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1 Introduction

The overlap between an integrable boundary state and an on-shell energy eigenstate is an

important quantity in integrable models. In integrable quantum field theories, when the

energy eigenstate is the ground state, the overlap is known as the exact g-function. The g-

function is a measure of boundary degrees of freedom and is thus also called the boundary

entropy. Very recently, this quantity made its appearance in the context of AdS/CFT

where it is shown [1, 2] that the structure constant of two determinant operators and one

non-BPS single trace operator at finite coupling is given by an exact g-function on the

string world sheet.

Turning to integrable lattice models such as integrable quantum spin chains and clas-

sical statistical lattice models, these overlaps also play an important role. They are crucial
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ingredients in the context of quantum quenches, partition functions of integrable lattice

models [3], as well as the weak coupling limit of integrability in AdS/CFT [4–6].

The first exact result for on-shell overlaps appeared in [7] based on the earlier works [8,

9]. It was found that only the Bethe states whose rapidities are parity symmetric lead to

non-vanishing overlaps. This finding was explained in [10], where an integrability condition

was formulated for the boundary states. It was further argued in [11] that it is only these

integrable states where simple factorized results can be expected. This expectation was

confirmed in all known cases (see [12] and references therein). It is now understood that the

integrable boundary states are closely connected to integrable boundary conditions [10, 11,

13], generalizing the seminal results of Ghoshal and Zamolodchikov on integrable boundary

QFT [14].

The exact finite volume overlap formulae have the same structure in all known cases:

they are given by a product of two parts. One part is universal and is given by the ratio of

two so-called Gaudin like determinants (which are replaced by Fredholm determinants in

the continuum limit or in the AdS/CFT situation). The other part depends on the details

of the boundary state and is a product of simple scalar factors, or a sum of such products.

We note that the first work which derived this structure was [15], although the early results

of [15] only pertained to integrable QFT and they were not used in the later studies of the

spin chain overlaps.

The works mentioned above concern compact spin chains, where the quantum space

at each site is finite dimensional. On the other hand, non-compact chains with infinite

dimensional local Hilbert spaces are highly relevant in QCD and AdS/CFT. To the best

of our knowledge, integrable boundary states of non-compact spin chains have never been

studied before. Recently, an exact overlap formula with a specific boundary state in a non-

compact chain was conjectured [1] in the context of AdS/CFT. The factorized overlap takes

the same form as in the compact case. In the present paper we show that this boundary

state is indeed integrable, and provide an actual proof for the conjectured overlap formula.

We stress that up to now there have been no methods to actually prove the exact

overlap formulae, except for the simplest cases in the Heisenberg spin chains which are

related to the so-called diagonal K-matrices [7]. The proof of [7] uses an off-shell overlap

formula, which goes back to the work of Tsushiya [16] (see also [8, 9]). It is most likely that

such an off-shell formula does not exist in other cases, which are related to off-diagonal

K-matrices in the XXZ chain, or any K-matrix in higher rank cases. The follow-up works

assumed that the structure of the factorized overlap is the same in all cases, and determined

the one-particle overlap functions using a generalization of the Quantum Transfer Matrix

(QTM) method [11, 12]. Alternatively, the one-particle overlap functions could be extracted

from coordinate Bethe Ansatz computations [4–6]. And while QTM approach was rather

successful in the compact spin chain, it is not evident whether it can be generalized to the

non-compact cases.

In this work we go back to the coordinate Bethe Ansatz solution of the models, and

rigorously prove the overlap formulae starting from the explicit finite volume wave func-

tions. Our approach is a combination of the real space methods of [4, 5] and some ideas

present in Korepin’s work [17], where it was rigorously proven that the norm of the on-shell
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Bethe states is given by the Gaudin determinant. Our main idea is to focus on the apparent

singularities of the overlaps, but instead of developing a completely algebraic approach we

compute the singularities from coordinate Bethe Ansatz.

The rest of the paper is structured as follows. In section 2 we introduce the local spin

chains that we study in this paper and review their solution by coordinate Bethe Ansatz.

In section 3 we discuss integrable boundary states for these spin chains. We also prove

the boundary state proposed in [1] is indeed integrable. We give the general strategy for

the proof of exact overlap formulae using coordinate Bethe Ansatz in section 4. Concrete

examples for both compact and non-compact spin chains are presented in section 5. We

conclude and discuss some future directions in section 6.

2 Integrable local spin chains and Bethe Ansatz

We review the definitions of various local integrable quantum spin chains and their solutions

by Bethe Ansatz. More specifically, we will consider the compact XXX and XXZ spin chains

and the non-compact SL(2,R) spin chain.

2.1 Local integrable spin chains

We consider integrable spin chains given by local Hamiltonians

H =

L∑
j=1

hj,j+1 (2.1)

with periodic boundary condition. We denote the Hilbert space of each local site j by Hj .
The dimension of Hj can be finite or infinite. Each term hj,j+1 act on the space Hj⊗Hj+1.

Compact spin chain. The Hamiltonian for the compact XXZ spin chain is given by

H =

L∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1 + ∆(σzjσ

z
j+1 − 1)). (2.2)

where σαj (α = x, y, z) are the Pauli matrices. Here ∆ is the anisotropy parameter. The

isotropic XXX spin chain corresponds to taking ∆ = 1. For simplicity we focus on the

so-called massive regime ∆ ≥ 1 for XXZ spin chain in this paper.

The local Hilbert space at each site is C2. The two basis vectors are

|↑〉 =

(
1

0

)
, |↓〉 =

(
0

1

)
. (2.3)

The isotropic XXX spin chain has SU(2) symmetry. The local Hilbert spaces form the the

spin-1
2 representation of the su(2) algebra.

Non-compact spin chain. Now we consider the non-compact SL(2,R) spin chain.1 [18,

19]. We first introduce the SL(2,R) algebra. The generators in the spin-s representation

1This spin chain is nothing but the Heisenberg XXXs spin chain with local quantum space in the non-

compact s = −1/2 representation. We choose to call it the SL(2,R) spin chain in accordance with the QCD

and AdS/CFT literature.
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can be written in terms of bosonic oscillators a, a† as

S− = a, S0 = a†a+ s, S+ = 2sa† + (a†)2a. (2.4)

We will focus on the spin- 1
2 representation and take s = 1/2 from now on. The

generators satisfy the SL(2,R) algebra

[S0, S±] = ±S±, [S+, S−] = −2S0. (2.5)

The local Hilbert space for this spin chain is infinite dimensional. The basis vectors are

given by

|n〉 ≡ (S+)n

n!
|0〉, n = 1, 2, · · · . (2.6)

where |0〉 is the vacuum state defined by

S−|0〉 = 0. (2.7)

The action of the generators on the basis is given by

S+|m〉 = (m+ 1)|m+ 1〉, S−|m〉 = m|m− 1〉, S0|m〉 = (m+ 1
2)|m〉. (2.8)

Similarly, the dual states are defined by

〈n| = 〈0|(S−)n

n!
, 〈0|S+ = 0 (2.9)

Using the definition of the states and the SL(2,R) algebra, it is straightforward to show

that the basis states are orthonormal

〈n|m〉 = δm,n. (2.10)

The Hamiltonian takes the local form as in (2.1). The local Hamiltonian density hj,j+1

acts on Hj ⊗Hj+1 as

hj,j+1|mj〉 ⊗ |mj+1〉 =
(
h(mj) + h(mj+1)

)
|mj〉 ⊗ |mj+1〉 (2.11)

−
mj∑
k=1

1

k
|mj − k〉 ⊗ |mj+1 + k〉

−
mj+1∑
k=1

1

k
|mj + k〉 ⊗ |mj+1 − k〉.

where h(m) is the harmonic sum

h(m) =
m∑
k=1

1

k
. (2.12)

Like their compact cousins, non-compact spin chains also have many applications in physics.

For example, the SL(2,C) spin chain shows up in the study of Regge limit of QCD [20–

22]. The SL(2,R) spin chain which we study in this paper first appeared in the study of

baryon distribution amplitudes in QCD [18]. Later in integrability in AdS5/CFT4, this

Hamiltonian describes the one-loop dilatation operator of the SL(2) sector. Recently, it

also made its appearance in non-equilibrium statistical mechanics [23].
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2.2 Coordinate Bethe Ansatz

Both the compact and non-compact spin chains are integrable and can be solved by Bethe

Ansatz. We can use either the coordinate or the algebraic Bethe Ansatz to construct the

eigenstates. For our proof below, it is more convenient to use the coordinate Bethe Ansatz.

Regarding the spin- 1
2 chains the method goes back to the works [24–27], whereas for higher

spin cases it was worked out in [28, 29]. In the case of the non-compact chain we can use

the results of [28] or those of [29] after analytic continuation to s = −1/2.

Reference state. The eigenstates are constructed as interacting spin waves over a proper

reference state. For compact spin chain, the reference state is chosen to be the ferromagnetic

vacuum

|Ω〉 = |↑〉⊗L. (2.13)

For the non-compact spin chain, the reference state is chosen to be the Fock vacuum

|Ω〉 = |0〉⊗L. (2.14)

The reference states are eigenstates of the Hamiltonians. To obtain other eigenstates, we

introduce excitations on top of the vacuum state. A generic eigenstate is characterized by

a set of rapidities λN ≡ {λ1, λ2, · · · , λN}; the corresponding eigenstate will be denoted

by |λN 〉.

Basis vectors. Let us first introduce the basis vectors as

|x1, . . . , xN 〉 ∼ S(x1)
± S

(x2)
± · · ·S(xN )

± |Ω〉, (2.15)

where the xj denote the positions of the sites and S
(xj)
± denotes the local spin operator

at site xj that creates one excitation. Each xj runs from 1 to L. From our convention of

reference states, for the compact and non-compact chains the creation operators are S
(x)
−

and S
(x)
+ respectively. Now comes the crucial difference between compact and non-compact

spin chains. For the compact spin chain, we can act with S
(xj)
− on each site xj only once,

thus each site can only hold one excitation. In the contrary, for non-compact spin chain,

we can act with any number of S
(xj)
+ on site xj .

In the non-compact case the precise normalization of the basis vectors is given by

|x1, . . . , xN 〉 = E
(x1)
+ E

(x2)
+ · · ·E(xN )

+ |Ω〉 (2.16)

with

E
(x)
+ |m〉x = |m+ 1〉x. (2.17)

The E+ operators are conjugate to S+, and their usage leads to a convenient representation

of the coordinate Bethe Ansatz wave functions. See [29] for the detailed discussion of

this point.
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The basis states are thus given in the two cases by

Compact chain : |x1, x2, · · · , xN 〉 1 ≤ x1 < x2 · · · < xN ≤ L, (2.18)

Non-compact chain : |x1, x2, · · · , xN 〉 1 ≤ x1 ≤ x2 · · · ≤ xN ≤ L.

The eigenstate |λN 〉 is given by a proper linear combination of the basis states

|λN 〉 =
∑
{xj}

χ(xN ,λN )|x1, x2, · · · , xN 〉, (2.19)

where the range for the summation over xj are given in (2.18).

Bethe wave functions. Now we discuss how to construct the wave function χ(xN ,λN ).

It takes the following form:

χ(xN ,λN ) =
∑
σ∈SN

∏
j>k

f(λσj − λσk)

N∏
j=1

eipσjxj , (2.20)

where pσj = p(λσj ) is the momentum of the excitation with rapidity λσj . f(λ) is certain

known function which is related to the S-matrix of excitations by

S(λ, µ) =
f(λ− µ)

f(µ− λ)
. (2.21)

The summation in (2.20) is over all permutations of indices {1, 2, · · · , N}, which is denoted

by SN .

Different models are distinguished by the different p(λ) and f(λ) functions. For the

three spin chains under consideration, the two functions are given by

• Compact XXZ chain (∆ > 1)

eip(λ) =
sin(λ− iη/2)

sin(λ+ iη/2)
, f(λ) =

sin(λ+ iη)

sin(λ)
, S(λ) =

sin(λ+ iη)

sin(λ− iη)
, (2.22)

where η is related to the anisotropy by ∆ = cosh η.

• Compact XXX chain

eip(λ) =
λ− i/2
λ+ i/2

, f(λ) =
λ+ i

λ
, S(λ) =

λ+ i

λ− i
. (2.23)

• Non-compact chain

eip(λ) =
λ− i/2
λ+ i/2

, f(λ) =
λ− i
λ

, S(λ) =
λ− i
λ+ i

. (2.24)

Our sign convention for the rapidity is such that p′(λ) > 0 in all cases.
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Bethe equations. Periodicity of the eigenstate implies that the rapidities {λ}N have to

satisfy Bethe equations

eip(λj)L
∏
k 6=j

S(λj − λk) = 1. (2.25)

The rapidities can be found by solving Bethe equations. After finding the rapidities, the

eigenvalue of the Hamiltonian is given by the total energy of the system

H|{λN}〉 = EN ({λ}N )|{λN}〉, EN ({λ}N ) =
N∑
j=1

e(λj). (2.26)

For the XXX spin chains (both compact and non-compact) the function e(λ) is given by

e(λ) = − 2

λ2 + 1
4

. (2.27)

For the XXZ spin chain, the function is given by

e(λ) =
4 sinh2 η

cos(2λ)− cosh η
. (2.28)

Some notations. For future use let us introduce the variables

lj = eip(λj). (2.29)

It follows from the concrete formulae (2.23)–(2.22) that f(λj − λk) is a rational function

of lj , lk. With some abuse of notation we will write it as f(lj , lk). We can thus regard the

Bethe wave function as a rational function of the l-variables:

χ(xN ,λN ) =
∑
σ∈SN

∏
j>k

f(lσj , lσk)

N∏
j=1

(
lσj
)xj . (2.30)

This representation will play an important role in the overlap computations. The Bethe

equations are rewritten as

aj =
∏
k 6=j

f(lk, lj)

f(lj , lk)
, (2.31)

where we introduced the a-variables as

aj = lLj = eipjL. (2.32)

3 Integrable boundary states

In this section, we discuss integrable boundary states for integrable spin chains. We first

review the proposal of [10] for characterizing integrable boundary states for general spin

chains. Although the proposal was motivated for compact spin chains, it is straightforward

to generalize it to the non-compact cases. On the other hand, some techniques for the

explicit constructions of the boundary states rely on the rotation trick and do not allow

for an immediate generalization to the non-compact case.
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After the general discussion, we focus on explicit examples for the compact and non-

compact spin chains. The discussion for the compact cases mainly just reviews the known

results. The results on integrable boundary states of non-compact spin chains are new.

Finally we give the explicit formula for the exact overlap between a Bethe state and the

integrable state, which will be proven in later sections.

3.1 General discussion

We review the definition of integrable boundary states according to [10], which is inspired

from the definition of boundary states in quantum field theories [14].

Integrable models possess a family of conserved charges that are in involution with

each other:

[Qα, Qβ ] = 0. (3.1)

In local spin chains these charges are also local, which means they can be written in the form

Qα =

L∑
x=1

qα(x). (3.2)

where qα(x) is a local operator whose range can be chosen to be α. In other words it

only acts on sites x, x+ 1, . . . , x + α − 1. The Hamiltonian of the spin chain is one of the

conserved charges, and usually we choose H ∼ Q2.

Let Π be the space parity operator which acts on the basis vector |i1, i2, · · · , iL〉 as

Π|i1, i2, · · · , iL〉 = |iL, iL−1, · · · , i1〉. (3.3)

The charges can be chosen in such a way that they have fixed parity under space reflection

ΠQαΠ = (−1)αQα, α ≥ 2. (3.4)

Integrable boundary states |Ψ〉 are defined as the elements of the Hilbert space satisfying

the condition

Q2k+1|Ψ〉 = 0, k = 1, 2, . . . (3.5)

A perhaps more natural integrability condition can be given using the transfer matrix

(TM), which generates the set of conserved charges. Such a TM can usually be con-

structed systematically in the algebraic Bethe Ansatz. In the following we briefly review

this construction.

In the local integrable spin chains related to the Lie-group G there is a rapidity de-

pendent TM tΛ(u) for all representation Λ of G, such that for all Λ,Λ′:

[tΛ(u), tΛ
′
(u′)] = 0. (3.6)

These transfer matrices are constructed using Lax operators as

tΛ(u) = TraT
Λ
a (u), Ta(u) =

L∏
k=1

LΛ
ak(u). (3.7)

– 8 –
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Here LΛ
a,k are the so-called Lax operators, k is the index of the local Hilbert spaces, and a

stands for an auxiliary space, carrying the representation Λ of the group G.

Typically there are two distinguished transfer matrices, corresponding to the

cases below:

• Λ is the defining representation of the group G. The corresponding TM will be called

“fundamental” and it will be denoted as τ(u).

• Λ is the representation of the physical spaces. The corresponding TM will be called

“physical” and it will be denoted as t0(u).

In our cases G = SU(2). In the compact XXX case the physical spaces carry the

defining representation, therefore the two TM’s mentioned above coincide. However, in the

higher spin cases and in the non-compact chain they are different.

Typically the physical TM is used to generated the local conserved charges. Expanding

it in a power series we define (see for example [30] and [19, 21] for the non-compact cases)

t0(u) = U exp

( ∞∑
n=1

βn
un

n!
Qn+1

)
, (3.8)

where βn are chosen to make the charges Qn+1 Hermitian. U = t0(0) is the the translation

or shift operator.

It follows from this expansion that the integrability condition for the boundary state

can be written as

t0(u)|Ψ〉 = Π t0(u) Π|Ψ〉. (3.9)

Several important remarks are in order.

First, this condition is somewhat stronger than (3.5), because it also implies

U2|Ψ〉 = |Ψ〉, (3.10)

which does not follow from (3.5). Although it has not yet been proven rigorously that (3.5)

implies (3.9), in interacting models there is no known case where the two-site invari-

ance (3.10) is not satisfied.

We can also require an integrability condition using the defining TM:

τ(u)|Ψ〉 = Π τ(u) Π|Ψ〉. (3.11)

The equivalence of (3.11) and (3.9) is not guaranteed. Typically the different transfer

matrices are algebraically dependent, which is established through the so-called fusion

relations (also known as the Hirota equation). In the case of G = SU(2) these fusion rela-

tions guarantee that (3.11) and (3.9) are equivalent, but for higher rank groups it is possible

that the integrability conditions with TM’s corresponding to different representations have

a different form [31].

We now give the explicit construction of the fundamental transfer matrix with the

SU(2)-symmetry, both in the compact and non-compact ones. The Lax operator at each

site-j is given by

Laj(u) = u+ i(~σa · ~Sj) = u+ i
(
σzaS

z
j + σ−a S

+
j + σ+

a S
−
j

)
, (3.12)

– 9 –
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where it is understood that S± = Sx ± iSy, and for the compact spin chain Sα = 1
2σ

α,

whereas for the non-compact spin chain the Sz, S± operators are given by (2.4).

This TM satisfies a crossing relation. The Pauli matrices satisfy the relation σyσaσy =

−(σa)T with a = x, y, z, where the superscript T denotes transposition. This implies

σyaLaj(u)σya = −LTa
aj (−u). (3.13)

For the TM this means

τ(−u) = Πτ(u)Π. (3.14)

The integrability condition is therefore equivalent to

τ(u)|Ψ〉 = τ(−u)|Ψ〉. (3.15)

We stress that this is not a generic feature of integrable models, and it is only valid for the

defining representation of the SU(2)-related models, and only with our specific choice for

the additive and multiplicative normalization of the local Lax operators.

In the non-compact case the integrability conditions have not yet been discussed be-

fore. We take (3.11) (or the equivalent conditon (3.15)) as the fundamental definition of

integrability for the non-compact chain. Now we show that this ensures the pair property

for the overlaps, and thus the original condition (3.5) and also (3.9) will be satisfied.

It can be derived using the Algebraic Bethe Ansatz [30], that the eigenvalue of the

fundamental transfer matrix on the Bethe state given by (2.20) is

τ(u) = (u+ i/2)L
N∏
j=1

f(λj − u) + (u− i/2)L
N∏
j=1

f(u− λj). (3.16)

Here we used the same notation τ(u) also for the eigenvalue. This formula holds both in

the compact XXX case and the non-compact chain, with the f -functions given by (2.23)

and (2.24), respectively. It follows directly from the integrability condition (3.15) that the

overlaps can be non-zero only when the corresponding eigenvalues satisfy τ(u) = τ(−u).

This immediately leads to the requirement that the set λN be parity symmetric, both in

the compact and non-compact cases.

3.2 The compact chains

In the literature two main classes of integrable states have been considered. The first class

is the two-site states which are defined as

|Ψ〉 = ⊗L/2j=1|ψ〉, |ψ〉 ∈ C2 ⊗ C2. (3.17)

It was shown in [10] that in the XXX and XXZ models every two-site state is integrable.

Furthermore they correspond to integrable K-matrices through

ψab = (K(σ)C)ba, (3.18)

where C is constant matrix describing the so-called crossing transformation and σ is a

special value for the rapidity parameter (for details see [10]). The K-matrix describes an

– 10 –
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integrable boundary condition, and it satisfies the standard Boundary Yang-Baxter (BYB)

relation

K2(v)R21(u+ v)K1(u)R12(v − u) = R21(v − u)K1(u)R12(u+ v)K2(v), (3.19)

where R(u) is the so-called R-matrix in the fundamental representation, see [10].

The physical meaning of the correspondence (3.18) is that an integrable boundary in

space (described by the K-matrix) is transformed into an integrable boundary in time (de-

scribed by the boundary state). This is the generalization of the same picture in integrable

QFT, first developed by Ghoshal and Zamolodchikov [14].

Another class of states is given by integrable matrix product states (MPS) defined as

|Ψ〉 =

2∑
j1,...,jL=1

TrA [ωjL . . . ωj2ωj1 ] |jL, . . . , j2, j1〉. (3.20)

Here ωj , j = 1, 2 are matrices acting on one more auxiliary space denoted by A. The

study of such integrable MPS was initiated in the works [4, 5], and later it was shown

in [13] that these states are also described by solutions of the BYBE, although the corre-

sponding K-matrices have an inner degree of freedom. The work [13] also treated two-site

invariant MPS, and the two-site states above can be considered as MPS with “trivial”, one

dimensional auxiliary space.

It was argued in [11] that in the SU(2)-symmetric chains all integrable MPS are ob-

tained by the action of transfer matrices on two-site states. This is not true in spin

chains with higher rank symmetries: the works [12, 13] treated a number of “indecompos-

able” MPS’s.

We note that in the higher rank cases there are two main types of integrable boundary

conditions, described by the original and the twisted BYB relations. The integrable initial

states are always related to the twisted case [13]. However, in the SU(2) and SO(N)

related models the two types of boundary conditions are equivalent, which can be shown

by a crossing relation, see [13] for a detailed discussion on this issue. Here we do not treat

this distinction and only refer to the original BYB (3.19).

3.3 The non-compact chain

Much less is known about integrable boundary states for non-compact spin chains compared

to the compact case. Here we present the first example which satisfy the integrability

conditions. It appears in the context of AdS/CFT [1] and an exact overlap formula has been

proposed. This integrable boundary state can be seen as a counterpart of the generalized

Néel state in the compact case [32].

A generalized Néel state. To introduce the integrable boundary state, it is more

convenient to write the basis vectors of the Hilbert space as

|n1, n2, · · · , nL〉 ≡ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nL〉, (3.21)
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where nj denotes the number of excitations at the site-j; to be more precise

|nj〉 =
(S+)nj

nj !
|0j〉. (3.22)

Assuming that L is even, we define a family of states which depend on a free parameter κ:

|Néelκ〉 =
∑
{ni}

(
κNodd + κNeven

)
|n1, n2, · · · , nL〉, (3.23)

where the summation for each nj runs over all non-negative integers. Nodd and Neven are

the total number of excitations on odd and even sites

Nodd = n1 + n3 + · · ·+ nL−1, Neven = n2 + n4 + · · ·+ nL. (3.24)

There are two special cases for this generalized Néel state. This first one is κ = 1, where

|Néelκ=1〉 is simply the sum over all basis vectors of the Hilbert space. We will denote this

state by |XF 〉 in what follows; it is a one-site invariant ferromagnetic state.

The second special case is κ = 0. It follows from (3.23) that the non-vanishing contri-

butions at κ = 0 are given by Nodd = 0 or Neven = 0. The state |Néel0〉 takes the form

|Néel0〉 =
∑
|j−k|
even

| ◦ · · · ◦ •j ◦ · · · ◦ •k ◦ · · · 〉, (3.25)

where the black dots stand for possible positions of excitations, and the sum is taken over

all possible distributions under the restriction that the distances between the black dots

have to be even. For example, for L = 4, we have the following state

|Néel0〉 = | ◦ ◦ ◦ ◦〉+ | • ◦ ◦ ◦〉+ | ◦ • ◦ ◦〉+ | ◦ ◦ • ◦〉+ | ◦ ◦ ◦ •〉 (3.26)

+ | ◦ • ◦ •〉+ | • ◦ • ◦〉.

It is easy to see that the number of black dots cannot be larger than L/2. The precise

normalization for this notation is given by

|◦〉 ≡ |0〉, |•〉 ≡
∞∑
n=1

|n〉. (3.27)

Noticing that

eS+ |0〉 = |0〉+

∞∑
n=1

(S+)n

n!
|0〉 = |0〉+

∞∑
n=1

|n〉 = |◦〉+ |•〉, (3.28)

it is easy to see that |Néelκ〉 can be written as

|Néelκ〉 =
(
eκS+ |0〉 ⊗ eS+ |0〉

)L/2
+
(
eS+ |0〉 ⊗ eκS+ |0〉

)L/2
. (3.29)

Alternatively we can write

|Néelκ〉 = eκS+ |Ψ1−κ〉, (3.30)
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where S+ = S
(1)
+ + S

(2)
+ + · · ·S(L)

+ is the SL(2,R) generator for the full spin chain. The

state |Ψα〉 is defined by

|Ψα〉 = (|0〉 ⊗ |α〉)L/2 + (|α〉 ⊗ |0〉)L/2 , (3.31)

where |α〉 is the coherent state |α〉 = eαS+ |0〉. An on-shell Bethe state is the highest weight

state of SL(2,R) and hence

S−|λN 〉 = 0. (3.32)

Therefore we have

〈Néelκ|λN 〉 = 〈Ψ1−κ|eκS− |λN 〉 = 〈Ψ1−κ|λN 〉 (3.33)

From the definition of |Ψα〉, it is easy to see that

〈Ψα|λN 〉 = αN 〈Néel0|λN 〉 (3.34)

Combing this equation with (3.33), we arrive at the following relation:

〈Néelκ|λN 〉 = (1− κ)N 〈Néel0|λN 〉, (3.35)

where N is the number of rapidities of |λN 〉.
Now we prove that |Ψα〉 is indeed integrable by the criteria given in section 3.1, namely

the condition (3.11) holds for it. The strategy for the proof of integrability was developed

in [13], a closely related method already appeared in [33]. The idea is to write both sides

of (3.11) as a MPS, and to find a similarity transformation that connects the matrices

involved. This similarity transformation can be identified with the integrable K-matrix [13].

First of all, it is clear that

Π|Ψα〉 = |Ψα〉. (3.36)

To proceed, it is useful to compute the action of the Lax operator at each site. We have

Laj(u)|0〉j =

(
u+ i

2 0

0 u− i
2

)
|0〉j +

(
0 0

i 0

)
S

(j)
+ |0〉j (3.37)

and

Laj(u)|α〉j =

(
u+ i

2 iα

0 u− i
2

)
|α〉j +

(
iα iα2

i −iα

)
S

(j)
+ |α〉j , (3.38)

where we have used (A.3) which is derived in the appendix. Taking direct product of two

sites, we have

La,j(u)La,j+1(u)|0, α〉j,j+1 =
4∑
i=1

Ai|i〉〉j,j+1, (3.39)

La,j(u)La,j+1(u)|α, 0〉j,j+1 =

4∑
i=1

Ãi |̃i〉〉j,j+1.
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The states are given by

|1〉〉j,j+1 = |0〉j ⊗ |α〉j+1, |1̃〉〉j,j+1 = |α〉j ⊗ |0〉j+1, (3.40)

|2〉〉j,j+1 =S
(j)
+ |0〉j ⊗ |α〉j+1, |2̃〉〉j,j+1 = |α〉j ⊗ S(j+1)

+ |0〉j+1,

|3〉〉j,j+1 = |0〉j ⊗ S(j+1)
+ |α〉j+1, |3̃〉〉j,j+1 =S

(j)
+ |α〉j ⊗ |0〉j+1,

|4〉〉j,j+1 =S
(j)
+ |0〉j ⊗ S

(j+1)
+ |α〉j+1, |4̃〉〉j,j+1 =S

(j)
+ |α〉j ⊗ S

(j+1)
+ |0〉j+1.

The matrices Ai and Ãi are given by

A1 =

(
(u+ i/2)2 iα(u+ i/2)

0 (u− i/2)2

)
, Ã1 =

(
(u+ i/2)2 iα(u− i/2)

0 (u− i/2)2

)
, (3.41)

A2 =

(
0 0

i(u+ i/2) −α

)
, Ã2 =

(
−α 0

i(u− i/2) 0

)

A3 =

(
iα(u+ i/2) iα2(u+ i/2)

i(u− i/2) −iα(u− i/2)

)
, Ã3 =

(
iα(u+ i/2) iα2(u− i/2)

i(u+ i/2) −iα(u− i/2)

)

A4 =

(
0 0

−α −α2

)
, Ã4 =

(
−α2 0

α 0

)
.

A crucial observation for our proof is that Ai and Ãi are related by

K̃(u)Ai K̃(u)−1 = ÃT
i , i = 1, 2, 3, 4, (3.42)

with the matrix K̃(u) given by

K̃(u) =

(
2u (u+ i/2)α

(u− i/2)α 0

)
. (3.43)

It was shown in [13] that such intertwiners can be interpreted as integrable K-matrices. In

fact, defining

K(u) = K̃(u)σy (3.44)

we obtain a solution to the BYB equations (3.19). The presence of the crossing matrix σy

is a feature of the SU(2)-related models, see the discussion above.

Using (3.39) we can write down the action of the transfer matrix on |Ψ〉 as

τ(u)|Ψα〉 = Tr (L(u)|0〉 ⊗ L(u)|α〉)L/2 + Tr (L(u)|α〉 ⊗ L(u)|0〉)L/2 (3.45)

= Tr
[
Ai1Ai2 · · ·AiL/2

]
|i1, i2, · · · , iL/2〉+ Tr

[
Ãi1Ãi2 · · · ÃiL/2

]
|̃i1, ĩ2, · · · , ĩL/2〉,

where repeated indices are summed over from 1 to 4 and the trace is taken over the auxiliary

space. The states are defined by

|i1, i2, · · · , iL/2〉 = |i1〉〉 ⊗ |i2〉〉 ⊗ · · · ⊗ |iL/2〉〉, (3.46)

|̃i1, ĩ2, · · · , ĩL/2〉 = |̃i1〉〉 ⊗ |̃i2〉〉 ⊗ · · · ⊗ |̃iL/2〉〉.
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Acting the reflection operator, we obtain

Π τ(u)|Ψα〉 = Tr
[
Ai1 · · ·AiL/2

]
Π|i1, · · · , iL/2〉+ Tr

[
Ãi1 · · · ÃiL/2

]
Π|̃i1, · · · , ĩL/2〉 (3.47)

= Tr
[
Ai1 · · ·AiL/2

]
|̃iL/2, · · · , ĩ1〉+ Tr

[
Ãi1 · · · ÃiL/2

]
|iL/2, · · · , i1〉.

Now using the relation (3.42) we can show easily

Tr
[
Ãi1 · · · ÃiL/2

]
= Tr

[
AiL/2 · · ·Ai1

]
, (3.48)

Tr
[
Ai1 · · ·AiL/2

]
= Tr

[
ÃiL/2 · · · Ãi1

]
.

Plugging into the second line of (3.47), we find

Π τ(u)|Ψα〉 = Π τ(u) Π|Ψα〉 = τ(u)|Ψα〉 (3.49)

which demonstrates that the state |Ψα〉 is an integrable boundary state.

3.4 Exact overlap formulae

The integrability condition for the boundary state |Ψ〉 leads to a number of non-trivial

consequences which we discuss below.

Paired Bethe roots. It was first argued in [10], that the condition (3.9) imposes a strict

selection rule for the overlaps between |Ψ〉 and on-shell Bethe states |λN 〉. Namely, the

overlap

〈Ψ|λN 〉 (3.50)

is non-zero only if the set of the Bethe roots is parity symmetric. In the case of an even

number of particles this means that they come in pairs:

{λN} = {λ1,−λ1, · · · , λN/2,−λN/2}. (3.51)

which will also be denoted as

{λN} = {λ+
N/2,−λ

+
N/2}. (3.52)

Here {λ+
N/2} denotes the positive Bethe roots.2 When the number of particles is odd,

we have

{λN} = {λ1,−λ1, · · · , λ(N−1)/2,−λ(N−1)/2, 0}. (3.53)

In this work we only consider overlaps with Bethe states with even numbers of particles.

The cases with odd number of Bethe roots can be treated similarly. For earlier studies

with an odd number of particles see [12, 15, 34].

2In principle, it does not matter which root among the pair we call ‘positive’. As a convention, we can

choose the one with positive real part as the positive Bethe root.
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Factorized Gaudin norm. It is well-known that the norm of the on-shell Bethe state

constructed in (2.30) can be expressed as [17]

〈λN |λN 〉 =

N∏
j=1

1

p′(λj)

N∏
j<k

f(λj − λk)f(λk − λj)× detG, (3.54)

where G is an N ×N matrix known as the Gaudin matrix whose elements are

Gjk = δjk

[
p′(λj)L+

N∑
l=1

ϕ(λj − λl)

]
− ϕ(λj − λk). (3.55)

The function ϕ(λ) is defined as

ϕ(λ) = −i d
dλ

logS(λ). (3.56)

The norm of an on-shell Bethe state whose rapidities are paired as in (3.51) factorizes

further. For such symmetric states the Gaudin matrix has a block structure and the

determinant can be factorized as

detG = detG+ detG−, (3.57)

where G± are N
2 ×

N
2 matrices with matrix elements

G±jk = δjk

p′(λ+
j )L+

N/2∑
l=1

ϕ+(λ+
j , λ

+
l )

− ϕ±(λ+
j , λ

+
k ) (3.58)

with

ϕ±(λ, µ) = ϕ(λ− µ)± ϕ(λ+ µ). (3.59)

The norm is then written as

〈λN |λN 〉 =

N/2∏
j=1

f(2λ+
j )f(−2λ+

j )

(p′(λ+
j ))2

∏
1≤j<k≤N/2

[
f̄(λ+

j , λ
+
k )
]2
× detG+ detG−, (3.60)

where we defined

f̄(λ, µ) = f(λ− µ)f(λ+ µ)f(−λ− µ)f(−λ+ µ). (3.61)

Exact overlap formulae. The most important property is that the non-zero overlaps

between many integrable boundary states and on-shell Bethe states take a remarkably

simple form:

|〈Ψ|λN 〉|2

〈λN |λN 〉
=

N/2∏
j=1

u(λ+
j )× detG+

detG−
. (3.62)

Here u(λ) is the so-called one particle overlap function, which depends on the initial state,

and G± are the same matrices that appeared in the factorized Gaudin norm. Below we

will prove this overlap formula in a number of cases.
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If the integrable boundary state is a simple product state, then all known cases involve

only a single product as in (3.62). However, for other states such as the integrable MPS,

the pre-factor in front of the ratio of determinants can take more complicated forms. For

more details, see the discussions in [12]. We put forward that our present method allows

for a rigorous proof only in those cases when the overlap involves only a single product.

The simple form for the exact overlap formula (3.62) seems to hold for both the compact

and non-compact spin chains. In the case of the compact chain the one-particle overlap

function u(λ) can be determined by a “rotation trick” [10, 11]. The idea is to relate the

quantum system to a 2 dimensional classical lattice model, and to build partition functions

that are afterwards evaluated using the so called Quantum Transfer Matrix in the “rotated

channel”, after rotating the lattice by 90◦. For non-compact spin chains, the local Hilbert

space at each site is infinite dimensional and the rotation trick cannot be applied in a

straightforward way. Therefore a new method is called for. Below we develop such a

method for proving the exact overlap formula of the non-compact spin chain.

4 Exact overlap formulae — General strategy

In this section we explain the general strategy of our method. We postpone the concrete

computations for different integrable boundary states to section 5.

The method is most easily demonstrated on the compact XXX and XXZ chains, with

the initial state being

|Ψ〉 = |XF 〉 ≡ ⊗Lj=1

(
1

1

)
. (4.1)

The overlap of a given Bethe state with this state is particularly simple, because each spin

configuration has the same weight in the overlap. The result is thus simply the sum over

the wave function coefficients.

Regarding the Bethe states as given by (2.30), the un-normalized overlaps are

〈XF |λN 〉 =
∑
σ∈SN

∏
j>k

f(lσj , lσk)
∑

0≤x1<···<xN≤L−1

N∏
j=1

l
xj
σj . (4.2)

Such an overlap is a rational function of the set {l1, . . . , lN}. For this set of variables we

will also use the notation lN .

We want to evaluate this rational function for the lN which satisfy the Bethe equa-

tions (2.31). These equations depend on L, therefore the first natural question is: how do

the overlaps depend on the length of the spin chain L?

The scalar products (4.2) carry a formal dependence on L, which is hidden in the

summation limits. It is our goal to make this dependence more explicit. We will see that

the summations can be performed using algebraic manipulations, such that eventually (4.2)

will be expressed as rational functions of two sets of variables lN and aN = {a1, . . . , aN},
where the a-variables were introduced in (2.32). We will see that there will be no further L-

dependence. It will be this rational function where we can “substitute the Bethe equations”

such that the on-shell values of the overlaps can be obtained.

In order to explain the method we first consider the simplest examples.
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4.1 One-particle states

In this case the overlap is given by the simple sum

〈XF |λ1〉 =
L−1∑
j=0

lj1 (4.3)

This sum can be computed readily

〈XF |λ1〉 =

{
L if l1 = 1
a1−1
l1−1 if l1 6= 1

. (4.4)

Here we already used the new auxiliary variable a1 = lL1 .

The above formulae refer to the off-shell case: they are valid for arbitrary l1. Let us

now investigate the on-shell case. In the one-particle case the Bethe equation is simply

a1 = (l1)L = eip1L = 1. (4.5)

Assuming that l1 6= 1 we can substitute this into (4.4), and we see that the overlap vanishes

for all on-shell states with l1 6= 1. However, we will be interested in the on-shell states with

non-vanishing overlap, therefore we need to consider the case l1 = 1.

In this simple one-particle problem the summation for the exceptional case l1 = 1 is

rather trivial, and already given in (4.4). However, in order to get experience for the more

complicate cases we also derive this using a limiting procedure: we use the continuity of

the scalar product, and investigate the l1 → 1 limit of the l1 6= 1 case of (4.4). This gives

〈XF |λ1 = 0〉 = lim
l1→0

a1 − 1

l1 − 1
= lim

p1→0

eip1L1 − 1

eip1 − 1
= L, (4.6)

where we used the definition of the a- and l-variables.

Even though this is a trivial example, it already highlights a crucial observation: having

computed a generic off-shell overlap, the operations of “substituting the Bethe equations”

and “taking the limit towards the parity invariant states” do not commute, and it is im-

portant to perform the second step first.

4.2 Two-particle states

We now consider the two-particle case. The structure of the overlaps of the integrable

boundary state and two-particle states has been studied in [4], where the role of the ap-

parent pole (to be discussed below) was explained.

In this case the overlap is given by the summation

〈XF |λ1, λ2〉 = f(l2, l1)
∑

0≤x1<x2≤L−1

lx11 lx22 + f(l1, l2)
∑

0≤x1<x2≤L−1

lx12 lx21 . (4.7)

Let us now introduce the function

B2(l1, l2|L) =
∑

0≤x1<x2≤L−1

lx11 lx22 . (4.8)
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Assuming that

l1 6= 1, l2 6= 1, l1l2 6= 1 (4.9)

we can perform the summation explicitly, yielding

B2(l1, l2|L) =
(l1l2)L − 1

(l1l2 − 1)(l1 − 1)
− lL2 − 1

(l2 − 1)(l1 − 1)
. (4.10)

Substituting this back into (4.7) and the introducing the a-variables the overlap can be

written as

〈XF |λ1, λ2〉 = f(l2, l1)

[
a1a2 − 1

(l1l2 − 1)(l1 − 1)
− a2 − 1

(l2 − 1)(l1 − 1)

]
+ f(l1, l2)

[
a1a2 − 1

(l1l2 − 1)(l2 − 1)
− a1 − 1

(l2 − 1)(l1 − 1)

]
.

(4.11)

Let us now substitute the Bethe equations which in this case read

a1 =
f(l2, l1)

f(l1, l2)
, a2 =

f(l1, l2)

f(l2, l1)
. (4.12)

It can be seen by direct computation that after substitution we get identically zero! This

means that all on-shell overlaps vanish, unless one of the conditions in (4.9) is broken. Note

that we did not use the specific form of the function f(l1, l2): the vanishing of the overlap

follows directly from the functional form of the Bethe wave function.

The non-vanishing overlaps are obtained in the special cases, where l1 = 1, l2 = 1 or

l1l2 = 1. For on-shell states we can not have l1 = 1 or l2 = 1 except for very special cases

of fine tuned solutions. On the other hand, the condition

l1l2 = ei(p1+p2) = 1 (4.13)

is very natural: this is the requirement for the pair structure in the rapidities!

In order to get the overlaps with l1l2 = 1 we can choose two ways: either we compute

the function B2 directly for this special case, or we perform the limiting procedure from off-

shell rapidities to on-shell solutions with l1l2 = 1. We choose the second method because

it can be generalized to the multi-particle cases.

If we regard the expression (4.11) as a function of 4 variables l1, l2 and a1, a2, then it

has a pole 1/(l1l2 − 1) associated with the pair condition. The overlap itself is a regular

function of the original l-variables, therefore the residue has to be zero in the physical case,

when aj = lLj . Collecting the terms for the residue around l1l2 = 1 gives

〈XF |λ1, λ2〉 ∼
a1a2 − 1

l1l2 − 1

[
f(l2, l1)

l1 − 1
+
f(l1, l2)

l2 − 1

]
. (4.14)

In the physical case aj = lLj , and the pre-factor is a finite expression of the type 0/0; its

finite value is actually L. Now we argue that the finite value of the overlap comes only

from this apparent pole: all other contributions to the overlap add up to zero for on-shell

states, because they are zero for a generic configuration satisfying (4.9). We thus obtain

the exact result for on-shell states with the pair structure:

〈XF |λ1,−λ1〉 = L

[
f(l2, l1)

l1 − 1
+
f(l1, l2)

l2 − 1

]
, with l2 =

1

l1
. (4.15)
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4.3 Multi-particle states

The general strategy for the overlaps will mirror the one-particle case. First we introduce

some definitions and auxiliary functions.

We call a set of Bethe rapidities λN zero-free, if there is no subset of λN where the

sum of the rapidities is zero. Accordingly, the set lN is zero free, when there is no subset

of the l-variables such that their product is 1. States with the pair structure are clearly

not zero-free: they are the exceptional states that lead to non-zero overlaps.

Here we investigate overlaps with more general integrable initial states. For simplicity

we still restrict ourselves to product states, but we allow for an arbitrary two-site state,

thus we consider

|Ψ〉 = ⊗L/2j=1|ψ〉, |ψ〉 ∈ Hj ⊗Hj+1. (4.16)

In the XXZ chain all two-site states are integrable [10], but in models with higher di-

mensional local spaces the integrability condition puts a restriction on |ψ〉. Note that the

one-site invariant product state considered above is a special case of such two-site states.

The overlap with the reference state is

〈Ψ|Ω〉 = (ψ00)L/2, (4.17)

where ψ00 denotes the two-site overlap between the initial state and the reference state. In

the compact cases it is given by ψ00 = 〈ψ| ↑↑〉, and in the non-compact case by ψ00 = 〈ψ|00〉.
For simplicity we focus on cases where ψ00 6= 0. Furthermore we set the normalization

to ψ00 = 1, such that the overlap with the reference state is always 1. Initial states with

ψ00 = 0 can be treated with a limiting procedure, see for example the case of the Néel

state below.

We consider the overlaps

SN (λN ) = 〈Ψ|λN 〉 (4.18)

with the Bethe states given in (2.30). It follows from the explicit form of the wave function

that every such an overlap is a rational function of the l-variables. The L dependence is

hidden in the summation limits. We will show below that for zero-free sets the summations

can be performed explicitly, yielding formulae that only involve the lj and aj = (lj)
L for

each j, but they do not depend on the volume L in any other way.

Let us therefore introduce the function SN (λN ,aN ), which is obtained after these

formal manipulations, and after introducing the a-variables:

SN (lN ,aN ) = 〈Ψ|λN 〉summed. (4.19)

Regarded as a function of a total number of 2N variables, this function does not depend on

L anymore. It follows from the form of the wave function and the real space summations

that these functions can always be written as

SN (lN ,aN ) =
∑
σ∈SN

∏
j>k

f(lσj , lσk)BN (σlN , σaN ), (4.20)

where BN is the “kinematical” part of the overlap, which arises from a simple real space

summation. It depends on the initial state; explicit formulae will be given below. In the
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formula above it is understood that σlN , σaN are the permutations of the corresponding

ordered sets, namely

σlN = {lσ1 , lσ2 , · · · , lσN }, σaN = {aσ1 , aσ2 , · · · , aσN }. (4.21)

The quantity BN for some special cases was already defined and computed in [4]. An

analogous computation for a non-integrable overlap was performed recently in [35].

Let us also define the function S̃N (lN ) which is obtained from SN by the formal

substitution of the Bethe equations. This means that for each aj we substitute the r.h.s. of

the corresponding equation from (2.31). It is clear from the above that S̃N is a symmetric

rational function of the set lN .

Theorem 1. The rational function S̃N (lN ) is identically zero.

Proof. The function S̃N does not depend on the volume anymore, it only depends on the

l-variables. In the definition of SN we assumed that the set of rapidities is zero-free. The

zero-free sets can not satisfy the integrability condition, therefore their overlaps have to be

zero. This implies, that the function S̃N vanishes for all those sets lN that are zero-free

solutions to the Bethe equations for any volume. This means that the rational function S̃N
vanishes at an infinite number of points, therefore it is identically zero.

The non-vanishing overlaps are obtained from SN by a limiting procedure similar to

the two-particle case detailed above. The key observation is that for each pair of rapidities

(or l-variables lj ,lk) there is an apparent simple pole of SN , which is proportional to

ajak − 1

ljlk − 1
. (4.22)

In the physical cases, when the a-variables are actually given by aj = (lj)
L, such a factor

simply produces L. However, it is important that we can substitute the Bethe equation

only after these pole contributions are correctly evaluated. Furthermore, all non-zero terms

in the overlap can only come from such terms, because if we substitute the Bethe equations

before the limit, we get zero identically.

Now we compute SN for paired rapidities. We regard lN and aN as independent

variables in the intermediate steps of the computation. We can still assume that there is

a well-defined function a(l) connecting the l- and a-variables, but we do not require the

relation a(l) = lL anymore. We will see below that a recursive computation of the overlaps

will require to treat more general a(l) functions.

We will consider the limit

l2j−1l2j → 1, a2j−1a2j → 1, j = 1, . . . , N/2. (4.23)

Let us now investigate the apparent pole at say l1l2 = 1.

Proposition 1. The formal pole of SN around the point l1l2 = 1 is of the form

SN (L) ∼ a1a2 − 1

l1l2 − 1
F (λ1)

N∏
j=3

f(λ1 − λj)f(−λ1 − λj)Smod
N−2(�1, �2, L), (4.24)
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where Smod
N−2 is the formal overlap for N − 2 particles not including 1 and 2, evaluated with

the following modified a-variables:

amod
j =

f(lj , l1)

f(l1, lj)

f(lj , 1/l1)

f(1/l1, lj)
aj . (4.25)

In (4.24) F (λ) is a rational function which carries the dependence on the initial state.

At present we do not have a general proof of this statement. However, we are able to

rigorously prove it in concrete cases. This leads to the determination of the function F (λ).

Examples for this will be shown in the next section.

Eq. (4.24) can be considered as a recursion relation for the overlaps. It is rather similar

to the recursion relations for scalar products of Bethe states [17] or form factors [36, 37] (see

also [38, 39]). In fact, the modification rule above is a rather straightforward generalization

of a similar rule for scalar products, first derived by Korepin in [17]. However, the origin

of the poles is different: in the previous cases in the literature the singularities are the

so-called kinematical poles of the scalar products or form factors, which appear when two

rapidities in the bra and ket vectors approach each other. On the other hand, here the

two rapidities responsible for the pole are within the same Bethe vector, and the apparent

singularity is associated with the pair structure. The role of such apparent poles was first

recognized in [4], and has been used in [35] to study the large L behaviour of the overlaps.

It is important that if the original l- and a-variables satisfy the Bethe equations, then

the restricted set of l-variables is still on-shell with respect to the modified a-variables.

We now investigate the limit of the paired rapidities on the basis of the above recursion

relation. Let us therefore introduce the set of “positive” rapidities λ+
N/2, such that the

paired limit is taken as

λ2j−1 → λ+
j , λ2j → −λ+

j , j = 1 . . . N. (4.26)

Similar notations are understood for the l- and a-variables.

For future use we introduce one more set of variables which will play an important

role. For each j = 1 . . . N/2 we define

mj = m(λj) = −i d
dλ

log(a(λ))

∣∣∣∣
λ=λj

. (4.27)

In the original physical case aj = lLj = eip(λj)L we have mj = p′(λj)L, but generally we will

treat the m-variables as independent.

Let us define the function D(λ+
N/2,m

+
N/2) as the limit of the function SN described

by (4.26). This is a symmetric function under a simultaneous permutation of its variables.

It is a rational function of λ+
N/2 and it is at most linear in each of the m-variables. The

latter property follows from the fact that SN has only single poles associated to each pair.

Theorem 2. The function D satisfies the recursion

∂D(λ+
N/2,m

+
N/2|L)

∂m+
1

=
F (λ+

1 )

p′(λ+
1 )

N/2∏
l=2

f̄(λ+
1 , λ

+
l )×D(λ+

N/2−1,m
+,mod
N/2−1|L), (4.28)
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where we defined the modification rule for the m-parameters

mmod(λ) = m(λ) + ϕ+(λ, λ+
1 ). (4.29)

Proof. This follows immediately from (4.24), using also Theorem 1. The modification rule

for the m-variables follows from

mmod(λ) = −i d
dλ

log(amod(λ)), (4.30)

and using (4.25) we get (4.29).

Theorem 3. The solution of the recursion (4.28) is

D(λ+
N/2,m

+
N/2|L) =

N/2∏
j=1

F (λ+
j )

p′(λ+
j )

∏
1≤j<k≤N/2

f̄(λ+
j , λ

+
k )× detG+

N/2. (4.31)

Proof. Our proof follows the method of Korepin derived originally for the Gaudin deter-

minant describing the norm of the Bethe states [17].

First we define a function D̃(λ+
N/2,m

+
N/2) through

D(λ+
N/2,m

+
N/2|L) =

N/2∏
j=1

F (λ+
j )

p′(λ+
j )

∏
1≤j<k≤N/2

f̄(λ+
j , λ

+
k )D̃(λ+

N/2,m
+
N/2|L). (4.32)

It follows from (4.28) that the linear parts in m+
j is given by

∂D̃(λ+
N/2,m

+
N/2|L)

∂m+
j

= D̃(λ+
N/2−1,m

+,mod
N/2−1|L), (4.33)

where it is understood that m+
j is not included in the arguments on the r.h.s. and the

modification rule is given by (4.29).

The function D̃ satisfies the following properties:

• It is symmetric in all its variables.

• It is at most linear in each mj .

• It is zero if all mj = 0.

• The linear piece in each mj is given by (4.33).

It is easy to see that the unique solution for this linear recursion with the given properties is

D̃ = det G̃N/2, G̃jk = δjk

[
m+
j +

N/2∑
l=1

ϕ+(λ+
j , λ

+
l )

]
− ϕ+(λ+

j , λ
+
k ). (4.34)

In the physical case we need to set m+
j = p′(λ+

j )L.
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The normalized squared overlap is obtained after dividing by the norm (3.60). Using

the factorization (3.57) we eventually obtain∣∣∣〈Ψ|λ+
N/2〉

∣∣∣2
〈λ+

N/2|λ
+
N/2〉

=

[
N/2∏
j=1

|F (λ+
j )|2

f(2λ+
j )f(−2λ+

j )

]
detG+

detG−
. (4.35)

The single particle overlap function is thus determined by the function F (λ) which

determines the apparent singularity of the off-shell overlap:

u(λ) =
|F (λ+

j )|2

f(2λ+
j )f(−2λ+

j )
. (4.36)

With this we have finished outlining our general strategy. What remains to be proven

is the fundamental singularity relation (4.24), together with finding the function F (λ) in

specific cases. This is presented in the next section.

5 Exact overlap formulae — Concrete cases

5.1 The state |XF 〉 in the Heisenberg chains

Here we consider the state |XF 〉 defined in (4.1). Now the overlap can be written as (4.20)

with the B-function given by

BN (l1, l2, . . . , lN |L) =

L−N∑
x1=0

L−N+1∑
x2=x1+1

· · ·
L−1∑

xN=xN−1+1

lx11 lx22 . . . lxNN . (5.1)

Note that the positions of the particles go from 0 to L− 1.

Regarding the first function we get

B1(l1|L) =
lL1 − 1

l1 − 1
. (5.2)

The second function is determined by the simple difference equation

B2(L)−B2(L− 1) = lL−1
2 B1(L− 1), (5.3)

which can be derived from the definition (5.1). In fact, we have the following general

recursion relation

BN (L)−BN (L− 1) = lL−1
N BN−1(L− 1). (5.4)

The proof of this recursion relation is as follows. Consider the chain of length L with

N particles, the corresponding quantity is BN (L). Note that from (5.1), BN (L) can be

written as the sum of two parts, corresponding to whether the last site is occupied or not.

When the last site is empty, all particles sit in the first L−1 sites, the contribution is given

by BN (L−1). When the last site is occupied, since the particle is ordered and the site can

be occupied by at most one particle, it must be the particle with lN which occupies the last
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site. The contribution from this particle is lL−1
N . The rest N−1 particles are distributed in

the first L− 1 sites whose contribution is given by BN−1(L− 1). This implies (5.4). This

recursion relation is very helpful for deriving a closed form formula for BN (L), as we will

show below.

Substituting (5.2) into (5.3) we get

B2(L)−B2(L− 1) = lL−1
2

lL−1
1 − 1

l1 − 1
=

(l1l2)L−1 − lL−1
2

l1 − 1
. (5.5)

The solution to this recursion is

B2(L) =
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2 − 1

(l2 − 1)(l1 − 1)
+ C, (5.6)

where C is an L independent integration constant. It can be fixed easily by computing

B2(L) at L = 2, which is simply

B2(2) = l2. (5.7)

This fixes C and we get

B2(L) =
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2

(l2 − 1)(l1 − 1)
+

l2
(l2 − 1)(l1l2 − 1)

. (5.8)

We can continue along these lines for N = 3. The recursion relation reads

B3(L)−B3(L− 1) = lL−1
3 B2(L− 1). (5.9)

Solving this with the appropriate initial condition B3(3) = l2l
2
3 we get

B3(L) =
(l1l2l3)L

(l1l2l3 − 1)(l1l2 − 1)(l1 − 1)
− (l2l3)L

(l2l3 − 1)(l2 − 1)(l1 − 1)
+

+
lL3 l2

(l3 − 1)(l2 − 1)(l1l2 − 1)
− l2l

2
3

(l1l2l3 − 1)(l2l3 − 1)(l3 − 1)
.

(5.10)

Continuing this for the general N -particle case we get

BN (L) =

N∑
j=0

(−1)j
(∏N

k=j+1 lk

)L∏j
k=2 l

k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j
k=1

(∏j
o=k lo − 1

) , (5.11)

where we also used the general initial condition

BN (N) = l2l
2
3 . . . l

N−1
N . (5.12)

Substituting the a-variables leads to

BN ({aj}, {lj}, L) =

N∑
j=0

(−1)j
∏N
k=j+1 ak

∏j
k=2 l

k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j
k=1

(∏j
o=k lo − 1

) . (5.13)

This will be the ingredient function for the overlaps, which will have a summation over

permutations, and multiplication with factors related to the S-matrix. We emphasize that

the L dependence is now all hidden in {aj} in the final expression (5.13) and no longer

appears in the limits of the summations. This manipulation makes it possible to impose

the Bethe equations. The formula (5.13) was first computed in [4].
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5.1.1 Determining the singular piece

Now we intend to compute the residue of the pole 1/(l1l2 − 1) of SN . The overlap itself

is given by N ! terms, but from the actual form of the B-function it can be seen that the

desired pole will only be present in those permutations that put the particles 1 and 2 to

neighboring positions. This is equivalent to the statement that BN has a pole of the form

1/(ljlk − 1) if |j − k| = 1.

Let us therefore pick some number m and investigate the residue

Reslmlm+1→1BN (L). (5.14)

To this order we write the B-function as

BN (L) =
N∑
j=0

BN,j(L) (5.15)

with

BN,j(L) =
(−1)j

∏N
k=j+1 ak

∏j
k=2 l

k−1
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j
k=1

(∏j
o=k lo − 1

) . (5.16)

Let us look at the poles of the type 1/(lmlm+1 − 1). There are two singular pieces

given by BN,m−1 and BN,m+1, and their sum reads

(−1)m−1
∏N
k=m ak

∏m−1
k=2 l

k−1
k∏N

k=m

(∏k
o=m lo − 1

)
×
∏m−1
k=1

(∏m−1
o=k lo − 1

)
+

(−1)m−1
∏N
k=m+2 ak

∏m+1
k=2 l

k−1
k∏N

k=m+2

(∏k
o=m+2 lo − 1

)
×
∏m+1
k=1

(∏m+1
o=k lo − 1

)
=

(−1)m−1amam+1
∏N
k=m+2 ak

∏m−1
k=2 l

k−1
k

(lm − 1) (lmlm+1 − 1)
∏N
k=m+2

(∏k
o=m lo − 1

)
×
∏m−1
k=1

(∏m−1
o=k lo − 1

)
+

(−1)m−1(lmlm+1)mlm+1
∏N
k=m+2 ak

∏m−1
k=2 l

k−1
k∏N

k=m+2

(∏k
o=m+2 lo − 1

)
× (lmlm+1 − 1) (lm+1 − 1)

∏m−1
k=1

(∏m+1
o=k lo − 1

) .
(5.17)

So altogether the singular piece in BN is

BN ({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1

× 1

lm − 1

(−1)m−1
∏N
k=m+2 ak

∏m−1
k=2 l

k−1
k∏N

k=m+2

(∏k
o=m lo − 1

)
×
∏m−1
k=1

(∏m−1
o=k lo − 1

) , (5.18)

which can be written as

BN ({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1

1

lm − 1
BN−2,m−1({1, 2, . . . ,��m,����m− 1, . . . , N}, L). (5.19)
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In order to determine the singularity of SN we need to sum over all permutations that

put the particles 1 and 2 to neighboring positions and multiply with the f -functions cor-

responding to the permutations. It is important that once we pick positions m and m+ 1

there are still two possibilities corresponding to the relative ordering of particles 1 and 2.

These two terms will have many common factors for each m, and the sum of those factors

which are different is

F (λm, λm+1) =
f(λm+1 − λm)

lm − 1
+
f(λm − λm+1)

lm+1 − 1
. (5.20)

Using the symmetry we can introduce

F (λ) =
f(−2λ)

l(λ)− 1
+

f(2λ)

l(−λ)− 1
. (5.21)

The remaining additional f -factors for these terms will be

m−1∏
j=1

f(λm − λj)f(λm+1 − λj)
N∏

j=m+2

f(λj − λm)f(λj − λm+1). (5.22)

This can be written in the form

N∏
j=1

j 6=m,m+1

f(λm − λj)f(λm+1 − λj)×
N∏

j=m+2

f(λj − λm)

f(λm − λj)
f(λj − λm+1)

f(λm+1 − λj)
. (5.23)

Note that ratios of f -functions appear such that they multiply the a-variables in a well

defined way, namely the residue can be formulated by introducing the modification rule

amod
j =

f(λj − λm)

f(λm − λj)
f(λj − λm+1)

f(λm+1 − λj)
aj . (5.24)

It is important that if the original set λN satisfies the original Bethe equations, then the

set λN \ {λm, λm+1} satisfies the Bethe equations with the modified a-parameters.

Summing over all remaining permutations, altogether the singularity of the overlap at

l1l2 = 1 is

SN (L) ∼ a1a2 − 1

l1l2 − 1
F (λ1)

N∏
j=3

f(λ1 − λj)f(−λ1 − λj)Smod
N−2(�1, �2, L) (5.25)

with F (λ) given by (5.21).

In the XXX model the functions l(λ) and f(λ) are given by (2.23). Substituting them

into (5.21) we obtain F (λ) = 0. This means that all overlaps with N 6= 0 are zero. This is

in agreement with the fact that any ferromagnetic state is an eigenstate of the Hamiltonian,

which lies in the SU(2) multiplet of the reference state. The overlaps of these states with

any Bethe states are identically zero.

In the XXZ model the functions l(λ) and f(λ) are given by (2.22). This leads to

F (λ) =
sin(λ+ iη/2) sin(λ− iη/2)

cos2(λ)
. (5.26)
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Computing the overlap pre-factor as given by (4.36) we get

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
= tan2(λ) tan(λ+ iη/2) tan(λ− iη/2). (5.27)

This coincides with the result obtained in [11], see eq. (3.18) there.

5.2 Néel and generalized Néel states in the Heisenberg chains

Let us now consider the boundary state

|Nα〉 = ⊗L/2j=1

((
1

α

)
⊗

(
1

0

))
. (5.28)

This state satisfies the requirement ψ11 = 1, and for non-zero α it has finite overlaps with

all parity-invariant Bethe states. In the α → ∞ limit it turns into the Néel state after

re-scaling. It is our intention here to derive the overlaps, and also to show that in the

α→∞ limit only the states with N = L/2 can have non-zero overlaps.

Now particles can only occupy every odd site. As a result, the computation of the

kinematical sum is almost the same as in the previous case, except that now the propagation

of particles is restricted to an even number of hoppings. As an effect, the kinematical BN -

function is formally the same as before, except for the replacement L → L/2 and lj → l2j
for each j = 1, . . . , N . Also, the overlap receives an overall factor of αN . As an effect of

these changes, instead of the direct pole of the type 1/(l1l2 − 1) we obtain poles

1

l21l
2
2 − 1

=
1

l1l2 − 1

1

l1l2 + 1
. (5.29)

It can be seen that the residue at l1l2 = 1 gets an extra factor of 1/2. Putting these

modifications together we can extract the F -function as

F (λ) =
α2

2

[
f(−2λ)

l2(λ)− 1
+

f(2λ)

l2(−λ)− 1

]
. (5.30)

In the XXX model the substitution of (2.23) leads to

F (λ) = α2u
2 + 1/4

4u2
. (5.31)

Altogether the one-particle overlap function with the un-normalized state becomes

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
= α4u

2 + 1/4

16u2
. (5.32)

In order to obtain the overlaps with the Néel state we need to perform the limit α → ∞
after re-scaling by αL. It follows immediately that only the overlaps with N = L/2 survive,

as expected.

The resulting overlap formula agrees with the earlier results [4, 7, 32].
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5.3 Generalized Néel state in the SL(2,R) chain

Let us first consider the overlap with the generalization of |XF 〉, namely a one-site invariant

state

|XF 〉 = ⊗Lj=1

1

1
...

 = ⊗Lj=1

(
eS+ |0〉

)
= eS+ |Ω〉 (5.33)

This state was already introduced in section 3.1 as the special case of the generalized Néel

state |Néel1〉. This vector belongs to the multiplet of the reference state, so the overlaps

with the Bethe states will vanish, in accordance with relation (3.35) for κ = 1. However,

it is useful to compute the associated kinematical functions, which can be used later for

general κ.

The overlap with |XF 〉 is given by the same form as in (4.20) but now the kinematical

sum is

BN (l1, l2, . . . , lN |L) =

L−1∑
x1=0

L−1∑
x2=x1

· · ·
L−1∑

xN=xN−1

lx11 lx22 . . . lxNN . (5.34)

The difference from the compact XXZ model is that now an arbitrary number of particles

can occupy the same site, and this changes the summation limits.

In the one-particle case we get the same formula as before:

B1(l1|L) =
lL1 − 1

l1 − 1
. (5.35)

For N = 2 the relevant recursion relation is

B2(L)−B2(L− 1) = l1
(l1l2)L−1

l1 − 1
− lL−1

2

l1 − 1
. (5.36)

The initial condition is B2(1) = 1. The solution satisfying this condition is

B2(L) = l1
(l1l2)L

(l1l2 − 1)(l1 − 1)
− lL2

(l1 − 1)(l2 − 1)
+

1

(l1l2 − 1)(l2 − 1)
. (5.37)

Regarding the general multi-particle case the difference equation is

BN (L)−BN (L− 1) = lL−1
N BN−1(L) (5.38)

with the initial condition

BN (1) = 1. (5.39)

The general solution is

BN (L) =

N∑
j=0

(−1)j
∏N
k=j+1 l

L
k l
N−k
k∏N

k=j+1

(∏k
o=j+1 lo − 1

)
×
∏j
k=1

(∏j
o=k lo − 1

) . (5.40)

The analysis of the singularity of BN can be performed in a similar way as before. We

get the relation

BN ({aj}, {lj}, L) ∼ amam+1 − 1

lmlm+1 − 1

lm
lm − 1

BN−2,m−1({1, 2, . . . ,��m,����m− 1, . . . , N}, L). (5.41)
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The only change compared to (5.19) is the appearance of an extra factor of lm. Completing

the computation we obtain the F -function as

F (λ) =
f(−2λ)l(λ)

l(λ)− 1
+
f(2λ)l(−λ)

l(−λ)− 1

=
f(−2λ)

1− l(−λ)
+

f(2λ)

1− l(λ)
.

(5.42)

In the SL(2,R) case the corresponding functions are given by (2.24). Substituting them

into (5.42) we get F (λ) = 0 as expected.

Now we consider the generalized Néel state |Néel0〉. The difference is once again that

we need to perform the change lj → l2j . This leads eventually to

F (λ) =
1

2

[
f(−2λ)

1− l2(−λ)
+

f(2λ)

1− l2(λ)

]
. (5.43)

and the overlap function becomes

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
. (5.44)

Substituting (2.24) we get the same result as in the XXX case:

u(λ) =
F 2(λ)

f(2λ)f(−2λ)
=
u2 + 1/4

16u2
. (5.45)

This result agrees with the findings of [1].

6 Conclusions and discussions

In this work we derived and proved exact overlap formulae in integrable spin chains. Our

method is based on the coordinate Bethe Ansatz representation of the wave functions.

The key identity is the singularity property (4.24) of the off-shell overlaps. This is a new

result of the present work, which leads to the proof of exact overlaps in a number of cases

presented in section 5.

It is important to compare the present method to the previous derivation of [7], which

was the only available rigorous proof before our work. The paper [7] derived the factorized

overlaps starting from an exact off-shell determinant formula, based on [8, 9] and going back

to the work of Tsushiya [16]. This method only works for the boundary states corresponding

to the so-called diagonal K-matrices. On the other hand, our method is applicable even for

off-diagonal K-matrices, when there is no determinant formula for the off-shell overlaps.

Nevertheless our method has its drawbacks and limitations. First of all, we were not

able to provide a general proof of the relation (4.24), we only proved it on a case by case

basis. Clearly, it would be important to find the deeper reason why such a relation holds.

Second, our method relies heavily on the coordinate Bethe Ansatz, and therefore it can

not be applied in situations where this method fails, for example in models with U(1)-

symmetry breaking. It would be desirable to study the same problems in more general
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frameworks such as the Separation of Variables (SoV) method. Such a future study might

also be helpful for studying overlaps in models solvable by the nested Bethe ansatz, where

the present method seems rather cumbersome. We plan to return to this question in

future work.

Regarding the interpretation of the factorized overlap formulae let us mention once

more the work [15], which treated excited state g-functions in integrable QFT. These ob-

jects are completely analogous to the finite volume overlaps in the spin chain. In [15]

the known structure (3.62) of the overlaps was derived, even before the analogous results

for spin chains appeared in the context of the quantum quench. The work [15] compared

the computation of certain time-dependent one-point functions in finite and infinite vol-

umes, and derived the correct ratio of determinants using only the density of states for

the restricted, parity symmetric configurations. Therefore, [15] provides a rather natu-

ral interpretation for the overlaps, much like the parallel observation that the original

Gaudin-determinant describes both the density of states and the norm of the Bethe states

(see also [40]). It would be desirable to work out the arguments of [15] also in the spin

chain situation, and to make them precise. This would complete the understanding of the

factorized overlap formulae.

Finally we note that the our method can be applied directly to the Lieb-Liniger model

to derive the overlaps with the BEC state, originally found in [41] and proven by a scaling

limit of the spin chain in [42].
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A Formula for coherent states

In this appendix, we collect some formula for coherent states which are useful in the main

text. From the SL(2,R) algebra and using the formula

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] + · · · (A.1)

we can prove the following results

e−αS+ S− e
αS+ =S− + 2αS0 + α2S+, (A.2)

e−αS+ S0 e
αS+ =S0 + αS+.

Using these relations, we can prove the action of generators on the coherent state

S0|α〉 =
1

2
|α〉+ αS+|α〉, S−|α〉 = α|α〉+ α2 S+|α〉. (A.3)
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1602 (2016) 023107 [arXiv:1512.02533] [INSPIRE].

[33] M. De Leeuw, C. Kristjansen and G. Linardopoulos, Scalar one-point functions and matrix

product states of AdS/dCFT, Phys. Lett. B 781 (2018) 238 [arXiv:1802.01598] [INSPIRE].

[34] M. Brockmann, J. De Nardis, B. Wouters and J.-S. Caux, Néel-XXZ state overlaps: odd
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