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1 Introduction and summary

Very loosely speaking, there are two scenarios, both of which can be traced to the work of ’t

Hooft from about 30 years ago [1, 2], that prevent black holes from destroying information.

The brutal and gentle scenarios. In the brutal scenario, there is a mechanism, yet to

be found, that prevents information from falling into the black hole (BH). In the gentle

scenario, information can fall into the BH, but it is somehow also encoded outside the BH.

Being the leading candidate for a theory of quantum gravity, string theory is expected

to indicate which way to go. So far, we have learned from string theory, via the AdS/CFT
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correspondence [3], that BHs cannot destroy information, but we still do not understand

why — what is the mechanism that encodes the information in the radiation? Is it brutal

or gentle? The reason why string theory fails to provide an answer so far is that, in general,

we expect non-perturbative effects in the Newton constant, GN ∼ g2
s , where gs is the string

coupling, to play a key role in resolving the BH information puzzle, and these are hard to

describe in string theory.

Black fivebranes are interesting in that regard, since there is an exact worldsheet

conformal field theory (CFT) description of their near horizon regime. As a result, non-

perturbative effects in α′ = l2s , where ls is the string length scale, are well understood. The

exactness of the CFT is useful only for small gs, in which case lp � ls, where lp is the

Planck length scale. Hence, generally speaking, one would expect the physics associated

with the non-perturbative effects in ls to be quite different than the non-perturbative effects

in lp. Still, since perturbative effects in α′ generate similar terms in the effective action as

perturbative effects in GN , it is natural to wonder if non-perturbative α′ effects can teach

us something useful about the BH information puzzle.

In this paper, we argue that they do. We show that, at least in the case of black

fivebranes, non-perturbative effects modify the nature of information in string theory in

a rather dramatic fashion; two states that semi-classically are completely different, might

actually be the same in string theory. More precisely, they are two components of the

same state, which in practice means that they cannot be excited separately, but only

simultaneously. In particular, we show that each of the ordinary general relativity (GR)

modes, that propagates in the BH atmosphere, has a partner in the BH interior. If the GR

mode is excited then the partner must be excited too. This is in the spirit of A = RB [4, 5]

and the ER=EPR [6] proposals, which suggest a gentle scenario. However, as we shall see,

things are more complicated.

What allows us to make such a precise identification is the fact that the stringy setup

that we inspect is that of near near-extremal black fivebranes, e.g. those corresponding to a

stack of k Neveu-Schwarz (NS) fivebranes. String theory on this background is described by

an exact two-dimensional CFT. In particular, the physics in the radial and time directions

is described by the coset SL(2,R)k/U(1) CFT [7–11]. This coset description led to some

exact results, that manage to sum up all non-perturbative effects in ls, on the sphere [12],

and in some cases on the torus [13].

The target-space interpretation of these non-perturbative effects turned out to be quite

non-trivial even for large k, when at least naively, α′ corrections are expected to be neg-

ligible (see e.g. [14–18], for a review). For example, the target-space interpretation of the

exact reflection coefficient, [12], is quite surprising in a rather transparent way, [14, 19], in

the Euclidean BH case — the cigar geometry, and in a more subtle way, [18, 20], in the

Lorentzian case.

The relation between the non-perturbative effects in α′ and stringy information can

be traced all the way to the FZZ duality [21, 22]. The target-space interpretation of the

FZZ duality is the following. We start with a cylinder background S1 × Rφ, where Rφ
is a spatial direction with a linear dilaton, Φ(φ) = −1

2Qφ, and the radius of the S1 is
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2/Q.1 The strong coupling region, at φ → −∞, can be chopped of by condensing an

operator, that we refer to as I, that turns the cylinder into the cigar SL(2,R)k/U(1) CFT

background (with k = 2/Q2).2 The condensate of I determines the string coupling at the

tip, g0. The bigger the condensate is the smaller g0 is. I is a truly marginal operator

and the target-space interpretation of this is that the free energy associated with this

background vanishes. FZZ duality implies that the condensation of I is accompanied with

a condensation of a completely different operator — the sine-Liouville operator — which

we denote by W = W+ + W−. The reason for this notation is that from a stringy point

of view, the sine-Liouville operator is a linear combination of a string that winds the S1

with a winding number ω = 1 and its conjugate one, with ω = −1. Regardless of the

orientation of the string, its energy is minimized at the tip, and so the wave function of

the sine-Liouville operator is heavily suppressed away from the tip.

The target-space interpretation of the FZZ duality is fascinating. At large φ, the wave

functions of I and W± are very different: I ∼ exp(−Qφ) ' g2
s(φ) while W± ∼ exp(−φ/Q).

Still, the FZZ duality implies that they amount to the same state or, more precisely, two

components of the same state. The two are tied together by the boundary condition at

the tip [23]. From the underlying SL(2,R) perspective, the origin of the FZZ duality is an

isomorphism of representations [15]. This implies that the FZZ duality can be generalized

to many other pairs of states. In fact, in [15] it was shown that all the states that live

at the tip of the cigar3 — with a wave function that scales like exp
[(
− 1
Q + (`− 1)Q

)
φ
]

(` = 1, 2, . . .) — have a partner that lives at the cap of the cigar — with a wave function that

scales like exp(−Q`φ), respectively. An observer that has access only to large φ will think

that these must be two separated states that for some reason get excited simultaneously.

An observer that has access to the tip of the cigar will realize that these are two components

of the same state, which are linked by the boundary condition at the tip.

Upon analytic continuation, the tip of the cigar is mapped to the horizon of the BH

and the cap of the cigar to the atmosphere of the BH, where most Hawking quanta live

before they escape to infinity. Hence, it is natural to wonder if a Lorentzian version of

the Generalized FZZ (GFZZ) duality exists and if it gives a precise realization of A = RB
and/or ER=EPR. There is, however, a basic problem with the analytic continuation of the

FZZ duality. The analytic continuation of W± is not mutually local with vertex operators,

VE , that are associated with ordinary states that propagate in the BH geometry and carry

some finite energy, E.

Only very recently, a way out was proposed [24]. From the point of view of the under-

lying SL(2,R) theory, the reason why the truly marginal operators I and W condense is

that they are invariant under the SL(2,R)L×SL(2,R)R current algebra; they are screening

operators. Simply put, their condensation does not break any of the symmetries. It is

known for many years that there is yet another truly marginal operator, denoted by F ,

that does not break the SL(2,R)L × SL(2,R)R current algebra [25, 26]. F is interesting

1We set α′ = 2 here.
2In the supersymmetric case, which we discuss here, it amounts to the continuation of the black fivebranes

above to Euclidean space-time.
3We discuss the cigar with a large curvature length,

√
α′k, a.k.a. a parametrically small Q.
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Figure 1. The target-space interpretation of the CFT fusion (1.1): in the Euclidean section (on

the right), the cigar background is accompanied, due to the FZZ duality, with a condensate of

winding ω = ±1 strings, denoted in the text by W±. As usual, the Lorentzian section is obtained

by cutting the cigar and analytically continue. When doing so, W± are combined to form a folded

string, that folds towards the BH.

since, unlike W±, it is mutually local with VE and so it can condense also in the BH case.

F , however, appears to be problematic since it is well defined only for integer k, and it

is outside the unitarity bound. This is the reason why to a large extent F was ignored.

Nevertheless, in a series of papers [27–30], it was shown that a condensation of the formal

analytic continuation of F to any k describes the same non-perturbative physics in α′ as

the condensation of W = W+ +W−.

In [24], it was proposed that the success of [27, 28] is not accidental. It follows from

the fact that F is a fusion of W+ with a W−, schematically,

F ∼W+ ∗W− , (1.1)

namely, F is a bound state of W+ and W−. The calculations done in [27, 28], with F

as a screening operator, give the same results as the “correct calculations,” [29, 30], with

W+ + W− as a screening operator, since the contribution comes from the points where

W+ and W− coincide.

The target-space interpretation of (1.1) is in the spirit of the Hartle-Hawking wave

function [31], but with a stringy twist. The latter involves folded strings, which were

proposed in our context in [32, 33], and are related to those in [34–36]. Concretely, in

the Euclidean section, W+ + W− condenses. In the Lorentzian section, W+ and W− are

glued together to form a folded string, F [24]; see figure 1. The upshot is that the eternal

BH geometry is accompanied with folded strings that are described by a condensation of

F . Just like in the FZZ duality, the eternal BH geometry and the folded strings are two

components, that from the target-space point of view look very different, of the same state.

The relation with ER=EPR can be made more precise. Starting with the Euclidean

cylinder and following the Hartle-Hawking procedure, we get two disconnected flat space-

times. Condensation of I connects them, by forming an ER bridge. On the other hand,

condensation of F does something quite different. F is the operator that creates a folded
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string. The folded string lives on both space-times. Consequently, a condensation of F

entangles the two space-times. A condensation of F , therefore, realizes EPR.

This can be extended to include excitations that propagate in the BH atmosphere.

Such states are accompanied by localized dual modes, which live on the folded string, in

the BH interior. Again, the two are different components of the same state. One cannot

have an excitation in the BH atmosphere without the mode that excites the folded string.

And, again, this follows from isomorphism of SL(2,R) representations. The details are

described in the bulk of the paper; here, we sketch the way this works.

Consider a massless excitation that propagates in the SL(2,R)/U(1) BH geometry

using the tortoise coordinate, r∗. The potential such an excitation experiences vanishes

at the horizon, r∗ → −∞, and goes to a constant at infinity, r∗ → ∞. The constant is

induced by the linear dilaton and it scales like Q2 ∼ 1/k. The potential is monotonic with

a small mass gap. From the underlying SL(2,R) point of view, the excitations above the

gap, Es > Q2 (where Es ∼ E2 is the energy in the relevant Schrodinger equation and E is

the energy with respect to the Schwarzschild time), that can escape all the way to r∗ =∞,

are in the principal continuous representations. As such, they neither have a GFZZ dual,

nor an interior dual.

However, the excitations below the gap, 0 < Es < Q2, arise from the principal discrete

representations of the underlying SL(2,R). This is crucial, and at first sight confusing. It

is confusing since the energy in the range 0 < Es < Q2 is continuous, still these states

are reduced from the discrete representations. This is crucial, since states in the discrete

representations have GFZZ duals. The GFZZ duals involve spectral flow in the compact,

time-like J3 direction, while E is the energy with respect to the non-compact, space-like

J2 direction. As a result, the details of the GFZZ duals are more subtle, since they

involve a change from the standard basis, of J3 eigenstates, to the hyperbolic one of J2

eigenstatses. The end result of this procedure is that all the standard states that live in

the BH atmosphere are accompanied with a partner that lives on the folded string, in the

BH interior, with a tail outside the BH, localized a distance of order the string length scale

near the horizon, and whose wave function scales like4 exp (−2φ/Q), asymptotically in the

radial direction.

All of this seems to fit neatly with ER=EPR and/or A = RB. There is, however, a

twist in the story. The original motivation for ER=EPR and A = RB was to evade the

firewall paradox [37] (for earlier claims that a unitary BH evolution must result in a singular

horizon, see e.g. [38–40]) and to extract the information in a gentle fashion. While the black

fivebrane in string theory seems to give a precise realization of the ER=EPR conjecture,

it is far from being clear that it implies a smooth horizon, nor a fuzzy one [41, 42]. After

all, the fact that I is accompanied with F implies that an infalling observer will encounter

the folded strings and, at least classically, their energy-momentum tensor seems to imply

a singular horizon [33].

Put differently, schematically, the difference between the black fivebranes and

ER=EPR is the following. Indeed, I and F are the operators that correspond to ER

4For parametrically small Q, a.k.a for a large BH.
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and EPR, respectively. However, the statement is not that I = F . Such a statement would

mean that we can either condense I or condense F and get the same physics. But this is

not the case. For example, the condensation of I is responsible for poles in some correlation

functions at imaginary momentum p ∼ iQn (with integer n), while the condensation of

F generates poles in the same correlation functions at p ∼ in/Q, [43]. Therefore, both

I and F condense, in an unambiguous way [28]. The condensation of I + F means that

the ER bridge is not empty, but is filled with folded strings, which are responsible for the

entanglement of the left and right wedges of the eternal BH.

Needless to say that the fate of an infalling observer in this setup deserves more serious

considerations. In particular, it is possible that finite gs effects could render the horizon

smooth or fuzzy. This is possible even at arbitrarily small gs, since the number of folded

strings is expected to scale like 1/g2
s , [33].

It turns out that this stringy setup also resonates with the idea that the BH interior is

made out of a condensate of gravitons [44, 45]. As discussed above, in the near-extremal

NS fivebranes case, the BH interior is made out of folded strings. However, the operator

F , the screening operator that corresponds to the condensation of the folded string, looks

far from the BH like a product of k gravitons: schematically,

F = Ik, (1.2)

where I is the screening operator that creates the gravitational background. More precisely,

the gravitons bound state dual of the folded string condensate is the fusion of k gravitons

condensates. We shall refer to such a duality between the BH interior and the bound state

of gravitons condensate as BH=GC.

Finally, the black fivebranes also realize the correspondence between BHs and funda-

mental strings, [46–48]. The Euclidean version of this was discussed sometime ago [49, 50].

Here, we discuss the Lorentzian case, and emphasis the fact that there is a twist in the

plot here too.

1.1 Outline of the paper

In the next section, we review some of the properties of black fivebranes. An important

feature of the relevant worldsheet background, near solitonic black fivebranes, is that it

amounts to perturbative string theory on a two-dimensional black hole (BH), which is

described by an exact worldsheet Conformal Field Theory (CFT) — the SL(2,R)k/U(1)

coset CFT, where k is the fivebranes charge. Hence, one may reveal exact stringy aspects

of the theory, including those that are non-perturbative in the string scale, α′ = l2s .

In section 3, we collect some hints about the nature of stringy information, from

considering the simpler case of string theory on the Euclidean version of the black hole

— the cigar, worldsheet CFT. We start by reviewing in subsection 3.1 the GFZZ duality.

We define the GR-like modes I`,¯̀, their stringy duals W`,¯̀, and discuss the reasoning that

leads to the conclusion that they are two components of the same state in the theory.

The FZZ duality, which corresponds to ` = ¯̀ = 1, is used in subsection 3.2 to discuss the

Euclidean BH-strings transition, that takes place when the size of the BH is `s (at k = 1).
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In subsection 3.3, the definition of F via the fusion (1.1), and some of its consequences,

are discussed. In subsection 3.4, we combine the GFZZ duality with the fusion to describe

excitations of F , that schematically take the form

F`,¯̀∼W ∗W ∗`,¯̀ . (1.3)

The GR modes, I`,¯̀, and their non-perturbative stringy completion, F`,¯̀, can be viewed

as the stringy Euclidean version of ER=EPR. In subsection 3.5, we discuss (1.2), and its

possible relation with a BH=GC [44, 45].

In section 4, we turn to the actual BH. We start by discussing in subsection 4.1 the

subtleties with the analytic continuation of the winding string condensate, W , to Lorentzian

signature. In subsection 4.2, we present the target-space interpretation of the condensate

F — the continuation of the fusion (1.1) to Lorentzian space-time — as a BH-filling folded

string, and the light it sheds on the BH-string transition is discussed in subsection 4.3.

We also argue in section 4 that the folded string entangles the two sides of the eternal

BH. This is made more precise in section 5, where excitations of the BH are considered.

It is shown that a GR mode that propagates, say, in the BH atmosphere of the right

wedge, has a non-perturbative stringy completion, in the form of an excitation of the BH

interior-filling folded strings, with tails on both sides of the eternal BH.

Finally, section 6 is devoted for a discussion, and various technical details are collected

in a few appendices.

2 Black fivebranes

In this section, we describe the ten-dimensional black-brane geometry, corresponding to

Neveu-Schwarz (NS) solitonic branes, with a finite energy density above extremality, in

type II superstring theory, their near horizon limit, that includes the two-dimensional

black hole, and its powerful description in terms of an exact worldsheet CFT.

The string-frame geometry of k coincident near extremal NS fivebranes in the type II

superstring is, [51],

ds2 = −
(

1− r2
0

r2

)
dt2 +

(
1 +

kα′

r2

)(
dr2

1− r2
0
r2

+ r2dΩ2
3

)
+
(
dy2

1 + · · ·+ dy2
5

)
, (2.1)

e2Φ = g2

(
1 +

kα′

r2

)
, (2.2)

where Φ is the dialton field, and there is an H flux with k units on the three sphere dΩ2
3,

that we did not write, since it will not play any role below. This background describes

black fivebranes with mass M per unit five volume V5,

M

V5
=

M6
s

(2π)5

(
k

g2
+ µ

)
, (2.3)

where

µ =
r2

0M
2
s

g2
; (2.4)
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µ/(2π)5 is the energy density above extremality in string units and Ms is the string mass

scale, Ms = 1/ls = 1/
√
α′.5

We are interested in the physics near the horizon of the black fivebranes. The near-

horizon geometry is obtained [52] by taking the asymptotic string coupling g to zero, g → 0,

while keeping the energy density µ finite, namely, r0 ∼ gls in the limit. Introducing the

coordinate φ, related to the radial coordinate r by

r = r0cosh

(
φ√
2k

)
, (2.5)

one finds [52] the geometry (from here, we work with α′ = 2)

ds2 = − tanh2

(
φ√
2k

)
dt2 + dφ2 + 2kdΩ2

3 +
(
dy2

1 + · · ·+ dy2
5

)
, (2.6)

and dilaton

e2Φ =
g2

0

cosh2
(

φ√
2k

) , g2
0 =

k

µ
, (2.7)

which describes the exterior of a two-dimensional black hole in the time t and radial φ

directions — a Schwarzschild-like 2d black hole [7–11], with an asymptotically linear dilaton

— times a three sphere with radius
√

2k and with k units of H flux, times a five torus; g0

is the value of the string coupling at the horizon of the black hole, located at φ = 0.

We will also be interested to collect hints from properties of the simpler case of string

theory on the Euclidean black hole. The latter is obtained from the above background by

the analytic continuation t → ix = i
√

2k θ (and for some purposes, we may Wick rotate

also, say, y5 → iτ , to establish a string theory on the Euclidean black hole times real time).

The two-dimensional black-hole geometry in (2.6) thus turns into a Euclidean cigar-shaped

background, [7–11],

ds2
E = 2k tanh2

(
φ√
2k

)
dθ2 + dφ2 , (2.8)

with a dilaton given in (2.7). The angular direction of the cigar, θ, has a standard period-

icity, θ ∼ θ+ 2π, such that the cigar is smooth at its tip, located at φ = 0. The asymptotic

radius of the cigar is
√

2k. This means, in particular, that the Hawking temperature of the

black hole is

T = β−1 = (2π
√

2k)−1 . (2.9)

The regime of size of order
√
k around the tip is the cap of the cigar; in this regime, the

radius of curvature is also of order
√
k. In the Lorentzian case, (2.6), it amounts to the

thermal atmosphere of the black hole. On the other hand, the asymptotic regime is a flat

cylinder, Rφ × S1
x, x ∼ x+ 2π

√
2k (R1,1 in the Lorentzian case), with a linear dilaton

Φasymptotic = −Q
2
φ , (2.10)

5For a finite energy density (2.4), the size of the black fivebrane is of order the Planck scale, r0 ∼ gsls. We

also take the near-horizon limit. As a result, just like in the standard AdS/CFT case, the final background

below has a small curvature, that scales like 1/k.
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with a slop

Q =

√
2

k
, (2.11)

in terms of the black-brane charge, k.

The sigma-model worldsheet theories on both the two-dimensional black-hole back-

ground in (2.6), (2.7), and in its Euclidean version, (2.8), (2.7), have very powerful prop-

erties that we discuss next. The geometry (2.6), (2.7) is the sigma-model background of

an exact worldsheet CFT. Concretely (see e.g. [53], for a review), it is a product of an

axial quotient CFT of SL(2,R) by its U(1) subgroup in a non-compact space-like direction,

which we denote by the left and right-handed currents (J2, J̄2) of SL(2,R), times the CFT

on the group manifold SU(2), times a five-torus, T 5,

SL(2,R)k
U(1)

× SU(2)k × T 5 , (2.12)

where the level k of both the SL(2,R) and the SU(2) affine symmetry algebras is the

number of fivebranes above. The details of the ‘internal’ piece, the N = SU(2)k × T 5 in

the particular example (2.12), as well as for generic internal spaces in string theory on

SL(2,R)k/U(1)×N , will not play a role in the following, and we shall thus ignore it.

Similarly, the Euclidean black-hole background, (2.8), (2.7), amounts to an exact

SL(2,R)k/U(1) quotient CFT, obtained by an axial U(1) gauging of the underlying

SL(2,R)k theory in its compact time-like direction, whose left and right-moving gener-

ators we denote by (J3, J̄3), respectively. In the type II superstring, this worldsheet CFT

has an N = (2, 2) supersymmetry, and thus the background (2.8), (2.7) does not receive

perturbative corrections in α′ [54, 55]. There are, however, very significant aspects of the

theory, which are non-perturbative in α′; they amount to a condensate of a string winding

on the angular direction of the cigar, and its excitations. These are the heroes of the stringy

aspects of the Euclidean black hole. Similarly, their consequences in the Lorentzian case,

are the ingredients that modify dramatically the GR approximation near the horizon and

in the interior of the two-dimensional black hole in string theory.

In the setup discussed above, k is an integer. However, as mentioned, there are many

cases in string theory on SL(2,R)k/U(1)×N , in which generically k is not an integer (see

e.g. [56–58]). For example, the near horizon theory of near-extremal I-branes [59], which is

built from a stack of k′ NS fivebranes stretched in (012345) intersecting a stack of k′′ NS

fivebranes stretched in (016789), on a circle in x1, is described by the superstring on the

exact SL(2,R)k
U(1) × SU(2)k′ × SU(2)k′′ × T 2 (or R2) worldsheet CFT, with 1

k = 1
k′ + 1

k′′ , [56].

Finally, as discussed in the introduction, the purpose of these notes is to collect aspects

of string theory on the SL(2,R)k/U(1) black hole and suggest interpretation of their con-

sequences. The main essence of the physics appears already in the bosonic SL(2,R)/U(1)

case. Thus, to avoid presenting the somewhat cumbersome tools involved in the fermionic

case, we will present most of the facts and ideas in the bosonic coset CFT, though we shall

apply their consequences also in the type II superstring context of our ultimate interest,

when desired. In the next section, we first collect hints from string theory on the Euclidean

black hole, and we shall then turn to the Lorentzian case in section 4.
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3 Euclidean hints

The Euclidean bosonic SL(2,R)kb/U(1) cigar CFT provides some useful hints about stringy

information and its relation with ER=EPR, BH=GC and the BH-string correspondence.

Since, technically, this CFT is much simpler than the eternal BH CFT, we review in this

section some relevant known facts concerning string theory on the cigar, and add some

new ones.

We denote the level of the underlying bosonic SL(2,R) theory by kb, to distinguish

it from

k = kb − 2 , (3.1)

that appeared previously for the superstring, which is the case we are ultimately interested

in. Many of the details leading to these facts already appear in the literature; we shall

thus refer to existing details, instead of repeating them, and leave some straightforward

calculations, following known manipulations, to the reader.

In the first subsection, we review the GFZZ duality, and in the second subsection, we

discuss the transition at k = 1, which is related to the BH-string correspondence. In the

third subsection, we discuss the F ∼ W+ ∗W− relation, which will play a key role in the

Lorentzian case, and in the fourth subsection, we describe its excitations, which play an

important role in a Euclidean realization of ER=EPR. Finally, in the last subsection, we

discuss the relation F = Ik, which hints to the BH=GC proposal.

3.1 Stringy information and the generalized FZZ duality

In this subsection, we briefly review the GFZZ correspondence studied in [15]. We use the

notation of that paper, apart from k there being the bosonic level kb here, and refer to

explicit equations copied from there.

The duality, that is a generalization of the FZZ duality, identifies states in string theory

that semi-classically are very different. On one side of the duality we have ordinary states

in GR that are bound to the cap of the cigar, where by “the cap of the cigar,” we mean

the region where the curvature is of order 1/k, and so its size scales like
√
k and is much

larger than the string size. These states are denoted by I`,¯̀, with left and right-handed

excitation numbers `, ¯̀∈ Z. On the other side of the duality there are stringy modes (that

are simply absent in GR) with winding ω = ±1, which we denote by W`,¯̀. These modes

are localized near the tip of the cigar. The precise statement of the duality is that for each

` and ¯̀ there is only one state in the theory and I`,¯̀ and W`,¯̀ are, semi-classically, two

components of the same state.

Most of what follows relies on this unusual claim, so it is worthwhile to recall its status.

The GFZZ duality was suggested since I`,¯̀ and W`,¯̀ are reduced from operators that sit in

the same representation of the underlying bosonic SL(2,R) theory. A priori, it is possible,

of course, that there are more than one state with the same quantum numbers in the theory.

Nevertheless, the possibility that an excitation of I and its W partner amount to different

states is ruled out, e.g. by inspecting the elliptic genus in the supersymmetric extension

of the SL(2,R)/U(1) theory [60] (see subsection 7.3 of [15] for more details) and by the

direct, non-trivial study of correlation functions [16, 17].
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From the GR point of view, what is special about I`,¯̀ is that these are the only states

that are located at the cap of the cigar at all times. It is related to the fact that they arise

from states in the principal discrete representations of the underlying SL(2,R) theory.

There are other states, that come from infinity and spend a finite time at the cap before

escaping back to infinity. These states, that from the SL(2,R) point of view sit in different

representations — the principal continuous ones, do not have GFZZ duals.

For simplicity, in the rest of this subsection, we present the left-right symmetric

operators,

I` ≡ I`,` , W` ≡W`,` , (3.2)

and describe them in some detail. For completeness, the generic I`,¯̀ and W`,¯̀ are presented

in appendix A.

Consider the SL(2)kb/U(1) cigar CFT. Asymptotically, it is the CFT on the cylinder,

Rφ × S1
x, x ∼ x+ 2π

√
2k, with a linear dilaton (2.10). Define6

w =
1

Q
φ− i

√
kb
2
x̃ ; w̄ =

1

Q
φ+ i

√
kb
2
x̃ , (3.3)

where x̃ = xL − xR is the T-dual coordinate to a canonically normalized scalar field,

x = xL + xR, and the background charge Q of φ is related to the ‘total level’ k in (3.1) as

in section 2, (2.11).

The operators I`, that generate the GR bound states in the cigar CFT, are described

asymptotically by the operators in eq. (5.13) of [15],

I` ≡ (ββ̄)`e−Q`φ , ` = 1, 2, . . . ,

[
k − 1

2

]
, (3.4)

where

β` =
(
∂le−w

)
ew = −P`(∂w, · · · ) . (3.5)

Here, β, β̄ are induced from the Wakimoto free field description of the underlaying

SL(2,R) theory.

The explicit form of P`(∂w, · · · ) was found in [15] for ` = 1, 2, 3. In appendix B, we

obtain the general expression (3.5). From (3.4), it is clear that when the excitation level, `,

is much smaller than the curvature radius,
√
k, the wave function of the bound states (3.4)

is spread over the whole cap of the cigar.

On the other side of the duality, W` takes the form (see equation7 (5.17) of [15])

W` ≡ e
i

√
kb
2
x̃−Q

(
kb
2
−`
)
φ
, ` = 1, 2, . . . ,

[
k − 1

2

]
. (3.6)

These operators amount to a string winding once around S1
x, with no angular momentum.

The consideration of their anti-winding partners, W ∗` , is obvious. It is clear from the

exponential factor in φ that these states are highly localized around the tip of the cigar,

6We set α′ = 2 when it is not presented.
7Some sign conventions are different here.
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when `�
√
k, namely, when the excitation number ` is much smaller than the size of the

cap,
√
k.8

A detailed description of the GFZZ duality in the N = (2, 2) SL(2,R)/U(1) SCFT,

which is needed for the black fivebranes, is straightforward, though cumbersome, [63],

but the significant issues for the physics of the Euclidean black hole in string theory are

isomorphic to those in the bosonic coset CFT.

So far, the discussion was at the CFT level. What does this mean in string theory?

For I` ∼ W` to correspond to an on-shell state in string theory, we have to have an extra

time direction. Then, the statement in string theory is that two states, one that behaves

asymptotically like exp(−Q`φ) and another that behaves like exp
[(
− 1
Q + (`− 1)Q

)
φ
]
,

are in fact two components of the same state. This is, therefore, a situation that does

not involve BHs, in which stringy information is radically different than in quantum field

theory on curved space-time.

The case ` = ¯̀= 1 amounts to the FZZ duality between I and W = W+ +W−, where

I ≡ I1 ≡ I1,1 = ∂w∂̄we−Qφ , (3.7)

namely, asymptotically on the Rφ × S1
x cylinder, I behaves like the graviton operator9

I ∼ ∂x∂̄xe−Qφ , (3.8)

and

W+ ≡W1 ≡W1,1 = e−w , W− ≡W ∗1 = e−w̄ , (3.9)

namely, asymptotically on the cylinder, W is a sine-Liouville operator,

W ' cos

(
β

2πα′
(xL − xR)

)
e
− 1
Q
φ
, (3.10)

where we have reinserted α′.10

3.2 The k = 1 transition

Consider the worldsheet Lagrangian on the cylinder, ds2 = dφ2 + dx2, with a linear dila-

ton (2.10), (2.11),

L0 = ∂φ∂̄φ+ ∂x∂̄x−QR̂φ , (3.11)

where φ and x are canonically normalized free fields. Both the graviton operator I in (3.8)

and the winding string operator W in (3.10) are truly marginal operators in this theory.

Hence, adding either of them to L0 must give rise to a two-dimensional CFT which coin-

cides with the linear dilaton one asymptotically. The interaction ∂x∂̄xe−Qφ is the leading

behavior in 1/k of a two-dimensional sigma-model on the cigar background, (2.8). Con-

sequently, adding it to L0, the CFT must take care of itself to become the SL(2,R)/U(1)

8It was shown, [49, 60–62], that they are localized at a distance of order the string length, ls, around

the tip of the cigar, for parametrically small curvature, Q.
9Up to a k-dependent pre-factor and a total derivative.

10In the superstring, (3.10) is an N = 2 Liouville superfield, with β = 2π
Q

√
2α′, as in (2.9), while in the

bosonic string β = 2π
Q

√
2(1 +Q2)α′.
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cigar theory. On the other hand, adding W to L0 gives rise to a sine-Liouville CFT. Now,

the FZZ duality implies that the latter must take care of itself to become the SL(2,R)/U(1)

cigar CFT as well.

All in all, the FZZ duality means that the graviton I and the winding tachyon W must

condense simultaneously on the worldsheet, in a correlated way, so that

Lint = λII + λWW , (3.12)

with the size of the winding condensate, λW , being related to the size of the graviton

condensate, λI , in an unambiguous way. Indeed, it is known [30] that

λW =
k

π
(πλI∆(1/k))

k
2 , (3.13)

where

∆(z) ≡ Γ(z)

Γ(1− z)
. (3.14)

The fact that both β and 1/Q in W , (3.10), go like
√
k at large k means that it is non-

perturbative in the α′ expansion. For large k, the winding string condensate, λWW

in (3.12), (3.10), decreases rapidly (compared to I) as φ → ∞. This is directly related

to the fact that the string winding around the x circle is very heavy there. Conversely, as

one moves to smaller φ, the wave function (3.10) grows, and eventually, as one approaches

the tip, one can no longer think of the condensate as describing a wound string. The way

to think about it, instead, is discussed in the next subsection.

As k decreases, the falloff of the condensate (3.10) becomes less and less rapid. For

k → 1, the wave function of the winding string spreads all the way to infinity.11 In this

regime, the cigar CFT is better described as a theory on R × S1 with linear dilaton and

a sine-Liouville deformation (3.10). This transformation of the sigma model on the cigar

at large k to a sigma model on the cylinder with a sine-Liouville deformation at small

k is an outcome of the FZZ correspondence. It is an example of a strong-weak coupling

duality on the worldsheet. In general, one should think of the theory as containing both

deformations, (3.13) (the cigar geometry and the thermal winding tachyon); which one is

dominant depends on the value of k.

As shown in [14, 15], and partly reviewed above, the FZZ correspondence has other

consequences, visible already at large k. For example, wave functions of low-energy nor-

malizable states on the cigar, which typically have an extent
√
kls and are well described

by supergravity, a.k.a. the excitations I`,¯̀ of the graviton condensate, have another com-

ponent, the excitations W`,¯̀ of the winding condensate, which is highly localized near the

tip at large k. If one probes the Euclidean BH geometry by scattering, low-energy probes

see the cigar geometry, as expected, while high-energy probes see instead the sine-Liouville

one [15]. In particular, the hard wall associated with the fact that the radial direction on a

cigar ends at a particular point (the tip), is replaced for high-energy probes by a soft wall,

11The vertex operator (3.10) still falls off at k = 1, but the corresponding wave function, which differs

from the vertex operators by a factor of eΦ ∼ e−
Q
2
φ, does not.
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associated with the sine-Liouville potential (3.10), that recedes to more and more negative

φ as the energy of the probe increases.

Thus, non-perturbative α′ effects, in particular, the condensation of the closed string

tachyon winding around the Euclidean time direction, lead to a significant modification of

the physics of Euclidean BHs in classical string theory. These effects are expected to be

universal, since Euclidean BHs always contain as part of the geometry a cigar in the radial

and Euclidean time direction, and it is natural to conjecture that a string wrapped around

the angular direction of that cigar has a non-zero condensate in general BH backgrounds.

In particular, we regard the transition at k = 1, a.k.a. when the size of the BH is the string

length scale, ls, as a (post-)hint to a BH-string transition in string theory: the BH states

in string theory on flat space-time with a linear dilaton cease to exist when k ≤ 1, and the

density of high-energy states is dominated entirely by perturbative string states.

It was checked [48] that indeed the Bekenstein-Hawking entropy is bigger than that of

perturbative string states when k > 1, it precisely matches the one of perturbative string

states in an asymptotically flat space-time with a linear dilaton when k = 1, while the

latter is bigger than the former when k < 1. For other BHs in string theory, e.g. the four-

dimensional Schwarzschild BH, a similar transition is conjectured, [46, 47, 49], when the

Schwarzschild radius is of the order of ls. Although the details of the transition are different

— in the 2d Schwarzschild-like case the order parameter is k while in the 4d Schwarzschild

case it is the string coupling gs, the nature of the transition is similar: in both cases the

transition occurs when the curvature length of the cap of the Euclidean BH’s cigar is ls.

The main lesson that we take from the above is the following. Having an exact world-

sheet CFT for the two-dimensional BH, which thus allows us to inspect precisely the non-

perturbative effects hinting a BH-string transition, a.k.a. the winding string condensate,

leads to a (post-)suggestion for similar properties regarding the physics of general BHs in

string theory. Another non-perturbative hint from the Euclidean cigar CFT, to the nature

of the BH-string transition at k = 1, will appear in the next subsection.

3.3 The fusion F ∼ W+ ∗W−

In this subsection, we discuss a novel duality that, motivated by the results of [28, 30], was

proposed recently in [24]. This duality is key for the understanding of non-perturbative α′

effects in the black fivebranes.

The duality is between the cigar CFT described by the FZZ condensation (3.12) in a

linear dilaton theory (3.11), and the one obtained by a different condensate,

Lint = λII + λFF , (3.15)

where F is the fusion of W+ and W− (defined in (3.9) with (3.3)). The concrete meaning

of the fusion is

F (w) ∼
∫
d2zW+(z)W−(w) . (3.16)

The normalization is such that, for integer k,

F = (ββ̄)ke
− 2
Q
φ
, (3.17)
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where βk is given in terms of φ and x in (3.5) and

λF =
(πλI∆(1/k))k

π∆(k)
, (3.18)

where ∆(z) is given in (3.14).

Note that F is formally the same as Ik in (3.4), but it is not an excitation of a graviton.

Since k >
[
k−1

2

]
, it is outside the unitarity bound and it does not generate a state in the

theory. More precisely, it does not generate a single string state in the theory. Indeed, (3.16)

implies that it should be viewed as a bound state of W+ and W−, which are states in the

theory. Moreover, k need not be an integer and so generically (3.17) is not well defined.

We shall get back to this important point.

The precise meaning of this conjectured duality is discussed in [24]. In short, one may

calculate correlators using either (3.12) or (3.15). As long as the size of the condensate

of F is related to that of W by (3.18) combined with (3.13), one obtains the same result.

Concretely, inside correlation functions,12

(λW )2

∫
d2zW+(z)W−(w) = CWFλFF (w) , (3.19)

with

(λW )2 = CWFλF , (3.20)

that is compatible with (3.15), (3.18) and (3.12), (3.13), a.k.a.

CWF = −π∆(−k)(λW )2 , (3.21)

which was verified by a direct calculation in [24]. For the two and three-point functions,

this F −W conjecture was checked by combining the results of [30] and [28].

Our main physics motivation for such a duality is that it provides a sensible way to

think about the winding condensate of the previous subsection near the tip. For a large

Euclidean BH, the condensate F in (3.16) (with (3.5) and (3.3) inserted) behaves like

F ∼
(
∂(φ− ix)∂̄(φ+ ix)

)k
e−
√

2kφ + . . . , (3.22)

where the ‘. . . ’ stand for corrections in 1/k. It thus describes a highly excited string that is

highly localized near the tip of the cigar. It is reasonable to think about the winding string

condensate in this way: near the Euclidean horizon, the winding one string condensate,

W+, tends to form a bound state with its conjugate, W−, giving rise to a highly excited

string condensate, instead.

For a small Euclidean BH, the description of the cigar CFT in terms of (3.15) adds

another ingredient to the BH-string transition of the previous subsection. When k = 1,

the graviton operator I and the winding-anti-winding bound-state operator F have the

following properties. First, as can be seen from (3.7) with (3.5) versus (3.17),

F = I = ββ̄e−
√

2φ when k = 1 . (3.23)

12In winding non-conserving correlators, one uses the winding one, h = h̄ = 0 degenerate operator, as

was proposed in [21]; for a review, see e.g. subsection 2.6 in [58].
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Second, the operator in (3.23) is FZZ dual to a winding operator W whose wave function is

marginally non-normalizable (I, W and F are at the unitarity bound in the SL(2,R)/U(1)

CFT when k = 1; see appendix E). Moreover, when k < 1, the winding-anti-winding

fused operator F generates a normalizable state. On the other hand, even though the

wave function of the graviton I is normalizable, the wave function of its FZZ dual W is

not normalizable when k < 1 (I and W are outside the unitarity bound in this case; see

appendix E). This means that below the k = 1 transition point, the description of the

worldsheet CFT in terms of the geometry of a cigar is misleading. Instead, the theory is

described in terms of perturbative fundamental strings, which amount to the condensate

F ∼W ∗W ∗.
All in all, the FZZ duality together with the fusion, F ∼ W ∗ W ∗, leading to the

F − W duality conjecture above, imply that the tip of the cigar is special already in

classical string theory, due to stringy physics that is non-perturbative in α′, and which can

neither be detected via GR considerations, nor taking into account perturbative corrections

in α′. We regard it as a Euclidean hint to the possibility that the physics of BH horizons

and/or their interiors is modified dramatically already at the classical level in string theory.

Concretely, it hints to the possibility that the BH interior is a string condensate, leading

to the following.

For small BHs, it hints to a BH-string transition, as the size of the BH approaches ls,

and when the perturbative string condensate is being ‘released’ from its interior. For large

BHs, we regard the non-perturbative properties of classical string theory on the cigar CFT

as a hint to a realization of a firewall or a fuzzball. This will be discussed in section 4, but

prior to turning to the Lorentzian case, we continue to collect more Euclidean hints.

3.4 The fusion F` ∼ W ∗W ∗
`

In subsection 3.1, we reviewed the GFZZ duals of the GR-like excitations I`,¯̀ — the winding

one stringy modes W`,¯̀ — in the cigar CFT. In string theory on the Euclidean black hole

(times an extra real time), while the GR modes are spread in the cigar cap, their stringy

non-perturbative dual partners are localized at the tip. This suggests [15] that, at least

naively, in string theory the information in the BH atmosphere is stored also at the BH

horizon (and possibly also in the BH interior, that is absent in the Euclidean geometry).

This exciting possibility will be confirmed in the next sections.

Recall, though, that our motivation for considering string theory on the Euclidean

black hole (times an extra real time), is to collect useful hints regarding the physics of

string theory on the Lorentzian BH, in a simple, well understood setup. As we shall

discuss in section 4, non-perturbative stringy aspects of perturbative string theory on the

Lorentzian BH have challenging subtleties, yet to be understood. Those are ameliorated,

once we describe the theory in its dual description (3.15). In the latter framework, the

non-perturbative stringy partners of I`,¯̀, which we denote by F`,¯̀, are obtained by the

fusion of W`,¯̀ with W . So, next, we describe these excitations of F , in string theory on the

Euclidean BH.
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Again, for simplicity we take ` = ¯̀, and consider the fusion of the winding string

condensate W+, (3.9), with the excited winding operators W` in (3.6),13

F`(w) ∼
∫
d2zW+(z)W ∗` (w) , ` = 1, 2, . . . ,

[
k − 1

2

]
. (3.24)

The normalization is such that, for integer k,

F` = (ββ̄)k+1−`e−Q(k+1−`)φ , (3.25)

where βk+1−` is defined in eq. (3.5) with (3.3).

The calculation leading to (3.24), (3.25) is similar to the one done in the particular

` = 1 case in [24], mentioned in the previous subsection, and the meaning of (3.25) for

generic k is also similar to that of its low-lying F = F1 condensate, (3.16), (3.17), as we

discuss next.

The F` in (3.24), (3.25) are equal formally to the expressions Ik+1−` in (3.4), but, just

like F , they are not excitations of the gravity states that are generated by the operators I`
in (3.4). The reason is the following. Recall, [15], that the range of the excitation number

` for the GR bound states in the cap is ` = 1, 2, . . . ,
[
k−1

2

]
. In the worldsheet CFT on

the cigar, the bound ` ≤
[
k−1

2

]
in (3.4) follows from the unitarity bound for such states

in affine SL(2,R)k. So, actually, the operators F` in (3.24) do not generate states in the

theory, since k + 1− ` >
[
k−1

2

]
, and thus they are outside the unitarity bound.

Again, just like the ground-state F , its excitations F` do not correspond to single string

states, but to a bound state of W and W`. Moreover, generically, k+1−` is not an integer,

in which case (3.25) is a notation for its definition in eq. (3.24). Indeed, for generic k, the

F` in (3.24) can be thought of as a smeared average over off-shell string excitations, which

collapses to an on-shell excitation for integer k. Note that this is in harmony with the

analytic structure of the condensate size, λF , in eqs. (3.15)–(3.19): one may regard the

function λF (k), (3.18), as a measure of the smearing, in particular, it develops a pole when

k is integer, in harmony with the collapse of the condensate F and its excitations F` to

on-shell operators, (3.25), in that case.

To recapitulate, the operators F` in eqs. (3.24), (3.25) are the non-perturbative partners

of I`. They describe excited modes of the fused condensate, F ∼ W ∗W ∗, and are highly

localized near the tip of the cigar (as long as the excitation number, `, is sufficiently smaller

than the size of the cap,
√
k).

The scaling dimension of F` is identical, by construction, (3.24), to that of W` in (3.6)

and thus also to I` in (3.4),

∆(`) = `− `(`− 1)

k
, (3.26)

as it must. Note that ∆(`) ≥ 1, and ∆ = 1 only for ` = 1. Therefore, when considering

string theory on the cigar, I`, W` and F`, with ` > 1, can appear as on-shell physical states

only if we have an extra time direction.

Nevertheless, we regard the duality between the excitations of the fused condensate

near the tip and the gravity bound states in the cap as a Euclidean hint to a duality

13The fusion F`,¯̀ of W+ with generic W`,¯̀ is obvious; it is presented in appendix A.
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between the modes in the interior of the BH and those in its thermal atmosphere. This

will be clarified in sections 4 and 5, but prior to turning to the Lorentzian case, we present

another intriguing Euclidean hint in the next subsection.

3.5 F = Ik and BH=GC

In this subsection, we shall argue that, in a certain sense, F may be regarded also as a

bound state of k gravitons, localized near the tip of the cigar. Concretely, for integer k,

the operator F in (3.19) takes the form (3.17), which can be written schematically as

F =
(
ββ̄e−Qφ

)k
= Ik ; (3.27)

this follows from (3.17) versus (3.7) with (3.5).

More precisely, it was argued in [28] that, inside correlators,

(λI)
k

[
k−1∏
i=1

∫
d2ziI(zi)

]
I(w) = CIFλFF (w) , (3.28)

with

(λI)
k = CIFλF , (3.29)

for the λF in (3.15)–(3.18).

There is a problem with eq. (3.28): the entire discussion is valid for integer k, but for

such k’s λF (k) diverges.14 Still, with manipulations that involve, in particular, continuation

in k, in [28], it was shown that the two and three point functions calculated with the

screening operator F are identical to those calculated with the screening operator I, if (3.28)

is satisfied with (3.29), (3.18).

Despite the fact that we do not have a physical understanding of these manipulations

and the fact that, unlike F ∼ W ∗ W ∗, (3.28) is defined only for integer k, we find it

intriguing, especially since this seems to resonate with ideas presented in [44, 45]. There,

it was argued that BHs are filled with a condensate of gravitons. In the next section, we

argue that F is the operator that corresponds to a BH-filling folded string. Consequently,

the relation in eq. (3.28) implies that, at least far from the BH, the folded string might be

viewed as a bound state of k gravitons.

4 Lorentzian physics

In this and the next sections, we consider the Lorentzian black fivebranes, and see how the

Euclidean hints from the previous section turn into rather concrete statements, regarding

what we refer to as stringy information.

In the first subsection, we present the subtleties associated with the continuation of W

to the Lorentzian case. In the second subsection, we turn to the physics of F , which avoids

these subtleties, and argue that it amounts to an interior-filling folded string. Finally, in

the last subsection, we discuss the light it sheds on the BH-string transition.

14A possible interpretation of this divergence is discussed in the previous subsection.
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In particular, we argue in this section that F entangles the two sides of the eternal

BH, similar to ER=EPR, whose precise realization as stringy information is clarified when

considering the excitations of the stringy BH, in the next section.

4.1 I and W

As discussed in section 2, the Lorentzian SL(2,R)k/U(1) geometry can be obtained e.g. by

the analytic continuation

ix→ t . (4.1)

In particular, after analytic continuation, the graviton operator (3.8) becomes

I ∼ ∂t∂̄te−Qφ , (4.2)

up to a total derivative. This is in harmony with the behavior of the two-dimensional BH

geometry in (2.6), at asymptotically large radial φ. And, as in the Euclidean case, once I

is condensed in the Rφ ×Rt theory with a linear dilaton — the continuation of (3.11), the

theory ‘takes care’ of itself and becomes the Lorentzian SL(2,R)k/U(1) quotient CFT.

The coordinates −∞ ≤ t ≤ ∞ and φ ≥ 0 cover the right wedge of an eternal BH;

the former can be extended to the latter geometry in the standard way, e.g. by using

Kruskal-Szekeres coordinates, −∞ ≤ u, v ≤ ∞ (see e.g. [53], for a review),

v = sinh

(
2πφ

β

)
e2πt/β , u = −sinh

(
2πφ

β

)
e−2πt/β , (4.3)

in terms of which the two-dimensional BH metric and dilaton in (2.6) and (2.7) take the

form

ds2 = − dudv

1− uv
, e2Φ =

g2
0

1− uv
, (4.4)

respectively.15

The β in (4.3) is the inverse Hawking temperature of the BH. Recall that in the bosonic

SL(2,R)kb/U(1) and fermionic SL(2,R)k/U(1) theories, β is related to the bosonic level,

kb = k + 2, and the total one, k, by

β = 2π
√
α′kb (bosonic) ; β = 2π

√
α′k (fermionic) , (4.5)

respectively (recall also that we set α′ = 2, when it is not presented explicitly).

The analytic continuation (4.1) of the sine-Liouville operator (3.10) gives16

W → cosh

(√
kb
2

(tL − tR)

)
e
− 1
Q
φ
. (4.6)

15The idea that the condensation of I forms the ER bridge is the following. One begins with the

theory (3.11) with (4.1). This theory is strongly coupled at negative φ, and thus it is not well defined there.

Then, upon condensing the operator I in (4.2), the theory ‘takes care’ of itself and becomes the Lorentzian

SL(2,R)k/U(1) quotient CFT, as discussed below eq. (4.2). From the structure of the underlying SL(2,R),

we know that the geometry includes the whole −∞ < u, v < ∞ space-time in eq. (4.4), a.k.a the eternal

black hole. This is the sense by which the condensation of I forms an ER bridge, as discussed in the

introduction.
16As in section 3, we present the bosonic case; similar manipulations can be done straightforwardly in

the fermionic case of our ultimate interest, giving rise to the same result.
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Since W arises from an SL(2,R)L×SL(2,R)R invariant operator in the underlying SL(2,R)

theory, it must survive any gauging, in particular, the one leading to the Lorentzian

SL(2,R)/U(1) CFT. This, however, seems to lead to some non-conventional, apparently

inconsistent properties.

For instance, consider the following operator product expansion (OPE):

eiEt(z,z̄)e
√
kb/2(tL−tR) ∼ eϑ

√
2kbEei(E−i

√
kb/2)tL+i(E+i

√
kb/2)tR , (4.7)

where here t(z, z̄) = tL(z) + tR(z̄), tL = tL(0), tR = tR(0), and z = |z|eiϑ. The expres-

sion (4.7) appears within OPEs of operators corresponding to generic energy states VE in

the BH CFT with the screening operator W in (4.6). This leads to non-locality on the

worldsheet, since upon rotating z around the origin, ϑ → ϑ + 2π, the r.h.s. of (4.7) picks

up a factor of eβE , with the β in eq. (4.5).

We should note, however, that we are considering an embedding of a Euclidean world-

sheet in a non-trivial Lorentzian space-time. So, it is possible that the non-locality puzzle

above is resolved when one considers Lorentzian worldsheets in the eternal BH target.

However, at the moment, it is not known to us how to do it directly. Nevertheless, for

Euclidean worldsheets in the Lorentzian BH background, we suggest that this should be re-

solved in the following way. Going around an insertion of (4.6) on the worldsheet, amounts

in space-time to taking

t→ t+ iβ . (4.8)

The eternal BH coordinates, u and v in (4.3), are invariant under (4.8), and since (4.7) is

invariant when combining (4.8) with

ϑ→ ϑ+ 2π , (4.9)

it is natural to suspect that the apparent non-locality on the worldsheet is not a ‘bug,’

but rather a ‘feature’ of the eternal BH theory, which reflects the fact that the BH has a

temperature.

In appendix C, we show how (4.8) and (4.9) come about when considering the

Lorentzian AdS3 with a Euclidean worldsheet. Since the Lorentzian AdS3 CFT is ex-

pected to be a consistent target space for perturbative strings, this is a strong support that

the issue is with attempting to describe the physics of strings in a non-trivial Lorentzian

background using a Euclidean worldsheet.

Luckily, as reviewed in the previous section, in order to describe the non-perturbative

α′ corrections in the BH case, we do not have to deal with these issues. Instead, we can

use the dual description in which W± do not condense, but F does. Since F is mutually

local with VE , this dual description appears to be much simpler. And so next, we turn to

discuss the physics of F in the eternal BH theory.

4.2 F , folded string and EPR

The analytic continuation of F is the fusion, (3.16), of the analytic continuation of W±,

W± = exp

(
± β

2πα′
(tL − tR)

)
e
− 1
Q
φ
, (4.10)
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where β is given in (4.5). As is clear from (3.16) and (4.10), F is mutually local with respect

to VE , and thus there are no subtleties associated with its condensation. This implies that

F should have a clear interpretation in the BH geometry.

The goal in this subsection is to discuss the physical meaning of F . We claim that the

semi-classical meaning of F is of a folded string that is filling the entire BH.

The first evidence for this comes from the target-space interpretation of F ∼W+∗W−,

as presented in figure 1. There, we see how the Hartle-Hawking wave-function procedure

fits neatly with F ∼ W+ ∗W−, provided that F is associated with a folded string that

folds towards the BH, as discussed in [32]. Classically, the folded string can fold towards

the BH only behind the horizon [32, 64]. Outside the BH, the probability for the folded

string to fold towards the BH is exponentially suppressed, as reflected by the φ dependence

of W± and F , [24]. The fact that W± and F are related via analytic continuation can also

be seen at the classical level, as illustrated in appendix C.

The argument presented above is valid for any k. In the special cases of integer k,

another, more direct, argument can be made. The asymptotic behavior of the operator F

in the Lorentzian BH is obtained by the analytic continuation, (4.1), of eqs. (3.17), (1.1),

giving rise to

F ∼
(
∂(φ− t)∂̄(φ+ t)

)k
e
− 2
Q
φ

+ . . . , (4.11)

where the ‘. . . ’ stand for corrections in 1/k, which can be read from the analytic contin-

uation (4.1) of (3.17) with (3.5) and (3.3). Equation (4.11) implies that far from the BH,

F describes a level k on-shell excitation of a string whose size is
√
k. Now, since the size

of the BH is also
√
k and since (4.11) implies that the wave function of the string is highly

suppressed away from the BH, it is natural to interpret F as a folded string that semi-

classically is filling the BH interior. This is also reflected in λF (k), which develops a pole

for integer k. For non-integer k, (4.11) does not hold, and λF (k) is regular. Since (3.24) is

still valid, we expect the size of the string to be
√
k in average.

A third evidence comes from the fact that F is a screening operator, a.k.a. it is reduced

from a truly marginal operator with Ja = J̄a = 0 in the underlying SL(2,R) theory. This

agrees with the observation made in [32, 33] that the BH-filling folded string does not break

any of the BH background symmetries.

In light of these arguments, we assume in the rest of the paper that F is the operator

that corresponds to the folded strings discussed in [32, 33], and see what physics follows

from this assumption.

One conclusion is that the black fivebranes system realizes the ER=EPR proposal, [6],

albeit with a twist. To see this, we recall that I is the operator that creates the ER bridge

between the two asymptotic regions. As we just argued, F corresponds to a folded string.

This folded string is an extended object with tails on both asymptotic regions, and so it

entangles the right and the left sides of the BH. It is natural, therefore, to relate F with

the EPR side of the duality. The fact that the folded string entangles the left wedge with

the right wedge is made more precise in the next section. There, we consider excitations of

the eternal BH. We show that an excitation that lives on, say, the right wedge of the BH,
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is accompanied with an excitation of the folded string with tails both on the right and the

left wedges.

The twist is that the CFT statement is not that I = F (which is the analog of

ER=EPR). Operationally, such a statement would mean that one can either work with

the screening operator I or with the screening operator F . As discussed above, the correct

statements is that both I and F must condense.17 Namely, the condensate is of λII+λFF .

In other words, the ER bridge is not empty, but is filled with folded strings.

Before considering, in the next section, excitations of the BH and folded string, which

strengthen the above picture about stringy information, we first comment about the BH-

string transition [46, 47] for black fivebranes [48, 49], in the next subsection.

4.3 k = 1 and the BH-string transition

The semiclassical description of the condensate F in terms of an interior-filling folded

string sheds new light on the nature of the transition at k = 1, discussed in the Euclidean

case in subsections 3.2 and 3.3. In particular, it clarifies its interpretation as realizing the

BH-string transition, for the SL(2,R)k/U(1) Lorentzian BH. Next, we discuss it in some

detail.

For parametrically large k, the folded string is trapped in the interior of the BH, with a

tail, W , highly localized at a distance ls from the horizon. The geometric description of the

BH interior is thus misleading; an infalling observer will encounter the strings condensate

as s.he approaches a distance ls from the horizon. Even as k decreases, as long as k is large,

the change in the effect of the strings condensate outside the BH is hardly felt. However,

as k → 1, the effect of the folded string changes dramatically. The range of its tail is

expanded in the radial direction all the way to φ→∞.

For k < 1, two things happen at once. On the one hand, as in the Euclidean case, the

graviton condensate, I, which behaves asymptotically like e−Qφ, has j + 1 = 1, and is thus

outside the unitarity bound: j = 0 > k−1
2 (see appendix E). Consequently, the description

of the SL(2,R)k/U(1) theory in terms of the geometry of a BH, as in eq. (2.6) and/or

eq. (4.4), is misleading — the BH is not a state in the Rt×Rφ theory with a linear dilaton.

On the other hand, the fundamental strings condensate, F , which behaves asymptotically

like e−Qkφ, has j + 1 = k (see appendix E), and is thus inside the unitarity bound when

1/2 < k < 1: −1
2 < j = k − 1 < k−1

2 . Note that the lower bound on k follows from the

fact that in the superstring, the central charge of the SL(2,R)k/U(1) worldsheet SCFT is

c = 3 + 6
k , and thus it is over critical, c > 15, when k < 1/2.

The transition point, k = 1, is very special. At this point, both the fundamental

strings screening operator and the gravitons screening operator are at the boundary of

the unitarity bound; they both have j = 0 = k−1
2 . And, actually, as in the Euclidean

case, (3.23), at this point, the operators F in (4.11) and I in (4.2) coincide,

F = I ∼ ∂t∂̄te−
√

2φ , (4.12)

up to a total derivative.

17For example, I and F are responsible for different poles in correlation functions [43].
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The picture that emerges from the above is thus the following. At the transition point,

k = 1, the localized folded strings, which, in a sense, replace the BH interior, are being

‘released,’ as perturbative strings. To recapitulate, while for k > 1, the better description

of the SL(2,R)k/U(1) Lorentzian theory is in terms of a BH background, whose interior

is being replaced by folded strings, for k < 1, the BH disappears, but the strings remain.

This provides a nice realization of the BH-string transition, in the two-dimensional case.

5 BH and stringy information

In this section, we discuss excitations of the eternal BH. We show that excitations of

ordinary GR modes that are confined to the BH atmosphere are accompanied with excited

folded string modes that live mostly inside the BH. We discuss the implications of this

observation.

Let us start by reviewing some well known facts [11] about ordinary GR-like modes that

propagate in the SL(2,R)k/U(1) BH atmosphere. Consider a massless minimally coupled

scalar field, a, that propagates in the eternal BH geometry that takes the form, (2.6), (2.7),

ds2 = − tanh2(φ/
√

2k)dt2 + dφ2, e2Φ = g2
0cosh−2(φ/

√
2k). (5.1)

Defining Ψ(φ) = a(ρ)cosh(φ/
√

2k)e−iEt and performing the coordinate transformation ρ =√
2k log(sinh(φ

√
2k)), we obtain a Schrodinger-like equation in the tortoise coordinates, ρ,(

−∂2
ρ + V (ρ)

)
Ψ(ρ) = E2Ψ(ρ), (5.2)

with

V (ρ) =
1

2k

(
1− 1

(1 + exp(2ρ/
√
k))2

)
. (5.3)

Note that, much like in Schwarzschild BH, the size and hight of V (ρ) are fixed by the

curvature, 1/k in our case. However, here, unlike in Schwarzschild BH, due to the linear

dilaton, V (ρ) is a monotonic function.18

This implies that there are two kinds of modes (see figure 2). Modes with E2 > 1/2k

oscillate both at infinity, ρ→∞, and at the horizon, ρ→ −∞. We refer to such modes as

scattering modes. There are also bound state modes, with 1/2k > E2 > 0; these modes are

oscillating at the horizon and decay exponentially fast at infinity, and so they are indeed

bounded to the BH.19 From the underlying SL(2,R) point of view, the scattering states

arise from the principal continuous representations, while the bound states arise from the

principal discrete representations. To see this, we recall how these, and other modes that

propagate in the SL(2,R)/U(1) BH geometry, are described in string theory.

Consider, for example, type II string theory on SL(2,R)k/U(1) × N , namely, on the

two-dimensional BH times an ‘internal space’ N = 2 SCFT, N . For instance, in the theory

of k near-extremal NS fivebranes on a five torus, discussed in section 2, N = SU(2)k × T 5

18This is a consequence of considering the near fivebrane theory, (2.6); in the full background of the black

fivebrane, (2.1), V (r) is a step function, as in Schwarzschild BH.
19In Schwarzschild BH, the situation is similar; the only difference is that the modes in the atmosphere

can tunnel to infinity, as the potential goes to zero there.
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(or R5, in the special case of a non-compact black fivebrane). A class of physical vertex

operators of interest, in the (−1,−1) picture, are (see e.g. [65], for a review and definitions)

V = e−ϕ−ϕ̄VjEVN , (5.4)

where VjE is a primary operator in the SL(2,R)k/U(1) SCFT, whose scaling dimension is

h(VjE) = −j(j + 1)

k
− E2

2
, (5.5)

with the energy, E, related to the eigenvalue m2 of J2 in the underlying SL(2,R)k theory by

E = Qm2 , (5.6)

and similarly for h̄ (see e.g. [11, 53], for a review). The on-shell condition reads:

− j(j + 1)

k
− E2

2
+N − 1

2
= 0 , (5.7)

where N is the left-handed dimension of VN , which corresponds to a transverse left-

handed string excitation in N . A similar condition is obtained for the right-moving exci-

tations, N̄(= N).

The modes that satisfy (5.2) correspond to N = N̄ = 1/2. There are two ways to

satisfy (5.7) with N = 1/2. Modes with E2 > 1/2k have

j = −1

2
+ is , (5.8)

where s is related to the momentum in the radial direction, P , by

P = Qs. (5.9)

These are the scattering modes, which according to (5.8) are reduced from the principal

continuous representations (see figure 2).

There are also modes below the mass gap, with E2 < 1/2k. Equation (5.7) with

N = 1/2 implies that such modes have real j. Namely, they are reduced from the principal

discrete representations (for a review on SL(2,R) representations, see e.g. [66]). States

V , (5.4), that are reduced from the principal discrete representations of SL(2,R) are ac-

companied with a GFZZ dual, that we denote by WV .

To construct WV , we first recall that the operators VjE are reduced via coset decom-

position from J2 (and J̄2) eigenstates in the underlying theory, hence, we work in the

hyperbolic basis of SL(2,R), and denote such states by Vj;m2 , where m2 is the value of

J2 (and m̄2 = m2 below), which is related to the energy E by eq. (5.6). Each Vj;m2 can

be written as an infinite sum over states in the standard basis, Vj;m3 , where m3 is the

value of J3.

Now, each Vj;m3 has a known GFZZ dual and, consequently, so is each Vj;m2 , whose

dual we shall denote by Φω=1
j̃;m2

. Reducing the latter to the SL(2,R)/U(1) coset, will give

rise to the GFZZ duals of GR bound states VjE , which we denote by V ω=1
j̃E

. Together with
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Figure 2. The potential experienced by GR-like modes in tortoise coordinates: the potential is

monotonic with a mass gap that scales like 1/k. There are modes, marked in purple, that can

escape to infinity, and modes, marked in red, that cannot. From the underlying SL(2,R) point

of view they are different: the red modes arise from the principal discrete representations and are

accompanied by a non-perturbative partner in the BH interior. The purple modes arise from the

principal continuous representations and are not accompanied by a non-perturbative partner.

the contribution of the internal space, we shall thus obtain a physical dual, WV , to each

on-shell GR bound state V in (5.4),

WV = e−ϕ−ϕ̄V ω=1
j̃E

VN . (5.10)

More details of this construction are presented in appendix D.

Even without the detailed construction of WV , it is clear that, much like W , (4.10),

far from the BH, the vertex operators WV , (5.10), include an exp
(√

k
2 (tL − tR)

)
factor.

Hence, they are not mutually local with standard vertex operators, e.g. V in (5.4), that

include an exp(−iE(tL+ tR)) factor, and which are clearly in the theory. To overcome this

issue, we construct FV , that is the Lorentzian analog of the fusion F` ∼ W ∗W ∗` in the

Euclidean case, (3.24); explicitly,

FV (w) ∼
∫
d2zW+(z)W ∗V (w) , (5.11)

where the operator W+ is the one in eq. (4.10), and the operators WV are the GFZZ duals

of V discussed above, (5.10).

The operators FV are the non-perturbative completion of V . Each V and its corre-

sponding FV are two components of the same state in the theory. V has a clear GR-like

interpretation and FV does not; it is a stringy mode — an excitation of the folded string

— that lives mainly behind the BH horizon. Just like F , the operators FV have a tail that

falls rapidly outside the BH.

There is something intriguing about this tail that reveals much of the physics associated

with the folded string. Suppose that V is an excitation that appears on the right wedge

of the BH and not on the left wedge. Semi-classically, in GR, we can think about V as a

particle that starts its trajectory at the past singularity, crosses the past right horizon and

falls to the future singularity after passing the future right horizon.
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(a) (b)

Figure 3. Folded strings and EPR: a particle that lives in the BH atmosphere on the left (a)

is accompanied with a non-perturbative mode that lives on the BH-filling folded string (b). The

folded string entangles the left and right sides by having tails on both.

Its companion, FV , however, has an exponentially suppressed tail outside the horizon

both in the right and left wedges (see figure 3). This follows from the symmetry of the

interior filling folded string associated with the condensate F , and hence its bounded

excitations. This is the sense in which the folded string entangles the left and right wedges

of the BH and why it should be identified with EPR: the non-perturbative companion

of a particle that propagates in the atmosphere of the right wedge has a tail also on the

left wedge.20

While this follows from the SL(2,R) structure the question remains: how is this pos-

sible? What causes the information that semi-classically appears only on the left wedge to

have (tiny) imprints on the left wedge? The answer to this was given in [33]. There, the

semi-classical energy-momentum tensor associated with the folded string was calculated

and it was claimed that if the number of folded strings scales like 1/g2
0 then their back-

reaction is such that information that falls to the eternal BH, say, from the right side, will

not be able to cross the horizon, but rather will get smeared on the future right and left

horizons. In [24], it was argued that the number of folded strings indeed scales like 1/g2
0,

since F condenses on the sphere. The fact that FV has a tail also on the left wedge should

be viewed as further evidence for these claims.

For this not to imply a violation of causality it is crucial that states in the continum

representation are not accompanied with a non-perturbative partner. The reason is the

following. The background before the condensation of I is that of a linear dilaton with

a strong coupling region. This background has a Little String Theory (LST) dual [67]

that includes strings, but no gravity (as the string coupling constant vanishes at infinity).

Much like in [68] we can think about the SL(2,R)/U(1) eternal black hole background as

a thermofield double state that entangles between two LST’s. Since the two LST’s are

decoupled an operator in one LST has to commute with an operator in the other LST.

At first it seems that figure 3 suggests otherwise as the GFZZ dual of the red line

in that figure has a tail on both wedges. However, the red line in figure 3 (a) cannot be

20It is important to recall the following. As discussed earlier, our finding gives rise to a realization of

ER=EPR, but with a twist. This is one aspect of the twist, which is closely related to the other aspect that

the BH interior does not appear to be empty, as it is filled with folded strings.
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described using only the left LST. It simply does not exsists in such a theory. It makes it

appearence only after cutting off the strong coupling region via the entengelment to the

other LST. States that do exsist in a single LST are the delta normalizable states. Such

states do not have a GFZZ dual and so do not have a tail on both sides.

6 Discussion

The main point of the paper is to illustrate that in certain cases information in string

theory can be quite different than in quantum field theories. In particular, each of the

GR-like excitations that are bounded to the black fivebrane, in the sense that they live

in the black-fivebrane atmosphere, is accompanied with a non-perturbative partner that

lives on a folded string, which fills the black-fivebrane interior and has a tiny tail outside

the horizon. The two combined form the exact state in the theory. It is the exactness of

the underlying SL(2,R) CFT that allows us to pinpoint the non-perturbative partner in

the case of black fivebranes. We believe, however, that the existence of a non-perturbative

partner, which lives on an extended object in the BH interior, is likely to be generic in

string theory.

We also think that this observation should play a key role in understanding the way

information is extracted from black holes. However, we are still very much confused about

the nature of this extraction; we are not even certain if it is gentle or brutal, in the sense

discussed in the introduction. On the one hand, the identification of modes inside the BH

with modes outside the BH is in the spirit of the A = RB and ER=EPR proposals, which

seems to suggest a gentle scenario. On the other hand, the non-perturbative partners do

not propagate in an empty BH interior. Rather, they excite the folded strings that fill the

BH interior. The existence of the folded strings seems to support a brutal scenario. In

fact, their backreaction prevents information from falling into the BH in a rather non-trivial

fashion [33]. It is as if they were designed for the brutal scenario.

It does feel a bit of a shame to have the key ingredient for the elusive gentle scenario

and to end up with a brutal one. However, right now it is not clear to us how to evade

this conclusion.

Perhaps the classical analysis of the folded strings [32, 33] is misleading, and it is the

appropriate description only at low energies, of the order of the curvature 1/
√
k (that are

relevant for the discussion in the previous section)? Maybe above this energy, we should

think about the folded string as a bound state of k gravitons, in the spirit of F = Ik

discussed in subsection 3.5 (continued to the Lorentzian case)? At large k, such a bound

state is likely to be close to threshold, from the point of view of an observer at infinity. In

that case, a more energetic mode, with E � 1/
√
k, should be sensitive to the fact that the

folded string is made out of a k replica of the ER bridge I.
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A I`,¯̀, W`,¯̀ and F`,¯̀

In this appendix, for completeness, we present the explicit form of generic (`, ¯̀) excitations,

discussed in section 3, of the graviton condensate, I, the winding string condensate, W ,

and its fused condensate, F , in the worldsheet cigar CFT. Next, they are listed in turn.

First, from eq. (7.3) in [15], we have

I`,¯̀ = P`(∂w, . . . )P¯̀(∂̄w, . . . )e
i p√

2kb
x
e−

1
2
Q(`+¯̀)φ , (A.1)

where p is the angular momentum on the cigar (see appendix E),

p = ¯̀− ` , (A.2)

and from eqs. (7.8) and (7.9) in [15],21 we have

W`,¯̀ = e
i
√

2
kb

(mxL−m̄xR)−Q(j̃+1)φ
, (A.3)

where

j̃ + 1 =
kb − `− ¯̀

2
, (m, m̄) =

1

2
(kb + p, kb − p) ; (A.4)

these are winding one operators with momentum p around the cigar (see appendix E).

Finally, the fusion of W+ ≡W1,1 with W ∗
`,¯̀

is

F`,¯̀(w) ∼
∫
d2zW+(z)W ∗`,¯̀(w) , (A.5)

normalized such that, for integer k,

F`,¯̀ = Pk+1−`(∂w, . . . )Pk+1−¯̀(∂̄w, . . . )e
i p√

2kb
x
e−

1
2
Q(2k+2−`−¯̀)φ . (A.6)

B β` = −P`(∂w, . . . )

In this appendix, we prove eq. (3.5) with (3.3). One way to do it is the following. The

OPE of the left-moving piece of the winding condensate W+(z) with its conjugate W−(0),

defined in eq. (3.9) with (3.3), is

e−w(z)e−w̄(0) ∼ 1

zk+1
e−[w(z)+w̄(0)] =

∑
n

z−1−k+n

n!

(
∂nz e

−[w(z)+w̄(0)]
)
|z=0 , (B.1)

hence, for integer k, the residue of the pole on the r.h.s. is

− 1

k!
Pk(∂w, · · · )e−

2
Q
φ
, (B.2)

where

Pk(∂w, · · · ) = −
(
∂ke−w

)
ew . (B.3)

21Some sign conventions are different here.

– 28 –



J
H
E
P
0
6
(
2
0
2
0
)
1
1
7

Now, since the operators W± arise from the left-moving piece of screening operators in

the underlying SL(2,R) theory, a.k.a. truly marginal operators which are singlets of the

SL(2,R)L × SL(2,R)R current algebra, the operator (B.2) must arise from a screening

operator as well and, since we know the list of screening operators in the SL(2,R) theory,

the only candidate is βke
− 2
Q
φ
, reduced to the Euclidean SL(2,R)/U(1) coset CFT and

rewritten in the variables of the cigar, instead of the Wakimoto β − γ variables in the

underlying description (see e.g. [15], for a review). This is true for any integer k, and the

normalization is set e.g. knowing that β = ∂w. All in all, this leads to (3.5) with (3.3).

C Folded string from AdS3

The main goal of this appendix is to describe the classical folded string in the BH, from the

point of view of AdS3. The solutions are found via analytic continuation to the winding

strings in the cigar. This gives further support to the stringy HH picture in figure 1. We

also give a geometrical interpretation to (4.8) and (4.9).

Lorentzian AdS3 in global coordinates takes the form

1

k
ds2 = −cosh2(ρ)dτ2 + dρ2 + sinh2(ρ)dθ2, (C.1)

where 0 ≤ ρ < ∞, −∞ < τ < ∞ and 0 < θ ≤ 2π. This coordinate system is useful when

gauging AdS3 to obtain the SL(2,R)/U(1) Euclidean cigar, since in that case we merely

gauge the τ direction.

Another coordinate system, which is useful for us, covers the so-called Rindler-AdS

space (see e.g. [69], for its definition and geometry). Lorentzian AdS3 in Rindler coordinates

takes the form
1

k
ds2 = −sinh2(ρ)dt2 + dρ2 + cosh2(ρ)dx2, (C.2)

where 0 ≤ ρ <∞, and −∞ < t, x <∞. To obtain the SL(2,R)/U(1) BH, the x direction

has to be gauged. Equation (C.2) describes the region outside the BH. The horizon is at

ρ = 0. To cross the horizon, we take ρ→ iρ, which gives

1

k
ds2 = sin2(ρ)dt2 − dρ2 + cos2(ρ)dx2. (C.3)

To see how (4.8) and (4.9) come about, we note that energy eigenstates behave like

VE ∼ exp(−iEt), and [66]

W± ∼ exp(±(θL − θR)) , (C.4)

where θ is the angular direction in (C.1) and t is the Rindler-AdS time direction. When

VE goes around W± in the worldsheet then, because of (C.4), in target space it means that

the wave function associated with VE makes a full circle, θ → θ + 2π. Along this circle, it

crosses the horizon 4 times. Each time the horizon is crossed, t is shifted by iβ/4, and so by

the time the circle is completed, VE acquires the Boltzmann factor, exp(±βE), discussed

in section 4.

Next, we turn to the classical folded string solution. This name is a bit misleading,

since as discussed below, in AdS3 the solution is not of a folded string. Only from the
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Figure 4. The pancake solution around the tip of the cigar (on the right) obtained, schematically,

by squashing the short string solution in AdS3 (on the left, [66]).

two-dimensional BH perspective, the solution is of a folded string. To find the solution,

we first recall the classical short strings solutions, found in [66], that are relevant for the

discrete states in the standard J3 basis. The solutions take the form

eiθsinhρ = ieiωτ1sinhρ0 sin(ατ0) , (C.5)

and

tan τ =
tan(ωτ0) + tan(ατ0)/cosh(ρ0)

1− tan(ωτ0) tan(ατ0)/cosh(ρ0)
, (C.6)

where τ0 and τ1 are the timelike and spacelike worldsheet coordinates, respectively, ω is the

winding number around θ, and α and ρ0 are parameters that describe the solution and are

related to the quantum numbers associated with it, [66]. Since to obtain the SL(2,R)/U(1)

Euclidean cigar, the τ direction is gauged away, the shape associated with this solution in

the cigar is determined by (C.5) (and not by (C.6)). It takes the form of a pancake, with

a center at the tip of the cigar. The size of the pancake is basically determined by ρ0.

Note that, while the AdS3 solution, (C.5) and (C.6), describes [66] a winding string

that extends in time towards the AdS3 boundary, till it reaches a maximal size, ρ0, then

contracts towards the center, and repeats to expand and contract periodically in time, the

pancake solution, which is obtained, schematically, by squashing the one in AdS3 in the

time direction (see figure 4), is thus unoriented in the cigar background. This means, in

particular, that at the classical level, one cannot distinguish between W+ and W−. In fact,

the pancake solution describes the Euclidean F , discussed in subsection 3.3.

We focus on the shortest short string, with JaL,R = 0, which corresponds to W . It is

obtained by taking w = ±1, α = ∓1, and ρ0 = 0.22 The size of the pancake in that case is

zero: the pancake collapsed to a point.

22To derive this result, follow subsection 2.3 in [66].
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Figure 5. The solution (C.9), reduced on the BH geometry: both σ0 and σ1 run from −∞ to ∞.

They do so in a way that at ρ = ρ0 (at the bottom of the shaded regime) and t = iβ/4 (namely,

at t = 0 in the BH interior), a closed folded string is created, propagates (in global time, namely,

upwards) and ends at the singularity. The BH-filling string amounts to the ρ0 → 0 limit.

To find the folded string solution, we note that (C.2) is obtained from (C.1) via double

analytic continuation,

τ → ix , θ → it . (C.7)

Solutions in (C.2), or more precisely in (C.3), can thus be obtained from (C.5) via (C.7),

combined with ρ→ iρ.

Starting from (C.5) with w = −α = 1, we first shift τ0 by π/2, then we double

analytically continue on the worldsheet,

τ0 → iσ1 , τ1 → iσ0 , (C.8)

and in the target space, (C.7), to get (after taking ρ→ iρ)

t = σ0 , sin ρ = sin ρ0 coshσ1 , (C.9)

where −∞ < σ0, σ1 <∞.

Despite the fact that the range of the new space-like worldsheet coordinate is −∞ <

σ1 <∞, (C.9) describes a closed string. From the SL(2,R)/U(1) BH point of view, (C.9)

is a closed folded string that is created behind the horizon, at ρ = ρ0, and ends on the

singularity; see figure 5. For ρ0 6= 0, this is not a physical solution in the black fivebrane

background, as it requires a contribution from internal space with a negative dimension.

However, we care about the BH-filling solution with ρ0 = 0, which is on-shell. In fact, it is

invariant under the SL(2,R)L × SL(2,R)R affine symmetry, and so it is natural to identify

it with F .

The reasoning of [32, 64] implies that there are many other on-shell solutions in the

two-dimensional BH geometry. These, however, do not have specific quantum numbers

under the SL(2,R)L × SL(2,R)R, and so cannot be obtained from (C.5) and (C.6).
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From the AdS3 point of view, the semiclassical configuration in eq. (C.9), unlike the

one in eq. (C.5), ends on the boundary, and so in the dual space-time CFT2 it does not

correspond to a local operator. This is yet another aspect why W is more fundamental

than the F condensate.

D The construction of WV

To obtain the GFZZ duals, WV in (5.10), of the GR bound states, V in (5.4), it is conve-

nient to write the non-compact, space-like J2 eigenstates in the underlying SL(2,R) (the

hyperpolic basis; see e.g. section 4 of [70]) in terms of the standard basis of the compact,

time-like J3 eigenstates,

Vj;m2 =
∑
m3

Am3(j,m2)Vj;m3 , (D.1)

where here we restrict to the left-moving piece of VjE , for simplicity, whose parent in

SL(2,R) we denote by Vj;m2 . For states in the D+
j principal discrete representations (see

e.g. [66] for definitions and details), (D.1) takes the explicit form

Vj;m2 =

∞∑
m3=j+1

Am3(j,m2)(J+
0 )m3−j−1Vj;j+1 . (D.2)

Now, via the isomorphism between the principal discrete representation, D̂+,ω=0
j , in affine

SL(2,R), and its spectrally-flowed (a.k.a. twisted) D̂−,ω=1

j̃= k
2
−j−1

representation [66],23 we

know that the operator

Φ−,ω=1

j̃;m2
=

∞∑
N=0

Aj+1+N (j,m2)(J+
−1)NΦω=1

j̃;−j̃−1
, j̃ =

k

2
− j − 1 , (D.3)

where Φω denotes a spectrally flowed, a.k.a. a twisted operator, in the ω sector (see [66]

and [71] for details and notation), is related to (D.2) by GFZZ duality [15], and the two

create the same state.

Finally, the reduction of these J2 eigenstates to the Lorentzian SL(2,R)/U(1) coset,

V ω=1
j̃E

, is obtained by decomposing

Φ−,ω=1

j̃;m2
= V ω=1

j̃E
eiEx2 , (D.4)

where the energy E is related to the J2 eigenvalue m2 by eq. (5.6), and x2 is a canonically

normalized scalar bosonizing the J2 current,

J2 =
1

Q
i∂x2 . (D.5)

Now, together with the ghosts and internal pieces, they give rise to the GFZZ duals, WV ,

of the bound states V in (5.4),

W+
V = e−ϕ−ϕ̄V ω=1

j̃E
VN . (D.6)

23We consider again the bosonic case here, for simplicity; the extension to the fermionic case is straight-

forward [15, 63].
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The conjugates, W−V , are obtained, similarly, starting with the D̂−j principal discrete rep-

resentations in (D.2).

A few comments on the properties of (D.3), (D.6) are in order:

• The energy eigenstates in the two-dimensional BH, which are reduced from their

SL(2,R) parent, (D.3), consist of an infinite sum over string excitations, the N ’th

excitation contributing with its corresponding coefficient, Aj+1+N (j,m2).

• These Am3(j,m2) ≡ 〈j,m3|j,m2〉, in eqs. (D.1)–(D.3), can be found in eq. (4.17)

of [70], where the study of continuous bases for unitary irreducible representations

of SL(2,R) is presented; note, in particular, that 〈j,m2|j,m′2〉 = δ(m2 − m′2), as

expected for bound states in the BH zone.

• The wave functions of the stringy contribution to the bound states — the WV in

eq. (D.6), behave like e
−( 1

Q
−Qj)φ

, at large radial φ, as do the excitations of the

winding string condensate in the Euclidean case — the W` in eq. (3.6), due to the

Φω=1
j̃= k

2
−j−1

piece in eq. (D.3), and thus they are highly localized near the horizon, when

the curvature and imaginary radial momentum are small, Q, j/k � 1, as opposed

to their GFZZ duals, GR bound states — the V in eq. (5.4), whose wave functions

behave like e−Q(j+1)φ, instead, as do the excitations of the graviton condensate in the

Euclidean case — the I` in eq. (3.4), and are thus spread over the BH atmosphere.

E Some facts on SL(2,R)/U(1)

In this appendix, we collect some facts concerning properties of the SL(2,R)/U(1) quotient

CFTs that are used in the text. The reader is referred to e.g. [15] for more facts and details.

Operators Vj in SL(2,R)/U(1) quotient CFTs descend from operators Φj in the un-

derlying SL(2,R) theory, and carry, in particular, the quantum number j of the SL(2,R)

representation, as well as other quantum numbers, depending on the particular choice of

basis and subjected to the gauge condition imposed by the Abelian gauging done. The

quantum number j governs the radial dependence of the wave functions of states in the

resulting sigma-model geometry. Concretely, the vertex operator Vj decays at large φ as

Vj ∼ e−Q(j+1)φ . (E.1)

Stripping off the factor of the string coupling e−Qφ/2, (2.10), that relates the vertex operator

to the wave function, we find that the wave function of the state behaves at large φ as

e−Q(j+1/2)φ, and hence it is normalizable if j > −1/2. However, unitarity of the CFT leads

to a more restrictive bound on j ∈ R — the unitarity bound:

− 1

2
< j <

k − 1

2
, (E.2)

where k is the total level of the SL(2,R) theory,

k = kb − 2 =

√
2

Q
, (E.3)

and kb is the bosonic level.
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For instance, the cigar CFT is obtained by an axial gauging in the compact time-like

direction of SL(2,R), and a convenient basis of states is thus eigenstates of the generators

(J3, J̄3), whose eigenvalues are denoted by (m, m̄). In the coset CFT, the latter are subject

to the gauge condition√
2

kb
(m,−m̄) = (pL, pR) ≡

(
p

R
+
ωR

2
,
p

R
− ωR

2

)
, R =

√
2kb, p, ω ∈ Z; (E.4)

the integers p and w are thus the quantized momentum and winding, respectively, on

the asymptotic cylinder of the cigar.

A large class of states in the cigar CFT is described by Virasoro primary vertex oper-

ators, Vj;m,m̄. Far from the tip of the cigar, they behave as

Vj;m,m̄ ' eipLxL+ipRxR−Q(j+1)φ , (E.5)

where (pL, pR) is given in (E.4). The operators W`,¯̀ in section 3 and appendix A are

examples of such operators, with ω = 1 and p = ¯̀− `. The operators I`,¯̀ and F`,¯̀ have

non-zero oscillations modes on the cigar, the P`(∂w, . . . ) and P¯̀(∂̄w, . . . ) in section 3 and

appendices A and B, on top of an (E.5) piece with ω = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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