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1 Introduction

Complete constructions of superstring field theories have been achieved in the last years

and we have now at our disposal consistent actions for both open and closed superstrings

in either small or large Hilbert space formalisms [1–6] . So we are now in a stage where we

could possibly use these actions for concrete calculations. However the non-polinomiality

that is inherent to both open and closed superstrings makes it difficult to perform typical

QFT calculations such as effective actions, mass renormalization or related observables.

In this regard it is useful to explore whether questions involving physical quantities can
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possibly be answered by-passing the complicated off-shell structure of the fundamental

string field theories.

As a step in this direction, in [7] we revisited the construction of the tree-level effective

action for open (NS) superstrings, integrating out massive fields from the Berkovits WZW-

like theory [8] as was originally done in [9]. Our analysis surprisingly showed that the whole

contribution to the effective action up to quartic order is entirely captured by singular

naively-vanishing terms at the boundary of moduli space of four-punctured disks. These

terms arise by carefully accounting for the failure of the propagator to truly invert the

BRST charge [
QB,

b0
L0

]
= 1− P0, (1.1)

where P0 is the projector on the kernel of L0, which is responsible for the contributions

at the boundary of moduli space. In particular when we compute the effective action of

massless fields that are charged under the U(1) R-symmetry of the underlying N = 2 SCFT

describing the superstring background we consider, the whole quartic potential vanishes

except for “singular” terms containing P0. This has the consequence that such quartic

couplings are in fact computed by two-point functions of so-called auxiliary fields, which

are given by the projection to level zero of the star product (or OPE) of the physical fields.

For generic momenta these contributions are vanishing but at zero momentum (where the

algebraic couplings live) they play an essential role. In particular, after computing the

ghost correlators, our result for the four-point coupling of massless open superstring fields

of the WZW theory in the large Hilbert space

ΦA = Φ+
A + Φ−A = cγ−1

(
V(+)

1
2

+ V(−)
1
2

)
, (1.2)

boiled down to a simple combination of matter two-point functions

S
(4)
eff,WZW (ΦA) = tr

[
〈H(+)

1 |H
(−)
1 〉+

1

4
〈H0|H0〉

]
. (1.3)

In the above expressions “tr” is the trace in Chan-Paton space and H(±)
1 and H0 are the

leading contributions of the OPE of matter physical superconformal primaries (including

space-time polarization) at zero momentum, V(±)
1
2

, which have been decomposed in J = ±1

eigenstates of a U(1) R-charge in a convenient N = 2 organization of the matter SCFT

H(±)
1 (x) = lim

ε→0
V(±)

1
2

(x+ ε)V(±)
1
2

(x− ε), (1.4)

H0(x) = lim
ε→0

(2ε)

(
V(+)

1
2

(x+ ε)V(−)
1
2

(x− ε)− V(−)
1
2

(x+ ε)V(+)
1
2

(x− ε)
)
. (1.5)

It is the scope of the present paper to obtain the same result in the context of the A∞
theory in the small Hilbert space by Erler, Konopka and Sachs [10]. In a sense, this is

obviously expected since the two theories are known to be related by partial gauge fixing

plus field redefinition [11–13]. However, as already mentioned, when we work at zero
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momentum contributions at the boundary of moduli space which arise by manipulations

involving (1.1) are important (the effective action itself is generated by these contributions).

So, in showing that the two effective actions give the same result, we should also carefully

take into account potentially anomalous terms involving P0 and we have to show that such

anomalous terms are canceling. As we will see, the vanishing of the potential anomalies

that could arise in relating the Berkovits and the A∞ effective actions is a consequence of

a projector condition that holds at zero momentum in the NS sector1

P0M2(ΨA,ΨA) = 0, (1.6)

when ΨA is a physical field in the small Hilbert space in the form

ΨA = cV 1
2
δ(γ) = η0ΦA. (1.7)

Then, thanks to (1.6), the effective actions are the same in the sense that

S
(4)
eff,WZW (ξ0ΨA) = S

(4)
eff,A∞

(ΨA). (1.8)

Therefore if the WZW effective action localizes at the boundary of moduli space [7] so it is

for the A∞. When, parallel to (1.2), we can decompose the A∞ physical field in R-charged

eigenstates

ΨA = Ψ+ + Ψ− = c

(
V(+)

1
2

+ V(−)
1
2

)
δ(γ), (1.9)

we are able to show that the quartic effective potential (the same for the A∞ and the WZW

theory) can be written in the small Hilbert space as2

S
(4)
eff (ΨA) = −1

8
TrS

[
[Ψ+,Ψ+]P0

[
ξ0Ψ−, X0Ψ−

] ]
− 1

8
TrS

[
[Ψ−,Ψ−]P0

[
ξ0Ψ+, X0Ψ+

] ]
+

1

8
TrS

[( [
Ψ+, X0Ψ−

]
−
[
Ψ−, X0Ψ+

] )
P0

( [
Ψ−, ξ0Ψ+

]
+
[
ξ0Ψ−,Ψ+

] )]
= tr

[
〈H(+)

1 |H
(−)
1 〉+

1

4
〈H0|H0〉

]
. (1.10)

Therefore, to quartic order, there is a unique effective potential for the zero momentum

components of the massless open string fields and this potential is localized at the boundary

of moduli space if the massless fields are R-charged.

The paper is organized as follows. In section 2 we review the basic aspects of the A∞
construction and we explicitly construct the tree-level effective action for massless fields by

perturbatively solving the equations of motion for the heavy fields in terms of the massless

1A corresponding projector condition is at work in the Berkovits theory [7] and reads

P0[η0ΦA, QBΦA] = 0,

for a physical field ΦA = cγ−1V 1
2
.

2P0

[
ξ0Ψ−, X0Ψ−

]
is in the small Hilbert space because P0

[
Ψ−, X0Ψ−

]
= P0

[
η0Φ−, QBΦ−

]
= 0 and

the same applies to (+↔ −).
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fields. The effective action is expressed in terms of the A∞ multi-string vertices Mn and

the Siegel gauge propagator b0
L0

. In section 3, concentrating on the quartic terms, we show

that, when the entries are physical, the A∞ 2-products and the products appearing in

the Berkovits theory simply differ by an exact term in the small Hilbert space. This is

used in section 4 to show that (also thank to the projector condition (1.6)) the effective

actions derived from the WZW theory and the A∞ are identical to quartic order. As a by

product of our proof, we can write the effective action of the WZW theory as a trace in

the small Hilbert space. In section 5, we give a new proof that the effective action localizes

at the boundary of moduli space by remaining in the small Hilbert space and decomposing

the massless string field in the eigenstates of the world-sheet N = 2 R-charge J in the

matter sector. Given the universal form of the quartic potential, in section 6 we identify

generic ADHM-like constraints as sufficient conditions for flat directions. In the case of a

Dp-D(p−4) system we recover the familiar three ADHM constraints, plus other three dual

constraints which switch on a VEV for the zero momentum gauge field. We conclude with

a final summary and possible further directions. Appendix A contains the computations

needed to prove (4.28). Appendix B is a simple but useful comparison between our results

and the reported obstruction in [22]: by relating the effective action at quartic order to

the contraction of the interacting part of the third order equation of motion with the first

order solution, we show that there is a clear and concrete disagreement between the final

results of [22] and our computations here and in [7].

2 The A∞ theory

The Erler-Konopka-Sachs (EKS) action [10] is given by the following infinite series3

SA∞(Ψ) = −
+∞∑
n=1

1

n+ 1
ωS (Ψ ,Mn(Ψn)) . (2.1)

To start with, ωS : HS ⊗HS −→ C is the symplectic form on the small Hilbert space. It

is constructed from the BPZ inner product in the small Hilbert space

ωS(A,B) = (−1)Deg(A)〈A,B〉S ∀A,B (2.2)

The small Hilbert space is endowed with a natural degree different from the Grassmanality

but related to it

Deg(A) = A+ 1, ∀A (2.3)

Deg(A ∗B) = A+B + 1, ∀A,B. (2.4)

The dynamical string field Ψ lives in the small Hilbert space in the NS sector

η0Ψ = 0, (2.5)

3We normalize the vacua as in [7] 〈ξ(z)c∂c∂2c(w) exp−2φ(y)〉L = 〈c∂c∂2c(w) exp−2φ(y)〉S = −2. This is

opposite to the convention used in [9] and as such our effective action in [7] and here differ from [9] by an

overall minus sign. To be consistent with our conventions we define the EKS action (2.1) with a minus

in front.
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and is taken to be degree even (that is Grassmann odd) with ghost number 1 and picture

number −1.

The multi-string products

Mn : H⊗nS → HS
are linear operators from the n−fold tensor product of the small Hilbert space back to a

single copy in the small Hilbert space, which are therefore annihilated by η0

[η0,Mn] = 0. (2.6)

The first product M1 is

M1 = QB. (2.7)

The consistency of the theory is realized when these multi-string products satisfy the so-

called A∞ relations. We list only the first three relations, which are the ones we need in

this paper

0 = Q2
BA, (2.8)

0 = QBM2(A,B) +M2(QBA,B) + (−1)Deg(A)M2(A,QBB), (2.9)

0 = M2 (M2(A,B), C) + (−1)Deg(A)M2 (A,M2(B,C)) +QBM3(A,B,C)

+M3 (QBA, B, C) + (−1)Deg(A)M3 (A, QBB, C)

+(−1)Deg(A)+Deg(B)M3 (A, B, QBC) . (2.10)

With the definition of the gradings (2.3), the multi-string products appearing in the

action are degree odd. The symmetry property of the symplectic form in the small Hilbert

space is given as follows

ωS(A,B) = (−1)Deg(A)Deg(B)+1ωS(B,A). (2.11)

When both string fields are degree odd, the simplectic form is symmmetric in the entries.

The Leibniz rule corresponding to a degree odd derivation (for example QB) of a string

field is given by

ωS(QBA,B) + (−1)Deg(A) ωS(A,QBB) = 0 ∀A,B (2.12)

while the cyclicity property with respect to degree odd multi-string products is

ωS(Mn(Ψ1,Ψ2, . . . ,Ψn),Ψn+1) = −(−1)Deg(Ψ1)ωS(Ψ1,Mn(Ψ2,Ψ3, . . . ,Ψn+1)) ∀n.
(2.13)

In particular this holds for QB, M2 and M3 multi-string products:

ωS(M2(Ψ1,Ψ2),Ψ3) = −(−1)Deg(Ψ1)ωS(Ψ1,M2(Ψ2,Ψ3)), (2.14)

ωS(M3(Ψ1,Ψ2,Ψ3),Ψ4) = −(−1)Deg(Ψ1)ωS(Ψ1,M3(Ψ2,Ψ3,Ψ4)). (2.15)

These axioms of compatibility are needed to derive the correct equations of motion

+∞∑
i=1

Mn(Ψn) = 0 → QBΨ +M2(Ψ2) +M3(Ψ3) + . . . = 0. (2.16)
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A concrete solution to the A∞ relation is obtained by starting (for simplicity) with the

worldsheet zero mode of the PCO:

X0 = [QB, ξ0] =

∮
dz

2πi

1

z
X(z) , X(z) = [QB, ξ(z)] (2.17)

and defining

M2(A,B) :=
1

3
[X0m2(A,B) +m2(X0A,B) +m2(A,X0B)] (2.18)

M3(A,B,C) :=
1

2
M2(A, M̄2(B,C)) +

1

2
M2(M̄2(A,B), C)− 1

2
M̄2(M2(A,B), C)

−1

2
(−1)Deg(A)M̄2(A,M2(B,C)) +

1

2
QB − exact (2.19)

where the BRST exact term is added in order to get a 3−string product in the small

Hilbert space:

QB − exact = +QBM̄3 (A, B, C)− M̄3 (QBA, B, C)

−(−1)Deg(A) M̄3 (A, QBB, C)− (−1)Deg(A)+Deg(B) M̄3 (A, B, QBC) .

(2.20)

These multi-string products are constructed from the so-called bare multi-string product

in the small Hilbert space and the dressed multi-string products in the large Hilbert space:

m2(A,B) = (−1)Deg(A)A ∗B = (−1)Deg(A)AB, (2.21)

M̄2(A,B) :=
1

3

[
ξ0m2(A,B)−m2(ξ0A,B)− (−1)Deg(A)m2(A, ξ0B)

]
, (2.22)

m3(A,B,C) =
2

3
[m2 (A, ξ0m2(B,C)) +m2 (ξ0m2(A,B), C)] , (2.23)

M̄3 (A,B,C) =
1

4

[
ξ0m3(A,B,C)−m3(ξ0A,B,C)− (−1)Deg(A)m3(A, ξ0B,C)

−(−1)Deg(A)+Deg(B)m3(A,B, ξ0C)
]
. (2.24)

These products are obtained placing ξ0 or the PCO X0 on each external state. When

acting on states in the small Hibert space we have that

M2 =
[
QB, M̄2

]
, (2.25)

m2 =
[
η0, M̄2

]
. (2.26)

The QB−exact part of M3 is constructed in such a way that M3 lies in the small

Hilbert space

[η0, M3] = 0. (2.27)

This part contains the dressed 3−string product M̄3 which exhibits the most symmetric

assignment of ξ0 to the entries. So the action of a η0 on the dressed product is not vanishing

but it gives the bare m3 product

m3 =
[
η0, M̄3

]
. (2.28)
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2.1 The effective action from the A∞ theory

Since we are going to perturbatively integrate out the massive fields, we start writing the

A∞ theory as

SA∞ (Ψ) = −1

2
ωS (Ψ, QBΨ)− 1

3
ωS
(
Ψ,M2(Ψ2)

)
− 1

4
ωS
(
Ψ,M3(Ψ3)

)
− . . . . (2.29)

To compute the effective action we fix Siegel gauge for convenience

b0Ψ = 0, (2.30)

and we split the string field into its massless L0 = 0 component ΨA and the remaining

massive degrees of freedom R,

Ψ = P0Ψ + P̄0Ψ = ΨA +R, (2.31)

where P0 is the projector on the kernel of L0 and P̄0 ≡ 1 − P0. The equation of motion

for the massive fields is the projection of the full equation of motion (2.16) outside the

kernel of L0:

P̄0

[
QBΨ +M2(Ψ2) +M3(Ψ3) + . . .

]
= 0. (2.32)

To solve this equation we expand perturbatively Ψ by means of a small coupling constant g

Ψ = gΨA +
+∞∑
n=2

gnRn. (2.33)

We are interested in computing the effective potential of a zero momentum massless field

of the form

ΨA = cV 1
2
e−φ, (2.34)

which is on-shell and in the small Hilbert space,

QBΨA = 0 , η0ΨA = 0. (2.35)

The first non-trivial equation of motion involves R2 and the solution is easily found

P̄0

[
QBR2 +M2(Ψ2

A)
]

= 0 → R2 = − b0
L0

P̄0M2(Ψ2
A). (2.36)

These are enough to treat the effective action at the fourth order. We recognize that

the solution found for the first massive contribution reminds the solution found for the

Berkovits theory in [7]. Besides the fact that (2.36) lives in the small Hilbert space, the

important difference is the different algebraic structure involved:

[η0ΦA, QBΦA] −→ M2(Ψ2
A), (2.37)
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where ΦA = ξ0ΨA. Since the basic string field is degree even, R2 is degree even too and

QBR2 is degree odd. This is consistent with the fact that M2(Ψ2
A) is degree odd. The

expanded action at the fourth order is then given by

S
(4)
eff,A∞

(ΨA) = −1

2
ωS (ΨA, QBR3)− 1

2
ωS (R3, QBΨA)− 1

2
ωS (R2, QBR2)

−1

3
ωS
(
R2,M2(Ψ2

A)
)
− 1

3
ωS (ΨA,M2(R2,ΨA))

−1

3
ωS (ΨA,M2(ΨA, R2))− 1

4
ωS
(
ΨA,M3(Ψ3

A)
)
,

which is easily simplified to

S
(4)
eff,A∞

(ΨA) = +
1

2
ωS (R2, QBR2)− 1

4
ωS
(
ΨA,M3(Ψ3

A)
)
. (2.38)

By substituting R2 this is a sum of a propagator term and a contact term4

S
(4)
eff,A∞

(ΨA) = −1

2
ωS

(
M2(Ψ2

A),
b0
L0
P̄M2(Ψ2

A)

)
− 1

4
ωS
(
ΨA,M3(Ψ3

A)
)
. (2.39)

3 Mapping the 2-string product

In this section we prepare the ground for proving the equivalence of the effective actions

derived from Berkovits and EKS theory. From the classical gauge fixing in the large Hilbert

space Φ = ξ0Ψ we can relate the EKS string field Ψ to the large Hilbert space string field Φ

Ψ = η0Φ ⇐⇒ Φ = ξ0Ψ. (3.1)

Explicitly we consider

Ψ = cV 1
2
e−φ = cV 1

2
δ(γ), (3.2)

Φ = cξe−φV 1
2

= cγ−1V 1
2
. (3.3)

Moreover we can write the BRST variation of the WZW string field as the picture changed

A∞ field

QBΦ = X0Ψ. (3.4)

With the gauge fixing (3.1) in mind we can show that the M2 product is related to the

commutator [η0Φ, QBΦ]. In terms of the EKS string field, this commutator is written as

[η0Φ, QBΦ] = [Ψ, X0Ψ] . (3.5)

4This effective action is proportional to the four-point amplitude derived in [10], with 4 identical entries.
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Starting from the definition, it is possible to write the M2 string product in terms of the

Berkovits commutator (3.5) plus a new composite string field

M2(Ψ,Ψ) =
1

3
[X0m2(Ψ,Ψ) +m2(X0Ψ,Ψ) +m2(Ψ, X0Ψ)]

=
1

3

[
X0Ψ2 + (X0Ψ)Ψ + Ψ(X0Ψ)

]
=

1

3

[
X0Ψ2 +

3(3− 1)

6
(X0Ψ)Ψ +

3(3− 1)

6
Ψ(X0Ψ)

]
=

1

2
((X0Ψ)Ψ + Ψ(X0Ψ)) +

1

3
X0Ψ2 − 1

6
((X0Ψ)Ψ + Ψ(X0Ψ))

=
1

2
[Ψ, X0Ψ] +

1

6
QB

(
2ξ0Ψ2 − [ξ0Ψ,Ψ]

)
. (3.6)

We have isolated a Berkovits-like commutator which is in the small Hilbert space, QB-

closed on shell and QB-exact in the large Hilbert space. The second term is manifestly

QB-exact, and also in the small Hilbert space

η0

(
2ξ0Ψ2 − [ξ0Ψ,Ψ]

)
=
(
2Ψ2 − [Ψ,Ψ]

)
=
(
2Ψ2 − 2Ψ2

)
= 0. (3.7)

This small Hilbert space string field is the sum of two large Hilbert space string fields.

Although these two string fields are different due to the position of ξ0 , they concide at

level zero:

P0

(
2ξ0Ψ2 − [ξ0Ψ,Ψ]

)
= 0, (3.8)

as it is easy to check. It is also not difficult to check by direct OPE [7] that

P0 [Ψ, X0Ψ] = P0 [η0Φ, QBΦ] = 0,

in total this means that the following projector condition is satisfied5

P0M2(Ψ,Ψ) = 0, (3.9)

whenever Ψ = cV 1
2
e−φ.

Defining the Berkovits commutator

1

2
[Ψ, X0Ψ] ≡ B2(Ψ,Ψ) (3.10)

and

S2(Ψ,Ψ) ≡ 1

6

(
2ξ0Ψ2 − [ξ0Ψ,Ψ]

)
, (3.11)

we therefore have

M2(Ψ,Ψ) = B2(Ψ,Ψ) +QBS2(Ψ,Ψ). (3.12)

Working on-shell, from B2 we can extract a BRST charge

B2(Ψ,Ψ) =
1

2
[X0Ψ,Ψ] =

1

2
QB [ξ0Ψ,Ψ] ≡ QBB̄2(Ψ,Ψ), (3.13)

5This condition has also been discussed recently in [22] as the first integrability condition for solutions

representing marginal deformations.
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where in line with the notation of [10] we have defined a dressed Berkovits product in the

large Hilbert space

B̄2(Ψ,Ψ) =
1

2
[ξ0Ψ,Ψ] . (3.14)

So it is natural to define the A∞ dressed product6 in terms of B̄2, S2

M̄2(Ψ,Ψ) = B̄2(Ψ,Ψ) + S2(Ψ,Ψ) (3.15)

as a sum of a large Hilbert space commutator and a small Hilbert space contribution lying

outside the L0 = 0 subspace. We note also that

S2(Ψ,Ψ) =
1

6

(
2 ξ0 Ψ2 − 2 B̄2(Ψ,Ψ)

)
. (3.16)

It is easy to see that the above defined products obey the following properties

[η0,M2] = 0,
[
η0, M̄2

]
= m2 (3.17)

[QB,M2] = 0,
[
QB, M̄2

]
= M2 (3.18)

[QB, B2] = 0,
[
QB, B̄2

]
= B2 (3.19)

[η0, S2] = 0, [η0, B2] = 0 (3.20)

P0M2 = 0, P0B2 = 0, P0S2 = 0. (3.21)

The last three relations are true when the products act on a pair of zero momentum on-

shell string fields Ψ in the small Hilbert space. We will use these relations extensively in

the next sections.

4 Equality of the effective actions

In this section we prove the equality of the effective actions derived from Berkovits theory

and EKS theory, respectively given by7

S
(4)
eff,WZW (ΦA) =

1

8
TrL

[
[η0ΦA, QBΦA] ξ0

b0
L0
P̄0 [η0ΦA, QBΦA]

]
− 1

24
TrL[[η0ΦA,ΦA] [ΦA, QBΦA]], (4.1)

S
(4)
eff,A∞

(ΨA) = − 1

2
ωS

(
M2(Ψ2

A),
b0
L0
P̄0M2(Ψ2

A)

)
− 1

4
ωS
(
ΨA,M3(Ψ3

A)
)
. (4.2)

Since the A∞ theory is manifestly in the small Hilbert space, we will start by rewriting the

WZW theory in the small Hilbert space as well, so that they will be easier to compare.

6The same procedure can be applied to construct another dual string product such that we can extract

a η0 from M2. However we do not need such products to derive our results.
7Our conventions for the SFT trace are TrS [AB] = TrL[ξ0AB] = (−1)|A|+1ωS(A,B) =

(−1)Deg(A)ωS(A,B) where |A| is the grassmanality.
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4.1 Berkovits effective action in the small Hilbert space

The first step is to write the Berkovits effective action in the small Hilbert space. This

is easy for the propagator term which is in the large Hilbert space due to the explicit

(and only) ξ0 insertion. Therefore we can simply factorize its one-point function and write

everything in the small Hilbert space

TrL

[
[η0ΦA, QBΦA] ξ0

b0
L0
P̄0 [η0ΦA, QBΦA]

]
≡ TrS

[
[η0ΦA, QBΦA]

b0
L0
P̄0 [η0ΦA, QBΦA]

]
.

(4.3)

The same procedure is not that straightforward for the contact term, which is an honest

correlator in the large Hilbert space. Consider the quartic contact vertex in Berkovits the-

ory

Scon
WZW(ΦA) = − 1

24
TrL [[η0ΦA,ΦA] [ΦA, QBΦA]]. (4.4)

It can be rewritten with the usual gauge fixing Φ = ξ0Ψ as

Scon
WZW(ξ0ΨA) =

1

24
TrL [[ξ0ΨA,ΨA] [ξ0ΨA, X0ΨA]]. (4.5)

Now we can add a contribution which is identically vanishing

1

24
TrL [[ξ0ΨA, ξ0ΨA] [ΨA, X0ΨA]] = 0 because [ξ0ΨA, ξ0ΨA] = 0. (4.6)

Then we have

Scon
WZW(ξ0ΨA) =

1

24
TrL [[ξ0ΨA,ΨA] [ξ0ΨA, X0ΨA] + [ξ0ΨA, ξ0ΨA] [ΨA, X0ΨA]]

=
1

24
TrL [ξ0ΨA ([ΨA, [ξ0ΨA, X0ΨA]] + [ξ0ΨA, [ΨA, X0ΨA]])] . (4.7)

We have collected in round brackets the open string field

Ω = [ΨA, [ξ0ΨA, X0ΨA]] + [ξ0ΨA, [ΨA, X0ΨA]], (4.8)

which is in the small Hilbert space and can be therefore written as η0-exact

Ω = η0[ξ0ΨA, [ξ0ΨA, X0ΨA]] = η0

(
ad 2

ξ0ΨX0ΨA

)
. (4.9)

Notice that this is true also off-shell. In terms of this string field we can factorize the

one-point function of ξ0 and put the correlator in the small Hilbert space

Scon
WZW(ξ0ΨA) = Scon, s

WZW(ΨA) =
1

24
TrL [(ξ0ΨA) Ω] =

1

24
TrS [ΨA Ω] . (4.10)

The Berkovits contact term in the small Hilbert space therefore reads

Scon, s
WZW(ΨA) =

1

24
TrS [ΨA ([ΨA, [ξ0ΨA, X0ΨA]] + [ξ0ΨA, [ΨA, X0ΨA]])] . (4.11)

Taking advantage of the Berkovits products introduced in the previous section, and using

a Jacobi identity we can also write the contact term as

Scon, s
WZW(ΨA) =

1

12
TrS

[
ΨA

(
2 [ξ0ΨA, B2(ΨA,ΨA)]−

[
X0ΨA, B̄2(ΨA,ΨA)

])]
. (4.12)
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To summarize, the expression of the effective action at quartic order of the WZW theory

can be written in the small Hilbert space as

S
(4)
eff,WZW (ξ0ΨA) = S

(4), s
eff,WZW (ΨA)

=
1

2
TrS

[
B2(ΨA,ΨA)

b0
L0
P̄0B2(ΨA,ΨA)

]
(4.13)

+
1

12
TrS

[
ΨA

(
2 [ξ0ΨA, B2(ΨA,ΨA)]−

[
X0ΨA, B̄2(ΨA,ΨA)

])]
.

4.1.1 WZW action in the small Hilbert space

As a side remark it should be noticed that once the partial gauge fixing Φ = ξ0Ψ is imposed,

the whole microscopic WZW action can be written in the small Hilbert space. To see this

consider the action with the usual gauge fixing

SWZW[ξ0Ψ] = −
∫ 1

0
dtTrL

[
ΨAQ(t)

∣∣
Φ=ξ0Ψ

]
= −

∫ 1

0
dtTrL

[
ΨAQ(t)

∣∣
Φ=ξ0Ψ

]
, (4.14)

where we can choose for definiteness

AQ(t) = e−tΦQ(etΦ). (4.15)

We can always introduce 1 = [η0, ξ0] and find:

SWZW[ξ0Ψ] = −
∫ 1

0
dtTrL

[
[η0, ξ0] ΨAQ(t)

∣∣
Φ=ξ0Ψ

]
= −

∫ 1

0
dtTrL

[
η0ξ0ΨAQ(t)

∣∣
Φ=ξ0Ψ

]
+

∫ 1

0
dtTrL

[
ξ0Ψ η0

(
AQ(t)

∣∣
Φ=ξ0Ψ

)]
.

=

∫ 1

0
dtTrL

[
ξ0Ψ η0

(
AQ(t)

∣∣
Φ=ξ0Ψ

)]
, (4.16)

where the first term has vanished because η0 is a derivation which kills the trace in the

large Hilbert space. Now η0(. . .) is clearly in the small Hilbert space. So the remaining

trace can be readily rewritten in the small Hilbert space by just dropping ξ0. Thus in this

form the Berkovits action is manifestly in the small Hilbert space

SWZW[ξ0Ψ] =

∫ 1

0
dtTrS

[
Ψ η0

(
AQ(t)

∣∣
Φ=ξ0Ψ

)]
.

(4.17)

4.2 Relation between the propagator terms of the A∞ and WZW effective

action

Now we use the results of the previous section to work on the propagator term in the

small Hilbert space. Hereafter, Ψ denotes the massless component open string field of the

effective action. From the previous section, the M2 string product is a sum of the Berkovits

fundamental commutator B2 and a term in the small Hilbert space:

M2(Ψ,Ψ) = B2(Ψ,Ψ) +QBS2(Ψ,Ψ). (4.18)
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The propagator term

Sprop
A∞

(Ψ) = −1

2
ωS

(
M2(Ψ2),

b0
L0
P̄0M2(Ψ2)

)
(4.19)

can therefore be written as follows

Sprop
A∞

(Ψ) = −1

2
ωS

(
B2(Ψ,Ψ) +QBS2(Ψ,Ψ),

b0
L0
P̄0 (B2(Ψ,Ψ) +QBS2(Ψ,Ψ))

)
= +

1

2
TrS

[
(B2(Ψ,Ψ) +QBS2(Ψ,Ψ))

b0
L0
P̄0 (B2(Ψ,Ψ) +QBS2(Ψ,Ψ))

]
= +

1

2
TrS

[
B2(Ψ,Ψ)

b0
L0
P̄0B2(Ψ,Ψ)

]
+ TrS

[
B2(Ψ,Ψ)

b0
L0
P̄0QBS2(Ψ,Ψ)

]
+

1

2
TrS

[
QBS2(Ψ,Ψ)

b0
L0
P̄0QBS2(Ψ,Ψ)

]
= Sprop, s

WZW (Ψ) + Υ(Ψ). (4.20)

In the last line we have isolated the Berkovits propagator term in the small Hilbert space

Sprop, s
WZW (Ψ) =

1

2
TrS

[
B2(Ψ,Ψ)

b0
L0
P̄0B2(Ψ,Ψ)

]
=

1

8
TrS

[
[X0Ψ,Ψ]

b0
L0
P̄0 [X0Ψ,Ψ]

]
.

(4.21)

The extra term Υ(Ψ) appearing above is given by

Υ(Ψ) = TrS

[(
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

)
b0
L0
P̄0QBS2(Ψ,Ψ)

]
(4.22)

and, despite the appearance, this is not really a propagator term. Recalling that S2 is in

the small Hilbert space, we can move the BRST charge to act on its left remaining in the

small Hilbert space:

Υ(Ψ) = TrS

[(
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

)(
P̄0 −QB

b0
L0
P̄0

)
S2(Ψ,Ψ)

]
.

(4.23)

Here by using the following identities which have been demonstrated in the previous section

P0B2(Ψ,Ψ) = 0 , P0 S2(Ψ,Ψ) = 0 , [QB, B2(Ψ,Ψ)] = 0, (4.24)

we can write Υ(Ψ) as a pure contact term without projector components

Υ(Ψ) = TrS

[(
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

)
S2(Ψ,Ψ)

]
. (4.25)

The trace can be splitted since the string fields B2, S2 are indipendently in the small Hilbert

space. Substituting the explicit expressions for B2, we remain with

Υ(Ψ) =
5

12
TrS [Ψ [X0Ψ, S2(Ψ,Ψ)]] +

1

12
TrS [Ψ [Ψ, X0S2(Ψ,Ψ)]] . (4.26)
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4.3 Contact terms

To relate the WZW and A∞ contact terms we have to work with the M3 string product

which for a degree even on-shell string field Ψ is given by

M3(Ψ,Ψ,Ψ) =
1

2
M2(Ψ, M̄2(Ψ,Ψ)) +

1

2
M2(M̄2(Ψ,Ψ),Ψ)− 1

2
M̄2(M2(Ψ,Ψ),Ψ)

−1

2
M̄2(Ψ,M2(Ψ,Ψ)) +

1

2
QBM̄3 (Ψ, Ψ, Ψ) . (4.27)

We postpone to appendix A the detailed computation and here we just quote the result

Scon
A∞(Ψ) + Υ(Ψ) = Scon, s

WZW(Ψ), (4.28)

with Υ given in (4.26). This, together with what we have proven in the previous subsection

Sprop
A∞

(Ψ)−Υ(Ψ) = Sprop, s
WZW (Ψ) (4.29)

completes the proof of the equality of the two effective actions.

5 Localization in the small Hilbert space

In the previous section we have demonstrated the equivalence of the effective actions derived

from WZW and A∞. Moreover we have shown that the WZW effective action can be

written in the small Hilbert space

S
(4)
eff,A∞

(Ψ) = S
(4)
eff,WZW (ξ0Ψ) = S

(4), s
eff,WZW (Ψ) := S

(4)
eff (Ψ), (5.1)

in the following explicit way

S
(4)
eff (Ψ) = +

1

2
TrS

[
B2(Ψ,Ψ)

b0
L0
P̄0B2(Ψ,Ψ)

]
+

1

12
TrS

[
Ψ
(
2 [ξ0Ψ, B2(Ψ,Ψ)]−

[
X0Ψ, B̄2(Ψ,Ψ)

])]
. (5.2)

The non trivial part in the proof of this equality has been to show that no anomalies from

the projector on the kernel of L0 arise in this correspondence. This has been ensured

by the projector conditions P0M2(Ψ,Ψ) = 0 in the A∞ theory and the corresponding

P0[η0Φ, QBΦ] = 0 in the WZW theory.

In this section we prove (independently of [7]) that these equal expressions are fully

captured by singular contributions at the boundary of moduli space, which deals with

the kernel of L0. In [7] we have obtained this result working in the large Hilbert space

by moving η0 and QB in the WZW amplitude and thus effectively changing the picture

assignements of the entries. Such moves are available in the large Hilbert space [14] but

not in the small Hilbert space. To show the localization in the small Hilbert space we

have therefore to proceed differently. To this end we follow Sen’s strategy [21]: given a 4-

point amplitude, we subtract a companion contribution with a “wrong” assignment of the

picture. This extra amplitude is carefully chosen to be zero by some charge/ghost number
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conservation and therefore it does not change the original result. Since the two amplitudes

differ only by an assignement of the picture, their difference is BRST exact in the small

Hilbert space. Then we can move the generated BRST charge. When QB passes through

the propagator it creates a standard contact term in the middle of moduli space (which

cancels with the elementary contact term that is already present in the effective action) plus

a P0 projector contribution which corresponds to a degenerate four point function at the

boundary of moduli space, which ends up giving the whole contribution to the amplitude.

As in [21] and in [7] the needed charge is provided by the R-symmetry charge of the N = 2

description of the open superstring background we are considering.

5.1 Conserved charge

The needed charge, which we will call J , is the U(1) R-symmetry of an N = 2 matter

SCFT. The N = 2 supersymmetry is global rather than local (as the original N=1) and

it is deeply related to the existence of space-time fermions and space-time supersymmetry,

see for example [15, 16]. What typically happens is that the original N = 1 supercurrent

is given by the sum of the two N = 2 supercurrents

TF = T
(+)
F + T

(−)
F , (5.3)

which, together with T (z), generate an N = 2 superconformal algebra

T (z) T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (5.4)

T (z) T
(±)
F (w) =

3

2

T±F (w)

(z − w)2
+
∂T

(±)
F (w)

z − w
+ . . . (5.5)

T
(+)
F (z) T

(−)
F (w) =

2c/3

(z − w)3
+

J(w)

(z − w)2
+

1

z − w
(2T (w) + ∂J(w)) + . . . (5.6)

T (z) J(w) =
J(w)

(z − w)2
+
∂J(w)

z − w
+ . . . (5.7)

J(z) T
(±)
F (w) = ±

T
(±)
F (w)

z − w
+ . . . (5.8)

J(z) J(w) =
c/3

(z − w)2
+ . . . (5.9)

In superstring theory the matter CFT has c = 15. However sometimes it is useful to

concentrate on subsectors, for example flat 4-dimensional Minkowski space (c = 6) or six

dimensional torii or Calabi-Yau compactifications (c = 9). All of these very common su-

perstring backgrounds have a global N = 2 superconformal symmetry on their worldsheet.

The case which will be of interest for us is when the N = 1 superconformal primary V 1
2

splits into the sum of two N = 2 superconformal primaries

V 1
2

= V(+)
1
2

+ V(−)
1
2

, (5.10)
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obeying the OPE’s

T
(±)
F (z)V(∓)

1
2

(w) =
1

z − w
V(∓)

1 (w) + . . . (5.11)

T
(∓)
F (z)V(∓)

1
2

(w) = regular. (5.12)

The R-current J(z) defines a conserved charge

J0 =

∮
dz

2πi
J(z), (5.13)

and the short superconformal primaries V(±)
1
2

are J0-eigenstates

J0V
(±)
1
2

= ±V(±)
1
2

. (5.14)

From (5.3), (5.11) we see that the super-descendent matter field V1 also decomposes as

V1 = V(+)
1 + V(−)

1 . (5.15)

However, despite the notation, the super-descendents V±1 are not charged under J0, because

the net J-charge in (5.11) is zero. In the matter SCFT only correlators with total vanishing

J-charge are non-zero and this will give a useful selection rule.

From now on we assume that the physical string field Ψ of the A∞ theory can be

decomposed in charged eigenstates of the zero mode J0 as follows

Ψ = Ψ+ + Ψ−, (5.16)

with

J0Ψ±(z) =

∮
z

dw

2πi
J(w)Ψ±(z) = ±Ψ±(z). (5.17)

Moreover, having in mind that the N = 2 susy descendents of V 1
2

are uncharged, we find

that the picture-changed string fields are composed of a charged and uncharged component

with different ghost structure

X0Ψ± = X0

(
cV(±)

1
2

δ(γ)
)

= cV(±)
1 − γV(±)

1
2

. (5.18)

Therefore changing the picture can interfere with J and ghost number conservation and

make some amplitude vanish.

5.2 Localization of the propagator term

Consider the propagator term of the effective action (5.2). After splitting the physical

string field as (5.16), it will decompose in two non-vanishing contributions. These terms

are given by

Sprop(Ψ) = Sprop
±± (Ψ) + Sprop

±∓ (Ψ), (5.19)
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where

Sprop
±± (Ψ) = +

1

2
TrS

[
B2(Ψ+,Ψ+)

b0
L0
P̄0B2(Ψ−,Ψ−)

]
+

1

2
TrS

[
B2(Ψ−,Ψ−)

b0
L0
P̄0B2(Ψ+,Ψ+)

]
= +

1

8
TrS

[[
Ψ+, X0Ψ+

] b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
+

1

8
TrS

[[
Ψ−, X0Ψ−

] b0
L0
P̄0

[
Ψ+, X0Ψ+

]]
. (5.20)

and

Sprop
±∓ (Ψ) = +

1

2
TrS

[
B2(Ψ+,Ψ−)

b0
L0
P̄0B2(Ψ+,Ψ−)

]
= +

1

8
TrS

[[
Ψ+, X0Ψ−

] b0
L0
P̄0

[
Ψ−, X0Ψ+

]]
+ (+↔ −). (5.21)

It is clear that terms obtained by the exchange (+ ↔ −) are equal. However we do not

sum them because we want to carry out the calculations in the most symmetric way under

the (+↔ −) exchange.

5.2.1 ± ± ∓∓ propagator term

We start with

Sprop
±± (Ψ) = +

1

8
TrS

[[
Ψ+, X0Ψ+

] b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
+ (+↔ −) (5.22)

and we consider the following amplitudes with a different assignement of the picture, which

are zero for ghost number and charge conservation

A1 =
1

8
TrS

[[
Ψ+,Ψ+

] b0
L0
P̄0

[
X0Ψ−, X0Ψ−

]]
= 0, (5.23)

A2 =
1

8
TrS

[[
Ψ−,Ψ−

] b0
L0
P̄0

[
X0Ψ+, X0Ψ+

]]
= A(+↔−)

1 = 0. (5.24)

We subtract these vanishing contributions to the original amplitude and get

Sprop
±± (Ψ) = +

1

8
TrS

[
Ψ+

([
X0Ψ+,

b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
−
[
Ψ+,

b0
L0
P̄0

[
X0Ψ−, X0Ψ−

]])]
+(+↔ −). (5.25)

Now we consider the action of QB on the following two string fields in the small Hilbert

space, differing only in the assignment of the R−charge:

Ψ̂1 =

[
ξ0Ψ+,

b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
−
[
Ψ+,

b0
L0
P̄0

[
ξ0Ψ−, X0Ψ−

]]
, η0Ψ̂1 = 0,

Ψ̂2 =

[
ξ0Ψ−,

b0
L0
P̄0

[
Ψ+, X0Ψ+

]]
−
[
Ψ−,

b0
L0
P̄0

[
ξ0Ψ+, X0Ψ+

]]
, η0Ψ̂2 = 0.
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Their BRST variation is given by

QBΨ̂1 =

[
X0Ψ+,

b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
−
[
Ψ+,

b0
L0
P̄0

[
X0Ψ−, X0Ψ−

]]
+
[
ξ0Ψ+, P̄0

[
Ψ−, X0Ψ−

]]
+
[
Ψ+, P̄0

[
ξ0Ψ−, X0Ψ−

]]
, (5.26)

QBΨ̂2 =

[
X0Ψ−,

b0
L0
P̄0

[
Ψ+, X0Ψ+

]]
−
[
Ψ−,

b0
L0
P̄0

[
X0Ψ+, X0Ψ+

]]
+
[
ξ0Ψ−, P̄0

[
Ψ+, X0Ψ+

]]
+
[
Ψ−, P̄0

[
ξ0Ψ+, X0Ψ+

]]
. (5.27)

Then the string fields in the small Hilbert space appearing in (5.25)[
X0Ψ+,

b0
L0
P̄0

[
Ψ−, X0Ψ−

]]
−
[
Ψ+,

b0
L0
P̄0

[
X0Ψ−, X0Ψ−

]]
, (+↔ −) (5.28)

can be substituted respectively by

+QBΨ̂1 −
[
ξ0Ψ+, P̄0

[
Ψ−, X0Ψ−

]]
−
[
Ψ+, P̄0

[
ξ0Ψ−, X0Ψ−

]]
, (5.29)

+QBΨ̂2 −
[
ξ0Ψ−, P̄0

[
Ψ+, X0Ψ+

]]
−
[
Ψ−, P̄0

[
ξ0Ψ+, X0Ψ+

]]
. (5.30)

We can deform the contour integral of the BRST charge in the amplitude remaining in the

small Hilbert space. The BRST exact state decouples, and we obtain

Sprop
±± (Ψ) = −1

8
TrS

[
Ψ+

[[
ξ0Ψ+, P̄0

[
Ψ−, X0Ψ−

]]
+
[
Ψ+, P̄0

[
ξ0Ψ−, X0Ψ−

]]]]
+ (+↔ −),

(5.31)

which is a sum of contact terms and localized terms. The localized terms in (5.31) are

given by

SP0
±±(Ψ) = −1

8
TrS

[
Ψ+

[[
ξ0Ψ+, P0

[
Ψ−, X0Ψ−

]]
+
[
Ψ+, P0

[
ξ0Ψ−, X0Ψ−

]]]]
+ (+↔ −).

(5.32)

These two contributions, just for convenience, can be now computed as a correlator in the

large Hilbert space inserting a ξ0 in the amplitude. But in fact we may recognize that the

quantity P0 [Ψ−, X0Ψ−] = P0[η0Φ−, QBΦ−] = 0 is vanishing due to the projector condition

in the large Hilbert space. Moreover the quantity P0 [ξ0Ψ−, X0Ψ−] is actually in the small

Hilbert space thanks to the projection at level zero [7]

P0

[
ξ0Ψ−, X0Ψ−

]
= P0

[
Φ−, QBΦ−

]
= −2cH(−)

1 . (5.33)

Here the weight 1 primaries H(±)
1 are the charged “auxialiry fields” which are obtained by

leading order OPE

H(±)
1 (x) = lim

ε→0
V(±)

1
2

(x+ ε)V(±)
1
2

(x− ε), (5.34)

and have J-charge ±2

J0H
(±)
1 = ±2H(±)

1 . (5.35)
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Then we can write

SP0
±±(Ψ) = −1

8
TrS

[
[Ψ+,Ψ+]P0

[
ξ0Ψ−, X0Ψ−

] ]
+ (+↔ −). (5.36)

A quick comparison shows that this is exactly the same we have found in [7] and it can be

universally written as a matter two-point function

SP0
±±(Ψ) = tr

[
〈H(+)

1 |H
(−)
1 〉

]
. (5.37)

The above localized contribution is accompanied by an extra contact term in the middle

of moduli space which is explicitly given by

Sprop, con
±± (Ψ) = −1

8
TrS

[
Ψ+

[[
ξ0Ψ+,

[
Ψ−, X0Ψ−

]]
+
[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]]]
+ (+↔ −),

(5.38)

and which will have to cancel against the corresponding contact terms given by the ele-

mentary vertices in the effective action.

5.2.2 ± ∓ ±∓ propagator term

An analogous computation can be carried out for the second part of the propagator term

Sprop
±∓ (Ψ) = +

1

2
TrS

[
B2(Ψ+,Ψ−)

b0
L0
P̄0B2(Ψ+,Ψ−)

]
+ (+↔ −)

= +
1

8
TrS

[[
Ψ+, X0Ψ−

] b0
L0
P̄0

[
Ψ−, X0Ψ+

]]
+ (+↔ −). (5.39)

We consider two propagator terms with the wrong assignment of the picture for both the

entries, which are zero for ghost and charge conservation

A3 =
1

8
TrS

[[
Ψ+, X0Ψ−

] b0
L0
P̄0

[
X0Ψ−,Ψ+

]]
= 0, (5.40)

A4 =
1

8
TrS

[[
Ψ−, X0Ψ+

] b0
L0
P̄0

[
X0Ψ+,Ψ−

]]
= 0, (5.41)

and obtain

Sprop
±∓ (Ψ) = +

1

8
TrS

[
Ψ+

[
X0Ψ−,

b0
L0
P̄0

[[
Ψ−, X0Ψ+

]
−
[
X0Ψ−,Ψ+

]]]]
+ (+↔ −).

(5.42)

We consider the following string field in the small Hilbert space

Ψ0 = −
[[

Ψ−, ξ0Ψ+
]

+
[
ξ0Ψ−,Ψ+

]]
, η0Ψ0 = 0, (5.43)

which satisfies the following relation

QBΨ0 =
[
Ψ−, X0Ψ+

]
−
[
X0Ψ−,Ψ+

]
. (5.44)

– 19 –



J
H
E
P
0
6
(
2
0
1
9
)
1
0
1

Then we can extract a BRST charge on the right remaining in the small Hilbert space, and

deforming the contour we cancel the propagator. This leaves us with a projector term at the

boundary of moduli space and a standard contact term. The total neutral projector term

SP0
±∓(Ψ) = +

1

8
TrS

[( [
Ψ+, X0Ψ−

]
−
[
Ψ−, X0Ψ+

] )
P0

( [
Ψ−, ξ0Ψ+

]
+
[
ξ0Ψ−,Ψ+

] )]
(5.45)

can be computed as a correlator in the large Hilbert space inserting a ξ0 in the amplitude.

This exactly reproduce the analogous contribution we derived in [7] by working entirely in

the large Hilbert space. Following [7] this can be written as a matter 2-point function

SP0
±∓(ξ0Ψ) =

1

4
tr [〈H0|H0〉] , (5.46)

where we have defined the neutral auxiliary field H0

H0(x) = lim
ε→0

(2ε)

(
V(+)

1
2

(x+ ε)V(−)
1
2

(x− ε)− V(−)
1
2

(x+ ε)V(+)
1
2

(x− ε)
)
. (5.47)

Notice that, differently from the charged pair H(±)
1 , this auxiliary field is proportional to the

identity vertex operator. The above localized contribution comes together with a remaining

contact term that will have to cancel against the corresponding elementary vertex in the

effective action

Sprop, con
±∓ (Ψ) = −1

8
TrS

[
Ψ+

[[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]
+
[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]]]
+ (+↔ −).

(5.48)

Then the extra contact term coming from the propagator term is given by summing (5.38)

and (5.48)

Sprop, con(Ψ) = Sprop, con
±± (Ψ) + Sprop, con

±∓ (Ψ). (5.49)

5.3 Elementary vertices

When the splitting of the string field is done, the contact terms in the small Hilbert space

from the elementary vertices in the effective action (5.2) decompose as a sum of six terms

Scon(Ψ) = +
1

24
TrS

[
Ψ+

[[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]
+
[
ξ0Ψ+,

[
Ψ−, X0Ψ−

]]]]
+

1

24
TrS

[
Ψ+

[[
Ψ−,

[
ξ0Ψ+, X0Ψ−

]]
+
[
ξ0Ψ−,

[
Ψ+, X0Ψ−

]]]]
+

1

24
TrS

[
Ψ+

[[
Ψ−,

[
ξ0Ψ−, X0Ψ+

]]
+
[
ξ0Ψ−,

[
Ψ−, X0Ψ+

]]]]
+ (+↔ −). (5.50)

We use Jacobi identities[
Ψ−,

[
ξ0Ψ+, X0Ψ−

]]
=
[
ξ0Ψ+,

[
X0Ψ−,Ψ−

]]
+
[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]
, (5.51)[

ξ0Ψ−,
[
Ψ+, X0Ψ−

]]
=
[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]
+
[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]
, (5.52)
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to write

Scon(Ψ) = +
1

24
TrS

[
Ψ+

[
2
[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]
+ 2

[
ξ0Ψ+,

[
Ψ−, X0Ψ−

]]
+
[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]
+
[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]
+
[
Ψ−,

[
ξ0Ψ−, X0Ψ+

]]
+
[
ξ0Ψ−,

[
Ψ−, X0Ψ+

]]] ]
+ (+↔ −). (5.53)

5.4 Cancelation of contact terms

The first two lines of the contact term (5.53) are already in the required form to simplify

the extra contact terms (5.38) and (5.48) coming from the propagator term. We focus our

attention to the last line. To manipulate these terms we need to keep all the (+ ↔ −)

terms together:

Scon, 3(Ψ) = +
1

24
TrS

[
Ψ+

[[
Ψ−,

[
ξ0Ψ−, X0Ψ+

]]
+
[
ξ0Ψ−,

[
Ψ−, X0Ψ+

]]]]
+

1

24
TrS

[
Ψ−

[[
Ψ+,

[
ξ0Ψ+, X0Ψ−

]]
+
[
ξ0Ψ+,

[
Ψ+, X0Ψ−

]]]]
. (5.54)

It is convenient to put these terms in the large Hilbert space and rearrange the trace. The

trace TrL in the large Hilbert space is defined simply as

TrL [ξ0(. . .)] = TrS [(. . .)] . (5.55)

Once that we are in the large Hilbert space we can split the traces and use the cyclicity of

the commutators to change the string field in the first position. In particular we move in

the first position the Ψ− string field in the first line and the Ψ+ string field in the second

line. We obtain

Scon, 3(Ψ) = − 1

24
TrL

[
Ψ−

[[
X0Ψ+,

[
ξ0Ψ−, ξ0Ψ+

]]
+
[
ξ0Ψ+,

[
ξ0Ψ−, X0Ψ+

]]]]
− 1

24
TrL

[
Ψ+

[[
X0Ψ−,

[
ξ0Ψ+, ξ0Ψ−

]]
+
[
ξ0Ψ−,

[
ξ0Ψ+, X0Ψ−

]]]]
= − 1

24
TrL

[
Ψ+

[[
X0Ψ−,

[
ξ0Ψ+, ξ0Ψ−

]]
+
[
ξ0Ψ−,

[
ξ0Ψ+, X0Ψ−

]]]]
+(+↔ −). (5.56)

The results of this manipulation can be put back in the small Hilbert space reabsorbing ξ0

as follows. We insert 1 = [η0, ξ0] first,

Scon, 3(Ψ) = − 1

24
TrL

[(
[η0, ξ0] Ψ+

) [[
X0Ψ−,

[
ξ0Ψ+, ξ0Ψ−

]]
+
[
ξ0Ψ−,

[
ξ0Ψ+, X0Ψ−

]]]]
+(+↔ −)

= − 1

24
TrL

[
η0ξ0Ψ+

[[
X0Ψ−,

[
ξ0Ψ+, ξ0Ψ−

]]
+
[
ξ0Ψ−,

[
ξ0Ψ+, X0Ψ−

]]]]
+(+↔ −)

= +
1

24
TrL

[(
ξ0Ψ+

)
η0

[[
X0Ψ−,

[
ξ0Ψ+, ξ0Ψ−

]]
+
[
ξ0Ψ−,

[
ξ0Ψ+, X0Ψ−

]]]]
+(+↔ −). (5.57)
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Now we have a first entry in the large Hilbert while the rest is manifestly in the small

Hilbert space. Thus we remain with

Scon, 3(Ψ) = +
1

24
TrS

[
Ψ+

[[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]
+
[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]]]
+

1

24
TrS

[
Ψ+

[[
Ψ−,

[
ξ0Ψ+, X0Ψ−

]]
+
[
ξ0Ψ−,

[
Ψ+, X0Ψ−

]]]]
+(+↔ −). (5.58)

A further application of Jacobi identities (5.51), (5.52) to the second line of the last equation

leads to

Scon, 3(Ψ) = +
1

24
TrS

[
Ψ+

[[
ξ0Ψ+,

[
Ψ−, X0Ψ−

]]
+
[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]]]
+

2

24
TrS

[
Ψ+

[[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]
+
[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]]]
+(+↔ −). (5.59)

Summing the results, we obtain that

Scon(Ψ) = +
3

24
TrS

[
Ψ+

[[
ξ0Ψ+,

[
Ψ−, X0Ψ−

]]
+
[
Ψ+,

[
ξ0Ψ−, X0Ψ−

]]]]
+

3

24
TrS

[
Ψ+

[[
X0Ψ−,

[
Ψ−, ξ0Ψ+

]]
+
[
X0Ψ−,

[
ξ0Ψ−,Ψ+

]]]]
+(+↔ −), (5.60)

and then

Scon(Ψ) + Sprop, con(Ψ) = 0. (5.61)

Therefore all the contact terms at the middle of moduli space cancel and we are left with

a fully localized effective action, the same in the A∞ and WZW theories

S
(4)
eff (ΨA) = −1

8
TrS

[
[Ψ+,Ψ+]P0

[
ξ0Ψ−, X0Ψ−

] ]
− 1

8
TrS

[
[Ψ−,Ψ−]P0

[
ξ0Ψ+, X0Ψ+

] ]
+

1

8
TrS

[( [
Ψ+, X0Ψ−

]
−
[
Ψ−, X0Ψ+

] )
P0

( [
Ψ−, ξ0Ψ+

]
+
[
ξ0Ψ−,Ψ+

] )]
= tr

[
〈H(+)

1 |H
(−)
1 〉+

1

4
〈H0|H0〉

]
. (5.62)

6 Flat directions and generalized ADHM constraints

The exact universal form of the effective quartic potential of the open superstring we

have found

S
(4)
eff = tr

[
〈H(+)

1 |H
(−)
1 〉+

1

4
〈H0|H0〉

]
, (6.1)

can be a convenient starting point for a systematic search for flat directions in the full

open superstring potential or, in other words, for the search of exact solutions for marginal
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deformations of non-trivial D-brane systems. Although not all of the marginal directions we

might be interested in fall into the N = 2 representations we are assuming, many interesting

cases are captured by this scheme. In full generality we immediately see that a sufficient

condition for having a vanishing quartic potential is to set to zero the auxiliary fields

H(±)
1 = 0, (6.2)

H0 = 0. (6.3)

By the very definition of the H fields (1.4), (1.5), these three equations will in general give

quadratic constraints on the zero momentum space-time polarizations of the physical fields

Ψ(±) and in this regards can be considered as generalized ADHM constraints [17]. To be

concrete on this interpretation, in [7] we have analysed the exact quartic potential for the

D3/D(−1) system [18–20] by using our localization method. Ignoring transverse degrees

of freedom to the D3 branes, the physical zero momentum fields living on the D3/D(−1)

system can be assembled into a matrix string field of the form

ΨA(z) = cV 1
2
e−φ(z) = −ce−φ

(
A ω

ω̄ a

)
(z), (6.4)

where (see [7] for details)

A(z) = Aµψ
µ(z), (6.5)

ω(z) = ωN×kα ∆Sα(z), (6.6)

ω̄(z) = ω̄k×Nα ∆̄Sα(z), (6.7)

a(z) = aµψ
µ(z). (6.8)

The integers N and k refer respectively to the number of coincident D3 branes and the

number of D(−1) branes which are initially sitting on the D3 worldvolume. The N = 2

structure is not manifest in the covariant four-dimensional language and, as common, we

have to pass to complex variables on C2. We refer to [7] for the details of the decomposition

and the computation and here we just remind that in this case the auxiliary fields take

the form

H(+)
1 = − i

4
ηµν− Tµν ψ1ψ2|0〉, (6.9)

H(−)
1 = +

i

4
ηµν+ Tµν ψ1̄ψ2̄|0〉, (6.10)

H0 = − i
2
ηµν3 Tµν |0〉, (6.11)

where we have defined the complex combinations of the ’t Hooft symbols

ηµν+ ≡ η
µν
1 + iηµν2 , ηµν− ≡ η

µν
1 − iη

µν
2 . (6.12)

The covariant tensor Tµν is given by

Tµν =

[Aµ, Aν ] +
1

2
ωα (γµν)αβ ω̄β 0

0 [aµ, aν ]− 1

2
ω̄α (γµν)αβ ωβ

 . (6.13)
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The effective quartic potential thus takes the form

S
(4)
eff [A, a,w, w̄] = tr

[
〈H(+)

1 |H
(−)
1 〉+

1

4
〈H0|H0〉

]
= − 1

16
tr [DaDa] , (6.14)

where

Da = ηµνa Tµν . (6.15)

It is interesting to see whether it is possible to set the Da to zero and thus to find a

flat potential (to order 4) for this system. Setting Da = 0 implies two sets of equations,

respectively living on the D(−1) and on the D3

ηcµν

(
[aµ, aν ]− 1

2
ω̄α (γµν)αβ ωβ

)
= 0 (6.16)

ηcµν

(
[Aµ, Aν ] +

1

2
ωα (γµν)αβ ω̄β

)
= 0. (6.17)

The first set of equations on the D(−1) are the well known three ADHM constraints.

Solving them should give a VEV to the fields aµ and w, w̄. The second set of three equations

is not familiar in the study of gauge theory instantons but it appears quite clear that they

will imply a VEV for the zero momentum gauge field on the D-brane, to compensate for

the switching on of w, w̄. Just as the ADHM constraints these set of equations are not

easy to solve, but in the case of k = 1 and (just to stay minimal) N = 2 we can provide a

concrete solution. We start solving for (6.16) for k = 1 (where the term [aµ, aν ] = 0) at a

given size modulus ρ2 = w̄αwα

w i
α =

ρ√
2

(
1 0

0 1

)
(6.18)

w̄α i =
ρ√
2

(
1 0

0 1

)
, (6.19)

where α = 1, 2 (spanning the row) is the SU(2) spin index and i = 1, 2 (spanning the

columns) is the U(2) color index. Using the explicit form of the ’t Hooft symbols and some

standard SO(4) spinor/gamma algebra (conveniently summarized in the appendix of [7]

or [20]) we find an explicit solution of (6.17) in the form

Aµ =
ρ

2
σµ =

ρ

2
(1,−i~τ). (6.20)

Therefore we find that the quartic potential we compute is consistent with the existence of

exactly marginal deformations corresponding to blowing up moduli of D(−1)’s inside the

D3 and that, to such order, the possible obstructions are precisely avoided by the three

generalized ADHM constraints which in turn originate from the three different localization

channels of the effective action.
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7 Conclusions

In this paper we have considered the computation of the effective action for massless zero

momentum fields to quartic order in the framework of the A∞ open supestring field theory

in the small Hilbert space. In particular we have shown that, up to this order, there is

no difference between the effective actions in the WZW or the A∞ theory. While this

may be expected from the fact that the two theories are equivalent upon partial gauge

fixing and field redefinition, it is still non trivial, because at zero momentum we generically

encounter subtle contributions at the boundary of moduli space that can invalidate formal

manipulations. Nonetheless we find that these potential anomalies are zero thanks to the

fundamental projector condition (1.6) and the two effective actions are indeed identical

to 4th order. It would be interesting to see if the WZW and A∞ effective actions will

start deviating at higher order due to some higher order non-vanishing contribution at the

boundary of moduli space.

If the massless fields we are interested in are charged under an N = 2 R-symmetry

J0, then the quartic potential fully localizes at the boundary of moduli space and becomes

computable in terms of two-point functions of the so-called auxiliary fields. These auxiliary

fields are obtained by leading order OPE of the physical fields and they represent the

effect of the localization of the four point amplitude to the boundary. Our localization

mechanism, first uncovered in the WZW theory [7] and here confirmed in the A∞ theory,

is quite powerful and it would be very interesting to extend it to higher orders in the

effective action. Another interesting direction is to study similar localization mechanisms

in closed superstring field theories in order to by-pass the explicit construction of four and

possibly higher-points couplings, which are far from the boundary of moduli space where

we expect the effective action to localize. Given the fact that the N = 2 structure is generic

in superstring theory we expect that similar localization mechanisms should be available

for both Heterotic and type II superstrings. We hope that this research direction will turn

useful for the development of superstring field theory.
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A Contact terms in the equality of the effective actions

In this appendix we show the computations needed to obtain the relation between the

elementary quartic vertices of the WZW and the A∞ theory, shown in the main text (4.28).

We recall here the definitions of the necessary ingredients to rewrite this product in terms

of elementary B2, S2, B̄2 string products. The bare and dressed multi-string products for a

degree even on-shell string field Ψ are turned in graded Lie algebra commutators as follows

M2(Ψ,Ψ) = B2(Ψ,Ψ) +QBS2(Ψ,Ψ), (A.1)

M̄2(Ψ,Ψ) = B̄2(Ψ,Ψ) + S2(Ψ,Ψ), (A.2)

m3(Ψ,Ψ,Ψ) =
2

3

[
Ψ, ξ0

(
Ψ2
)]
, (A.3)

M̄3 (Ψ,Ψ,Ψ) =
1

6

[
ξ0

[
Ψ, ξ0

(
Ψ2
)]

+
[
ξ0Ψ, ξ0

(
Ψ2
)]

+ [Ψ, ξ0 [ξ0Ψ,Ψ]]
]
. (A.4)

Moreover we need also

M2(Ψ, M̄2(Ψ,Ψ)) +M2(M̄2(Ψ,Ψ),Ψ) =
1

3

[
X0

[
Ψ, B̄2(Ψ,Ψ) + S2(Ψ,Ψ)

]
+
[
X0Ψ, B̄2(Ψ,Ψ) + S2(Ψ,Ψ)

]
+
[
Ψ, X0B̄2(Ψ,Ψ) +X0S2(Ψ,Ψ)

] ]
, (A.5)

M̄2(M2(Ψ,Ψ),Ψ) + M̄2(Ψ,M2(Ψ,Ψ)) =
1

3

[
ξ0 [Ψ, B2(Ψ,Ψ) +QBS2(Ψ,Ψ)]

+ [ξ0Ψ, B2(Ψ,Ψ) +QBS2(Ψ,Ψ)]

− [Ψ, ξ0B2(Ψ,Ψ) + ξ0QBS2(Ψ,Ψ)]
]
, (A.6)

and

QBM̄3 (Ψ,Ψ,Ψ) =
1

3

[
1

2
X0

[
Ψ, B̄2(Ψ,Ψ) + 3S2(Ψ,Ψ)

]
+

1

2

[
X0Ψ, B̄2(Ψ,Ψ) + 3S2(Ψ,Ψ)

]
+

1

2
ξ0 [Ψ, B2(Ψ,Ψ) + 3QBS2(Ψ,Ψ)]

+
1

2
[ξ0Ψ, B2(Ψ,Ψ) + 3QBS2(Ψ,Ψ)]

−
[
Ψ, X0B̄2(Ψ,Ψ)

]
+ [Ψ, ξ0B2(Ψ,Ψ)]

]
. (A.7)

In terms of these products we can write the full contact term as

Scon
A∞(Ψ) = −1

2
ωS
(
Ψ,M3(Ψ3)

)
= − 1

24
ωS (Ψ, χ) , (A.8)

where we have introduced the string field χ in the small Hilbert space which is given by

χ = X0

[
Ψ,

3

2
B̄2(Ψ,Ψ) +

5

2
S2(Ψ,Ψ)

]
+

[
X0Ψ,

3

2
B̄2(Ψ,Ψ) +

5

2
S2(Ψ,Ψ)

]
+ξ0

[
Ψ,−1

2
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

]
+

[
ξ0Ψ,−1

2
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

]
+ [Ψ, 2 ξ0B2(Ψ,Ψ) +X0S2(Ψ,Ψ) + ξ0QBS2(Ψ,Ψ)] . (A.9)
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In order to check that η0χ = 0, it is necessary to use a Jacobi identity

[X0Ψ, [Ψ,Ψ]] = −2 [Ψ, [X0Ψ,Ψ]] . (A.10)

The total contribution to the contact term which must be compared to the Berkovits

contact term (4.12) is then given by

Scon
A∞(Ψ) + Υ(Ψ) = − 1

24
ωS
(
Ψ, χ′

)
= − 1

24
TrS

[
Ψχ′

]
, (A.11)

where Υ(Ψ) is defined in (4.26) and

χ′ = X0

[
Ψ,

3

2
B̄2(Ψ,Ψ) +

5

2
S2(Ψ,Ψ)

]
+

[
X0Ψ,

3

2
B̄2(Ψ,Ψ)− 15

2
S2(Ψ,Ψ)

]
+ξ0

[
Ψ,−1

2
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

]
+

[
ξ0Ψ,−1

2
B2(Ψ,Ψ) +

1

2
QBS2(Ψ,Ψ)

]
+ [Ψ, 2 ξ0B2(Ψ,Ψ)−QBξ0S2(Ψ,Ψ)] (A.12)

is another string field in the small Hilbert space. Until now we have carried out all the com-

putations in the small Hilbert space. Now for simplicity, we evaluate the correlator (A.11)

in the Large Hilbert space, where we can take advantage of the following identities

TrL [(ξ0A) (ξ0B)] = 0, (A.13)

TrL [A (X0B)] = TrL [(X0A)B] . (A.14)

Evaluating the correlator in the large Hilbert space allow us to get rid of the first term in

the second line in (A.12). The final result in the Large Hilbert space is given by a sum

of five Witten traces. We also substitute the definitions of the B2, B̄2 and S2 string fields.

Then we have:

Scon
A∞(Ψ) + Υ(Ψ) = +

3

4
Scon, s

WZW(Ψ)− 3

4 · 24
TrL [[ξ0X0Ψ,Ψ] [ξ0Ψ,Ψ]]

− 5

6 · 24
TrL [[ξ0Ψ, X0Ψ] [ξ0Ψ,Ψ]]

− 5

6 · 24
TrL [[ξ0Ψ,Ψ] ξ0 [Ψ, X0Ψ]]

+
5

6 · 24
TrL [[ξ0Ψ, X0Ψ] ξ0η0 [ξ0Ψ,Ψ]] . (A.15)

where we have already isolated the Berkovits contact term (4.12). To simplify the result,

we note that:

• The sum of the last three terms is zero. Indeed

TrL [[ξ0Ψ, X0Ψ] ξ0η0 [ξ0Ψ,Ψ]] = + TrL [[ξ0Ψ, X0Ψ] [ξ0Ψ,Ψ]]

−TrL [[Ψ, X0Ψ] ξ0 [ξ0Ψ,Ψ]] , (A.16)

so that summing the last three lines we get a vanishing result.
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• We use a Jacobi identity

[Ψ, [ξ0Ψ,Ψ]] =
1

2
[ξ0Ψ, [Ψ,Ψ]] (A.17)

on the second term. This gives

− 3

4 · 24
TrL [[ξ0X0Ψ,Ψ] [ξ0Ψ,Ψ]] = +

3

8 · 24
TrL [[X0Ψ, ξ0Ψ] [ξ0Ψ,Ψ]]

+
3

8 · 24
TrL [[ξ0X0Ψ,Ψ] [ξ0Ψ,Ψ]] .

(A.18)

Then we find that

− 3

4 · 24
TrL [[ξ0X0Ψ,Ψ] [ξ0Ψ,Ψ]] = +

1

4
Scon

WZW(ξ0Ψ). (A.19)

Therefore we have obtained

Scon
A∞(Ψ) + Υ(Ψ) = Scon, s

WZW(Ψ). (A.20)

B Comments on recent approach to instanton marginal deformations

In [22] it is reported that the equation of motion for the instanton marginal deformation we

have discussed in section 6 is obstructed at order 3. Here, without adding new computa-

tions, we would like to make contact with our results. Writing the solution perturbatively

Ψ =
∞∑
n=1

gnΨn, (B.1)

the equation of motion will take the generic recursive form

QBΨn = −EOMn(Ψn−1, . . . ,Ψ1), (B.2)

where EOMn is what one gets by varying the interaction terms of the A∞-action (2.1) and

expanding according to (B.1). The first order solution Ψ1 coincides with the physical field

ΨA (1.7), of which we have computed the effective action.

To start with, we observe that the effective action at quartic order (2.39) can be

written as

S
(4)
eff, A∞

(Ψ1) = −1

2
ωS

(
M2(Ψ2

1),
b0
L0
M2(Ψ2

1)

)
− 1

4
ωS
(
Ψ1,M3(Ψ3

1)
)

= −1

4
ωS

(
Ψ1,

[
−M2

(
Ψ1,

b0
L0
M2(Ψ2

1)

)
−M2

(
b0
L0
M2(Ψ2

1),Ψ1

)
+M3(Ψ3

1)

])
= −1

4
ωS (Ψ1,EOM3[Ψ1]) = −1

4
ωS(Ψ1, P0EOM3[Ψ1]), (B.3)

where we have used that P0Ψ1 = Ψ1. Here EOM3[Ψ1] means that we have solved already

Ψ2 in terms of Ψ1

QBΨ2 + EOM2(Ψ1) = QBΨ2 +M2(Ψ1,Ψ1) = 0
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with

Ψ2 = − b0
L0
M2(Ψ1,Ψ1)

and plugged it inside EOM3(Ψ2,Ψ1)

EOM3[Ψ1] := EOM3

(
− b0
L0
M2(Ψ1,Ψ1),Ψ1

)
(B.4)

= −M2

(
Ψ1,

b0
L0
M2(Ψ2

1)

)
−M2

(
b0
L0
M2(Ψ2

1),Ψ1

)
+M3(Ψ3

1).

If the effective action at quartic order (B.3) vanishes this means that EOM3[Ψ1] does not

have components along the first order solution Ψ1 = ΨA. From our discussion in section 6

this happens when the generalized ADHM constraints (6.16), (6.17) are implemented. As

also discussed in [22], the integrability condition for the equation of motion at third order

QBΨ3 = −EOM3[Ψ1] (B.5)

is

P0 EOM3[Ψ1] = 0. (B.6)

If this is satisfied then we automatically have that S
(4)
eff = 0 because Ψ1 = P0Ψ1, (B.3).

However in [22] it is reported that given a generic state in the kernel of L0, which we may

call χ(= P0χ), they find ωS (χ,EOM3[Ψ1]) 6= 0.

This is not consistent with our results. To see this choose χ = Ψ1. Then P0 EOM3[Ψ1]

contracted with the first order solution Ψ1 should just give the effective action at quartic

order by (B.3). It is then easy to see that [22] disagrees from us by the absence of ’t Hooft

symbols as it can be checked by comparing for example eq (7.22) in (ver. 2 of) [22] (with

Bµ → Aµ and v → w) with (6.14). In other words, the effective action (B.3) computed

according to [22] would be

S
(4)
eff ∼ tr[TµνT

µν ] (incorrect)

with Tµν given in (6.13), while we find instead

S
(4)
eff ∼ tr[(Tµνη

µν
c )(ηcρσT

ρσ)],

consistently with other works on the subject (see e.g. [20, 23]).

Without ’t Hooft symbols the constraints (6.16) and (6.17) would not be solvable

because they would contain too many equations (six instead of three) and the potential

could not be made flat. But in fact there are only three constraints as a natural consequence

of the localization mechanism we have presented, which involves three auxiliary fields and

which is in turn based on the underlying N = 2 SCFT structure. We hope these comments

will be useful to settle the issue and to progress in our understanding of D-branes moduli

in superstring field theory.
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