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1 Introduction

There has been always interest in the study of quantum fields in a de Sitter (dS) background

as it is a good approximation to the expanding universe we are currently in. Just like anti-

de Sitter (AdS) space, the dS space also has a maximal isometry group. As a result, the

canonical quantization of free fields is possible in dS space and the effective action can

be computed analytically [1–8]. It has been known for a long time that dS space has

a one-parameter family of vacua invariant under the dS isometry group [3–5]. Thus, the

calculation of the effective action requires the specification of the vacuum states. One of the

guiding principles for selection of the vacuum states is the composition principle proposed

by Polyakov [9]. While the results in [1, 2] are calculated using the in-/in-state (Schwinger-

Keldysh) formalism with the Bunch-Davies vacuum, it is the in-/out-state formalism that

complies with the composition principle.

Although the effective action of a scalar field in the global patch of dSd space in the

in-/out-state formalism has been computed in [8, 10], the authors have been focusing on

the imaginary part of the effective action. Besides, as far as we are aware there has been no

attempts in computing such effective action of a Dirac spinor field in dS space of arbitrary

dimension. In this paper we use the in-/out-state formalism to compute the effective action
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of both a massive scalar field and a massive Dirac spinor field in the global patch of dS

space of any dimension d given by the metric gµν as

ds2 = −dt2 +H−2 cosh2(Ht)dΩ2
d−1, (1.1)

where H is related to the scalar curvature R by R = d(d − 1)H2 and dΩ2
d−1 denotes the

metric of a unit d − 1 sphere. We will set H = 1 throughout the rest of the paper. The

dependence on H can be restored via dimensional analysis.

Due to the infinite volume of the dS space, the effective action has IR divergence.

However in odd dimensions the divergent effective action is pure real, while in even dimen-

sions it also has an imaginary part. Since the divergence of the imaginary part is simply

proportional to the volume of the dS space, it can be interpreted as P × VdS where P is

the particle production rate per volume and VdS is the volume of the dS space [3, 11]. In

contrast, the divergence of the real part is more complicated and we need to use a more

sophiscated regularization method. Nevertheless, one can choose some cut-off T on the

time of global dS space and evolve the system from a finite initial time −T to a finite time

T . One then defines time-dependent adiabatic vacuum states which are the instantaneos

ground state of the time-dependent Hamiltonian [3, 6, 11]. These adiabatic vacuum states

interpolate between the in-state |0, in〉 and out-state |0, in〉 which we define in section 2.

The T →∞ limit is taken at the end. With this cut-off T , we expect the structure of the

effective action W to be as

W ∼ c1

∫
dd−1x

√
g̃ + c2

∫
dd−1x

√
g̃R̃+ · · ·+Wfinite (1.2)

for d even, and as

W ∼ c1

∫
dd−1x

√
g̃ + c2

∫
dd−1x

√
g̃R̃+ · · ·+ c log R̃+Wfinite (1.3)

for d odd. In (1.2) and (1.3), g̃, R̃, and R̃ are the determinant of the metric, the scalar

curvature, and the radius of the spatial slice at the cut-off time T respectively. For odd d,

due to the presence of the logarithmically divergent term, the finite piece Wfinite is ambigu-

ous. Using dimensional regularization, we will compute the finite term for even d and the

coefficient of the logarithmically divergent term for odd d. It turns out that the regularized

in-out vacuum amplitude has the same expression as the ratio of determinants associated

with different quantizations in AdS space. The computation of such ratio of determinants

is related to the double-trace deformation in AdS/CFT correspondence [12–16].

The paper is organized as follows. In section 2, we briefly review the calculation of the

effective action using the in-/out-state formalism. Section 3 contains the calculation for a

massive real scalar field and section 4 contains the calculation for a massive Dirac spinor

field. In section 5 we focus on the imaginary part of the effective action and obtain the

particle production rate in even dimensions. In section 6 we use dimensional regularization

to obtain a closed-form expression for the vacuum amplitude. For even d we get a finite

answer, while for odd d we compute the coefficient of the logarithmically divergent term.

We further show that this expression equals to the ratio of determinants associated with

different quantizations in AdS space in both scalar and spinor cases. In the concluding

section we briefly discuss the possible connections between these two qunatities.
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2 In-/out- state formalism

In this section, we briefly review the in-/out- state formalism for calculating the effective

action [17–19]. The effective action W is defined by the scattering amplitude

Zin/out = eiW = 〈0, out|0, in〉, W =

∫
ddx
√
−gLeff , (2.1)

where |0, in〉 and |0, out〉 are the in-going and the out-going vacuum states respectively.

Specifically, for a general massive field Φ, we can expand it in terms of either in-going

modes or out-going modes over the set of quantum numbers λ as

Φ =
∑
λ

aλ,inΦλ+ + b†λ,inΦλ− =
∑
λ

aλ,outΦλ
+ + b†λ,outΦλ

−. (2.2)

Here Φλ+ and Φλ− are the positive-frequency and negative-frequency in-going modes while

Φλ
+ and Φλ

− are the positive-frequency and negative-frequency out-going modes. In terms

of the asymptotic behavior, we have

Φλ± ∼ e∓iµt as t→ −∞, (2.3)

Φλ
± ∼ e∓iµt as t→ +∞, (2.4)

where µ is some effective mass. Then |0, in〉 is the state annihilated by ak,in and bλ,in for

each λ while |0, out〉 is the state annihilated by aλ,out and bλ,out.

For a scalar field Φ, the in-going modes Φλ± and the out-going modes Φλ
± are related

by the Bogoliubov transformation [3, 18]:

Φλ+ = µλ Φ +
λ + νλ Φ −λ ,

Φλ− = ν∗λ Φ +
λ + µ∗λ Φ −λ , (2.5)

with the coefficients µλ and νλ satisfying the Bogoliubov relation

|µλ|2 − |νλ|2 = 1, (2.6)

as required by the commutation relations for bosons. We emphasize here that we have

assumed the transformation (2.5) is diagonal in λ, which is true in the case studied. Smilarly

for a spinor field Ψ, the in-going modes Ψλ± and the out-going modes Ψ±λ are related by

the transformation [18]

Ψλ+ = µλ Ψ +
λ + νλ Ψ −λ ,

Ψλ− = −ν∗λ Ψ +
λ + µ∗λ Ψ −λ . (2.7)

The coefficients µλ and νλ now satisfy the relation

|µλ|2 + |νλ|2 = 1, (2.8)

as required by the commutation relations for fermions. Again we have assumed the trans-

formation (2.7) is diagonal in λ, as this is the case of interest.
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In the in-/out-state formalism, the exact one-loop effective action W can be then

expressed in terms of the Bogoliubov coefficients µk as

W =

∫
ddx
√
−gLeff =

∑
λ

d(λ)Wλ, (2.9)

where d(λ) is the degeneracy and Wλ is given by1

Wλ =

{
i lnµ∗λ (complex scalar),

−i lnµ∗λ (Dirac spinor).
(2.10)

3 Massive scalar field in global de Sitter

In this section, we consider a real scalar field Φ with mass M in the global patch of dSd
space. We briefly review the calculation here as it has been done in various papers [3, 5–

8, 10]. The action of the scalar field is

− 1

2

∫
ddx
√
−g
(
∂µΦ∂µΦ +M2Φ2

)
. (3.1)

From the action, we have that the Klein-Gordon equation for Φ is[
− 1

coshd−1(t)
∂t

(
coshd−1(t)∂t

)
+

1

cosh2(t)
∇2

Ωd−1
−M2

]
Φ = 0 (3.2)

where ∇2
Ωd−1

is the Laplacian on the unit d− 1 sphere. To solve the equation, we expand

Φ using the real spherical harmonics Yl(Ωd−1) which satisfies

∇2
Ωd−1

Yl(Ωd−1) = −l(l + d− 2)Yl(Ωd−1), (3.3)

with degeneracies:

D(d−1)(l) =
(l + d− 3)!

l! (d− 2)!
(2l + d− 2), (l = 0, 1, . . . ). (3.4)

Using the expansion Φ(t,Ωd−1) =
∑

l φl(t)Yl(Ωd−1), we find that for each mode l the

function φl(t) satisfies the equation:(
∂2
t + (d− 1) tanh(t)∂t +

l(l + d− 2)

cosh2(t)
+M2

)
φl(t) = 0. (3.5)

Following [3, 5, 10], we could write the two independent solutions as either

φ
(±)
l (t) = coshl(t) exp

[(
−l − d− 1

2
∓ iµ

)
t

]
F

(
l +

d− 1

2
, l +

d− 1

2
± iµ, 1± iµ,−e−2t

)
, (3.6)

1For a real massive scalar, there is a factor of 1
2

as a complex scalar field can be viewed as two real

scalar fields.
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or

φl (±)(t) = coshl(t) exp

[(
l +

d− 1

2
∓ iµ

)
t

]
F

(
l +

d− 1

2
, l +

d− 1

2
∓ iµ, 1∓ iµ,−e2t

)
, (3.7)

where F is the hypergeometric function 2F1 and µ =

√
M2 − (d−1)2

4 . Here we have re-

stricted our attention to the case M2 > (d−1)2/4, where the solution oscillates at the past

and the future infinity.2 The two solutions (3.6) have the asymptotic behaviors as

φ
(±)
l (t)→ exp

(
−d− 1

2
t∓ iµt

)
as t→ +∞, (3.8)

while the two solutions (3.7) have the asymptotic behaviors as

φl (±)(t)→ exp

(
d− 1

2
t∓ iµt

)
as t→ −∞. (3.9)

Therefore, we could identify the two solutions (3.6) as the positive/negative-frequency

out-modes while the two solutions (3.7) as the positive/negative-frequency in-modes. The

in-modes and the out-modes are related by the Bogoliubov transformation (2.5) as

φl+ = µl φ
+
l + νl φ

−
l ,

φl− = ν∗l φ
+
l + µ∗l φ

−
l , (3.10)

where we have suppressed the dependence on t. Using the transformation formula for the

hypergeometric function [21], we find the Bogoliubov coefficients to be

µ l =
Γ(1− iµ)Γ(−iµ)

Γ(l + d−1
2 − iµ)Γ(−l − d−3

2 − iµ)
, (l = 0, 1, . . . ),

ν l =
i cos(lπ + d

2π)

sinh(πµ)
, (3.11)

with degeneracies D(d−1)(l). One can check that these coefficients indeed obey the relation

|µl|2 − |νl|2 = 1, (3.12)

as required by the commutation rules. In particular, νl = 0 when d is odd, which implies

that |0, in〉 and |0, out〉 define the same state.

4 Massive Dirac spinor field in global de Sitter

In this section, we consider a massive Dirac spinor field Ψ with mass M in the global patch

of dSd space. The action for the Dirac field Ψ is

−
∫
ddxΨ̄

(
/∇+M

)
Ψ, (4.1)

2The solutions for M2 < (d − 1)2/4 can be obtained by analytic continuation in γ. In this case, the

modes do not oscillate and can be interpreted as the source of the operator in the dual boundary CFT [20].
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where /∇ ≡ γa(ea)µ∇µ. This leads to the Dirac equation

γa(ea)
µ

(
∂µ −

1

8
ωµbc

[
γb, γc

])
Ψ +MΨ = 0. (4.2)

Here γa for (a = 0, . . . , d− 1) are the gamma matrices which satisfy the Dirac algebra

γaγb + γbγa = 2ηab1 (4.3)

with ηab of the signature (−,+, . . . ,+). The {ea} is a vielbein on dSd and the spin con-

nection ωabc is defined as

ωabc = (ea)
µ
[
∂µ(eb)

ν + Γνµγ(eb)
γ
]

(ec)ν , (4.4)

where {Γνµγ} is the Christoffel symbols of the Levi-Civita connection for the metric (1.1).

We follow the method used in [22] to solve the Dirac equation. If we let {ẽi} be a vielbein

on the Sd−1, then we could define {ea} as

e0 = ∂t, ej =
1

cosh(t)
ẽj , (j = 1, . . . d− 1) (4.5)

The only non-zero components of the spin connection wabc are

ωijk =
1

cosh(t)
ω̃ijk,

ωi0k = −ωik0 = tanh(t)δik, (i, j, k = 1, . . . , d− 1), (4.6)

where ω̃ijk is the spin connection on Sd−1 corresponding to the frame {ẽi}.
Since the construction of the representations for Clifford algebra in even and odd

dimensions is slightly different, we shall discuss the two cases separately below. Our con-

struction of the representations of the Clifford algebra (4.3) follows [22].

4.1 Even dimension

We construct the gamma matrices satisfying (4.3) in the following way: we let {γa} be the

set of d matrices of dimension 2d/2 defined by

γ0 =

(
0 i1

i1 0

)
, γj =

(
0 iΓ̃j

−iΓ̃j 0

)
, (j = 1, . . . , d− 1) (4.7)

where 1 is the identity matrix of dimension 2d/2−1 and the d − 1 matrices Γ̃j also of

dimension 2d/2−1 satisfy the following Clifford algebra:

Γ̃jΓ̃k + Γ̃kΓ̃j = 2δjk1, (j, k = 1, . . . , d− 1). (4.8)

With the representations of the gamma matrices defined in (4.7) and (4.6), the Dirac

equation (4.2) becomes

γ0

(
∂t +

d− 1

2
tanh(t)

)
Ψ +

1

cosh(t)

(
0 i /̃∇
−i /̃∇ 0

)
Ψ +MΨ = 0 (4.9)

– 6 –
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where /̃∇ is the Dirac operator on Sd−1. If we represent Ψ with two components given by

Ψ =

(
ψ1

ψ2

)
, (4.10)

then the Dirac equation (4.9) decomposes to the following set of equations:

i

(
∂t +

d− 1

2
tanh(t) +

1

cosh(t)
/̃∇
)
ψ2 +Mψ1 = 0,

i

(
∂t +

d− 1

2
tanh(t)− 1

cosh(t)
/̃∇
)
ψ1 +Mψ2 = 0. (4.11)

By eliminating either ψ1 or ψ2 in (4.11), we obtain

ψ′′1 + (d− 1) tanh(t)ψ′1+

[
M2 +

(d− 1)2

4
− (d− 1)(d− 3)

4 cosh2(t)

]
ψ1

− sech2(t) /̃∇
2
ψ1 +

tanh(t)

cosh(t)
/̃∇ψ1 = 0, (4.12)

ψ′′2 + (d− 1) tanh(t)ψ′2+

[
M2 +

(d− 1)2

4
− (d− 1)(d− 3)

4 cosh2(t)

]
ψ2

− sech2(t) /̃∇
2
ψ2 −

tanh(t)

cosh(t)
/̃∇ψ2 = 0, (4.13)

where prime denotes derivatives with respect to t. We only need to solve the equation for

ψ1 and the solution for ψ2 could be obtained from (4.11). Using the eigenfunctions of the

Dirac operator /̃∇ on Sd−1 for d even which are defined by [22]

/̃∇χ(±)
lm (Ωd−1) = ±i

(
l +

d− 1

2

)
χ

(±)
lm (Ωd−1), (l = 0, 1, . . . ), (4.14)

with degeneracies given by

D(±)
d−1(l) =

2(d−2)/2(d+ l − 2)!

l! (d− 2)!
, for even d, (4.15)

we can separate variables by considering the expansion

ψ1(t,Ωd−1) =
∑
l,m

φl(t)χ
+
lm(Ωd−1) + ϕl(t)χ

−
lm(Ωd−1). (4.16)

Inserting the expansion (4.16) into (4.12) and using (4.14), we obtain the equations for φl
and ϕl as

φ′′l +(d− 1) tanh(t)φ′l

+

[
M2 +

(d− 1)2

4
+

(d− 1)(2l + 1) + 2l2

2 cosh2(t)
+ i

(d− 1 + 2l) tanh(t)

2 cosh(t)

]
φl = 0, (4.17)

ϕ′′l +(d− 1) tanh(t)ϕ′l

+

[
M2 +

(d− 1)2

4
+

(d− 1)(2l + 1) + 2l2

2 cosh2(t)
− i(d− 1 + 2l) tanh(t)

2 cosh(t)

]
ϕl = 0. (4.18)
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To solve equations (4.17) and (4.18), we perform a change of variable to z = i sinh(t) and

consider the following ansatz:

φl(z) = (1 + z)l/2(1− z)(l+1)/2gφ(z),

ϕl(z) = (1 + z)(l+1)/2(1− z)l/2gϕ(z). (4.19)

Plugging the ansatz, we find the two independent solutions for gφ and gϕ as

gφ 1(z) =

(
1− z

2

)−d/2−l
F̃

(
−iM, iM, 1− d

2
− l; 1− z

2

)
, (4.20)

gφ 2(z) = F̃

(
d

2
− iM + l,

d

2
+ iM + l, 1 +

d

2
+ l;

1− z
2

)
, (4.21)

gϕ 1(z) =

(
1− z

2

)−d/2−l+1

F̃

(
1− iM, 1 + iM, 2− d

2
− l; 1− z

2

)
, (4.22)

gϕ 2(z) = F̃

(
d

2
− iM + l,

d

2
+ iM + l,

d

2
+ l;

1− z
2

)
, (4.23)

where for convenience we have defined the rescaled hypergeometric function F̃ as

F̃ (a, b, c;x) =
Γ(c− b)

Γ(1− b)Γ(c)
2F1(a, b, c;x). (4.24)

We can use the equation (4.11) to find the corresponding solutions for ψ2 component. The

general solution for Ψ can be written as:

Ψ =
∑
l,m

Clm

 φl 1(t)χ+
lm(Ωd−1)

−iϕl 1(t)χ+
lm(Ωd−1)

+Dlm

 φl 2(t)χ+
lm(Ωd−1)

iϕl 2(t)χ+
lm(Ωd−1)


+
∑
l,m

C ′lm

ϕl 1(t)χ−lm(Ωd−1)

iφl 1(t)χ−lm(Ωd−1)

+D′lm

 ϕl 2(t)χ−lm(Ωd−1)

−iφl 2(t)χ−lm(Ωd−1)

 , (4.25)

where C(C ′) and D(D′) are arbitrary constants.

By examing the asymptotic behaviors of the general solution (4.25), we could iden-

itfy the positive-/negative-frequency in-modes as the modes with the following asymptotic

behaviors

Ψl+ ∼ e(
d−1
2
−iM)t

 χ+
lm(Ωd−1)

−χ+
lm(Ωd−1)

 or e(
d−1
2
−iM)t

 χ−lm(Ωd−1)

−χ−lm(Ωd−1)

 ,

Ψl− ∼ e(
d−1
2

+iM)t

χ+
lm(Ωd−1)

χ+
lm(Ωd−1)

 or e(
d−1
2

+iM)t

χ−lm(Ωd−1)

χ−lm(Ωd−1)

 as t→ −∞, (4.26)
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at the past infinity while the positive/negative-frequency out-modes as the modes with the

asymptotic behaviors

Ψ +
l ∼ e(

− d−1
2
−iM)t

 χ+
lm(Ωd−1)

−χ+
lm(Ωd−1)

 or e(−
d−1
2
−iM)t

 χ−lm(Ωd−1)

−χ−lm(Ωd−1)

 ,

Ψ −l ∼ e(
− d−1

2
+iM)t

χ+
lm(Ωd−1)

χ+
lm(Ωd−1)

 or e(−
d−1
2

+iM)t

χ−lm(Ωd−1)

χ−lm(Ωd−1)

 as t→ +∞, (4.27)

at the future infinity. In terms of these in-/out-modes, the Bogoliubov transformation (2.7)

is expressed as

Ψl+ = µl Ψ
+
l + νl Ψ

−
l ,

Ψl− = −ν∗l Ψ +
l + µ∗l Ψ −l , (4.28)

and we find the corresponding Bogoliubov coefficients to be

µ l =
Γ(1

2 − iM)2

Γ(1− l − d
2 − iM)Γ(d2 + l − iM)

, (l = 0, 1, . . . )

ν l = ∓
i cos(lπ + d

2π)

cosh(πM)
, (4.29)

where (−) sign is taken for the modes with χ+
lm components while the (+) sign is taken for

the modes with χ−lm components. One can verify that these coefficients satisfy the relation

|µl|2 + |νl|2 = 1, (4.30)

as required by the commutation rules. The degeneracy for each mode l is

Dd−1(l) =
2
d
2 (d+ l − 2)!

l! (d− 2)!
, for even d. (4.31)

4.2 Odd dimension (d ≥ 3)

In this case the dimension of the gamma matrices is 2(d−1)/2, same as the d− 1 dimension

representation. If we let {Γ̃i} be the set of d − 1 matrices of dimension 2(d−1)/2 which

satisfies the Clifford algebra (4.8), then the set of matrices

γ0 =

(
i1 0

0 −i1

)
, γj = Γ̃j , (j = 1, . . . , d− 1) (4.32)

satisfies the Dirac algebra (4.3). Using the representations of the gamma matrices (4.32)

and (4.6), the Dirac equation (4.2) becomes

γ0

(
∂t +

d− 1

2
tanh(t)

)
Ψ +

1

cosh(t)
/̃∇Ψ +MΨ = 0, (4.33)

– 9 –
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where /̃∇ is the Dirac operator on Sd−1. Instead of solving (4.33) directly, it is easier for us

to act with the operator /∇−M on both sides and solve the following equation instead

−
(
∂t +

d− 1

2
tanh(t)

)2

Ψ− tanh(t)

cosh(t)
γ0 /̃∇Ψ +

1

cosh2(t)
/̃∇

2
Ψ−M2Ψ = 0. (4.34)

The reason is that the operator γ0 /̃∇ commutes with /̃∇
2

while it is not true for γ0 and /̃∇
in (4.33), which follows from

γ0 /̃∇+ /̃∇γ0 = 0. (4.35)

If we consider the eigenfunctions of the Dirac operator /̃∇ on Sd−1 for d odd which satisfy [22]

/̃∇χ−lm(Ωd−1) = −i
(
l +

d− 1

2

)
χ−lm(Ωd−1), (l = 0, 1, . . . ) (4.36)

with degeneracies

D(−)
d−1(l) =

2(d−1)/2(d+ l − 2)!

l!(d− 2)!
for odd d, (4.37)

then one can verify that the functions χ+
lm ≡ γ0χ−lm are also the eigenfunctions of /̃∇ with

eigenvalues

/̃∇χ+
lm(Ωd−1) = i

(
l +

d− 1

2

)
χ+
lm(Ωd−1), (l = 0, 1, . . . ). (4.38)

Using χ
(±)
lm , we can construct the following functions

χ̂−lm(Ωd−1) =
1√
2

[
χ−lm(Ωd−1) + χ+

lm(Ωd−1)
]
, (4.39)

χ̂+
lm(Ωd−1) = γ0χ̂−lm(Ωd−1), (4.40)

which are the common eigenfunctions of γ0 /̃∇ and /̃∇
2

with eigenvalues

/̃∇
2
χ̂

(±)
lm (Ωd−1) = −

(
l +

d− 1

2

)2

χ̂
(±)
lm (Ωd−1), (4.41)

γ0 /̃∇χ̂(±)
lm (Ωd−1) = ±i

(
l +

d− 1

2

)
χ̂

(±)
lm (Ωd−1). (4.42)

Now we can expand Ψ in terms of those functions as

Ψ(t,Ωd−1) =
∑
l,m

φ̂l(t)χ̂
+
lm(Ωd−1) + ϕ̂l(t)χ̂

−
lm(Ωd−1), (4.43)

and substitute it into (4.34). As a result, we find that φ̂l and ϕ̂l satisfy the same equa-

tions (4.17) and (4.18) for φl and ϕl respectively. By further checking the Dirac equa-

tion (4.33), one find that the general solution for Ψ can be written as the ones satisfy

Ψ =
∑
l,m

Clm
[
φl 1(t)χ̂+

lm(Ωd−1) + ϕl 1(t)χ̂−lm(Ωd−1)
]

+Dlm

[
φl 2(t)χ̂+

lm(Ωd−1)− ϕl 2(t)χ̂−lm(Ωd−1)
]
, (4.44)
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where C and D are arbitrary constants and φl and ϕl are the same functions defined in

the even d case. By examing the asymptotic behaviors of the general solution (4.44), we

could identify the positive-/negative-frequency in-modes as those behave like

Ψl+ ∼ e( d−1
2
−iM)t

[
χ̂+
lm(Ωd−1)− iχ̂−lm(Ωd−1)

]
,

Ψl− ∼ e( d−1
2

+iM)t
[
χ̂+
lm(Ωd−1) + iχ̂−lm(Ωd−1)

]
as t→ −∞, (4.45)

at the past infinity while the positive-/negative-frequency out-modes as those behave like

Ψ +
l ∼ e

(− d−1
2
−iM)t

[
χ̂+
lm(Ωd−1)− iχ̂−lm(Ωd−1)

]
,

Ψ −l ∼ e
(− d−1

2
+iM)t

[
χ̂+
lm(Ωd−1) + iχ̂−lm(Ωd−1)

]
as t→ +∞, (4.46)

at the future infinity. In terms of these in-/out-modes and the relation (4.28), we find the

corresponding Bogoliubov coefficients to be

µ l =
Γ(1

2 − iM)2

Γ(1− l − d
2 − iM)Γ(d2 + l − iM)

, (l = 0, 1, . . . )

ν l = −
i cos(lπ + d

2π)

cosh(πM)
= 0 for odd d, (4.47)

which has the same expression as in the even d case. The degeneracy for each mode l is

Dd−1(l) =
2(d−1)/2(d+ l − 2)!

l!(d− 2)!
for odd d. (4.48)

5 Particle production in even dimensions

Before proceeding to calculate the effective action, we could see there is a difference be-

tween even dimensions and odd dimensions. In [5] it has been shown that the Bogoliubov

coefficient νl vanishes when d is odd in the massive scalar case. From our calculation, we

see that it is also true in the massive spinor case. This implies that the in-vacuum and the

out-vacuum are the same state in odd dimensions, so there is no production of either scalar

or spinor particles. In contrast, there is always particle production in even dimensions

for both scalar and spinor field. The particle production rate per spacetime volume P is

related to the imaginary part of the effective action W by

P = lim
Vd→∞

2

Vd
ImW, (5.1)

where Vd is the spacetime volume of dSd.

Using the Bogoliubov coefficients calculated in section 3 and 4 and the formula (2.9),

we obtain the effective action for a massive real scalar

Wb =
i

2

∞∑
l=0

D(d−1)(l)

[
ln Γ(1 + iµ) + ln Γ(iµ)− lnπ + ln sin

(
−lπ − d− 3

2
π + iµπ

)
− ln Γ

(
l +

d− 1

2
+ iµ

)
+ ln Γ

(
l +

d− 1

2
− iµ

)]
, (5.2)
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and the effective action for a massive Dirac spinor

Wf = −i
∞∑
l=0

D(d−1)(l)

[
2 ln Γ

(
1

2
+ iM

)
− lnπ + ln sin

(
−lπ − d− 2

2
π + iMπ

)
− ln Γ

(
l +

d

2
+ iM

)
+ ln Γ

(
l +

d

2
− iM

)]
. (5.3)

In arriving at (5.2) and (5.3), we have used the following identity for the gamma function

Γ(1− z)Γ(z) =
π

sin(πz)
, (z /∈ Z). (5.4)

By using the integral representation for ln Γ(z) [23]:

ln Γ(z) =

∫ ∞
0

ds

s

[
e−zs − e−s

1− e−s
+ (z − 1)e−s

]
, (Re(z) > 0), (5.5)

we obtain that for odd d, the effective actions are

Wb =
1

2

∞∑
l=0

D(d−1)(l)

[∫ ∞
0

ds

s

sin(µs)

sinh( s2)

(
e−

s
2 − e(− d

2
−l+1)s

)
+

(−1)
d+1
2

+l − 1

2
π

]
, (5.6)

Wf =

∞∑
l=0

D(d−1)(l)

[∫ ∞
0

ds

s

sin(Ms)

sinh( s2)

(
e(− d

2
−l+ 1

2
)s − 1

)
+

(−1)
d+1
2

+l + 1

2
π

]
, (5.7)

while for even d the effective actions are

Wb =
1

2

∞∑
l=0

D(d−1)(l)

[∫ ∞
0

ds

s

sin(µs)

sinh( s2)

(
e−

s
2 − e(− d

2
−l+1)s

)
+

(−1)
d−2
2

+l

2
π

+ i ln coth(πµ)

]
, (5.8)

Wf =

∞∑
l=0

D(d−1)(l)

[∫ ∞
0

ds

s

sin(Ms)

sinh( s2)

(
e(− d

2
−l+ 1

2
)s − 1

)
+

(−1)
d−2
2

+l

2
π

+ i ln coth(πM)

]
. (5.9)

Due to the infinite summation over the angular quantum number l, the scalar and spinor

effective actions are divergent in both even and odd dimensions. However, in odd dimen-

sions the effective action is pure real while in even dimensions it has an divergent imaginary

part besides the divergent real part:

ImWb =
1

2

∞∑
l=0

D(d−1)(l) ln coth(πµ), (5.10)

ImWf =

∞∑
l=0

D(d−1)(l) ln coth(πM). (5.11)

Since the divergence of the imaginary part is proportional to the summation of the de-

generacies for both scalar and spinor field, we could regularize it by introducing a cut-off
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N � 1 on the angular quantum number l.3 To relate this cut-off N to the cut-off T on

the time discussed in section 1, we use the method developed in [3, 11]. This method is

based on the analysis of the real time particle creation process, which requires that we

evolve system from a finite initial time −T to a finite final time T and the T → ∞ limit

is taken at the end. By examing the wave equantions (3.5), (4.17) and (4.18), we see that

the cut-off N corresponds to a cut-off on the physical momentum

kphys ∼
N

cosh(T )
, (5.12)

at the time when the initial state is prepared. Altough it seems that the cut-off N directly

corresponds to a UV cut-off on the physical momentum, this is not true since we also need

to take the T → ∞ limit in the end. In fact if we demand that the cut-off for kphys is

fixed at the finite initial time when the state is prepared, we need to change the cut-off N

accordingly when taking the limit T → ∞. Specifically, the change of T by δT requires a

change of N by

δN ≈ NδT, or N ≈ eT . (5.13)

Therfore, the divergences in the summations (5.10) and (5.11) result from the IR divergence

of the spacetime volume.

If we change the time cut-off T by δT , then the spacetime volume changes by

δV ≈ 2π
d
2 d

Γ(1 + d
2)

coshd−1(T )δT. (5.14)

In the meantime, the cut-off N needs to be changed by δN as we have argued before. This

results a change in ImW by

δ ImWb ≈
2 ln coth(πµ)

Γ(d− 1)
Nd−2δN, (5.15)

δ ImWf ≈
2
d
2 ln coth(πM)

Γ(d− 1)
Nd−2δN. (5.16)

Using (5.13) and the definition of P in (5.1), we find that the particle production rate for

a massive real scalar is

Pb ≈
2d−1Γ(d2 + 1)

d π
d
2 Γ(d− 1)

ln coth(πµ), (d even), (5.17)

and the particle production rate for a massive Dirac spinor is

Pf ≈
2

3d
2
−1Γ(d2 + 1)

d π
d
2 Γ(d− 1)

ln coth(πM), (d even). (5.18)

In the large-mass/weak-curvature limit (M � H), the particle production rate for both

scalar and spinor fields goes like

P ∼ e−M/TH , (5.19)

where TH = H/(2π) is the Hawking-de Sitter temperature. This agrees with the results

calculated in [8, 24] using the Green’s function method.

3Since the summation for the real part of the effective action is more complicated, we will use a more

covariant approach to regularize the effective action in section 6.
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6 The vacuum amplitude and the ratio of determinants

In section 5, we find that the expressions for the effective action (5.2) and (5.3) are divergent

due to the infinite summation over the angular quantum number l. From the structures

of divergence, i.e., (1.2) for even d and (1.3) for odd d, we expect that the effective ac-

tion contains a logarithmically divergent term in odd dimensions but no such term in even

dimensions. Therefore, the finite piece of the effective action is unambiguous in even di-

mensions. In the language of dS/CFT, we expect that the coefficient of the logarithmically

divergent term in odd dimensions might be connected to the conformal anomaly present

in the boundary CFT [25–28].

In this section, we compute the finite term of the effective action in even dimensions

and the coefficient of the logarithmically divergent term of the effective action in odd

dimensions. We follow the method developed in [14] and use dimensional regularization4

to regularize the summation over l in (5.2) and (5.3). In dimensional regularization, the

logarithmically divergent term corresponds to the pole in ε [25], where we set the dimension

d = integer − ε. Along the way, we show that the regularized vacuum amplitude Zin/out

in dSd has the same expression as the ratio of the functional determinants associated with

different quantizations in AdSd. The calculation of such ratio of the determinants have

appeared in the study of double-trace deformation in AdS/CFT correspondence [12–16].

6.1 Real massive scalar

The vacuum amplitude Zbin/out is related to the effective action Wb through the expression

logZbin/out = iWb. Therefore, we have

logZbin/out =−1

2

∞∑
l=0

D(d−1)(l)

[
lnΓ(1+iµ)+lnΓ(iµ)−lnπ+lnsin

(
−lπ− d−3

2
π+iµπ

)
− lnΓ

(
l+

d−1

2
+iµ

)
+lnΓ

(
l+

d−1

2
−iµ

)]
. (6.1)

For reasons that will become clear later, we define ν = iµ = i

√
M2 − (d−1)2

4 and consider

the derivative of logZbin/out with respect to ν:

1

2ν

∂

∂ν
logZbin/out =

1

4ν

∞∑
l=0

D(d−1)(l)

[
ψ

(
l +

d− 1

2
+ ν

)
+ ψ

(
l +

d− 1

2
− ν
)]
, (6.2)

where ψ(z) is the digamma function. In (6.2) we have neglected all the terms that are

proportional to
∑∞

l=0D(d−1)(l). The reason is that
∑∞

l=0D(d−1)(l) = 0 under dimensional

regularization [14]. We briefly review the argument here. The degeneracy D(d−1)(l) can be

rewritten as

D(d−1)(l) =
2l + d− 2

d− 2

(d− 2)l
l!

, (6.3)

4In the appendix, we show that the similar result can be obtained using another regularization method.
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where (a)l = Γ(a+ l)/Γ(a) is the Pochhammer symbol. Now using the following expansion

for (1− x)a:

(1− x)a =

∞∑
l=0

(−a)l
l!

xl, (6.4)

we have
∞∑
l=0

D(d−1)(l) = 2(1− 1)−(d−1) + (1− 1)−(d−2), (6.5)

which is 0 for d < 1. As the summation (6.2) is also convergent when d < 1, we can analyt-

ically continue the result from this region. To proceed, we use the integral representation

for ψ(z):

ψ(z) =

∫ ∞
0

ds

(
e−s

s
− e−sz

1− e−s

)
, (6.6)

and perform the summation over l. The remaining integral over s can be done analytically

and the final expression is

1

2ν

∂

∂ν
logZbin/out = −1

2
Γ(1− d)

[
Γ(ν + d−1

2 )

Γ(1 + ν − d−1
2 )
−

Γ(−ν + d−1
2 )

Γ(1− ν − d−1
2 )

]
. (6.7)

On the other hand, the Euclidean one-loop effective action for a massive real scalar

field in AdSd is

Z±b = Zbclass ·
[
det±(−∇2 +m2)

]− 1
2 , (6.8)

where Zbclass is the classical partition function and ± refers to the bulk quantization corre-

sponding to the bounary operator with dimension ∆± defined by

∆± =
d− 1

2
± ν ′, ν ′ =

√
(d− 1)2

4
+m2. (6.9)

Instead of
[
det±(−∇2 +m2)

]− 1
2 , it’s much easier to calculate:

∂

∂m2
log
[
det±(−∇2 +m2)

]− 1
2 = −1

2

∫
drdxd−1√g Gb∆±(r, x; r, x), (6.10)

where Gb∆±
is the propagator for the scalar field. Using dimensional regularization, we

have [15]

Gb∆±(r, x; r, x) = (4π)−
d
2 Γ

(
1− d

2

)
Γ(±ν ′ + d−1

2 )

Γ(1± ν ′ − d−1
2 )

, (6.11)

and the spacetime volume to be

Vd = π
d−1
2 Γ

(
−d− 1

2

)
. (6.12)

Thus, under dimensional regularization [14] we obtain

∂

∂m2
log

[
det+(−∇2 +m2)

]− 1
2

[det−(−∇2 +m2)]−
1
2

= −1

2
Γ(1− d)

[
Γ(ν ′ + d−1

2 )

Γ(1 + ν ′ − d−1
2 )
−

Γ(−ν ′ + d−1
2 )

Γ(1− ν ′ − d−1
2 )

]
. (6.13)
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If we identify ν ′ with ν, then we can establish the equality

1

2ν

∂

∂ν
logZbin/out =

∂

∂m2
log

[
det+(−∇2 +m2)

]− 1
2

[det−(−∇2 +m2)]−
1
2

=
1

2ν ′
∂

∂ν ′
log

Z+
b

Z−b
, (6.14)

under dimensional regularization.

Although there appears to be a pole for all physical dimension d in (6.7), the expression

actually only has a pole in d when d is odd:

− 1

2
Γ(1− d)

[
Γ(ν + d−1

2 )

Γ(1 + ν − d−1
2 )
−

Γ(−ν + d−1
2 )

Γ(1− ν − d−1
2 )

]

=
sin(πν)

2 cos(dπ2 )

Γ(ν + d−1
2 )Γ(−ν + d−1

2 )

Γ(d)
. (6.15)

Now we go to the physical dimension by letting d→ d− ε.

d even. In this case, (6.15) is finite:

1

2ν

∂

∂ν
logZbin/out =

π

2ν

(−1)
d
2

+1

Γ(d)

Γ(ν + d−1
2 )Γ(−ν + d−1

2 )

Γ(ν)Γ(−ν)
. (6.16)

In the language of dS/CFT, the boundary CFT also has no conformal anomaly and the

finite term in the partition function of the CFT is well defined. The result (6.16) gives the

difference of this finite term in the UV and IR CFT [12–14].

d odd. In this case, (6.15) has a pole in ε

1

2ν

∂

∂ν
logZbin/out =

1

ε

(−1)
d+1
2

νΓ(d)

Γ(ν + d−1
2 )Γ(−ν + d−1

2 )

Γ(ν)Γ(−ν)
+O(1), (6.17)

which signals the logarthmic divergence. In the language of dS/CFT, the boundary CFT

has conformal anomaly in this case. The change of the conformal anomaly due to the

double-trace deformation can be computed from the change of the central charge between

the UV and IR CFT. The residue at the pole in (6.17) reproduces this change of the central

charge on the boundary CFT [13] up to a constanct prefactor.

6.2 Massive Dirac spinor

For a massive Dirac spinor, we have

logZfin/out =
∞∑
l=0

D(d−1)(l)

[
2 ln Γ

(
1

2
+ iM

)
− lnπ + ln sin

(
−lπ − d− 2

2
π + iMπ

)
− ln Γ

(
l +

d

2
+ iM

)
+ ln Γ

(
l +

d

2
− iM

)]
. (6.18)

Similar to the scalar case, we denote ν = iM and consider the derivative of logZfin/out with

respect to ν:

∂

∂ν
logZfin/out = −

∞∑
l=0

D(d−1)(l)

[
ψ

(
l +

d

2
+ ν

)
+ ψ

(
l +

d

2
− ν
)]
. (6.19)
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We recall that the degeneracies can be written as

D(d−1)(l) = dim γd
(d− 1)l

l!
, (6.20)

where dim γd is the dimmension of the gamma matrices in d-dimensional spacetime. Again

the l-independent terms in (6.19) is neglected because
∑∞

l=0D(d−1)(l) = 0 using dimensional

regularization. Following the same method used in the scalar case, we find that the final

expression is

∂

∂ν
logZfin/out = dim γd Γ(1− d)

[
Γ(ν + d

2)

Γ(1 + ν − d
2)

+
Γ(−ν + d

2)

Γ(1− ν − d
2)

]
. (6.21)

On the other hand, the Euclidean one-loop effective action for a massive Dirac spinor

field in AdSd is:

Z±f = Zfclass ·
[
det±( /∇+m)

]
, (6.22)

where Zfclass is the classical partition function and ± refers to the bulk quantization corre-

sponding to the boundary operator with dimension ∆± defined by

∆± =
d− 1

2
± ν ′, ν ′ = m. (6.23)

As in the scalar case, it is much easier to compute

∂

∂m
log
[
det±( /∇+m)

]
= −

∫
drdxd−1√g Tr

[
Gf∆±

(r, x; r, x)
]
, (6.24)

where Gf∆±
is the propagator for the spinor field. Using dimensional regularization, we

have [15, 29]

Tr
[
Gf∆±

(r, x; r, x)
]

= ∓ dim γd (4π)−
d
2 Γ

(
1− d

2

)
Γ(d2 ± ν

′)

Γ(1− d
2 ± ν ′)

. (6.25)

Multiplying the regularized volume for spacetime (6.12), we obtain

∂

∂m
log

[
det+( /∇+m)

][
det−( /∇+m)

]
= dim γd Γ(1− d)

[
Γ(ν ′ + d

2)

Γ(1 + ν ′ − d
2)

+
Γ(−ν ′ + d

2)

Γ(1− ν ′ − d
2)

]
. (6.26)

If we identify ν ′ with ν, we can establish the equality

∂

∂ν
logZfin/out =

∂

∂m
log

[
det+( /∇+M)

][
det−( /∇+M)

] =
∂

∂ν ′
log

Z+
f

Z−f
, (6.27)

under dimensional regularization. Similar to the scalar case, the expression (6.21) only has

pole in d when d is odd

dim γd Γ(1− d)

[
Γ(ν + d

2)

Γ(1 + ν − d
2)
−

Γ(−ν + d
2)

Γ(1− ν − d
2)

]

= dim γd
cos(πν)

cos(dπ2 )

Γ(ν + d
2)Γ(−ν + d

2)

Γ(d)
. (6.28)
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Now we go to physical dimension by letting d→ d− ε.

d even. In this case, (6.28) is finite:

∂

∂ν
logZfin/out = dim γd

π(−1)
d
2

Γ(d)

Γ(ν + d
2)Γ(−ν + d

2)

Γ(ν + 1
2)Γ(−ν + 1

2)
. (6.29)

As in the scalar case, the boundary CFT has no anomaly and the result (6.29) computes

the difference of the finite term in UV and IR CFT [16].

d odd. In this case, (6.28) has a pole in ε:

∂

∂ν
logZfin/out =

1

ε
dim γd

(−1)
d−1
2

2Γ(d)

Γ(ν + d
2)Γ(−ν + d

2)

Γ(ν + 1
2)Γ(−ν + 1

2)
+O(1). (6.30)

As in the scalar case, the boundary CFT has conformal anomaly which can be computed

from its central charge. Up to a constanct prefactor, the residue at the pole reproduces

the change of the central charge in the UV and IR CFT connected by the RG flow due to

the double-trace deformation on the boundary CFT [15, 16].

7 Conclusion

In this paper we have used in-/out-state formalism to calculate the effective action for both

a real scalar field and a Dirac spinor field in the global patch of dS space in any dimension.

It has been known for a long time [5] that there is no imaginary contribution to the effective

action of a scalar field in the odd-dimensional dS space. In this paper we have shown that

it is also true for the effective action of a spinor field in the odd-dimensional dS space. In [8]

the authors have given a heuristic argument for why there is no imaginary contribution for

the scalar field in odd dimensions. We think this argument can be adapted to the spinor

case as well. In even dimensions, there is an imaginary part in the effective action in both

scalar and spinor field cases. Such imaginary part signals the event of particle production.

In both cases, we have calculated the corresponding particle production rate and we have

found that in the large-mass/weak-curvature limit both rates approach e−M/TH where TH
is the Hawking-de Sitter temperature.

Using dimensional regularization, we have extracted the finite term of the effective

action in even dimensions and the coeffient of the logarithmically divergent term in odd

dimensions. We also have shown that the regularized in-out vacuum amplitude Zin/out in

global dSd has the same expression as the ratio of the functional determinants associated

with different quantizations in AdSd upon identification of certain parameters in the two

theories. It is intriguing that there is a relation between the vacuum amplitude in dSd and

the ratio of determinants in AdSd. We don’t know if it is just a coincidence or there is

a deeper connection underlying. Nevertheless, we want to point out that the summations

in (6.2) and (6.19) have appeared exactly in the dual CFTd−1 calculation [13–16] in the

study of double trace deformation. In the CFTd−1 computation for odd d, the coefficient of

the logarithmic divergence is related to the change of the central charge from the UV fixed

point to the IR fixed point [13, 15]. The CFT at the two fixed points correspond to the

two different quantizations in the bulk AdS space. In the language of dS/CFT [20], the in-

/out-modes in our calculation also correspond to different quantizations in the dual CFT.
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It could be possible that the in-out vacuum amplitude in dS space is related to the double-

trace deformation on the boundary CFT as the time evolution in the bulk corresponds to

the RG flows in the dual CFT in the context of dS/CFT [30]. It would be interesting if we

could find the exact connection between the two.
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A Regularization with Laplacian

In this appendix, we show that the results in section 6 could be obtained by other regu-

larization method. Specifically, we regularize the summation over l using the exponential

suppression factor exp(−λl ε) in the scalar field case. The λl = l(l+d−2) is the eigenvalue

of the sphere Laplacian for the angular quantum number l. We perform the calculation for

the case of d = 2, 3, 4, 5. We obtain the same finite terms as those calculated in section 6 for

d = 2, 4. However, for d = 3, 5, the results differ by a finite term which could be obtained

from the summation of the degeneracies D(d−1)(l). We think this mismatch might have

resulted from a different choice of counterterms under the two regularization schemes.

We closely follow the method developed in [31]. The following asymptotic expan-

sion [31] is crucial for our calculation:

∞∑
l=1

l−se−l(l+q)t =
t→0

t−
1−s
2

2

[
Γ

(
1

2
− s

2

)
− qΓ

(
1− s

2

)
t
1
2 +

q2

2!
Γ

(
3

2
− s

2

)
t

−q
3

3!
Γ
(

2− s

2

)
t
3
2 +

q4

4!
Γ

(
5

2
− s

2

)
t2 +O(t2)

]
+ ζ(s). (A.1)

d = 2. We first look at the summation of the degeneracies using (A.1), which is

1 +

∞∑
l=1

2 e−l
2ε =

ε→0

√
πε−

1
2 . (A.2)

So the summation of the l-independent terms do not contain either log ε term or a finite

term. The summation of the remaining terms can be evaluated as

1

2ν

∂

∂ν
logZbin/out =

1

4ν

[
ψ

(
1

2
+ν

)
+ψ

(
1

2
−ν
)]

+
1

2ν

∞∑
l=1

[
ψ

(
l+

1

2
+ν

)
+ψ

(
l+

1

2
−ν
)]
e−l

2ε

=
1

ν

∞∑
l=1

log l e−l
2ε+

1

2ν

∞∑
l=1

[
ψ

(
l+

1

2
+ν

)
+ψ

(
l+

1

2
−ν
)
−2log l

]
+

1

4ν

[
ψ

(
1

2
+ν

)
+ψ

(
1

2
−ν
)]

=
1

2ν
log(2π)− 1

2ν

[
log(2π)+πν tan(πν)

]
=−π

2
tan(πν), (A.3)
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where we have only kept the relavent finite term and the log ε term from the summa-

tion. To arrive at the result, we have used (A.1) to compute the first summation on the

second line, while the second summation is convergent (goes like l−2 asymptotically) and

can be calculated analytically. The result agrees with the finite term obtained using the

dimensional regularization.

d = 4. The summation of the degeneracies is

1 +

∞∑
l=1

(l + 1)2e−l(l+2)ε =
ε→0

√
π

4

(
ε−

3
2 + ε−

1
2

)
. (A.4)

As in d = 2 case, we can neglect the summation of l-independent terms. The remaining

summation is

1

2ν

∂

∂ν
logZbin/out

=
1

4ν

[
ψ

(
3

2
+ ν

)
+ ψ

(
3

2
− ν
)]

+
1

4ν

∞∑
l=1

(l + 1)2

[
ψ

(
l +

3

2
+ ν

)
+ ψ

(
l +

3

2
− ν
)]
e−l(l+2)ε

=
1

4ν

∞∑
l=1

f(l) e−l(l+2)ε +
1

4ν

∞∑
l=1

{
(l + 1)2

[
ψ

(
l +

3

2
+ ν

)
+ ψ

(
l +

3

2
− ν
)]
− f(l)

}
+

1

4ν

[
ψ

(
3

2
+ ν

)
+ ψ

(
3

2
− ν
)]

=
1

96ν

[
−75 + 16γ + 36ν2 + 96 log G + 24 log(2π)− 48ζ ′(−2)

]
+

1

96ν

[
75− 16γ − 36ν2 − 96 log G − 24 log(2π)− 12

π2
ζ(3) + 2πν(1− 4ν2) tan(πν)

]
= − π

48
(2ν − 1)(2ν + 1) tan(πν), (A.5)

where G is Glaisher’s constant and ζ(s) is the Riemann zeta function. We have only kept

log ε and the finite term at the end. The function f(l) equals

f(l) = 2l2 log l + 2l(1 + 2 log l) +
1

12
(37− 12ν2 + 24 log l) +

2

3l
. (A.6)

Again, the result agrees with the one obtained using the dimensional regularization.

d = 3. In this case, we expect there to be log ε term and we want to compute its

coefficient. The summation of the degeneracies is

1 +

∞∑
l=1

(2l + 1)e−l(l+1)ε =
ε→0

ε−1 +
1

3
. (A.7)
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Thus, the summation of the l-independent terms will not contribute to the log ε term. The

remaining summation is

1

2ν

∂

∂ν
logZbin/out

=
1

4ν

[
ψ(1 + ν) + ψ(1− ν)

]
+

1

4ν

∞∑
l=1

(2l + 1)

[
ψ(l + 1 + ν) + ψ(l + 1− ν)

]
e−l(l+1)ε

=
1

4ν

∞∑
l=1

f(l) e−l(l+1)ε +
1

4ν

∞∑
l=1

{
(2l + 1)

[
ψ(l + 1 + ν) + ψ(l + 1− ν)

]
− f(l)

}
+

1

4ν

[
ψ(1 + ν) + ψ(1− ν)

]
, (A.8)

where f(l) is given by

f(l) = 4l log l + 2(1 + log l)− 2(3ν2 − 1)

3l
. (A.9)

As the second summation in (A.8) is convergent, the log ε term can only come from the

first summation. We have

1

2ν

∂

∂ν
logZbin/out

∣∣∣∣
log ε

=
1

4ν

(
ν2 − 1

3

)
log ε. (A.10)

The dimensional regularization (d = 3− ε) result is

1

2ν

∂

∂ν
logZbin/out

∣∣∣∣
1
ε

= − 1

2ν
ν2ε−1. (A.11)

The constant term in the parentheses of (A.10) equals

∞∑
l=0

(2l + 1)e−l(l+1)ε

∣∣∣∣
finite

=
1

3
. (A.12)

d = 5. Again we want to calculate the coefficient of the log ε term. The summation of

the degeneracies is

1 +

∞∑
l=1

(l + 1)(l + 2)(2l + 3)

6
e−l(l+3)ε =

ε→0

1

6
ε−2 +

1

3
ε−1 +

29

90
. (A.13)
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So the summation of the l-independent terms will not contribute to log ε term. The re-

maining summation is

1

2ν

∂

∂ν
logZbin/out =

1

4ν

[
ψ(2 + ν) + ψ(2− ν)

]
+

1

4ν

∞∑
l=1

(l + 1)(l + 2)(2l + 3)

6

[
ψ(l + 2 + ν) + ψ(l + 2− ν)

]
e−l(l+3)ε

=
1

4ν

∞∑
l=1

f(l) e−l(l+3)ε +
1

4ν

∞∑
l=1

{
(l + 1)(l + 2)(2l + 3)

6

[
ψ(l + 2 + ν)

+ ψ(l + 2− ν)

]
− f(l)

}
+

1

4ν

[
ψ(2 + ν) + ψ(2− ν)

]
. (A.14)

Again, only the first summation in (A.14) can contribute to log ε as the other summation

is convergent. Thus, we get

1

2ν

∂

∂ν
logZbin/out

∣∣∣∣
log ε

=
1

4ν

(
ν2(ν − 1)(ν + 1)

12
− 29

90

)
log ε, (A.15)

while the dimensional regularization (d = 5− ε) result is

1

2ν

∂

∂ν
logZbin/out

∣∣∣∣
1
ε

= − 1

2ν

ν2(ν − 1)(ν + 1)

12
ε−1. (A.16)

Similar to the d = 3 case, the constant term in the parentheses of (A.15) equals

∞∑
l=0

(l + 1)(l + 2)(2l + 3)

6
e−l(l+3)ε

∣∣∣∣
finite

=
29

90
. (A.17)
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