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1 Introduction

There have been a lot of progresses in measuring the cosmological parameters of the universe

with unprecedented precision, for instance, from the Cosmic Microwave Background (CMB)

anisotropies. Thus, two pillars in the modern cosmology, inflation [1] and dark matter [2],

have reinforced the motivations and efforts for searching for physics beyond the Standard

Model (SM). Inspired by the SM Higgs inflation [3], there have been recent attempts to

integrate inflation in connection with low energy particle physics. Moreover, given that

the nature of dark matter remains a mystery, the unification of inflation and dark matter

provides an economical way of solving the problems in cosmology and particle physics at the

same time [4–12]. The merit of this kind consideration is that additional fields introduced
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for the consistency may also solve the problems in the SM, such as the vacuum instability

of the SM Higgs potential.

Various candidates for dark matter are based on the Z2 symmetry for guaranteeing the

stability of dark matter and their production mechanism rely on the freeze-out processes

in the so-called Weakly Interacting Massive Particles (WIMPs) paradigm. Inclusion of

discrete symmetries beyond the Z2 symmetry leads to interesting and new avenues for

dark matter physics, such as 2 → 2 and 3 → 2 semi-annihilation processes for the freeze-

out. In particular, in the latter case, the freeze-out process would require dark matter

to have large self-interactions but small couplings to the SM. This possibility, so-called

Strongly Interacting Massive Particles (SIMPs) paradigm [13–16] has been realized in a

simple extension with gauged Z3 symmetry [17, 18], where there are a lot of interesting

signatures at intensity beam experiments and astrophysical observations of galaxy rotation

curves and cluster collisions.

As inflation and dark matter physics involve largely different scales, it is important

to include quantum corrections to match them by using the renormalization group (RG)

equations. In particular, it is notable that inflationary observables such as the spectral

index ns and tensor-to-scalar ratio r may be significantly affected by quantum effects;

for instance, the predicted value for the inflation with non-minimal coupling changes the

tensor-to-scalar ratio from r ≈ 0.003 to a somewhat larger value by quantum effects [12]. In

the original Higgs inflation, the tree-level unitarity is violated due to a large non-minimal

coupling at the scale much lower than the Planck scale [19–22], so there is a need of

introducing new physics or degrees of freedom to solve the unitarity problem [23–27].

However, taking into account the running Higgs quartic coupling in Higgs inflation, we

can tolerate a smaller value of the non-minimal coupling, as compared to the case without

quantum effects, so the unitarity scale could be delayed to a higher scale at the expense of

a fine-tuning in realizing the inflation near the inflection point of the potential [12].

In this article, we study the dynamics of inflation and dark matter in the unified

framework beyond the Z2 symmetry, in particular, by adopting models with gauged Z3

symmetry. Dark matter phenomenology in the same models has been investigated for the

thermal freeze-out with WIMP [28, 29] and SIMP dark matter [17, 18]. A generalization

of the similar discussion was made for models with Z5 discrete symmetry [30]. The focus

of our work is to fill a gap between dark matter and inflation scales and make a consistent

description of the early universe in a single framework beyond the Z2 symmetry. The

model with Z3 symmetry consists of two complex scalar fields, one SM-singlet dark Higgs

φ and one SM-singlet scalar dark matter χ, beyond the SM. The SM-singlet dark Higgs φ

is responsible for the spontaneous symmetry breaking of a dark U(1)X into Z3 symmetry,

which ensures the stability of dark matter.

We cover three distinct regimes of dark matter production with WIMP, SIMP, and

forbidden dark matter. We connect each of the cases to the inflationary regime for the first

time. To do so, it is crucial to include nonzero non-minimal couplings to gravity for all the

scalar fields, which are generated otherwise at the quantum level in curved spacetime. We

regard a slow-roll inflation as taking place along the flat direction in the system of two real

scalar fields, one of which is frozen in the minimum of the potential during inflation. Thus,
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the dynamics of inflation is reduced down effectively to the case of a single-field inflation.

The effective inflaton can be either the dark Higgs or a mixture of the dark Higgs and

scalar dark matter [31]. We note, however, that it is impossible for the scalar dark matter

χ solely to play the role of inflaton; namely the pure χ field direction is not at the minimum

of the potential. This is one of the distinctive features of the Z3 models in comparison to

the Z2 models where scalar dark matter can be the only inflaton. We connect between dark

matter and inflation scales by employing the RG-improved effective action and look for the

consistent parameter space with the correlations between the following relevant observables:

the relic density on one side, and perturbativity, unitarity and stability on the other side.

The paper is organized as follows. We begin with a description of our setup in section 2,

with a complete model Lagrangian and the particle content. In section 3, we first discuss the

details on the inflationary dynamics at the classical level and include the RG effects in the

later part. In this section, inflationary observables such as the spectral index and tensor-

to-scalar ratio are computed. We continue to discuss the general Boltzmann equation for

dark matter and focus on three distinct limits of production mechanism of dark matter

in section 4, and then impose the consistency conditions for connecting between inflation

and dark matter scales, such as stability, perturbativity and unitarity as well as various

constraints from low-energy experiments. Finally, conclusions are drawn in section 5.

There are two appendices providing the formulas for the RG equations and dark matter

annihilation and scattering cross sections.

2 The model

We consider an extension of the SM with a local dark U(1)X, including one complex scalar φ

for dark Higgs mechanism and one complex scalar χ for dark matter. Then, the Lagrangian

of our model [18] is given by

L = LNM + LSM + LX + Lportal , (2.1)

where LSM is the SM Lagrangian,

LNM =
M2

P

2

(
1 + 2ξχ

|χ|2

M2
P

+ 2ξφ
|φ|2

M2
P

+ 2ξH
|H|2

M2
P

)
R , (2.2)

describes the non-minimal couplings of the scalar fields to gravity, and

LX = −1

4
VµνV

µν + (Dµχ)†(Dµχ) + (Dµφ)†(Dµφ) +m2
φ|φ|2 −m2

χ|χ|2

− λφ|φ|4 − λχ|χ|4 − λφχ|φ|2|χ|2 − ζφ†χ3 − ζφ(χ†)3 , (2.3)

Lportal = −λφH |φ|2|H|2 − λχH |χ|2|H|2 −
1

2
sin ξ BµνV

µν . (2.4)

The action is then given by S =
∫
d4x
√
−gL. The SM Higgs doublet is denoted by H, φ is

an SM-singlet complex field dubbed the dark Higgs, and χ is another SM-singlet complex

field. The covariant derivatives are given by

Dµφ = (∂µ − iqφgXVµ)φ , Dµχ = (∂µ − iqχgXVµ)χ , (2.5)
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with gX being the gauge coupling of the dark U(1)X group. Here Vµν = ∂µVν − ∂νVµ is

the field strength tensor for U(1)X, and sin ξ is the gauge kinetic mixing between the SM

hypercharge and U(1)X. Note that ζ =
√

2κ/3! as compared to ref. [18].

We consider the complex scalar χ as a dark matter candidate, having a charge qχ = 1

under the dark U(1)X symmetry. Another field φ, which has a charge qφ = 3, takes a

vacuum expectation value (VEV) by 〈φ〉 = vφ/
√

2, and thus, being responsible for the

spontaneous symmetry breaking of U(1)X into Z3. Therefore the remaining discrete Z3

symmetry guarantees the dark matter stability. Moreover, the U(1)X gauge boson receives

mass, mZ′ = 3gXvφ, and the dark Higgs mass becomes, mh′ =
√

2λφ vφ, in the limit of a

vanishing λφH ; see ref. [18] for details. We note that when the dark Higgs φ carries qφ = +5,

the U(1)X gauge symmetry is broken down to Z5, for which single or multi-component dark

matter scenarios were also discussed [30].

2.1 The inflation regime

For our discussion on the inflation dynamics in the next section, we further expand the

Lagrangian (2.1) by choosing the unitary gauges for the SM Higgs doublet and the dark

Higgs field as HT = (0, h)/
√

2 and φ = ϕ/
√

2, and taking the scalar dark matter to be

χ = ψeiγ/
√

2. The scalar part of the Lagrangian (2.1) then becomes

LNM =
M2

P

2

(
1 + ξχ

ψ2

M2
P

+ ξφ
ϕ2

M2
P

+ ξH
h2

M2
P

)
R , (2.6)

LSM ⊃
1

2
(∂µh)2 +

1

2
m2
Hh

2 − 1

4
λHh

4 , (2.7)

LX =
1

2
(∂µϕ)2 +

1

2
(∂µψ)2 +

1

2
ψ2(∂µγ)2 +

1

2
m2
φϕ

2 − 1

2
m2
χψ

2

− 1

4
λφϕ

4 − 1

4
λχψ

4 − 1

4
λφχϕ

2ψ2 − 1

2
ζϕψ3 cos(3γ) , (2.8)

Lportal = −1

4
λφHϕ

2h2 − 1

4
λχHψ

2h2 . (2.9)

We assume that the SM Higgs field rolls down rapidly to its VEV during inflation, due to

the initial condition or the effective mass larger than the Hubble scale, so we set h = 0.

The relevant Lagrangian for inflation is then given by

Linf =
M2

P

2

(
1+ξφ

ϕ2

M2
P

+ξχ
ψ2

M2
P

)
R+

1

2
(∂µϕ)2+

1

2
(∂µψ)2+

1

2
ψ2(∂µγ)2−V (ϕ,ψ,γ) , (2.10)

where the scalar potential reads

V (ϕ,ψ,γ) =−1

2
m2
φϕ

2+
1

2
m2
χψ

2+
1

4
λφϕ

4+
1

4
λχψ

4+
1

4
λφχϕ

2ψ2+
1

2
ζϕψ3 cos(3γ) . (2.11)

For the inflationary period, we are interested in the large-field limit, ξφϕ
2/M2

P +

ξχψ
2/M2

P � 1, so we can drop the scalar mass terms. After minimizing the scalar po-

tential for the phase γ of scalar dark matter for ϕ 6= 0, ψ 6= 0, we obtain the Jordan-frame

potential as

Vinf(ϕ,ψ) =
1

4
λφϕ

4 +
1

4
λχψ

4 +
1

4
λφχϕ

2ψ2 − 1

2
ζϕψ3 . (2.12)
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We will present the detailed discussion on the decoupling of the phase γ or the scalar dark

matter χ for the general inflationary trajectories in section 3.3.

As a consequence, the Jordan-frame action in eq. (2.1) relevant for inflation becomes

Sinf =

∫
d4x
√
−g
{
M2

P

2

(
1 + ξφ

ϕ2

M2
P

+ ξχ
ψ2

M2
P

)
R+

1

2
(∂µϕ)2 +

1

2
(∂µψ)2

− 1

4
λφϕ

4 − 1

4
λχψ

4 − 1

4
λφχϕ

2ψ2 +
1

2
ζϕψ3

}
. (2.13)

Then, the effective theory for inflation is a system of two real scalar fields with quartic

couplings and non-minimal couplings, which has been extensively studied in ref. [31]. For

the analysis of inflationary observables, it is convenient to work in the Einstein frame

where the gravity action takes the standard form of Einstein-Hilbert action. Making a

Weyl transformation to the Einstein frame by

g̃µν = Ω2gµν (2.14)

with

Ω2 = 1 + ξφ
ϕ2

M2
P

+ ξχ
ψ2

M2
P

, (2.15)

we obtain the following Einstein-frame action:

Sinf =

∫
d4x

√
−g̃
{
M2

P

2
R̃+

3

4
M2

Pg̃
µν∂µ ln Ω2∂ν ln Ω2

+
1

2Ω2
g̃µν∂µϕ∂νϕ+

1

2Ω2
g̃µν∂µψ∂νψ − U

}
, (2.16)

where the tilde indicates the quantities associated with the Einstein-frame metric g̃µν , and

the scalar potential in the Einstein frame is given by U = Vinf/Ω
4.

We will discuss the details of the inflation regime in section 3. The dimensionless

parameters in the inflation regime are matched to low energy parameters for dark matter

in the same section, thanks to the RG equations given in appendix A.

2.2 The dark matter regime

For the discussion of dark matter annihilations, expanding the SM and dark Higgs fields

by HT = (0, vew + h)/
√

2 and φ = (vφ + h′)/
√

2, and diagonalizing the scalar and neutral

gauge boson mass matrices, we can obtain various interaction terms for scalar dark matter

χ [17, 18]. We denote the CP-even scalars and dark gauge-like bosons by h1,2 and Z ′,

respectively.

The interaction Lagrangian for dark matter with Higgs and Z ′ portals at low energy

is given [17] by

Lint = −(λφχvφ cos θ − λχHvew sin θ)h1|χ|2 − (λφχvφ sin θ + λχHvew cos θ)h2|χ|2

− (λφvφ cos3 θ − λHvew sin3 θ)h3
1 − 3 sin θ cos θ(λφvφ cos θ + λHvew sin θ)h2

1h2

− 3 sin θ cos θ(λφvφ sin θ + λHvew cos θ)h1h
2
2 − (λφvφ sin3 θ + λHvew cos3 θ)h3

1

− 1√
2
ζ (cos θ h1 + sin θ h2)χ3 + h.c.− λχ|χ|4 + · · ·

+ gXZ
′
µJ

µ
D + e εZ ′µJ

µ
EM , (2.17)
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where θ is the Higgs mixing angle, and JµD, J
µ
EM are dark and electromagnetic currents,

respectively, given by JµD = −iqχ(χ∂µχ∗−χ∗∂µχ) and JµEM = Qf f̄γ
µf − iQW (W ν∂µW †ν −

W †µ∂µWν), and ε ' cos θW ξ for ξ � 1. Here, the ellipsis in the fourth line corresponds to

the quartic couplings for CP-even scalars, which are reduced to −1
4λφh

4
1 − 1

4λHh
4
2 in the

limit of a vanishing Higgs mixing angle. Henceforth, we denote h1 ≈ h′ for a small Higgs

mixing angle.

As a consequence, dark matter can annihilate into a pair of the SM particles through

Higgs and Z ′ portal couplings for nonzero θ and ε. Moreover, dark matter can also an-

nihilate into the dark sector, such as χχ → χ∗A′, χχ∗ → AA with A = h′, Z ′. When

the self-interaction of dark matter is sizable, dark matter can also annihilate by 3 → 2

processes, such as χχχ → χχ∗, χχχ∗ → χ∗χ∗, and χχχ∗ → χA with A = h′, Z ′. The

details on the Boltzmann equation for determining the relic density, nDM = nχ + nχ∗, are

presented in appendix B. For the later discussion, we assume that dark Higgs h′ and dark

photon Z ′ are in thermal equilibrium with the SM thermal bath, so we can take nh′ = neq
h′

and nZ′ = neq
Z′ . Using the expressions for all the dark matter annihilation cross sections

summarized in appendix B, we will determine the dark matter relic density in section 4.

3 Inflationary dynamics

In this section, we discuss the details of the dynamics of inflation and constraints in our

model. We also discuss the justification of decoupling the extra scalar degree(s) of freedom

for the effective theory of inflation.

3.1 Inflation in large-field limit

Closely following the discussion in ref. [31] and making the field redefinitions with

σ ≡
√

3

2
MP ln Ω2 , τ ≡ ϕ

ψ
, (3.1)

we rewrite the scalar kinetic terms and potential in the Einstein frame, respectively, as

Lkin =
1

2

M2
P(ξ2

χ + ξ2
φτ

2)

(ξχ + ξφτ2)3

(
1− e−

√
2
3

σ
MP

)
(∂̃τ)2

+
1

2

e
√

2
3

σ
MP (1 + 6ξχ + (1 + 6ξφ)τ2)− 6(ξχ + ξφτ

2)

6(ξχ + ξφτ2)(e

√
2
3

σ
MP − 1)

 (∂̃σ)2

+
MP(ξχ − ξφ)τ√
6(ξχ + ξφτ2)2

(∂̃σ)(∂̃τ) , (3.2)

and

U = U0(τ)

(
1− e−

√
2
3

σ
MP

)2

, (3.3)

with

U0(τ) ≡
M4

P(λχ − 2ζτ + λφχτ
2 + λφτ

4)

4(ξχ + ξφτ2)2
. (3.4)
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In the large-field limit for inflation, the kinetic terms become approximated to

Lkin '
1

2
(∂̃σ)2 +

1

2

M2
P(ξ2

χ + ξ2
φτ

2)

(ξχ + ξφτ2)3
(∂̃τ)2 +

MP(ξχ − ξφ)τ√
6(ξχ + ξφτ2)2

(∂̃σ)(∂̃τ)

' 1

2
(∂̃σ)2 +

1

2
(∂̃τc)

2 + (∂̃σ)(∂̃τc)
(ξχ − ξφ)τ

√
6
√
ξ2
χ + ξ2

φτ
2
√
ξχ + ξφτ2

, (3.5)

where, in the second line, we used the canonical scalar field τc with(
dτc
dτ

)2

=
M2

P(ξ2
χ + ξ2

φτ
2)

(ξχ + ξφτ2)3
. (3.6)

Here, we find that the kinetic mixing term is suppressed by 1/
√
ξχ + ξφτ2 with large non-

minimal couplings. As a result, it is sufficient to consider the effective action in the later

discussion on inflation in the following form,

Sinf =

∫
d4x

√
−g̃
{
M2

P

2
R̃+

1

2
(∂̃σ)2 +

1

2
(∂̃τc)

2 − U
}
. (3.7)

We note that there is no symmetry exchanging between ϕ and ψ, leading to τ → 1/τ ,

for a nonzero value ζ and unequal values of non-minimal couplings. Therefore, we will show

in the next subsection that the ratio of the fields, τ , is stabilized at a nonzero value by

the potential U0(τ) in eq. (3.4). We will take the non-minimal couplings to equal values in

some benchmark models for dark matter in the later discussion, but there is no symmetry

associated with τ → 1/τ due to the cubic coupling for dark matter, ζ. In the limit of a

vanishing ζ, the above effective Lagrangian coincides with the one with self-quartic and

mixing quartic couplings only, known in the literature [31].

3.2 Inflationary minima

In order to guarantee the stability of a single-field inflation with the σ field, we impose the

following conditions on the minimum of the potential with respect to τ = τm,

U

∣∣∣∣
τ=τm

≥ 0 ,
∂U

∂τc

∣∣∣∣
τ=τm

= 0 ,
∂2U

∂τ2
c

∣∣∣∣
τ=τm

≥ 0 . (3.8)

Once τm is fixed by the minimization of the potential, the vacuum energy during inflation

is given accordingly by U0(τm) with eq. (3.4). For the forthcoming discussion on the

inflationary minima, we note that the first and second derivatives of the inflation potential

with respect to τc are given, respectively, by

∂U

∂τc
≈

M3
P

2(ξχ + ξφτ2)3/2
√
ξ2
χ + ξ2

φτ
2

[
− ζξχ + (λφχξχ − 2λχξφ)τ

+ 3ζξφτ
2 + (2λφξχ − λφχξφ)τ3

]
(3.9)
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and

∂2U

∂τ2
c

≈
M2

P

2(ξχ + ξφτ2)(ξ2
χ + ξ2

φτ
2)2

{
2λχξφ

(
3ξ3
φτ

4 + 2ξφξ
2
χτ

2 − ξ3
χ

)
+ λφχ

(
ξ4
φτ

6 − 5ξ3
φξχτ

4 − 5ξφξ
3
χτ

2 + ξ4
χ

)
+ τ

[
2λφξχτ

(
3ξ3
χ + 2ξ2

φξχτ
2 − ξ3

φτ
4
)

+ ζξφ

(
9ξ3
χ + ξφξ

2
χ + ξφξχ(7ξφ − 3ξχ)τ2 − 6ξ3

φτ
4
)]}

. (3.10)

3.2.1 Dark matter inflaton

From the first derivative of the potential in eq. (3.9), it is easy to see that τ = ϕ/ψ = 0

would not be an extremum for ζξχ 6= 0, due to the linear potential term. Thus, the

inflation with pure dark matter (ψ) is not possible for ζ 6= 0. (We note that ξχ = 0 is

not a fixed point under RG; see appendix A.) This shows a clear distinction from the dark

matter scenarios with Z2 symmetry where the inflation with pure dark matter becomes a

stable minimum. Since the case with Z2 symmetry has been extensively discussed in the

literature, we focus on the case with ζ 6= 0, so we do not pursue any longer the inflation

scenario with pure dark matter in the later discussion.

3.2.2 Dark Higgs inflaton

We find that τ = ϕ/ψ = ∞, corresponding to the inflation with pure dark Higgs, is

always an extremum of the potential, independent of ζ. From the second derivative of the

potential (3.10), we find that

∂2U

∂τ2
c

=
M2

P

2ξ2
φ

(λφχξφ − 2λφξχ) (3.11)

at τ =∞. Therefore, τ =∞ is the minimum if

λφχξφ − 2λφξχ > 0 , (3.12)

or it is an inflection point if

λφχξφ − 2λφξχ = 0 . (3.13)

3.2.3 Mixed inflaton

In order to obtain the inflationary minimum with a finite τ , one needs to solve the cubic

equation, the solutions to which we do not present here, due to lengthy expressions. The

general solution is known, determined by the discriminant D, given by

D

4
= 27ζ4ξ3

φξχ + (λφχξφ − 2λφξχ) (λφχξχ − 2λχξφ)3

+ 9ζ2
[
λ2
χξ

4
φ + λ2

φχξ
2
φξ

2
χ − 3λ2

φξ
4
χ + 2λχξ

2
φξχ (3λφξχ − 2λφχξχ)

]
. (3.14)

If D > 0, there exist three real values for τ ; if D < 0 there exists only one real value for

τ . Thus, there exists at least one minimum for a finite τ . Taking τ > 0 and using the

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
5

second derivative of the potential in eq. (3.10), we can find the value for τm that satisfies

the inflation conditions (3.8).

For a finite value of τ , the inflaton is a mixture of the dark Higgs (ϕ) and dark matter

(ψ). Then, taking τ = τm to be constant along the inflation direction, we can write down

the Jordan-frame action as follows:

S =

∫
d4x
√
−g
{
M2

P

2

[
1 +

(
ξχ + ξφτ

2
m

) ψ2

M2
P

]
R

+
1 + τ2

m

2
gµν∂µψ∂νψ −

1

4
(λχ − 2ζτm + λφχτ

2
m + λφτ

4
m)ψ4

}
. (3.15)

Redefining Φ ≡
√

1 + τ2
m ψ, the above action becomes

S =

∫
d4x
√
−g

{
M2

P

2

(
1 + ξΦ

Φ2

M2
P

)
R+

1

2
gµν∂µΦ∂νΦ− 1

4
λΦΦ4

}
, (3.16)

where

ξΦ ≡
ξχ + ξφτ

2
m

1 + τ2
m

, λΦ ≡
λχ − 2ζτm + λφχτ

2
m + λφτ

4
m

(1 + τ2
m)2

. (3.17)

Therefore, we obtain a single-field inflation for Φ with the effective parameters ξΦ and λΦ.

Unlike the inflation along the single field direction, that is, dark Higgs inflation, the

effective inflaton quartic coupling can be very small due to the cancellation with the ζ

parameter in the definition of λΦ in eq. (3.17). Then, fixing the combination λΦ/ξ
2
Φ by

the Planck normalization, we can take a small effective non-minimal coupling ξΦ, as will

be shown shortly. Consequently, the violation of tree-level unitarity can occur at a higher

scale than the case with a large non-minimal coupling.

3.3 Decoupling of the extra degree(s) of freedom from dark matter

In the previous subsections, we chose Ω2 � 1 for a slow-roll inflation during which the field

values of ϕ and ψ are almost constant: 1) dark Higgs inflaton with ϕ 6= 0 and ψ = 0; 2)

mixed inflaton with ϕ ∼ ψ 6= 0.

First, for the case with ϕ 6= 0 and ψ 6= 0, which is called the mixed inflaton, ignoring

the mass terms, the part of the Lagrangian in eq. (2.10) for the phase γ during inflation is

given in Einstein frame by

Lγ =
1

2Ω2
ψ2(∂µγ)2 − 1

2Ω4
ζϕψ3 cos(3γ). (3.18)

Then, for ξφ ∼ ξχ and ϕ ∼ ψ, we get Ω2 ∼ 2ξφϕ
2. Here, we set MP = 1. In this case, we

simplify the above Lagrangian for the canonical field, γ ∼
√

2ξφ γ̃, in the following,

Lγ̃ '
1

2
(∂µγ̃)2 − ζ

8ξ2
φ

cos
(

3
√

2ξφγ̃
)
. (3.19)

Therefore, for ζ > 0, expanding the phase as 3
√

2ξφ γ̃ = π+ 3
√

2ξφ δγ̃, we can identify the

squared mass of the perturbation δγ̃ as m2
δγ̃ ∼

9ζ
4ξφ

, which is much greater than the squared
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Hubble parameter, H2 = λΦ

4ξ2
Φ

with ξΦ ∼ ξφ � 1 and a sizable ζ. As a result, we can safely

ignore the dynamics of the phase of the scalar dark matter during inflation.

Next, for ϕ 6= 0 and ψ = 0, the radial coordinate representation for the scalar dark

matter, χ = ψ eiγ/
√

2, is not a valid description. In this case, instead we can take

χ = (ψ + ib)/
√

2 in the Cartesian representation with b being a pseudo-scalar field. Then,

ignoring the mass terms, the part of the Lagrangian in eq. (2.10) for the scalar dark matter

including the mixing quartic coupling is given by

Lψ,b =
1

2Ω2

(
(∂µψ)2 + (∂µb)

2
)
− 1

4Ω4
λφχ(ψ2 + b2)ϕ2. (3.20)

Then, taking Ω2 ' ξφϕ
2 during inflation and canonically normalizing the dark scalars by

ψ =
√
ξφ〈ϕ〉 ψ̃ and b =

√
ξφ〈ϕ〉 b̃ with 〈ϕ〉 being an almost constant field value during

inflation, we can rewrite the above Lagrangian as follows,

Lψ̃,b̃ '
1

2
(∂µψ̃)2 +

1

2
(∂µb̃)

2 −
λφχ
4ξφ

(ψ̃2 + b̃2). (3.21)

Consequently, we obtain the squared masses for dark scalars as m2
ψ̃

= m2
b̃
∼ λφχ

2ξφ
, which

is again much larger than the squared Hubble parameter, H2 =
λφ
4ξ2
φ

with ξφ � 1 and a

sizable λφχ. As a result, we can ignore the dynamics of dark scalars in χ during inflation.

In summary, independent of the inflationary vacua, the phase of dark matter or the full

complex scalar dark matter can be decoupled during inflation, thus justifying our analysis

focusing on the two real scalar fields, ϕ and ψ, in the previous subsections. Moreover, the

results show that there is no isocurvature perturbation generated along the complex scalar

dark matter in any inflation minimum.

3.4 Inflationary observables

For a given potential, it is straightforward to compute inflationary observables such as the

scalar power spectrum, the spectral index, and the tensor-to-scalar ratio, in terms of the

inflation vacuum energy and slow-roll parameters.

In order to link inflation to dark matter physics, it is essential to include the RG

effects to account for the difference in energy scales. We follow the procedures outlined

in ref. [12]. Quantizing the theory in the Jordan frame and considering the RG-improved

effective action, we get the leading effective action [32] as

Γ =

∫
d4x
√
−g

[
M2

P

2
Ω2R+

1

2
gµνG2∂µΦ∂νΦ− Veff

]
, (3.22)

where Φ is the inflaton and

Ω2(t) = 1 + ξΦ(t)G2(t)
Φ2(t)

M2
P

, (3.23)

Veff(t) =
λΦ(t)

4
G4(t)Φ4(t) , (3.24)

G(t) = exp

(
−
∫ t

dt′
γΦ

1 + γΦ

)
. (3.25)
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Here, t = ln(µ/µ0) and µ is the renormalization scale, and we choose µ = Φ and µ0 = MZ .

We present the RG equations determining the running couplings and anomalous dimensions

in our model in appendix A. We identify the inflaton as Φ = ϕ in the dark Higgs inflation

and Φ =
√

1 + τ2
m ψ in the mixed inflation.

Inflationary observables are computed in the Einstein frame. The relevant Einstein-

frame potential is given by

Ueff =
Veff

Ω4
=

λΦ(t)G4(t)Φ4(t)

4[1 + ξΦ(t)G2(t)Φ2(t)/M2
P]2

. (3.26)

The slow-roll parameters are then obtained from the standard definitions:

ε =
M2

P

2

(
U ′eff

Ueff

)2

, η = M2
P

U ′′eff

Ueff
, κ2 = M4

P

U ′effU
′′′
eff

U2
eff

, (3.27)

where the prime represents the derivative with respect to the canonically normalized field

Ψ which is related to the Jordan-frame field Φ by

dΨ

dΦ
=

√
G2

Ω2
+

3M2
P

2Ω4

(
dΩ2

dΦ

)2

. (3.28)

In the classical limit of G→ 1, we have

dΨ

dΦ
=

√
1 + (1 + 6ξΦ)ξΦΦ2/M2

P

1 + ξΦΦ2/M2
P

. (3.29)

From the slow-roll parameters, we compute the spectral index ns and the tensor-to-scalar

ratio r at the horizon exit, as follows [33–35],

ns ≈ 1− 6ε+ 2η − 2

3
(5 + 36c)ε2 + 2(−1 + 8c)εη +

2

3
η2 +

(
2

3
− 2c

)
κ2 , (3.30)

r ≈ 16ε

[
1 +

(
−4

3
+ 4c

)
ε+

(
2

3
− 2c

)
η

]
, (3.31)

where we have computed the quantities up to the second order in the slow-roll parameters

and c = γ + ln 2− 2 with γ ≈ 0.5772 being the Euler-Mascheroni constant. The number of

e-foldings, N , can be also obtained from

N =
1

M2
P

∫ Ψ∗

Ψe

dΨ
Ueff

U ′eff

, (3.32)

where Ψe (Ψ∗) is the canonically normalized field value at the end of inflation for ε ' 1 (at

the horizon exit). For typical reheating scenarios, we take N = 60 at the horizon exit.

Let us briefly discuss the inflation dynamics classically. From ε ' 1 we find that the

Jordan-frame inflaton field at the end of inflation Φe is given by Φe ' MP(4/3)1/4/
√
ξΦ.

We may then express Φ in terms of N as

Φ(N) ≈

√
4N

3ξΦ
MP . (3.33)
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Then, the magnitude of the scalar power spectrum is given by

As =
Ueff

24π2M4
Pε
≈
(
N2

72π2

)
λΦ

ξ2
Φ

. (3.34)

As mentioned earlier, the non-minimal coupling parameter ξΦ is chosen to satisfy the

magnitude of the scalar power spectrum at the horizon exit, As ≈ 2.1× 10−9 [1].

In the large-field limit, the slow-roll parameters, ε and η, are expressed in terms of the

number of e-foldings,

ε ≈ 3

4N2
, η ≈ − 1

N
. (3.35)

At the first order in the slow-roll parameters, the spectral index and the tensor-to-scalar

ratio are then given by

ns ≈ 1− 2

N
− 9

2N2
, r ≈ 12

N2
. (3.36)

Therefore, we recover the well-known results for inflation with non-minimal coupling at

the classical level, which are ns ≈ 0.9654 and r ≈ 0.003 for N = 60, being consistent with

Planck data [1].

We are now in a position to discuss quantum corrections for inflationary observables.

To discuss effects of runnings of the parameters qualitatively, let us consider the running

of the effective quartic coupling λΦ, ignoring the running of the non-minimal coupling for

now. The slow-roll parameters, ε and η, in the large-field limit are then corrected [12, 24] to

ε ≈
4M4

P

3ξ2
ΦΦ4

[
1 +

ξΦΦ2

4M2
P

(
βλΦ

λΦ

)]2

, η ≈ −
4M2

P

3ξΦΦ2

(
1− βλΦ

2λΦ

)
, (3.37)

where βλΦ
≡ dλΦ/dt is the beta function of the effective quartic coupling. Here we have

ignored dβλΦ
/dt and β2

λΦ
terms.

One may relate the inflation field value Φ with the number of e-foldings N . In the

presence of quantum corrections, the number of e-foldings becomes

N ≈ 3ξΦ

2M2
P

∫ Φ∗

Φe

dΦ Φ

[
1− ξΦ2

4M2
P

(
βλΦ

λΦ

)]
, (3.38)

from which we obtain

Φ(N)

MP
≈

√
4N

3ξΦ

[
1 +

N

6

(
βλΦ

λΦ

)]
. (3.39)

Therefore, if βλΦ
/λΦ is positive, the inflation field value at the horizon exit becomes larger

than the classical value. In terms of N , the slow-roll parameters are given by

ε ≈ 3

4N2
+

1

4N

(
βλΦ

λΦ

)
, η ≈ − 1

N
+

(
1

6
+

1

2N

)(
βλΦ

λΦ

)
. (3.40)
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The spectral index ns and tensor-to-scalar ratio r are, up to the first order in the

slow-roll parameters, given by r ≈ 16ε and ns ≈ 1− 6ε+ 2η. We thus have

r ≈ 12

N2
+

4

N

(
βλΦ

λΦ

)
, (3.41)

ns ≈ 1− 2

N
− 9

2N2
+
βλΦ

3λΦ
. (3.42)

The quantum effect may become important in two ways: (i) βλΦ
is large and/or (ii) λΦ

is small. In particular, in the mixed inflation, increasing the ζ parameter with the other

parameters being fixed, λΦ becomes smaller, shifting the tensor-to-scalar ratio and spectral

index to a larger value, provided that βλΦ
is positive.

We remark that the reheating process can be important for making the inflationary

predictions more precise, due to the fact that the total number of e-foldings depends on the

equation of state of the inflaton and the reheating temperature during reheating [36]. In the

later discussion on dark matter, we take dimensionless parameters of our model to be sizable

for dark matter with freeze-out processes, as far as they are allowed by perturbativity

and unitarity, so we expect the reheating process to be almost instantaneous and the

reheating temperature to be high enough. Moreover, there are uncertainties in quantifying

the preheating dynamics. However, the details of preheating or reheating dynamics do not

affect the later discussion on thermal dark matter in the next section, because dark matter

is quickly thermalized after reheating and the dark matter abundance is determined by the

freeze-out process at a low temperature, being insensitive to reheating. Therefore, we do

not elaborate on the reheating dynamics further and take the number of e-foldings to be

about N = 60 for illustration.

3.5 Consistency conditions from inflation

We discuss the theoretical and phenomenological consistency conditions to be satisfied for

inflation physics in our model. The constraints for inflation at high scales are the following:

• Dark Higgs inflation

The stability of the inflaton potential requires

λφ > 0, (3.43)

λφχ > 2λφ
ξχ
ξφ
. (3.44)

• Mixed inflation

The stability of the inflaton potential at a finite value for τ = τm satisfying the

extremum condition (3.9) requires

λΦ =
1

(1 + τ2
m)2

(
λχ − 2ζ τm + λφχτ

2
m + λφτ

4
m

)
> 0 , (3.45)

0 =

(
λφχ − 2λφ

ξχ
ξφ

)
τ3
m − 3ζτ2

m +

(
2λχ − λφχ

ξχ
ξφ

)
τm + ζ

ξχ
ξφ
. (3.46)

We further require the second derivative of the potential (3.10) to be positive.
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• Perturbativity

We also require perturbativity on the SM and new quartic couplings,

yt < 4π , g < 4π , g′ < 4π , g3 < 4π , gX < 4π , λi < 4π , ζ < 4π , (3.47)

where i = φ, χ, φχ, φH and χH.

• CMB normalization

The scalar power spectrum at the Planck pivot scale [1] is given by

ln(1010As) = 3.044± 0.014 (68% C.L. Planck TT,TE,EE+lowE+lensing) . (3.48)

Then, requiring As ≈ 2.1 × 10−9 at N = 60, we obtain the relation between the

effective quartic and non-minimal couplings as follows:

λΦ

ξ2
Φ

≈ 4.15× 10−10 . (3.49)

For instance, for λΦ ' 0.1 (10−7), the non-minimal coupling should take ξΦ ' 15500

(15.5).

• Spectral index and tensor-to-scalar rato

The latest Planck data [1] read

ns = 0.9659± 0.0041 (68% C.L. Planck TT,TE,EE+lowEB+lensing) , (3.50)

r < 0.11 (95% C.L. Planck TT,TE,EE+lowEB+lensing) . (3.51)

4 Connection between inflation and dark matter

In this section, we first discuss three distinct regimes of dark matter production in our

model with Z3 symmetry: WIMP, SIMP, and forbidden dark matter scenarios [17, 18]. In

the following, the relic density is calculated in each case and various theoretical and exper-

imental constraints from dark matter are listed. Then, we explore the connection between

inflation and dark matter physics and impose the consistency conditions for inflation and

experimental constraints on the model.

As explained in the previous section, we can take quantum corrections into account

by considering the running of the couplings, which can be read from the RG equations

summarized in appendix A. We choose the following input parameters,

mh′ , mχ , θ , λφ , λχ , λφχ , λχH , ζ, gX , ξH , ξχ/ξφ , (4.1)

at the Z boson mass scale. The Z ′ mass is also given by mZ′ = 3gXmh′/
√

2λφ for the

given set of parameters. Here, we ignore the RG effects of the gauge kinetic mixing sin ξ or

ε ' cos θW ξ for ξ � 1. We again stress that one of the non-minimal coupling parameters

are not a free parameter. Thus we consider the ratio of the non-minimal couplings ξχ/ξφ
together with the SM Higgs non-minimal coupling ξH . Since the SM Higgs does not
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participate in inflationary dynamics, we always choose ξH = 0 at the Z boson mass scale.

However, due to the quantum effects, ξH takes a non-zero value at inflationary scale.

For a chosen set of input parameters at low-energy scale, we first analyze the dark

matter phenomenology by imposing various experimental and theoretical constraints on

dark matter. We then run the input parameters with the RG equations up to the scale of

tree-level unitarity µ ∼ MP/
√
ξΦ, where ξΦ is the effective non-minimal coupling for the

inflaton (3.17), which is ξΦ = ξφ in dark Higgs inflation and ξΦ = (ξχ + ξφτ
2
m)/

√
1 + τ2

m in

mixed inflation. We combine the stability and perturbativity constraints from inflation at

high-energy scale and various theoretical and experimental constraints from dark matter

at low-energy scale, as discussed in section 3 and section 4.

In the following, we present the results of our numerical analyses, dividing the param-

eter space into three distinct cases, depending on the dominant production mechanisms

for dark matter, WIMP, SIMP, and forbidden (FBDM) scenarios. We study dark matter

and inflation constraints in each case, namely, the dependencies of the relic density, the

spectral index and the tensor-to-scalar ratio on the ζ parameter, which is characteristic of

the Z3 model, distinguishing it from the Z2 models.

4.1 Consistency conditions from dark matter

The theoretical and phenomenological constraints for dark matter at low energies are the

following:

• Stability

We impose the stability condition given by [18]

λχ > −
1

2
λφχX

2
min +

3

2
|ζ|Xmin , (4.2)

where

Xmin =


(
P +

√
P 2 +Q3

)1/3
+
(
P −

√
P 2 +Q3

)1/3
, D > 0

2
√
−Q cos

(
1
3 cos−1

(
P√
−Q3

))
, D < 0

(4.3)

with D ≡ P 2 + Q3, P ≡ |ζ|/(4λφ), and Q ≡ λφχ/(6λφ). Here, writing the scalar

potential with quartic couplings in the form, V = |χ|4f(X) where X ≡ |φ|/|χ|, we

denoted Xmin as a positive value satisfying f ′(Xmin) = 0. Then, the global minimum

condition, f(Xmin) > 0, gives rise to eq. (4.2) [18].

• Unitarity

We impose the unitarity conditions on the squared amplitudes for dark matter self-

scattering with eqs. (B.34) and (B.35):

|Mχχ| < 8π , |Mχχ∗ | < 8π . (4.4)

We note that perturbativity at low scale is trivially satisfied once it is imposed at

inflation scale.
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• Dark matter relic density

We impose the correct relic density for dark matter at present, given by Planck data

(TT,TE,EE+lowE+lensing) [2] as

ΩDMh
2 = 0.1200± 0.0012 .

• Higgs decays

In the numerical analyses below, we choose the mixing angle between the SM and dark

Higgs bosons such that the LHC constraints on Higgs visible and invisible decays [37]

are satisfied. The current limit on the branching fraction of the Higgs invisible decay

is BR(h→ inv) < 0.19 at 90% C.L.

• Direct detection bounds

We consider Xenon10 [38], Xenon 1T [39, 40] and SENSEI-100 1yr (expected) [41]

on the spin-independent cross sections for DM-nucleon and DM-electron scatterings,

which are summarized in appendix B. The Xenon10 limit [38] applies for mχ =

8.8 MeV–3 GeV, so do the Xenon 1T limits [39, 40] for mχ = 6 GeV–10 TeV. The

projected limit from SENSEI-100 1yr (expected) is relevant for mχ = 1 MeV–1 GeV

and mZ′ = 3mχ.

• Indirect detection bounds

The indirect bounds on dark matter annihilation channels are the following. First,

the e+e− annihilation constraint in CMB is stringent. We thus used the result in

ref. [42] to constrain the e+e− annihilation at T = 0.25 eV for the mass range be-

tween mχ = 1 MeV and 10 TeV. We also used the AMS results in refs. [43–45] to

constrain the W+W− annihilation for the mass range between mχ = 100 GeV to

40 TeV, γγ, bb̄ annihilations for mχ = 10 GeV–10 TeV and the e+e− annihilation

for mχ = 5 GeV–300 GeV, respectively. In our model, the di-photon annihilation

channel is induced by the combination of the SM loops and the Higgs portal interac-

tion. We also used the Fermi-LAT limit on the W+W− annihilation from ref. [46] for

mχ = mW−10 TeV and the Fermi-LAT limits on the ττ, bb̄ annihilations from ref. [46]

for mχ = mb(mτ ) − 10 TeV. Moreover, the Fermi-LAT limit on the γγ annihilation

in ref. [47] is imposed for mχ = 0.2 GeV–1 TeV. Lastly, the HESS constraints on the

W+W−, γγ annihilations are taken from refs. [48, 49] for mχ = 180 GeV–67 TeV and

mχ = 300 GeV–60 TeV, respectively.

• Dark matter self-scattering

In the case of SIMP or forbidden dark matter, the self-scattering cross section can

be sizable, so it can solve the small-scale problems at galaxies or can be constrained

by no hint for dark matter self-interactions at galaxy clusters. Thus, we require the

self-interaction cross section to be small enough to evade the bounds from Bullet

Cluster [50–52] and spherical halo shapes [53]:

σself

mχ
< 1 cm2/g . (4.5)
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The solution to the small-scale problems at galaxies [54] might favor σself/mχ &
0.1 cm2/g, but we do not impose the lower bound in our work by having in mind

existing alternative solutions such as baryonic feedback effects.

4.2 WIMP scenarios

WIMP dark matter annihilates into the SM particles through Higgs or Z ′ portals, but the

strong constraints for direct detection narrow down this case near the resonance regions

at mχ ' mh′/2 or mZ′/2. The indirect detection and CMB bounds can also constrain the

WIMP dark matter with sizable Higgs portal couplings for mχ . 100 GeV. Away from

the resonance regions, we focus on the dark matter annihilations into the hidden sector,

such as χχ∗ → AA and χχ → χ∗A with A = h′, Z ′, for which we are safe from the direct

detection bounds. Moreover, for mχ & 100 GeV, the indirect detection and CMB bounds

are not as strong.

We take the standard 2→ 2 annihilation channels to be dominant for determining the

dark matter relic density, resulting in the Boltzmann equation (B.1) in the following form,

ṅDM + 3HnDM = −1

2
〈σv〉χχ∗→ff̄

(
n2

DM − (neq
DM)2

)
− 1

2
〈σv〉χχ→χ∗h′

(
n2

DM − n
eq
DM nDM

)
− 1

2
〈σv〉χχ∗→h′h′

(
n2

DM − (neq
DM)2

)
− 1

2
〈σv〉χχ→χ∗Z′

(
n2

DM − n
eq
DM nDM

)
− 1

2
〈σv〉χχ∗→Z′Z′

(
n2

DM − (neq
DM)2

)
≈ −〈σv〉2→2 n

2
DM , (4.6)

with

(σv)2→2 ≡
1

2
(σv)χχ∗→ff̄ +

1

2
(σv)χχ→χ∗h′ +

1

2
(σv)χχ∗→h′h′

+
1

2
(σv)χχ→χ∗Z′ +

1

2
(σv)χχ∗→Z′Z′

≡ a+ bv2. (4.7)

Then, the relic density for WIMP dark matter is given by

ΩDMh
2 = 5.20× 10−10 GeV−2

(
10.75

g∗

)1/2(xf
20

)(
a+

3b

xf

)−1

, (4.8)

where xf = mDM/Tf with Tf being the freeze-out temperature.

For mh′ � mχ and mZ′ > mχ, the dark matter annihilation cross section is dominated

by χχ∗ → h′h′ and χχ→ χ∗h′, which is approximated to

〈σv〉2→2≈
ζ2m2

Z′

768πg2
Xm

4
χ

(
9gXmχ

mZ′
−
λφχmZ′

gXmχ

)2

+
λ2
φχ

128πm2
χ

(
1−

λφχm
2
Z′

9g2
Xm

2
χ

+
λφm

2
Z′

6g2
Xm

2
χ

)2

. (4.9)

Therefore, the resulting effective annihilation rate depends on the dark matter self-

couplings, the cubic coupling ζ and the mixing quartic coupling λφχ, as well as the resonance
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Figure 1. Parameter space for WIMP dark matter scenario with ξχ/ξφ = 1 (left) and 0.01 (right)

for the quartic self-couplings with λχ = λφ versus the quartic mixing couplings with λφχ = λχH .

The parameters shown here are set at low-energy scale. The rest input parameters are chosen as

ζ = 0.05, gX = 0.1, sin θ = 0.01, ε = 10−4, mh′ = 100 GeV and mχ = 500 GeV. Constraints

from dark matter physics and cosmic inflation are shown. The green region represents the correct

dark matter relic abundance within 3σ range [2]. The hatched and black regions are disfavored due

to stability, unitarity and perturbativity. The dark Higgs (mixed) inflation is not allowed in the

red-colored (blue-colored) region. The black points are our benchmark points shown in table 1.

and dark matter masses. In a wide parameter space with reasonable values of the dimen-

sionless parameters of weak strength in the model, we can make the dark matter physics

consistent with the inflation regime.

In figures 1 and 2, we show various constraints coming from dark matter physics

and inflation in the parameter space for the quartic self-couplings with λχ =λφ versus the

quartic mixing couplings with λφχ =λχH in the former and the quartic couplings with λχ =

λφ =λφχ =λχH versus the dark matter cubic self-coupling ζ in the latter. Here, we chose

mχ = 500 GeV and mh′ = 100 GeV, and mZ′ varies in the range of 60GeV.mZ′ . 212GeV,

depending on λφ in the plots. We selected four benchmark points, BPmixed
WIMP,1, BPdH

WIMP,1,

BPmixed
WIMP,2, and BPdH

WIMP,2, denoted as black points in figures 1 and 2. The input parameters

for those benchmark points are summarized in table 1. Imposing the normalization of

the scalar power spectrum from the latest Planck, we computed inflationary observables,

including the spectral index ns and the tensor-to-scalar ratio r. The annihilation cross

sections are dominated by WIMP processes in all the cases.

Our model with discrete Z3 symmetry is distinguished from models with Z2 through

the cubic self-coupling for scalar dark matter, namely, the ζ parameter. On the left of

figure 3, we show the ζ dependence of the relic density by fixing the other parameters. In

comparison, on the right of figure 3, we present the relic density in the plot for the spectral

index versus tensor-to-scalar ratio in order to see the correlation between dark matter and

inflation constraints. We find that the spectral index and the tensor-to-scalar ratio vary,

ns ≈ 0.968–0.974 and r ≈ 0.0028–0.0042, depending on the ζ parameter. Thus, the spectral
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Figure 2. Parameter space for WIMP dark matter scenario with ξχ/ξφ = 1 (left) and 0.01 (right)

for the quartic couplings with λχ = λφ = λφχ = λχH versus the dark matter cubic coupling ζ. The

rest input parameters and color codes are as in figure 1, except that ζ is varying.

Benchmark
λχ = λφ λφχ = λχH ζ ξχ/ξφ ns r

Points

BPmixed
WIMP,1 0.1 0.08 0.05 1 0.9702 0.00321

BPdH
WIMP,1 0.1 0.08 0.05 0.01 0.9691 0.00296

BPmixed
WIMP,2 0.1 0.1 0.04 1 0.9695 0.00306

BPdH
WIMP,2 0.1 0.1 0.04 0.01 0.9691 0.00297

Table 1. Input parameters for the benchmark points, denoted as black points in figures 1 and 2.

In this case, mZ′ is also fixed to mZ′ = 67 GeV, in the upper two and lower two cases, respectively.

The superscript represents the inflation type; for example, BPmixed
WIMP,1 (BPdH

WIMP,1) is the benchmark

point where mixed (dark Higgs) inflation is allowed.

index can deviate sizably from the results of the classical non-minimal coupling inflation,

but most of the parameter is still consistent with Planck within about 2σ.

4.3 SIMP scenarios

For SIMP dark matter, the dark matter abundance is determined dominantly by the 3 → 2

processes, which depend mostly on the dark matter self-interactions. In this case, the

typical values of the dark matter mass are below GeV scale to be consistent with the

correct relic density and the perturbativity bound imposed at the dark matter mass scale.

But, the sizable self-couplings for dark matter would lead to the premature breakdown of

perturbativity below the inflation scale. Thus, we need to rely on the enhancement of the

3→ 2 processes at resonances, for instance, mh′ ' 3mχ [30, 55, 56].
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Figure 3. (Left) Relic density for WIMP dark matter as a function of ζ. (Right) Relic density

in the plane of spectral index and tensor-to-scalar ratio. The parameters are chosen as follows:

sin θ = 0.01, ε = 10−4, gX = 0.1, mh′ = 100 GeV, mχ = 500 GeV, λφ = λχ = λφχ = λχH = 0.1,

thus mZ′ = 67 GeV. The gray horizontal solid line on left represents the Planck data for the relic

density.

We consider the case where the 3 → 2 annihilation processes are dominant for deter-

mining the dark matter relic density. In this case, the Boltzmann equation (B.1) becomes

ṅDM + 3HnDM = −1

4
(〈σv2〉χχχ→χχ∗ + 〈σv2〉χχχ∗→χ∗χ∗)(n3

DM − n
eq
DMn

2
DM)

− 1

2
〈σv2〉χχχ∗→χh′

(
n3

DM − (neq
DM)2nDM

)
− 1

2
〈σv2〉χχχ∗→χZ′

(
n3

DM − (neq
DM)2nDM

)
≈ −〈σv2〉3→2 n

3
DM ,

(4.10)

with

〈σv2〉3→2 ≡
1

4
(〈σv2〉χχχ→χχ∗ + 〈σv2〉χχχ∗→χ∗χ∗) +

1

2
〈σv2〉χχχ∗→χh′ +

1

2
〈σv2〉χχχ∗→χZ′

≡
α3

eff

m5
χ

. (4.11)

Here, we note that mχ < mh′ < 2mχ or mχ < mZ′ < 2mχ in order for the assisted

3 → 2 processes with h′ or Z ′ to be kinematically open and for the hidden sector 2 → 2

annihilations to be forbidden. Then, the relic density for SIMP dark matter [17, 18] is

given by

ΩDMh
2 = 1.41× 10−8 GeV−2

(
10.75

g∗

)3/4(xf
20

)2
(
M

1/3
P mχ

αeff

)3/2

. (4.12)

In the presence of the velocity-dependence or resonance poles in the 3 → 2 processes,

special care should be taken for thermal averaging [55, 56].

For mh′ ' 3mχ, the averaged 3 → 2 annihilation cross section for dark matter is

dominated by the resonance term in χχχ→ χχ∗ [55, 56], approximated to

〈σv2〉 ≈ 9πζ2

256m5
χ

(
1 +

9λ2
φχ

2λφ

)2

ε2R x
3 e−

3
2
x εR θ(εR) , (4.13)
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Figure 4. Parameter space for SIMP dark matter scenario with ξχ/ξφ = 1 (left) and 0.01 (right), for

λφ = λχ versus λφχ = λχH . The parameters shown here are set at low-energy scale. The rest input

parameters are chosen as gX = 0.1, sin θ = 10−6, ε = 10−4, mh′ = 0.35 GeV, mχ = 0.1 GeV and

ζ = 0.05. The hatched and black regions are disfavored by stability, unitarity and perturbativity.

The dark Higgs (mixed) inflation is not allowed in the red-colored (blue-colored) region. The green

solid lines represent the correct dark matter relic abundance within 3σ range [2]. The black points

are our benchmark points shown in table 2.

where x = mχ/T and

εR ≡
m2
h′ − 9m2

χ

9m2
χ

. (4.14)

Here, we assumed the narrow width approximation with Γh′/mh′ � 1, εR, where the width

of the dark Higgs is given by Γh′ =
λ2
φχv

2
φ

16πmh′

√
1− 4m2

χ

m2
h′

. Then, we used the thermal average

of (σv2) = bR γR
(εR−u2)2+γ2

R
with γR = mh′Γh′/(9m

2
χ), u = 1

3(v2
1 + v2

2 + v2
3) and bR being a

velocity-independent coefficient: 〈σv2〉 = 27
16πε

2
Rx

3 e−
3
2
x εR θ(εR) from ref. [55]. Therefore,

the resulting effective annihilation rate depends significantly on the dark matter cubic

coupling ζ as well as the resonance and dark matter masses.

In figures 4 and 5, we show various constraints coming from dark matter physics and

inflation in the quartic self-coupling with λχ = λφ versus the mixing quartic couplings

with λφχ = λχH in the former and the mixing quartic couplings with λφχ = λχH versus

the dark matter cubic self-coupling ζ in the latter. Here, we chose the mass parameters

near the resonance at mh′ = 3mχ, for instance, mχ = 0.1 GeV and mh′ = 0.35 GeV.

Then, we vary vφ to get the range, 0.209 GeV . mZ′ . 0.418 GeV, depending on λφ for the

fixed gX and mh′ . We select four benchmark points in the above plots, BPmixed
SIMP,1, BPdH

SIMP,1,

BPmixed
SIMP,2, and BPdH

SIMP,2, with the input parameters summarized in table 2. For the selected

benchmark points, we computed inflationary observables, including the spectral index ns
and the tensor-to-scalar ratio r. Note that the scalar power spectrum is normalized to

satisfy the latest Planck result.
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Figure 5. Parameter space for SIMP dark matter scenario with ξχ/ξφ = 1 (left) and 0.01 (right),

for λφχ = λχH versus ζ. The input parameters and color codes are as in figure 4, except that

λχ = λφ = 0.1 and ζ is varying.

Benchmark
λχ = λφ λφχ = λχH ζ ξχ/ξφ ns r

Points

BPmixed
SIMP,1 0.1 1.2× 10−4 0.05 1 0.9709 0.00337

BPdH
SIMP,1 0.1 1.2× 10−4 0.05 0.01 0.9688 0.00292

BPmixed
SIMP,2 0.1 10−5 0.024 1 0.9692 0.00299

BPdH
SIMP,2 0.1 10−5 0.024 0.01 0.9688 0.00292

Table 2. Input parameters for our benchmark points, denoted as black points in figures 4 and 5.

In this case, mZ′ is also fixed to mZ′ = 0.235 GeV. The superscript represents the inflation type;

for example, BPmixed
SIMP,1 (BPdH

SIMP,1) is the benchmark point where mixed (dark Higgs) inflation is

allowed.

On the left of figure 6, we show the ζ dependence of the relic density by fixing the

other parameters. The relic densities that would have been determined by the WIMP or

SIMP channels only are shown in red and green lines on the left of figure 6. The total

relic density follows closely the one that would have been determined by SIMP channels

only. In comparison, on the right of figure 6, we present the relic density in the plot for the

spectral index and the tensor-to-scalar ratio in order to see the correlation between them.

We find that the spectral index and the tensor-to-scalar ratio vary, ns ≈ 0.969–0.974 and

r ≈ 0.0029–0.0043, depending on the ζ parameter. Thus, the spectral index can deviate

sizably from the results of the classical non-minimal coupling inflation, but most of the

parameter is still consistent with Planck within about 2σ.

– 22 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
5

0.005 0.010 0.050 0.100
10-5

0.001

0.100

10

1000

ζ

Ωh2

Relic density in terms of ζ

Planck

WIMP

SIMP

Full

X
X

X
X

X

X

X

X

X

X

X

X

X

0.1 0.2 0.5 1

0.0190.0240.0310.0510.085

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

ΩDMh
2

ζ

r

X r
ns

0.969

0.970

0.971

0.972

0.973

0.974

ns

X r
ns

Figure 6. (Left) Relic densities for each dark matter components as a function of ζ. (Right)

Correlation between relic density, spectral index and tensor-to-scalar ratio. The parameters are

chosen as follows: sinθ= 10−6, ε= 10−4, gX = 0.1, mh′ = 0.35GeV, mχ = 0.1GeV, λφ =λχ = 0.1,

λφχ =λχH = 10−4, thus mZ′ = 0.235GeV. The grey horizontal solid line on left represents the

Planck data for the relic density.

4.4 Forbidden scenarios

For the forbidden dark matter, the hidden sector annihilations are forbidden at zero tem-

perature, but they are open at a finite temperature during the freeze-out [18, 57]. In this

case, due to the Boltzmann suppression with e−∆x for a large dark matter velocity where

∆ = (m′ − mDM)/mDM with m′ being the mass of the hidden sector particle, the hid-

den sector annihilation cross section should be sizable, depending on the mass difference

between dark matter and hidden sector particle masses, mh′ or mZ′ , in our case [18]. Im-

portantly, for T � ∆, the forbidden annihilation cross section is exponentially suppressed,

so the CMB bound on the annihilation cross section for light dark matter does not apply.

For mχ < mh′ ,mZ′ , we consider the 2 → 2 forbidden annihilation processes to be

dominant for determining the dark matter relic density. Then, we can approximate the

Boltzmann equation (B.1) as

ṅDM+3HnDM = 〈σv〉χ∗h′→χχ
(
nDMnh′−

neq
h′

neq
DM

n2
DM

)
+2〈σv〉h′h′→χχ∗

(
n2
h′−

(neq
h′ )

2

(neq
DM)2

n2
DM

)
+〈σv〉χ∗Z′→χχ

(
nDMnZ′−

neq
Z′

neq
DM

n2
DM

)
+2〈σv〉Z′Z′→χχ∗

(
n2
Z′−

(neq
Z′)

2

(neq
DM)2

n2
DM

)
≈−〈σv〉FBn

2
DM , (4.15)

with

〈σv〉FB≡
(
neq
h′

neq
DM

)
〈σv〉χ∗h′→χχ+

2(neq
h′ )

2

(neq
DM)2

〈σv〉h′h′→χχ∗

+

(
neq
Z′

neq
DM

)
〈σv〉χ∗Z′→χχ+

2(neq
Z′)

2

(neq
DM)2

〈σv〉Z′Z′→χχ∗

≈ 1

2
(1+∆h′)

3/2 e−∆h′x〈σv〉χ∗h′→χχ+
1

2
(1+∆h′)

3 e−2∆h′x〈σv〉h′h′→χχ∗

+
3

2
(1+∆Z′)

3/2 e−∆Z′x〈σv〉χ∗Z′→χχ+
9

2
(1+∆Z′)

3 e−2∆Z′x〈σv〉Z′Z′→χχ∗ . (4.16)
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Here, the dark matter annihilation rates are computed by using the detailed balance condi-

tions [18, 57]. Then, the general expression for the relic density for forbidden dark matter

in our model [18] is given by

ΩDMh
2 = 5.20× 10−10 GeV−2

(
10.75

g∗

)1/2(xf
20

) e(∆Z′+∆h′ )xf/2gh

e(∆Z′−∆h′ )xf/2g + e−(∆Z′−∆h′ )xf/2h
,

(4.17)

where ∆h′ = (mh′ −mχ)/mχ, ∆Z′ = (mZ′ −mχ)/mχ, and

h(∆h′ ,xf )≡

[
1

2
c1(1+∆h′)

3/2

(
1−∆h′xf e

∆h′xf

∫ ∞
∆h1

xf

dtt−1 e−t

)

+
1

2
c2(1+∆h′)

3e−∆h′xf

(
1−2∆h′xf e

2∆h′xf

∫ ∞
2∆h′xf

dtt−1 e−t

)]−1

, (4.18)

g(∆Z′ ,xf )≡

[
9d1

2xf
(1+∆Z′)

3/2

(
1−(∆Z′xf )2 e∆Z′xf

∫ ∞
∆Z′xf

dtt−2e−t

)

+
9d2

2
(1+∆Z′)

3e−∆Z′xf

(
1−2(∆Z′xf )e2∆Z′xf

∫ ∞
2∆Z′xf

dtt−1e−t

)]−1

, (4.19)

with 〈σv〉h′χ∗→χχ = c1, and 〈σv〉h′h′→χχ∗ = c2, 〈σv〉Z′χ∗→χχ = 6d1/x, and 〈σv〉Z′Z′→χχ∗ = d2.

For mh′ & mχ and mZ′ � mh′ , the annihilation cross section for the 2 → 2 forbidden

channels is dominated by the one for χχ→ χ∗h′, approximated to

〈σv〉FB≈
9ζ2

256πm2
χ

√
∆h′(1+∆h′)(4+∆h′)

(2+∆h′)(3+∆h′)2

(
2(3+∆h′)−(1+∆h′)(5+2∆h′)

λφχ
λφ

)2

e−∆h′x

≈ ζ2
√

∆h′

256πm2
χ

(
6−

5λφχ
λφ

)2

e−∆h′x . (4.20)

Therefore, the resulting effective annihilation rate depends on the dark matter cubic cou-

pling ζ as well as the mass difference ∆h′ between the resonance and dark matter masses.

In figure 7, we show various constraints coming from dark matter physics and inflation

in the quartic self-coupling with λχ = λφ versus the quartic mixing quartic couplings with

λφχ = λχH in the former and the quartic mixing quartic couplings with λφχ = λχH versus

the dark matter cubic self-coupling ζ in the latter. Here, we chose ∆h′ = (mh′−mχ)/mχ =

0.4, for instance, mχ = 0.1 GeV and mh′ = 0.16 GeV, and let vφ vary to get the range,

0.107 GeV . mZ′ . 0.339 GeV, depending on λφ for the fixed gX and mh′ . We again

selected four benchmark points, BPmixed
FBDM,1, BPdH

FBDM,1, BPmixed
FBDM,2, and BPdH

FBDM,2, with

the input parameters shown in table 3. For the selected benchmark points, we computed

inflationary observables, including the spectral index ns and the tensor-to-scalar ratio r.

In order to see the ζ parameter dependence of the relic density and the inflationary

predictions. The relic densities corresponding to the WIMP, SIMP and forbidden compo-

nents are shown in red, green and blue lines on the left of figure 9. The total relic density

follows closely the one obtained for forbidden dark matter. In comparison, on the right of
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Figure 7. Parameter space for forbidden dark matter scenario with ξχ/ξφ = 1 (left) and 0.01

(right) in λχ = λφ versus λφχ = λχH . The parameters shown here are set at low-energy scale.

The rest input parameters are chosen as gX = 0.1, sin θ = 10−5, ε = 10−4, mh′ = 0.16 GeV,

mχ = 0.1 GeV, and ζ = 0.02. The hatched regions are disfavored due to the stability and unitarity.

The dark Higgs (mixed) inflation is not allowed in the red-colored (blue-colored) region. The green

solid lines represent the correct dark matter relic abundance within 3σ range [2]. The black points

are our benchmark points shown in table 3.

Benchmark
λχ = λφ λφχ = λχH ζ ξχ/ξφ ns r

Points

BPmixed
FBDM,1 0.056 0.005 0.02 1 0.9700 0.00316

BPdH
FBDM,1 0.056 0.005 0.02 0.01 0.9698 0.00312

BPmixed
FBDM,2 0.055 0.002 0.022 1 0.9703 0.00322

BPdH
FBDM,2 0.055 0.002 0.022 0.01 0.9699 0.00313

Table 3. Input parameters for the benchmark points. They correspond to the black points in

figures 7 and 8. We chose gX = 0.1, sin θ = 10−5, ε = 10−4, mh′ = 0.16 GeV and mχ = 0.1 GeV.

The superscript represents the inflation type; for example, BPmixed
FBDM,1 (BPdH

FBDM,1) is the benchmark

point where the mixed (dark Higgs) inflation is allowed, etc.

figure 9, we presented the relic density in the plot for the spectral index and the tensor-to-

scalar ratio in order to see the correlation between them. We find that the spectral index

and the tensor-to-scalar ratio vary, ns ≈ 0.969–0.974 and r ≈ 0.0030–0.0044, depending

on the ζ parameter, similarly as in the WIMP and SIMP cases. Thus, the spectral index

again can deviate sizably from the results of the classical non-minimal coupling inflation,

but most of the parameter is still consistent with Planck within about 2σ.
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Figure 8. Parameter space for forbidden dark matter scenario with ξχ/ξφ = 1 (left) and 0.01

(right) for λφχ = λχH versus ζ. The parameters shown here are set at dark matter scale. The rest

input parameters and color codes are as in figure 7, except that λχ = λφ = 0.055 and ζ is varying.
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Figure 9. (Left) Relic densities for each dark matter components. (Right) Relic density in

the plane of spectral index and tensor-to-scalar ratio. The parameters are chosen as follows:

sinθ= 10−5, ε= 10−4, gX = 0.1, mh′ = 0.16GeV, mχ = 0.1GeV, λφ =λχ = 0.055, λφχ =λχH = 0.006,

thus mZ′ = 0.14GeV. The grey horizontal solid line on left represents the Planck data for the relic

density.

5 Conclusions

We have considered the minimal possibility that a complex scalar field beyond Z2 parity

can play roles of both the inflaton and dark matter at the same time. The discussion is

focussed upon the models with gauged Z3 symmetry, which is the remnant of a dark local

U(1) symmetry after the spontaneous breakdown. Thus, in this model, dark matter is

communicated to the SM through double portals with the Higgs and Z ′ bosons.

The dark matter cubic self-interaction restricts the inflation with non-minimal cou-

plings to be realized always as either the dark Higgs or the mixture of the dark Higgs

and scalar dark matter, but not the pure dark matter direction. Moreover, the same dark
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matter cubic self-interaction opens additional channels for dark matter in the dark sector,

such as allowed or forbidden 2→ 2 (semi-)annihilations and the 3→ 2 annihilations, thus

it also plays an important role in determining the relic density while evading the stringent

constraints from direct and indirect detection experiments.

As a result, we searched for the parameter space for achieving the successful inflation

well within the Planck 2σ band as well as the observably consistent dark matter with cor-

rect relic abundance, depending on the dominant production mechanism for dark matter.

The parameter space in each case of dark matter productions is selected due to the the-

oretical and phenomenological bounds available from inflation all the way to dark matter

energy scales.
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A Renormalization group equations

It is essential to consider renormalization group equations of the relevant parameters to

properly connect inflation scale with low-energy scale of dark matter physics. Following

refs. [58, 59] (see also refs. [60–62]) and ref. [63], we obtain the renormalization group

equations of the model as follows. First, the beta functions for the gauge couplings are

(4π)2βg3 = −7g3
3 , (A.1)

(4π)2βg = −19

6
g3 , (A.2)

(4π)2βg′ =
41

6
g′3 , (A.3)

(4π)2βgX =
9sφ + sχ

3
g3
X . (A.4)

The beta function for top Yukawa coupling is

(4π)2βyt = yt

[
27

6
y2
t −

(
8g2

3 +
9

4
g2 +

17

12
g′2
)]

, (A.5)
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and the beta functions for quartic couplings are

(4π)2βλH = 24λ2
H−6y4

t −3λH
(
g′2+3g2−4y2

t

)
+

3

8

[(
g′2+g2

)2
+2g4

]
+

1+s2
χ

2
λ2
χH+

1+s2
φ

2
λ2
φH , (A.6)

(4π)2βλφH = 6λφH
(
2λH+y2

t

)
− 3

2
λφH

(
g′2+3g2+36g2

X

)
+4sφλ

2
φH

+(1+s2
χ)λχHλφχ+2(1+3s2

φ)λφλφH , (A.7)

(4π)2βλχH = 6λχH
(
2λH+y2

t

)
− 3

2
λχH

(
g′2+3g2+4g2

X

)
+4sχλ

2
χH

+(1+s2
φ)λφχλφH+2(1+3s2

χ)λχλχH , (A.8)

(4π)2βλφ = 2λ2
φH−108λφg

2
X+486g4

X+2
(
1+9s2

φ

)
λ2
φ+

1+s2
χ

2
λ2
φχ , (A.9)

(4π)2βλχ = 2λ2
χH−12λχg

2
X+6g4

X+2
(
1+9s2

χ

)
λ2
χ+

1+s2
φ

2
λ2
φχ+9(1+sφsχ)ζ2 , (A.10)

(4π)2βλφχ = 4λχHλφH−60λφχg
2
X+108g4

X+2(1+3s2
φ)λφλφχ+2(1+3s2

χ)λχλφχ

+4sφsχλ
2
φχ+18(1+s2

χ)ζ2 , (A.11)

(4π)2βζ = 6
(
−1+3s2

χ

)
λχζ+6sφsχλφχζ−36g2

Xζ . (A.12)

The beta functions for non-minimal couplings are

(4π)2βξH =

(
12λH + 6y2

t −
3

2
g′2 − 9

2
g2

)(
ξH +

1

6

)
+ (1 + sφ)λφH

(
ξφ +

1

6

)
+ (1 + sχ)λχH

(
ξχ +

1

6

)
, (A.13)

(4π)2βξφ = 4λφH

(
ξH +

1

6

)
+ 2

[
(1 + 3sφ)λφ − 27g2

X

](
ξφ +

1

6

)
+ (1 + sχ)λφχ

(
ξχ +

1

6

)
, (A.14)

(4π)2βξχ = 4λχH

(
ξH +

1

6

)
+ (1 + sφ)λφχ

(
ξφ +

1

6

)
+ 2

[
(1 + 3sχ)λχ − 3g2

X

](
ξχ +

1

6

)
. (A.15)

The beta functions for mass parameters are given by

(4π)2βm2
H

=

(
12λH + 6y2

t −
3g′2

2
− 9g2

2

)
m2
H + (1 + sφ)λφHm

2
φ

− (1 + sχ)λχHm
2
χ , (A.16)

(4π)2βm2
φ

= 2
[
(1 + 3sφ)λφ − 27g2

X

]
m2
φ + 4λφHm

2
H − (1 + sχ)λφχm

2
χ , (A.17)

(4π)2βm2
χ

= 2
[
(1 + 3sχ)λχ − 3g2

X

]
m2
χ − 4λχHm

2
H − (1 + sφ)λφχm

2
φ . (A.18)
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Finally the anomalous dimensions are given by

(4π)2γH = −3

4
g′2 − 9

4
g2 + 3y2

t , (A.19)

(4π)2γφ = −27g2
X , (A.20)

(4π)2γχ = −3g2
X . (A.21)

Here, βp ≡ dp/dt for a parameter p and t = lnµ/µ0 with µ being the renormalization

scale, µ0 = MZ , and sχ and sφ are the suppression factors that need to be taken into

account when inflation occurs along the χ and/or φ field direction, or equivalently ψ and

ϕ direction, respectively. They are due to the fact that the presence of the non-minimal

couplings modifies the propagators [64, 65]. Explicitly, they are given by

sφ =
1 + ξφϕ

2/M2
P

1 + (6ξφ + 1)ξφϕ2/M2
P

, (A.22)

and similarly for sχ. Note that sφ,χ → 1 for ξφ,χ → 0.

B Dark matter annihilation/scattering cross sections

We list the full Boltzmann equation for dark matter relic density and the necessary formulas

for the dark matter annihilation and the dark matter-SM scattering as well as the dark

matter self-scattering.

Boltzmann equation. The full Boltzmann equation governing the dark matter density,

nDM = nχ + nχ∗, is given [18] by

ṅDM + 3HnDM =− 1

2
〈σv〉χχ∗→ff̄

(
n2

DM − (neq
DM)2

)
− 1

4

(
〈σv2〉χχχ→χχ∗ + 〈σv2〉χχχ∗→χ∗χ∗

)(
n3

DM − n
eq
DMn

2
DM

)
− 1

2
〈σv2〉χχχ∗→χh′

(
n3

DM −
(neq

DM)2

neq
h′

nDMnh′

)
+ 〈σv〉χ∗h′→χχ

(
nDMnh′ −

neq
h′

neq
DM

n2
DM

)
+ 2〈σv〉h′h′→χχ∗

(
n2
h′ −

(neq
h′ )

2

(neq
DM)2

n2
DM

)
− 1

2
〈σv2〉χχχ∗→χZ′

(
n3

DM −
(neq

DM)2

neq
Z′

nDMnZ′

)
+ 〈σv〉χ∗Z′→χχ

(
nDMnZ′ −

neq
Z′

neq
DM

n2
DM

)
+ 2〈σv〉Z′Z′→χχ∗

(
n2
Z′ −

(neq
Z′)

2

(neq
DM)2

n2
DM

)
.

(B.1)

Here, we assumed that nχ = nχ∗ with no CP violation in the dark sector.
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2 → 2 processes. The annihilation cross section of dark matter into a pair of SM

fermions [17, 18] is given by

〈σv〉χχ∗→f̄f =
ε2e2g2

XNc

πx

m2
χ + 1

2m
2
f

(4m2
χ −m2

Z′)
2 +m2

Z′Γ
2
Z′

√
1−

m2
f

m2
χ

+
Nc

4π

(mf

vew

)2(
1−

m2
f

m2
χ

)3/2
∣∣∣∣ yh1χ∗χ

4m2
χ −m2

h1

+
yh2χ∗χ

4m2
χ −m2

h2

∣∣∣∣2 , (B.2)

with x ≡ mχ/T , vew = 246 GeV, ε ' cos θW ξ for ξ � 1 and

yh1χ∗χ = − sin θ(λφχvφ cos θ − λχHv sin θ), (B.3)

yh2χ∗χ = cos θ(λφχvφ sin θ + λχHv cos θ) , (B.4)

where h1,2 are dark Higgs-like and SM Higgs-like scalars [17, 18], respectively, and the

mixing angle is given by

tan(2θ) =
λφHvφvew

λHv2
ew − λφv2

φ

. (B.5)

The cross section for dark matter annihilating into V V with V = Z,W are given by

〈σv〉χχ∗→V V =
δV e

4

256π sin4 θW cos4 θW

v2
ewm

2
χ

m4
V

(
4− 4

m2
V

m2
χ

+ 3
m4
V

m4
χ

)

×

√
1−

m2
V

m2
χ

(
yh1χ∗χ

4m2
χ −m2

h1

+
yh2χ∗χ

4m2
χ −m2

h2

)2

,

(B.6)

with δV = 1 (2 cos4 θW ) for V = Z (W ). The cross-section for dark matter annihilating

into γγ is loop-induced, given by

〈σv〉χχ∗→γγ =
e4m2

χ

64π5v2
ew

∣∣∣∣∑
f

NcQ
2
fA1/2(xf ) +A1(xw)

∣∣∣∣2( yh1χ∗χ

4m2
χ −m2

h1

+
yh2χ∗χ

4m2
χ −m2

h2

)2

.

(B.7)

The (semi-)annihilation cross sections for the allowed channels for mχ > mA with

A = h′, Z ′ are

〈σv〉χχ→χ∗h′ =
3R2

128πm2
χ

(
1−

m2
h′

9m2
χ

)1/2(
1−

m2
h′

m2
χ

)1/2(3mχ

vφ
−
λφχvφ(9m2

χ+m2
h′)

mχ(3m2
χ−m2

h′)

)2

, (B.8)

〈σv〉χχ∗→h′h′ =
λ2
φχ

64πm2
χ

√
1−

m2
h′

m2
χ

(
1−

2λφχv
2
φ

2m2
χ−m2

h′
+

6λφv
2
φ

4m2
χ−m2

h′

)2

, (B.9)

with R ≡ ζvφ/mχ and mh′ ' mh1 , and

〈σv〉χχ→χ∗Z′ =
243g2

XR
2

64πm2
Z′

(
1−

m2
Z′

m2
χ

)3/2(
1−

m2
Z′

3m2
χ

)−2(
1−

m2
Z′

9m2
χ

)7/2

, (B.10)

〈σv〉χχ∗→Z′Z′ =
g4
X

16πm2
χ

√
1−

m2
Z′

m2
χ

(
8m4

χ − 8m2
χm

2
Z′ + 3m4

Z′

(2m2
χ −m2

Z′)
2

+
54λφχv

2
φ

4m2
χ −m2

h′

+
81λ2

φχv
4
φ(4m4

χ − 4m2
χm

2
Z′ + 3m4

Z′)

m4
Z′(4m

2
χ −m2

h′)
2

)
. (B.11)
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The (semi-)annihilation cross sections for forbidden channels for mχ < mA with

A = h′, Z ′ [18] are

〈σv〉χχ→χ∗A =
nA
nχ
〈σv〉χ∗A→χχ , (B.12)

with

〈σv〉χ∗h′→χχ =
9R2

32πmχ(mχ +mh′)

(
1− mχ

mh′

)1/2(
1 +

3mχ

mh′

)1/2

×
(
mχ

vφ
−
λφχvφ(3mχ + 2mh′)

mh′(2mχ +mh′)

)2

, (B.13)

〈σv〉χ∗Z′→χχ =
3g2
XR

2

4πmχmZ′x

(
1 +

mχ

mZ′

)−3(
1 + 2

mχ

mZ′

)−2(
1 + 3

mχ

mZ′

)5/2(
1− mχ

mZ′

)1/2

×
(

1− 4
m2
χ

m2
Z′

+ 4
m3
χ

m3
Z′

+ 11
m4
χ

m4
Z′

)
, (B.14)

and

〈σv〉χχ∗→AA =
(nA)2

(nχ)2
〈σv〉AA→χχ∗ , (B.15)

with

〈σv〉h′h′→χχ∗ =
λ2
φχ

64πm2
h′

√
1−

m2
χ

m2
h′

(
1 +

2v2
φ(λφ − λφχ)

m2
h′

)2

, (B.16)

〈σv〉Z′Z′→χχ∗ =
g4
X

144πm2
Z′

√
1−

m2
χ

m2
Z′

(
11−

24m2
χ

m2
Z′

+
16m4

χ

m4
Z′

−
18λφχv

2
φ(4m2

χ −m2
Z′)

m2
Z′(4m

2
Z′ −m2

h′)
+

243λ2
φχv

4
φ

(m2
h′ − 4m2

Z′)
2

)
. (B.17)

3 → 2 processes. The 3 → 2 annihilation cross sections involving only dark matter in

the external states1 are

〈σv2〉χχχ→χχ∗ =

√
5R2

64πm5
χ

(
2λχ + 9R2 +

25g2
Xm

2
χ

m2
χ +m2

Z′

+
2λφχm

2
χ(13m2

χ − 2m2
h′)− λ2

φχv
2
φ(19m2

χ −m2
h′)

(9m2
χ −m2

h′)(m
2
χ +m2

h′)

)2

, (B.18)

〈σv2〉χχχ∗→χ∗χ∗ =

√
5R2

6144πm5
χ

(
74λχ − 117R2 −

200g2
Xm

2
χ

m2
χ +m2

Z′

+
24λφχm

2
χ(3m2

χ − 2m2
h′)− λ2

φχv
2
φ(43m2

χ − 37m2
h′)

(4m2
χ −m2

h′)(m
2
χ +m2

h′)

)2

. (B.19)

1We have corrected the symmetry factors for initial or final states as compared to refs. [17, 18].
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The 3→ 2 cross sections with assisted annihilations for mχ>mA/2 with A=h′,Z ′ are

〈σv2〉χχχ∗→χh′ =
1

36864πm5
χ

(
1−

m2
h′

16m2
χ

)1/2(
1−

m2
h′

4m2
χ

)−3/2

×
[

192

7

m2
χ

v2
φ

R2

(
1−

m2
h′

4m2
χ

)(
1 +

m2
h′

2m2
χ

)(
1−

m2
h′

7m2
χ

)−1

− 192

7
λφχR

2

(
1−

m2
h′

7m2
χ

)−1(
1 +

25m2
h′

64m2
χ

+
m4
h′

64m4
χ

)
+ 64λχλφχ

(
1 +

m2
h′

32m2
χ

)
+ 16λ2

φχ

(
1−

5m2
h′

8m2
χ

)(
1 +

m2
h′

2m2
χ

)−1

(B.20)

+ 36λφλ
2
φχ

v2
φ

m2
χ

(
1 +

m2
h′

2m2
χ

)−1

− 16λ3
φχ

v2
φ

m2
χ

(
1−

m2
h′

4m2
χ

)−1(
1 +

m2
h′

2m2
χ

)−1(
1−

23m2
h′

64m2
χ

−
m4
h′

128m4
χ

)]2

,

〈σv2〉χχχ∗→χZ′ =
g2
X

1728πm5
χ

m2
Z′

m2
χ

(
1−

m2
Z′

16m2
χ

)3/2(
1−

m2
Z′

4m2
χ

)−1/2

×
(

2λχ −
12g2

Xm
2
χ

2m2
χ +m2

Z′
−

3R2(192m4
χ − 31m2

χm
2
Z′ +m4

Z′)

m2
Z′(7m

2
χ −m2

Z′)

+
16λφχm

2
χ(4m2

χ −m2
Z′)

(4m2
χ −m2

h′)(2m
2
χ +m2

Z′)
+

λ2
φχv

2
φ

4m2
χ −m2

h′

)2

. (B.21)

DM-SM scatterings. The effective Lagrangian for dark matter-quark elastic scattering

is given by

Lq,eff =
mq

vew

(
yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

)
|χ|2q̄q +

gXqχe εQq
m2
Z′

i(χ∂µχ
∗ − χ∗∂µχ)q̄γµq . (B.22)

Then, the relevant matching conditions between quark and nucleon operators are given by

〈N |q̄q|N〉 =
mN

mq
f

(N)
Tq , (B.23)

for light quarks (q = u, d, s), and

〈N |q̄q|N〉 =
2

27

mN

mq
f

(N)
TG , f

(N)
TG = 1−

∑
q=u,d,s

f
(N)
Tq , (B.24)

for heavy quarks (q = c, b, t), and those for vector operators are given by

〈N |ūγµu|N〉 = 2N̄γµN, N = p ,

〈N |d̄γµd|N〉 = N̄γµN, N = p ,

〈N |ūγµu|N〉 = N̄γµN, N = n ,

〈N |d̄γµd|N〉 = 2N̄γµN, N = n .

(B.25)
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As a result, we get the effective Lagrangian for dark matter-nucleon elastic scattering

as follows,

LN,eff =
mN

vew

(
yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

) ∑
q=u,d,s

f
(N)
Tq +

2

27
f

(N)
TG × 3

 |χ|2N̄N
+
gXqχe ε

m2
Z′

i(χ∂µχ
∗ − χ∗∂µχ)

(
(2Qu +Qd)p̄γ

µp+ (Qu + 2Qd)n̄γ
µn

)
, (B.26)

where yh1χ∗χ and yh2χ∗χ are given in eqs. (B.3) and (B.4), respectively. Thus, from

2Qu +Qd = +1 and Qu + 2Qd = 0, there is a nonzero interaction only for dark matter-

proton scattering with Z ′ portal. Consequently, we obtained the χ-nucleus scattering cross

section as follows,

σχ−A =
µ2
A

4πm2
χ

[
Z
(
cpfp + gp

)
+ (A− Z)

(
cnfn + gn

)]2
, (B.27)

where µA = mχmA/(mA + mχ) is the reduced mass of the dark matter-nucleus system

with mA being the target nucleus mass, Z,A are the number of protons and the atomic

number, respectively, and the effective couplings and form factors [66, 67] are given by

cN ≡
mN

vew

(
yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

)
,

fp ≡
∑

q=u,d,s

f
(p)
Tq +

2

9
f

(p)
TG ' 0.28 ,

fn ≡
∑

q=u,d,s

f
(n)
Tq +

2

9
f

(n)
TG ' 0.28 ,

gp = −2eqχgXεmχ

m2
Z′

,

gn ≈ 0 .

(B.28)

Similarly, the χ∗-nucleus scattering cross section has the Z ′ contributions flipped in sign,

given by

σχ∗−A =
µ2
A

4πm2
χ

[
Z
(
cpfp − gp

)
+ (A− Z)

(
cnfn − gn

)]2
. (B.29)

Then, the averaged dark matter-nucleus scattering cross section is given

σDM−A =
1

2

(
σχ−A + σχ∗−A

)
. (B.30)

The above dark matter-nucleus scattering cross section is related to the normalized-to-

proton scattering cross section [66, 67], σDM−p, that is usually presented for experimental

limits, by

σDM−p =
(µN
µA

)2 σDM−A
A2

, (B.31)

with µN = mχmN/(mN +mχ).
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The elastic scattering between dark matter and electron is mediated by CP-even scalars

and Z ′, so the corresponding cross section is similarly given by

σDM−e =
µ2
e

8πm2
χ

[
me

vew

(yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

)
+

2eqχgXεmχ

m2
Z′

]2

+
µ2
e

8πm2
χ

[
me

vew

(yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

)
− 2eqχgXεmχ

m2
Z′

]2

=
µ2
e

4πm2
χ

[
m2
e

v2
ew

(yh2χ∗χ

m2
h2

+
yh1χ∗χ

m2
h1

)2
+

4e2q2
χg

2
Xε

2m2
χ

m4
Z′

]
, (B.32)

where µe = mχme/(me +mχ) is the reduced mass of the dark matter-electron system.

DM self-scattering. The self-interaction cross section for scalar dark matter in our

model is given [17] by

σself =
1

64πm2
χ

(
|Mχχ|2 + |Mχχ∗ |2

)
, (B.33)

where the squared amplitudes are given by

|Mχχ|2 = 2

(
2λχ +

3ζ2m2
h′

λφm2
χ

+
8λφm

2
χ

9m2
h′
−
λ2
φχ

2λφ

)2

, (B.34)

|Mχχ∗ |2 = 4

(
2λχ −

9ζ2m2
h′

2λφm2
χ

−
4λφm

2
χ

m2
h′

+
λ2
φχ(m2

h′ − 2m2
χ)

2λφ(4m2
χ −m2

h′)

)2

. (B.35)
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cosmic-ray antiprotons, JCAP 04 (2018) 004 [arXiv:1711.05274] [INSPIRE].

[44] G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and

immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276]

[INSPIRE].

[45] L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New Limits on Dark

Matter Annihilation from AMS Cosmic Ray Positron Data, Phys. Rev. Lett. 111 (2013)

171101 [arXiv:1306.3983] [INSPIRE].

[46] Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf

Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115

(2015) 231301 [arXiv:1503.02641] [INSPIRE].

[47] Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter

interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015)

122002 [arXiv:1506.00013] [INSPIRE].

[48] H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo

from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301

[arXiv:1607.08142] [INSPIRE].

[49] HESS collaboration, Dark matter gamma-ray line searches toward the Galactic Center halo

with H.E.S.S. I, PoS ICRC2017 (2018) 893 [arXiv:1708.08358] [INSPIRE].

[50] M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section

from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819

[astro-ph/0309303] [INSPIRE].

[51] D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the

interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys.

J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].

[52] S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the

Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging

Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

[53] A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with

Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc.

430 (2013) 105 [arXiv:1208.3026] [INSPIRE].

[54] S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept.

730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

[55] S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04

(2017) 154 [arXiv:1702.07860] [INSPIRE].

[56] S.-M. Choi, H.M. Lee, P. Ko and A. Natale, Resolving phenomenological problems with

strongly-interacting-massive-particle models with dark vector resonances, Phys. Rev. D 98

(2018) 015034 [arXiv:1801.07726] [INSPIRE].

[57] R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev.

Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].

[58] M.-x. Luo, H.-w. Wang and Y. Xiao, Two loop renormalization group equations in general

gauge field theories, Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].

– 37 –

https://doi.org/10.1088/1475-7516/2018/04/004
https://arxiv.org/abs/1711.05274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.05274
https://doi.org/10.1088/1475-7516/2015/09/023
https://arxiv.org/abs/1504.04276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.04276
https://doi.org/10.1103/PhysRevLett.111.171101
https://doi.org/10.1103/PhysRevLett.111.171101
https://arxiv.org/abs/1306.3983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.3983
https://doi.org/10.1103/PhysRevLett.115.231301
https://doi.org/10.1103/PhysRevLett.115.231301
https://arxiv.org/abs/1503.02641
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.02641
https://doi.org/10.1103/PhysRevD.91.122002
https://doi.org/10.1103/PhysRevD.91.122002
https://arxiv.org/abs/1506.00013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.00013
https://doi.org/10.1103/PhysRevLett.117.111301
https://arxiv.org/abs/1607.08142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.08142
https://doi.org/10.22323/1.301.0893
https://arxiv.org/abs/1708.08358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.08358
https://doi.org/10.1086/383178
https://arxiv.org/abs/astro-ph/0309303
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0309303
https://doi.org/10.1086/381970
https://doi.org/10.1086/381970
https://arxiv.org/abs/astro-ph/0312273
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0312273
https://doi.org/10.1086/587859
https://arxiv.org/abs/0704.0261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.0261
https://doi.org/10.1093/mnras/sts535
https://doi.org/10.1093/mnras/sts535
https://arxiv.org/abs/1208.3026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.3026
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.physrep.2017.11.004
https://arxiv.org/abs/1705.02358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.02358
https://doi.org/10.1007/JHEP04(2017)154
https://doi.org/10.1007/JHEP04(2017)154
https://arxiv.org/abs/1702.07860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07860
https://doi.org/10.1103/PhysRevD.98.015034
https://doi.org/10.1103/PhysRevD.98.015034
https://arxiv.org/abs/1801.07726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.07726
https://doi.org/10.1103/PhysRevLett.115.061301
https://doi.org/10.1103/PhysRevLett.115.061301
https://arxiv.org/abs/1505.07107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07107
https://doi.org/10.1103/PhysRevD.67.065019
https://arxiv.org/abs/hep-ph/0211440
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0211440


J
H
E
P
0
6
(
2
0
2
0
)
1
3
5

[59] M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model,

Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].

[60] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83

[INSPIRE].

[61] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

[62] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

[63] I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective action in quantum gravity, Bristol,

U.K., IOP (1992) [INSPIRE].

[64] D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in

Inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].

[65] A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model,

Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

[66] A. Carrillo-Monteverde, Y.-J. Kang, H.M. Lee, M. Park and V. Sanz, Dark Matter Direct

Detection from new interactions in models with spin-two mediators, JHEP 06 (2018) 037

[arXiv:1803.02144] [INSPIRE].

[67] Y.-J. Kang and H.M. Lee, Lightening Gravity-Mediated Dark Matter, arXiv:2001.04868

[INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevLett.90.011601
https://arxiv.org/abs/hep-ph/0207271
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0207271
https://doi.org/10.1016/0550-3213(83)90610-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB222%2C83%22
https://doi.org/10.1016/0550-3213(84)90533-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB236%2C221%22
https://doi.org/10.1016/0550-3213(85)90040-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB249%2C70%22
http://inspirehep.net/record/345318
https://doi.org/10.1103/PhysRevD.40.1753
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD40%2C1753%22
https://doi.org/10.1016/j.physletb.2009.05.054
https://arxiv.org/abs/0812.4946
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.4946
https://doi.org/10.1007/JHEP06(2018)037
https://arxiv.org/abs/1803.02144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02144
https://arxiv.org/abs/2001.04868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04868

	Introduction
	The model
	The inflation regime
	The dark matter regime

	Inflationary dynamics
	Inflation in large-field limit
	Inflationary minima
	Dark matter inflaton
	Dark Higgs inflaton
	Mixed inflaton

	Decoupling of the extra degree(s) of freedom from dark matter
	Inflationary observables
	Consistency conditions from inflation

	Connection between inflation and dark matter
	Consistency conditions from dark matter
	WIMP scenarios
	SIMP scenarios
	Forbidden scenarios

	Conclusions
	Renormalization group equations
	Dark matter annihilation/scattering cross sections

