XP = —R,6" X7 =T,V X", (A.3)
so explicitly
_ A A
Rywe” = =000y + 0,10, — T, Th, + T, (A.4)
TP = 2T, (A.5)

The Bianchi identities are

Riywo)” = T T o1x = ViuT v (A.6)
ViR =T 5 Rojpe” - (A.7)
The Ricci tensor is also universally defined as
R, =R,," . (A.8)
We will always work with a connection such that

I, = 0ulog M, (A.9)

where M is the measure, which corresponds to the condition for the existence of a parallel
volume form. This implies that
R, =0, (A.10)

and hence that the antisymmetric part of the Ricci tensor is
2Ry = _QT/\p[uTPV]/\ + T)\MVTp)\P + VTP — vaﬁp + VTP . (A.11)

In this paper we use three different choices of affine connections. The formulae of this
appendix apply to all of these three choices.

A.3 Comparison of notations

The notation in this paper have been streamlined and differs from some of the choices
in previous works. To make comparison easier we present in this appendix table 1 with
notations used in two other papers [3, 4].

B Review of torsional Newton-Cartan geometry

Torsional Newton-Cartan (TNC) geometry has been reviewed extensively in the literature.
We repeat here the most fundamental aspects, see also references [9, 10, 12, 43, 60, 76, 111].
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This work Hansen et al. 2018 [4] Van den Bleeken 2017 [3]
Clock 1-form T Ty Ty
oM P K
DM P _AH
Spatial metrics h*v h*v hH
Py Py huw
BW BW iL/W — Q@TNTV
Subleading fields my my, -C,
B, - -B,
Dy - —hyuphue 77
®,, 27, B,) — hyuphuo 377 -
ym - 27 WP B, 4 A
Torsion vectors Gy, ay, ay,
a, - -
Extrinsic curvatures K, - -
K,uu K;w f(;w — Z@T(Md,,) — T#Tl,f'pﬁpi)
o d P
Connections I I (FZ’L,
P, i ]

Table 1. Comparison of notation used in three different papers including the present one. A ‘-’
denotes that the corresponding object has not been defined in the corresponding paper.

TNC geometry is characterised by three tensors 7, hy,, m, with h,, symmetric and

of signature (0,1,...,1), subject to the following gauge redundancies
07y = LeTy, (B.1)
5h/“/ - Lghlﬂ/ + T/J/AV + T]/)\M 9 (B2)
dmy, = Lemy, + 0,0 + Ay (B.3)

where A\, obeys v#), = 0 with v# defined as follows. The inverse of —7,7, + h, is given
by —vFo” + A" with o1, = =1, v'hy,, = 0, 7,A*" = 0 and hy,h* = 6, + v”7,. The

inverse objects transform as
vt = Levt + AN, (B.4)
SR = Leh! . (B.5)
The parameter ), corresponds to local Galilean (or Milne) boosts and the parameter o to
Abelian gauge transformations associated with particle number conservation.

TNC geometries only admit degenerate metric structures given by 7,7, and h*" re-
spectively. Lower indices can thus no longer be raised at will because contravariant and
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covariant tensors of the same rank cannot be mapped to each other in a one-to-one way.
The non-uniqueness in v*, h,, can be interpreted as the ambiguity due to frames related by
local Galliean boost transformations (also sometimes called Milne boosts in the literature).

In addition to 7, and h*", one can define the following Galilean boost-invariant space-
time tensors

ot =o' —h"my, hu = h — 27

“ 1
uM) s ¢ = —vh'm, + §h“”mum,, . (B.6)

These form a convenient set of variables to describe TNC geometry and they satisfy the
completeness relations

ot =—1 , ', = =0 + W Ry, . (B.7)

It should be noted that o*, l_zw, and ® are not invariant under the Abelian gauge transfor-
mation with parameter o.

One can also define an affine connection Ff‘w so that we may take covariant derivatives.
It is natural to require the TNC equivalent of metric compatibility V,7, = 0, V,h*" = 0.
The first of these conditions implies that any metric compatible connection must have
the same temporal projection of the torsion tensor QTPFﬁW] = 20;,7,). Thus constraints on
torsion imply restrictions on the geometric data in contradistinction the case of Riemannian
geometry.

We distinguish between three possible classes of Newton-Cartan geometry:
1. (Torsionless) Newton-Cartan (NC) geometry, d7 = 0.
2. Twistless torsional Newton-Cartan (TTNC) geometry, 7 A d7 = 0.
3. Torsional Newton-Cartan (TNC) geometry, 7 A d7 # 0.

The full TNC case is acausal as has been argued in [60], but is still interesting in applications
to field theory and holography because the energy current is the response to varying an
unconstrained 7,. On the other hand in the torsionless Newton-Cartan geometry there is
a notion of absolute time as § 7 = 0 implies that all observers agree on the time interval
between events. For most purposes we will restrict ourselves to the twistless torsional
Newton-Cartan geometry which defines a spacetime foliation whose normal 1-form is 7.
In [93, 112] it was shown that any boost invariant TNC connection may be written as

I, =T, +Ch, . (B.8)
where we define a distinguished TNC connection as
_ R 1 _ _ _
T, = 0" + 5/&0 (8o + Ohps — Oohyw) (B.9)

and C'/i‘,/ is a spacetime tensor; a TNC analogue of the “contortion” tensor. For f‘ﬁ,j the
torsion tensor is given by T/i‘l, = —2@)‘8@7},}. The connection ffw is manifestly boost
invariant while, unless d7 = 0, it is not invariant under the Abelian gauge transformation
with parameter o.
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We will also make use of the non-boost invariant connection

. 1
I, = 00,7, + 5hp" (Ophve + Ovhpe — Ochy) (B.10)

which has the nice property that it does not contain m,, and is therefore invariant under
the o gauge transformation. It has non-zero torsion given by T li‘y = —2v)‘8[u7'l,].

C Null reduction of Einstein gravity

C.1 General properties of null reductions

It is well-known that what we refer in this paper to as type I NC geometry can be obtained
from null reduction of a Lorentzian metric with a null isometry, see for example [113, 114].
We will denote the null Killing vector by %. If the d 4+ 1 dimensional NC spacetime has
M _ (

coordinates x* then the null uplifted Lorentzian geometry has coordinates x u, ).

Any Lorentzian metric with a null isometry and its inverse can be written as

v Juu h v T
OMN = (9# u ) _ ( I u) 7 (C.1)
Guv Guu T, 0

ghv ghu hHV ik
gMN = w uu | T AV 9F ’ (02)
g g —o¥ 20

where ¢y, = 0 due to the existence of the null Killing vector 0,. The null reduction
of the components of the (d + 2)-dimensional Levi-Civita connection T'}; 5 (without any
constraints on 7,) is

- . 1 . - . - _
It = —P9 1, + ihp (Ouhwo + Ovhyuo — Oghyw) = I (C.3)
fZV - _K,LLI/ QT(uau)(i)a (04)
. . 1 1.
I, =10, = §hp (OuTo — Do) = §hp Tuo » (C.5)
u U 1 ~o 1.
F,uu = FuM et 5'[} (80—7_“ — 8“7_0—) = §au, (CG)
e, =I% =0. (C.7)

We denote the higher-dimensional Levi-Civita connection and associated curvatures with
a hat. Note that the null-reduced Levi-Civita connection is equal to the symmetric part of
the boost invariant NC connection (B.9). The definitions of extrinsic curvatures K, a,
can be found in table 2.

A very useful object is the null reduction of the Ricci tensor, which has the following

components
RMV =Ry — @Pfﬁw] — Vil — %&N&V + 7 (Kp(u\ + T(Mlap‘i)> Tv)o (C.8)
Ry = — gm0, (eh7d) (C.9)
Ry, = ihﬂph”mﬂpg, (C.10)

where R, is the Ricci tensor corresponding to the connection (B.9).
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The extremely useful property of these expressions is that they transform nicely under
the Bargmann U(1) gauge transformation of type I NC geometry. These transformations
are easy to derive using the fact that the U(1) corresponds to the following higher dimen-
sional diffeomorphism

v =u+o(z), 't =zt (C.11)

with
my, = my + 0,0 . (C.12)
Infinitesimally this reads du = —&* where &* is the u-component of €M, the generator

of (d + 2)-dimensional diffeomorphisms. Using the tensorial transformation rule of Run
under a diffeomorphism generated by ¢ = —o6M one shows that

SR, = —R,,0,0 — Rpuduo,  0Ruu = —Ruduo, Ry, =0,
SR =0, SRM = RM9,0 , SR™ = 2RMY,0.  (C.13)

These transformation rules are fully general and thus true for any TNC geometry.
From the higher-dimensional Bianchi identities for the Einstein tensor, i.e. Vy GMN = 0,
we can derive two very important results

e 1), (eé“u) —0, (C.14)
710y (eG) = —a,Gr 4 K G+ 26,08 (C.15)

They are true for any TNC geometry. In fact, since these are identities, they are true
regardless of which U(1) transformation we assign the fields to have! To derive these
results one needs to use the null reduction formulae for the higher dimensional Christoffel
connection (C.3)—(C.7).

The first of these Bianchi identities, (C.14), is the geometrical counterpart of Bargmann
mass conservation. This follows by using the (d + 2)-dimensional Einstein equation and
recognising T, as the mass current of the lower-dimensional theory, see e.g. appendix A
of [56]. The second identity (C.15) is the geometrical counterpart of energy conservation.
The difference between the two is just a raising or lowering of the u index. Furthermore,
using an argument similar to the one leading up to (C.13), it can be shown that GHy is
Bargmann U(1) invariant for any TNC geometry whereas GH is not, not even for TTNC
geometry.

If we specialise to TTNC geometries the null reduction of the Ricci tensor simplifies to

R _ 1 _ . _
R, = R(MV) — 5%% — V(udu) + TMTl,(I)hpadpdg + dJT(MVV)@U , (C.lﬁ)
- 1

Ry = —ime—lay (eh"a,) , (C.17)
Ry =0. (C.18)

The higher-dimensional Ricci scalar R for TTNC geometries is given by

) _ 1
R=h"R,, — 210, (eh"a,) + Mt (C.19)
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Furthermore, for TTNC geometries we have that GF, =0 and G" is given by
A _ o _ 1-
G = """ Ry, — O Ry, + §<I)h‘“’&u&,, . (C.20)

Using standard manipulations with commutators and the definition of the Riemann tensor
it can be shown that (up to a total derivative)

040" Ry = (WY Kp)? = WPROK W K (C.21)
We will thus consider G¥* as a nicely transforming completion of the kinetic term.

C.2 Newtonian gravity vs. null reduced general relativity

In this section we review how to obtain standard Newtonian gravity in the torsionless
Newton-Cartan framework. We will also compare this to the null reduction of general
relativity (GR).

When d7 = 0 we can write the connection (B.9) as

=1, + K, (C.22)
where
- 1
FZV = —v"9, 1, + ihﬂg (Ouhvo + Ovhyo — Ochyuw) (C.23)
1
Kﬁy = _ihpa (T,uFVO' + TuFuo) s (C.24)

where F,, = 0,m, — 0,m, is the Bargmann U(1) curvature. The connection ffw only
depends on the U(1) invariant fields 7, and hy,. This connection is not Galilean boost
invariant. Note that the dependence of f‘ﬁy on my, is via the addition of a tensor K ﬁy. The
sourceless NC equations of motion RW = 0 can then be written as

R*PR" R,y =0, (C.25)
- 1
WO Ry = =0, (enh* Fyp ) (C.26)
. 1
VPV Rpy = —€ 10, (ev”" W7 ) — TP Fup By (C.27)

In NC gravity this should be supplemented with the condition dr = 0. The left hand
side is pure geometric data and the right hand side depends entirely on the “electric” and
“magnetic” field strength components of F),,. The divergence of the electric field strength
in the third equation, i.e. €719, (ev”h?" F,,), is what gives rise to Newton’s law of gravity
when appropriately sourced by a mass density.

The null reduction of the Einstein equations of motion, in the absence of sources,
also leads to RW = 0. It does not lead to d7 = 0 on the nose. However one can make
the argument that the sourceless null reduced Einstein equations of motion force dr = 0.
This happens in two steps. First of all the equation of motion (C.10) leads to the TTNC
condition and secondly the EOM ﬁ“Rw = 0 implies that

9, (eha,) = 0. (C.28)
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Since furthermore (E.2) holds, which means that h**a, = N~'h**9,N for some function
N defined via 7 = NdT, this equation is a Laplacian acting on N. This follows from the
fact that e = N,/y where v is the metric on the T = constant slices. These spatial slices
are described by d-dimensional Riemannian geometry. In particular they are Ricci flat as
follows from the equation RW = 0. In the absence of sources the clock 1-form 7, which
defines the foliation of the spacetime, must be everywhere regular. That means that N is
a bounded harmonic function on a Ricci flat d-dimensional geometry. Such functions must
be constant and so a, = 0 implying that d7 = 0.

Hence for d7 = 0 we observe a Bargmann invariance of the sourceless equations of NC
geometry. It is therefore tempting to suggest that the sourceful generalisation should also
obey Bargmann invariance. The sourceful NC equations that correspond to Newtonian
gravity are given by!?

d—2
R#V = 87TGNH)OT;LTI/ . (029)

We will now argue that this equation is not compatible with a Bargmann invariant coupling
of NC geometry to matter.

The mass current J# in a Bargmann invariant theory is U(1) invariant and conserved.
The only candidate geometrical quantity that obeys the same properties is the GH,, com-
ponent of the Einstein tensor on a background with a null isometry (see (C.14)). Hence
the coupling must be

GHy o JP (C.30)

From a null reduction point of view we have of course that J* = T“u, where TM N is the
null uplifted energy-momentum tensor. This equation implies that upon contraction with
7, we obtain
Ry o< Ty = p. (C.31)
From the form of R, in (C.10) we thus see that mass sources 7 A dr # 0. This is in
direct conflict with Newtonian gravity described in the previous section because in that
theory the notion of mass is compatible with d7 = 0. Hence p in (C.29) is not a Bargmann
mass density. We thus conclude that Newtonian gravity cannot originate from a Bargmann
invariant theory.'4

We can make this a bit more explicit by performing a null reduction of the Einstein-
Hilbert Lagrangian, which up to total derivatives yields

1

_ 1 A
c (h’“’RW + haa, - Z@hNPhWTWTm> . (C.32)

T 167Gy

This is not a consistent reduction but the inconsistency is extremely mild in that all of
its equations of motion agree with the null reduction of Einstein’s equation. It only fails
to reproduce the G o T equation of motion. The reason for this is simply that the
null reduction sets g, = 0 off shell and so we cannot vary this component. Furthermore,

13We ignore here the second term on the right hand side of (4.60) and focus only on the coupling to mass.
14ndeed, as shown in [4] and elaborated on in section 2.4 the underlying algebra that follows from the
1/¢* expansion of the Poincaré algebra is different.

— 83 —



Boost invariant metrics 0% = v* — h*Ym,

Torsion vectors ay = Ly,
ay = Ly,
Extrinsic curvatures K. = —%Evhw
KMV = %,C@h,w
Other curvatures Ty = OuTy — Oy Ty

Fu = 0ymy — 0ymy, — apymy, + aymy,
Connections fﬁy = —vP0,T, + %hp" (Ouhve + Ovhue — Oshyw)
Iy = —0P0,7, + %h”" (aul_z,,g + Oyhyue — &,l_lw,)

Table 2. Definitions of fields and derived objects such as torsion vectors, extrinsic curvatures and
affine connections used in the main text.

the Guv o Tuu equation of motion does not impose any constraints on any of the other
equations of motion that follow from the null reduced action. The reason is that for any
given &, the equations of motion G* o TH together with GH o TH form a closed set.
The remaining equation G o T instead of imposing a constraint merely completes
the other equations of motion by suppling an equation of motion from which d can be
determined.

Finally we remark that the T component of the null reduced energy-momentum is
not a new independent source but a composite object that is formed from various other
sources. All of the above implies that we can use the null reduced Einstein-Hilbert (EH)
action to study the coupling between geometry and matter for Bargmann invariant theories.
On shell one then simply complements the equations of motion with GUv o T to provide
an equation for ®. The point is the when adding matter in a Bargmann invariant manner
the field & couples to the mass density. It then follows that the o equation of motion
leads to the same conclusion as before, namely that Bargmann mass density sources TNC
torsion for which 7 A d7 # 0. We conclude that in order to couple matter to NC gravity
we cannot use type I NC geometry. In particular, in section 4 we show that type II NC
geometry will lead to a consistent coupling between gravity and matter.

D Torsional Newton-Cartan identities

In this appendix we collect useful identities that hold for type I and type II NC geometries.
Throughout this appendix we will not impose any restrictions on the clock 1-form 7.

D.1 Summary of definitions

We present in table 2 a summary of the definitions of fields used throughout the paper.
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D.2 Identities for covariant derivatives, Riemann and Ricci tensors

The torsion tensor of f/);,/ is given by

and we may calculate the covariant derivatives

V,7, =0, (D.2)
V" =0, (D.3)
Vol = —h" K, , (D.4)
v,,hw = -1, K, — 1K, . (D.5)

Likewise the torsion tensor of the boost invariant connection ff;l, is given by
FA oA A
T uy = QF[MV] = —0 TNV’ (DG)

and we can derive the following covariant derivatives

V. =0, (D.7)
VR =0, (D.8)
Vit = =0 (Ryy + 7,00 — b1, ) (D.9)
Vohuw = Q@Tp(un) — 27,7,0,® — 2Tp7(u0V)<§ — 270, K,), - (D.10)

From the above we may derive the following useful contractions and projections:

0OV, 0 = 42004y 4+ WP, D, (D.11)
hF77 4 0F = —ho oA (K,A - ém) , (D.12)
WY phy = 1,V i (D.13)
0Vl = 27, (8)® + 20d, ) (D.14)

0V phy = 27,0,® + 7,0,® + K,y — &7, (D.15)
PN phyy = T,0P0,® — 8,® — 2day, (D.16)
PPN phyy = —20P0,® (D.17)

The Riemann tensor RWUP as defined in (A.4) and Ricci tensor RW = RWVP enjoy a
number of useful properties and identities:

R’ =0, (D.18)
Riywo)” = =V T0 + T, 10, (D.19)
R[W] = _%?pfffu - ?[uau] ) (D.20)

R Ph™ = —R,,\"h", (D.21)
3V Ryue” = Tl Rpe™ + T, Rupo™ + T8y Ry (D.22)
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with analogous identities for R,,,”. If we now contract A and & in (D.22) and furthermore
contract that equation with v”h*? we can derive the following contracted Bianchi identity

_ 1 _ S T _
e 19, (e [h’”ﬁ”Rw - QWWJRWD = —WR Ko Ry + 5h7 Ko b Ry . (D.23)

This is a bit similar to the divergence of the Einstein tensor in GR except that here we are
considering the h?¥9* component of the Ricci tensor. There are similar identities for the
other components.

D.3 Identities for extrinsic curvatures

We have the following useful contractions

ota, =0, (D.24)
a1, =0, (D.25)
WP iV = —hHPhYO K, (D.26)

Using that the Lie derivative satisfies the Leibniz rule one may derive

D.27
D.28
D.29
D.30

h“/\&)\ — QK")‘T)\ — h”)‘TppA ’
K" = —a,® — 7,L:®,
K, 0" = Li®

4,07 = Loh™hy, — 207 Ky, .

~ A~
— — ~—  —

D.4 Variational calculus

D.4.1 Basic relations

A complete set of type I NC data can be formed from the set of fields h*¥, 07, &. Hence
when considering variations we can consider the variations of h*Y 0P, ®. This set is con-
venient when working with manifestly boost invariant objects. Alternatively we can work
with the independent set of fields 7, and h,,. They are related via

Shyw = =27, 0® + (Tuhup + Tohyp) 66° — hyphyadh?” (D.31)
87y = Ty 00" — hypTy ShYP (D.32)
1
de = —e <2hW5h’“/ - T,ﬁf)“) , (D.33)
where
TuT0h" = 0. (D.34)

Conversely we also have the relations (3.78)-(3.81) derived in the main part of the paper.
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D.4.2 Connection and torsion

We find for the variation of fﬁ,,:
. . 1 1
6Ih, = —vPV 07, + PP K, 67, — ivkhp%,,aahw — imhm%ahw
1 1 . . .
+ §Tuyh’”v}‘(5h0>\ + (Vubhuo + Vibhue — Vdhyu) (D.35)
while the variation of I'f, is given by:
_ 1 _ A A _ A
OTfy, = =5 Tuh?” hox0™ ~75 (7,0, ® + 7,0, )0h*7 — Ky 760h*7 + 201677, 0%
. 1 _ _
+ ®hP a4y (1,07 + T,0T,) — §hp0&g(7'uhy>\ + Tuh,u\)(sf})‘
_ 1 - _ _
— 0PNV o7y + Sh7 (Vubhye + Vibhue — VebShu) - (D.36)
Useful contractions and projections are:
_ 1 _ _
R oL, = + [+hP% aeTy + P Tpe] 00" + {+2hmh,ﬂ, — h")‘h,\uél’,’] Vy0ht" (D.37)
_ _ 1- _
ore, =+ [—Tply — Tp] 007 + [—0°] V07, + [—th} V., 0hP7 (D.38)
vV ST [ o “ 1 o7 ~O v v
R oI, = + [=h Tyao — W7 Ty ] 60" + [—2h" Py + 0 T,,(;Z:| V0ht" . (D.39)
From this we can derive the variation of the torsion vector:
Si, = [@ATM,} 5 (1) + [26] V},67) - (D.40)

D.4.3 Ricci tensor

In the conventions introduced in section A.2 the variation of the Ricci tensor is given in
terms of variations of the connection as:

ORuy = V010, — V61, — 27, 1075 . (D.41)

The (spatial) trace is easier to calculate because of metric compatibility and gives:

WY Ry, =V, (RH0T0,) =V, (B61%,) — 215, 1 (W*6T5,) . (D.42)

Assuming that it does not multiply anything except the measure we can calculate h‘“’éRW
as found in (3.24)-(3.25). For h*§ R, we find

PO Ry = + |0 h 13T | 50
+ [Qh’“’auaﬂ'p + 20" 4, Ty — PR R T T Toe + BN ay T, 4 h’“’?,ﬂ'py] ooP
+ [ - hpaapaal_zw, - h””@pagﬁw +aya, + @Na,, + T#@U@Ua,,
— h""’KWTW — h""’f_(po-aun + hp”apTMKW — @hPUTWTW

+ B@hp”apmﬂ,o— + Q@hp”TuTyg + hpUTMTl,pagfi)] oMY . (D.43)
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D.4.4 Extrinsic curvatures

We find for the variation of K s

_ 1 - 1 _
5KMV - —iﬁ&ghuy - iﬁgdhm,

=+ [auTy + Gy7,] 0D + [1,7,0°] D,6P
- 1

1 . 7 7 1.1 )
+ | —zauhup — sahpp + T Ky + T K | 007 + | =Tl — S Tuhyp | Li60°
2 2 2 2

_ 1. _ 1. _
+ [~ Rouphvo — hyupKoo] 5077 + [—i—QhuphW] Lo0hP7 + [—QVphW] 50°
1. ] 1. 7. . .
+ [—2%} V,00° + [—Qhup] V007 + |1y, + b7,m] 007 (D.44)

Useful projections are:

WKy =+ [—a,] 60° + [—68 — 7,0M] V,60°
1 - _
[ oo + 207,05 + 7,05 @} ShP? + { 2@%,4 VaAdh?? (D.45)
hPPRVSK,, = [ hPPa,, (65 + Ta07)] 60 + [—hPH (5 4 207)] V ,607

=207 K x (07 + 7x07) — 0°8% T, ] Sh

+ [+25§5g + ms,g@"} L6hM (D.46)

E Twistless torsional Newton-Cartan identities

This appendix is very similar to the previous one except that we now assume that 7 obeys
the hypersurface orthogonality (or TTNC) condition 7 A d7 = 0. All of the identities of
appendix D of course all apply here as well but there are many simplifications when the
TTNC condition is imposed.

E.1 Special TTNC identities
The most fundamental identity for TTNC geometry is

OuTy — OuTy = auTy — AuTy , (E.1)

where a, = L,7, and a, = L;7,. A second useful TTNC identity is the result that
h*Ph"? (00, — Opay) = 0. (E.2)
Due to the presence of torsion one can show that, using the Bianchi identity for R[Wg]p ,

BR[WU]" = (V,0°) (075 — 057) + (Vo0P) (Op1y — OuTy)
+ (V,0°) (05Ty — OuTs) - (E.3)

The antisymmetric part of the Ricci tensor is nonzero and equal to

2]:3““,} = (Tpa, — Tuau)@pﬁp + @p(TM?Vdp —1,Vuap). (E.4)
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If instead of contracting the second Bianchi identity (for k = A) with v”h*? we contract it
with two inverse spatial metrics we obtain (for TTNC),

_ _ 1 _
V. (h“”h”"RW - Qh‘“’h”’)Ryp) —0. (E.5)

E.2 Variational calculus
E.2.1 Basic identities

For TTNC geometry we only need to calculate some projective variations. The 7, variation
along 7, is best computed by setting

S, = Q7)) (E.6)
for arbitrary €. In order to compute the A variation it is sufficient to consider
dphy = Pl P]6hys (E.7)

where P} = h#**hy,. The P variations of the other geometric objects are given by:

Spu =0, (E.8)
dp1, =0, (E.9)
SphH’ = —hFPRY S phy, (E.10)
5p® = 0. (E.11)

E.2.2 Connections, Ricci tensor R,, and extrinsic curvatures

It can be shown that for the connection f‘ﬁy and its associated Ricci tensor we have sim-
plifications compared to the general variations (D.35), (D.36), (3.24)—(3.25) and (D.43):

. 1 o [ . .
5PF/€V = §hp (v,u(sth/o + vu(sPéhug - VU(SPhW,) y (E12)

h“ph”"épr = hH*PRY? (V)\(Spf‘?w - 7#(5pf‘§l,> . (E.13)
We have some relevant variations that are needed in section 3.1.3.

(513 (thK#V) = —’Ugdpf‘lpu, s (E.14)

Spa, = 0. (E.15)

Furthermore, it can be shown that varying ® in the connection [/, gives for twistless
torsion
5éfﬁy‘md7:0 = 7, Ty hP? 0y 0® + 27,7, 7 50D . (E.16)

With this result it follows that the variation of @“@”RW with respect to d results in a total
derivative.
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E.2.3 Ricci tensor R“,,

We will now study various projections of the variations of RW that are needed in sec-
tion 3.2.2. First of all considering the spatial trace multiplied by a scalar function X under
the assumption of hypersurface orthogonality of 7, leads to

X (W6 Ryy) = [hW (é + Vi) [0 X + V. X) Bo]
= 7V [ (a0 X + 2V, X))]
— lap + V] [4eX + Vo X]

+ XBH 0, K s | 6hP (E.17)

Secondly, we also need the projection h““h”"(sRW, which contracted with a symmetric
tensor X, after a bit of work gives

Xpo (W*°h"0Ry) = [hw (A + Vi) [(a0Xnp + Vo X = apXim =V Xo) 750"]

— W (a,+ V) [apXvo + YV Xuo]

1 _ _

+ §hm/ (4 + Vi) [0 Xpo + Vi Xpo]

+ %h’“’ (au+ V,) [(aAXW + VaXiw) hkﬂﬁpg}

— WY [ﬁ*n,vux,,p}] ShP7 | (E.18)

E.3 1/c? expansion formulae

Expanding the measure gives

1 1. 1 _
E —g =€ <1 + 0*2(1) + @hu,/@p,l/ + 0(6_4)>

1 1 ., _
=ec (1 + C?q) + 2—0211“ ¢, +0O(c 4)) . (E.19)
The Levi-Civita connection (2.15) is expanded as
2 -2 —4

Iy, =c Ff_my + Fg’o)w +c rf(’Q)W +0(c), (E.20)

which can be expressed in terms of Galilean boost invariant objects according to
Fi)_g) w hpAa/\T,uTz/ ) (E.Ql)
FE)O) = ffw — P10, — hp”h)‘”@maATuT,, , (E.22)
WORPT L0, = WOR Ky (E.23)

We placed the power of ¢! symbol as a subscript to distinguish it from the expansion in
equation (2.15).
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