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1 Introduction

The past decade has seen a flurry of activity on the applications of gauge-gravity duality

(or holography) to condensed matter physics [1–4]. In a nutshell, holography maps the

dynamics of a strongly correlated quantum field theory (with a large N microscopic number

of degrees of freedom at each point in spacetime) to a dual problem in classical gravity in

an asymptotically anti de Sitter (AdS) spacetime. This duality maps problems which can

be completely intractable in field theory into problems about classical gravity, which are

therefore more tractable.

This paper is about a particularly challenging problem: the ground state of a strongly

correlated system in the presence of disorder [5–8]. Holography is a particularly appealing

tool for these systems because the disorder can be treated at a quite direct level: it is

simply dual in the bulk gravitational description to an inhomogeneous boundary condition

on fields at the boundary of AdS. In principle, we can solve the classical bulk equations

before disorder averaging, thus giving a more physical treatment of the randomness [9],1

albeit in a somewhat mysterious dual description. Indeed, this problem was addressed in

a series of papers [10–12] which found that in a variety of different holographic models,

marginal disorder leads to the emergence of a non-relativistic scaling symmetry called

Lifshitz symmetry. We will define these terms properly in the following section. This

1Holographic models allow us to study the physically correct prescription of quenched disorder : one

calculates for example, the disorder averaged free energy E[F ] where E[· · · ] denotes the disorder average.

The easier computation to perform is over annealed disorder, where one evaluates the average of the partition

function E[e−βF ]. Generally in disordered systems, E[e−βF ] and exp[−βE[F ]] are not the same, and may

even suggest entirely different phase diagrams! (Usually the annealed average is dominated by measure zero

fluctuations which are enhanced in the average.) In many field theory analyses [5–8], quenched disorder is

treated using the replica method, which amounts to creating n coupled “replicas” of the theory, evaluating

the partition function for integer n, and taking the n → 0 limit. This is, in our view, rather unphysical,

which is why holographic models which can directly evaluate quenched disorder averages are so valuable.
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emergent scale invariance was later reproduced on general field theoretic grounds [13].

Further holographic studies of similar systems include [14–16]. The Lifshitz scaling was

also seen at weak coupling many decades ago [17].

The purpose of this paper is to revisit the arguments for Lifshitz invariance of the low

energy theory. We study the regime in which disorder is weak, and argue that although

there is an emergent scale invariance over an extraordinarily large range of energy scales,

non-perturbative effects ultimately destroy scale invariance and logarithmically slowly push

the theory towards a logarithmically-modified “almost conformal theory” of the true in-

frared. Our conclusion is justified by a heuristic approximation for solving the holographic

equations of motion in the bulk in the presence of disorder, which was first sketched in [4].

While our conclusions appear superficially in tension with the previous numerical results

(which rely on fewer assumptions), the breakdown of Lifshitz scaling is a non-perturbative

effect in the dimensionless disorder strength V̄ , which arises at energy scales Λ exp[−1/V̄ 2]

(with Λ a UV scale). The analytical analyses in previous literature such as [10] did not

extend to energy scales parametrically beyond this deeply infrared scale. Furthermore, as

our conclusions do not appear to be sensitive to details of the holographic model, and are

hinted at by a simple and very general argument, our results suggest interesting physics

about non-perturbative physics of marginally disordered field theories more generally [13].

2 Minimal holographic model of disorder

Let us now introduce the model we study more carefully. We assume the reader has

familiarity with gauge-gravity duality: pedagogical texts on the subject include [1–4]. We

are interested in studying some strongly coupled 1 + 1-dimensional conformal field theory

(CFT) of action S0, perturbed weakly by disorder that couples to a Lorentz scalar operator

O of dimension ∆:

S = S0 −
∫

dtdx h(x)O(x). (2.1)

The classical background field h(x) corresponds to random-field disorder. Denoting the

disorder average by E[· · · ],we choose h(x) to be Gaussian disorder with mean and variance

E[h(x)] = 0, (2.2a)

E[h(x)h(y)] = V̄ 2δ(x− y). (2.2b)

Note that h(x) depends on space but not time. The disorder is defined to be weak when

V̄ 2 is small; however we caution the reader that such weak disorder does not mean that

pointwise fluctuations in h(x) are small in a given realization (indeed (2.2b) says the av-

erage value of h(x)2 is divergent, although this is an artifact of the continuum theory).

We are interested in theories where in the CFT this disorder is marginal: namely, V̄ is

dimensionless. This occurs when [h] = 1
2 , or when

∆ =
3

2
. (2.3)

Note that an ordinary scalar field would have been marginal when ∆ = 2; the discrep-

ancy arises from the fact that the random coupling h(x) does not have the same scaling
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dimension as a uniform coupling, due to the δ-function in (2.2b) which is not dimension-

less. We also note that while 1 + 1-dimensional CFTs are far more tractable than their

higher-dimensional counterparts, within holography, we do not expect our conclusions to

be sensitive to spacetime dimension.

We study this perturbed CFT holographically using a three dimensional gravity theory.

The bulk holographic action is

S =

∫
d3x
√
−g
(
R+ 2− 1

2
∇aφ∇aφ− 1

2
m2φ2

)
(2.4)

We have rescaled coordinates and fields such that the gravitational coupling constant and

the AdS radius are 1, without loss of generality. The dynamical bulk fields are the metric

gab and a real scalar field φ; indices a, b, . . . denote bulk coordinates. The real scalar field

φ is dual to O, and via the holographic dictionary, this requires

m2 = −3

4
. (2.5)

This holographic model was previously studied analytically and numerically in [10];

both methods suggested that the infrared theory of this disordered CFT had Lifshitz scale

invariance. This means that the theory is scale invariant, but that time and space scale

separately:

[t] = z[x], (2.6)

where z is called the dynamical critical exponent. In our model, and using our normaliza-

tions, when V̄ is small, [4, 10]

z = 1 +
V̄ 2

8
+ · · · . (2.7)

The emergence of Lifshitz scaling in this theory introduces a puzzle which, to our

understanding, has not been remarked upon in the literature. The generalization of (2.3) to

a model in d spatial dimensions (not including time), and with dynamical critical exponent

z, is that disorder is marginal when [4, 18, 19]

∆marginal =
d

2
+ z. (2.8)

In the holographic dictionary, the mass m of φ is related to its operator dimension as

m2 = ∆(∆− d− z). (2.9)

Plugging in d = 1 and using the value of m2 from (2.5) and z from (2.7), we find that

∆ ≈ 3

2
+

3V̄ 2

16
. (2.10)

Comparing (2.8) and (2.10), we conclude that disorder becomes irrelevant. So how can

this irrelevant disorder continue to support a Lifshitz-invariant bulk spacetime?

– 3 –
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3 Constructing the bulk geometry

The coupled Einstein-scalar system reads

Rab −
R

2
gab − gab =

1

2

[
∂aφ∂bφ−

1

2
gab

(
∂cφ∂

cφ− 3

4
φ2

)]
, (3.1a)

∇a∇aφ = m2φ. (3.1b)

Let r denote the bulk radial coordinate, with r = 0 corresponding to an asymptotically

AdS boundary. (3.1) is to besolved subject to the following boundary conditions at r = 0:

φ(x, r → 0) = r1/2

∫
dk

2π
eikxh(k), (3.2a)

ds2(r → 0) =
dr2 + dx2 − dt2

r2
. (3.2b)

We assume that h(k) are Gaussian random fields with zero mean, as before: E[h(k)] = 0.

However, for reasons that will shortly become clear, we will choose the variance of the

disorder to be

E [h(k)h(q)] = 2πV̄ 2Θ(Λ− |k|)δ(k + q), (3.3)

where Λ serves as an ultraviolet cutoff on the disorder.

Let us now (approximately) solve the bulk equations of motion, building off of ideas

described in [4]. We make an ansatz that so long as V̄ is small, the metric is well approxi-

mated by a homogeneous metric:

ds2 ≈ dr2

r2
+A(r)dx2 −B(r)dt2, (3.4)

where r represents the bulk radial coordinate (r = 0 corresponding to the asymptotically

AdS boundary). One justification for our assumption that the metric stays homogeneous

is that inhomogeneity in the metric is O(V̄ 2) at finite wave number and thus feeds back

to give O(V̄ 4) corrections to the homogeneous part of the metric, while on average the

inhomogeneous contributions do not contribute to the metric. Since the scalar field distorts

the homogeneous metric at O(V̄ 2) we expect it is qualitatively more important (although

this is a guess, not a proof). Anyway, the above metric ansatz fixes the gauge for Einstein’s

equations. This ansatz will capture the same physics as observed in earlier work [10,

14, 15]. In order to neglect the spatial inhomogeneity in the metric introduced via the

inhomogeneous scalar field, we will disorder average the right hand side of (3.1a) before

solving for A(r) and B(r). We obtain the following two independent equations:

r

√
A

B
∂r

(
r

√
A

B
∂rB

)
= 4A+

3

4
AE

[
φ2
]
, (3.5a)

1

r

√
A

B
∂r

(
r∂rB√
AB

)
=

E
[
(∂xφ)2

]
r2A

− E
[
(∂rφ)2

]
, (3.5b)

which give us a self-consistent “mean-field” bulk geometry which is spatially homogeneous.
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It is useful to begin by simply treating V̄ as a strict perturbative parameter. In this

case, we can explicitly carry out the first order in the perturbative expansion. This was

done in [10]. We find that at first order in V̄ ,

φ(k, r) = h(k)
√
re−|k|r. (3.6)

Since at leading order

E
[
φ2
]

= V̄ 2
(
1− e−2rΛ

)
=

∫ Λ

−Λ

dk

2π
× 2πV̄ 2re−2|k|r, (3.7a)

E
[
(∂xφ)2 − (∂rφ)2

]
=
V̄ 2
(
1− e−2rΛ(1 + 4rΛ)

)
4r2

, (3.7b)

we arrive at a homogeneous correction to the metric:

A(r) =
1

r2
− V̄ 2

4r2

(
1− e−2rΛ

)
, (3.8a)

B(r) =
1

r2
+
V̄ 2

4r2
(Ei(−2rΛ)− log(2rΛ)− γ) , (3.8b)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Note that A(r) is only weakly modified

at this order, while B(r) has a logarithmic divergence. The proposal of [10] is that this

logarithmic divergence is resummed at rΛ� 1 to create a Lifshitz geometry of the form [20]

A(r) =
A0

r2
, (3.9a)

B(r) =
B0Λ2(1−z)

r2z
, (3.9b)

where A0 and B0 are positive dimensionless constants, and z is given by (2.7). Such

a geometry is dual to a field theory which is scale invariant but where time and space

scale differently.

The purpose of this paper is to analyze this conclusion more carefully when V̄ � 1.

We will find, via a heuristic but manifestly non-perturbative analysis, that A0, B0 ∼ 1 are

well-approximated by simple constants, while for rΛ� 1

z(r) ∼ 1 +
1

log(rΛ)
log

(
1 +

V̄ 2

8
log(rΛ)

)
. (3.10)

While V̄ � 1 is treated as a small parameter throughout the analysis, we emphasize

that (3.10) is a non-perturbative result because it extends to arbitrarily large values of r.

Indeed, (3.10) implies the following: there is an emergent infrared energy scale

Λ∗ ∼ Λe−c/V̄
2

(3.11)

for c an O(1) constant which we might estimate as c ≈ 8. At energy scales E obeying

Λ∗ � E � Λ, the theory is approximately Lifshitz scale invariant with dynamical critical

exponent (2.7). However, at energy scales E � Λ∗, the Lifshitz scaling breaks down. We

argue that the previous analysis in [10] is only valid for energy scales E & Λ∗, where their
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results match ours. But we claim that the true infrared theory is, upon rescaling t by a

V̄ -dependent factor, dual to a holographic model with the following unusual metric:

ds2 ∼ dr2 + dx2

r2
− dt2

r2 log2(rΛ)
. (3.12)

This theory is almost — but not quite — scale invariant in the infrared. The proposal

that (3.12) describes the genuine infrared physics is the main result of our paper.

Another appearance of logarithmically running couplings in a holographic model arises

in Einsten-Maxwell-dilaton models [4], where a scalar field φ ∼ log r grows logarithmically

in the IR. However, the metric supported by the dilaton (and a gauge field) does not have

an explicit logarithm as in (3.12). For this reason, we expect that (3.12) represents a

subtly different and new kind of IR theory. Further work exploring the response functions

of such a geometry is worthwhile, and it would be interesting if the logarithm leads to slow

dynamics reminiscent of aging or glassiness.

Let us now justify (3.10). We imagine that the ansatz (3.9) is correct, but that once

rΛ � 1, A0, B0 and z are slowly varying functions of r, with A0, B0 ∼ 1 and z − 1 � 1.

These assumptions are all consistent with the picture above. We now show that a self-

consistent solution to the holographic equations of motion with these properties exists.

The first step is to evaluate the disorder averages over the scalar field profiles. There

are two key observations. Firstly, since the scalar equation of motion

r√
AB

∂r

(√
ABr∂rφ

)
=
k2

A
φ− 3

4
φ (3.13)

is linear, we may solve it separately for each k, temporarily assuming that we know A0, B0

and z (we will self-consistently determine these later). The second observation is that for

k � Λ, if the geometry varies sufficiently slowly, the solution of (3.13) is well approximated

by the k = 0 solution for r � k−1, and exponentially decays for r � k−1. To be precise,

let us suppose that A0, B0 and z from (3.9) are constants. In this case, we can analytically

solve (3.13), up to a dimensionless prefactor C ≈ 1 which will not play an important role

in the analysis:

φ(k, r) ≈ C × h(k)× Λ(1−z)/2kz−1/2r(1+z)/2Kz−1/2(
√
A0kr) (3.14)

Note that the Λ dependence arises in this equation because for rΛ . 1, the metric tran-

sitions to an asymptotically AdS region where z = 1, and that since the metric is always

close to z = 1, and C = 1 is the exact prefactor at z = 1, it is reasonable to estimate

C ≈ 1. Upon integrating over k, for rΛ� 1 we find the scaling relation

E
[
φ2
]
∼ r2E

[
(∂xφ)2

]
∼ r2E

[
(∂rφ)2

]
∼ V̄ 2(rΛ)1−z. (3.15)

We emphasize that there is now z-dependence in these equations, which will qualitatively

change the infrared geometry. This effect was missing in the resummed perturbative anal-

ysis of [10].

In fact, z as given in (3.10) is not strictly constant. Nevertheless, it is reasonable

to approximate that it is constant in the solution (3.14). Firstly, let us ask whether the
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r-dependence of z can affect the exponential fall-off once kr � 1 and Λ∗r � 1: from (3.12)

we estimate

r
dz

dr
∼ log log(rΛ)

log2(rΛ)
� 1, (3.16)

and therefore on the scales where any given wave number scalar mode are decaying, the

metric will approximately appear scale invariant (in the Lifshitz regime we also have ap-

proximate scale invariance). Secondly, for kr � 1, it is reasonable to approximate φ(k, r)

with the solution at k = 0. At k = 0, it is straightforward to use the method of dominant

balance [21] to check that (3.14) is a very good approximate solution to the scalar equation

of motion with an effective z(r) given by (3.10).

Having justified that in the deep IR Λ∗r & 1, we may approximate (3.15), we now must

confirm that indeed (3.10) is a self-consistent solution to the Einstein equations. Again we

use the method of dominant balance. First, we note that a solution with z constant (and

A0, B0 constant) cannot possibly solve (3.5) even approximately: the Lifshitz geometry is

supported by E[φ2] ∼ (rΛ)0, and yet in the Lifshitz regime we instead find (3.15). Since

z > 1 was supported by the scalar disorder, the most natural guess as to how to correct

the solution is to assume A0 and B0 remain constants of order 1, while z(r) is weakly

dependent on r. After all, we expect that dz/dr < 0 in the IR (at least at r ∼ Λ−1
∗ ) due to

the irrelevance of the disorder in the Lifshitz regime. Upon plugging in the ansatz (3.9),

with z(r) an unknown function, into (3.5), we find the approximate equation

6(z − 1)

r2
+

4

r
(log(rΛ)− 1)

dz

dr
− 2 log(rΛ)

d2z

dr2
≈ 3C

4r2
V̄ 2(rΛ)1−z (3.17)

where we have dropped terms which are higher order in z − 1. We expect that C ≈ 1 for

the same reasons as before. When C = 1, we can use dominant balance to show that (3.10)

is an approximate solution to this equation. This demonstrates that as promised, (3.10)

is a self-consistent approximate solution to the holographic equations, in our “mean field”

approximation for disorder.

A non-trivial feature of the infrared solution we have found is the apparent indepen-

dence of (3.12) on V̄ — even though the disordered scalar is still supporting the geometry.

What our solution suggests is the following: combining (3.10) with (3.15), we obtain

E
[
φ2
]
∼ V̄ 2

1 + 1
8 V̄

2 log(Λr)
. (3.18)

The disorder strength V̄ drops out of this expression to leading order when Λ∗r � 1

because the effective dynamical critical exponent z, which itself depends on the disorder

strength, reduces the bulk scalar field’s magnitude in the infrared. It is tempting to thus

view the scalar as a dangerous “marginally irrelevant” operator in the true infrared theory;

however, since the infrared theory is not scale invariant, we are not sure if the standard

terminology fully captures this physics.

While on the subject of relevant versus irrelevant perturbations, however, we call

attention to the following simple observation. Suppose that our conjecture is wrong, and

that the genuine infrared theory at all scales is Lifshitz, as proposed in [10]. Then, one might
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expect that the disorder which drove us to the Lifshitz fixed point itself becomes irrelevant.

But that does not appear quite true — we have a line of fixed points which depend on V̄ , and

so the disorder remains a “relevant” operator even in the Lifshitz geometry. However, in

our proposed infrared description, modifying the disorder strength does appear irrelevant,

in the sense that (3.18) does not depend on V̄ 2 at leading order at large r. Hence our

proposed infrared theory does have a desired property that the operator which perturbed

us to this fixed point at high energies has actually become “irrelevant” at low energies.

The last thing to check is that A0 and B0 do not significantly depend on r. In some

sense, B0 can exactly be set to a constant as all the r-dependence in B(r) can be absorbed

into z(r). To check that A0 is well approximated by a constant, we again apply the

principle of dominant balance. Plugging in the ansatz (3.9), (3.10) and (3.15) into (3.5),

we indeed find that the error terms in the differential equations are smaller than the

leading order terms, and source subleading corrections to A0(r). This completes our self-

consistency check.

We emphasize that it is not the case that keeping higher order terms in V̄ 2 can restore

the Lifshitz geometry. As noted before in (2.10), so long as the geometry is approximately

homogeneous, it will ultimately drive the scalar disorder to irrelevance. No V̄ 4 corrections

to any coefficients above will change that physics, so long as V̄ is sufficiently small.

4 Nonlinear stabilization of Lifshitz geometry

Thus far, we have described a minimal model of disordered holography. We now turn to a

discussion of a more general family of theories, with bulk action

S =

∫
d3x
√
−g
(
R+ 2− 1

2
∇aφ∇aφ− 1

2
m2φ2 − 1

4
gφ4 − · · ·

)
, (4.1)

where for convenience we have only included even terms in φ. As before, we choose m2 =

−3/4 so that the disorder is Harris-marginal. While the term above will modify (3.5), it is

a subleading effect ∼ V̄ 4 and its effect on the geometry is (for the moment) not important.

However, the quartic term does modify the scalar equation of motion in an important

way. In the same spirit as our “mean field” approximation (3.5), the scalar equation of

motion (3.13) generalizes to

r√
AB

∂r

(√
ABr∂rφ

)
=
k2

A
φ− 3

4
φ+ 3gE

[
φ2
]
φ. (4.2)

Due to the nonlinearity, once rΛ� 1, the scalar field has an effective mass

m2
eff = −3

4
+ 3gE

[
φ2
]
. (4.3)

In the Lifshitz regime Λ−1 � r � Λ−1
∗ , we can evaluate the criterion for Harris-marginal

disorder with dynamical critical exponent z: combining (2.7) and (2.8), we require

∆eff =
3

2
+
V̄ 2

8
+ · · · . (4.4)
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Combining (2.9), (4.3) and (4.4), we see that when

g = − 1

48
+ · · · , (4.5)

the disorder remains marginal in the Lifshitz regime, at leading non-trivial order in V̄ .

The solution to (4.2) with this value of g is approximately given by

φ(k, r) ∼ h(k)× k(1/2+V̄ 2/16)r1+V̄ 2/16K1/2+V̄ 2/16(kr). (4.6)

Hence, at leading order in V̄ , we find that

E
[
φ2
]

= V̄ 2 = 4 E
[
(∂xφ)2 − (∂rφ)2

]
. (4.7)

Plugging (4.7) into (3.5), we find that the Lifshitz geometry (3.9) with constant z given

by (2.7) is a good solution.

However, since we have neglected V̄ 4 corrections both in the value of z, and by neglect-

ing the E
[
φ4
]

term in system, we should not expect that for all r is the geometry Lifshitz.

Rather, we expect that at a very infrared scale energy scale of Λ∗ ∼ Λ exp[−1/V̄ 4], a new

infrared theory emerges. In principle that regime could in turn be stabilized by higher

order nonlinearites, etc., but we expect that a true Lifshitz geometry only emerges for

an infinitely fine tuned scalar potential V (φ) in the holographic action. Of course, since

the coefficients such as m2, g, etc. are related to operator dimensions and operator prod-

uct expansion coefficients by the holographic dictionary, such fine tuning may be rather

unreasonable from a field theoretic point of view.

The presence of odd terms in φ in (4.1), which are actually quite natural in holography,

seems to have a very drastic effect. Odd terms in φ will generate a non-trivial k = 0

component to the scalar field in the presence of disorder, since there is now a φ2 term

in (4.2). This may lead to a very different infrared theory. We will not perform a detailed

analysis here. We also note that in any finite size realization of a holographic theory whose

action is invariant under φ → −φ, in principle k = 0 components can also arise due to

an interplay between the metric components at wave number q and scalar field at wave

number −q; however, in the thermodynamic limit the theory could not pick how the zero

mode φ breaks this Z2 symmetry in the absence of a source, and so we expect our analysis

neglecting zero modes of φ is acceptable for all theories studied in this paper.

5 Speculation on relevant disorder

For g > − 1
48 , the nonlinearity above will not drastically change the physics relative to

g = 0. However, if g < − 1
48 , a qualitatively new infrared theory can arise.

We conjecture that the low energy physics of the regime g < − 1
48 is qualitatively

similar to a theory with Harris-relevant disorder. We assume again that the disorder is

given by (3.3), although we may safely now take Λ → ∞. In our one dimensional model,

this corresponds to ∆ < 3
2 . Assuming ∆ > 1 for convenience, one can solve the equations

of motion and find [4]

E
[
φ2
]
∼ r2E

[
(∂xφ)2

]
∼ r2E

[
(∂rφ)2

]
∼ V̄ 2r3−2∆. (5.1)

– 9 –
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The infrared energy scale is now simply given by

Λ∗ ∼ V̄ 1/(3/2−∆). (5.2)

For Λ∗r � 1, the theory is effectively conformal. For Λ∗r � 1, we can crudely explore

the infrared geometry as follows. If we naively plug (5.1) into (3.5): then we find using

dominant balance that

logA(r) ∼ logB(r) ∼ −V̄ r
3
2
−∆ (5.3)

once Λ∗r � 1. This suggests that the geometry wants to “cap off”, as in a gapped phase [4].

Unfortunately, the iterative process of correcting φ, and subsequently A and B, is

badly divergent. Therefore, we encourage numerical studies of the low energy holographic

descriptions of such models.

6 Conclusion

In this paper, we have argued that Harris-marginal disorder does not drive the minimal

holographic theory (2.4) to a Lifshitz scale invariant theory with a tunable dynamical

critical exponent, as was proposed in [10, 13]. Instead, we argue that at least for sufficiently

small disorder, a universal infrared theory emerges below a non-perturbatively small energy

scale. The physics in the infrared appears independent of the disorder strength. As our

conclusion relies on manifestly non-perturbative physics, it is not surprising that these

effects have not been seen in resummed perturbative analyses, which are appropriate at

intermediate energy scales but need not capture all non-perturbative physics.

As far as we can tell from earlier numerics [10], our assumption that the essential

physics of the geometry is captured by a homogeneous scaling geometry of the form (3.4)

seems to be the case: there is a well-defined Lifshitz exponent (at numerically accessi-

ble scales) which is quantitatively predicted by this approach [4]. So we do expect that

our approach ultimately captures the essential infrared physics and that our qualitative

conclusion is correct.

Due to the possibly extraordinarily small energy scales at which the true infrared

regime sets in, it may well be impossible to observe this effect in a numerical simulation.

Let us make a brief estimate. Assuming (3.11) is accurate for all V̄ , the numerics of [10]

reached Λr ∼ 102, meaning that when V̄ ≈ 1.3, we expect them to just begin to see the

onset of the true infrared. By this estimate, the effect should be visible. On the other

hand, we can ask how much z(r) as given in (3.10) would change between 10 < Λr < 100;

again taking (3.10) at face value, we find that the answer is at most a few percent, which

does not seem to contradict numerics. We also emphasize, however, that these estimates

are quite naive: (3.10) is certainly not accurate for rΛ ∼ 1, and is genuinely intended only

for the regme Λ∗r � 1. Moreover, only when V̄ � 1 are the O(1) factors in any of our

expressions believable, and this condition is certainly violated at V̄ ≈ 1.3. With all of

these caveats, it is reasonable to conjecture that even when V̄ > 1, the infrared limit is the

same as what we have obtained. After all, our arguments around (2.10) do not rely on a

perturbatively small V̄ .

– 10 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
3

We believe that our line of argumentation, while no doubt heuristic, is quite pow-

erful and may be useful in the analysis of disordered holographic matter whenever the

inhomogeneity arising from the disorder does not lead to “rare region effects” where the

inhomogeneity controls the physics. Hence, it would be interesting to extend our study

to other models of holographic disorder. For example, our methods may lead to a more

“microscopic” derivation of existing “mean-field” treatments of holographic disorder [22–

30]. Earlier work [31] argued that chemical potential disorder (which couples to vector, not

scalar, fields) is marginally relevant. Whether this marginal relevance only builds up the

Lifshitz regime [14, 15], only to ultimately disappear in the true infrared, or whether this

marginal relevance drives to a totally different ground state, is an interesting question for

future research.
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