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1 Introduction

Known for their invisible and illusive behaviors, originated from very weak interaction

strength and being the lightest and electrically neutral fermion observed so far, neutrinos

are one of the most appealing elementary particles in the present-day physics. Along with

having made quite a number of progresses in understanding the properties of three types

neutrinos, many things have ceased to become mystery anymore. But still there have

been some puzzles and bottlenecks looming ahead and several questions have yet to be

answered. In particular, there are several compelling anomalies that cannot be explained

within the standard paradigm of three-neutrino mixing: 1) unexpected excess of ν̄e events

in ν̄µ → ν̄e transition observed by the LSND experiment [1] as well as an excess discovered

in both νe and ν̄e channels in the MiniBooNE experiment [2], which are so called short-

baseline anomalies; 2) observed rate deficit of ν̄e in several reactor experiments compared

to theoretical expectation [3–5]; 3) a rate deficit in the disappearance channel of νe in

radiochemical experiments, such as GALLEX [6, 7] and SAGE [8, 9], using gallium as a

target in detector, which is referred to as the gallium anomaly. An interesting fact is that

explanations of these anomalies hint towards the existence of a fourth neutrino state, which

is uncharged under the weak interaction and thus known as a sterile neutrino, having a few

percent mixing with the electron neutrino and a mass of around 1eV. It is important to

check if such a sterile neutrino exists from long-baseline neutrino oscillation experiments

like DUNE [10–13], NOνA [14] and T2HK [15] since main features of these experiments

include precision measurements of neutrino oscillation parameters and CP violation.

There have been great amount of efforts spent on understanding the possible origins

of generating the eV-scale mass and on various experimental searches for the effects of the

light sterile neutrino. Mechanisms to generate an eV-scale sterile neutrino mass have been
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provided, such as in refs. [16–18]. Based on the simulations of long-baseline experiments,

effects of the sterile neutrino on the oscillation probabilities of
(−)
ν e appearance and νµ

disappearance channels, the measurement of CP violation, the neutrino mass hierarchy, the

octant of θ23, and determination of CP-violating phases have been studied in [19–30]. Using

the available data, experimental constraints on the sterile neutrino oscillation parameters

have been investigated in [31, 32]. On the other hand, in ref. [33] authors have derived

analytically the four-neutrino oscillation probabilities in matter by assuming all the CP-

violating phases vanish. The same has been studied in [34] with different approach and

taking into account also the CP violation. A perturbative calculation method has been

extended to 3+1 neutrino oscillation scenario [35] provided that the matter potential is

smaller or comparable to the atmospheric mass-squared difference. Current status of the

sterile neutrinos is reviewed in [36–38]. These consecutive works in this direction have put

the light sterile neutrino at the focus of neutrino physics research.

In this work, we analyze systematically the 3+1 neutrino scenario in long-baseline

oscillations. The full analytic formulae for four-neutrino oscillation probabilities in matter

will be derived, and numerical results will be given in detail. Although ref. [34] provided

analytic expressions, our results are different from them. The numerical results given in

refs. [19–30] can be directly obtained from our analytic expressions. This is also a check of

the correctness of our results. Furthermore, it is desirable to explore all possible oscillation

channels, based on the exact analytic results, including neutrinos and antineutrinos, to show

the effects of the sterile neutrino in the several long-baseline neutrino oscillations. And it

is also worth carrying out a systematic theoretical study of CP asymmetry in four-flavor

oscillations in a more general and accurate way, since that is useful to make an expectation

about the results from the future long-baseline experiments. We also provide extensive

discussions on the Jarlskog invariants and CP-violating observables in the case of three

active plus one sterile neutrinos, and apply our results to three long-baseline experiments

— DUNE, NOνA and T2HK — to see distinctions of the 3+1 neutrino oscillation and CP

asymmetry compared to the standard three-neutrino scenario. Of course, one can use our

results to any oscillation channels of three active and one sterile neutrinos, regardless of

the values of sterile neutrino mass and mixing, as such they are useful for any long-baseline

neutrino oscillation experiments. We also try to put our work in the more general ground

and to carry out analysis in the parameterization independent way of mixing matrix.

The structure of this paper is organized in the following order. In section 2, we inves-

tigate the 3+1 neutrino oscillation, including matter effects to neutrino mass squares and

to products of one mixing matrix element with complex conjugate of any other element in

the same column. Section 3 describes Jarlskog invariants and CP asymmetries with four

neutrinos and provides relations between their values in matter and vacuum. Then, in

section 4, there is a phenomenological study about the neutrino oscillations including the

eV-scale light sterile neutrino and CP asymmetry observables in the long-baseline experi-

ments such as DUNE, NOνA and T2HK. Section 5 is the conclusion of the paper. At the

end, there are several appendices titled A, B and C that fill gaps in our derivations and

give supplementary information.
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2 Matter effects in 3+1 neutrino scheme

In the three-neutrino paradigm, the flavor mixing is well understood and described by

the PMNS matrix, which is a 3 × 3 unitary rotation matrix to go from mass eigenstate

basis to flavor basis. When it is extended to 3+1 scenario, by adding one sterile neutrino,

corresponding mixing matrix has to be introduced. There are many possible ways to

parameterize this 4 × 4 mixing matrix in terms of products of unitary rotations on two-

dimensional planes, which are made up of the Euler angles and phases. One convenient

way to write its form is the following

U = UsU3, (2.1)

where the matrix Us encompasses the mixing between the sterile and active neutrinos,

while the U3 is an embedding of PMNS matrix into the upper left block:

Us = R34(θ34, 0)R24

(
θ24, δ

CP
24

)
R14

(
θ14, δ

CP
14

)
,

U3 = R23(θ23, 0)R13

(
θ13, δ

CP
13

)
R12(θ12, 0) , (2.2)

in which 0 ≤ θij ≤ π/2 and 0 ≤ δCPij < 2π. An mn element of these rotations on two

dimensional planes, on the right-hand sides of above expressions, reads[
Rij(θij , δ

CP
ij )

]
mn

= (δimδin + δjmδjn) cos θij +
(
δimδjne

−iδCPij − δinδjmeiδ
CP
ij

)
sin θij

+

4∑
k 6=i,j

δkmδkn . (2.3)

Additionally, the mixing matrix in eq. (2.1) carries a diagonal matrix of three phases,

diag(1, eiα21/2, eiα31/2, eiα41/2), in the rightmost position if neutrinos are Majorana particles.

But these phases are not relevant for neutrino oscillations.

At the present stage, active neutrino oscillation, a flavor change during the propagation

from source to detector, is interpreted as a consequence of non-zero masses and mixing

angles. Probability of flavor eigenstate να at a source converted into flavor eigenstate νβ
after some distance L is given by

Pνα→νβ (L,E) = δαβ − 4
∑
i<j

Re
(
UαiU

∗
αjU

∗
βiUβj

)
sin2

∆m2
jiL

4E

+ 2
∑
i<j

Im
(
UαiU

∗
αjU

∗
βiUβj

)
sin

∆m2
jiL

2E
, (2.4)

where E is neutrino energy and ∆m2
ji ≡ m2

j −m2
i . Regarding the oscillation between an-

tineutrinos, CPT invariance of the probability implies that Pνα→νβ (L,E) = Pν̄β→ν̄α(L,E).

This, in turn, leads to the conclusion: when να and νβ in the oscillation probability above

are replaced by corresponding antiparticles, the signs of all but last term remain the same.

Here, and in what follows, the Greek alphabets α, β, γ, . . . indicate flavor eigenstates of

electron, muon, tauon and sterile neutrino types, while the Latin letters i, j, k, . . . are as-

signed to mass basis, running from 1 to 4. The expression (2.4) holds not only for any
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number of neutrino flavors, but also for the case of any kind of environment neutrinos go

through, by replacing the mass and mixing parameters accordingly. It is sometimes written

in slightly different form by changing the first two terms with the help of an identity

δαβ =
∑
i

|Uαi|2 |Uβi|2 + 2
∑
i<j

Re
[
UαiU

∗
αjU

∗
βiUβj

]
, (2.5)

which we will use when discussing the neutrino oscillation probabilities in matter.

While neutrino is propagating in a medium, a coherent scattering with other particles

through charged current (CC) as well as neutral current (NC) weak interactions changes

its motion. Thus, effective Hamiltonian is a sum of vacuum and matter contributions:

Heff = H0 + V. (2.6)

The vacuum Hamiltonian H0 and components of the matter potential V , generated by a

uniform matter density, are

H0 =
1

2E
U diag(m2

1,m
2
2,m

2
3,m

2
4)U †,

Vαβ = VCCδαeδβe + VNC (δαβ − δαsδβs)

=
√

2GF

[
Neδαeδβe −

1

2
Nn (δαβ − δαsδβs)

]
, (2.7)

respectively. As one can see, the potential for sterile neutrino is vanishing since it does not

participate in any interactions, apart from the gravity. The CC potential VCC depends only

on electron number density, Ne, due to the interaction with electrons in matter, while the

NC potential VNC is a function of neutron number density, Nn, only as there is a cancellation

between the potentials of electron and proton in neutral matter. Clearly, this matter

potential has a contribution to neutrino evolution equation. But one can see, to consider

the Earth’s matter effect especially when conducting long-baseline oscillation experiments,

that its contribution is not so large. This is because GF = 5.37 × 10−14eVcm3/NA, in

which NA is Avogadro constant, and the range of mean electron number density from the

Earth’s mantle to core is 2.2− 5.4cm−3NA [39]. Neutron number density is approximately

equal to the number density of electron. As a result, the effective potential is as large as

10−13 eV, it might have significant effect at higher energies as the vacuum Hamiltonian H0

is inversely proportional to the neutrino energy E. We will see this clearly when we carry

out a phenomenological study in section 4.

Focusing on the neutrino oscillation in matter, the effective Hamiltonian can be sim-

plified by subtracting the potential VNC. The reason is that subtracting a multiple of an

identity matrix from the Hamiltonian is equivalent to a phase shift of transition amplitude

from one neutrino flavor eigenstate to another, under which oscillation probability remains

the same. So, without causing any problem, in the following discussions we will use an

effective Hamiltonian

Heff =
1

2E
U diag(m2

1,m
2
2,m

2
3,m

2
4)U † + diag (VCC, 0, 0,−VNC) . (2.8)
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As was stated before, the Hamiltonian H0 governs neutrino evolution in vacuum and

the unitary matrix that diagonalizes it enters oscillation probability in eq. (2.4). Similarly,

one can diagonalize the matter-induced effective Hamiltonian Heff by unitary rotation Ũ

Heff =
1

2E
Ũ diag(m̃2

1, m̃
2
2, m̃

2
3, m̃

2
4)Ũ † , (2.9)

and interpret m̃2
i and Ũ respectively as effective mass squares and mixing matrix in matter.

Being a hermitian matrix, diagonalization of Heff is rather straightforward and effective

mass squares m̃2
i , which are the eigenvalues, satisfy quartic polynomial equation

(m̃2
i )

4 − c3(m̃2
i )

3 + c2(m̃2
i )

2 − c1m̃
2
i + c0 = 0, (2.10)

where c3, c2, c1, c0 are respectively the trace, the sum of determinants of 2×2 main diagonal

blocks, the sum of determinants of 3 × 3 main diagonal blocks and the determinant of

2EHeff . Their explicit expressions can be found in appendix A. We find following solutions

of this quartic equation

m̃2
1 =

c3

4
− 1

2

√2z +

√
−2z − 2p+

√
2

z
q

 ,
m̃2

2 =
c3

4
− 1

2

√2z −

√
−2z − 2p+

√
2

z
q

 ,
m̃2

3 =
c3

4
+

1

2

√2z −

√
−2z − 2p−

√
2

z
q

 ,
m̃2

4 =
c3

4
+

1

2

√2z +

√
−2z − 2p−

√
2

z
q

 , (2.11)

where

p =
8c2 − 3c2

3

8
,

q = −c
3
3 − 4c2c3 + 8c1

8
,

and z is a solution of the cubic equation

z3 + pz2 +
1

4

(
p2 − 4r

)
z − 1

8
q2 = 0 , (2.12)

where the parameter r is defined by

r =
−3c4

3 + 256c0 − 64c1c3 + 16c2c
2
3

256
.

An explicit form of z is given in the appendix A. Here we list effective mass squares in

increasing order, under the default assumption that the active neutrino masses are in the

normal ordering. If it is aimed to consider the case of inverted mass ordering, one can

replace m̃2
1 by m̃2

3, m̃2
2 by m̃2

1 and m̃2
3 by m̃2

2, without spending much effort.
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Figure 1. Effective mass squares induced by neutrino interaction with matter, m̃2
1 in green, m̃2

2 in

blue, m̃2
3 in red and m̃2

4 in orange.

Dependences of the effective mass squares on the neutrino energy are depicted in

figure 1. To make this figure, we simply assume that the lightest neutrino mass is zero,

and used the best fit values for active neutrino mass-squared differences ∆m2
21 = 7.39 ×

10−5 eV2,
∣∣∆m2

3l

∣∣ = 2.53 × 10−3 eV2 from [40] and m4 = 1 eV, sin2 θ14 ' 0.01 from [37].

As shown in the left panel, the first effective mass square m̃2
1 is almost zero and does not

change over the neutrino energy, while m̃2
2 increases up to 8 GeV then starts to saturate

with a value around 0.0025 eV2. Other two mass squares m̃2
3 (in the left panel) and m̃2

4

(in the right panel) increase monotonically. It is worth noticing that these plots can also

be interpreted in a different way. Although they are plotted as a function of E, in practice

the combinations EVCC and EVNC always enter to the expressions of the effective mass

squares. Here we showed the change of m̃2
i as a function of energy by fixing the matter

potentials, namely assuming constant matter density. On the other hand, one can also

interpret the behavior of these effective mass squares due to the fixing of neutrino energy

and gradually increase of the matter density (or matter potential as a whole).

Having discussed about behaviors of the matter-induced effective mass squares with

energy and matter density, the last important ingredient of matter effect is the relation

between the mixing matrix in vacuum and matter. One can find the relation by using both

the unitarity condition of Ũ and taking up to the third power of a equation obtained by

equating the right-hand sides of eqs. (2.8) and (2.9), which are

4∑
i

ŨαiŨ
∗
βi = δαβ ,

4∑
i

m̃2
i ŨαiŨ

∗
βi =

4∑
i

m2
iUαiU

∗
βi+Φαβ ,

4∑
i

m̃4
i ŨαiŨ

∗
βi =

4∑
i

[
m4
i +m2

i (Φαα+Φββ)
]
UαiU

∗
βi+Φ2

αβ ,

4∑
i

m̃6
i ŨαiŨ

∗
βi =

4∑
i

[
m6
i +m4

i (Φαα+Φββ)+m2
i

(
Φ2
αα+Φ2

ββ+ΦααΦββ

)]
UαiU

∗
βi

+
∑
ijγ

m2
im

2
jUαiU

∗
γiUγjU

∗
βjΦγγ+Φ3

αβ ,

(2.13)
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where we defined Φ = 2E diag (VCC, 0, 0,−VNC). Clearly, these are the set of linear equa-

tions of the variables ŨαiŨ
∗
βi, which can be solved in a rather straightforward way. As the

right-hand side of the first equation becomes zero or one depending on whether or not the

indices α and β being equal, and Φαβ also takes different value accordingly, our solutions

are written as the following

∣∣∣Ũαi∣∣∣2 =

 4∏
k 6=i

∆m̃2
ik

−1
4∑
j=1

 4∏
r 6=i

(
Φαα − δm2

rj

) |Uαj |2
−1

2

∑
mnγ

(
∆m2

mn

)2
UαmU

∗
αnU

∗
γmUγnΦγγ

 , (2.14)

and

ŨαiŨ
∗
βi =

 4∏
k 6=i

∆m̃2
ik

−1
4∑
j=1

 4∏
r 6=i

(
Φαα + Φββ − δm2

rj

)
− 3

2

(
δm2

ij

)2
(Φαα + Φββ)

−δm2
ij

[
(Φαα + Φββ)

4∑
l=1

∆m̃2
li − 2 (Φαα + Φββ)2 − ΦααΦββ

] ]
UαjU

∗
βj

−1

2

∑
mnγ

(
∆m2

mn

)2
UαmU

∗
βnU

∗
γmUγnΦγγ

 , (2.15)

for α 6= β. Here we defined mass-squared differences ∆m̃2
ij = m̃2

i−m̃2
j , ∆m2

ij = m2
i−m2

j and

δm2
ij = m̃2

i −m2
j . Note that the form of eq. (2.15) does not match with the corresponding

results given in [34, 41], but we checked it in different ways and confirmed that this is

a correct solution. First of all, our derivation of these solutions is given in appendix B.

Furthermore, as we will see in the below, these solutions return to the vacuum case when

matter potentials become zero. Meanwhile, we did following numerical checks for this

result: (i) we confirmed that this solution indeed satisfies all of the unitarity constraints,∑
i ŨαiŨ

∗
βi = 0 for all α 6= β; (ii)we cross checked the eqs. (2.14) and (2.15) via two

sides of the identity
∣∣∣Ũαi∣∣∣2 ∣∣∣Ũβi∣∣∣2 =

∣∣∣ŨαiŨ∗βi∣∣∣2 obtained from them; (iii) we also checked if∣∣∣ŨαiŨ∗βi∣∣∣ ≤ 1 holds for all α 6= β and i = 1, 2, 3, 4 and found that this solution satisfies these

conditions also. To exemplify this point and illustrate how different our result than those

given in [41] and [34], here we show a plot of
∣∣∣Ũe2Ũ∗µ2

∣∣∣ in figure 2. When we draw these

plots we use the parameters in table 3 and choose δ14 = 0 and δ24 = 0 for simplicity. Last

but not the least, the oscillation probability P (νµ → νe) in matter, which we will discuss

in the section 4, obtained from our solution confirms the result from simulation [20].

At first glance, results in eqs. (2.14) and (2.15) seem rather bewildering, but their

meaning become clear if their forms are compactly thought as

ŨαiŨ
∗
βi =

4∑
j=1

Cαβij UαjU
∗
βj +Dαβ

i , (2.16)

– 7 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
4

Figure 2. Plots of
∣∣∣Ũe2Ũ∗

µ2

∣∣∣ with respect to the neutrino energy Eν : (a) is obtained from eq. (2.15),

(b) is from [41] and (c) is from [34].

for both cases of α and β becoming equal or not.1 The coefficients Cαβij and Dαβ
i are

functions of neutrino energy, mass-squared differences and matter potentials, with the fol-

lowing properties: a) the Cαβij is real and symmetric for swapping the indices α and β, while

the Dαβ
i is hermitian, i.e. Dαβ

i =
(
Dβα
i

)∗
; b) they satisfy initial conditions Cαβij (0) = δij

and Dαβ
i (0) = 0, meaning that their values in the vacuum, which will be clear from the

following discussions.

There are several comments in order for the results in eqs. (2.14) and (2.15). First of

all, these relations are independent of the parameterization of mixing matrix, since they

connect the matrix elements but not the mixing angles. Of course, according to relations

between the sines (or cosines) of the mixing angles and modulus of the mixing matrix

entries, one can extract the relation between the mixing angles in matter and vacuum after

a specific parameterization is chosen. For instance, making use of the parameterization in

eq. (2.1), expressions for the sines of the mixing angles in matter are

sin θ̃14 =
∣∣∣Ũe4∣∣∣ , sin θ̃13 =

∣∣∣Ũe3∣∣∣√
1−

∣∣∣Ũe4∣∣∣2 ,

sin θ̃24 =

∣∣∣Ũµ4

∣∣∣√
1−

∣∣∣Ũe4∣∣∣2 , sin θ̃12 =

∣∣∣Ũe2∣∣∣√
1−

∣∣∣Ũe3∣∣∣2 − ∣∣∣Ũe4∣∣∣2 ,

sin θ̃34 =

∣∣∣Ũτ4

∣∣∣√
1−

∣∣∣Ũe4∣∣∣2 − ∣∣∣Ũµ4

∣∣∣2 , (2.17)

and

sin θ̃23 =
∣∣∣Ũµ3

∣∣∣[(∣∣∣Ũe1∣∣∣2+
∣∣∣Ũe2∣∣∣2)(∣∣∣Ũτ4

∣∣∣2+
∣∣∣Ũs4∣∣∣2)]−1/2

∣∣∣∣∣∣∣1−
∣∣∣Ũe4∣∣∣2+

(
Ũe3Ũ

∗
µ3

)(
Ũµ4Ũ

∗
e4

)
∣∣∣Ũµ3

∣∣∣2
∣∣∣∣∣∣∣ .

1Note that, here, we are referring to the forms of the solutions, but not to explicit definitions of these

coefficients in each solution.
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Second, if some mixing matrix elements (or equivalently mixing angles) are zero in vacuum,

they may be generated by the matter effect. This is easy to see from the compact form in

eq. (2.16) as it contains contributions from two terms of a rotation and a shift. Last but

not the least, when matter density (or neutrino energy) goes to zero, these relations give

vacuum results as they should. Specifically, when Φ = 0, which corresponds to vacuum,

parts in the curly brackets in eqs. (2.14) and (2.15) return to vacuum solution, because

∆m̃2
ij

∣∣
Φ=0

= δm2
ij

∣∣
Φ=0

= ∆m2
ij ,

4∑
j=1

 4∏
r 6=i

∆m2
rj

 |Uαj |2 =

 4∏
k 6=i

∆m2
ki

 |Uαi|2 , (2.18)

4∑
j=1

 4∏
r 6=i

∆m2
rj

UαjU∗βj =

 4∏
k 6=i

∆m2
ki

UαiU∗βi .
This in turn derives the initial condition of Cαβij in the compact expression (2.16). In one

of the following sections we will use these results to do phenomenological study in the

long-baseline neutrino oscillation experiments.

Figure 3 illustrates behaviors of matter-effected mixing matrix entries’ modulus squares

as functions of neutrino energy. When making these plots we assume that mixing angles

θ24 and θ34 are of the same sizes as θ14 and two Dirac CP-violating phases δ14 and δ24

are zero, while taking the best fit values of other active neutrino parameters in [40] (see

table 3 for the complete list of parameter values). We noticed that changing the values

of CP-violating phases δ14 and δ24 modify those curves slightly but qualitative behaviors

do not change much. It can be seen from this figure that the modulus squares of the

mixing matrix elements with active neutrino flavor indices and i = 1, 2, 3 tend to reach

some constant values at high energies.

Similar discussions can apply for the case of three active neutrinos and we obtain the

following relations

∣∣∣Ũαi∣∣∣2 =

 3∏
k 6=i

∆m̃2
ik

−1
3∑
j=1

 3∏
r 6=i

(
Φ′αα − δm2

rj

) |Uαj |2 , (2.19)

and

ŨαiŨ
∗
βi =

 3∏
k 6=i

∆m̃2
ik

−1
3∑
j=1

 3∏
r 6=i

(
Φ′αα + Φ′ββ − δm2

rj

)
+ δm2

ij

(
Φ′αα + Φ′ββ

)UαjU∗βj ,
(2.20)

where Φ′ ≡ 2E diag (VCC, 0, 0), i = 1, 2, 3 and α, β = e, µ, τ . These expressions have

similar structures as the results given in eqs. (2.14) and (2.15), so it is easy to repeat

analogous comments we made in this section for three active neutrinos case.
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Figure 3. Shown are the plots of matter-effected mixing matrix elements’ modulus squares with

respect to the neutrino energy Eν .

3 CP asymmetry with four neutrinos

In regard to the sources of CP asymmetry in four-neutrino oscillations, in vacuum and mat-

ter, one of the important consequences of introducing a light sterile neutrino is to generate

several independent rephasing invariants, as a contrast to the only one such invariant with

standard three neutrinos. As the CP transformation changes neutrino to its antineutrino

and vice versa, and there is a relation between neutrino and antineutrino oscillation prob-

abilities: Pν̄α→ν̄β (L,E) = Pνβ→να(L,E) or, in other words, Pν̄α→ν̄β = Pνα→νβ (U ↔ U∗),

an indicator of CP conservation in neutrino oscillation is to test if oscillation probabili-

ties of neutrinos and antineutrinos are equal. Following this argument, a measure of CP

asymmetry is

∆Pαβ ≡ Pνα→νβ − Pν̄α→ν̄β = 4
∑
i<j

Im
(
UαiUβjU

∗
αjU

∗
βi

)
sin

∆m2
jiL

2E
. (3.1)

Form of this equation remains the same for both discussions in vacuum and matter, up to

replacing the corresponding mixing matrix and mass-squared differences for the case under

consideration. It is not hard to see that this quantity is antisymmetric with respect to

the swapping of indices, which reduces the independent components to n(n − 1)/2 when

considering the n neutrino flavors. What is more, applying the unitarity condition of

– 10 –
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mixing matrix, ∑
α

UαiU
∗
αj = δij , (3.2)

it is a very simple exercise to show that∑
α

∆Pαβ = 0. (3.3)

This further imposes n− 1 independent equations (not n because one of them can always

be obtained by using other n − 1 constraints), so total number of independent ∆Pαβ is

n(n − 1)/2 − (n − 1) = (n − 1)(n − 2)/2. Interestingly, this number coincides with the

number of Dirac CP-violating phases with n − 1 flavors. With this result in mind, one

can easily obtain the number of independent components of ∆Pαβ for arbitrary number

of flavors. For instance, there are 3 such quantities with 4 neutrinos and only one for the

case of 3 neutrinos. Observing the expression (3.1), one may notice that imaginary part of

the product of four mixing matrix entries can provide a rephasing invariant form, so CP

asymmetry can also be quantified this way in terms of the Jarlskog invariants [42, 43]

Jαβij ≡ Im
(
UαiUβjU

∗
αjU

∗
βi

)
. (3.4)

Definition above reveals that these quantities possess following properties

Jαβij = −Jβαij = −Jαβji = Jβαji . (3.5)

Furthermore, the unitarity of mixing matrix leads to∑
α

Jαβij =
∑
i

Jαβij = 0 , (3.6)

through a similar argument to get eq. (3.3). To sum up, just relying on the eq. (3.5), there

are [n(n− 1)/2]2 independent rephasing invariants. Eq. (3.6) further eliminates n(n −
1)2/2+(n−1)2(n−2)/2 of them, thus the total number of independent Jarlskog invariants

in the case of n flavors is [(n− 1)(n− 2)/2]2. The same conclusion can be drawn from

the fact that upper and lower indices are independent and each of them has (n − 1)(n −
2)/2 independent components. This is exactly a square of the number of independent

components of ∆Pαβ . A summary for the cases of some specific number of flavors is given

in table 1.

Having discussed general case of n family, the following discussions particularly focus

on the Jarlskog invariants of four families. As we have argued, only nine of them are

independent thus we can choose

Jeµ13 , Jeµ24 , Jeµ34 ,

Jes13 , Jes24 , Jes34 , (3.7)

Jµs13 , Jµs24 , Jµs34 ,

as a basis.2 All the other rephasing invariants are the linear combinations of these bases,

explicit relations are given in table 2.

2Although any nine independent Jarlskog invariants can be chosen as basis, these are the ones with

shorter expressions for a given parameterization in eq. (2.1).
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n ∆Pαβ Jαβij n ∆Pαβ Jαβij

1 0 0 2 0 0

3 1 1 4 3 9

5 6 36 6 10 100

7 15 225 8 21 441

9 28 784 10 36 1296

Table 1. A summary of the total number of independent ∆Pαβ and Jarlskog invariants Jαβij
correspond to number of neutrino flavors up to 10.

To know CP asymmetry in four-neutrino oscillations, what has to be done is to show a

dependence of these nine independent Jarlskog invariants in eq. (3.7) on the mixing angles

and Dirac CP-violating phases. So far, our calculations are independent of the parameter-

ization chosen for mixing matrix. In order to see explicit expressions, one has to choose a

basis and perform computations with definition in eq. (3.4). Using the parameterization

in eq. (2.1), expressions of these independent Jarlskog invariants in eq. (3.7) are

Jeµ24 = s12c13s14c
2
14s24c24 [s12s13s23 sin(δ13−δ14+δ24)+c12c23 sin(δ14−δ24)] ,

Jes24 = s12c13s14c
2
14c24c34 {c12 [sinδ14s23s34−c23s24c34 sin(δ14−δ24)]

−s12s13 [s23s24c34 sin(δ13−δ14+δ24)+c23s34 sin(δ13−δ14)]} ,

Jµs24 =
1

16
c2

14s2(24)c34

{
s34

[
4s14s24

(
s2

12s2(13)c23 sin(δ13−δ14)−sinδ14s2(12)c13s23

)
+c24

(
4s2(12)s13(cosδ13 sinδ24c2(23)−sinδ13 cosδ24)

+ sinδ24s2(23)

(
2s2

12c2(13)+3c2(12)+1
))]

+4s12s14c34

[
s12s2(13)s23 sin(δ13−δ14+δ24)+2c12c13c23 sin(δ14−δ24)

]}
,

Jeµ34 =−1

8
s2(13)s2(14)s2(24)s23c14 sin(δ13−δ14+δ24),

Jes34 =
1

4
s2(13)s2(14)c14c24c34 [s23s24c34 sin(δ13−δ14+δ24)+c23s34 sin(δ13−δ14)] ,

Jµs34 =−1

4
c2

14

[
s2(13)s14s23s2(24)c

2
34 sin(δ13−δ14+δ24)

+
1

2
s2(24)s2(34)

(
s2(13)s14c23s24 sin(δ13−δ14)+sinδ24c

2
13s2(23)c24

)]
,

Jeµ13 =−1

4
c12s2(13)c

2
14

[
s14s2(24)(c12s23 sin(δ13−δ14+δ24)−s12s13c23 sin(δ14−δ24))

+sinδ13s12c13s2(23)c
2
24

]
,

Jes13 =
1

16
c12s2(13)c

2
14

{
4s14

[
s2(24)c

2
34(s12s23 sin(δ13−δ14+δ24)−s12s13c23 sin(δ14−δ24))

+c24s2(34)(c12c23 sin(δ13−δ14)+sinδ14s12s13s23)
]
+s12c13

[
4s24s2(34)(cosδ13 sinδ24

−sinδ13 cosδ24c2(23))+sinδ13s2(23)

(
(c2(24)−3)c2(34)+2c2

24

)]}
(3.8)

where sij = sin θij , cij = cos θij , sn(ij) = sin(nθij) and cn(ij) = cos(nθij). Because of its
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Jeµ14 = −Jeµ24 − J
eµ
34 Jeµ12 = −Jeµ13 − J

eµ
14 Jeµ23 = −Jeµ13 + Jeµ34

Jes14 = −Jes24 − Jes34 Jes12 = −Jes13 − Jes14 Jes23 = −Jes13 + Jes34

Jµs14 = −Jµs24 − J
µs
34 Jµs12 = −Jµs13 − J

µs
14 Jµs23 = −Jµs13 + Jµs34

Jeτ12 = −Jeµ12 − Jes12 Jeτ13 = −Jeµ13 − Jes13 Jeτ14 = −Jeµ14 − Jes14

Jeτ23 = −Jeµ23 − Jes23 Jeτ24 = −Jeµ24 − Jes24 Jeτ34 = −Jeµ34 − Jes34

Jµτ12 = Jeµ12 − J
µs
12 Jµτ13 = Jeµ13 − J

µs
13 Jµτ14 = Jeµ14 − J

µs
14

Jµτ23 = Jeµ23 − J
µs
23 Jµτ24 = Jeµ24 − J

µs
24 Jµτ34 = Jeµ34 − J

µs
34

Jτs12 = Jeτ12 + Jµτ12 Jτs13 = Jeτ13 + Jµτ13 Jτs14 = Jeτ14 + Jµτ14

Jτs23 = Jeτ23 + Jµτ23 Jτs24 = Jeτ24 + Jµτ24 Jτs34 = Jeτ34 + Jµτ34

Table 2. Expressions of other 27 Jarlskog invariants in terms of chosen bases in eq. (3.7).

rather lengthy expression, the dependence of Jµs13 on mixing angles and CP-violating phases

is given in appendix C. It is easy to see that all of these rephasing invariants in eq. (3.8)

vanish if all CP-violating phases become zero. This is not only a check for the correctness of

derivation but also necessary to preserve CP symmetry. Another set of linearly independent

Jarlskog invariants obtained from a different parameterization of mixing matrix is given

in [44], see also other relevant works in [45–48].

Now that we have found the relation in eq. (2.16), writing the Jarlskog invariants in

matter in terms of that in vacuum is not difficult

J̃αβij =
∑
kl

Cαβik C
αβ
jl J

αβ
kl −

∑
k

[
Cαβik Im

(
Dαβ
j U∗αkUβk

)
− Cαβjk Im

(
Dαβ
i U∗αkUβk

)]
+ Im

(
Dαβ
i Dβα

j

)
, (3.9)

where Cαβij and Dαβ
i get their expressions from eq. (2.15), since the Jarlskog invariants are

identically zero in case α = β by definition. Moreover, finding a sum rule between the

Jalskog invariants in matter and in vacuum is also rather easy. We start with the eq. (2.8)

and eq. (2.9), observing that off-diagonal entries are not effected by matter potential, that is

4∑
i=1

m2
iUαiU

∗
βi =

4∑
i=1

m̃2
i ŨαiŨ

∗
βi (3.10)

when α 6= β. Making use of the unitarity of mixing matrix, multiplying both sides by their

complex conjugates and, then, taking imaginary parts lead to

∑
ij

∆m2
i1∆m2

j2J
αβ
ij =

∑
ij

∆m̃2
i1∆m̃2

j2J̃
αβ
ij . (3.11)
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Taking the same steps, one can also derive following several relations∑
ij

∆m2
i1∆m2

j2J
αβ
ij =

∑
ij

δm2
i1δm

2
j2J̃

αβ
ij ,∑

ij

δm2
1i δm

2
2jJ

αβ
ij =

∑
ij

∆m̃2
i1 ∆m̃2

j2J̃
αβ
ij , (3.12)

∑
ij

δm2
1i δm

2
2jJ

αβ
ij =

∑
ij

δm2
i1 δm

2
j2J̃

αβ
ij .

In the expressions above, we used the first and second mass eigenstate indices, but one has

freedom to use any other indices if needed and resulting expressions still remain correct.

Namely, these sum rules still hold even when the index “1” is replaced by k and the index

“2” is replaced by l. Note that if the unsummed indices on the left-hand side become equal,

then the sum vanishes; and the same happens to the expression on the right-hand side.

As far as the CP-violating observables are concerned, there are three such independent

quantities which can be chosen as ∆Pµe, ∆Pµτ and ∆Peτ . Other such observables are the

linear combinations of these three:

∆Pes = ∆Pµe −∆Peτ ,

∆Pµs = −∆Pµe −∆Pµτ , (3.13)

∆Pτs = ∆Peτ + ∆Pµτ .

Having found the relations of Jarlskog invariants in matter to that in vacuum, we can easily

obtain the relation between the matter-affected CP asymmetry ∆P̃αβ and its counterpart

in vacuum from the expression below

∆P̃αβ = 4
∑
i<j

J̃αβij sin
∆m̃2

jiL

2E
. (3.14)

Experimental signature of these quantities will be discussed in the next section, focusing,

in particular, on proposed long-baseline neutrino oscillation experiments.

4 Implications for long-baseline experiments

Heretofore we have discussed effects of sterile neutrino, purely on the theoretical ground,

to three active neutrino scheme, including oscillations in vacuum and matter as well as

the paradigm change in CP asymmetry with this additional neutrino flavor. To show

its phenomenological consequence, in this section we will try to embody possible hints in

long-baseline neutrino oscillation experiments such as DUNE, NOνA and T2HK.

Deep Underground Neutrino Experiment (DUNE) [10–13] is a world-leading long-

baseline neutrino experiment planned to operate near future with 40 kiloton liquid argon

detector at the Sanford underground research facility, located 1300 km downstream of the

source at the Fermi national laboratory. This is a multipurpose experiment to unveil some

neutrino-related mysteries in particle physics, such as determination of the mass order-

ing, measurement of the CP-violating phase in lepton sector, pin down the octant of θ23,
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search for a new physics beyond three-neutrino paradigm, precision measurement of neu-

trino parameters and many others. As stated previously, one of the primary goal of DUNE

experiment is to search for a new physics focusing on the precision measurement of the

parameters in muon neutrino and muon antineutrino oscillation channels.

The NOνA (NuMI Off-axis νe Appearance) experiment [14] is another long-baseline ex-

periment that aims to measure oscillations of νµ → νe in one of its 14 kiloton detector (made

up of liquid scintillators contained in PVC) located 810 km away from neutrino source at

Fermilab. The main goal of NOνA includes the precision measurement of atmospheric

mixing angle, mass-squared differences and also put constraints on CP-violating phase.

T2HK (Tokai-to-Hyper-Kamiokande) [15] is an extension of T2K experiment, which

uses water Cherenkov detector of 1 megaton volume that to be placed about 295 km

away from the source of neutrino beam at J-PARC (Japan Proton Accelerator Research

Complex). The main purpose of T2HK is to study CP asymmetry in the lepton sector

using accelerator neutrino and anti-neutrino beams.

To illustrate our results, throughout the paper we assume that the 1 eV mass sterile

neutrino has a percent level mixing with all active neutrinos. This is a suitable assumption

because it is in the best-fit allowed region of the recent global fit results. As refs. [37, 38]

have reported, from the global fit analysis, that the best-fit values of sterile neutrino pa-

rameters are ∆m2
41 ' 1.3 eV2, |Ue4|2 ' 0.012, and |Uµ4|2 ' 0.018. The values/ranges of

neutrino oscillation parameters used in our analysis are listed in the table 3. According to

the values of mass-squared differences in this table, one can see that there is a hierarchical

pattern ∆m2
4i � ∆m2

31,∆m
2
21 (for i = 1, 2, 3) and thus expect that there are very rapid

oscillations driven by ∆m2
4i in both neutrino oscillation probability and CP asymmetry

curves of 3+1 case. We investigate this expectation and confirm there are indeed such fast

oscillations that these long-baseline experiments hardly reach sensitivities to observe them.

So in our subsequent discussions we average out these modes by equating sin2 ∆m2
4iL

4E with
1
2 and sin

∆m2
4iL

2E with 0 (for i = 1, 2, 3) in eq. (2.4),

P (να → νβ) = δαβ [1− 2 Re (U∗α4Uβ4)] + 2 |Uα4|2 |Uβ4|2

− 4
3∑
i<j

Re
(
UαiU

∗
αjU

∗
βiUβj

)
sin2

∆m2
ijL

4E

− 2

3∑
i<j

Im
(
UαiU

∗
αjU

∗
βiUβj

)
sin

∆m2
ijL

2E
.

(4.1)

In particular,

P (νµ → νe) = 2 |Uµ4|2 |Ue4|2 − 4
3∑
i<j

Re
(
UµiU

∗
µjU

∗
eiUej

)
sin2

∆m2
ijL

4E

− 2
3∑
i<j

Im
(
UµiU

∗
µjU

∗
eiUej

)
sin

∆m2
ijL

2E
,

(4.2)
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parameters values/ranges

sin2 θ12 0.310

sin2 θ23 0.558

sin2 θ13 0.022

sin2 θi4 0.010

δ13/π 1.19

δ14/π [0, 2]

δ24/π [0, 2]

∆m2
21

10−5 eV2 7.39

∆m2
31

10−3 eV2 2.53

∆m2
41

1 eV2 1.0

Table 3. List of neutrino oscillation parameter values (or ranges) used in our phenomenological

study.

and

P (νµ → νµ) = 1− 2
(
|Uµ4|2 − |Uµ4|4

)
− 4

3∑
i<j

|Uµi|2 |Uµj |2 sin2
∆m2

ijL

4E
. (4.3)

When discussing the antineutrino oscillation probabilities, one just needs to change signs

of the terms including imaginary part. The same averaging is also implemented for CP

asymmetry in the 3+1 neutrino scheme,

∆Pαβ = −4

3∑
i<j

Im
(
UαiU

∗
αjU

∗
βiUβj

)
sin

∆m2
ijL

2E
. (4.4)

Again, these expressions can apply to both cases in vacuum and matter by replacing the cor-

responding oscillation parameters. Based on our exact analytic expressions and averaging

out of high frequency modes, we display both muon neutrino and antineutrino oscillation

probabilities in figure 4. As a reminder, although the averaging out of the fourth mass

contribution makes oscillation curve of 3 + 1 case a single line, blue and green bands in

these plots are due to the allowing the two CP-violating phases δ14 and δ24 to change in

the interval [0, 2π]. According to figure 4, it is clear to see that in the appearance channels

of
(−)
ν e there are rather significant separations in the probabilities for both cases of three-

and four-neutrino oscillations, thanks to the matter effect. Important energy ranges to find

these separations are 1–4 GeV in DUNE, 0.8–2.2 GeV in NOνA and 0.4–0.7 GeV in T2HK.

All of these energy ranges are under the coverage of typical energy of neutrinos from acceler-

ator. Although the oscillation probabilities between matter and vacuum are well separated,

three active neutrino oscillation curves pass through the bands of four-neutrino oscillation

probabilities. Displacement between the oscillation curves with and without the sterile
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Figure 4. Prospects of muon neutrino and antineutrino oscillation probabilities in DUNE, NOνA

and T2HK experiments, listed from the top to bottom.

neutrino may (or may not) be apparent when the values of δ14 and δ24 become precise.

Another aspect we learn from this figure is that the separation between the matter and vac-

uum oscillation probabilities gets bigger as the baseline increases. Therefore, knowing the

values of δ14 and δ24 and increasing the baseline of an experiment are necessary to make a

claim about the detection of active-sterile neutrino oscillations. As long as these two Dirac

CP-violating phases measured precise enough and a sizable separation is confirmed to be

there, it might more likely for DUNE to distinguish 3+1 neutrino oscillation signal from

the three active neutrino background. As a further step, an experiment with much longer

baseline and with high sensitivity could probably distinguish four-neutrino oscillation from

three active neutrinos case with the help of matter effect; and the eV-scale sterile neutrino

signal could be detected by looking at the appearance mode of
(−)
ν e. The disappearance

channel of
(−)
ν µ, however, cannot distinguish the sterile neutrino signal from the background

of active neutrino oscillations even after measuring the values of Dirac CP-violating phase.

That neither has noticeable dependence on these two phases nor has pronounced change

over the baseline of the experiments. For this reason, a would-be golden channel to find

active-sterile neutrino oscillation is
(−)
ν µ →

(−)
ν e.

3

3We investigate, for completeness,
(−)
ν µ →

(−)
ν τ oscillation channel and find that it is also not very effective

way to look for the sterile neutrino contribution. In addition, since this channel is not of direct use for any

of the long-baseline experiments discussed in this paper, we do not show these plots here.
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Figure 5. Shown are the plots of CP asymmetries in the long-baseline experiments DUNE, NOνA

and T2HK with respect to the neutrino energy, and comparison between the results in 3+0 and

3+1 neutrino schemes.

Comparing the results from
(−)
ν µ →

(−)
ν e oscillation channels, the DUNE has a greater

potential to observe larger oscillation probability and bigger separation enjoyed by the

larger matter effect, due to its longer baseline. Neutrino energies correspond to the first

pick value of oscillation probabilities, at which point the separation between the oscillation

in matter and vacuum is most significant, moves from 2 GeV in the DUNE to 1.4 GeV in

NOνA and to 0.5 GeV in T2HK. And, at the same time, not only do these pick values

decrease but also the gap between the oscillation curves in matter and vacuum shrinks with

the decrease of baseline.

As for the CP asymmetry in neutrino oscillations, figure 5 illustrates both neutrino

energy and two new CP-violating phase dependence of ∆Pµe and ∆P̃µe in the long-baseline
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experiments that are under consideration. Blue and green bands are the allowed regions

from varying both δ14 and δ24 in their full ranges. As this figure shows, 3+0 CP asymmetry

lines pass through the allowed regions of 3+1 case. And, although a sizable amount of CP

asymmetry appeared when neutrino energy less than 4.0 GeV for DUNE, 2.6 GeV for NOνA

and 1.0 GeV for T2HK, no enhancement or clear separation can be seen from the matter

effect as well as the presence of the sterile neutrino. So, it might be very hard, or not

even possible, for these experiments to reach such a high precision to extract the sterile

neutrino effects from the measurements of the CP asymmetry. High-energy tails of all CP

asymmetry curves are damping to zero, thus, there is no hope to find CP asymmetry from

this energy range either. Looking at the effects of two Dirac CP-violating phases δ14 and

δ24, given the lack of their measured values by the current experimental data, it is hard to

single out sterile neutrino contribution unless 3+1 CP asymmetry curves turn out to be

deviated from 3+0 lines by staying close to upper or lower edges of the allowed regions.

When it comes to the comparison of the CP asymmetry curves for these three experiments,

there is comparatively larger CP asymmetry in DUNE than T2HK, as it is illustrated that

the longer baseline the experiment has, the larger value of ∆Pµe can arise. But separations

between the ∆P̃µe curves with and without the sterile neutrino is not clear. Although all

of these long-baseline experiments could be able to measure sizable CP asymmetry, there

might be a big challenge for them to aim at finding the light sterile neutrino signal in the

CP asymmetry measurements.

5 Summary and conclusion

The work in this paper is a theoretical study about the possibility of searching for a light

sterile neutrino and observing the CP asymmetry in the long-baseline neutrino oscillations.

To this end, we have discussed matter effects to neutrino masses, mixing and oscillation

probabilities, by providing their relations in matter and vacuum. We have also carried

out a thorough analysis on CP-violating quantities by detailed derivation of independent

Jarlskog invariants, CP asymmetries, and their connection in matter to vacuum. Based

on our results, we have performed phenomenological study of four-neutrino oscillations,

in comparison with the standard three-neutrino framework, in DUNE, NOνA and T2HK

experiments and presented the CP asymmetries from the relevant oscillation channels.

Our analysis indicate that more promising ways to search for the imprints of the light

sterile neutrino in these experiments are focusing on the electron neutrino and electron

antineutrino appearance channels. As expected, the matter effects play a non-trivial role

in searching for the sterile neutrino, by amplifying quite significantly the oscillation prob-

abilities. Figure 4 illustrates that the separation between the oscillation probability in

matter and vacuum increase as the increase of the neutrino propagation distance in these

experiments. We also notice that sizes of the oscillation probabilities get larger with the

longer baseline. But the separations between the probability curves of four-neutrino signal

from the three active neutrino background is also subject to the values of CP-violating

phases. In the oscillation curves for DUNE, in contrast to other two experiments, there are

slightly bigger probability and lager separation when comparing the cases with and without
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the matter effect. Such a prominent separation in the electron (anti)neutrino appearance

channel arises within the energy range from 1 GeV to 4 GeV, while no similar phenomenon

occurs in the muon (anti)neutrino disappearance channels. This kind of deviations, and the

energy ranges they are appearing, in the NOνA and T2HK get smaller with the decrease

of the baseline.

From the CP asymmetry plots in figure 5 one can see, unlike the situation in oscillation

probability, that there are no such clear distinctions between the cases whether or not

taking into account of the matter effect. Moreover, three-neutrino CP asymmetry curves

in vacuum and matter are respectively within the corresponding allowed regions of four-

neutrino cases. This means that it might be challenging for these experiments to reach

such high precision to extract sterile neutrino contribution, unless the values of CP-violating

phases make the separation between the results from four- and three-neutrino cases large

enough. Comparing the results for these three experiments, there is no big difference among

them. Nonetheless, size of the CP asymmetry and value of the neutrino energy up to which

noticeable CP asymmetry can arise increase with the longer baseline. So, in this sense,

DUNE could observe a bit bigger value of CP asymmetry and scan larger range of neutrino

energy than that in the other two experiments.

Finally, as stated, the results in this paper based on the theoretical study of long-

baseline neutrino oscillations and CP asymmetries. These results could anticipate what

would be the outcome, without considering the experimental capabilities, but they are

not enough to claim full discovery potentials of these experiments. In order to make a

complete statement one must consider also other experimental factors like neutrino flux,

cross section, detector size, energy resolution, uncertainty, and efficiency etc, which are left

to be discussed in a separate work.
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A Matter-induced effective mass squares

This section is to calculate effective mass squares from the equation

(m̃2
i )

4 − c3(m̃2
i )

3 + c2(m̃2
i )

2 − c1m̃
2
i + c0 = 0, (A.1)

where c3, c2, c1, c0 are the trace, the sum of determinants of 2×2 main diagonal blocks, the

sum of determinants of 3×3 main diagonal blocks and the determinant of 2EHeff . Results
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from our calculation are the following:

c3 = Tr (2EHeff) =

4∑
i

m2
i + 2E (VCC − VNC) ,

c2 =

4∑
i<j

m2
im

2
j + 2EVCC

4∑
i

m2
i

(
1− |Uei|2

)
− 2EVNC

4∑
i

m2
i

(
1− |Usi|2

)
− 4E2VCCVNC,

c1 =

4∑
n,i,j,k

ε2
nijkm

2
im

2
j

[
1

6
m2
k +

(
VCC |Uek|2 − VNC |Usk|2

)
E

]

− 4E2VCCVNC

4∑
i

m2
i

(
1− |Uei|2 − |Usi|2

)
,

c0 = m2
1m

2
2m

2
3m

2
4 +

E

3

4∑
n,i,j,k

ε2
nijkm

2
im

2
jm

2
k

(
VCC |Uen|2 − VNC |Usn|2

)

− E2VCCVNC

4∑
i,j,k,l

ε2
ijklm

2
im

2
j |UekUsl − UelUsk|

2 . (A.2)

As one can see, all of those coefficients are non-negative real numbers. To make life simple,

let us write eq. (A.1) with x ≡ m̃2
i and then perform change of variable x = y + c3

4 . This

provides

y4+

(
−3c2

3

8
+c2

)
y2+

(
−c

3
3

8
+

1

2
c3c2−c1

)
y+

(
− 3c4

3

256
+
c2

3c2

16
− 1

4
c3c1+c0

)
= 0 . (A.3)

To avoid carrying cumbersome coefficients, one can introduce the following variables

p =
8c2 − 3c2

3

8
,

q = −c
3
3 − 4c3c2 + 8c1

8
,

r =
−3c4

3 + 16c2
3c2 − 64c3c1 + 256c0

256
. (A.4)

Using these new variables and adding p2/4 + 2z(y2 + p/2) + z2 on the both sides, above

equation can be transformed into the following form:(
y2 +

p

2
+ z
)2

= 2zy2 − qy + z2 + pz − r +
p2

4
. (A.5)

Since this equality holds for any values of z, one can choose its value to make the right-

hand site full square. This can be done when the discriminant of quadratic equation of y is

zero. Because in this case the quadratic equation has two identical roots or, equivalently,

the right-hand side of eq. (A.5) becomes a complete square if and only if the discriminant

vanishes, i.e.

q2 − 8z

(
z2 + pz − r +

p2

4

)
= 0 . (A.6)
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This, in turn, requires that z satisfies cubic equation

z3 + pz2 +
1

4

(
p2 − 4r

)
z − 1

8
q2 = 0 . (A.7)

As a result, solution of the quartic equation boils down to the solution of one quadratic

equation, (
y2 +

p

2
+ z
)2
−
(√

2zy − q

2
√

2z

)2

= 0 , (A.8)

and one cubic equation in (A.7). Solutions of the quadratic equation of y in (A.8) are easily

obtained from

y2 +
√

2zy +
p

2
+ z − q

2
√

2z
= 0 , (A.9)

or

y2 −
√

2zy +
p

2
+ z +

q

2
√

2z
= 0 (A.10)

These two equations yield following four possible solutions of quartic equation

y1 = −1

2

√2z +

√
−2z − 2p+

√
2

z
q

 ,
y2 = −1

2

√2z −

√
−2z − 2p+

√
2

z
q

 ,
y3 =

1

2

√2z −

√
−2z − 2p−

√
2

z
q

 ,
y4 =

1

2

√2z +

√
−2z − 2p−

√
2

z
q

 . (A.11)

But this is not the end of story, to have complete solution, cubic equation of z in (A.7) must

be solved. This will be done in the following steps. Since the solutions of interest are real

ones, although there are many other ways to solve this equation, the trigonometric solution

of cubic equation provides expected result. By doing a change of variable z = t− 1
3p, it is

easy to get read of the quadratic term in (A.7), i.e.

t3 + vt+ w = 0, (A.12)

where

v = − 1

12
p2 − r ,

w =
1

216

(
−2p3 − 27q2 + 72pr

)
.

Let us implement another replacement t = u cos θ, then divide both sides by u3/4, the

cubic equation above reads

4 cos3 θ +
4v

u2
cos θ +

4w

u3
= 0 , (A.13)
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which has very similar form as the well-known trigonometric identity

4 cos3 θ − 3 cos θ − cos 3θ = 0 . (A.14)

Comparing these two equations, one can easily identify u = 2
√
−v/3 and replacing it back

to eq. (A.13) yields

4 cos3 θ − 3 cos θ +
3w

2 |v|

√
−3

v
= 0 . (A.15)

This implies

θ =
1

3

[
arccos

(
−3w

2 |v|

√
−3

v

)
+ 2kπ

]
, (A.16)

for k = 0, 1, 2. Thus, solutions of cubic equation (A.7) have the following form

zk+1 = −1

3
p+ 2

√
−v
3

cos

[
1

3
arccos

(
−3w

2 |v|

√
−3

v

)
+

2kπ

3

]
. (A.17)

Finally, inserting this result to the eq. (A.11), the solution for quartic equation comes to

the end. Combining all we have got so far, solutions of eq. (A.1) are

m̃2
1 =

c3

4
− 1

2

√2z +

√
−2z − 2p+

√
2

z
q

 ,
m̃2

2 =
c3

4
− 1

2

√2z −

√
−2z − 2p+

√
2

z
q

 ,
m̃2

3 =
c3

4
+

1

2

√2z −

√
−2z − 2p−

√
2

z
q

 ,
m̃2

4 =
c3

4
+

1

2

√2z +

√
−2z − 2p−

√
2

z
q

 . (A.18)

B Derivation of the relations between mixing matrix in matter and

vacuum

This part is dedicated to find relations between combinations of mixing matrix elements

in matter and vacuum. The main purpose is to solve following linear equations system

4∑
i

ŨαiŨ
∗
βi = δαβ ,

4∑
i

m̃2
i ŨαiŨ

∗
βi =

4∑
i

m2
iUαiU

∗
βi+Φαβ ,

4∑
i

m̃4
i ŨαiŨ

∗
βi =

4∑
i

[
m4
i +m2

i (Φαα+Φββ)
]
UαiU

∗
βi+Φ2

αβ ,

4∑
i

m̃6
i ŨαiŨ

∗
βi =

4∑
i

[
m6
i +m4

i (Φαα+Φββ)+m2
i

(
Φ2
αα+Φ2

ββ+ΦααΦββ

)]
UαiU

∗
βi

+
∑
ijγ

m2
im

2
jUαiU

∗
γiUγjU

∗
βjΦγγ+Φ3

αβ .

(B.1)
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When α = β this system of equations can be written in the following linear matrix equation

form

AV = B (B.2)

with

A =


1 1 1 1

m̃2
1 m̃2

2 m̃
2
3 m̃

2
4

m̃4
1 m̃

4
2 m̃

4
3 m̃

4
4

m̃6
1 m̃6

2 m̃
6
3 m̃

6
4

 , (B.3)

V =



∣∣∣Ũα1

∣∣∣2∣∣∣Ũα2

∣∣∣2∣∣∣Ũα3

∣∣∣2∣∣∣Ũα4

∣∣∣2


, (B.4)

and

B =



1
4∑
i

m2
i |Uαi|

2+Φαα

4∑
i

(
m4
i +2m2

iΦαα

)
|Uαi|2+Φ2

αα

4∑
i

(
m6
i +2m4

iΦαα+3m2
iΦ

2
αα

)
|Uαi|2+

∑
ijγ

m2
im

2
jUαiU

∗
αjU

∗
γiUγjΦγγ+Φ3

αα


. (B.5)

Interestingly, the matrix A is nothing but the Vandermonde matrix with elements

Aij = m̃
2(i−1)
j , which has well-known determinant

det(A) =
4∏

1≤i<j

(
m̃2
j − m̃2

i

)
=

4∏
i<j

∆m̃2
ji , (B.6)

and inverse

A−1 =



∏
j 6=1

∆m̃2
j1 ∏

j 6=2

∆m̃2
j2 ∏

j 6=3

∆m̃2
j3 ∏

j 6=4

∆m̃2
j4



−1


m̃2

2m̃
2
3m̃

2
4 −m̃2

3m̃
2
4 − m̃2

2

(
m̃2

3 + m̃2
4

)
m̃2

2 + m̃2
3 + m̃2

4 −1

m̃2
1m̃

2
3m̃

2
4 −m̃2

3m̃
2
4 − m̃2

1

(
m̃2

3 + m̃2
4

)
m̃2

1 + m̃2
3 + m̃2

4 −1

m̃2
1m̃

2
2m̃

2
4 −m̃2

2m̃
2
4 − m̃2

1

(
m̃2

2 + m̃2
4

)
m̃2

1 + m̃2
2 + m̃2

4 −1

m̃2
1m̃

2
2m̃

2
3 −m̃2

2m̃
2
3 − m̃2

1

(
m̃2

2 + m̃2
3

)
m̃2

1 + m̃2
2 + m̃2

3 −1

 . (B.7)
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Finding solutions of linear equations system (B.2) boils down to the computation of the

following matrix product

V = A−1B. (B.8)

After a bit of computational work, one reaches to the solution

∣∣∣Ũαi∣∣∣2 =

 4∏
k 6=i

∆m̃2
ik

−1
4∑
j=1

 4∏
r 6=i

(
Φαα − δm2

rj

) |Uαj |2
−1

2

∑
mnγ

(
∆m2

mn

)2
UαmU

∗
αnU

∗
γmUγnΦγγ

 . (B.9)

On the other hand, when α 6= β, discussion is the same as above except for replacing

V by V′ and B by B′, which are

V′ =


Ũα1Ũ

∗
β1

Ũα2Ũ
∗
β2

Ũα3Ũ
∗
β3

Ũα4Ũ
∗
β4

 , (B.10)

B′ =



0
4∑
i

m2
iUαiU

∗
βi

4∑
i

[
m4
i +m2

i (Φαα + Φββ)
]
UαiU

∗
βi

4∑
i

[
m6
i +m4

i (Φαα + Φββ) +m2
i

(
Φ2
αα + Φ2

ββ + ΦααΦββ

)]
UαiU

∗
βi

+
∑
ijγ

m2
im

2
jUαiU

∗
βjU

∗
γiUγjΦγγ


. (B.11)

Now that the matrix A remains unchanged, the solutions are given by

V′ = A−1B′. (B.12)

It is straightforward to compute matrix multiplications on the right-hand side of above

equation. The explicit form of the solutions are

ŨαiŨ
∗
βi =

 4∏
k 6=i

∆m̃2
ik

−1
4∑
j=1

 4∏
r 6=i

(
Φαα + Φββ − δm2

rj

)
− 3

2

(
δm2

ij

)2
(Φαα + Φββ)

−δm2
ij

[
(Φαα + Φββ)

4∑
l=1

∆m̃2
li − 2 (Φαα + Φββ)2 − ΦααΦββ

] ]
UαjU

∗
βj

−1

2

∑
mnγ

(
∆m2

mn

)2
UαmU

∗
βnU

∗
γmUγnΦγγ

 , (B.13)

where ∆m̃2
ij ≡ m̃2

i − m̃2
j , ∆m2

ij ≡ m2
i −m2

j and δm2
ij ≡ m̃2

i −m2
j .
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At this point, we obtained not only the matter-effected mixing matrix element’s mod-

ulus squares but also the paired product of one element with complex conjugate of the

other, which are essential to investigate matter effects in many neutrino physics processes

including four neutrino oscillation as well as CP asymmetry.

C Expression of the Jµs13

This section shows the expression of Jµs13 as a function of mixing angles and Dirac CP-

violating phases. This is the last piece of nine independent Jarlskog invariants analyzed in

main body of the paper.

Jµs13 =−1

8
s2(12)s2(13)s2(23)c13c

2
34s

2
14s

4
24 sinδ13

+
1

32
c2

34s14

{[
32c3

13 sinδ14s13s23

(
sin(δ13−δ14)sin(δ14−δ24)s2

14+cos(δ13+δ24)s2
23

)
s24c

3
24

+4s2
24

(
c2(14)c24 sinδ13 sin(δ13−δ14)sinδ14s

2
2(13)s14−

(
cos(δ14+δ24)sinδ13s4(13)s

2
14

+2
(
cos(δ14−δ24)sinδ13c

2
14+cosδ13(cosδ14 sinδ24−cosδ24c2(14) sinδ14)

)
s2(13)

)
s23s24

)
c24

+4s2(13)

(
2c2(23) sin(δ13−δ14+δ24)s23s

3
24−4c2

24 sin(δ13−δ14)s2
13s23 (sinδ14 sin(2δ13−δ14

+δ24)s2
14+cosδ24s

2
23

)
s24+c24

(
c2(24)−c2(23)c

2
24

)
sinδ13 sin(δ13−δ14)sinδ14s2(13)s14

)
c24

+((3cos(δ13−2δ14)−cos(δ13+2δ24)+2cos(δ13−δ14+δ24)cos(δ14+δ24)c4(13))sinδ13−

4cosδ13c2(13) sin(δ13−2δ14))s14s
2
23s

2
2(24)

]
c2

12+8c13c23s2(24)s2(12)

(
cosδ24c

2
13c

2
24 sinδ14s

2
23

+cos(δ13−δ14+δ24)sin(δ13−δ14)sin(δ14−δ24)sinδ24s
2
13s

2
14s

2
24

)
+2s13s14

(
2c2

23 sin2(δ13

−δ14)s2
12s13−cos(2δ24)c2

13 sinδ13s2(12)s2(23)

)
s2

2(24)+4c23s2(24)

[
c13s2(12) (((cos(δ14−δ24)

sin2(δ13−δ14)−2cos2 δ24 sin(δ14−δ24)
)
s2

13s
2
14+2(sin(δ14−δ24)−sin(2δ13−δ14+δ24)

s2
13

)
s2

23

)
s2

24−2c2
24 sin(δ13−δ14)s2

13

(
sinδ14 sin(δ13−δ14+δ24)s2

14+2cosδ13 cosδ24s
2
23

))
−s2

12s2(13)s2(23)

(
cosδ24 sin(δ13−δ14)c2

24+sin(δ13−δ14+δ24)s2
24

)]}
+

c13s34

{
1

2
c12s2(13)c34s

2
14s23 [cosδ24(cosδ13−cos(δ13−2δ14+2δ24))c12c23 sinδ13s13+sin(δ13

+δ24)s12s23]s3
24+c23

[
1

2
s2(12)s2(13) sinδ13s23(s2

14s
2
24−c2

24)+
1

8
s14

(
s2(12)(2sin(δ13−δ14+

δ24)s2
13s

2
23+(c2(23)−c2(13))sin(δ14−δ24)

)
−2c2(12) sin(δ13−δ14+δ24)s13s2(23)

)
s2(24)

]
s34

}
+

1

8
c13s14

{
4c34

[
c24s12s23

(
2c12

(
sin(δ13−δ14+δ24)

(
sin(δ13−δ14)sin(δ14−δ24)s2

13s
2
14

+cos(δ13+δ24)s2
23

)
−cos(δ13−δ14+δ24)c2(13) sin(δ13+δ24)s2

23

)
+sin(δ13−δ14+2δ24)

s12s13s2(23)

)
−c12c23s14

(
cosδ24c12c13 sin(2δ13)s23s

2
13+c23 sin(δ13−δ24)s12s2(13)

)
s24

]
s34

+s13

(
cosδ24 cos(δ13−2δ14+2δ24)c2

12 sinδ13s2(13)s14s2(23)s24−c24s23 (4cosδ24 sin(δ13−
δ14+δ24)s2(23)c

2
12+(cosδ13+cos(δ13−2δ14+2δ24))sin(δ13−δ14)s2(12)s13s

2
14

))
s2(34)

}
s2

24

+
1

16
c24s2(34)

{
c23s14

[
cosδ14c

2
24 sinδ13s4(13)s

2
23+8c24

(
cos(δ14−δ24)sinδ14c

4
13−cos(δ13+
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δ24)sinδ13s
2
13c

2
13+cos(δ13−δ14+δ24)sin(δ13−δ14)s4

13

)
s14s24s23+4s2(13)

(
cosδ14 sinδ13s

2
13

−cosδ13 sinδ14)s2
14s

2
24

]
c2

12+2c24s2(12)

[
c13c24

(
2c2

13 sinδ14c
2
23+cosδ13 sin(δ13−δ14)s2

13

)
s14s23+2s13

((
sin(δ13−δ14)(cosδ13 cos(δ13−δ14+δ24)c2(23)+sinδ13 sin(δ13−δ14+δ24))s2

13

−cos(δ13−δ14+δ24)c2
13c

2
23 sinδ14

)
s2

14+c2
13

(
cos(δ14−δ24)sin(δ13−δ14)s2

14−sin(δ13+

δ24))s2
23

)
s24

]
+2c13c23s14

[
sin(δ14−2δ24)s2(12)s2(23)−2sin(δ13−δ14)s13

(
2c2

23s
2
12+

cosδ13s2(12)s13s2(23)

)]
s2

24+
1

2
s2(13)c

2
24s14[(sinδ13 cos(δ14)(1−3c2(12))+4cosδ13c2(12)

sinδ14)s23s2(23)−2cosδ13 sin(δ13−δ14)s2(12)s13s3(23)]−2s2(23)s2(24)s
2
12

[
sinδ24c

2
13+cos(δ13

−δ14+δ24)sin(δ13−δ14)s2
13s

2
14

]}
+

1

4
c24c34s14

{
4cosδ14c12c13

[
−1

2
c12s2(24)s14s23(c34 sinδ14s23s24+c23 sin(δ14−δ24)s34)c3

13

+
(
c34s23s24

(
c12s13

((
sin(δ13−2δ14+δ24)s2

14−sin(δ13+δ24)s2
23

)
c2

24+sin(δ13+δ24)s2
14s

2
24

)
− 1

2
s2(23)c

2
24 sinδ24s12)+

1

2
c12c23 sinδ13s13

(
c2(23)c

2
24−c2(14)s

2
24−c2(24)

)
s34)c2

13

+
1

8
c24s2(13)s14

(
c34

(
2sin(δ13−δ14)

(
2cosδ13c12s13s

2
23+s12s2(23)

)
c2

24+(c12s13 (4sin(2δ13

−δ14+2δ24)s2
23−sin(2δ13−δ14)−2c2(14) sinδ14+sinδ14

)
+2sin(δ13−δ14+2δ24)s12

s2(23)

)
s2

24+2cos(δ13−δ14)c12

(
c2(23)c

2
24−c2(24)

)
sinδ13s13

)
+2(2sin(δ13−δ14+δ24)s12

c2
23+c12 sin(2δ13−δ14+δ24)s13s2(23)

)
s24s34

)
+c2

24c34s
2
13s

2
14(c23 sinδ24s12+c12 sin(δ13

+δ24)s13s23)s24

]
+cos(δ13−δ14)s13

[
2cos(δ14−δ24)c2

12s2(24)c24c34 sinδ14s
2
14s23c

3
13+

1

4
c24

c34s14

(
4(cosδ24 sin(δ14−δ24)+cos(δ14−δ24)c2(24) sinδ24)s2(12)s2(23)−16c2

12s13 (cosδ13

sinδ14s
2
14+cos(δ14−2δ24)sinδ13s

2
23

)
s2

24

)
c2

13+2cosδ13c12c34s2(13)s23 (c12s14 (c13c24s23(
sinδ14c

2
24+sin(δ14−2δ24)s2

24

)
−s13s14s24

(
cos(δ13−δ14+δ24)sinδ14c

2
24+sin(δ13−δ24)

s2
24

))
−c2

24 sinδ24s12s2(23)s24

)
+s23 (c12 sinδ13s13 (4c12c34s13s24 ((sinδ14 sin(δ13−δ14+

δ24)s2
14−sinδ13 sinδ24s

2
23

)
c2

24+cos(δ13−δ24)s2
14s

2
24

)
+
(
(c2(14)−3)c2(24)−2c2

14

)
s12s34

)
−2c2

23s2(24)c24c34s
2
12 sinδ24

)
c13−2cos2 δ13c

2
12s2(24)c34s

2
13s

2
23(c13c24 sinδ24s23+sin(δ13−δ14)

s13s14s24)+c34s14s24

(
s24

(
−4c24s13 sin(δ13−δ14)

(
c2

23s
2
12+c2

12 sin2 δ13s
2
13s

2
23

)
−cos(δ14−

2δ24)c23 sin(δ13−δ14+δ24)s2(12)s2(13)s14s24

)
+cos(δ13−δ14+δ24)c23s2(12)s2(13)s14 (cos(δ14

−δ24)sinδ24s
2
24−c2

24 sinδ14

))
+

1

2
s14

(
s2(12)

(
2sin(2δ13−δ14+δ24)s2

13s
2
23+(c2(23)−c2(13))

sin(δ14−δ24))−2c2(12) sin(δ13−δ14+δ24)s13s2(23)

)
s2(24)s34

]}
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 27 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
6
(
2
0
2
0
)
0
9
4

References

[1] LSND collaboration, Evidence for neutrino oscillations from the observation of ν̄e
appearance in a ν̄µ beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

[2] MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE

Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801

[arXiv:1805.12028] [INSPIRE].

[3] G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006

[arXiv:1101.2755] [INSPIRE].

[4] T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83

(2011) 054615 [arXiv:1101.2663] [INSPIRE].

[5] P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C

84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

[6] GALLEX collaboration, GALLEX solar neutrino observations: Results for GALLEX IV,

Phys. Lett. B 447 (1999) 127 [INSPIRE].

[7] F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX

solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731]

[INSPIRE].

[8] SAGE collaboration, Measurement of the solar neutrino capture rate with gallium metal,

Phys. Rev. C 60 (1999) 055801 [astro-ph/9907113] [INSPIRE].

[9] SAGE collaboration, Measurement of the solar neutrino capture rate with gallium metal. III:

Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807

[arXiv:0901.2200] [INSPIRE].

[10] DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground

Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE

Projects, arXiv:1601.05471 [INSPIRE].

[11] DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground

Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program

for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].

[12] DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground

Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino

Facility for DUNE, arXiv:1601.05823 [INSPIRE].

[13] DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground

Neutrino Experiment (DUNE) Conceptual Design Report Volume 4: The DUNE Detectors at

LBNF, arXiv:1601.02984 [INSPIRE].

[14] NOνA collaboration, The NOvA Technical Design Report, FERMILAB-DESIGN-2007-01

(2007) [INSPIRE].

[15] Hyper-Kamiokande proto-collaboration, Physics potential of a long-baseline neutrino

oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015

(2015) 053C02 [arXiv:1502.05199] [INSPIRE].

[16] C. Liu and J.-H. Song, Four light neutrinos in singular seesaw mechanism with Abelian

flavor symmetry, Phys. Rev. D 60 (1999) 036002 [hep-ph/9812381] [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.64.112007
https://arxiv.org/abs/hep-ex/0104049
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0104049
https://doi.org/10.1103/PhysRevLett.121.221801
https://arxiv.org/abs/1805.12028
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.12028
https://doi.org/10.1103/PhysRevD.83.073006
https://arxiv.org/abs/1101.2755
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2755
https://doi.org/10.1103/PhysRevC.83.054615
https://doi.org/10.1103/PhysRevC.83.054615
https://arxiv.org/abs/1101.2663
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2663
https://doi.org/10.1103/PhysRevC.85.029901
https://doi.org/10.1103/PhysRevC.85.029901
https://arxiv.org/abs/1106.0687
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0687
https://doi.org/10.1016/S0370-2693(98)01579-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B447,127%22
https://doi.org/10.1016/j.physletb.2010.01.030
https://arxiv.org/abs/1001.2731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2731
https://doi.org/10.1103/PhysRevC.60.055801
https://arxiv.org/abs/astro-ph/9907113
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9907113
https://doi.org/10.1103/PhysRevC.80.015807
https://arxiv.org/abs/0901.2200
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2200
https://arxiv.org/abs/1601.05471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05471
https://arxiv.org/abs/1512.06148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06148
https://arxiv.org/abs/1601.05823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05823
https://arxiv.org/abs/1601.02984
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02984
https://doi.org/10.2172/935497
http://inspirehep.net/record/774999
https://doi.org/10.1093/ptep/ptv061
https://doi.org/10.1093/ptep/ptv061
https://arxiv.org/abs/1502.05199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05199
https://doi.org/10.1103/PhysRevD.60.036002
https://arxiv.org/abs/hep-ph/9812381
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9812381


J
H
E
P
0
6
(
2
0
2
0
)
0
9
4

[17] J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and

Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].

[18] S. Kawai and N. Okada, eV-scale sterile neutrinos from an extra dimension, Phys. Rev. D

100 (2019) 115043 [arXiv:1910.02936] [INSPIRE].
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