
J
H
E
P
0
6
(
2
0
1
9
)
1
0
3

Published for SISSA by Springer

Received: November 16, 2018

Accepted: May 28, 2019

Published: June 19, 2019

Dark energy and the refined de sitter conjecture

Prateek Agrawal and Georges Obied

Jefferson Physical Laboratory, Harvard University,

17 Oxford Street, Cambridge, MA 02138, U.S.A.

E-mail: prateekagrawal@fas.harvard.edu, gobied@g.harvard.edu

Abstract: We revisit the phenomenology of quintessence models in light of the recently

refined version of the de Sitter Swampland conjecture, which includes the possibility of

unstable de Sitter critical points. We show that models of quintessence can evade previously

derived lower bounds on (1 + w), albeit with very finely-tuned initial conditions. In the
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quintessence field with the Higgs or the QCD axion are significantly relaxed.
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1 Introduction

A class of effective field theories (EFTs), while otherwise consistent, do not admit a UV-

completion within a theory of quantum gravity. Such EFTs are said to lie in the Swamp-

land [1]. Delineating the boundaries of the Swampland is an important task that could

point to observable consequences of a theory of quantum gravity. Progress has been made

by studying the general properties of string compactifications (e.g. see [2–6] or [7] for a

recent review).

One recent criterion is the de Sitter conjecture (dSC) which proposes that all scalar

potentials must satisfy the condition:

|∇V | ≥ c · V, (1.1)

where the dimension-dependent constant c ∼ O(1). This condition is motivated by the

difficulty of de-Sitter (dS) constructions within string theory and the plethora of no-go

theorems which take the form of (1.1) and thus forbid dS spacetimes under restricted

circumstances [8–10] (see also [6] and references therein). However, for a different point of

view, see for example [11–20].

The dSC has observable consequences for dark energy1 equation of state [22] and

constrains single field slow-roll inflation. This has led to a number of model-building

proposals [23–36] to make inflation consistent with dSC. Similarly, interest in quasi-dS

spaces consistent with dSC has motivated the construction of quintessence models [14, 37–

41]. Beyond these cosmological implications, a strong consequence arises from studying

the symmetric point of the Higgs potential [19, 40, 42, 43], forcing the quintessence field to

couple with the Higgs boson. A similar conclusion can be derived for the QCD axion [19].

Alternate formulations of the dSC have also been proposed in [42, 44, 45]. We study a

particular refinement of the dSC (henceforth referred to as RdSC) which has been proposed

in [46, 47]. The refinement allows (1.1) to be violated if the second derivative of the potential

is sufficiently negative. Explicitly, the refined de Sitter conjecture states

|∇V | ≥ c V or min(∇i∇jV ) ≤ −c′V (1.2)

where c, c′ are constants of O(1).

1For a review of quintessence dark energy, see [21].
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The RdSC is motivated by its connection to the distance Swampland conjecture [3]

through Bousso’s covariant entropy bound [48]. The refined conjecture evades all the

counter-examples to the dSC [18, 45, 49] since they involve tachyonic dS critical points [50,

51]. Similarly, it also evades constraints arising from coupling of the quintessence field with

the Higgs field and the axion [19, 42].

The original dSC had a firm prediction for the equation of state for the dark energy.

In this note we investigate the implications of the refined de Sitter conjecture (RdSC) for

dark energy phenomenology. We show that an arbitrarily fine-tuned initial condition can

satisfy current and future constraints on w(z) for any values of c and c′, but generic initial

conditions retain a prediction of deviation from w = −1.

2 Elsewhere on the moduli space

Dark energy observations allow a quintessence field in the current universe with a potential

whose slope is of the order of the vacuum energy (in Planck units). Interesting constraints

can be derived from considering the potential of the quintessence field along with other

scalar fields like the Higgs (and potentially the axion) away from our current position on

the moduli space.

If the quintessence does not couple to the Higgs, then the dSC is badly violated at the

symmetric point of the Higgs potential [42]. A coupling of the Higgs with the quintessence,

on the other hand, leads to larger-than-observed deviations in fifth force experiments,

except for perhaps a very fine-tuned set up where this coupling vanishes around the Higgs

minimum [19, 42]. More recently it was shown that even this possibility is under tension

from time-dependence of the proton-to-electron mass ratio [43].

This tension is relaxed when we consider the refined conjecture. Clearly, at the sym-

metric point on the Higgs potential the RdSC is satisfied irrespective of the coupling of the

Higgs with the quintessence field. However, it is useful to see whether this is true along

the entire relevant range of the potential. For illustration we take a toy potential,

V (φ, h) = λh(h2 − v2)2 + V0e
−λφ (2.1)

For values of h outside a small neighborhood of the origin (and away from the minimum),

there is a slope in the h direction which satisfies the slope requirement in (R)dSC,

MPl|∇hV |
V

> c⇒ h &
cv2

4MPl
, (2.2)

where cv2/MPl � v. However, near the origin, the second derivative ∇2
hV causes the

RdSC to be satisfied. The latter switches sign at h = v/
√

3. So the second derivative is

sufficiently negative for h ∼ v/
√

3� v2/MPl,

M2
Pl∇2

hV

V
< −c′ ⇒ h .

v√
3

[
1− c′

18

(
v

MPl

)2
]

(2.3)

Finally, as the h field nears its minimum at v, neither of the above conditions is fulfilled,

and the (R)dSC is satisfied by the slope in the φ direction, as long as λ > c. The norm of
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Figure 1. An example scalar potential (e.g. the Higgs potential) with spontaneous symmetry

breaking, with parameters exaggerated for clarity. In the blue region, the (R)dSC is satisfied by the

h itself. In the orange region, the RdSC is satisfied along the h direction. In the green region near

the minimum along the h direction, a “quintessence” field is needed to satisfy (R)dSC. If (R)dSC

is satisfied at the minimum, then it is satisfied in all the green region (see text for details).

the gradient of the potential is sufficiently large even away from the minimum (and well

into the region where |∇hV | is large), if the following condition is met for the potential

at h = v,

V (φ, v) .
8λh
λ2

v2M2
Pl . (2.4)

This is a very mild restriction on the potential. This analysis can be carried out in essen-

tially the same way for the SM Higgs as well as the QCD axion. In figure 1 we show a toy

example of this phenomenon. We have chosen exaggerated numerical values for illustration.

We see that the RdSC is satisfied everywhere along the potential with no cross coupling

requirement between φ and h.

Finally, as noted in [47], the RdSC also resolves issues pointed out by [18] and, in a

similar higher dimensional setting, by [19]. The general arguments in these papers only

tell us about the presence of an extremum, and in particular a maximum / inflection

point. Therefore, the RdSC can be easily consistent with these constructions if the smallest

eigenvalue of the Hessian is sufficiently negative at these critical points.

3 Dark energy

We now turn to an analysis of the implication of the refinement on dark energy phe-

nomenology. The dSC allows one to place a lower bound on the equation of state parame-

ter w ≡ pφ/ρφ as presented in [22], and using current observations, an upper bound on c.

We now show that the RdSC allows a class of models where the quintessence field satisfies
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Figure 2. Allowed part of parameter space for our potential (3.1) subject to the RdSC (lower

shaded), w(z) and ΩΛ (upper right shaded) and ΩΛ (left shaded) constraints. Contours show

the maximum allowed misalignment of the field φ/MPl from the top of the potential. The contour

segment to the left of the kink is constrained by ΩΛ, whereas the segment to the right is constrained

by w(z). Red dots indicate benchmark examples plotted in figures 3 and 4. We show regions

excluded by the RdSC (orange) for c′ = 0.1 and c′ = 1 for illustration.

the second clause of the refined conjecture, and we cannot put a bound on c using data.

Further, one can arrange for w ≈ −1 today, albeit at the expense of very finely tuned

initial conditions. For concreteness we illustrate this with an example potential for the

quintessence field of the form,

V (φ) = V0

(
a4 − 1

2
b2

φ2

M2
Pl

)
, (3.1)

where V0 = (2.23 meV)4 is the value of dark energy in ΛCDM. This potential satisfies

the second clause of the RdSC when b2 ≥ c′a4. The mass of the field can be conveniently

written in terms of the Hubble parameter today, m2
φ = −b2V0/M

2
Pl = −3b2ΩΛH

2
0 , where

ΩΛ = 0.692 is the dark energy fraction of the universe today. Given the dark energy content

of the universe today, we see that this potential requires a & 1. Then RdSC puts a lower

bound on the curvature of the quintessence potential, b2 > c′, or |m2
φ| > 3c′ΩΛH

2
0 .

If we ignore quantum fluctuations, then it is clear that we can set the field at the top of

the potential, and obtain w = −1 exactly. However, quantum fluctuations will destabilize

the field from the maximum and fragment it to form domain walls. Therefore, we have

to ensure that the field is sufficiently misaligned from the top to behave classically. The
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classical regime only requires a very tiny misalignment,

φ > H
H2

3b2ΩΛH2
0

. (3.2)

At the same time, if the field has a large misalignment from the maximum, its equation of

state will deviate from w = −1.

There are two possible allowed regimes. The first is when b � 1, the slope of the

potential is large as soon as the field is misaligned from the maximum, and leads to large

deviations in w + 1. In this case the initial misalignment has to be very finely tuned to

be consistent with supernova observations. In the second case, near the boundary of the

RdSC constraint, b2 & c′a4, the mass of the field is order H0, and therefore it only starts

rolling today for O(1) misalignment, making it consistent with observations.

In figure 2 we show the allowed parameter range in (a, b) space. We also show the

contours of the maximal initial value of the field that is allowed by observations of ΩΛ [52]

and w(z) [53]. As in [22], we choose the 2σ contours for w(z) in [53] and for ΩΛ from [54],

and find the largest initial misalignment that is consistent with the measurement of ΩΛ

and w(z). For b � 1, we see that the initial values have to be tuned, as noted above. In

the region b ∼ 1, we can allow generic initial conditions. The trajectories of the fields for

specific values of (a, b) are shown in figures 3 and 4. We show the evolution of this system

in (x, y) coordinates defined as

x ≡ φ̇√
6MPlH

; y ≡
√
V√

3MPlH
, (3.3)

as well as the evolution of the equation of state w. We have chosen examples where the

initial conditions are allowed to be generic (figure 3) and where we need to tune the initial

conditions to satisfy the supernova constraints (figure 4).

We see that in either case, tuning the initial conditions allows us to push w as close to

−1 as we want, evading the lower bound derived in [22]. However, in the absence of this

initial condition tuning, a generic prediction on the equation of state can be estimated.

If c′ � 1, then it is generally hard to satisfy the current w(z) constraints with untuned

initial conditions, and the least tuned initial conditions will typically have (1 + w) close

to the constraints today. If c′ . 1, then for b2 ∼ c′a4 and a ∼ 1 we can have an O(MPl)

misalignment. The slope of the potential in this case is given by

V ′(φ) = V0b
2 φ

MPl
≈ V0

MPl
c′ (3.4)

Using the “slow-roll” approximation, 3Hφ̇ ' V ′(φ), we can estimate the value of w for this

parameter choice,

1 + w ' φ̇2

V0
∼ V ′2

9H2V0
∼ 1

3
ΩΛc

′2 . (3.5)

It is interesting to compare this to a very similar looking bound derived in [22]. We

emphasize however that in the current case this is not a hard bound but more a generic
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Figure 3. The (x, y) trajectories of the quintessence field (left) and its equation of state (right)

for a range of initial misalignment. For this plot, we have chosen the values (a, b) = (1.05, 1.2), for

which generic initial conditions are consistent with data. Curves are labeled with the initial field

value φinit/MPl and show the minimum and maximum allowed values in addition to a trajectory

that is excluded by data.
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Figure 4. The (x, y) trajectories of the quintessence field (left) and its equation of state (right)

for a range of initial misalignment. For this plot, we have chosen the values (a, b) = (0.99, 2.4),

for which only fine-tuned initial conditions are consistent with data. Curves are labeled with the

initial field value φinit/MPl and show the minimum and maximum allowed values in addition to a

trajectory that is excluded by data.
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prediction. Due to this fact, we are unable to derive a robust bound on c′ using current

data as was done for c in [22]. Further, we can trade off bounds on c with bounds on c′,

and with tuned initial conditions we can have both c and c′ to be O(1).

4 Conclusion and discussion

Swampland conjectures are in a very active phase of exploration. We have studied the

implications of the recently proposed refined de Sitter conjecture [44–47]. The conjecture

is motivated by an older distance Swampland conjecture and its connection with Bousso’s

covariant entropy bound. This conjecture circumvents a number of theoretical and phe-

nomenological tensions arising from coupling of the quintessence field to other scalar fields

in the standard model and beyond. The RdSC is also consistent with constructions which

are claimed to be counter-examples to the earlier de Sitter conjecture.

As in dSC, the RdSC appears to be in tension with single-field slow-roll inflation if both

c, c′ are strictly O(1) [55]. The fact that either |εV | or |ηV | are O(1) makes it impossible

to naturally satisfy constraints on the scalar tilt ns − 1 ≈ 2ηV − 6εV ≈ 0. In fact, recent

analyses [52] show that O(1) values for either of ηV or εV are strongly ruled out. More

extended inflationary models can potentially evade this tension; these models often come

with detectable deviations from single-field case [24, 27, 56]. Unless the initial conditions

are very fine-tuned, the conclusions of [22] for the future cosmology of the universe remain

mostly unchanged.

It would be very interesting to try and identify models for such a scalar field. In the

string axiverse we expect a plenitude of light scalars, and the positive dark energy of the

universe in such a system can be made up of a number of light particles. What the RdSC

adds to this picture then is that it hints towards an axion of mass comparable to the Hubble

scale, with a misalignment from its minimum of O(MPl) such that it has just recently begun

dominating the universe and appears briefly as dark energy, before eventually starting to

oscillate as matter.
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