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1 Introduction

The conformal bootstrap is the idea of solving for the dynamics of conformal field theories

starting from the basic principles of conformal invariance, unitarity and associativity of the

operator product expansion. This approach has received widespread attention ever since

the numerical studies of [1, 2] demonstrated its unexpected constraining power in more

than two dimensions.1 In parallel, an analytic approach to the conformal bootstrap has

been developed, initially based on the expansion of the bootstrap equations near a pair of

light-cones [7–10].

1See [3–5] for early formulations of the conformal bootstrap and [6] for a review of recent developments.
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More recently, the results of the analytic conformal bootstrap have been unified and

extended through the so-called Lorentzian inversion formula [11].2 The formula exploits

complex analyticity of the four-point function to extract its OPE decomposition from the

double commutator, also called double discontinuity and denoted dDisc[G(z, z̄)].3 More

precisely, the formula computes the coefficient function I∆,J of the decomposition of the

four-point function into a complete set of conformal partial waves labelled by their dimen-

sion ∆ and spin J . To make this more explicit, let us denote the conformal partial waves

Ψ∆,J(xi). Then I∆,J is defined by the integral

I∆,J =

∫
ddx1 . . . d

dx4

vol(SO(1, d+ 1))
Ψ∆,J(xi)〈φ(x1)φ(x2)φ(x3)φ(x4)〉 . (1.1)

The OPE decomposition of G(z, z̄) can be read off from the poles and residues of I∆,J . The

Lorentzian inversion formula expresses I∆,J as an integral of the double discontinuity times

an appropriate inversion kernel over a Lorentzian spacetime diamond 0 < z, z̄ < 1. The

reader wishing to learn more details about the higher-dimensional case can consult [11–13].

One of the most important virtues of the Lorentzian inversion formula is that it allows

one to compute the OPE data exchanged in a given channel in terms of the OPE data in

the crossed channels. This in turn leads to systematic expansions of the OPE data at large

spin, and large scaling dimension [14]. Furthermore, the contributions of crossed-channel

operators at mean-field double-trace scaling dimensions are suppressed by the formula,

allowing for a recursive determination of the OPE data in perturbation theory around the

generalized free field [15–20].

The inversion formula of [11] is valid as long as the spacetime dimension is greater

than one. One may be interested in having also an analogous formula which assumes

only the minimal conformal symmetry, namely the global conformal symmetry of a line,

corresponding to the algebra so(1, 2) = sl(2,R). One reason to look for such formula is that

there exist intrinsically one-dimensional conformal-invariant systems, such as line defects

in higher-D CFTs [21–26] or SYK-like models [27, 28], to which the standard Lorentzian

inversion formula in D > 1 does not apply. Furthermore, one should keep in mind that every

higher-D CFT is in particular also a 1D CFT since its correlators can be restricted to a line

and satisfy all the axioms of the sl(2,R) conformal bootstrap. Finally, 1D CFTs provide a

simpler but still constraining setting for testing ideas about higher-D conformal bootstrap.

One needs to face some obvious challenges when trying to derive a Lorentzian inversion

formula for sl(2,R). First, it may not be immediately clear what the distinction is between

the meaning of “Euclidean” and “Lorentzian” in one dimension. Second, the existence of

the Lorentzian formula in D > 1 is closely tied to the fact that the CFT data are analytic

in spin. This property may seem mysterious from the D = 1 point of view for the simple

reason that there is no spin in one dimension. In fact, these two points have already been

2See [12, 13] for more details on and generalizations of the original Lorentzian inversion formula.
3For identical external scalar primaries, G(z, z̄) is defined by 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =

〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 G(z, z̄), where xi are the coordinate vectors. The cross-ratios are defined by

zz̄ =
x212x

2
34

x213x
2
24

, (1 − z)(1 − z̄) =
x214x

2
23

x213x
2
24

with xij = xi − xj . The notation and conventions of this note follow

closely those of [12].
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addressed in [12] and [28]. To explain their resolution of the above puzzles and how the

present work fits in the existing literature, let us first quickly review the basic kinematics

of 1D CFTs.

We consider the four-point function of identical sl(2,R) primaries in a unitary, parity-

invariant 1D CFT. It can be written as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 G(z) , (1.2)

where xi are positions on the line and z = x12 x34
x13 x24

is the only cross-ratio of four points. A

priori, the cross-ratio ranges over all real numbers but the analytic continuation to complex

z plays an important role in various contexts, including the present note. If the 1D four-

point function arises by restricting a higher-D four-point function GD>1(z, z̄) to collinear

configurations, we find G(z) = GD>1(z, z). The four-point function can be expanded in a

complete set of conformal partial waves using the Euclidean inversion formula. In D > 1,

this complete set consists only of the principal series ∆ = D
2 + is with s ∈ R+ and

J ∈ Z≥0. The complete set in D = 1 includes both the principal series ∆ = 1
2 + iR+ and

the discrete series ∆ ∈ 2N.4 Correspondingly, the four-point function is described by a

pair of coefficient functions: I∆ for the principal series and Ĩ∆ for the discrete series. I∆ is

analogous to I∆,J from D > 1 in the sense that primary operators in the φ× φ OPE with

generic scaling dimensions translate into poles of I∆ on the positive real axis. As we review

in the main text, the main role of the discrete series is to cancel spurious contributions of

the principal series.5 The Euclidean inversion formula expresses the coefficient functions

as integrals of G(z) over the real line as follows

I∆ =

∞∫
−∞

dzz−2 Ψ∆(z)G(z) for ∆ ∈ 1

2
+ iR ,

Ĩ∆ =

∞∫
−∞

dzz−2 Ψ∆(z)G(z) for ∆ ∈ 2N ,

(1.3)

where Ψ∆(z) are the conformal partial waves. A priori, these formulas only compute the

coefficient functions for ∆ restricted to the principal and discrete series respectively and

thus do not provide their analytic continuation to the ∆ complex plane. Consequently,

I∆ = Ĩ∆ does not hold in general.

We are interested in a Lorentzian, rather than Euclidean, inversion formula for I∆

and Ĩ∆. Following [12], we will take this to mean a formula which extracts the coefficient

functions from the double discontinuity of G(z), rather than from the value of the Euclidean

correlator. Such definition ensures that the 1D formula replicates the usefulness of its

higher-D cousin for the analytic bootstrap. In 1D, the double discontinuity is defined by

dDisc[G(z)] = G(z)− G
x(z) + Gx(z)

2
for z ∈ (0, 1) , (1.4)

4Here and in the rest of this note, N stands for positive integers and R+ for positive real numbers.
5In special circumstances, the discrete series may capture the OPE data of physical operators, see [29].
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where Gx(z) and Gx(z) are the analytic continuations of G(z) from z ∈ (1,∞) to z ∈ (0, 1)

above and below the branch cut. When G(z) arises from a D > 1 correlator by restricting

to collinear configuration, then the above definition agrees with the standard D > 1 double

discontinuity restricted to z = z̄. Furthermore, this definition also agrees with the thermal

expectation value of the double commutator 1
2 [φ(x3), φ(x2)][φ(x1), φ(x4)], where φ(x3) and

φ(x4) are evolved in Lorentzian time. The terms Gx(z) and Gx(z) correspond to the out-

of-time-order contributions in the double commutator. The z → 0 limit of these terms can

be used to diagnose chaos and is analogous to the Regge limit of D > 1 [28, 30–32].

The authors of [12] derived the following Lorentzian inversion formula for the discrete

series of sl(2,R)

Ĩ∆ =
4Γ(∆)2

Γ(2∆)

1∫
0

dzz−2G∆(z) dDisc[G(z)] , (1.5)

where G∆(z) is the 1D conformal block. This formula provides an analytic continuation

of Ĩ∆ away from positive even integers and thereby answers the second point raised above:

the analogue of analyticity in spin for sl(2,R) is analyticity in the label of the discrete

series. This is indeed needed to make the correlator bounded in the Regge limit [28].

The main result of this note is an analogous formula for the coefficient function of the

principal series. Such formula is clearly needed for many interesting applications since I∆,

and not Ĩ∆, carries information about the spectrum in a generic OPE. The formula takes

the form

I∆ = 2

1∫
0

dzz−2H∆(z) dDisc[G(z)] , (1.6)

where H∆(z) is an appropriate inversion kernel. We will fix H∆(z) by demanding com-

patibility of (1.6) with the Euclidean inversion formula. For the formula to be valid, G(z)

must be bounded in the Regge limit.

While (1.6) is similar to the standard higher-D inversion formula, there are some key

differences between the two. Most notably, the present formula only works for four-point

functions of identical external operators. At the practical level, this is because the contour-

deformation argument relating (1.6) to the Euclidean inversion formula is only valid pro-

vided G(z) is fully Bose- or Fermi-symmetric.6 Correspondingly, we will have one formula

for identical bosons and one for identical fermions. The two cases are almost identical, but

the bosonic one has some additional subtleties, which we suppress in the introduction. In

the fermionic case, the rest of the introduction applies without any amendment.

At first sight, the requirement of Bose/Fermi symmetry may seem like a limitation,

but it implies that (1.6) leads to an interesting reformulation of the crossing equation, as

we explain in the next few paragraphs.

Suppose we start from a four-point function G(z) of identical primaries in a unitary

theory and apply (1.6) to it. Just like in D > 1, dDisc[G(z)] can be computed by expanding

G(z) in the t-channel. The first step is then to understand the coefficient function obtained

6On the other hand, Caron-Huot’s formula works for four-point functions of arbitrary sets of external

operators and indeed Bose symmetry plays no role in its derivation.
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by applying the Lorentzian inversion formula to a single t-channel conformal block of

general dimension ∆O, which we denote as follows

I(∆; ∆O|∆φ) ≡ 2

1∫
0

dzz−2H∆(z) dDisc

[(
z

1−z

)2∆φ

G∆O(1− z)

]
. (1.7)

We will argue in the main text that I(∆; ∆O|∆φ) describes the crossing-symmetric sum of

exchange Witten diagrams in AdS2 in the s-, t- and u-channel with exchanged dimension

∆O. We call this crossing-symmetric object the Polyakov block for reasons that will become

clear soon. The Polyakov block with exchanged dimension ∆O will be denoted P∆O(z).

The s-channel OPE decomposition of P∆O(z) contains the single-trace conformal block of

dimension ∆O with unit coefficient, as well as an infinite tower of double-trace contributions

with dimensions 2∆φ + 2n or 2∆φ + 2n+ 1 in the bosonic and fermionic case respectively,

where n = 0, 1, . . .. In summary, using (1.6) to invert a single block in the crossed channel

returns a manifestly crossing-symmetric object. This is in contrast with what happens

when using the standard D > 1 Lorentzian inversion formula, as described in section 7 of

this note.

Having understood the contribution of an individual crossed-channel block to I∆, we

will argue that one can commute the integral in (1.6) and the t-channel OPE applied to

dDisc[G(z)]. This means I∆ can be expanded using the coefficient functions of the Polyakov

blocks as follows

I∆ =
∑
O∈φ×φ

(cφφO)2 I(∆; ∆O|∆φ) , (1.8)

where the sum runs over sl(2,R) primaries in the φ × φ OPE and cφφO are the OPE

coefficients. The sum converges (absolutely and uniformly in any compact set) in the entire

complex ∆-plane away from poles of the individual terms in the sum. Since I(∆; ∆O|∆φ)

are meromorphic functions of ∆, it follows that I∆ is also meromorphic, with poles only at

locations of poles of the individual terms. The same expansion then holds also at the level

of the correlator

G(z) =
∑
O∈φ×φ

(cφφO)2P∆O(z) . (1.9)

On the other hand, we know G(z) can be expanded in the s-channel conformal blocks

as follows

G(z) =
∑
O∈φ×φ

(cφφO)2G∆O(z) . (1.10)

For the last two equations to be compatible, the double-trace contributions to the Polyakov

blocks must cancel out when the sum over O in (1.9) has been performed. This leads to an

infinite set of sum rules on the OPE data, with two independent sum rules for every double-

trace operator. This is precisely the idea behind Polyakov’s approach to the conformal

bootstrap [4] recently revisited and refined using Mellin-space techniques in [33–35].

These sum rules were recently derived and studied in a closely related work [36].

Among other things, reference [36] demonstrated not only that (1.9) holds for every unitary

solution of sl(2,R) crossing, but also the stronger claim that the totality of sum rules arising

– 5 –
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from the equivalence of (1.9) and (1.10) is in fact completely equivalent to the standard

crossing equation

z−2∆φ
∑
O∈φ×φ

(cφφO)2G∆O(z) = (1− z)−2∆φ
∑
O∈φ×φ

(cφφO)2G∆O(1− z) . (1.11)

One goal of the present note is to offer an alternative perspective on the same core idea

from the point of view of the Lorentzian inversion formula.

In [36], the relevant sum rules were derived by applying suitable linear functionals to

the crossing equation (1.11), building on the constructions of [37, 38]. The functionals

themselves are interesting because they are examples of optimal (or extremal) functionals

of the numerical bootstrap [39]. For example, they can be used to show rigorously that

the gap above identity in the φ× φ OPE in a unitary CFT (in any D) is at most 2∆φ + 1,

where φ is a scalar primary or a component of a spinning primary. The bound becomes

optimal if only the minimal (1D) conformal symmetry is assumed. The most important

properties of the functionals is that when acting on the conformal block (minus the crossed-

channel conformal block) of dimension ∆O, they are positive from a certain ∆O onwards

and exhibit double zeros for ∆O at the double-trace values. The functionals of [36–38]

are constructed as contour integrals against suitable holomorphic kernels in the complex

z-plane. The kernels are constrained by an intricate functional equation which guarantees

the above properties.

In this note, we will derive this construction starting from the Lorentzian inversion

formula (1.6). The Lorentzian inversion kernel H∆(z) has double poles for ∆ at the double-

trace dimensions. These poles precisely reproduce the double-trace contributions to the

Polyakov block in formula (1.7). It turns out that the coefficients of the simple and double

poles of H∆(z) at the double traces are precisely the kernels used to define the functionals

of [36–38]. The contour integral prescription for the functionals of these works is noth-

ing but a way to reconstruct the double discontinuity while staying on the first sheet in

the z variable. The intricate functional equation satisfied by the functional kernels is a

consequence of the equation satisfied by H∆(z) which guarantees that the Lorentzian and

Euclidean inversion formulas give the same answer for I∆. The functionals exhibit posi-

tivity and double zeros at the double traces because the double discontinuity of conformal

blocks in the crossed channel has these properties. In this way, the inversion formula of

this note unifies all the functionals considered in [36–38] into a single object.

Outline and summary of results. The rest of this note is structured as follows. In

section 2, we review 1D kinematics and the expansion of a four-point function into a

complete set of conformal partial waves provided by the Euclidean inversion formula.

In section 3, we discuss the Lorentzian inversion formula for the principal series and

explain how the inversion kernel is constrained by compatibility with the Euclidean formula.

We find explicit formulas for the Lorentzian inversion kernel in section 4. This includes

closed formulas for the bosonic kernel when ∆φ ∈ N and the fermionic kernel when ∆φ ∈
N− 1

2 . Furthermore, we find the series expansion of the kernel around z = 0 for general ∆φ.

– 6 –
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Section 5 explains that the Lorentzian inverse of a single conformal block in the t-

channel is the coefficient function of a fully crossing-symmetric sum of exchange Witten

diagrams in AdS2, including the s-channel exchange.

The implications of the last observation are analyzed in section 6. We prove that I∆

of a crossing-symmetric four-point function in a unitary theory can be expanded in the

coefficient functions of crossing-symmetrized exchange Witten diagrams. We explain why

this implies I∆ is meromorphic in the entire complex plane with poles only at the expected

locations. Furthermore, we explain how consistency with the usual OPE leads to infinitely

many sum rules on the CFT data. Finally, we demonstrate that optimal functionals of the

numerical bootstrap arise from residues of the Lorentzian inversion kernel at the double-

trace locations.

We conclude with a discussion and open questions in section 7.

2 Kinematics and the Euclidean inversion formula

2.1 The four-point function

In this note, we will focus on the four-point function of identical operators φ(x) in a

conformal field theory, denoted 〈φ(x1)φ(x2)φ(x3)φ(x4)〉. Let us restrict the four operators

to lie on a straight line in the Euclidean space and let x denote the coordinate along the

line. There is a conformal symmetry sl(2,R) acting along this line. We will take φ(x) to

be a primary operator of dimension ∆φ with respect to this sl(2,R). Thus φ(x) can be for

example a scalar primary operator or a component of a spinning operator in a D > 1 CFT,

or simply a primary operator of a 1D CFT. In the rest of the note, we will distinguish the

two cases where φ(x) has bosonic and fermionic statistics. Let us focus on the bosonic case

first. The two-point function then reads

〈φ(x1)φ(x2)〉 =
1

|x12|2∆φ
, (2.1)

where xij = xi − xj . Symmetry under sl(2,R) implies that the four-point function can be

written as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 G(z) , (2.2)

where z is the cross-ratio

z =
x12x34

x13x24
. (2.3)

We can use the conformal symmetry and a permutation of labels 1 and 3 if necessary to set

x1 = 0, x3 = 1 and x4 = ∞. z is then equal to x2 and thus ranges over all real numbers.

When 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 arises by restricting a D > 1 four-point function to a line,

G(z) is obtained by restricting the full four-point function G(z, z̄) to z̄ = z.

Since the four-point function G(z) is singular at coincident points z = 0, 1,∞, it is

useful to define G(−)(z), G(0)(z) and G(+)(z) as the functions to which G(z) reduces in the

– 7 –
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three disconnected regions

G(z) =


G(−)(z) for z ∈ (−∞, 0)

G(0)(z) for z ∈ (0, 1)

G(+)(z) for z ∈ (1,∞) .

(2.4)

The functions G(0,±)(z) can be analytically continued to complex values of z, but in general

are not analytic continuations of each other. Instead, they can be related by Bose symmetry

of the four-point function. The symmetry under 1 ↔ 2 determines G(−)(z) in terms of

G(0)(z) and the symmetry under 2↔ 3 determines G(+)(z) in terms of G(0)(z) as follows

G(−)(z) = G(0)
(

z
z−1

)
for z ∈ (−∞, 0)

G(+)(z) = z2∆φG(0)
(

1
z

)
for z ∈ (1,∞) .

(2.5)

Clearly G(0)(z) determines the whole four-point function. In addition, symmetry under

2↔ 4 implies G(0)(z) must satisfy the crossing relation

z−2∆φG(0)(z) = (1− z)−2∆φG(0)(1− z) for z ∈ (0, 1) . (2.6)

It will be convenient to define the function

G̃(z) = z−2∆φG(0)(z) , (2.7)

for which crossing symmetry becomes G̃(z) = G̃(1− z).

The four-point function G(0)(z) can be expanded using the s-channel OPE φ(x1)×φ(x2).

Since we are only assuming sl(2,R) symmetry, the appropriate conformal blocks are the

sl(2,R) blocks

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (2.8)

It will also be useful to define the conformal block for negative z

Ĝ∆(z) ≡ G∆

(
z
z−1

)
= (−z)∆

2F1(∆,∆; 2∆; z) . (2.9)

The s-channel OPE reads

G(0)(z) =
∑
O∈φ×φ

(cφφO)2G∆O(z) , (2.10)

where the sum runs over the primary operators appearing in the OPE and cφφO is the

appropriate OPE coefficient. A priori, the expansion holds for z ∈ (0, 1) but a standard

argument using the ρ coordinate [40, 41] shows that the sum converges also for complex

z away from z ∈ [1,∞). The conformal blocks G∆(z) have a power-law branch cut at

(−∞, 0] implying G(0)(z) has branch cuts for z ∈ (−∞, 0] and z ∈ [1,∞). Let us also

note that thanks to an asymptotic bound on OPE coefficients [42, 43], the convergence of

the s-channel OPE is uniform in any compact region of C not containing [1,∞), implying

G(0)(z) is holomorphic away from the branch cuts (−∞, 0] and [1,∞).

– 8 –
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We will also need the knowledge of how G(0)(z) behaves for large z. In order to avoid

the branch cuts, we should take the limit in the upper half-plane7 as z = reiθ, r ∈ R and

r →∞. This limit of the four-point function is precisely the Regge limit of the u-channel,

as explained in detail in section 2 of [36]. It is also the same limit that can be used to

diagnose chaos from out-of-time-order correlators [30–32]. Since all channels are equivalent

for identical external operators, we will simply refer to this limit as the Regge limit. We

will also take z → ∞ to mean approaching ∞ in any direction in the upper (or lower)

half-plane. Four-point functions in unitary theories satisfy a boundedness condition in

the Regge limit. To see that, one can work in the ρ coordinate and use positivity of the

s-channel expansion together with the fact that the t-channel is dominated by the identity

operator [41]. The result is that

|G̃(z)| is bounded as z →∞ . (2.11)

Note that the bound can not be improved in general since G̃(z) of the generalized free field

approaches a constant in the Regge limit

G̃(z) = z−2∆φ + (1− z)−2∆φ + 1→ 1 (2.12)

as z → ∞. For technical reasons, it will sometimes be useful to consider functions which

are better-behaved than just bounded in the Regge limit. Thus, let us define G̃(z) to be

super-bounded if

|G̃(z)| = O(|z|−1−ε) as z →∞ (2.13)

for ε > 0.

Consider now the case of identical fermions χ(x). The two-point function has an extra

ordering sign

〈χ(x1)χ(x2)〉 =
sgn(x12)

|x12|2∆χ
. (2.14)

The four-point function G(z) is defined analogously to the bosonic case

〈χ(x1)χ(x2)χ(x3)χ(x4)〉 = 〈χ(x1)χ(x2)〉〈χ(x3)χ(x4)〉 G(z) . (2.15)

The functions G(0,±)(z) are defined exactly as in (2.4). Symmetry under the permutations of

the external operators again fixes G(−)(z) and G(+)(z) in terms of G(0)(z). The transposition

1↔ 2 introduces an ordering sign on both sides of (2.15), which thus cancel and give

G(−)(z) = G(0)
(

z
z−1

)
for z ∈ (−∞, 0) . (2.16)

On the other hand, the transposition 2 ↔ 3 leads to an extra sign compared to the

bosonic case

G(+)(z) = −z2∆χG(0)
(

1
z

)
for z ∈ (1,∞) . (2.17)

We will again define G̃(z) = z−2∆χG(0)(z). Just like in the bosonic case, G̃(z) satisfies

crossing symmetry G̃(z) = G̃(1−z) and boundedness in the Regge limit (the latter whenever

the theory is unitary).

7The lower half-plane being related by crossing z ↔ 1− z.
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2.2 Review of the Euclidean inversion formula

The Plancherel theorem for sl(2,R) allows us to expand G(z) into a complete set of eigen-

functions of the s-channel Casimir. Both in the bosonic and fermionic case, G(z) is invariant

under z ↔ z
z−1 for z ∈ R. Since the s-channel Casimir respects the same symmetry, we

can restrict to eigenfunctions invariant under this symmetry. Moreover, the eigenfunctions

need to satisfy a boundary condition at z = 1 to ensure the Casimir operator is self-adjoint,

see for example section 3.2.2 of [28] for more details. The relevant eigenfunctions are called

conformal partial waves and can be written as the following conformal integral8

Ψ∆(z) =

∞∫
−∞

dx5

(
|x12|
|x15||x25|

)∆( |x34|
|x35||x45|

)1−∆

for z ∈ R . (2.18)

For z ∈ (0, 1), the conformal partial waves are a linear combination of a conformal block

and its shadow

Ψ
(0)
∆ (z) = K1−∆G∆(z) +K∆G1−∆(z) , (2.19)

where

K∆ =

√
πΓ
(
∆− 1

2

)
Γ
(

1−∆
2

)2
Γ(1−∆)Γ

(
∆
2

)2 . (2.20)

For z ∈ (−∞, 0) and z ∈ (1,∞), the conformal partial waves are determined from Ψ
(0)
∆ (z)

as follows

Ψ
(−)
∆ (z) = Ψ

(0)
∆

(
z
z−1

)
for z ∈ (−∞, 0)

Ψ
(+)
∆ (z) =

1

2

[
Ψ

(0)
∆ (z + iε) + Ψ

(0)
∆ (z − iε)

]
for z ∈ (1,∞) .

(2.21)

The invariant inner product on sl(2,R) gives the following inner product of functions of z

(G1,G2) =

∞∫
−∞

dzz−2 G1(z)G2(z) . (2.22)

The set of conformal partial waves which is orthogonal and complete with respect to this

inner product consists of the principal series ∆ = 1/2 + iα with α ∈ R+ and the discrete

series ∆ ∈ 2N. Note that on the discrete series, the second term in (2.19) vanishes and

we find

Ψ(0)
m (z) =

2Γ(m)2

Γ(2m)
Gm(z) for m ∈ 2N . (2.23)

The scalar products among the complete set are(
Ψ 1

2
+iα,Ψ 1

2
+iβ

)
= 2πn 1

2
+iαδ(α− β) α, β ∈ R+

(Ψm,Ψn) =
4π2

2m− 1
δmn m,n ∈ 2N(

Ψ 1
2

+iα,Ψm

)
= 0 α ∈ R+, m ∈ 2N ,

(2.24)

8The integral representation converges for 0 < Re(∆) < 1. For other values of ∆, Ψ∆(z) can be defined

by an analytic continuation from this region.
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where

n∆ = 2K∆K1−∆ =
4π tan(π∆)

2∆− 1
. (2.25)

Let us define the following coefficient functions as overlaps of the four-point function with

the principal and discrete series conformal partial waves

I∆ = (Ψ∆,G) =

∞∫
−∞

dzz−2 Ψ∆(z)G(z) for ∆ =
1

2
+ iα, α ∈ R

Ĩm = (Ψm,G) =

∞∫
−∞

dzz−2 Ψm(z)G(z) for m ∈ 2N .

(2.26)

The four-point function can then be expanded in the complete set as follows

G(z) =

1
2

+i∞∫
1
2

d∆

2πi

I∆

n∆
Ψ∆(z) +

∑
m∈2N

2m− 1

4π2
ĨmΨm(z) . (2.27)

For z ∈ (0, 1), we can use (2.19) and I∆ = I1−∆ to write this as

G(z) =

1
2

+i∞∫
1
2
−i∞

d∆

2πi

I∆

2K∆
G∆(z) +

∑
m∈2N

Γ(m)2

2π2Γ(2m− 1)
ĨmGm(z) . (2.28)

If G(z) is normalizable with respect to the inner product (2.22), I∆ is holomorphic in some

neighbourhood of the principal series, and Ĩm is finite for m ∈ 2N. Note that it may not

always be true that Ĩm is the analytic continuation of I∆ from the principal series to ∆ = m

since the integral defining I∆ may not converge along the path of the analytic continuation.

The s-channel OPE is recovered by closing the contour to the right, so that terms of

the OPE come from poles of I∆/K∆ and the terms of the discrete series sum. Concretely,

we can define

c(∆) =
I∆

2K∆
(2.29)

so that the presence of O in the φ×φ OPE translates to a simple pole of c(∆) at ∆ = ∆O
with residue −(cφφO)2. There is no reason for the φ× φ OPE to always contain operators

with scaling dimensions exactly at even integers, so how should we think of the contribution

of the discrete series? The answer comes from noting that K∆ has simple zeros on the

discrete series, leading to potentially unphysical poles of c(∆). When there is no physical

operator at ∆ = m ∈ 2N, we have Im = Ĩm. This guarantees that the residue of the integral

in (2.28) coming from the zero of K∆ at ∆ = m precisely cancels the corresponding term

of the sum over the discrete series. On the other hand, if there is a physical operator

precisely at ∆ = m ∈ 2N, we should have Im 6= Ĩm so that the principal series integral and

the discrete series sum combine to a non-vanishing contribution at ∆ = m.

We have seen that the formulas (2.26) extract the OPE data from the Euclidean four-

point function and for this reason are known as the Euclidean inversion formulas. To see
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some concrete examples, we can consider the four-point functions of the generalized free

boson (GFB) and fermion (GFF). In the bosonic case, the four-point function is

G(z) = 1 +
∣∣∣ z
z−1

∣∣∣2∆φ

+ |z|2∆φ . (2.30)

The inversion integral (2.26) is most easily done by using the integral representation of the

conformal partial waves (2.18). The final result is9

IGFB
∆ =

πΓ
(
∆φ − ∆

2

)
Γ
(
∆φ + ∆−1

2

)
Γ
(

∆+2
2 −∆φ

)
Γ
(

3−∆
2 −∆φ

)
cos2(π∆φ)Γ(2∆φ)2Γ(∆ + 1− 2∆φ)Γ(2−∆− 2∆φ)

. (2.31)

IGFB
∆ is essentially the simplest meromorphic function with the right poles and residues

which respects the shadow symmetry. The four-point function of the generalized free

fermion of dimension ∆χ is

G(z) = 1− sgn
(

z
z−1

) ∣∣∣ z
z−1

∣∣∣2∆χ

− sgn(z)|z|2∆χ . (2.32)

Note that in spite of the fermionic statistics, we have G(z) = +G
(

z
z−1

)
and we can use the

same set of conformal partial waves as in the bosonic case. The coefficient function reads

IGFF
∆ = −

πΓ
(
∆χ − ∆−1

2

)
Γ
(
∆χ + ∆

2

)
Γ
(

∆+1
2 −∆χ

)
Γ
(

2−∆
2 −∆χ

)
sin2(π∆χ)Γ(2∆χ)2Γ(∆ + 1− 2∆χ)Γ(2−∆− 2∆χ)

. (2.33)

Before closing this section, let us note that if we are using the Euclidean inversion

formula to extract the OPE data of a four-point function restricted to 0 < z < 1, we can

be agnostic about the statistics of the external operators. Indeed, suppose we are given G(z)

for 0 < z < 1 satisfying z−2∆φG(z) = (1 − z)−2∆φG(1− z) and we want to find coefficient

functions I∆, Ĩm such that (2.28) holds. In order to compute the inversion integrals (2.26),

we need to extend G(z) to a function defined for all z ∈ R, such that G(z) = G
(

z
z−1

)
. One

way to do this is to pretend the external operators are identical bosons, which gives

GB(z) =


G
(

z
z−1

)
for z ∈ (−∞, 0)

G(z) for z ∈ (0, 1)

z2∆φG
(

1
z

)
for z ∈ (1,∞) .

(2.34)

Another option is to pretend they are identical fermions10

GF(z) =


G
(

z
z−1

)
for z ∈ (−∞, 0)

G(z) for z ∈ (0, 1)

−z2∆φG
(

1
z

)
for z ∈ (1,∞) .

(2.35)

9Strictly speaking, to compute IGFB
∆ one needs to remove the non-normalizable contribution of the

identity and work with G(z) =
∣∣∣ z

1−z

∣∣∣2∆φ

+ |z|2∆φ instead.
10From now on, we will call the external dimension ∆φ also in the fermionic case to simplify notation.
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Both are perfectly consistent choices which lead to different coefficient functions IB
∆ and

IF
∆. IB

∆ and IF
∆ encode the same OPE data pertaining to the original correlator G(z) and

thus must have the same residues at the physical poles. Therefore, their difference must

be a meromorphic function with poles only at ∆ = 1, 3, . . . (and their shadow locations)

since these poles (but not their shadows) cancel against zeros of 1/K∆ in (2.28) and thus

do not contribute to the OPE. The main result of this note are alternative formulas which

extract IB
∆ and IF

∆ from G(z), to which we turn now.

3 The Lorentzian inversion formula

3.1 The general form

For many applications, it is essential to have an alternative formula for the coefficient

functions I∆ and Ĩm, known as the Lorentzian inversion formula [11] (see also [12, 13]).

The input of this formula is the double discontinuity of G(z) defined by

dDisc [G(z)] = G(0)(z)− G
(+)(z + iε) + G(+)(z − iε)

2
for z ∈ (0, 1) . (3.1)

When G(z) is obtained by restricting a higher-D four-point function to z = z̄, then this

definition agrees with the standard higher-D double discontinuity restricted to z = z̄.

All s-channel conformal partial waves are annihilated by the double discontinuity. Cru-

cially for many applications, the double discontinuity also annihilates t-channel double-

trace conformal blocks and their derivatives with respect to ∆. Which dimensions are

counted as double-trace depends on whether we choose the bosonic or fermionic exten-

sion of the 0 < z < 1 correlator, i.e. equations (2.34) or (2.35). In the bosonic case, the

contribution of a t-channel conformal block of dimension ∆ to G(0)(z) and G(+)(z) is

G(0)(z) =
(

z
1−z

)2∆φ

G∆(1− z)

G(+)(z) =
(

z
z−1

)2∆φ

Ĝ∆(1− z) ,

(3.2)

which means its double discontinuity takes the form

dDiscB

[
G

(t)
∆ (z)

]
= 2 sin2

[π
2

(∆− 2∆φ)
] (

z
1−z

)2∆φ

G∆(1− z) , (3.3)

where the subscript on dDisc reminds us which extension of the correlator we choose. We

see that the bosonic double discontinuity is non-negative for 0 < z < 1 and exhibits double

zeros at the bosonic double-trace dimensions

∆B
n = 2∆φ + 2n , n = 0, 1, . . . . (3.4)

The contribution of a t-channel conformal block in the fermionic case is

G(0)(z) =
(

z
1−z

)2∆φ

G∆(1− z)

G(+)(z) = −
(

z
z−1

)2∆φ

Ĝ∆(1− z) ,

(3.5)
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leading to the following double discontinuity

dDiscF

[
G

(t)
∆ (z)

]
= 2 cos2

[π
2

(∆− 2∆φ)
] (

z
1−z

)2∆φ

G∆(1− z) , (3.6)

this time exhibiting double zeros at the fermionic double-trace dimensions

∆F
n = 2∆φ + 2n+ 1 , n = 0, 1, . . . . (3.7)

The authors of [12] found the following Lorentzian inversion formula for the discrete

series coefficient function

Ĩm =
4Γ(m)2

Γ(2m)

1∫
0

dzz−2Gm(z)dDisc [G(z)] . (3.8)

This formula applies to any physical four-point function satisfying G(z) = G
(

z
z−1

)
, and

in particular both the bosonic and fermionic extension of a crossing-symmetric G(z). (3.8)

provides a particular analytic continuation of Ĩm to m /∈ 2N. As discussed in [12], this

analytic continuation is holomorphic for Re(m) > 1/2 and therefore in general can not

agree with the principal series function I∆.

Our goal in this section will be to derive a similar formula for the principal series

coefficient function I∆. More precisely, we will find Lorentzian inversion formulas for IB
∆,

IF
∆, i.e. the coefficient functions corresponding to the bosonic and fermionic extensions of

G(z). The formulas take the form

IB
∆ = 2

1∫
0

dzz−2HB
∆(z)dDiscB [G(z)]

IF
∆ = 2

1∫
0

dzz−2HF
∆(z)dDiscF [G(z)] .

(3.9)

Here HB
∆(z) and HF

∆(z) are appropriate inversion kernels and we took out a factor of 2

for future convenience. Unlike in higher dimensions or for the discrete series, we will find

that HB,F
∆ (z) are not eigenfunctions of the s-channel Casimir. In fact, they depend very

non-trivially on the external dimension ∆φ. Another unusual feature of the formula is that

it has the crossing symmetry under z ↔ 1 − z built in, in the sense that it only holds

for G(z) respecting this symmetry. Furthermore, the output of the formula is a coefficient

function I∆ which manifestly leads to a crossing-symmetric correlator.11

11The higher-D inversion formula does not (and should not) always return crossing-symmetric OPE data.

Indeed, if φ1,2 are scalar primaries of equal dimension, the exact same higher-D inversion formula applies

to the correlators 〈φ1φ1φ1φ1〉 and 〈φ1φ1φ2φ2〉. The latter is in general not symmetric under the s ↔ t

crossing transformation. Our formula for the principal series only applies to fully symmetric correlators

such as 〈φ1φ1φ1φ1〉.
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3.2 Constraining the inversion kernels

We will fix HB
∆(z) and HF

∆(z) by demanding that the Euclidean and Lorentzian inversion

formulas (2.26) and (3.9) are compatible. Let us start from the Euclidean formula which

we first split into integrals over the three regions

I∆ =

0∫
−∞

dzz−2Ψ
(−)
∆ (z)G(−)(z) +

1∫
0

dzz−2Ψ
(0)
∆ (z)G(0)(z) +

∞∫
1

dzz−2Ψ
(+)
∆ (z)G(+)(z) . (3.10)

Recall that G(−)(z) and G(+)(z) are related to G(0)(z) by (2.34) and (2.35) respectively

in the bosonic and fermionic case. Similarly, Ψ
(−)
∆ (z) and Ψ

(+)
∆ (z) are related to Ψ

(0)
∆ (z)

through (2.21). Let us plug these relations into (3.10) and change variables to bring all

integrations to z ∈ (0, 1). We arrive at

IB,F
∆ =

1∫
0

dz

[
2z2∆φ−2Ψ

(0)
∆ (z)±

Ψ
(0)
∆

(
1
z + iε

)
+ Ψ

(0)
∆

(
1
z − iε

)
2

]
G̃(z) . (3.11)

Here and in the following the upper sign applies for IB
∆ and the lower for IF

∆. Recall that

G̃(z) = z−2∆φG(0)(z) is crossing symmetric but the square bracket in the last formula is

not, so let us symmetrize it to get a formula manifesting the full crossing symmetry12

IB,F
∆ =

1∫
0

dz

[
z2∆φ−2Ψ

(0)
∆ (z) + (1− z)2∆φ−2Ψ

(0)
∆ (1− z)

±
Ψ

(0)
∆

(
1
z + iε

)
+ Ψ

(0)
∆

(
1
z − iε

)
2

]
G̃(z) .

(3.12)

The next step is to manipulate the proposed Lorentzian formulas (3.9) into the same form,

i.e. an integral over z ∈ (0, 1) of a crossing-symmetric kernel multiplying G̃(z). Let us start

by expressing the double discontinuity in terms of G̃(z)

dDiscB,F [G(z)] = z2∆φ G̃(z)∓
G̃
(

1
z + iε

)
+ G̃

(
1
z − iε

)
2

, (3.13)

where z ∈ (0, 1). Let us plug this in the inversion formula (3.9) and change coordinates so

that G̃(z) only appears with argument z or z + iε

IB,F
∆ =

1∫
0

dzz−2HB,F
∆ (z)

[
2z2∆φ G̃(z)∓ G̃

(
1
z − iε

)
∓ G̃

(
1
z + iε

)]

=

1∫
0

dz 2z2∆φ−2HB,F
∆ (z) G̃(z)∓

0∫
−∞

dz HB,F
∆

(
1

1−z

)
G̃(z + iε)

∓
∞∫

1

dz HB,F
∆

(
1
z

)
G̃(z + iε) ,

(3.14)

12The partial waves satisfy Ψ(+)(z) = Ψ(+)
(

z
z−1

)
, or equivalently Ψ

(0)
∆

(
1
z

+ iε
)

+ Ψ
(0)
∆

(
1
z
− iε

)
=

Ψ
(0)
∆

(
1

1−z + iε
)

+ Ψ
(0)
∆

(
1

1−z − iε
)

for z ∈ (0, 1) so that no symmetrization on the last two terms in the

square bracket is necessary.

– 15 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
2

where we used G̃(z− iε) = G̃(1− z+ iε) to manipulate the second term. For the Lorentzian

formula to be compatible with the Euclidean one (3.12), we must be able to bring all the

integrals to z ∈ (0, 1). The first term is already in this form. The second and third term

can be brought to such form assuming H∆(z) satisfies a few requirements. We want to

combine these two terms with a semi-circular contour at infinity and deform the contour

to the interval z ∈ (0, 1), as shown in figure 1. Recall that G̃(z) is holomorphic in the

upper half-plane. A priori, H∆

(
1

1−z

)
is defined for z ∈ (−∞, 0) and H∆

(
1
z

)
is defined

for z ∈ (1,∞). For the contour deformation to be allowed, the analytic continuations of

these two functions to the upper half-plane must be holomorphic, and in fact equal to the

same function! This observation shows that H∆(z) must admit a single-valued analytic

continuation from z ∈ (0, 1) to z ∈ C\[1,∞], which satisfies

H∆ (z) = H∆

(
z
z−1

)
for z ∈ C\[1,∞) . (3.15)

It also follows that H∆(z) must be holomorphic away from a possible branch cut at z ∈
[1,∞) and a possible singularity at z = 0. Finally, for the contour deformation of figure 1

to be allowed, we must ensure the semicircle at z =∞ gives a vanishing contribution. As

discussed in section 2, z →∞ is the Regge limit and G̃(z) goes to zero or a finite constant

there. Therefore, the contribution from infinity can be dropped if H∆(z) = O(z1+ε) as

z → 0 for some ε > 0. Since H∆(z) is holomorphic in an open neighbourhood of z = 0, we

now see it must in fact be holomorphic at z = 0 too, which combined with H∆(z) = O(z1+ε)

implies H∆(z) = O(z2) as z → 0. Expressed in formulas, the contour deformation gives

0∫
−∞

dz H∆

(
1

1−z

)
G̃(z + iε) +

∞∫
1

dz H∆

(
1
z

)
G̃(z + iε) = −

1∫
0

dz H∆

(
1
z + iε

)
G̃(z) =

= −
1∫

0

dz
H∆

(
1
z + iε

)
+H∆

(
1
z − iε

)
2

G̃(z) .

(3.16)

Let us proceed in the derivation by combining the contributions in (3.14), using (3.16) and

symmetrizing with respect to z ↔ 1− z. This reduces the Lorentzian formulas to

IB,F
∆ =

1∫
0

dz

[
z2∆φ−2HB,F

∆ (z) + (1− z)2∆φ−2HB,F
∆ (1− z)

±
HB,F

∆

(
1
z + iε

)
+HB,F

∆

(
1
z − iε

)
2

]
G̃(z) .

(3.17)

The result looks identical to the Euclidean formula (3.12) with the simple replacement

Ψ
(0)
∆ 7→ H∆. The Euclidean and Lorentzian formulas agree for a general crossing-symmetric

correlator only if the expressions in the square brackets agree for z ∈ (0, 1)

z2∆φ−2HB,F
∆ (z) + (1− z)2∆φ−2HB,F

∆ (1− z)±
HB,F

∆

(
1
z + iε

)
+HB,F

∆

(
1
z − iε

)
2

=

=z2∆φ−2Ψ
(0)
∆ (z) + (1− z)2∆φ−2Ψ

(0)
∆ (1− z)±

Ψ
(0)
∆

(
1
z + iε

)
+ Ψ

(0)
∆

(
1
z − iε

)
2

.

(3.18)
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0 1

z

0 1

z

Figure 1. The contour deformation bringing the “top-of-the-branch-cut” contributions of the

Lorentzian inversion formula to the Euclidean region. The left figure depicts the second and third

term on the r.h.s. of equation (3.14). The two semi-infinite contours can be combined with a

semi-circular contour at infinity and collapsed on top of the interval z ∈ (0, 1), giving the r.h.s. of

equation (3.16), as depicted in the figure on the right. The branch cuts of G̃(z) are shown in red

and the branch cut of H∆

(
1
z

)
in green.

A simple way to solve this equation would be to set H∆(z) = Ψ
(0)
∆ (z). However,

this function is not holomorphic in z ∈ C\[1,∞) for ∆ on the principal series because of

a branch point at z = 0. Furthermore, this choice of H∆(z) does not satisfy the other

necessary constraints, namely (3.15) and the condition H∆(z) = O(z2) as z → 0.

It turns out that (3.18) has nontrivial solutions which also satisfy all the other con-

straints, making the Lorentzian inversion formula possible. We were able to find the solu-

tion in many cases, building on the connection to the extremal functionals explained later.

Closed formulas for the inversion kernels will be presented in the following section. The

solution for general ∆ and ∆φ seems rather complicated, with a nontrivial dependence on

∆φ. This is in contrast to the higher-D inversion formula, where the inversion kernel is

simply an s-channel conformal block with Weyl-reflected quantum numbers. The nontrivial

∆φ dependence is the price we need to pay for having an inversion formula which manifests

the crossing symmetry of the correlator, since ∆φ enters the crossing equation.

Before closing this section, note that for special values of ∆ the naive solution H∆(z) =

Ψ
(0)
∆ (z) does satisfy all the additional constraints. This is precisely the discrete series

∆ ∈ 2N. Indeed, we will find

HB,F
∆ (z) = Ψ

(0)
∆ (z) =

2Γ(∆)2

Γ(2∆)
G∆(z) for ∆ ∈ 2N, ∆φ generic . (3.19)

This reproduces the inversion formula (3.8) of reference [12] for the discrete series. The

simplification only occurs if the double-trace dimensions ∆B
n or ∆F

n do not overlap with the

discrete series, hence the requirement of generic ∆φ.

4 Explicit formulas for the inversion kernels

In this section, we will solve the constraints described above to find the Lorentzian inversion

kernels H∆(z). Recall that the constraints are the symmetry property (3.15), the functional

equation (3.18) and finally the requirement H∆(z) = O(z2) as z → 0. In fact, the solution
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that we will present in the bosonic case will only satisfy the weaker condition HB
∆(z) =

O(z0) as z → 0. This means that at face value, the resulting bosonic inversion formula

will only apply to super-bounded correlators, as defined in (2.13). This restriction will be

fixed in 6.5. On the other hand, the fermionic inversion kernel constructed in the present

section will satisfy HF
∆(z) = O(z2) as z → 0, so no further amendments will be needed.

The bosonic kernel HB
∆(z) simplifies for ∆φ ∈ N, whereas HF

∆(z) simplifies for ∆φ ∈
N − 1

2 . These are the cases when the double-trace operators lie on the discrete series. In

this section, we will describe the general form of HB,F
∆ (z) for general ∆ and these discrete

values of ∆φ. Furthermore, we will present the Taylor expansions of HB,F
∆ (z) around z = 0

for general ∆ and general ∆φ.

4.1 The bosonic case

In order to describe HB
∆(z) for ∆φ ∈ N, it will be useful to work with

p∆(z) = 2F1(∆, 1−∆; 1; z) . (4.1)

p∆(z) is holomorphic for z ∈ C\[1,∞). Furthermore, p∆

(
z−1
z

)
and p∆

(
1
z

)
are eigen-

functions of the s-channel Casimir with the same eigenvalue as the partial wave Ψ∆(z).13

Therefore, we should be able to express Ψ
(0)
∆ (z) as a linear combination of p∆

(
z−1
z

)
and

p∆

(
1
z

)
. Indeed, the following identities hold

Ψ
(0)
∆ (z) =

2π

sin(π∆)

[
p∆

(
z−1
z

)
+
p∆

(
1
z + iε

)
+ p∆

(
1
z − iε

)
2

]
for z ∈ (0, 1)

Ψ
(0)
∆ (z + iε) + Ψ

(0)
∆ (z − iε)

2
=

2π

sin(π∆)

[
p∆

(
z−1
z

)
+ p∆

(
1
z

)]
for z ∈ (1,∞) .

(4.2)

These identities allow us to find the inversion kernel HB
∆(z) for ∆φ ∈ N. The simplest case

is ∆φ = 1, where we find

HB
∆(z) =

2π

sin(π∆)

[
p∆(z) + p∆

(
z
z−1

)]
(∆φ = 1) . (4.3)

Indeed, upon substituting this HB
∆(z) into (3.18), we can group all terms into three sets

corresponding to eigenfunctions of the s-, t- and u-channel Casimir. The above identities

ensure that the terms cancel within each set. Note that HB
∆(z) = HB

∆

(
z
z−1

)
as required

by (3.15) and HB
∆(z) = HB

1−∆(z) as expected from the shadow symmetry of I∆. As stated

above, HB
∆(z) is not an eigenfunction of the s-channel Casimir. Instead, it is a symmetric

combination of eigenfunctions of the t- and u-channel Casimirs. Also note that HB
∆(z) has

poles on the double-trace dimensions ∆B
n , a fact that will be important for the connection

to the Polyakov bootstrap and extremal functionals. Finally, HB
∆(z) = O(z0) as z → 0 and

thus the resulting inversion formula applies to all super-bounded G̃(z) as promised.

Moving on to higher integer values of ∆φ, we find that the combination

2π

sin(π∆)

[
z−2∆φ+2p∆(z) +

(
z
z−1

)−2∆φ+2
p∆

(
z
z−1

)]
(4.4)

13In fact, p∆

(
z−1
z

)
are precisely the basis functions of the alpha-space expansion of [44].
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solves the constraint (3.15) and the functional equation (3.18) for all ∆φ ∈ Z. It is never-

theless not the right answer since it has a pole at z = 0 for ∆φ > 1. We found that there

is always a solution of the equation (3.18) with zero r.h.s. which can be added to (4.4) to

completely cancel its poles at z = 0.14

In summary, we find the following general form for ∆φ ∈ N

HB
∆(z) =

2π

sin(π∆)

[
z−2∆φ+2p∆(z) +

(
z
z−1

)−2∆φ+2
p∆

(
z
z−1

)
+ q

∆φ

∆ (z)

]
, (4.5)

where the correction term q
∆φ

∆ (z) looks as follows

q
∆φ

∆ (z) =
a

∆φ

∆ (z) + b
∆φ

∆ (z) log(1− z)

z2∆φ−2
. (4.6)

For each ∆φ ∈ N, a
∆φ

∆ (z) and b
∆φ

∆ (z) are polynomials in ∆ and z which are uniquely fixed

by the absence of poles of HB
∆(z) at z = 0. For example:

∆φ = 1 : a1
∆(z) = 0 , b1∆(z) = 0

∆φ = 2 : a2
∆(z) = z2 + 2z − 2 , b2∆(z) = 0

∆φ = 3 : a3
∆(z) = z4 +

(
∆4 − 2∆3 − 7∆2 + 8∆ + 8

)
2

z3

− (∆− 3)(∆− 2)(∆ + 1)(∆ + 2)

2
z2 + 4z − 2 , b3∆(z) = 0 .

(4.7)

b
∆φ

∆ (z) 6= 0 for ∆φ ≥ 4 despite what the first three cases suggest.

The same ansatz does not work for ∆φ /∈ Z. However, one can make progress by

focusing on the Taylor coefficients of HB
∆(z) around z = 0. Based on the formulas obtained

for ∆φ ∈ N, we conjecture the following form of HB
∆(z) for general ∆φ and ∆:

HB
∆(z) =

24(∆φ−1)

Γ(2∆φ − 1)2

Γ
(
∆φ − ∆

2

)2
Γ
(
∆φ − 1−∆

2

)2
Γ
(
1− ∆

2

)2
Γ
(
1− 1−∆

2

)2 2π

sin(π∆)

∞∑
j=0

dB
j (∆φ,∆)zj , (4.8)

where dB
j (∆φ,∆) are rational functions of ∆φ and ∆ satisfying dB

j (∆φ,∆) = dB
j (∆φ, 1−∆).

The first few of them read15

dB
0 (∆φ,∆) = 2

dB
1 (∆φ,∆) = 0

dB
2 (∆φ,∆) =

(∆−1)2∆2

2∆φ
2(2∆φ−1)2

−
2(∆φ−1)(∆−1)∆

∆φ(2∆φ−1)2
+

(∆φ−1)2(∆−1)∆

(2∆φ−1)2(∆−2)(∆+1)
.

(4.9)

14These homogeneous solutions come in two forms. Firstly, the residues of (4.4) at ∆ = 2, 4, . . . , 2∆φ− 2

clearly solve (3.18) with zero r.h.s. since the r.h.s. has no poles there. Secondly, the difference of the finite

part of (4.4) at ∆ = 2, 4, . . . , 2∆φ − 2 and 2Γ(∆)2

Γ(2∆)
G∆(z) provides the remaining homogeneous solutions.

15We found the coefficients dB
j (∆φ,∆) for j = 0, . . . , 19. While they exhibit a lot of structure, we did

not find a closed form expression for general j. A Mathematica file containing formulas for dB
j (∆φ,∆) and

dF
j (∆φ,∆) for higher j is included with the arXiv submission.
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We have performed a number of checks both of the functional equation (3.18) and

the inversion formula (3.9) using this form of HB
∆(z) for various values of the parameters

(including transcendental ∆φ) which makes us certain of the validity of the above claims.

Another very nontrivial check comes from the requirement that for ∆φ /∈ Z and ∆ ∈ 2N,

the inversion kernel should reduce to the partial wave (3.19). Our result (4.8) is in complete

agreement with this condition.

4.2 The fermionic case

The same strategy that worked for the bosonic case and ∆φ ∈ N works for the fermionic

case and ∆φ ∈ N − 1
2 . For example, it is easy to check that for ∆φ = 1

2 , the following

expression solves all the constraints

HF
∆(z) = − 2π

sin(π∆)

[
z p∆(z) + z

z−1 p∆

(
z
z−1

)]
(∆φ = 1/2) . (4.10)

As promised, HF
∆(z) = O(z2) as z → 0, guaranteeing the inversion formula works for all

physical (and thus Regge-bounded) four-point functions. Analogously to the bosonic case,

the inversion kernel for ∆φ ∈ N− 1
2 takes the general form

HF
∆(z) = − 2π

sin(π∆)

[
z−2∆φ+2p∆(z) +

(
z
z−1

)−2∆φ+2
p∆

(
z
z−1

)
+ q

∆φ

∆ (z)

]
, (4.11)

where q
∆φ

∆ (z) is given by (4.6). This time, a
∆φ

∆ (z) and b
∆φ

∆ (z) are polynomials in ∆ and z

which are fixed by requiring HF
∆(z) = O(z2) as z → 0. The first few cases read

∆φ = 1/2 : a
1/2
∆ (z) = 0 , b

1/2
∆ (z) = 0

∆φ = 3/2 : a
3/2
∆ (z) =

(
2∆2−2∆−1

)
z , b

3/2
∆ (z) = 0

∆φ = 5/2 : a
5/2
∆ (z) =

1

105

(
2∆6−6∆5−19∆4+48∆3+191∆2−216∆−243

)
×z
(
z2−z+1

)
,

b
5/2
∆ (z) =

1

210

(
2∆6−6∆5−19∆4+48∆3−19∆2−6∆+72

)
×(z−2)

(
2z2+z−1

)
.

(4.12)

The same general ansatz does not work for ∆φ /∈ Z − 1
2 . For general ∆φ and ∆, we

conjecture the following Taylor expansion of HF
∆(z) around z = 0

HF
∆(z) =

22(2∆φ−1)

Γ(2∆φ + 1)2

Γ
(
∆φ − ∆−1

2

)2
Γ
(
∆φ + ∆

2

)2
Γ
(
1− ∆

2

)2
Γ
(

1
2 + ∆

2

)2 2π

sin(π∆)

∞∑
j=2

dF
j (∆φ,∆)zj , (4.13)

where dF
j (∆φ,∆) are rational functions of ∆φ and ∆ satisfying dF

j (∆φ,∆) = dF
j (∆φ, 1−∆).

The first two of them read

dF
2 (∆φ,∆) = dF

3 (∆φ,∆) =
(2∆φ − 1)2

2(∆− 2)(∆ + 1)
+ 2∆2 − 2∆ + 1 . (4.14)
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5 Exchange Witten diagrams

5.1 Inverting a single block in the crossed channel

The main goal of this section is to explain the connection of the presented inversion formula

to exchange Witten diagrams.

The existence of the fermionic Lorentzian inversion formula guarantees that a physi-

cal (crossing-symmetric and Regge-bounded) four-point function G(z) is uniquely fixed by

its fermionic double discontinuity (3.13). Indeed, we can simply insert dDiscF[G(z)] into

the inversion formulas for the discrete and principal series (3.8) and (3.9) to find unique

coefficient functions Ĩm and I∆. The four-point function then must be equal to the de-

composition (2.28). The same comments apply in the bosonic case assuming z−2∆φG(z) is

super-bounded.

The operation of taking the double discontinuity commutes with expanding G(z) in the

t-channel OPE. It is therefore natural to ask which crossing-symmetric, Regge-bounded

four-point function (if any) has dDisc equal to the dDisc of a single t-channel conformal

block of dimension ∆. The short answer is that such function indeed exists and is equal to

the symmetric sum of exchange diagrams in AdS2 in the s-, t- and u-channel, where the

exchanged field has dimension ∆. In the bosonic case, one also needs to add a uniquely

determined contact interaction.

Focusing on the bosonic case to begin, consider the s-channel AdS2 exchange diagram

W
(s)
∆ (z) with external scalar propagators of dimension ∆φ and internal scalar propagator

of dimension ∆. Its s-channel OPE contains the single-trace conformal block G∆(z), as

well as parity-even double-traces G2∆φ+2n(z) and their ∆-derivatives ∂∆G2∆φ+2n(z) for

n = 0, 1, . . .. We normalize W
(s)
∆ (z) so that the single-trace G∆(z) appears with a unit

coefficient. In the u-channel Regge limit z → i∞, we have

z−2∆φW
(s)
∆ (z) = O(z−2) , (5.1)

so that z−2∆φW
(s)
∆ (z) is super-bounded. Here we are taking the limit of the analytic

continuation of the function to which W
(s)
∆ (z) reduces for z ∈ (0, 1). See [36] for a more

detailed discussion of the meaning of the Regge limit in AdS2.

The t-channel exchange diagram is obtained from crossing

W
(t)
∆ (z) =

∣∣∣ z
1−z

∣∣∣2∆φ

W
(s)
∆ (1− z) . (5.2)

The s-channel OPE of W
(t)
∆ (z) contains both parity even and odd double-traces G2∆φ+j(z)

and their ∆-derivatives ∂∆G2∆φ+j(z) for j = 0, 1, . . .. By symmetry between the s-

and t-channel from the point of view of the u-channel, we have z−2∆φW
(t)
∆ (z) = O(z−2)

as z → i∞.

Finally, the u-channel exchange diagram is related to the s-channel diagram by

W
(u)
∆ (z) = |z|2∆φW

(s)
∆

(
1
z

)
. (5.3)

The s-channel OPE of W
(u)
∆ (z) is identical to the s-channel OPE of W

(t)
∆ (z), up to an extra

sign (−1)j for every double-trace of dimension 2∆φ + j. This means that the combination
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W
(t)
∆ (z) +W

(u)
∆ (z) only contains the parity-even double traces. This time, we find that in

the limit z → i∞
z−2∆φW

(u)
∆ (z) ∼ δ(∆,∆φ)z−1 , (5.4)

where δ(∆,∆φ) is a computable function. This means z−2∆φW
(u)
∆ (z) is not super-bounded

but only bounded. In summary, the combination

W
(s)
∆ (z) +W

(t)
∆ (z) +W

(u)
∆ (z) (5.5)

is fully crossing-symmetric (with the bosonic statistics). Moreover, the t-channel dDisc of

this function is equal to the dDisc of a t-channel conformal block of dimension ∆ since

dDisc annihilates all the double-traces of dimension 2∆φ + 2n and their ∆-derivatives.

The only problem with this function is that it is not super-bounded, due to the failure

of z−2∆φW
(u)
∆ (z) to be super-bounded. Luckily, there is a unique possible improvement

which is fully crossing-symmetric, has vanishing double discontinuity and makes the func-

tion super-bounded. This is precisely the scalar contact diagram of the φ4 interaction in

AdS2, which we denote A(z). Indeed, A(z) only contains the even double-traces and their

derivatives in its OPE. Furthermore, we have z−2∆φA(z) ∼ z−1 as z → i∞, which sets the

normalization of A(z). Therefore, let us define the following function16

PB
∆(z) = W

(s)
∆ (z) +W

(t)
∆ (z) +W

(u)
∆ (z)− δ(∆,∆φ)A(z) . (5.6)

We will call this function the bosonic Polyakov block for reasons that will become clear in

the next section. PB
∆(z) is the unique Bose-symmetric function such that z−2∆φPB

∆(z) is

super-bounded and such that

dDisc
[
PB

∆(z)
]

= dDisc
[
G

(t)
∆ (z)

]
= 2 sin2

[π
2

(∆− 2∆φ)
] (

z
1−z

)2∆φ

G∆(1− z) . (5.7)

It is an instructive exercise for the reader to convince themselves that no other proposal,

such as G
(s)
∆ (z)+G

(t)
∆ (z), G

(s)
∆ (z)+G

(t)
∆ (z)+G

(u)
∆ (z) or W

(s)
∆ (z)+W

(t)
∆ (z) satisfies the same

requirements.

We can use the Lorentzian inversion formula for the principal series to efficiently find

the OPE decomposition of PB
∆(z). As explained, the s-channel OPE looks as follows

PB
∆(z) = G∆(z)−

∞∑
n=0

[
αB
n (∆)G∆B

n
(z) + βB

n (∆)∂G∆B
n

(z)
]
, (5.8)

where ∆B
n = 2∆φ + 2n are the double-trace scaling dimensions and we use the simplified

notation ∂G∆(z) ≡ ∂∆G∆(z). The minus in front of the sum is a useful convention. All the

nontrivial structure of exchange diagrams is contained in the coefficients αB
n (∆) and βB

n (∆).

The OPE is encoded in the principal series coefficient function Ih, where we switch from

label ∆ to h to avoid confusion with the scaling dimension labelling the Polyakov block.

We will denote the coefficient function for PB
∆(z) as IB(h; ∆|∆φ). Terms in the OPE

16We suppress its ∆φ-dependence to simplify notation.
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decomposition of PB
∆(z) translate to poles of IB(h; ∆|∆φ) in variable h. The Lorentzian

inversion formula leads to

IB(h; ∆|∆φ) = 4 sin2
[π

2
(∆− 2∆φ)

] 1∫
0

dzz−2HB
h (z)

(
z

1−z

)2∆φ

G∆(1− z) . (5.9)

The integral converges for h on the principal series and for Re(∆) sufficiently large (so that

PB
∆(z) is normalizable). For other values of ∆, it can be defined by an analytic continuation

in ∆. Let us explain how the expected OPE arises from (5.9). Firstly, recall from (4.8)

that for generic ∆φ, the inversion kernel HB
h (z) has double poles in h at the double-trace

dimensions ∆B
n , coming from the factor Γ

(
∆φ − h

2

)2
in front. These poles give rise to all

the double-trace contributions in the OPE (5.8). To make this more concrete, first note

that equation (2.28) implies the following relationship between the pole structure of Ih and

the OPE decomposition

Ih
2Kh

h→h̃∼ α

h− h̃
⇔ G(z) = . . .− αG

h̃
(z) + . . .

Ih
2Kh

h→h̃∼ β

(h− h̃)2
⇔ G(z) = . . .− β ∂G

h̃
(z) + . . .

(5.10)

Let us therefore define ĤB
n,1(z) and ĤB

n,2(z) as the coefficients of the simple and double

pole of the inversion kernels at the double-trace dimensions

HB
h (z)

Kh

h→∆B
n=

ĤB
n,2(z)

(h−∆B
n )2

+
ĤB
n,1(z)

h−∆B
n

+ finite . (5.11)

Plugging this expression into the inversion integral (5.9) leads to the following formulas for

the coefficients αB
n (∆) and βB

n (∆)

αB
n (∆) = 2 sin2

[π
2

(∆− 2∆φ)
] 1∫

0

dzz−2 ĤB
n,1(z)

(
z

1−z

)2∆φ

G∆(1− z)

βB
n (∆) = 2 sin2

[π
2

(∆− 2∆φ)
] 1∫

0

dzz−2 ĤB
n,2(z)

(
z

1−z

)2∆φ

G∆(1− z) .

(5.12)

In the special case ∆φ ∈ N, αB
n (∆) will also receive a contribution from the discrete

series sum. In effect, this means that in the above equation for αB
n (∆), we should make

the replacement

ĤB
n,1(z) 7→ ĤB

n,1(z)− 2Γ(∆B
n )4

π2Γ(2∆B
n )Γ(2∆B

n − 1)
G∆B

n
(z) for ∆φ ∈ N. (5.13)

Having understood how the double-trace contributions to the OPE of PB
∆(z) arise from

the point of view of the Lorentzian inversion formula, it remains to be seen that the single-

trace conformal block G∆(z) is also present. The corresponding pole of IB(h; ∆|∆φ) can
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not come from a pole of HB
h (z) since its location depends on ∆. Instead it must come from

a singularity of the integral over z as z → 1 according to

1∫
0

dz (1− z)∆−h−1 = − 1

h−∆
. (5.14)

In fact, in all the cases where HB
h (z) is under control, we found that its leading term in

the z → 1 expansion takes the form

HB
h (z)

z→1∼ Kh

2 sin2
[
π
2 (h− 2∆φ)

](1− z)2∆φ−h−1 . (5.15)

Plugging this expansion into the inversion formula (5.9) and using the z → 1 expansion of

the t-channel conformal block, we find

IB(h; ∆|∆φ)

2Kh

h→∆∼ − 1

h−∆
, (5.16)

thus precisely reproducing the single-trace term in PB
∆(z).

5.2 Fermionic Polyakov blocks

It is relatively straightforward to adapt the discussion of the previous subsection to the

fermionic case. The task is to find a fully Fermi-symmetric four-point function, i.e. one

satisfying (2.35) whose dDisc agrees with dDiscF of a t-channel block of dimension ∆

dDiscF

[
G

(t)
∆ (z)

]
= 2 cos2

[π
2

(∆− 2∆φ)
] (

z
1−z

)2∆φ

G∆(1− z) . (5.17)

The sought-after function must also be bounded (but not necessarily super-bounded) in

the Regge limit. The answer is given in terms of exchange Witten diagrams with external

fermionic propagators of dimension ∆φ and internal scalar propagator of dimension ∆. We

will denote the s-channel diagram as V
(s)

∆ (z). In fact, V
(s)

∆ (z) is equal to the standard

bosonic exchange diagram with the external dimension shifted by +1/2, see [45]

V
(s)

∆,∆φ
(z) = W

(s)

∆,∆φ+ 1
2

(z) . (5.18)

This relation also makes it clear that the s-channel OPE of V
(s)

∆ (z) contains the single-trace

block G∆(z) (with coefficient one) as well as the fermionic double-traces of dimensions

∆F
n = 2∆φ + 2n + 1, n = 0, 1, . . .. It also follows from the above relation and the known

Regge behaviour of bosonic exchanges that z−2∆φV
(s)

∆ (z) = O(z−1) as z → i∞, which is

therefore Regge-bounded. The t- and u-channel diagrams are obtained from the s-channel

diagram by crossing transformations

V
(t)

∆,∆φ
(z) = sgn

(
z

1−z

) ∣∣∣ z
1−z

∣∣∣2∆φ

V
(s)

∆,∆φ
(1− z) =

(
z

1−z

)−1
W

(t)

∆,∆φ+ 1
2

(z)

V
(u)

∆,∆φ
(z) = −sgn (z) |z|2∆φ V

(s)
∆,∆φ

(
1
z

)
= −z−1W

(u)

∆,∆φ+ 1
2

(z) .
(5.19)
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In particular z−2∆φV
(t)

∆ (z) = O(z−1) and z−2∆φV
(u)

∆ (z) = O(z−1) as z → i∞ and so are

both bounded there.

These results make it clear that the sought-after function is

PF
∆(z) = V

(s)
∆ (z) + V

(t)
∆ (z) + V

(u)
∆ (z) . (5.20)

We will call it the fermionic Polyakov block. No contact diagram correction is needed since

PF
∆(z) is automatically Regge-bounded. In fact, no Regge-bounded contact diagram exists

since the simplest non-vanishing bulk vertex with four fermions has two derivatives. The

OPE decomposition of the fermionic Polyakov blocks takes the form

PF
∆(z) = G∆(z)−

∞∑
n=0

[
αF
n(∆)G∆F

n
(z) + βF

n (∆)∂G∆F
n
(z)
]
. (5.21)

The principal series coefficient function Ih of PF
∆(z) will be denoted IF(h; ∆|∆φ). It can

be computed using the fermionic version of the Lorentzian inversion formula as follows

IF(h; ∆|∆φ) = 4 cos2
[π

2
(∆− 2∆φ)

] 1∫
0

dzz−2HF
h (z)

(
z

1−z

)2∆φ

G∆(1− z) . (5.22)

In order to compute the OPE coefficients αF
n(∆) and βF

n (∆), let us define the residues of

the fermionic inversion kernel ĤF
n,1(z), ĤF

n,2(z) as follows

HF
h (z)

Kh

h→∆F
n=

ĤF
n,2(z)

(h−∆F
n)2

+
ĤF
n,1(z)

h−∆F
n

+ finite . (5.23)

The OPE coefficients then read

αF
n(∆) = 2 cos2

[π
2

(∆− 2∆φ)
] 1∫

0

dzz−2 ĤF
n,1(z)

(
z

1−z

)2∆φ

G∆(1− z)

βF
n (∆) = 2 cos2

[π
2

(∆− 2∆φ)
] 1∫

0

dzz−2 ĤF
n,2(z)

(
z

1−z

)2∆φ

G∆(1− z) .

(5.24)

In the special case ∆φ ∈ N − 1
2 , αF

n(∆) receives an extra contribution from the discrete

series, meaning we should make the following replacement in the above formula

ĤF
n,1(z) 7→ ĤF

n,1(z)− 2Γ(∆F
n)4

π2Γ(2∆F
n)Γ(2∆F

n − 1)
G∆F

n
(z) for ∆φ ∈ N− 1

2
. (5.25)

5.3 Explicit results for the coefficient function

The Lorentzian inversion integrals (5.9) and (5.22) for IB(h; ∆|∆φ) and IF(h; ∆|∆φ) can be

evaluated explicitly in the cases where the full inversion kernel is known, i.e. for ∆φ ∈ N in

the bosonic case and ∆φ ∈ N− 1
2 in the fermionic case. Firstly, recall from (4.5) and (4.11)

that both HB
∆(z) and HF

∆(z) always contain the term

2π

sin(π∆)

(
z

1−z

)−2∆φ+2
p∆

(
z
z−1

)
, (5.26)

– 25 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
2

leading to the following term in IB,F(h; ∆|∆φ) (for the above discrete values of ∆φ)

IB,F(h; ∆|∆φ) ⊃
8π sin2

(
π∆
2

)
sin(πh)

1∫
0

dzz−2ph
(
z−1
z

)
G∆(z)

= −
8π sin2

(
π∆
2

)
sin(πh)

Γ(2∆)

Γ(∆)2

1

(h−∆)(h+ ∆− 1)
.

(5.27)

The integral gives a simple answer since p∆

(
z−1
z

)
and G∆(z) are both eigenfunctions of

the s-channel Casimir. This term reproduces correctly the single-trace pole at h = ∆ and

is very similar to the coefficient function of the full s-channel exchange diagram W
(s)
∆ (z).

The latter takes the following form for general (i.e. not only integer) ∆φ

I(s)
B (h; ∆|∆φ) = −

(
h+1

2

)2
∆φ−1

(
1− h

2

)2
∆φ−1(

∆+1
2

)2
∆φ−1

(
1− ∆

2

)2
∆φ−1

8π sin2
(
π∆
2

)
sin(πh)

Γ(2∆)

Γ(∆)2

1

(h−∆)(h+ ∆− 1)
,

(5.28)

where (x)y = Γ(x+y)
Γ(x) , i.e. it only differs from the expression in (5.27) by the ratio of

Pochhammer symbols in front. The prefactor is necessary to remove poles at h = 2∆φ −
2, 2∆φ−4, . . .. As stated in the previous subsection, the fermionic s-channel Witten diagram

V
(s)

∆ (z) is obtained from W
(s)
∆ (z) by a shift in ∆φ

I(s)
F (h; ∆|∆φ) = I(s)

B (h; ∆|∆φ + 1/2) , (5.29)

meaning (5.27) precisely agrees with the fermionic s-channel diagram for ∆φ = 1
2 .

The remaining contributions to (4.5) and (4.11) must reproduce the rest of the Polyakov

blocks, i.e. the coefficient functions of the crossed-channel exchange diagrams (together with

a contact term in the bosonic case), as well as the difference between the s-channel diagram

and (5.27). The contribution of the first term in the square brackets in (4.5) and (4.11)

can be evaluated using the general formula

1∫
0

dz ph(z)
G∆(1− z)

(1− z)2∆φ
=

Γ(2∆)

Γ(∆)2
s(h; ∆|∆φ) (5.30)

where

s(h; ∆|∆φ) =
Γ(∆)2Γ(∆− 2∆φ + 1)2

Γ(2∆)Γ(∆− h− 2∆φ + 2)Γ(∆ + h− 2∆φ + 1)

× 4F3

(
∆,∆,∆− 2∆φ + 1,∆− 2∆φ + 1

2∆,∆− h− 2∆φ + 2,∆ + h− 2∆φ + 1
; 1

)
.

(5.31)

Putting the contributions together, we find

IB(h; ∆|∆φ) =
8π sin2

(
π∆
2

)
sin(πh)

Γ(2∆)

Γ(∆)2

[
− 1

(h−∆)(h+ ∆− 1)

+ s(h; ∆|∆φ) + rB(h; ∆|∆φ)

]
for ∆φ ∈ N

(5.32)
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and

IF(h;∆|∆φ) =
8π sin2

(
π∆
2

)
sin(πh)

Γ(2∆)

Γ(∆)2

[
− 1

(h−∆)(h+∆−1)

−s(h;∆|∆φ)−rF(h;∆|∆φ)

]
for ∆φ ∈N−

1

2
.

(5.33)

Here rB,F(h; ∆|∆φ) are the contributions of the last term in the square bracket in (4.5)

and (4.11). rB,F(h; ∆|∆φ) are polynomials in h and rational functions in ∆ whose com-

plexity increases with increasing ∆φ. For example

rB(h; ∆|1) = 0

rB(h; ∆|2) = −
2
(
∆4 − 2∆3 − 6∆2 + 7∆ + 4

)
(∆− 3) (∆− 2) (∆− 1) ∆ (∆ + 1) (∆ + 2)

rF(h; ∆|1/2) = 0

rF(h; ∆|3/2) =
2h2 − 2h− 1

(∆− 2)(∆− 1)∆(∆ + 1)
.

(5.34)

Formulas for rB,F(h; ∆|∆φ) for higher values of ∆φ are included in an attached Mathematica

notebook. We have verified that the OPE decomposition following from (5.32) and (5.33)

agrees with that of the crossing-symmetrized exchange diagrams in AdS2.17

In the future, it would be useful to find closed formulas for the coefficient functions

IB,F(h; ∆|∆φ) for general ∆φ. Optimistically, they should be expressible in terms of gener-

alized hypergeometric functions pFp−1(. . . ; 1) with p = 4 or higher. This is what happens

for the crossed-channel Witten diagrams in d = 2, 4, as shown in [47]. Furthermore, the

residues of these coefficient functions at the double-traces appear to be expressible as gen-

eralized hypergeometric functions in general spacetime dimension [48, 49].

6 Polyakov bootstrap and extremal functionals

6.1 Polyakov’s approach to the conformal bootstrap

In the usual approach to the conformal bootstrap, one starts from the existence of OPE

which contains only physical operators,18 and imposes crossing symmetry as a constraint

on the CFT data. There exists an alternative approach going back to Polyakov’s work [4]

and recently revived in [33–35], where in some sense the reverse is done. Specifically, one

postulates the existence of universal (i.e. theory-independent) functions P∆,J(z, z̄) which

are crossing-symmetric

P∆,J(z, z̄) =
[

zz̄
(1−z)(1−z̄)

]∆φ

P∆,J(1− z, 1− z̄) = (zz̄)∆φ P∆,J

(
1
z ,

1
z̄

)
, (6.1)

and which have the property that if one takes the OPE expansion of a four-point function (of

identical scalars for simplicity), and replaces the conformal blocks G∆,J(z, z̄) by P∆,J(z, z̄),

17We thank Xinan Zhou for providing us with a draft of [46] to facilitate some of the checks.
18I.e. only elements of the Hilbert space of the theory on Sd−1.
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one gets the same answer

G(z, z̄) =
∑
O∈φ×φ

(cφφO)2G∆O,JO(z, z̄)
?
=

∑
O∈φ×φ

(cφφO)2P∆O,JO(z, z̄) . (6.2)

It is not a priori clear whether such functions P∆,J(z, z̄) indeed exist. We will refer to

these hypothetical functions as the Polyakov blocks. It has been proposed that P∆,J(z, z̄)

exist and are equal to the sum of the s-, t- and u-channel Witten diagrams, supplemented

by appropriate contact terms [34, 35, 50]. However, no universal prescription for fixing

the contact terms or a general proof of consistency of this approach has been presented.

The OPE expansion of P∆,J(z, z̄) then contains the single-trace conformal block G∆,J(z, z̄)

together with double-trace contributions. The conformal bootstrap constraints are pre-

cisely the requirement that these unphysical double-trace contributions cancel out after

performing the sum over physical operators in (6.2). Recent literature on the Polyakov

bootstrap has used Mellin-space techniques to extract the bootstrap equations. However,

the meaning of the Polyakov bootstrap can be stated without making reference to Mellin

space, as we have just done.

Despite several successful (perturbative) applications of the Polyakov bootstrap in

recent literature, its status remains somewhat unclear. In particular, one can ask the

following questions

1. Do Polyakov blocks P∆,J(z, z̄) with the above properties really exist?

2. If so, how does one fix the contact-term ambiguity?

3. What is the relationship of the Polyakov bootstrap to the standard bootstrap, where

physical OPE is manifest and crossing serves as the constraint?

4. Does the approach make sense non-perturbatively or is it inherently perturbative?

These questions were answered in companion work [36] in the sl(2,R) setting using the

framework of analytic bootstrap functionals. In the following, we will answer them also in

the sl(2,R) setting using the closely-related inversion formula of this note. We will explain

the connection between the inversion formula and the functional bootstrap along the way.

The short answers to the above questions are that the sl(2,R) Polyakov blocks exist

and are equal to the Polyakov blocks discussed in the previous section, i.e. to the Lorentzian

inverse of individual t-channel conformal blocks. This means the inversion formula fixes

the contact terms. The resulting bootstrap equations are valid non-perturbatively and are

equivalent to the standard crossing equation. We will now present a detailed proof of these

claims. The basic idea is that inserting the t-channel OPE into the Lorentzian inversion

formula provides the required expansion into Polyakov blocks.

6.2 The argument

We work in the fermionic setting for simplicity since then the inversion formula (3.9) applies

to all unitary four-point functions, and not just those super-bounded in the Regge limit

as in the bosonic case. This will be amended in 6.5 when we correct the bosonic inversion
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formula so that it applies to all unitary four-point functions. Since all objects of this and

the following subsection will pertain to the fermionic case, we drop the F sub-/super-scripts

to simplify notation.

As in the rest of this note, suppose that G(z) is a four-point function of identical sl(2,R)

primaries in a unitary theory. It is given for z ∈ (0, 1), where it has the following OPE

G(z) =
∑
O∈φ×φ

(cφφO)2G∆O(z) . (6.3)

Let us define G(z) for all z ∈ R using the fermionic extension (2.35).

In order for the coefficient function Ih to be well-defined, G(z) should be normalizable

with respect to the scalar product (2.22). Physical four-point functions are often not

normalizable due to the presence of low-lying operators in the OPE. It is easy to check

that normalizability at z = 0 requires ∆O >
1
2 and normalizability at z = 1 requires ∆O >

2∆φ− 1
2 for all O ∈ φ×φ. In particular, the identity operator makes G(z) non-normalizable.

Appendix B.2 of reference [12] explains how to deal with non-normalizable contributions in

the D > 1 inversion formula. However, their regularization breaks crossing symmetry and

thus is not useful for us. Instead, we can regulate the four-point function by subtracting the

(finitely many) fermionic Polyakov blocks of the non-normalizable operators. Let us define

Greg(z) ≡ G(z)−
∑

0≤∆O≤∆∗

(cφφO)2P∆O(z) , (6.4)

where ∆∗ = max(1
2 , 2∆φ − 1

2). It is not hard to see that the fermionic Polyakov block of

the identity operator is simply the mean-field theory four-point function

P0(z) = 1− sgn
(

z
z−1

) ∣∣∣ z
z−1

∣∣∣2∆φ

− sgn(z)|z|2∆φ . (6.5)

Greg(z) is crossing-symmetric, Regge-bounded and normalizable.19

We can use the Euclidean inversion formula to compute the coefficient function

of Greg(z)

Ireg
h =

∞∫
−∞

dzz−2 Ψh(z)Greg(z) . (6.6)

The integral converges to a meromorphic function of h in the strip centered at the principal

series 1−∆0 < Re(h) < ∆0, where ∆0 is the leading scaling dimension present in the OPE

of Greg(z).20 In order to find the analytic continuation of Ireg
h to general complex h, we

need to start instead from the Lorentzian inversion formula

Ireg
h = 2

1∫
0

dzz−2Hh(z)dDisc[Greg(z)] . (6.7)

19In fact, normalizability is only guaranteed for ∆φ >
1
4

since otherwise the double-trace contributions

of the subtracted Polyakov block are themselves non-normalizable at z = 0. Although we believe all the

important conclusions of this section hold also for ∆φ ∈ (0, 1
4
], our argument only applies for ∆φ >

1
4

for

the above reason.
20The only possible poles in this strip are the poles of Ψh(z) at h = 1, 3, . . . and their shadow poles. The

former cancel in the combination Ih/Kh which gives rise to the OPE.
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The double discontinuity can be expanded using the t-channel OPE

dDisc[Greg(z)] = 2
∑

∆O>∆∗

(cφφO)2 cos2
[π

2
(∆O − 2∆φ)

] (
z

1−z

)2∆φ

G∆O(1− z) . (6.8)

Note that the integral (6.7) never has a divergence coming from the z = 0 endpoint. This

is because Hh(z) = O(z2) and dDisc[Greg(z)] ≤ dDisc[G(z)] ≤ G(z) = O(z0). On the other

hand, the integral diverges at the z = 1 unless 1 − ∆0 < Re(h) < ∆0 because of the

power-law singularity of Hh(z) there, see (5.15).

In other words, the Euclidean and Lorentzian integrals (6.6) and (6.7) converge in

the same region of complex h. The advantage of the Lorentzian integral is that it can be

expanded using the t-channel OPE. Indeed, the dominated convergence theorem guarantees

that the Lorentzian integral can be commuted with the t-channel OPE (6.8) whenever the

integral converges. For the theorem to apply, it is crucial that (6.8) gives dDisc[Greg(z)] as

a sum of positive terms. Commuting the sum and integral gives

Ireg
h =

∑
∆O>∆∗

(cφφO)2 I(h; ∆O|∆φ) , (6.9)

where I(h; ∆O|∆φ) is the coefficient function of the fermionic Polyakov block of exchanged

dimension ∆O, discussed in the previous section and given by (5.22). We can now add

back the Polyakov blocks that we subtracted to make G(z) normalizable. We find G(z) is

described by the coefficient function

Ih =
∑
O∈φ×φ

(cφφO)2 I(h; ∆O|∆φ) , (6.10)

where the sum runs over all primary operators in the OPE. As a function of h, I(h; ∆|∆φ)

is meromorphic with a simple pole at the single-trace dimension h = ∆, double poles at

the double-trace dimensions h = ∆n = 2∆φ + 2n+ 1, as well as all the shadow poles (there

are also the unphysical poles of Ψh(z) described in footnote 20).

The argument so far shows that the sum (6.10) converges in the region 1 − ∆0 <

Re(h) < ∆0 away from poles of the individual terms to a meromorphic function of h. Let

S be the union of the locations of poles in h of all terms appearing in the sum (6.10). S is

a subset of the real axis with no accumulation point (besides h =∞). We will now proceed

to show that (6.10) in fact converges for all h ∈ C\S. For that, we need to understand the

behaviour of I(h; ∆|∆φ) for large real ∆ and general h ∈ C. In this regime, we can use the

convergent integral representation (5.22), which we reproduce here for convenience

I(h; ∆|∆φ) = 4 cos2
[π

2
(∆− 2∆φ)

] 1∫
0

dzz−2Hh(z)
(

z
1−z

)2∆φ

G∆(1− z) . (6.11)

As ∆→ +∞ along the real axis, the integral is dominated by the region z � 1. We have

seen that Hh(z) ∼ a(∆φ, h)z2 as z → 0, where a(∆φ, h) is a known function holomorphic

for C\S. The integral can be evaluated using the saddle-point method, giving

I(h; ∆|∆φ)
∆→+∞∼ a(∆φ, h)

2Γ(2∆φ + 1)2

√
π

cos2
[π

2
(∆− 2∆φ)

]
22∆∆−4∆φ− 3

2 . (6.12)
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Crucially, the dependence on h completely factorizes as ∆ → ∞ and enters only through

the prefactor a(∆φ, h).

We already know the sum (6.10) converges for |Re(h) − 1
2 | < ε, but now we see that

changing h to a general complex value will not alter the convergence of the tail of the

sum, since the h-dependence entirely factorizes from the leading ∆-dependence for ∆ � 1.

Therefore, (6.10) converges for all h ∈ C\S. In fact, the upper bound on the OPE data

proved in [36] implies that the tail of the sum (6.10) for a general unitary solution to

crossing is bounded by its value in the generalized free boson (times a constant). In the

later case we have

(cφφO)2 ∼ 8
√
π

Γ(2∆φ)2
2−2∆O∆

4∆φ− 3
2

O (6.13)

as ∆O → ∞. Together with (6.12), this implies that at large ∆, the contribution of

operators in (6.10) with ∆O ∈ [∆− 1,∆ + 1] is bounded by cos2
[
π
2 (∆− 2∆φ)

]
∆−3 times

an h-dependent constant. This in turn implies that the error one would make by truncating

the sum (6.10) to operators with ∆O ≤ ∆max is always O(∆−2
max).

It follows immediately that (6.10) converges uniformly in h on any compact subset

of C\S. Since a uniform limit of holomorphic functions is holomorphic, we conclude

that (6.10) gives Ih as a function holomorphic in C\S.

6.3 Sum rules

The argument of the previous subsection showed that the coefficient function Ih can be

written as a convergent sum of coefficient functions of the fermionic Polyakov blocks as

in (6.10). All the poles of Ih come entirely from poles of the individual terms I(h; ∆O|∆φ).

Furthermore, the residue of Ih at a pole h0 is equal to the sum of residues of I(h; ∆O|∆φ)

(times the OPE coefficients) at h0. The operation of taking a residue commutes with the

infinite sum because it can be expressed as a contour integral of a sum which converges

uniformly along the contour. The individual term I(h; ∆O|∆φ) contributes two kinds

of poles. First, this is the simple pole at h = ∆O with the right residue to precisely

reproduce the operator O in the s-channel. Second, there are the double poles at double-

trace dimensions ∆n = 2∆φ + 2n + 1. Consistency with the s-channel OPE requires that

Ih has no singularity at these locations. This is only possible if the coefficient of both the

single and double pole at ∆n cancels out for all n = 0, 1, . . . when summed over all O in

the OPE.

In order to write down the resulting sum rules on the OPE data, recall the OPE

decomposition of the fermionic Polyakov block P∆(z)

P∆(z) = G∆(z)−
∞∑
n=0

[αn(∆)G∆n(z) + βn(∆)∂G∆n(z)] , (6.14)

where αn(∆) and βn(∆) are computed from the inversion formula in (5.24). The equations
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expressing the cancellation of the double-trace poles in Ih read∑
O∈φ×φ

(cφφO)2 αn(∆O) = 0 for n = 0, 1, . . .

∑
O∈φ×φ

(cφφO)2 βn(∆O) = 0 for n = 0, 1, . . . .
(6.15)

What we have derived is that these equations must hold for the OPE data of every uni-

tary and crossing-symmetric four-point function G(z). In the language of the Polyakov

bootstrap in Mellin space, the first and second line in (6.15) express respectively the can-

cellation of the coefficient of the simple and double pole of the Mellin amplitude at the

double-trace dimensions.

The equations hold even if there is a physical operator present in the OPE which sits

precisely at a double-trace scaling dimension. The reason is that in that case the operator

is still reproduced by the first term in (6.14) and the square bracket gives a spurious

contribution. For the same reason, the sums in (6.15) should include all primary operators

present in the OPE, including those precisely at double-trace dimensions.

One may wonder how fast the sums in (6.15) converge to zero. The answer is the

same as for the rate of convergence of (6.10) for a generic value of h. Namely, if we

truncate the sums to operators with ∆O ≤ ∆max, the sums are O(∆−2
max). We stress that

for (6.15) to hold it is crucial that G(z) is bounded in the Regge limit. This is of course

automatic if G(z) has a standard OPE decomposition into conformal blocks with positive

coefficients. In more general cases, such as in perturbative AdS theory where the OPE

contains also derivatives of conformal blocks, we find that (6.15) still hold as long as G(z)

is Regge-bounded.

The functions αn(∆) and βn(∆) are in general quite complicated. Nevertheless, they

have a very simple behaviour when ∆ approaches the double-trace dimensions. Recall from

section 5 that P∆(z) is the unique crossing-symmetric and Regge-bounded function whose

dDisc agrees with dDisc of the t-channel conformal block of dimension ∆. The latter

dDisc has a second-order zero at every double-trace dimension. Since the zero function

is crossing-symmetric, Regge bounded and has a zero dDisc, also P∆(z) should have a

second-order zero at all double-trace dimensions21

P∆n(z) = 0 , ∂∆P∆n(z) = 0 for n = 0, 1, . . . . (6.16)

Looking back at (6.14), these equations imply the following properties of the coefficients

αn(∆) and βn(∆) on the double-trace dimensions

αn(∆m) = δnm , ∂∆αn(∆m) = 0

βn(∆m) = 0 , ∂∆βn(∆m) = δnm ,
(6.17)

where n,m ∈ N≥0. In other words, βn(∆) has double zeros as a function of ∆ on all the

double traces except at ∆ = ∆n, where it has a simple zero with unit derivative. Similarly,

21dDisc of a t-channel conformal block has double zeros also at ∆ = ∆n for n negative. Our argument

only applies for non-negative n since P∆(z) is not normalizable for ∆ < 2∆φ − 1/2.
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αn(∆) has double zeros on all the double traces except at ∆ = ∆n, where it equals one

and has vanishing derivative.

As a final remark, note that we have not actually proven that the four-point function

G(z) can be written as a sum of the Polyakov blocks since all our arguments took place at

the level of the coefficient function. Indeed, in order to show that (6.14) and (6.15) imply

G(z) =
∑
O∈φ×φ

(cφφO)2P∆O(z) , (6.18)

we need to commute the infinite sums over n and O in∑
O∈φ×φ

∞∑
n=0

(cφφO)2 [αn(∆)G∆n(z) + βn(∆)∂G∆n(z)]
?
= 0. (6.19)

The argument that this is indeed possible is rather technical and is explained in section 6

of the companion work [36] to which we refer the reader for details.

6.4 Relationship to the analytic extremal functionals

In the usual approach to the conformal bootstrap, one starts from the OPE (6.3) and

derives constraints on the spectrum and OPE coefficients by imposing crossing∑
O∈φ×φ

(cφφO)2F∆O(z) = 0 , (6.20)

where

F∆(z) ≡ z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) . (6.21)

Sum rules satisfied by the OPE coefficients can be derived by applying linear functionals

ω to (6.20) ∑
O∈φ×φ

(cφφO)2ω[F∆O ] = 0 . (6.22)

ω must take finite values on all F∆(z) for ∆ ≥ 0, and must be swappable with the infinite

sum over operators in (6.20), see [38, 41] for a detailed discussion of the swapping condition.

The Polyakov bootstrap equations (6.15) also take the form of a sum rule on (cφφO)2

weighted by a nontrivial function of ∆O. Therefore, we can derive (6.15) from the standard

crossing equation provided we can construct linear functionals αF
n and βF

n for n ∈ N≥0

such that
αF
n [F∆] = αF

n(∆)

βF
n [F∆] = βF

n (∆)
(6.23)

for ∆ ≥ 0. By a slight abuse of notation, αF
n and βF

n on the l.h.s. stand for the linear

functional, whereas the same symbols on the r.h.s. stand for the functions entering the

OPE decomposition of the fermionic Polyakov blocks.

It turns out that linear functionals αF
n and βF

n indeed exist. βF
0 is the extremal func-

tional for the maximization of the gap in sl(2,R)-invariant solutions to crossing, constructed

in [37, 38]. The remaining functionals, as well as their counterparts for the bosonic case
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were constructed in [36]. Below, we will quickly review the construction and show how it

can be understood using our inversion formula.

The linear functionals of [36–38] are each determined by a weight-function f(z). Their

action on a general function F(z) looks as follows

ωf [F ] =
1

2

1
2

+i∞∫
1
2

dzf(z)F(z)±
1∫

1
2

dz (1− z)2∆φ−2f
(

z
z−1

)
F(z) , (6.24)

where here and in following the upper, lower sign applies in the bosonic, fermionic cases

respectively. f(z) must be holomorphic in the complex plane away from a branch cut at

z ∈ [0, 1]. ωf defines a consistent functional which can be swapped with the OPE sum if

and only if

f(z) = O(z−1−ε) (6.25)

as z → ∞ for some ε > 0. Furthermore, for the construction to work, f(z) should be

symmetric under crossing

f(z) = f(1− z) (6.26)

and should satisfy the following functional equation

z2∆φ−2f
(

1
z

)
+ (1− z)2∆φ−2f

(
1

1−z

)
± f(z + iε) + f(z − iε)

2
= 0 (6.27)

for z ∈ (0, 1). Under these assumptions, the functional action on the bootstrap vec-

tors (6.21) can be simplified as follows

ω[F∆] = ±
1∫

0

dzz−2f
(

1
z

)
dDiscB,F

[
G

(t)
∆ (z)

]
, (6.28)

or more explicitly

ωf [F∆] = +2 sin2
[π

2
(∆− 2∆φ)

] 1∫
0

dzz−2f
(

1
z

) (
z

1−z

)2∆φ

G∆(1− z)

ωf [F∆] = −2 cos2
[π

2
(∆− 2∆φ)

] 1∫
0

dzz−2f
(

1
z

) (
z

1−z

)2∆φ

G∆(1− z) ,

(6.29)

where the first, second line corresponds to the bosonic, fermionic case respectively. Let

us compare these formulas with the expressions for the OPE coefficients of bosonic and

fermionic Polyakov blocks (5.12) and (5.24). Clearly, they take the same form, with f(z)

related to the residues of the Lorentzian inversion kernel at the appropriate double trace

dimension. Specifically, to construct the functionals αB
n , βB

n computing the OPE expansion

of the bosonic Polyakov blocks, we should take (for ∆φ /∈ N)

αB
n : f(z) = ĤB

n,1

(
1
z

)
βB
n : f(z) = ĤB

n,2

(
1
z

)
,

(6.30)
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where ĤB
n,1(z) and ĤB

n,2(z) are defined from the bosonic inversion kernel in equation (5.11).

When ∆φ ∈ N, the above formula needs to be corrected by the contribution of the dis-

crete series

αB
n : f(z) = ĤB

n,1

(
1
z

)
− 2Γ(∆B

n )4

π2Γ(2∆B
n )Γ(2∆B

n − 1)
G∆B

n

(
1
z

)
βB
n : f(z) = ĤB

n,2

(
1
z

)
.

(6.31)

Similarly, in the fermionic case we find for ∆φ /∈ N− 1
2

αF
n : f(z) = −ĤF

n,1

(
1
z

)
βF
n : f(z) = −ĤF

n,2

(
1
z

)
,

(6.32)

and for ∆φ ∈ N− 1
2

αF
n : f(z) = −ĤF

n,1

(
1
z

)
+

2Γ(∆F
n)4

π2Γ(2∆F
n)Γ(2∆F

n − 1)
G∆F

n

(
1
z

)
βF
n : f(z) = −ĤF

n,2

(
1
z

)
.

(6.33)

with ĤF
n,1(z) and ĤF

n,2(z) defined in (5.23).

The connection to the Lorentzian inversion formula gives an alternative explanation

why f(z) satisfies the constraints (6.26), (6.27). Indeed (6.26) follows immediately from

the symmetry of the inversion kernels under z 7→ z
z−1 , i.e. equation (3.15). The three-term

identity (6.27) follows from the functional equation (3.18) satisfied by HB,F
∆ (z) in order for

the Euclidean and Lorentzian inversion formulas to be compatible. Now, HB,F
∆ (z) satisfies

the identity with a nonzero r.h.s. Recall that f
(

1
z

)
is proportional to the residues of HB,F

∆ (z)

at ∆ = ∆B,F
n . Since the r.h.s. of (3.18) is finite at these values of ∆, we can derive the

identity for f(z) from the identity for HB,F
∆ (z) by taking the residues of the latter at the

double-trace dimensions.

Since the fermionic inversion kernel satisfies HF
∆(z) = O(z2) as z → 0, the resulting

f(z) will have the asymptotic behaviour (6.25), necessary for the functional to satisfy the

swapping condition. On the other hand, the bosonic inversion kernels HB
∆(z) = O(z0) as

z → 0, which is in general not enough for the swapping condition to be satisfied. This is

equivalent to saying that the bosonic inversion formula with kernel HB
∆ only holds for super-

bounded four-point functions. In the next subsection, we will amend this shortcoming.

We have explained how the Polyakov bootstrap equations are a consequence of the

standard crossing equation. One may wonder whether one can also go in the opposite

direction and show that whenever a set of putative OPE data {∆O, (cφφO)2}O∈φ×φ satis-

fies (6.15) for all n ∈ N≥0, then it automatically leads to a crossing-symmetric four-point

function. The answer is affirmative, as proven in section 6 of [36].

6.5 Improved bosonic inversion formula

We will now complete the picture by deriving a Lorentzian inversion formula for the bosonic

case which applies to general Regge-bounded four-point functions, and not just the super-

bounded ones.
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Recall that the Regge behaviour of the four-point function is detected by the z →
0 limit of the Lorentzian inversion kernel. In particular, to have an inversion formula

for the bosonic case which applies to all Regge-bounded correlators, we must make sure

H∆(z) = O(z2) as z → 0, while HB
∆(z) of section 4 only satisfies the weaker constraint

HB
∆(z) = O(z0). We will construct H∆(z) by starting with HB

∆(z) and subtracting from

it a correcting function Hcor
∆ (z) such that H∆(z) = HB

∆(z) − Hcor
∆ (z) = O(z2) as z → 0.

The resulting kernel H∆(z) still needs to satisfy the symmetry condition (3.15) and the

functional equation (3.18). This means that Hcor
∆ (z) must satisfy the same symmetry

condition, and also the functional equation with zero r.h.s. We have seen examples of

functions satisfying these constraints in the previous subsection. These are the coefficients

of the double or simple pole of HB
∆(z) at double-trace ∆, which we denoted ĤB

n,2(z) and

ĤB
n,1(z) and defined in (5.11). We will work with ĤB

0,2(z), i.e. the coefficient of the double

pole at ∆ = 2∆φ, for simplicity. Its expansion for z → 0 starts with

ĤB
0,2(z) =

4Γ(∆φ)2Γ
(
2∆φ − 1

2

)
π3/2Γ(2∆φ)Γ

(
∆φ − 1

2

)2 +O(z2) . (6.34)

Therefore we should set

H∆(z) ≡ HB
∆(z)−

π222(∆φ−1)Γ
(
∆φ + 1

2

)
Γ(∆φ)3Γ

(
2∆φ − 1

2

) Γ
(
∆φ − ∆

2

)2
Γ
(
∆φ − 1−∆

2

)2
Γ
(
1− ∆

2

)2
Γ
(
1− 1−∆

2

)2 2π

sin(π∆)
ĤB

0,2(z) ,

(6.35)

where we used the series expansion of HB
∆(z) given in (4.8) to guarantee H∆(z) = O(z2).

While the subtraction of ĤB
0,2(z) cured the behaviour of the inversion kernel as z → 0,

it introduced a new singularity at z → 1. Indeed, it follows from (5.15) that

ĤB
0,2(z)

z→1∼ 2

π2

1

1− z
. (6.36)

This singularity implies that the Lorentzian inversion integral which uses H∆(z) as the

kernel would diverge if there were primary operators O with ∆O < 2∆φ contributing to

dDisc via the t-channel OPE. We can cure this problem as before by subtracting from

G(z) the finitely many bosonic Polyakov blocks of operators with ∆O ∈ [0, 2∆φ) to get the

regularized correlator Greg(z). However, this introduces additional double-trace contribu-

tions in the OPE. Although these do not contribute to the double discontinuity, they can

contribute in the intermediate steps relating the Euclidean and Lorentzian inversion for-

mula. Keeping track of the extra terms, we find that the correct answer for the coefficient

function is

Ireg
∆ = 2

1∫
0

dzz−2H∆(z)dDiscB[Greg(z)]

+ lim
ε→0

∫
C+
ε

dzz−2H∆(z)Greg(z) + lim
ε→0

∫
C−ε

dzz−2H∆(z)Greg(z) ,

(6.37)

where C±ε are semicircular contours of radius ε going from z = 1 + ε to z = 1− ε above and

below the real axis respectively. Greg(z) in the last two terms is the analytic continuation

of Greg(z) from the region z ∈ (1,∞).
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As a special case, we can apply this formula to the scalar contact diagram in AdS2

with no derivatives to find its coefficient function. The diagram is crossing-symmetric

and bounded in the Regge limit. Therefore the formula applies to it and the first term

vanishes since the double discontinuity of the contact diagram vanishes. Therefore, the

entire coefficient function comes from the infinitesimal contour integrals. These integrals

in turn only receive a contribution from the simple pole of H∆(z) at z = 1, which is

entirely due to the second term in (6.35). The integrals are only sensitive to the anomalous

dimension of the leading double-trace γ0 in the contact diagram, which therefore normalizes

the whole diagram. The result is

Icontact
∆ = −

2π5/2Γ(2∆φ)

Γ(∆φ)4Γ
(
2∆φ − 1

2

) Γ
(
∆φ − ∆

2

)2
Γ
(
∆φ − 1−∆

2

)2
Γ
(
1− ∆

2

)2
Γ
(
1− 1−∆

2

)2 2π

sin(π∆)
× γ0 , (6.38)

which agrees with the correct answer.

Let us now apply the inversion formula (6.37) to a general physical four-point function

and expand it in the t-channel. It is not hard to check that analogously to the fermionic

result (6.10), we get

Ih =
∑
O∈φ×φ

(cφφO)2 I(h; ∆O|∆φ) , (6.39)

where

I(h; ∆O|∆φ) = IB(h; ∆O|∆φ)− λ(∆O; ∆φ)Icontact
h , (6.40)

and λ(∆O; ∆φ) is chosen such that I(h; ∆O|∆φ) exhibits no double pole at h = 2∆φ. The

reason is that the second term in the improved inversion kernel (6.35) makes the double

pole of HB
∆(z) at ∆ = 2∆φ into a simple pole.

This means that all the main conclusions derived in the fermionic case in 6.2 and 6.3 are

still valid in the bosonic case provided we use the following definition of bosonic Polyakov

blocks: they are the crossing-symmetric sum of exchange Witten diagrams in the s-, t-

and u-channel plus the non-derivative scalar contact diagram whose coefficient is chosen

to precisely cancel the term ∂∆G2∆φ
(z) in the conformal block expansion of the sum of

exchange diagrams.

This definition is not canonical as we could have chosen a different ĤB
n,2(z) or ĤB

n,1(z) to

improve the z → 0 behaviour of the inversion kernel. This would lead to a definition of the

bosonic Polyakov blocks where the contact diagram is chosen to cancel any single double-

trace conformal block or its ∆-derivative. Any such definition would give a set of sum

rules which are entirely equivalent to the standard crossing equation for Regge-bounded

four-point function [36].

7 Discussion and open questions

The main result of this note is a Lorentzian inversion formula for the decomposition of

conformal four-point functions into the principal series of the 1D conformal group. The

formula expresses the coefficient function I∆ as an integral of the double discontinuity of

the correlator times an inversion kernel H∆(z). It is analogous to the Lorentzian inversion

formula of Caron-Huot [11], which applies to the principal series of the conformal group in

more than one dimension.
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The formula of this note was derived by a contour deformation from the Euclidean

inversion formula. The contour-deformation argument is valid only for Regge-bounded

four-point functions of identical bosons or fermions. The argument does not yield an

explicit formula for H∆(z) but only a functional equation that H∆(z) must satisfy in order

for the Lorentzian and Euclidean formulas to agree. A closed-form solution for H∆(z) was

presented in a number of cases. The functional equation and therefore also H∆(z) depend

on the external dimension ∆φ in a rather nontrivial way. This is a price we need to pay

for having a formula which manifests crossing symmetry, since the latter is a non-trivial

property whose form also depends on ∆φ.

The inversion formula manifests crossing symmetry in the following sense. We can ap-

ply it to a crossing-symmetric four-point function, and expand the latter into t-channel con-

formal blocks inside the formula. When applied to an individual t-channel conformal block

of dimension ∆O, the formula returns the coefficient function of the crossing-symmetric

sum of exchange Witten diagrams in AdS2 in the s-, t- and u-channel. Crucially, this in-

cludes the s-channel exchange diagram which itself includes the s-channel conformal block

of dimension ∆O with unit coefficient. In other words, by inserting a primary operator into

the t-channel, we get it back in the s-channel dressed by double-trace contributions which

make the result crossing-symmetric.

It follows that inserting the t-channel conformal block expansion into the inversion

formula gives the coefficient function I∆ as an infinite sum over the coefficient functions

of crossing-symmetric exchange Witten diagrams. The sum converges for any complex ∆

away from the poles of the individual summands, and in particular everywhere away from

the real axis. Since the summands are meromorphic functions of ∆ and the convergence is

uniform, this proves that I∆ is meromorphic in the entire complex plane.

Let us contrast the above properties with those of the standard D > 1 inversion formula

of Caron-Huot. The D > 1 formula neither requires nor manifests crossing symmetry.

Indeed, it applies to arbitrary four-point functions of operators which may or may not be

identical. The inversion kernel is an s-channel conformal block with Weyl-reflected quantum

numbers — considerably simpler than H∆(z) which are needed for the crossing-symmetric

formula of this note.

Just like before, Caron-Huot’s formula allows us to compute the s-channel coefficient

function I∆,J in terms of the OPE in the crossed channels. To make the comparison

clear, let us apply Caron-Huot’s formula to a four-point function of identical operators.

If we insert a single conformal block in the t- and u-channels, we get back the coef-

ficient function of the sum of exchange diagrams in the t- and u-channel [47] (possi-

bly supplemented by contact diagrams). This is not a fully crossing-symmetric object.

In particular, the s-channel exchange diagram is absent, unlike when using the formula

of this note. This means that inserting an individual primary operator in the crossed

channels does not produce the same operator in the s-channel, but instead only an in-

finite tower of double-trace contributions. The double-trace poles appear as a result of

performing the z-integral in Caron-Huot’s formula. On the other hand, we saw that

in our formula the analogous poles are present already in H∆(z), i.e. even before per-

forming the z-integral.
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How then does the D > 1 formula reproduce the poles of I∆,J at the correct locations of

s-channel primary operators? Such poles (and therefore exact crossing symmetry) can only

arise from summing over infinitely many operators in the crossed-channel OPEs. Indeed,

the crossed-channel sum representation of I∆,J will only converge in a finite strip around

the principal series where Re(∆) is smaller than the dimension of the first s-channel primary

of a given spin. Again, this is very different from what we found for the inversion formula

of this note, where the crossed-channel sum for I∆ converged everywhere away from the

expected poles.

In spite of the described differences between the D = 1 formula of this note and the

D > 1 formula of Caron-Huot, the former is equally useful for implementing analytic con-

formal bootstrap. The conformal bootstrap constraints arise in our context in the following

way. Recall that our inversion formula leads to an expansion of the four-point function

similar to the standard s-channel conformal block expansion, except each conformal block

gets replaced by the crossing-symmetric sum of exchange diagrams. Consistency with the

standard OPE then requires that the contributions at non-interacting double-trace dimen-

sions must drop out when summed over all physical operators in the OPE. Therefore,

we get an infinite set of sum rules satisfied by the OPE data, labelled by the double-

trace operators. This idea was first introduced by Polyakov in [4] and developed in recent

works [33–35, 49–51].

Another recent work [36], closely related to the present note, derived these sum rules

by applying distinguished linear functionals to the standard crossing equation, showing in

particular that these sum rules are a completely equivalent reformulation of the standard

crossing equation. In the main text, we gave an explanation of how the relevant functionals

arise from the Lorentzian inversion formula. These functionals are examples of optimal

functionals of the numerical bootstrap. Therefore the 1D inversion formula clarifies how the

numerical, analytical and Polyakov’s approach to the conformal bootstrap are connected.

An important application of Caron-Huot’s formula has been the perturbative expansion

of the CFT data around mean field theory [11, 15, 16]. Equivalently, this can be viewed

as the computation of loop-level Witten diagrams in AdS from crossing symmetry [17–20].

The effectiveness of the inversion formula in this context stems from the fact that the

double discontinuity at one loop is fixed entirely in terms of tree-level OPE data. The

D = 1 inversion formula can be used in exactly the same way to compute loop-level

diagrams in AdS2. The computation was carried out up to two loops using the equivalent

language of bootstrap functionals in section 7 of [36].

This work leaves a number of open questions and future directions to be explored. At

the practical level, it would be desirable to find a closed formula for the inversion kernels

H∆(z) valid for general ∆φ, starting either from the functional equation of section 3.2 or

otherwise. One could then apply the inversion formula to a single t-channel block to find

the OPE decomposition of crossing-symmetrized Witten diagrams for general ∆φ and ∆O.

The latter task may perhaps be achieved independently using the techniques of [48] or [46].

We saw our inversion formula behaves differently from Caron-Huot’s formula in some

important aspects. Does it mean that there is an alternative Lorentzian inversion formula

in D > 1 which is more closely analogous to the D = 1 formula of this note? Such formula
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would apply to four-point functions of identical primaries and should have the property

that the inverse of a single crossed-channel block is a crossing-symmetric object which

contains the corresponding single-trace pole in the s-channel. There is a reason to doubt

the existence of such formula in D > 1, having to do Regge-boundedness. If the formula

existed, the inverse of a crossed-channel conformal block would presumably be a Regge-

bounded and crossing-symmetric combination of exchange diagrams and contact diagrams.

However, such combination does not exist if the exchanged spin is greater than one. The

reason is that if it existed, the standard Lorentzian inversion formula would apply to it

and thanks to Regge-boundedness would give the correct s-channel OPE data down to

(and including) spin two. Therefore, the s-channel data would have to include only double-

trace contributions down to spin two, giving a contradiction with crossing symmetry, which

requires the single-trace pole in the s-channel.

Nevertheless, one can hope that progress can be made by relaxing some of the condi-

tions the modified inversion formula should satisfy. This line of thought is very interesting

since it could lead to a better analytic understanding of the optimal bounds of the D > 1

numerical bootstrap, as well as the D > 1 Polyakov-Mellin bootstrap in the fashion of [36]

or the present work.

It would be interesting to generalize the presented formula to the case of non-identical

external operators. To implement full crossing symmetry, the input of such formula should

consist of all four-point functions that one can construct with a given set of external

operators. Its output would then be all coefficient functions of this set of correlators.

Furthermore, one should look for a more conceptual derivation of the 1D formula along the

lines of [13].

We gave a proof that I∆ of a four-point function in a unitary 1D theory is a meromor-

phic function of ∆. It is expected that I∆,J in D > 1 satisfies the same property, but it

would be rewarding to find a proof of this statement, especially for general complex J .

It should be straightforward to modify the results of this note to 1D theories with

superconformal symmetry, such as the half-BPS Wilson loop in N = 4 SYM [23–26]. In

particular, one could use it to perform the strong-coupling expansion of the CFT data

using crossing symmetry.

Finally, there exists an intriguing connection between the present work and the recent

solution of the sphere-packing problem in 8 and 24 dimensions [52, 53]. Indeed, the method

of [52, 53] is essentially identical to the construction of analytic extremal functional given

in [37] and [38], modified to the context of modular bootstrap in the presence of an abelian

current algebra. This connection is explored in more detail in [54].
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