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1 Introduction and main result

Gaugino bilinear vacuum expectation values (VEVs) play a prominent role in the mecha-

nism of moduli stabilisation, both in heterotic and type II theories. In the latter, where

the gaugini are part of the fermionic degrees of freedom on Dp-branes, such VEVs give

rise to non-perturbative contributions to the effective potential involving the modulus that

corresponds to the size of the cycle wrapped by the D-brane. In compactifications of type

IIB theory, where Dp-branes wrap cycles of even dimension, there are no perturbative con-

tributions to the potential for these moduli coming from NSNS or RR fluxes, and the non-

perturbative terms become the leading order contribution. This is the mechanism proposed

by Kachru, Kallosh, Linde and Trivedi (KKLT) [1] to stabilise the Kähler moduli (corre-

sponding to sizes of four-cycles) in type IIB compactifications on Calabi-Yau manifolds.

The starting point in the KKLT construction is the well-known set-up with a self-dual

combination of NSNS and RR 3-form fluxes such that the background geometry is Calabi-

Yau, with a metric that is related to the Ricci-flat metric by a conformal factor [2, 3]. In the

effective four-dimensional theory corresponding to the compactification on a Calabi-Yau

manifold with 3-form fluxes, this solution appears as supersymmetric or supersymmetry-

breaking Minkowski vacuum with stabilised complex structure moduli, which measure the

sizes of 3-cycles. However, the Kähler moduli corresponding to sizes of 4-cycles are flat

directions, which in this construction are lifted by gaugino bilinear VEVs on D7-branes

wrapping these cycles. The resulting effective field theory has supersymmetric AdS4 vacua
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with all moduli stabilised. Furthermore, these vacua exhibit a clear separation between the

KK scale and the AdS curvature, allowing for a four-dimensional truncation of the field

theory. Given the problems encountered in reproducing this feature in classically stabilised

vacua (see e.g. [4–9]), this makes gaugino condensates interesting not only for KKLT but

also for any type II compactification.

However, same as fluxes, gaugino bilinear VEVs back-react on the geometry: the

internal manifold cannot be Calabi-Yau (or conformally related to it), since it does not

support AdS4 vacua. Moreover, it has been shown [10–13] that it cannot even be a geometry

with SU(3) structure (defined by a single globally defined spinor), but it requires a more

general “dynamic SU(2) structure” (with two globally defined spinors that can become

parallel at points or subspaces of the internal manifold). This situation is better described

in the language of Generalized Complex Geometry (GCG, see [14] for a review), in terms

of SU(3)×SU(3) structures on the tangent plus cotangent bundle of the manifold. In

order to try and describe backgrounds with gaugino bilinear vevs (i.e. a VEV for the

operator corresponding to the gaugino mass terms) on D-branes, one is thus led to consider

the generalized (almost) complex geometry of the internal manifold and that of the cycle

wrapped by the brane.

In this paper we compute the four-dimensional gaugino mass term for a space-filling

Dp-brane, which wraps a cycle Σ on the internal manifold. The brane is stable if the

cycle satisfies the so-called calibration conditions, which split into algebraic and differential

requirements. We assume that the cycle satisfies the former, but not necessarily the latter.

For example, for D7-branes in SU(3)-structure backgrounds characterized by a real (1,1)-

form J and a holomorphic (3,0)-form Ω, this means that we assume the four-cycle to be

holomorphic with respect to the almost complex structure of the background. On the other

hand, we do not require the differential calibration conditions. In the D7-brane example,

this implies we do not necessarily assume the complex structure to be integrable (or in

other words the geometry need not be complex, that is, dΩ can be anything), nor do we

assume any relation between d
(
J2
)

and the 5-form flux.

To compute the gaugino mass term we use the fermionic Dp-brane action at the two

fermion level of [15–18]. This is the action for a single Dp-brane1 with world-volume

flux embedded in a generic bosonic flux background. Doubling the fermionic degrees of

freedom, the quadratic fermionic action can be written compactly in a canonical Dirac-like

form. The redundant degrees of freedom are removed by choosing a gauge for the fermionic

κ-symmetry of the action. For simplicity, we set the world-volume fluxes to zero.

Let us state the main result of this paper. We find that, for a generic Dp-brane in an

SU(3)×SU(3) structure background described in terms of the even and odd pure spinors

(or polyforms) Ψ+ and Ψ−, the gaugino mass is given by

mλ = − i

8π

∫
M6

δ(0)
〈

Ψ± , F + idH̃(e−φRe Ψ∓)
〉
,

1The non-Abelian version of the fermionic action is not known. Up to order α′2 the non-Abelian

generalization of the fermionic DBI action amounts to adding a trace to the abelian expression [19]. At

higher orders one expects though the appearance of new terms that are absent in the Abelian case (see [20,

21] for recent discussions on possible couplings at four-fermion level).
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where the upper (lower) sign is for type IIA (IIB). Here δ(0) is a scalar delta-function with

support at the locus of the brane,2 〈, 〉 denotes the Mukai pairing, defined in (2.7), F is the

even (odd) polyform given by the formal sum of internal RR fluxes in type IIA (IIB) and

dH̃ is the twisted exterior derivative where the two components of H flux with none and 2

world-volume indices appear with a relative sign (the definition is written in (3.35)).

The calibration conditions imply that many of the components of the pure spinors

vanish on the brane locus, such that only some of the components of the fluxes give a non-

zero contribution to the gaugino mass. For instance, for a D3-brane, only the RR 3-form

flux F3 leads to a mass term, irrespectively of the (generalized) structure of the background.

The contribution from the RR fluxes and the derivative of the pure spinors to the

gaugino mass is of the same form as in the bulk superpotential [22, 23], given in (2.15).

However, the NSNS flux enters with a slight (but key) difference: there is a relative sign in

the component along the normal directions to the brane compared to the twisted exterior

derivative that appears in the superpotential, or in the supersymmetry equations, given

in (2.13). This relative sign is such that for instance for D3-branes, where the derivative

term gives no contribution, the gaugino mass is proportional to Ḡ3 ∧ Ω, in accordance

with [24–26]. For D7-branes instead, the gaugino mass involves the component of H with

two directions along the world-volume, which does not have a relative minus sign, and

thus the gaugino mass is proportional to G ∧ Ψ−, with G the complex polyform defined

in (2.16), and this reduces in Calabi-Yau manifolds to G3 ∧ Ω, in agreement with [27, 28].

Thus imaginary self dual fluxes as in the solutions [2, 3, 29] do not generate gaugino masses

on D3-branes, but they do on D7. The latter is also true in D8-branes, since there are

no components of H completely normal to the brane. In D4-branes, there is only the

contribution from the normal component to the brane, which has a minus sign, but since

the derivative term is not zero, the NSNS contribution cannot be combined with the RR

piece into a Ḡ as for D3-branes. For D5 and D6 branes both components of H-flux enter,

and similarly we cannot write generically the mass term in terms of G and/or Ḡ.

The paper is organized as follows. In section 2 we introduce the GCG description of

type II compactifications, and also review how space-time-filling D-branes wrapping cali-

brated internal cycles are included in this framework. In section 3 we use this formalism

to compute the gaugino mass terms. We first introduce the quadratic fermionic D-brane

action and set our conventions for the dimensional reduction. We then present the compu-

tation in some detail and give our final result in eqs. (3.34)–(3.37). Finally, we show how

the gaugino mass looks like for the particular case of an SU(3) structure geometry. Further

conventions are presented in appendix A together with some useful identities.

2 Compactifications, branes and Generalized Complex Geometry

2.1 Compactifications and GCG

We start with type II superstring theory on a warped product of an extended and maximally

symmetric four-dimensional manifold (Mink4, AdS4 or dS4) and a compact internal six-

2For example for a D7-brane in SU(3) structure it is the contraction of the 2-form Poincare dual to the

4-cycle, and J . The general definition is presented below in (2.25).
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dimensional manifold M6. The metric ansatz is

ds2
10 = e2A(y)g4

µν(x)dxµdxν + g6
mn(y)dymdyn , (2.1)

where xµ, µ = 0, . . . 3 are external coordinates while ym, m = 1, . . . 6 are coordinates on

M6. In order to preserve isotropy and homogeneity in the extended directions the NSNS

field-strength H can only have all internal legs. In the democratic formulation, this forces

the RR fluxes to be of the form

F = F̂ + e4Avol4 ∧ F̃ . (2.2)

Here we use the democratic formulation of [30] (mostly following the conventions of [31])

and the polyform notation such that F =
∑
Fq with q = 0, 2, 4, 6, 8, 10 (q = 1, 3, 5, 7, 9) for

type IIA (IIB). Both F̂ and F̃ have only internal legs, and the self-duality condition for F

can be brought to the more useful form

F̃ = ∗6 α(F̂ ) , α(ωq) = (−1)
q(q−1)

2 ωq. (2.3)

Note that the operator ∗6 ◦ α squares to −1. We require the background to have globally

defined spinor(s).3 In type II string theory, the most generic situation is to consider two

globally defined spinors η1 and η2, which can become parallel at certain loci of the manifold.

By using these spinors, one can build two polyforms or pure spinors which characterise the

background geometry, and are defined as

Ψ+ = − i

||η||2
∑
p even

1

p!
η2†

+ γm1...mpη
1
+ dy

m1 ∧ · · · ∧ dymp , Ψ+ = − 8i

||η||2
η1

+ ⊗ η
2 †
+ ,

Ψ− = − i

||η||2
∑
p odd

1

p!
η2†
− γm1...mpη

1
+ dy

m1 ∧ · · · ∧ dymp , Ψ− = − 8i

||η||2
η1

+ ⊗ η
2 †
− , (2.4)

where the subindex on the interal spinors ηi denotes their chirality, and underlined forms are

contracted with γ-matrices as defined in (A.10). These bi-spinors define an SU(3)×SU(3)

⊂ Spin(6, 6) structure.

In the well-known case where the internal manifold accepts only one globally well-

defined spinor η1 and η2 are parallel everywhere. This is known as an SU(3) ⊂ O(6)

structure compactification. In such configurations the pure spinors reduce to

Ψ− = ie−iθΩ , Ψ+ = eiθ exp(iJ) . (2.5)

Here J and Ω are the usual real (1,1)-form and holomorphic (3,0) form defining the SU(3)

structure, and θ is the relative phase between the spinors: η1
+ = ieiθη2

+. In our conventions,

described in detail in appendix A, a supersymmetric background compatible with D3/D7-

branes has θ = 0. Similarly, for the D5/D9 supersymmetry we take θ = −π/2.

It is not hard to show that the pure spinors satisfy the self-duality condition

∗6 α(Ψ) = iΨ . (2.6)

3This condition is necessary for the theory on the branes to be a (softly broken) N = 1 gauge theory.
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We also introduce for later use the Mukai pairing, which is the form version of the inner

product between Spin(6,6) spinors

〈Ψ,Φ〉 ≡ [Ψ ∧ α(Φ)]6 , (2.7)

where [·]6 indicates one should only keep the 6-form in the polyform wedged product.

Moreover, the pure spinors Ψ+ and Ψ− are “compatible”, which means that the following

identities hold:

〈Ψ+, dy
m ∧Ψ−〉 = 〈Ψ+, ιmΨ−〉 = 0 , 〈Ψ+, Ψ̄+〉 = 〈Ψ−, Ψ̄−〉 = −8i vol6. (2.8)

Supersymmetric backgrounds. The background preserves N = 1 supersymmetry if

the supersymmetry variations of the gravitino ψ and the dilatino λ,4

δεψM = DM ε =

(
∇M +

1

4
HMσ3 +

eφ

16

∑
q

FqΓMPq

)
ε , (2.9)

δελ = ∆ε =

(
dφ+

1

2
Hσ3 +

eφ

16

∑
q

ΓMFqΓMPq

)
ε (2.10)

vanish for a given supersymmetry parameter ε. We use the double spinor notation, and σ3

as well as Pq = {−σ1, iσ2,−iσ2, σ1} for q = {0, 1, 2, 3} mod 4 act on the fermion doublets.

Finally, HM is defined in (A.11).

Since the internal manifold has two globally defined spinors, it is natural to use them

in the decomposition of the supersymmetry parameter into an external and an internal

spinor, namely

ε ≡

(
ε1+
ε2∓

)
= ζ+ ⊗

(
η1

+

η2
∓

)
+ ζ− ⊗

(
η1
−
η2
±

)
(2.11)

(see conventions for the fermions in appendix A.1) where ε1+ is a 10d Majorana-Weyl spinor

of positive chirality, and ε2∓ has the opposite (same) chirality in type IIA (IIB) and ζ+ and

ζ− are 4d Dirac spinors required to satisfy 2∇νζ+ = ±µ̄γµζ−, with µ related to the 4d

cosmological constant by Λ = −3|µ|2. Here and in the rest of the paper the upper (lower)

sign corresponds to type IIA (IIB).

The supersymmetry conditions are equivalent to the following differential equations on

the pure spinors [32, 33]

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 (2.12a)

dH

(
e2A−φIm Ψ1

)
= 0 (2.12b)

dH

(
e4A−φRe Ψ1

)
= 3e3A−φRe [µ̄Ψ2] + e4A ∗6 α(F̂ ) (2.12c)

where

dH = d+H∧ (2.13)

4We work in the same fermionic frame as [30], where there is a crossed kinetic term mixing dilatino and

gravitino. Our results are nevertheless independent of the frame chosen since we are interested in bosonic

backgrounds.
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is the twisted exterior derivative and

Ψ1 = Ψ∓ , Ψ2 = Ψ± . (2.14)

Importantly, it was shown in [10, 22, 23, 34, 35] that the above supersymmetry condi-

tions can be obtained as D- and F-flatness conditions from the superpotential

W = π

∫
M6

〈e3A−φΨ2, dH [Ĉ + ie−φReΨ1]〉 = π

∫
M6

〈e3A−φΨ2, G〉 . (2.15)

Here Ĉ are the internal RR gauge potentials (dHĈ = F̂ ), and G is the polyform that

generalizes the G3-flux [31]

G ≡ F̂ + ie−4AdH

(
e4A−φRe Ψ1

)
. (2.16)

It follows from (2.12c) that for supersymmetric GKP compactifications, G = G3 satis-

fies the usual ISD condition, while in more general supersymmetric compactifications this

generalizes to

(1− i ∗6 α)G = 3ie−A−φµ̄Ψ2 . (2.17)

For µ = 0, the ISD requirement (2.17) also describes a class of supersymmetry breaking

solutions with (0, 3) three-form flux G3 [2], or more generally a component of G along

Ψ̄2 [31].

2.2 D-branes in GCG

Consider a space-time filling Dp-brane, wrapping a cycle Σp′ (p′ = p − 3) on the internal

manifold whose geometry is encoded in the pure spinors. As is well known, for the D-

brane to be stable, Σp′ has to be a minimal volume hyper-surface, denoted as calibrated

submanifolds for BPS objects. In this situation, the supersymmetry generators5 satisfy at

the brane locus [
ε̄1 = −ε̄2ΓDp

]
Σ

(2.18)

where ΓDp is defined in (3.5). We review this setup in the context of generalized complex

geometry, following [14].

To be precise, in the GCG context we should in fact talk about generalized submani-

folds and calibrations [36], whose definitions take into account the background B-field and

the gauge field A1 on the brane. The world-volume fluxes are characterized by the gauge

invariant combination6 F ≡ B2 +(2π)−1dA1 such that the generalized submanifold is given

by the pair (Σp′ ,F). The bosonic part of the Dp-brane action reads

SBDp = −2π

∫
dp+1ξe−φ

√
−det(g + F) + 2π

∫
C ∧ eF , (2.19)

5We call ε the supersymmetry generators even if the background is not necessarily supersymmetric, i.e.

we do not require (2.9) or (2.10) to vanish.
6In this expression one should write P [B2], where P [] stands for the pullback of a background field to

the internal cycle Σp′ . Here and in what follows we simply leave the pullback operation for background

fields implicit, unless otherwise stated.
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such that for a space-time filling brane the integration is over the warped product of X4

and Σp′ , and we set 2π
√
α′ = 1, such that Tp = 2π is the Dp-brane tension and C is the

sum of the RR potentials, i.e. dHC = F .

The generalization of the minimal surface condition then tells us that the (Σp′ ,F) is

calibrated iff the DBI energy density (per unit of the generalized volume) can be written as

d p
′
ξ e4A−φ√det(g6 + F) = [e4A−φRe Ψ1|Σ ∧ eF ]p′ , (2.20)

and the following differential condition holds:

dH

(
e4A−φRe Ψ1

)
= 3e3A−φRe [µ̄Ψ2] + e4AF̃ . (2.21)

This can also be obtained by studying the corresponding supersymmetry conditions. In

fact, e4A−φRe Ψ1 constitutes a so-called generalized calibration form, and (2.20) is the

algebraic calibration condition that we require.

In this paper we require the brane to satisfy the algebraic calibration condition (2.20),

but not the differential one (2.21). Note that the latter coincides with the bulk supersymme-

try equation (2.12c). The remaining supersymmetry equations, (2.12a) and (2.12b), which

generically we do not impose either, can also be interpreted as calibration conditions for

domain wall-type and string-like D-branes respectively, as seen from the four-dimensional

perspective.

Some well-known examples of calibrated submanifolds can easily be described for com-

pactifications with internal SU(3) structure in the F = 0 case. On the one hand, there are

the 2l-dimensional complex submanifolds, related to the calibration forms proportional to

J l ∼ [Re Ψ1]2l = Re [(eiθeiJ)]2l in type IIB, where θ depends on the brane in question as

explained below (2.5). On the other hand, there are the special Lagrangian submanifolds.

In this case the calibration form is Re (e−iθΩ).

It will prove useful to describe the calibration condition (2.20) in more detail. It can

be split as follows [37] (see also [38]). First, one has[
Im Ψ1 ∧ eF

]
Σp′

= 0. (2.22)

This is nothing but the D-flatness condition for the four-dimensional effective theory on

the D-brane. Second, one requires that (Σp′ ,F) is a generalized complex submanifold with

respect to the generalized complex structure associated to the other pure spinor, Ψ2. This

corresponds to the 4d F-flatness condition, and implies that[
(dym ∧Ψ2 + gmnınΨ2) ∧ eF

]
Σp′

= 0 . (2.23)

For instance, in the special Lagrangian example given above, the D- and F-flatness con-

ditions are actually the special and Lagrangian conditions, respectively. These calibration

conditions will be crucial for our computation, so we will provide further details about

them shortly.

Finally, we define δ6−p′ [Σp′ ] as the (6− p′)-form Poincare-dual to the cycle Σp′ where

a Dp-brane is wrapped, namely∫
Σp′

ω ≡
∫
M6

ω ∧ δ6−p′ [Σp′ ] (2.24)
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for any p′-form ω. We also define δ0[Σp′ ] as the associated scalar δ-function in the form

δ0[Σp′ ] ≡ (∗volΣp′ )
6−p′ · δ6−p′ [Σp′ ] ⇒ δ0[Σp′ ] vol6 = 〈volΣp′ , δ

6−p′ [Σp′ ]〉 , (2.25)

here volΣp′ is the volume form on the cycle and we used the form scalar product defined

in (A.13). If the brane satisfies the algebraic calibration condition (2.20), this is equivalent to

δ0[Σ] = (Im Ψ1)6−p′ · δ6−p′ [Σ] ⇒ δ0[Σ] vol6 = 〈Re Ψ1, δ
6−p′ [Σ]〉 (2.26)

where (Im Ψ1)6−p′ is the 6− p′ vector dual to the 6− p′ form-piece of Im Ψ1.

3 Fermionic D-brane action

The supersymmetric version of the DBI and Wess-Zumino action at the two-fermion level

was computed in [16–18]. For any Dp-brane, the bosonic terms were given in (2.19) and

the fermionic terms can be compactly written as

SFDp = iπ

∫
dp+1ξe−φ

√
−det(g + F)θ̄(1− Γκ(F))

(
ΓαDα −

1

2
∆− LDp(F)

)
θ . (3.1)

Here, the world-volume fermion θ is a doublet of Majorana-Weyl (MW) fermions

θ ≡

(
θ1

θ2

)
, Γ(11)θ =

(
θ1

∓θ2

)
, (3.2)

with Γ(11) the ten-dimensional chirality matrix. The θi are not independent: the fermionic

action possesses a fermionic gauge symmetry called κ-symmetry. One can use this to gauge

away half of the fermionic degrees of freedom. We fix the gauge by requiring

θ̄Γκ = −θ̄, (3.3)

where Γκ is built out of the world-volume chirality operator as in (A.17). This is in contrast

with the supersymmetry generators defined in (2.11), which satisfy (2.18) (in terms of Γκ,

this equation reads ε̄Γκ = ε̄). The sign difference with respect to (3.3) is crucial since the

WV spinor should not be proportional to the pullback of the supersymmetry generator,

since for supersymmetric backgrounds the latter is a redundancy of the background. The

matrix Γκ squares to the identity, and thus 1
2(1 − Γκ) is a projector onto the subspace

of “physical” fermions. The gauge-fixing condition (3.3) relates the two MW fermions

according to

θ̄1 = θ̄2ΓDp ⇔ ΓDpθ1 = (−1)pθ2 = ±θ2 . (3.4)

The operator ΓDp is a ‘chirality’ operator on the generalized world-volume of the Dp-brane:7

ΓDp =
(−1)[p/2]√
− det(g + F)

εα1...αp+1Γα1 . . .Γαp+1

(p+ 1)!

[p/2]∑
r=0

Γβ1...β2rFβ1β2 . . .Fβ2r−1β2r

2rr!
, (3.5)

7Note that our definition of ΓDp has an extra minus sign as compared to the one in [16–18].
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here the indices run over world-volume directions and the matrices Γαi represent the pull-

back of the ΓM . The operator L(F) is given in (A.16), and vanishes for F = 0, which is

the situation we will restrict to in this paper. Finally, Dα and ∆ are the operators involved

in the gravitino and dilatino supersymmetry variations, defined in (2.9) and (2.10). We

are interested in the combination that appears in (3.1):

D̂ ≡ ΓαDα −
∆

2
(3.6)

= Γα∇α −
1

2
dφ+

eφ

16

∑
q

[
ΓαFqΓα −

1

2
ΓMFqΓM

]
Pq +

1

4

[
ΓαHα −H

]
σ3 ,

where q sums over all even RR field strengths, and Pq is defined above (2.11).

3.1 Dimensional reduction: general idea

In this section we consider a Dp-brane in the warped compactifications described in

section 2. The metric ansatz is given in (2.1), bulk and brane fields split into external

and internal components. The ten-dimensional Γ-matrices are decomposed as follows:

Γµ = e−Aγµ ⊗ 1 , Γm = γ(5) ⊗ γm , Γ(11) = γ(5) ⊗ γ(7) , (3.7)

γµ and γm being the 4d and 6d gamma matrices while γ(5) and γ(7) represent the cor-

responding chirality operators. Let us now focus on the world-volume spinor θ, which

combines the degrees of freedom corresponding to the gaugino and the chiral fermions on

the brane. Here we are only interested in the gaugino. Since we are considering D-branes

that satisfy the algebraic calibration condition, we can use the bulk spinors η1 and η2 to

write the 4d gaugino as [31]

θ =

(
θ1

θ2

)
=
e−2A

4π

(
λ+ ⊗ η1

+ + λ− ⊗ η1
−

−λ+ ⊗ η2
∓ − λ− ⊗ η2

±

)
+ · · · (3.8)

here λ+ and λ− are 4d Dirac spinors of definite chirality and + . . . stands for the 4d

fermions in the three chiral multiplets. The overall numerical constant and warp factor are

introduced in order to get canonically normalized kinetic term for the 4d gauginos. The

κ-fixing condition (3.3) then implies

[
η1

+ = iγDp′η
2
∓
]
Σ
, γDp′ =

1√
det g6

1

p!
εα1...αp′γα1 . . . γαp′ , (3.9)

where the γ-matrices are internal. Note that the condition on the internal spinors, which is

required to hold only at the brane locus, is the same as the internal part of the calibration

condition (2.18). The relative minus sign between (2.18) and (3.4) has been absorbed when

defining the 4d gaugino in (3.8).

Calibration conditions revisited. The relation (3.9) between the internal spinors

arises from the calibration condition (2.18) and can be used to better understand the

local constraints (2.22)–(2.23) that the pure spinors satisfy on calibrated cycles. For this,
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we first consider the q-form component of Ψ2 = Ψ± with n indices along the p′ cycle

wrapped by a calibrated Dp-brane. The calibration condition implies that[
η2†
± γm1...mqη

1
+ = (−1)

(p+2)(p+1)
2

−nη1†
− γm1...mqη

2
∓ = (−1)

p+q
2

+1−nη2†
± γm1...mqη

1
+

]
Σ

(3.10)

where in the first equality we used (3.9) twice and in the second one we took the transverse.

This implies that certain components of Ψ2 are zero due to the calibration condition. An

analogous calculation for Ψ1 = Ψ∓ shows that[
η2†
∓ γm1...mqη

1
+ = (−1)

p(p+1)
2

+1+q−nη1†
+ γm1...mqη

2
∓ = (−1)

p+q
2
− 1

2
−n(η2†

∓ γm1...mqη
1
+)∗
]

Σ
.

(3.11)

Therefore (3.9) mixes Ψ1 and its complex conjugate, so the calibration condition must be

imposed separately on the real and imaginary parts of Ψ1.

Note that in both cases the projection imposed by the calibration condition depends

on the combination p + q − 2n, which actually takes within certain range. Indeed, since

n indicates the amount of world-volume indices of the q-form component of a polyform, it

must satisfy 0 ≤ n ≤ q. Also, because the brane wraps a (p−3)-cycle, necessarily n ≤ p− 3.

Finally, requiring that there are enough transverse directions implies q − n ≤ 9− p. Com-

bining these inequalities one finds that physically sensible options satisfy 3 ≤ p+q−2n ≤ 9.

This range can be combined with the above constraints to find that, at the brane locus,

Ψ2|(n)
q = 0 for p+ q − 2n 6= 6

Im Ψ1|(n)
q = 0 for p+ q − 2n 6= 5 or 9 (3.12)

Re Ψ1|(n)
q = 0 for p+ q − 2n 6= 3 or 7 .

Note that the second and third line are equivalent due to the self-duality property of the

pure spinors (2.6). The conditions (3.12) are equivalent to (2.22)–(2.23), but they are

written in a way that will be useful later.

3.2 Dimensional reduction: details of calculations

Our goal is to compute the dimensional reduction of the fermionic action in order to obtain

the gaugino mass-terms. We start with the gauge-fixed action

SFDp = 2πi

∫
dp+1ξe−φ

√
−detg θ̄D̂θ = 2πi

∫
X4

d4x
√
−detg4

∫
Σ
e4A−φ Re Ψ1θ̄D̂θ (3.13)

where θ satisfies (3.3) and D̂, defined in (3.6), involves a derivative part, a term proportional

to the gradient of the dilaton, a RR contribution and an NSNS flux piece. The derivative

term involves both external and internal directions. The former gives the 4d gaugino kinetic

term, while the latter combines with the fluxes and the dilaton giving the gaugino mass.

The resulting four-dimensional action is then of the form

Sλλ =

∫
d4x

(
i

2
f λ̄+γ

µ∇µλ+ +
1

2
mλ λ̄−λ+ + c.c.

)
(3.14)

with mλ = md
λ +mφ

λ +mF
λ +mH

λ and f the gauge kinetic function.
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Here we provide the detailed calculation of the dimensional reduction of the fermionic

brane action. The uninterested reader may skip this section to find the final result in the

next one. We compute the kinetic function f , as well as each of the contributions to the

mass separately.

Derivative term. We need to compute

θ̄Γα∇αθ = θ̄1Γα∇αθ1 + θ̄2Γα∇αθ2 (3.15)

where α runs over all world-volume directions. Separating external and internal indices

we find8

θ̄Γα∇αθ =
e−5A

16π2

[
λ̄+γ

µ∇µλ+ ⊗ (η1†
+ η

1
+ + η2†

+ η
2
+) + (3.16)

λ̄−λ+ ⊗
(
η1†
− γ

a∇aη1
+ + η2†

± γ
a∇aη2

∓

)]
+ c.c.

with a = 1, . . . , p′. In the second line we have used the fact that the terms propor-

tional to dA are zero by virtue of (A.9). Taking the norm of the internal spinors to be

η1†
+ η

1
+ = η2†

+ η
2
+ = |η|2 = eA, as in supersymmetric compactifications, the first line gives the

kinetic term in (3.14) with

f =
1

2π

∫
Σ
e−φ Re Ψ1 . (3.17)

On the other hand, the derivative along the internal directions is slightly more involved.

First, we note that using the κ-gauge fixing condition (3.9) we get (no sum over m)

η1 †
− γ

m∇mη1
+ = (−1)sη2 †

± γ
m∇mη2

∓ (3.18)

with s = 0 if m is a world-volume index and s = 1 if it is transverse. This means that in

the second line of (3.16) we can actually sum over all internal indices. We then have

η1†
− γ

m∇mη1
+ + η2†

± γ
m∇mη2

∓ = e−A
[
η1†
− γ

m(∇mη1
+η

2†
∓ )η2

∓ − η
1†
− (∇mη1

−η
2†
± )γmη2

∓

]
= ∓1

2
(Ψ2 · dRe Ψ1) (3.19)

where in the first line we have integrated by parts, and in the second one we used the

ciclicity of the trace, the definition of the pure spinors (2.4), and also used the trace to

rewrite the result as an inner product (see (A.21)). We have also made use of (A.23) to

convert the derivative into an exterior derivative, and the fact that upon acting with η2
∓η

1 †
−

on the left and taking the trace, only one of the terms in (A.23) survives due to (A.9).

Putting everything together, the mass contribution from the derivative term gives

md
λ = ∓ i

8π

∫
Σ
e−φ Re Ψ1 (Ψ2 · dReΨ1) . (3.20)

8In (3.14) and (3.16) the derivative ∇µ denotes the covariant derivative with respect to the unwarped

metric gµν .
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Dilaton gradient term. By performing the dimensional reduction and using (A.9) one

finds that

θ̄ dφ θ =
e−5A

16π2

[
λ̄−λ+ ⊗

(
η1†
− dφ η

1
+ + η2†

± dφ η
2
∓

)]
+ c.c. = 0 ⇒ mφ

λ = 0 . (3.21)

Consequently, the dilaton gradient does not contribute to the 4d gaugino effective mass.

The same argument holds for terms involving derivatives of the warp factor.

RR flux term. At first sight, the operator in (3.6) involving the RR fluxes splits them

according to the amount of world-volume indices, denoted as n. We get

ΓαFqΓα −
1

2
ΓMFqΓM = (−1)q

q∑
n=0

(p+ q − 2n− 4)F (n)
q . (3.22)

The coefficient in front of each component depends on a peculiar combination of the degree

q, the number of world-volume indices n and the dimension of the Dp-brane involved.

However, we will see that in the final expression this odd-looking separation of the different

components will not appear. In order to show this, let us first focus on a particular

component of the purely internal fluxes F̂
(n)
q . Its mass contribution is proportional to

(−1)q θ̄F̂ (n)
q Pqθ=

e−5A

8π2
λ−λ+⊗η1†

− F̂
(n)
q η2

∓+c.c.=± ie
−4A

8π2
(λλ)∗

(
Ψ2 ·F̂ (n)

q

)
+c.c. (3.23)

where, starting from the second equality, the contraction is performed using the internal

γ-matrices, and in the last one we used (A.21). The last expression provides the key to

understand why the apparent separation in components of equation (3.22) does not appear

in the final expression: for a calibrated brane many components of Ψ2 vanish on the brane

locus, as we saw in (3.12), and only those satisfying p+ q − 2n = 6 give a contribution.

A similar story holds for the RR fluxes with external legs. Note that the relevant

combination is now (vol4∧e4AF̃ )
(n)
q , so the degree of these forms is at least 4. Also, because

we consider space-filling Dp-branes these fluxes have n ≥ 4. Performing the dimensional

reduction this time we find

(−1)q θ̄ (vol4 ∧ e4AF̃ )(n)
q Pqθ = i(−1)1+q θ̄(γq+1

(5) ⊗ F̃
(n−4)
q−4 )θ = i

e−5A

8π2
(λλ)∗ ⊗ (η1†

− F̃
(n−4)
q−4 η2

∓) + c.c.

(3.24)

so the main difference with the previous case comes from the appearance of the 4d chirality

matrix. As it happened for internal fluxes, F̃ also appears in a contraction with Ψ2 and

thus is subject to the projections in (3.12). Nevertheless, for fluxes with 4d indices we find

that the ones making a contribution are those with p + q − 2n = 2. As a consequence,

we see that all fluxes that make a contribution to the mass term have the same coefficient

in (3.22) but there is a relative sign between internal fluxes and those with external indices.

This means that the combination of fluxes appearing on the effective mass is

F̂ − iF̃ = (1 + i ∗6 α)F̂ (3.25)

after using the duality condition (2.3). Moreover, because fluxes appear in the mass term

contracted with the pure spinor Ψ2, which satisfies the self-duality condition (2.6), we
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conclude that the contribution from the F̂ and F̃ fluxes is exactly the same, so we will

write the final result in terms of internal fluxes F̂ only.

Finally, we put everything together to find that the total RR flux contribution to the

gaugino mass term is given by

mF
λ = ∓ 1

8π

∫
Σ
e−φ Re Ψ1(Ψ2 · eφF̂ ) , (3.26)

where one must take into account that the calibration conditions select only a few compo-

nents of this flux, that we list in table 1.

NSNS flux term. Using the same notation as above, we find

ΓαHα −H = 2H(3) +H(2) −H(0) . (3.27)

In the double-spinor notation, this is combined with the Pauli matrix σ3, which gives

θ̄H(n)σ3θ =
e−5A

16π2
λ−λ+ ⊗

(
η1 †
− H

(n)η1
+ − η

2 †
± H

(n)η2
∓

)
+ c.c. (3.28)

Using once again the calibration condition (3.9) we find that

η2 †
± H

(n)η2
∓ = (−1)1+n η1 †

− H
(n)η1

+ (3.29)

so only the components with zero and two world-volume indices (H(0) and H(2)) make a

contribution to the effective mass. We can furthermore proceed analogously to the previous

cases and re-write these contributions in terms of the pure spinors. We get

θ̄H(n)σ3θ = ∓e
−4A

8π2
(λλ)∗

[
Ψ2 ·

(
H(n) ∧ Re Ψ1

)]
+ c.c. (3.30)

where we have used (A.24), and the fact that only one of their terms survives in the

relevant trace.

Combining everything together we get

mH
λ = ∓ i

8π

∫
Σp′

e−φReΨ1

[
Ψ2 ·

(
(H(2) −H(0)) ∧ ReΨ1

)]
. (3.31)

An alternative computation of the H-flux can be done by using (3.9) on the spinor on

the left in (3.28)

γDp

(
H

(0)
3 −H(2)

3

)
= ?Σ

(
H

(0)
3 +H

(2)
3

)
, (3.32)

here ?Σ is the Hodge duality operator on the cycle Σp′ whose definition is in (A.20). This

implies that the H-flux contribution to the gaugino mass term can also be written as

mH
λ =

−i
8π

∫
Σp′

e−φ Re Ψ1 [(?ΣH3) ·Ψ2] . (3.33)

As in previous cases, the calibration conditions automatically projects out some of the flux

contributions.
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The appearance of the relative sign between the two contributions of the NSNS flux

may look surprising, specially since one does not find this feature in the RR flux sector.

Let us briefly explain why this relative sign appears only on the NSNS flux mass term.

Recall that in the RR sector, we split the flux according to (3.22), and we showed that

the calibration condition implies that only RR fluxes satisfying p + q − 2n = 6 mod 4

lead to a mass. Only when demanding a four-dimensional Lorentz-invariant background

we were forced to choose p + q − 2n = 6. If we relax this condition, RR fluxes satisfying

p+ q− 2n = 2 contribute to the mass as well. This would result in another contribution to

the mass from each flux, with two more worldvolume indices as compared to the ones we

previously considered. Note also that (3.22) indicates that these new mass terms have the

opposite sign to the ones we were interested in. For example, on a 10d flat background,

the gaugini on a D3-brane can acquire a mass from F
(2)
3 with the opposite sign to the

mass from F
(0)
3 . This property turns out to be completely general: any flux can lead to

two contributions to the gaugino mass, with a sign difference between them. It is when

imposing extra constraints, such as compatibility with a given background, that some of

these contributions must be ruled out. In our case, the background only allows for one of

these contributions in the RR flux sector, while in the NSNS flux sector the background

allows for mass contributions with either/both sign(s).

3.3 Dimensional reduction: summary of results and analysis

Putting together our results so far, we see that the four-dimensional action for the gaugino

kinetic and mass terms takes the form

Sλλ =

∫
d4x

(
i

2
f λ̄+γ

µ∇µλ+ +
1

2
mλ λ̄−λ+ + c.c.

)
where the gauge kinetic function is given in (3.17) and the gaugino effective mass is

mλ = ∓ 1

8π

∫
Σ

Re Ψ1

[
Ψ2 ·

(
F̂ + idH̃(e−φRe Ψ1)

)]
(3.34)

and

dH̃ ≡ d+ (H(2) −H(0))∧ (3.35)

Finally, we use the scalar delta-function δ(0) defined in (2.26), that is, the scalar version

of the (6− p′)-form representing the Poincaré dual of Σp′ , and the Mukai pairing (2.7), to

rewrite this effective mass in terms of an integral over the full six-dimensional manifold.

In this way, we obtain the main result of this paper:

mλ = − i

8π

∫
M6

δ(0)
〈

Ψ2, F̂ + idH̃(e−φRe Ψ1)
〉
. (3.36)

There are several features of this result that are worth pointing out. First, due to (3.12),

the (algebraic) calibration condition implies that several terms do not contribute to mλ.

In table 1 we put together all fluxes that can give a contribution to the effective mass. As

for the derivative, the only non-zero contributions come from the derivative along world-

volume directions, as the original formula (3.16) indicates.
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Brane � Flux F0 F1 F2 F3 F4 F5 F6 H

D3 – n=0 – n=0

D4 – n=0 n=1 – n=0

D5 n=0 n=1 n=2 n=0 & 2

D6 n=0 n=1 n=2 n=3 n=0 & 2

D7 n=1 n=2 n=3 n=2

D8 – n=2 n=3 – n=2

D9 – n=3 – –

Table 1. Flux that originate potentially non-vanishing contributions to the gaugino mass. The

dashes indicate components that are projected out due to the calibration of the cycle.

Note that the components of RR fluxes that give a contribution to the gaugino mass

are compatible with the T -duality rules. In fact, the components surviving the projection

can be guessed by starting from one of the cases at the extrema. It turns out that the

extremum on the low part of the table 1 is known. Indeed, in a compactification with

D9-branes, one must necessarily introduce O9-planes, so this is a Type I compactification.

Therefore, the only flux available is the RR 3-form F3. This is precisely what we find

from the calibration condition. Obviously, the only possibility is that all indices of F3 lie

along the world-volume of the D9-brane, namely n = 3. A T-duality turns the D9 into a

D8-brane, and F3 with n = 3 into both F2 with n = 2 and F4 with n = 3, in agreement

with what we find. The rest of the table can be obtained by iterating this argument.

Furthermore, we note that in (3.36) both the RR fluxes and the derivative term con-

tribute to the effective mass of the gaugino exactly in the same way as they appear in the

superpotential (2.15) [22, 23]. This was conjectured in [39] for the simpler situation of D7-

branes in an SU(3) structure background. However, the full mass term is not proportional

to the (integrand of) the superpotential: somewhat counterintuitively, the contributions

generated by H(0) and H(2) enter with opposite sign. More precisely, the component of

H flux with all indices transversal to the D-brane world volume appears with the opposite

sign as compared to (2.15). This relative sign constitutes a crucial consistency check. In-

deed, for the simple case of calibrated D3-branes (where the structure at the location of

the brane must be SU(3), corresponding to the spinors in (2.5)) it is well-known that the

gaugino mass is proportional to
(
Ḡ3 · Ω

)
[24–26]. In contrast, and as will be described in

some detail below, for D7-branes in a similar configuration we know that the gaugino mass

is given by (G3 · Ω) [27, 28]. Consistency with these two particular examples would be hard

to achieve without this odd-looking relative sign in the definition of H̃ = H(2) −H(0). As

a consequence, the combination (G ·Ψ2) appearing in the superpotential gives the gaugino

mass only for D7-, D8- and D9-branes, for which H(0) = 0. This relative sign is absorbed

in the alternative expression for the H-flux contribution to the gaugino mass involving the

Hodge star on the cycle, eq. (3.33). Writing this in terms of an integral over the whole

manifold, and combining with the other contributions, this is

mλ = − i

8π

∫
M6

δ(0)
〈

Ψ2 , F̂ + ie−φ(± ?Σ H + dRe Ψ1)
〉
. (3.37)
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Supersymmetric backgrounds. Finally, let us briefly show that the gaugino mass

terms we have computed vanish for calibrated D-branes in supersymmetric backgrounds,

as they should. For this it is more convenient to go back to the original brane action in

terms of the internal spinors η1,2 as in (3.1). Recall that the mass terms arise from the

operator (3.6), that is a combination of the supersymmetry variation of the gravitino (2.9)

and the dilatino (2.10). In supersymmetric backgrounds these variations vanish, and upon

using the warped compactification ansatz (2.11), one finds that internal spinors must satisfy

the following conditions: (
∇m +

1

4
Hm

)
η1

+ ∓
eφ

16

∑
q

Fqγmη
2
∓ = 0 , (3.38)

(
dφ+

1

2
H

)
η1

+ −
eφ

16

∑
q

Fq(10− 2q)η2
∓ = 0 . (3.39)

Note that on both expressions we only look at the internal component and thus all con-

tractions are taken with internal γ matrices. Analogous conditions hold upon exchanging

the spinors and shifting the signs for the corresponding fluxes accordingly.

In order to proceed, recall the minus sign in the definition of θ2 as compared to the

supersymmetry parameter ε2.9 This relative sign implies that the above SUSY conditions

can be used to re-write the multiple contributions to the gaugino mass in terms of the

RR flux contribution, and as seen above it is sufficient to focus on the internal terms,

characterized by F̂ . Three types of mass contributions exist: the ones coming from the

four-dimensional part of Dµ, twice (after imposing the supersymmetry condition (3.38))

the contribution from the cycle directions Dα, and twice (after imposing (3.39)) the con-

tribution from ∆ with the relative (-1/2) factor from the combination in (3.6). In order to

sum all contributions it is convenient to use identities arising from the anticommutation of

Γ matrices similar to (3.22). We find that the sum of all contributions is proportional to

mSUSY
λ ∝

∑
q

(−1)[
q−1
2 ] [4 + 2(p− 3− 2n)− (10− 2q)] η1†

− F̂
(n)
q η2

∓ . (3.40)

This combination vanishes due to (3.12). As expected, no gaugino mass terms are induced

for calibrated branes when the background is supersymmetric.

3.4 D-branes in SU(3) structure

Here we compute the gaugino masses for Dp branes in an SU(3) structure-background.

First, note that the calibration condition (3.9) implies that one cannot have D4- or D8-

branes in this context. In contrast, D9-branes can only be present for an internal manifold

with SU(3) structure, while D3-branes also require an SU(3) structure but only at the

location of the brane.10 However, since the computation of the gaugino mass is performed

9There is also a warp-factor difference between both definitions but this does not modify our procedure.

The reason is that warp factor gradients do not contribute to the gaugino mass, same as the dilaton

gradients.
10This means that D3-branes can be calibrated in a so-called dynamic SU(2) structure, as long as the

structure reduces to SU(3) (the internal spinors η1 and η2 become parallel) at the location of the brane.
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at the location of the brane, the SU(3) structure expression gives the general gaugino mass

term for D3-branes.

The SU(3) structure pure spinors are given in (2.5).11 We first study the type IIB

branes.

• For a D3-brane (θ = 0), the gaugino mass (3.34) reduces to

mD3
λ =

1

8π

∫
M6

δ(0)(F3 − ie−φH) ∧ Ω =
1

8π

∫
M6

δ(0)Ḡ3 ∧ Ω , (3.41)

where the contribution of the NSNS flux is from H(0) only, and in the last equality

we have used the usual definition G3 = F3 + ie−φH. This is the exactly the mass-

term computed in [24] for the particular case of Calabi-Yau manifolds. Note that the

exterior derivative gives no contribution, and this extends to the more general case of

SU(3)×SU(3) structure, since the latter has to be an SU(3) structure at the location

of the D3-brane.

• For D5-branes (θ = −π/2), we get

mD5
λ =

−i
8π

∫
M6

δ(0)(F3 + ie−φdJ) ∧ Ω . (3.42)

The other RR fluxes do not give a contribution as Ψ2 has only a 3-form piece. We

can see here clearly that the projection onto the component with one world-volume

index as indicated in table 1 is redundant as only the component of F3 with three

anti-holomorphic indices enters, out of which only one can be world-volume index for

a calibrated D5-brane for which Σ should be a holomorphic cycle. Finally, the NSNS

fluxes give no contribution as H ∧ Re Ψ1 is a five-form. In this case the integrand is

proportional to that of the superpotential.

• For D7-branes (θ = 0), we get

mD7
λ =

1

8π

∫
M6

δ(0)(F3 + ie−φH) ∧ Ω =
1

8π

∫
M6

δ(0)G3 ∧ Ω (3.43)

as in Calabi-Yau manifolds [27, 28]. The derivative of the (real part of) the pure

spinor e−φeiJ gives no contribution as it has one and five-form pieces only. The RR

part is straightforward. The H contribution comes from the H(2) piece, and thus has

the opposite sign as for D3-branes. Once again, the components of F3 and H that

give a non-zero contribution can only have two world-volume indices.

• For D9-branes (θ = −π/2), we get the same result as for a D5-brane (3.42), except

that the contribution is not localized.

Finally, for type IIA the only brane one can have in SU(3) structure is a D6-brane.

11The gaugino masses should actually have an overall extra phase e−iθ from Ψ2, that we are not writing.

This extra phase is important in AdS4 compactifications since it should be aligned with the phase in µ [13].
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• For D6-branes we can re-absorb the phase in Ω and thus simply take Ψ1 = iΩ. Thus,

we obtain

mD6
λ =

i

8π

∫
M6

δ(0)
[
〈F,eiJ〉+d(e−φReΩ)∧J+ie−φ(H(2)−H(0))∧ReΩ

]
, (3.44)

Here all NSNS terms (derivative, H(2) and H(0)) contribute, and we cannot combine

them with the RR piece to form either a G or a Ḡ flux.
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A Conventions, definitions and useful identities

A.1 Spinor conventions

We use conventions where the standard intertwiners A,C and D defined as (t is the amount

of temporal directions)

(−1)tΓ†M = AΓMA
−1, −ΓTM = C−1ΓMC, (−1)t−1Γ∗M = D−1ΓMD , (A.1)

take the form

D = 1 , A = C = Γ0. (A.2)

Thus, the different conjugates are written as

θ̄ ≡ θ†A = θ†Γ0, θt ≡ θTC−1 = −θTΓ0 , θc ≡ Dθ∗ = θ∗ , (A.3)

where no double spinor notation is intended. In particular, Majorana spinors such as θ1

and θ2 satisfy θc = θ∗ = θ.

The decomposition (3.7) implies that the 4d intertwiners are analogous to the ten-

dimensional ones, i.e. D(4) = 1, C(4) = A(4) = γ0. As for the (euclidean) 6d spinors, our

decomposition implies that the intertwiners must be C(6) = A(6) = D(6) = 1. These imply

γm are imaginary anti-symmetric.

A representation of 4d matrices compatible with our conventions has

γ0 =

(
0 σ3

−σ3 0

)
, γ(5) =

(
0 −iσ1

iσ1 0

)
. (A.4)
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In this representation a four-dimensional Dirac spinor with positive chirality must be of

the form

λ+ =
1√
2

(
−iσ1ψ̄

ψ̄

)
(A.5)

with ψ̄ a two-component complex spinor. This implies that the bilinear appearing in the

usual mass term is

(λλ)∗ ≡ λ̄−λ+ = iψ̄α̇ψ̄β̇ε
α̇β̇ (A.6)

Finally, let us provide some useful identities. For any pair of chiral fermions ηi± in 6d

we have

ηi†±γ
m1...mnηj∓ = 0 i, j = 1, 2 , n even , (A.7)

ηi†±γ
m1...mnηj± = 0 i, j = 1, 2 , n odd , (A.8)

ηi†±γ
mηi∓ = 0 . (A.9)

A.2 Other conventions and definitions

Throughout the paper, an underlined differential form denotes the contraction of said form

with the appropriate (antisymmetrized) product of gamma matrices. Note that depending

on the context these can be 10d or 6d matrices. Writing the matrices generically as ΓM ,

the precise definition is

Fq ≡
1

q!
FM1...MqΓ

M1...Mq . (A.10)

An underlined form with one explicit index implies that the given index is not contracted

with a gamma matrix, for instance

Hm ≡
1

2
Hmn1n2γ

n1n2 . (A.11)

Given differential form on M6, the different components can be computed as

Am1...mq =
1

8
Tr
[
Aγmq ...m1

]
. (A.12)

The scalar product · contracts p-forms as follows:

Ap ·Bp ≡
1

p!
Am1...mpB

m1...mp . (A.13)

The generalization for polyforms is simply the sum of scalar products involving the different

components. A useful identity involving the scalar product of (poly)forms is

(Ap ·Bp) vol6 = Ap ∧ ∗6Bp , (A.14)

where vol6 is the volume form on M6. Thus, given a polyform Ψ satisfying the self-duality

condition (2.6) and another generic one, say Φ, this means that

〈Ψ,Φ〉 = ∓i (Ψ · Φ) vol6 (A.15)

after using that α ∗6 = ∓ ∗6 α.
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The operators in (3.1) that involve the world-volume flux are given by

LDp (F) = −Γκ
∑
r≥1

(±σ3)r (Fr)αβ ΓαDβ , (A.16)

Γκ (F) =

(
0 Γ−1

Dp (F)

ΓDp (F) 0

)
, (A.17)

where Γκ is the relevant operator for κ-gauge fixing in the spinor doublet notation, and

satisfies

Γ−1
Dp = Γ†Dp = (−1)1+p+[ p2 ]ΓDp. (A.18)

In order to define the Hodge star operation on the cycle Σ wrapped by the brane used in

section 3, we first need to impose that indices in any form are ordered as follows to remove

sign ambiguities:

A(n)
q =

Aa1...anm1...mq−n

n!(q − n)!
dya1 ∧ . . . ∧ dyan ∧ dym1 ∧ . . . ∧ dymq−n (A.19)

and the Hodge star operator is then (ε1...p′ = 1)

?ΣA
(n)
q =

√
g εa1...ap′A

ap′−n+1...ap′m1...mq−n

n!(q−n)!(p′−n)!
dya1∧. . .∧dyap′−n∧dym1∧. . .∧dymq−n . (A.20)

A.3 Useful identities

We provide an example of a very useful type of identities to perform the dimensional

reduction

η2†
± Fqη

1
+ = Tr(Fq(η

1
+η

2†
± )) =

i|η|2

8
Tr(Fq Ψq,±) = i|η|2(−1)

q(q−1)
2 Fq ·Ψq,± . (A.21)

In the second equality we used the definition of pure spinors (2.4), and Ψq,± denotes the

q-form component of Ψ±.

Using the Γ-matrix anticommutator one can easily show that

ΓαFqΓα = (−1)q
q∑

n=0

(p+ 1− 2n)F (n)
q , ΓDpF

(n)
q = (−1)nF (n)

q ΓDp (A.22)

The bispinor operation that corresponds to the wedge of a 1-form (e.g. F1) with the

pure spinor Ψ1 is given by

F1 ∧Ψ1 = −4ie−AFm

[
γm,

(
η1

+η
2 †
∓

)]
∓
, (A.23)

where [, ]− ([, ]+) stands for the commutator (anti-commutator).

The wedge of a 3-form (e.g. H) gives

H∧Ψ1 =
−ie−A

6!
Hmnp

[
γmnpη1

+η
2†
∓ ∓3γmnη1

+η
2†
∓ γ

p+3γmη1
+η

2†
∓ γ

np∓η1
+η

2†
∓ γ

mnp
]

(A.24)
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