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1 Introduction

The AdS/CFT correspondence [1–3] gives a remarkable map between gravity in AdS space

and a CFT without gravity. In this correspondence, black hole formation in gravity is

expected to map to thermalization in the dual CFT [3]. But when does the black hole

form on the gravity side, and what exactly is thermalization in the CFT?

Consider an object falling towards the horizon of a black hole. As it gets closer and

closer to the horizon, its redshift becomes larger and larger. From this fact one might at first

think that if we encounter a large redshift in the CFT, then we are seeing thermalization.

We will argue that this is not the case: redshift is different from thermalization. We will

then perform a weak coupling computation in the CFT which we argue gives a signal for

actual thermalization, albeit in a very simplified setting since we take parameters of the

theory where the black hole is very small.1

1.1 Redshift versus thermalization

Consider the Poincare patch geometry created by a stack of D3 branes

ds2 =

(
1 +

Q

r4

)−1

[−dt2 + dyidyi] +

(
1 +

Q

r4

)−1

(dr2 + dΩ2
5) (1.1)

where yi, i = 1, . . . 3 are coordinates along the D3 branes. The directions yi are not com-

pactified, so they describe an infinite plane. An object falling towards r → 0 feels an

increasing redshift, and the redshift diverges at r → 0. Thus we have a situation with no

black hole, but where we do have a diverging redshift. The question is: should we call the

corresponding process in the CFT a process of thermalization?

Let the infalling object be a string that is oscillating in some particular mode with a

frequency ω; here ω remains a constant in the rest frame of the string. We can imagine

these oscillations as the ticking of a ‘clock’ as the clock falls towards r = 0.

Our clock ticks more and more slowly as it gets towards r = 0 in the metric (1.1), or

as it gets near the horizon of a black hole in a black hole geometry. But the clock is still

intact as a clock, because it is still ticking at the regular intervals. The clock has not been

‘destroyed’: a destroyed clock would not tick at regular intervals.

Now consider the dual CFT. The states in the CFT are in an exact 1–1 correspondence

with the states in the gravity theory; this is after all just the idea of AdS/CFT duality. The

oscillating string in the gravity picture maps to a complicated set of gluons, but these gluons

must be in a state that exhibits the same periodic oscillations, after we separate out the

effect of the infall towards r = 0. As long as the state has these well defined oscillations,

we would argue that it has not thermalized. Thus if we find the CFT description of

the phenomenon of gravitational redshift, then we have not obtained thermalization in

the CFT.

To summarize, redshift is a slowdown of evolution: it happens in gravity, and maps to

a similar slowdown in the CFT [5–9]. But redshift, however large, is a phenomenon distinct

from thermalization. Thermalization involves a randomization over accessible states with
1For some nice computations of large redshifts in the CFT, see [4].
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similar energies, such that the characteristic features on the initial state — like a periodic

oscillation — get obliterated.

1.2 Black hole formation in the fuzzball paradigm

Clearly, part of the difficulty we are facing in finding the dual of black hole formation is

that we are not addressing what happens to the infalling object after it actually reaches

the horizon radius r = rh. That is, we are describing the increasing redshift as the infalling

object approaches the horizon, but we are not addressing (i) how the CFT is supposed

to describe the process of actually reaching the horizon r = rh or (ii) if there is a CFT

analogue of the classically predicted behavior of smoothly passing through the horizon into

an interior region r < rh.

In the fuzzball paradigm there is a clear answer to (i), and a conjectured answer to

(ii). For more details on fuzzballs see [10–15].

For (i), we note that in the fuzzball paradigm the region r . rh + lp is not described

by a vacuum region but by a collection of horizon sized fuzzball states. Suppose an object

of energy E falls onto a black hole of mass M . Then the relevant radius rh is the horizon

radius for a black hole of mass M + E. We expect that a typical fuzzball state of this

mass has a radius ≈ rh + lp. As long as r & rh + lp, the infalling object does not have a

significant overlap with the fuzzballs of mass M +E. But as the object reaches r ≈ rh+ lp,

the overall gravity wavefunctional evolves so that the energy of the infalling object gets

transformed into the nucleation of fuzzballs of mass M + E.

For (ii), we recall the conjecture of fuzzball complementarity. We have already noted

that as the object reaches r ≈ rh + lp its energy gets transformed into altering the wave-

functional of fuzzballs of mass M +E from the vacuum state to an alternative state which

we write schematically as |F (t)〉. The further evolution of the system must be under-

stood as an evolution in this ‘superspace’ — the space of all fuzzball configurations. If the

conjecture of fuzzball complementarity is true, then this evolution in superspace can be

mapped, approximately, to infall in a traditional black hole geometry. The approximation

gets better in the limit E � T , but fails at E . T . Thus the modes involved in Hawking

radiation do not see any effective geometry like that of the traditional hole, and information

of the fuzzball is carried out by such modes. It is important that only infalling modes with

E � T see the effective black hole interior; outgoing modes inside the hole have negative

energy, and are not described by the approximation.

In [16] a model was given for the evolution in the space of fuzzball states, where

an approximate description of infall could be deduced. In such a picture, thermalization

happens when the perturbation caused by the infalling object has spread over all the

accessible fuzzball states. This is because initially the wavefunctional spreads in a coherent

way over superspace, but when it has spread over all the accessible space then it starts to

decohere. This second stage is what we will call thermalization.

To summarize, in our picture there are three stages:

(i) In the first stage, in the gravity picture, the infalling object just falls to the vicinity

of the horizon. In the dual CFT this part of the evolution is no different from the

CFT description of infall in a geometry like (1.1) which has no horizon.

– 3 –
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(ii) In the gravity picture the object gets so close to the horizon that its energy starts

getting converted to fuzzball states. There is then an evolution in the space of these

fuzzball states. If the conjecture of fuzzball complementarity is true, this evolution

in the space of fuzzball states can be mapped, approximately, to a collective mode

description that mimics infall from the horizon to the singularity.

(iii) In the gravity description the wavefunction over the space of fuzzballs has ended its

coherent spread over fuzzball states and starts to become a non-smooth function over

superspace. This is the step which in the dual CFT should correspond to the process

of thermalization. (If the conjecture of fuzzball complementarity is true, this step in

the gravity picture corresponds to reaching the singularity.)

1.3 The computation of this paper

From the above discussion we see that thermalization starts when the wavefunction has

completed its initial spread over accessible states. To see thermalization explicitly we will

therefore have to take a system with a very small number of states. We take the gravity

system to be that produced by a bound state of D1 and D5 branes. Suppose we have n1

D1 branes and n5 D5 branes. Then the dual 1+1 dimensional CFT is characterized by a

number

N = n1n5 . (1.2)

The CFT has N copies of a c = 6 CFT at its free ‘orbifold’ point. We take N = 2. This

will allow us to explain the notion of what we should consider as thermalization in the

CFT, but will obviously not map to a well defined black hole in the gravity picture.

There is no thermalization at the orbifold point since the theory is free. We perturb

away from the orbifold point by a (1, 1) deformation operatorD. The perturbation theory in

D has been studied in a series of papers [17–31]. There is no clear evidence of thermalization

at first order in the perturbation, but as we will see now, there is a 1-loop process at second

order in D which gives an effect that indicates thermalization.

In the D1D5 CFT there are a set of ground states, which are characterized by the

windings of the N copies of the c = 6 CFT. With N = 2, there are two winding sectors:

one where both copies are singly wound, and one where there is one doubly wound copy.

A state with all copies singly wound (and all spins on these copies aligned) corresponds to

global AdS in the dual gravity theory. We start with such a state: i.e., we take two singly

wound copies with their spins aligned. We now consider two kinds of excitations:

(a) Consider the gravity picture. If we send in one particle from infinity into global

AdS, then the particle will travel along a geodesic and emerge to the other side of

AdS without making a black hole; this happens because a single particle will travel

along a geodesic, and by symmetry all points along its path are equivalent. In the

dual CFT, we can consider a single particle excitation around the CFT state that

described global AdS. We find that the effect of the perturbation operator D generates

oscillations around the leading order state, but does not lead to a secular term where

the perturbation continues to grow. We can therefore say that to this order the

computation in the CFT agrees with the expectation from gravity.
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(b) Consider the gravity picture, and now send two particles into AdS from opposite

directions. These particles can collide and make a black hole if their total energy

exceeds the threshold mass corresponding to the smallest AdS-Schwarzschild hole.

The mass of such a hole grows with N , so for N = 2 the threshold can be reached

with quite a low excitation energy. In the dual CFT, we find that in this case

the perturbation D generates oscillations of the state as in case (a), but also gives

secular terms that grow as t2. We take this as evidence that if we apply the 1-loop

perturbation several times, the state will drift in the space of all states, while the

state in (a) did not have this behavior.

The above two computations therefore serve to illustrate the difference between a

particle moving in AdS (where we have redshift) and a situation where a collision can lead

to thermalization (where we have redshift as well as black hole formation). Since we are at

a low value of N and at only second order in the coupling λ, we do not have a good black

hole in the dual gravity theory. Thus our computations are meant to be only suggestive of

what kinds of effects should correspond to thermalization, rather than showing the details

of black hole formation in the CFT. They do involve putting together several tools that

have been developed in earlier papers: inserting two deformation operators D in the CFT,

and integrating over the positions of these operators.

2 The orbifold CFT

Let us begin by recalling the orbifold CFT that we will be working with. Consider type

IIB string theory, compactified as:

M9,1 → M4,1 × S1 × T 4. (2.1)

Now wrap N1 D1 branes on S1 and N5 D5 branes on S1 × T 4. We take S1 to be large

compared to T 4, so that the low energies are dominated by excitations only in the direction

S1. This low-energy limit gives a 1 + 1 dimensional CFT living on S1.

At this point, variations in the moduli of string theory move us through the moduli

space of the CFT on S1. It is conjectured that we can move to an ‘orbifold point’ where

this CFT is a particularly simple sigma model [32, 33]. For many nice results using the

D1D5 CFT at the ‘orbifold point’ see [32–53]. We will begin in the Euclidean theory at

this orbifold point. The base space is a cylinder spanned by the coordinates τ, σ:

0 ≤ σ < 2π, −∞ < τ <∞. (2.2)

These coordinates can be collected into a single complex coordinate

w = τ + iσ . (2.3)

The target space of this CFT is the symmetrized product of N1N5 copies of T 4:

(T 4)N1N5/SN1N5 . (2.4)

Each copy gives 4 bosonic excitations and 4 fermionic excitations. With an index i ranging

from 1 to 4, we label the bosonic excitations Xi, the left-moving fermionic excitations ψi,

and the right-moving fermionic excitations ψ̄i. The total central charge is then 6N1N5.
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2.1 The deformation operator

The orbifold CFT describes the system at its ‘free’ point in moduli space. To move to-

wards the supergravity description, we deform the orbifold CFT by adding a deformation

operator D.

To understand the structure of D we recall that the orbifold CFT contains ‘twist’

operators. Twist operators can link any number k out of the N copies of the CFT together

to give a c = 6 CFT living on a circle of length 2πk rather than 2π. We will call such a

set of linked copies a ‘component string’ with winding number k.

The deformation operator contains a twist of order 2. The twist itself carries left and

right charges j = ±1
2 , j̄ = ±1

2 [52]. Suppose we start with both these charges positive; this

gives the twist σ++
2 . Then the deformation operators in this twist sector have the form

D = P ȦḂÔȦḂ = P ȦḂG−
Ȧ,− 1

2

Ḡ−
Ḃ,− 1

2

σ++
2 . (2.5)

Here P ȦḂ is a polarization. We will later choose

P ȦḂ = εȦḂ (2.6)

where ε+− = −1. This choice gives a deformation carrying no charges. The details of the

deformation operator are given in [17–19, 23–28].

2.2 The amplitude at second order

In this section we discuss the amplitudes we wish to compute using the deformation oper-

ator (2.5). We begin by writing the action of a perturbed CFT:

S0 → Spert = S0 + λ

∫
d2wD(w, w̄) , (2.7)

with D given in (2.5). Since we are interested in second order effects, the amplitude we

wish to compute is of the form

Ai→fint =
1

2
λ2

∫
d2w2

∫
d2w1〈Φf |D(w2, w̄2)D(w1, w̄1)|Ψi〉 (2.8)

where |Ψi〉, 〈Φj | represent various initial and final states labeled by i, j respectively, which

we choose in the next section. The states |Ψi〉, 〈Φj | include both holomorphic and anti-

holomorphic components.

3 The states and amplitudes

In this section we list the initial and final states that we will use in the amplitude (2.8).

– 6 –
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3.1 The initial states in the CFT

We have a set of D1 and D5 branes making a bound state. Let the ground state of these

branes be the NS sector vacuum |0〉. The dual spacetime is AdS3 × S3 × T 4.

Let the T 4 be described by the indices I, J = 1, . . . 4. Consider gravitons in the gravity

theory with indices along the T 4. Such a graviton is described by a transverse traceless

tensor hIJ . If we do a dimensional reduction on the T 4, then such gravitons give minimally

coupled scalars in the resulting 5 + 1 dimensional gravity theory.

In the orbifold CFT, the operator dual to this graviton is

OhIJ ∼
1

2

N∑
k=1

(
∂zX

(k)
I ∂z̄X

(k)
J + ∂zX

(k)
J ∂z̄X

(k)
I

)
. (3.1)

Here (k) is an index labelling the N copies of the c = 6 CFT. Note that both the left

and the right moving excitations appear on the same copy, and then we have a uniform

sum over all the copies. Since the graviton is symmetric in its indices I, J , the operator is

symmetric as well.

If we antisymmetrize rather than symmetrize in the indices I, J , then the operator

corresponds to a quantum of the RR field BRR
IJ , again with indices along the T 4 directions.

Finally, the trace in the I, J indices corresponds to absorbing the dilaton φ.

Thus any operator of the form

OIJ ∼
N∑
k=1

∂zX
(k)
I ∂z̄X

(k)
J (3.2)

corresponds to some linear combination of hIJ , B
RR
IJ , φ. Thus we can use these operators

OIJ as a convenient basis to study the dynamics of the simplest supergravity fields in the

AdS dual.

The indices I, J, . . . describe a vector representation of SO(4) ≈ SU(2) × SU(2). De-

composing the vector into two spinors we get the indices I → AȦ where A = {+,−} and

Ȧ = {+,−}.
Thus the bosonic oscillators will be described by operators αAȦ,−n. We add one other

index to these operators: a superscript that could be i (for initial state) or f (for final

state). In general the winding sector {k1, k2, . . . } of the CFT changes when we apply twist

operators. Therefore the bosonic and fermionic modes in the initial and final states are

defined on different twist sectors, and so are not given by the same oscillators α, d. In the

cases that we will consider, the initial and final twist sectors happen to be the same. It is

nevertheless useful to keep the superscripts i, f since this index will help keep track of the

position of the operator on the covering space t when we undo the twists.

We wish to start with empty AdS3; the corresponding state in the CFT is the NS

vacuum |0〉. Since we are taking N = 2, this vacuum is

|0〉 = |0〉(1)|0〉(2)|0̄〉(1)|0̄〉(2) (3.3)

where the superscripts (1), (2) describe the two copies and the unbarred and barred states

are for the left and right moving sectors respectively.

– 7 –
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We consider two situations:

(a) We have a single graviton sent into the AdS. This corresponds to an initial mode

that is composed of one left bosonic oscillator and one right bosonic oscillator. We

consider the state

|Ψ1〉 =
1√
2

1

n
α

(1)i
−−,−n|0〉(1)|0〉(2)ᾱ

(1)i
++,−n|0̄〉(1)|0̄〉(2)

+
1√
2

1

n
α

(2)i
−−,−n|0〉(1)|0〉(2)ᾱ

(2)i
++,−n|0̄〉(1)|0̄〉(2)

(3.4)

Note that we place the left and right oscillators on the same copy of the CFT and

then sum over the copies with equal weight; this is required by the form of the vertex

operator (3.2). The state (3.4) has the quantum numbers

h = n, j = 0; h̄ = n, j̄ = 0 (3.5)

By superposing such states for different n, we can describe a graviton that is sent in

from the boundary of AdS into the interior.

(b) We send two gravitons into the AdS. The initial state is then

|Ψ2〉 =
1

2

1

n1n2
α

(1)i
++,−n1

α
(1)i
−−,−n2

|0〉(1)|0〉(2)ᾱ
(1)i
−−,−n1

ᾱ
(1)i
++,−n2

|0̄〉(1)|0̄〉(2)

+
1

2

1

n1n2
α

(1)i
++,−n1

α
(2)i
−−,−n2

|0〉(1)|0〉(2)ᾱ
(1)i
−−,−n1

ᾱ
(2)i
++,−n2

|0̄〉(1)|0̄〉(2)

+
1

2

1

n1n2
α

(2)i
++,−n1

α
(1)i
−−,−n2

|0〉(1)|0〉(2)ᾱ
(2)i
−−,−n1

ᾱ
(1)i
++,−n2

|0̄〉(1)|0̄〉(2)

+
1

2

1

n1n2
α

(2)i
++,−n1

α
(2)i
−−,−n2

|0〉(1)|0〉(2)ᾱ
(2)i
−−,−n1

ᾱ
(2)i
++,−n2

|0̄〉(1)|0̄〉(2) (3.6)

The state (3.6) has the quantum numbers

h = n1 + n2, j = 0; h̄ = n1 + n2, j̄ = 0 (3.7)

By superposing such states for different n1, n2, we can describe a pair of gravitons

that are sent in from opposite sides of the boundary of AdS into the interior.

3.2 The final states in the CFT

If we are at the orbifold point then the initial states defined above stay unchanged with

time. But if we consider the interaction given by the deformation operator D, then the

states evolve. We are starting with two untwisted (i.e., singly wound) copies of the CFT.

The twist in D can join the two unwound copies into a doubly wound copy, and the twist

in a second D can split these into two singly wound copies again. The state of the bosonic

and fermionic oscillators will not, however, return to its initial one. In particular, suppose

the initial state had a high energy; this is given by large n� 1 in (3.4) and large n1, n2 � 1

– 8 –
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in (3.6). Then there is a high probability for the initial energy to be split among several

excitations.

The CFT amplitudes that we will encounter factorize into a holomorphic (left) factor

and a antiholomorphic (right) factor. There is no particular reason for the final state to

be the same in these two sectors. But since our goal is to explore some examples of the

states generated by interactions, we do take the left and right sides to split into multiple

excitations in the same way. For the two initial states mentioned above, we consider the

following final states:

(a’) Consider the initial state (3.4), and focus on the left sector. There is one bosonic

oscillator α. After two actions of the deformation operator D, we can end up with

one oscillator excitation, or three excitations or five excitations, and so on; these

possibilities are dictated by the action of the twists and the fact that there is a

supercharge G acting at the twists. Since we are looking at how the initial energy

is split between modes, we ignore the case when we have just one oscillator in the

final state, and focus on the case where we have three excitations in the final state.

There are two possibilities: we can end up with three bosons or one boson and two

fermions. As mentioned above, for simplicity we will take the right movers to split

in exactly the same way as the left movers. Then we have the following two choices

for our final states:

(i) 3 Bosons:

〈Φ1| =
1√
2

1

pqr
(1)〈0̄|(2)〈0̄|ᾱ(1)f

−−,pᾱ
(1)f
++,qᾱ

(1)f
−−,r

(1)〈0|(2)〈0|α(1)f
++,pα

(1)f
−−,qα

(1)f
++,r

+
1√
2

1

pqr
(1)〈0̄|(2)〈0̄|ᾱ(2)f

−−,pᾱ
(2)f
++,qᾱ

(2)f
−−,r

(1)〈0|(2)〈0|α(2)f
++,pα

(2)f
−−,qα

(2)f
++,r

(3.8)

(ii) 1 Boson 2 Fermions

〈Φ2| =
1√
2

1

p
(1)〈0̄|(2)〈0̄|ᾱ(1)f

−−,pd̄
(1)f,−+
q d̄(1)f,+−

r
(1)〈0|(2)〈0|α(1)f

++,pd
(1)f,+−
q d(1)f,−+

r

+
1√
2

1

p
(1)〈0̄|(2)〈0̄|ᾱ(2)f

−−,pd̄
(2)f,−+
q d̄(2)f,+−

r
(1)〈0|(2)〈0|α(2)f

++,pd
(1)f,+−
q d(1)f,−+

r

(3.9)

(b’) Consider the initial state (3.6), and again focus on the left sector. This time the

number of excitations in the final state can be two, or four, or six and so on. We

focus on the case where the energy splits among four excitations. There are two

cases: we can get 4 bosons, or 2 bosons and 2 fermions. Again, for simplicity, we

take the right sector to have the same structure as the left sector. Thus we consider

the following two final states:
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(i) 4 Bosons:

〈Φ3| =
1√
2

1

pqrs
(1)〈0̄|(2)〈0̄|ᾱ(1)f

−−,pᾱ
(1)f
++,qᾱ

(1)f
−−,rᾱ

(1)f
++,s

(1)〈0|(2)〈0|α(1)f
++,pα

(1)f
−−,qα

(1)f
++,rα

(1)f
−−,s

+
1√
2

1

pqrs
(1)〈0̄|(2)〈0̄|ᾱ(2)f

−−,pᾱ
(2)f
++,qᾱ

(2)f
−−,rᾱ

(2)f
++,s

(1)〈0|(2)〈0|α(2)f
++,pα

(2)f
−−,qα

(2)f
++,rα

(2)f
−−,s (3.10)

(ii) 2 Bosons, 2 Fermions:

〈Φ4| =
1√
2

1

pq
(1)〈0̄|(2)〈0̄|ᾱ(1)f

−−,pᾱ
(1)f
++,qd̄

(1)f,−+
r d̄(1)f,+−

s

(1)〈0|(2)〈0|α(1)f
++,pα

(1)f
−−,qd

(1)f,+−
r d(1)f,−+

s

+
1√
2

1

pq
(1)〈0̄|(2)〈0̄|ᾱ(2)f

−−,pᾱ
(2)f
++,qd̄

(2)f,−+
r d̄(2)f,+−

s

(1)〈0|(2)〈0|α(2)f
++,pα

(2)f
−−,qd

(1)f,+−
r d(1)f,−+

s

(3.11)

3.3 The quantities to be computed

We need to compute the amplitudes where we start in one of our initial states, apply

two deformation operators, and end up in one of our chosen allowed final states. First

consider the left sector, and let the deformation operators be at positions w1, w2. We need

to compute the following four amplitudes:

Aα→ααα(w2, w1, w̄2, w̄1)

= 〈Φ1|D(w2, w̄2)D(w1, w̄1)|Ψ1〉

= eĊḊεȦḂ〈Φ1|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ1〉

Aα→αdd(w2, w1, w̄2, w̄1)

= 〈Φ2|D(w2, w̄2)D(w1, w̄1)|Ψ1〉

= εĊḊεȦḂ〈Φ2|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ1〉

Aαα→αααα(w2, w1, w̄2, w̄1)

= 〈Φ3|D(w2, w̄2)D(w1, w̄1)|Ψ2〉

= εĊḊεȦḂ〈Φ3|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉

Aαα→ααdd(w2, w1, w̄2, w̄1)

= 〈Φ4|D(w2, w̄2)D(w1, w̄1)|Ψ2〉

= εĊḊεȦḂ〈Φ4|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉 .

(3.12)
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We must integrate over the positions of the deformation operators. We assume that

the initial state is at ti = − t
2 and the final state is at tf = t

2 . We integrate the positions

of the deformation operators in the interval in between. This step is shown in section 5.

Next we summarize the steps we took to compute these splitting amplitudes.

3.4 Procedure for computing amplitudes

In this subsection, we summarize the various steps for computing the final splitting am-

plitudes that are presented in this paper. The details of the computation are not give

explicitly here; they are lengthy but straightforward if we use the techniques in the papers

mentioned below. In addition, a full and explicit derivation of the results can be found

in [54].

The steps are as follows:

1. The amplitudes in 3.12 are defined on a base space which has the shape of a cylinder.

The coordinate on the cylinder is w (2.3), with range given by (2.2). For details

about the D1D5 CFT and the deformation D see [17–19, 23–28, 54].

2. The operator insertions on the cylinder involve twist operators, which makes the fields

multi-valued functions of the cylinder coordinate w. We wish to pass to a covering

space where all fields will be single valued. To do this, we first map the cylinder to

the complex plane through the map

z = ew (3.13)

We then pass to from the z plane to the covering t plane through the map

z =
(t+ a)(t+ b)

t
. (3.14)

For details regarding this map see [23–28]. The fields defined in the t plane are now

single valued.

3. When mapping to the t plane our amplitudes in 3.12 take the schematic form

Ai→f ∼ CAi→ft . (3.15)

Here the function C contains the Jacobians arising from the changes of coordinates

from w to t. These Jacobians are given in detail [54, 55]. In the t plane we now have

single valued bosonic and fermionic fields, and various operator insertions of these

fields. The factor Ai→ft arises from the various t plane Wick contractions between

pairs of these bosonic and fermionic operators. The techniques used to compute these

contractions are given in [23–28]. These techniques are combined to compute Ai→ft

which is given in detail in [54].

4. The above procedure gives a holomorphic part of the amplitude and an antiholo-

morphic part. These parts are multiplied together, and then the positions of the

deformation operators are integrated over.

We now give the results of these steps, finally evaluating the results for specific choices

of mode numbers. The result for the general case can be expressed as a finite sum of terms,

but it is not easy to see the physical nature of the interaction from such expressions.

– 11 –



J
H
E
P
0
6
(
2
0
2
0
)
0
0
4

4 Computing our amplitudes

Consider the amplitudes (3.12), and let them be multiplied by their right moving complex

conjugate factors. After we integrate the positions of the deformation operators over the σ

circle, we will find that the action of the deformation cannot change the momentum of the

state. We will choose our final state to have the same energy as the initial state. In this

case the left and right moving levels are unchanged by the action of the two deformation

operators. The amplitudes (3.12) are then a function of

∆w = w2 − w1; ∆w̄ = w̄2 − w̄1 . (4.1)

The full amplitudes will thus take the schematic form

Ai→f (w1, w2, w̄1, w̄2) =

mmax(ni;nf )∑
m=mmin(ni;nf )

m′max(ni;nf )∑
m′=m′min(ni;nf )

Bi→f
m,m′(ni;nf )e

m∆w̄
2

+m′∆w
2 . (4.2)

Here the symbol i → f denotes the specific process in consideration; i.e., one of the four

cases

α→ ααα, α→ αdd, αα→ αααα, αα→ ααdd . (4.3)

The Bi→f
m,m′(ni;nf ) are numerical coefficients that we must find. The numbers m,m′ range

over a finite set of integers, with lower and upper bounds as specified in the summations.

The symbols ni, nf denote the set of mode numbers for the initial and final states respec-

tively.

4.1 The amplitude for α→ ααα

Consider the amplitude for one boson going to three bosons on the left, and the same split

occurring on the right. We take the following initial and final mode numbers

ni = {n = 3}
nf = {p = 1, q = 1, r = 1} . (4.4)

Then we find [54]

Aα→ααα(w1, w2, w̄1, w̄2)

= eĊḊεȦḂ〈Φ3|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉

=
75e−

5∆w
2
− 5∆w̄

2

131072
−15e−

3∆w
2
− 5∆w̄

2

65536
−15e−

∆w
2
− 5∆w̄

2

32768
−45e

∆w
2
− 5∆w̄

2

65536
+

105e
3∆w

2
− 5∆w̄

2

131072

−15e−
5∆w

2
− 3∆w̄

2

65536
+

159e−
3∆w

2
− 3∆w̄

2

131072
−51e−

∆w
2
− 3∆w̄

2

65536
−3e

∆w
2
− 3∆w̄

2

8192
−21e

3∆w
2
− 3∆w̄

2

32768

+
9e

∆w
2
−∆w̄

2

8192
−3e

3∆w
2
−∆w̄

2

8192
−45e

5∆w
2
−∆w̄

2

65536
−45e−

5∆w
2

+ ∆w̄
2

65536
−3e−

3∆w
2

+ ∆w̄
2

8192
+

9e−
∆w
2

+ ∆w̄
2

8192

+
39e

∆w
2

+ ∆w̄
2

32768
+

105e
5∆w

2
− 3∆w̄

2

131072
−15e−

5∆w
2
−∆w̄

2

32768
−51e−

3∆w
2
−∆w̄

2

65536
+

39e−
∆w
2
−∆w̄

2

32768
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−51e
3∆w

2
+ ∆w̄

2

65536
−15e

5∆w
2

+ ∆w̄
2

32768
+

105e−
5∆w

2
+ 3∆w̄

2

131072
−21e−

3∆w
2

+ 3∆w̄
2

32768
−3e−

∆w
2

+ 3∆w̄
2

8192

−51e
∆w
2

+ 3∆w̄
2

65536
+

159e
3∆w

2
+ 3∆w̄

2

131072
−15e

5∆w
2

+ 3∆w̄
2

65536
+

105e−
3∆w

2
+ 5∆w̄

2

131072
−45e−

∆w
2

+ 5∆w̄
2

65536

−15e
∆w
2

+ 5∆w̄
2

32768
−15e

3∆w
2

+ 5∆w̄
2

65536
+

75e
5∆w

2
+ 5∆w̄

2

131072
. (4.5)

Writing (4.5) in the form (4.2) we have

Aα→ααα(w1, w2, w̄1, w̄2) =

5∑
m=−5

5∑
m′=−5

Bα→ααα
m,m′ (n = 3; p = 1, q = 1, r = 1)e

m∆w
2

+m′∆w̄
2 .

(4.6)

This defines the coefficients Bα→ααα
m,m′ (n = 3; p = 1, q = 1, r = 1).

4.2 The amplitude for α→ αdd

Consider the amplitude for one boson going to one boson and two fermions on the left, and

the same split occurring on the right. We take the following initial and final mode numbers

ni = {n = 2}

nf =

{
p = 1, q =

1

2
, r =

1

2

}
. (4.7)

We find [54]

Aα→αdd(w1, w2, w̄1, w̄2)

= εĊḊεȦḂ〈Φ2|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉

=
9e−

3∆w
2
− 3∆w̄

2

4096
− 3e−

∆w
2
− 3∆w̄

2

2048
− 3e

∆w
2
− 3∆w̄

2

4096
− 3e−

3∆w
2
−∆w̄

2

2048
+

5e−
∆w
2
−∆w̄

2

4096
+
e

∆w
2
−∆w̄

2

1024

−3e
3∆w

2
−∆w̄

2

4096
− 3e−

3∆w
2

+ ∆w̄
2

4096
+
e−

∆w
2

+ ∆w̄
2

1024
+

5e
∆w
2

+ ∆w̄
2

4096
− 3e

3∆w
2

+ ∆w̄
2

2048
− 3e−

∆w
2

+ 3∆w̄
2

4096

−3e
∆w
2

+ 3∆w̄
2

2048
+

9e
3∆w

2
+ 3∆w̄

2

4096
. (4.8)

We write this as

Aα→αdd(w1, w2, w̄1, w̄2) =
3∑

m=−3

3∑
m′=−3

Bα→αdd
m,m′

(
n = 2; p = 1, q =

1

2
, r =

1

2

)
e
m∆w

2
+m′∆w̄

2

(4.9)

which defines the coefficients Bα→αdd
m,m′

(
n = 2; p = 1, q = 1

2 , r = 1
2

)
.
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4.3 The amplitude for the process αα→ αααα

Consider the amplitude for two bosons going to four bosons on the left, and the same split

occurring on the right. We take the following initial and final mode numbers

ni = {n1 = 2, n2 = 2}

nf = {p = 1, q = 1, r = 1, s = 1} . (4.10)

We find [54]

Aαα→αααα(w1, w2, w̄1, w̄2)

= εĊḊεȦḂ〈Φ4|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉

=
59049

8388608
√

2
+

37179e−3∆w

33554432
√

2
− 29889e−2∆w

16777216
√

2
− 95499e−∆w

33554432
√

2
− 95499e∆w

33554432
√

2

− 29889e2∆w

16777216
√

2
+

37179e3∆w

33554432
√

2
+

37179e−3∆w̄

33554432
√

2
− 29889e−2∆w̄

16777216
√

2
− 95499e−∆w̄

33554432
√

2

− 95499e∆w̄

33554432
√

2
− 29889e2∆w̄

16777216
√

2
+

37179e3∆w̄

33554432
√

2
+

23409e−3∆w−3∆w̄

134217728
√

2

−18819e−2∆w−3∆w̄

67108864
√

2
− 60129e−∆w−3∆w̄

134217728
√

2
− 60129e∆w−3∆w̄

134217728
√

2
− 18819e2∆w−3∆w̄

67108864
√

2

+
23409e3∆w−3∆w̄

134217728
√

2
− 18819e−3∆w−2∆w̄

67108864
√

2
+

15129e−2∆w−2∆w̄

33554432
√

2
+

48339e−∆w−2∆w̄

67108864
√

2

+
48339e∆w−2∆w̄

67108864
√

2
+

15129e2∆w−2∆w̄

33554432
√

2
− 18819e3∆w−2∆w̄

67108864
√

2
− 60129e−3∆w−∆w̄

134217728
√

2

+
48339e−2∆w−∆w̄

67108864
√

2
+

154449e−∆w−∆w̄

134217728
√

2
+

154449e∆w−∆w̄

134217728
√

2
+

48339e2∆w−∆w̄

67108864
√

2

−60129e3∆w−∆w̄

134217728
√

2
− 60129e∆w̄−3∆w

134217728
√

2
+

48339e∆w̄−2∆w

67108864
√

2
+

154449e∆w̄−∆w

134217728
√

2

+
154449e∆w+∆w̄

134217728
√

2
+

48339e2∆w+∆w̄

67108864
√

2
− 60129e3∆w+∆w̄

134217728
√

2
− 18819e2∆w̄−3∆w

67108864
√

2

+
15129e2∆w̄−2∆w

33554432
√

2
+

48339e2∆w̄−∆w

67108864
√

2
+

48339e∆w+2∆w̄

67108864
√

2
+

15129e2∆w+2∆w̄

33554432
√

2

−18819e3∆w+2∆w̄

67108864
√

2
+

23409e3∆w̄−3∆w

134217728
√

2
− 18819e3∆w̄−2∆w

67108864
√

2
− 60129e3∆w̄−∆w

134217728
√

2

−60129e∆w+3∆w̄

134217728
√

2
− 18819e2∆w+3∆w̄

67108864
√

2
+

23409e3∆w+3∆w̄

134217728
√

2
. (4.11)
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Writing this as

Aαα→αααα(w1, w2, w̄1, w̄2)

=
6∑

m=−6

6∑
m′=−6

Bαα→αααα
m,m′ (n1 = 2, n2 = 2; p = 1, q = 1, r = 1, s = 1)e

m∆w
2

+m′∆w̄
2

(4.12)

defines the coefficients Bαα→αααα
m,m′ (n1 = 2, n2 = 2; p = 1, q = 1, r = 1, s = 1).

4.4 The amplitude for the process αα→ ααdd

Consider the amplitude for two bosons going to two bosons and two fermions on the left,

and the same split occurring on the right. We take the following initial and final mode

numbers

ni = {n1 = 1, n2 = 2}

nf =

{
p = 1, q = 1, r =

1

2
, s =

1

2

}
. (4.13)

We find [54]

Aαα→ααdd(w1, w2, w̄1, w̄2)

= εĊḊεȦḂ〈Φ4|
(
G+
Ċ,− 1

2

σ−(w2)G−
Ȧ,− 1

2

σ+(w1)

)(
Ḡ+
Ḋ,− 1

2

σ̄−(w̄2)Ḡ−
Ḃ,− 1

2

σ̄+(w̄1)

)
|Ψ2〉

=
81

65536
√

2
+

169e−2∆w−2∆w̄

262144
√

2
−19e−∆w−2∆w̄

65536
√

2
+

29e∆w−2∆w̄

65536
√

2
−119e2∆w−2∆w̄

262144
√

2

−3e−
∆w
2
− 3∆w̄

2

4096
√

2
−3e

∆w
2
− 3∆w̄

2

8192
√

2
−19e−2∆w−∆w̄

65536
√

2
+

5e−∆w−∆w̄

16384
√

2
−3e∆w−∆w̄

16384
√

2
+

29e2∆w−∆w̄

65536
√

2

−3e−
3∆w

2
−∆w̄

2

4096
√

2
+

5e−
∆w
2
−∆w̄

2

8192
√

2
+
e

∆w
2
−∆w̄

2

2048
√

2
−3e

3∆w
2
−∆w̄

2

8192
√

2
−3e−

3∆w
2

+ ∆w̄
2

8192
√

2
+
e−

∆w
2

+ ∆w̄
2

2048
√

2

+
5e

∆w
2

+ ∆w̄
2

8192
√

2
−3e

3∆w
2

+ ∆w̄
2

4096
√

2
+

29e−2∆w+∆w̄

65536
√

2
−3e−∆w+∆w̄

16384
√

2
+

5e∆w+∆w̄

16384
√

2
−19e2∆w+∆w̄

65536
√

2

−3e−
∆w
2

+ 3∆w̄
2

8192
√

2
−3e

∆w
2

+ 3∆w̄
2

4096
√

2
+

9e
3∆w

2
+ 3∆w̄

2

8192
√

2
−119e−2∆w+2∆w̄

262144
√

2
+

29e−∆w+2∆w̄

65536
√

2

−19e∆w+2∆w̄

65536
√

2
+

169e2∆w+2∆w̄

262144
√

2
− 45e−2∆w̄

131072
√

2
− 9e−∆w̄

32768
√

2
− 9e∆w̄

32768
√

2
− 45e2∆w̄

131072
√

2

− 45e−2∆w

131072
√

2
− 9e−∆w

32768
√

2
− 9e∆w

32768
√

2
− 45e2∆w

131072
√

2
+

9e−
3∆w

2
− 3∆w̄

2

8192
√

2
. (4.14)
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Writing this as

Aαα→ααdd(w1, w2, w̄1, w̄2)

=
4∑

m=−4

4∑
m′=−4

Bαα→ααdd
m,m′

(
n1 = 1, n2 = 2; p = 1, q = 1, r =

1

2
, s =

1

2

)
e
m∆w

2
+m′∆w̄

2

(4.15)

defines the coefficients Bαα→ααdd
m,m′

(
n1 = 1, n2 = 2; p = 1, q = 1, r = 1

2 , s = 1
2

)
.

5 Integrating the amplitude

We now perform the integration over the positions of the deformation operators D. We

note that in the steps below we wick rotate τ back to our physical time coordinate t through

the transformation

τ → it . (5.1)

Our full integrated amplitude will have the form

Ai→jint =
1

2
λ2

∫ τ
2

− τ
2

∫ τ2

− τ
2

∫ 2π

σ2=0

∫ 2π

σ1=0
d2w2d

2w1Ai→f (w1, w2, w̄1, w̄2)

=
1

2
λ2

mmax(ni;nf )∑
m=mmin(ni;nf )

m′max(ni;nf )∑
m′=m′min(ni;nf )

Bi→f
m,m′(ni;nf )

∫ τ
2

− τ
2

∫ τ2

− τ
2

∫ 2π

σ2=0

∫ 2π

σ1=0
d2w2d

2w1e
m∆w

2 e
m′∆w̄

2

≡ 1

2
λ2

mmax(ni;nf )∑
m=mmin(ni;nf )

m′max(ni;nf )∑
m′=m′min(ni;nf )

Bi→f
m,m′(ni;nf )Im,m′(t) (5.2)

where

Im,m′(t) =

∫ t
2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ2=0
dσ2

∫ 2π

σ1=0
dσ1e

i(m+m′)
2

t′e
i(m−m′)

2
σ′ (5.3)

with m,m′ taking integer values. We also note that t′ = t2 − t1 and σ′ = σ2 − σ1.

5.1 Evaluating Im,m′

When evaluating the integral (5.3), we have four cases:

5.1.1 m−m′ 6= 0, m+m′ 6= 0

Im−m′ 6=0,m+m′ 6=0(t) =

∫ t
2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ=0
dσ2

∫ 2π

σ=0
dσ1e

i(m+m′)
2

t′e
i(m−m′)

2
σ′

=

32i sin2
(

(m−m′)
2 π

)(
(m+m′)t− 4ei

(m+m′)t
4 sin

(
(m+m′)t

4

))
(m2 −m′2)2

.

(5.4)
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5.1.2 m−m′ 6= 0, m+m′ = 0

Im−m′ 6=0,m+m′=0(t) =

∫ t
2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ=0
dσ2

∫ 2π

σ=0
dσ1e

i(m−m′)
2

σ′δm+m′,0

= − t
2(cos(2mπ)− 1)

m2

= 0 . (5.5)

5.1.3 m−m′ = 0, m+m′ 6= 0

Im−m′=0,m+m′ 6=0(t) =

∫ t
2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ=0
dσ2

∫ 2π

σ=0
dσ1e

i(m+m′)
2

t′δm−m′,0

=
4iπ2

(
mt− 2ei

mt
2 sin

(
mt
2

))
m2

. (5.6)

5.1.4 m = m′ = 0

Im=m′=0(t) =

∫ t
2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ=0
dσ2

∫ 2π

σ=0
dσ1

= 2π2t2 . (5.7)

5.2 Energy of the intermediate state

The integrals Im,m′ obtained above are all that we need to complete our evaluation of

amplitudes. But before proceeding it is useful to note the physical origin of the oscillating

and the growing terms in these integrals. Let initial states be placed at ti = − t
2 and final

states be placed at tf = t
2 . Let the initial and final states have energy E. Between the

two deformation operators, i.e., in the interval t1 < t′ < t2, we have the propagation of

an intermediate state whose energy we call E′. We will see that the states with E′ 6= E

generate oscillatory terms and terms proportional to t, while states with E′ = E yield a

term proportional to t2.

The evolution in the interval − t
2 < t′ < t1 gives a factor

e−iE(t1+ t
2) . (5.8)

The evolution in the interval t1 < t′ < t2 gives a factor

e−iE
′(t2−t1) . (5.9)

Finally, the evolution in the interval t2 < t′ < t
2 gives a factor

e−iE( t2−t2) . (5.10)

Thus the amplitude for an intermediate state with energy E′ is, apart from an overall

constant

e−iE(t1+ t
2)e−iE

′(t2−t1)e−iE( t2−t2) = ei(E
′−E)t1ei(E−E

′)t2e−iEt . (5.11)

Now we consider two cases:
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(A) E 6= E′: we first integrate (5.11) over t1 from
[
− t

2 , t2
]
. This gives

ei(E−E
′)t2e−iEt

∫ t2

− t
2

dt1e
i(E′−E)t1

= ei(E−E
′)t2e−iEt

1

i(E′ − E)

(
ei(E

′−E)t2 − e−i(E′−E) t
2

)
= e−iEt

1

i(E′ − E)
− e−iEt 1

i(E′ − E)
ei(E−E

′)t2e−i(E
′−E) t

2 (5.12)

Integrating over t2 from [− t
2 ,

t
2 ] yields

e−iEt
1

i(E′ − E)

∫ t
2

− t
2

dt2 − e−iEt
1

i(E′ − E)
e−i(E

′−E) t
2

∫ t
2

− t
2

dt2e
i(E−E′)t2

e−iEt
(

1

i(E′ − E)
t − 1

(E′ − E)2
e−i(E

′−E) t
2 2i sin

[
(E − E′) t

2

])
(5.13)

Thus we get a term which is proportional to t and another term which oscillates in

t; we do not however get a term that grows as t2.

(B) E = E′: again, integrating (5.11) over t1 from
[
− t

2 , t2
]

yields

e−iEt
∫ t2

− t
2

dt1

= e−iEt
(
t2 +

t

2

)
(5.14)

Integrating over t2 from
[
− t

2 ,
t
2

]
yields

e−iEt
∫ t

2

− t
2

dt2

(
t2 +

t

2

)
e−iEt

t2

2
(5.15)

Thus we get a term that grows as t2 but we do not get oscillating terms or terms

that grow as t.

5.3 Integrated amplitude for α→ ααα

In this subsection we compute the full integrated amplitude for the process where (both

on the left and right sides) one boson with energy n = 3 splits into three bosons, each with

energy p = q = r = 1. We need to evaluate the expression (4.5).

In (4.5) we note that m,m′ ∈ Zodd, which implies that m−m′ ∈ Zeven. This gives

Im−m′ 6=0,m+m′ 6=0(t) =

32i sin2
(

(m−m′)
2 π

)(
(m+m′)t− 4ei

(m+m′)t
4 sin

(
(m+m′)t

4

))
(m2 −m′2)2

= 0, m,m′ ∈ Zodd, m−m′ 6= 0 6= m+m′ . (5.16)
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Note that the terms with m + m′ = 0 vanish according to (5.5). Also, since there are no

m = m′ = 0 terms in (4.5), we have no contribution from (5.7). Thus the only contributions

come from terms of the type (5.6). Thus the amplitude (5.2) becomes

Aα→αααint = 8λ2π2

(
39

32768
sin2

(
t

2

)
+

159

131072

sin2(3t
2 )

9
+

3

131072
sin2

(
5t

2

))
. (5.17)

We see that the amplitude only contains terms which oscillate with time, t. We will

discuss the implications of this in the next section when we compare this result with that

for processes where two excitations split into four excitations.

5.4 Integrated amplitude for α→ αdd

For the process α→ αdd we obtain

Aα→αddint = 8λ2π2

(
5

4096
sin2

(
t

2

)
+

1

4096
sin2

(
3t

2

))
. (5.18)

We see behavior similar to that of the process for α → ααα. The amplitude oscillates

with t.

5.5 Integrated amplitude for αα→ αααα

For the process αα→ αααα, we obtain

Aαα→αααα
int = λ2π2t2

59049

8388608
√

2

+8λ2π2

(
154449

134217728
√

2

sin2(t)

4
+

15129

33554432
√

2

sin2(2t)

16
+

23409

134217728
√

2

sin2(3t)

36

)
.

(5.19)

In this case we see that the amplitude includes a t2 term in addition to terms which

oscillate in t.

5.6 Integrated amplitude for αα→ ααdd

For the process αα→ ααdd, we obtain

Aαα→ααddint = λ2π2 81

65536
√

2
t2

+8π2λ2

(
5

8192
√

2
sin2

(
t

2

)
+

5

16384
√

2

sin2(t)

4

+
1

8192
√

2
sin2

(
3t

2

)
+

169

262144
√

2

sin2(2t)

16

)
.

(5.20)

As in the case of the process αα → αααα, we find that this amplitude has terms which

oscillate in t and a term which grows like t2.
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Etotal = 2(n1 + n2) Equal Splitting

(n1 = n2) Bαα→αααα
0,0

(
n1, n2; p = q = r = s = n1+n2

4

)
2(n1 + n2) = 2(2 + 2) = 8 4.97746× 10−3

2(n1 + n2) = 2(6 + 6) = 24 7.59583× 10−5

2(n1 + n2) = 2(10 + 10) = 40 1.15986× 10−5

2(n1 + n2) = 2(14 + 14) = 56 3.36791× 10−6

2(n1 + n2) = 2(18 + 18) = 72 1.33531× 10−6

Table 1. t2 coefficients for 2 → 4 splitting for equal energies in the final state: p = q = r = s =
n1+n2

4 . The factor of 2 in the total energy comes because we must add together the left and right

moving energies which are chosen to be the same.

6 Coefficients for larger energies for αα→ αααα

In the above sections we looked at low energies of excitation. This enabled us to list explicit

results for the amplitudes. The amplitudes are computed with the help of a symbolic

manipulation package, so it is straightforward to compute them for higher energies of

excitation. We now summarize some features of the amplitudes as we raise the energy.

Some interesting patterns can be observed from the growth of these amplitudes with energy.

We have seen that the amplitudes which correspond to two particles in the initial

state have a t2 secular growth. We tabulate the coefficients of t2 for bosonic splitting

amplitudes in the 2→ 4 process, Bαα→αααα
0,0

(
n1, n2; p, q, r, s

)
, for increasing values of total

initial energy Etotal.

We compare these amplitudes for different modes of splitting. We have several exci-

tations in the final state. Is there a higher amplitude for distributing the energies roughly

equally among these final state excitations, or is there a higher amplitude when the energy

is predominantly carried by one excitation?

We tabulate our results in table’s 1 and 2.

We see that at each energy level, Etotal, the t2 coefficient for equal splitting is much

greater than the t2 coefficient for asymmetric splitting. This tells us that the probability

for the total energy of two initial modes to split equally amongst four final modes is much

higher than to split asymmetrically.2

This nature of splitting serves as an indicator of the way thermalization is expected to

progress, as we will discuss in the next section.

7 Discussion

In this paper we addressed the problem of black hole formation in AdS by investigating

thermalization in the dual CFT. To understand thermalization we considered the twist

2The lowest level Etotal = 8 has only one way for the final state to split, so we see only the case with

equal coefficients.
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Etotal = 2(n1 + n2) Asymmetric Splitting

(n1 = n2) Bαα→αααα
0,0

(
n1, n2; p = n1 + n2 − 3, q = r = s = 1

)
2(n1 + n2) = 2(2 + 2) = 8 4.97746× 10−3

2(n1 + n2) = 2(6 + 6) = 24 1.28367× 10−8

2(n1 + n2) = 2(10 + 10) = 40 2.33709× 10−10

2(n1 + n2) = 2(14 + 14) = 56 1.86499× 10−11

2(n1 + n2) = 2(18 + 18) = 72 2.92488× 10−12

Table 2. t2 coefficients for 2→ 4 splitting for unequal energies in the final state: p = n1+n2−3, q =

r = s = 1. Again, the factor of 2 in the total energy comes because we must add together the left

and right moving energies which are chosen to be the same.

deformation, the fundamental interaction of the theory. We looked at two main scattering

processes at second order in the twist deformation: 1) one excitation splitting into three

excitations and 2) two excitations splitting into four excitations. The ‘1 to 3’ processes

were found to only have terms which oscillate in t. The ‘2 to 4’ processes were found to

have similar oscillatory terms. In addition however, they were found to also have ‘secular’

terms proportional to t2. These t2 terms arise from the existence of accessible intermediate

states which have the same energy as the initial and final states.

Let us now put these results into a picture of thermalization. First consider thermal-

ization in a gas of atoms. Suppose a particle with high energy E enters a gas which is

at a low temperature T ; thus the incoming particle has much higher velocity v than the

typical velocity v̄ of the particles in the gas. When the particle with velocity v collides with

one of the slow particles, their dynamics is given by an interaction vertex; generically, we

find that the two scattered particles have velocities ∼ v each (rather than an asymmetric

situation with one velocity small and one large). This basic scattering vertex allows us to

get a qualitative picture of thermalization. The vertex involves computing the scattering

probability for any choice of final velocities v1, v2 and angles θ1, φ1, θ2, φ2. Once we have

computed this vertex, we can concatenate several such vertices to get a picture of thermal-

ization: at each step the energy in a high energy particle splits among the energies of the

scattered particles.

In this language, what we have done in the present paper is compute the scattering

vertex for the CFT with n1n5 = N = 2. We hope to present the scattering matrix for

higher N in later works. These results should allow us to get a qualitative picture of how

thermalization proceeds in the CFT.

A key aspect we have noted in the introduction is that we have to be careful to identify

the effects that correspond to genuine thermalization. Infall in the metric (1.1) gives a

redshift going to infinity, but the infalling object remains intact; we have argued that this

process of increasing redshift should not be called thermalization. But many computations

in the CFT that aim to see black hole formation focus just on getting a situation with

large redshift. We have argued, on the other hand, that thermalization in the CFT will
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start after the step in gravity where we get a large redshift. One will have to see effects

of finite N , which we enforced by taking a low value N = 2. The scattering vertex we

computed gives a very rough qualitative guide to thermalization, but this is a picture we

hope to improve upon in later works.
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