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Neveu-Schwarz flux are described by a Wess-Zumino-Witten model. In this note, we study

the emergence of their semiclassical SU(2) spectrally flowed sectors as the Landau-Lifshitz

limit of the underlying quantum spin chain. We consider the propagator in the coherent

state picture, and find that the time interval is discretized proportionally to the lattice

spacing. In the Landau-Lifshitz limit, where both time and space become continuous, we

derive a path integral representation of the propagator for each spectrally flowed sector.

We prove that the arbitrariness of the global phase of coherent states is mapped to the

gauge freedom of the B-field in the classical action. We show that higher order corrections

in the Landau-Lifshitz limit are suppressed by inverse powers of the ’t Hooft coupling.
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The SL(2,R) Wess-Zumino-Witten (WZW) model constitutes a paradigm among exactly

solvable realizations of string theory. It represents bosonic strings propagating in AdS3

supported with Neveu-Schwarz-Neveu-Schwarz (NS-NS) three-form flux, and its spectrum

is attainable through the study of the representations of the current algebra upon the

worldsheet [1]. The use of integrability in the AdS/CFT correspondence has renewed the

interest in this model, since it rises in type IIB superstring theory realized on the integrable

AdS3 × S3 × T 4 background with mixed three-form fluxes [2]. Specifically, it corresponds

to the pure NS-NS flux limit of the anti-de Sitter component of the bosonic truncation

of the latter. In fact, a proposal for obtaining the spectrum of quantum strings on the

whole background in that limit has been recently put forward on the basis of an integrable

spin chain representation [3, 4], both matching and generalizing the previously existing

results [1, 5]. This picture poses the problem of the emergence of the classical integrable

structure, reached as the pure NS-NS flux limit of the mixed flux classical setting, arising

from the worldsheet spin chain description. An appealing answer in this respect comes

from the application of the Landau-Lifshitz limit to the spin chain. This method proved

the equivalence between various sectors of four-dimensional N = 4 Yang-Mills theory and

type IIB strings in the AdS5 × S5 background [6–20]. As reviewed in [21], the procedure

starts with the expectation value of the Hamiltonian of the spin chain in a general coherent

state. A path integral over periodic coherent states is then derived by means of the usual

discretization of the time interval. The matching with the effective action of the slow

degrees of freedom coming from the sigma model is performed when a continuum limit for

the spin chain sites is taken in the action in the path integral. Such a matching can be

traced to the rearrangement of the perturbative expansions of both sides of the duality in

an effective parameter which can be made small from the two points of view. The method

has the advantage of showing the equivalence between integrable structures avoiding the

reference to any particular solutions, since the identification of the two actions entails the

correspondence between their respective conserved charges.

In this note we will follow this path to retrieve the classical WZW model for strings on

R× S3 with pure NS-NS flux from the the SU(2) sector of the underlying spin chain [22].

We will exploit the fact that the Landau-Lifshitz limit can be applied to any spin chain

whose Hamiltonian is known to obtain an effective sigma model action for the worldsheet

spin chain. In particular, we will derive a semiclassical path integral representation for

the scalar product of two coherent states at different instants in every spectrally flowed

sector of the theory. The partition of the time interval will reveal that time steps must

be discretized in terms of the distance between spin chain sites. We will then apply the

Landau-Lifshitz limit, which consists in simultaneous time and space continuum limits of

the discrete expression. This feature is in sharp contrast to the way it is displayed in the

AdS5/CFT4 correspondence [6], where the time interval is not discretized but partitioned,

and the Landau-Lifshitz limit is introduced as a space continuum approximation in an exact

path integral representation. We will find both the path integral representation and the

condition under which it belongs to a specific spectrally flowed sector. We will show that

the continuous counterpart of global phases of coherent states realizes the classical gauge

field of the B-field. We will further argue that subleading terms in the Landau-Lifshitz

limit should emerge as quantum corrections.
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We will start discussing briefly the worldsheet spin chain which realizes the SU(2)

sector of the WZW model with pure NS-NS flux. The Hamiltonian under consideration is

given by the shortening condition [23]

H2 =

(
k

2π
P +M

)2

, (1)

where k =
√
λ is the level of the WZW model, with λ the ’t Hooft coupling, P is the

momentum operator and M is an operator accounting for representation-dependent shifts

of the dispersion relation. The level k bounds the number of sites L of the w-th spectrally

flowed sector of the spin chain through [1, 4]

kw + 1 ≤ L ≤ k(w + 1)− 1 , (2)

where w is a positive integer that parameterizes the spectral flow. Regarding the eigenvalues

µ of M for states of the SU(2) spin chain, µ = 0 corresponds to the vacuum state, as a

consequence of the BPS condition, while µ2 = 1 for single-magnon states [4]. When µ = 1

the state transforms in a representation of the left-handed algebra of SU(2), whereas it

transforms under the right-handed one if µ = −1. The action of M on composite-magnon

states follows from these relations. We are thus able to construct a SU(2) spin chain

of a given handedness by restricting the eigenvalue µ of the single-magnon states. The

connection between µ and the angles in the Hopf fibration of the sphere, required for the

construction below, can be elucidated as follows. Consider the metric of S3 expressed as

ds2 =

(
4− y2

1 − y2
2

)2
dϕ2

1 + 16
(
dy2

1 + dy2
2

)(
4 + y2

1 + y2
2

)2 , (3)

where ϕ1 is the angle of the Cartan torus in S3 with respect to which the light-cone gauge

is imposed, and yi are the coordinates in the transverse directions. The ranges of these

variables are ϕ1 ∈ [0, 2π), yi ∈ [−2, 2]. When the canonical light-cone gauge quantization

scheme is applied, the left-handed and right-handed choices of µ correspond, respectively,

to excitations in the Y = −y1 − iy2 and Ȳ = −y1 + iy2 complex directions [23]. The

transformation to the coordinates in the Hopf fibering coordinates of the sphere, where the

metric reads

ds2 = dθ2 + sin2 θ dϕ2
1 + cos2 θ dϕ2

2 , (4)

with θ ∈ [0, π/2], ϕi ∈ [0, 2π), is given by

y1 =
2 cos θ

1 + sin θ
cosϕ2 , y2 =

2 cos θ

1 + sin θ
sinϕ2 . (5)

Therefore, the orientation of ϕ2 accounts for the handedness of the SU(2) representation.

In order to map the spin chain to a sigma model we need to introduce a continuum set

of variables at each site of the chain, as reviewed for instance in [24, 25]. An infinite set

of states can be constructed by applying a SU(2) rotation to an eigenstate of the Cartan

generators. If we parameterize such rotation in terms of Euler angles, the one-site coherent

state reads [24, 25]

|~n〉 = eiχ
(
eiϕ cosϑ |1〉+ e−iϕ sinϑ |2〉

)
, (6)
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where |1〉 and |2〉 span the fundamental representation of SU(2), and the Euler angles are

related with those in (4) as

ϑ =
π

2
− θ , ϕ =

ϕ1 + ϕ2

2
, χ =

ϕ1 − ϕ2

2
. (7)

Coherent states form an overcomplete basis with the resolution of the identity∫
dµ[~n] |~n〉 〈~n| = I , (8)

where

dµ[~n] =
1

π2
sin 2ϑ dϑ dϕ dχ , (9)

is the Haar measure. The extension to coherent states in a spin chain with L sites is

obtained from the tensor product of L one-site coherent states and the associated measure

is therefore equal to the product of one-site measures. It should be noted that the angles

χ appear as global phases of one-site coherent states. If they were removed as in the case

of N = 4 Yang-Mills, we would find the SU(2)/U(1) Landau-Lifshitz model rather than

the SU(2) one in the subsequent derivation. Here we will keep them as they will be crucial

in the comparison with the Landau-Lifshitz limit of the non-linear classical sigma model.

We also note that the operation ϕ2 7→ −ϕ2 that inverts the handedness of the SU(2)

representation is realized by the exchange of ϕ and χ at each site.

The propagator of the theory to which the path integral analysis is applied merges an

initial coherent state of the spin chain at time t0 = 0, |~n0,a〉, and a final one at the instant

tN = T , |~nN,a〉,1

Z = 〈~nN,a| exp (−iTH) |~n0,a〉 , (10)

where a = 0, . . . , L−1 labels the spin chain sites. We impose periodic boundary conditions

~n0,L = ~n0,0 and ~nN,L = ~nN,0 so that coherent states depict closed strings and limits thereof

in the classical sigma model limit. Moreover, we will choose the spin chain frame rather

than the string frame, as it will prove best suited to the setting considered here [4].

Now we must recall that the Hamiltonian above is taken to be realized in the proper

representation of the algebra. However, the shortening condition (1) does not provide

an explicit expression for the Hamiltonian in terms of the momentum operator, but for

its square. Assuming the non-negativeness of the former, the sign of the linear relation

between these operators cannot be determined without any reference to state vectors. We

can circumvent this hindrance in (10) by requiring |~n0,a〉 (or |~nN,a〉) to be an eigenstate both

of the momentum operator and the Hamiltonian. Such requirement of course constrains

the admissible values of ϑ0,a and ϕ0,a (respectively ϑN,a and ϕN,a). Given, for instance, the

relation between the energy and the eigenvalue p of the momentum (in principle quantized

in view of the aforementioned boundary conditions),

E = − k

2π
p− µ , (11)

1We perform the derivation in Minkowskian time. The path integral expression that we would obtain in

Euclidean time can be recovered from the one presented here by a Wick rotation.
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where µ denotes the eigenvalue of M for the state |~n0,a〉, we are able to write

Z = 〈~nN,a| exp (iT (k/2π)P + iTM) |~n0,a〉 . (12)

We will now slice [0, T ] in N subintervals [tα+1, tα] of equal length ∆t, with tα = αT/N

and ∆t = T/N . If we introduce an insertion of the spectral decomposition of the identity

between the endpoints of every pair of consecutive subintervals, we can express (12) as

Z =

∫
dµ1 . . . dµN−1

N−1∏
α=0

〈~nα+1,a| exp (i∆t (k/2π)P + i∆tM) |~nα,a〉 , (13)

where dµα is the measure of the α-th insertion. At this point we must emphasize that the

time dependence must be intrinsically discretized for the spin chain at issue. This follows

from the expression of the operator appearing in (13), which involves the shift operator

U = exp (iεP ) raised to the power k∆t/2πε, where ε is the lattice spacing. In order for

the action of the shift operator on the state space to be defined, the length of the time

subinterval must then satisfy

∆t =
2πε

k
, (14)

which implies the discretization of the time interval. Note that even if ∆t = 2πmε/k,

with m a positive integer, is also admissible, the choice m = 1 is always achievable by

diving the whole interval [0, T ] in enough subintervals. For concreteness we will consider

the right-handed SU(2) spin chain. The operator in (13) is then realizable via2

exp

(
iεP + i∆t

L−1⊗
a=0

(σa3 − Ia) /2

)
= U exp

(
i∆t

L−1⊗
a=0

(σa3 − Ia) /2

)
, (15)

where σa3 is the diagonal Pauli matrix acting on the a-th site. If we choose this represen-

tation, we can write the propagator (13) as

Z =

∫
dµ1 . . . dµN−1

N−1∏
α=0

L−1∏
a=0

e−i(χα+1,a−1−χα,a)

×
[
e−i(ϕα+1,a−1−ϕα,a) cosϑα+1,a−1 cosϑα,a

+ ei(ϕα+1,a−1−ϕα,a+∆t) sinϑα+1,a−1 sinϑα,a

]
.

(16)

The leading order action of the Landau-Lifshitz sigma model is obtained in the semiclas-

sical limit of long wavelength, where the spin chain sites are taken to be parameterized

continuously and the dependence of the angles on them is assumed to be analytic. In a

conventional spin chain this limit consists in extracting the leading contribution inside the

path integral after sending ε → 0 and L → ∞, with the length of the spin chain R = Lε

2The choice of one or other vacuum determines classical actions which differ in a term without derivatives

whose sign depends on the handedness of the SU(2) representation. This is however irrelevant in the Landau-

Lifshitz limit. Besides, whatever the choice is, it is meant to represent the BPS vacuum of the R-R sector

in the center of the Hodge diamond [4].
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fixed. Such path integral is constructed by applying to the propagator a prior continuum

limit of the time coordinate defined by ∆t → 0 and N → ∞, while T = N∆t kept fixed.

However, space and time continuum limits are intertwined for the spin chain considered

here. On the one hand, space and time step lengths are proportional as stated by (14),

that implies that T = 2πNR/kL. Therefore, when both continuum limits are applied the

condition N/kL ∼ O(1) is needed. On the other hand, the number of sites L of the chain

is bounded by the WZW level k in view of equation (2), and thus L→∞ already assumes

the semiclassical limit k → ∞, which implies that ∆t → 0. In fact, in order for the spin

chain to remain within the w-th spectrally flowed sector, it must be satisfied that

w ≤ L/k ≤ w + 1 , (17)

when both L, k →∞. If we apply the Landau-Lifshitz limit to (16) taking these observa-

tions into account, the propagator becomes

Z =

∫
dµ1 . . . dµN−1

N−1∏
α=0

L−1∏
a=0

[
1− i∆t

(
χ̇α,a + cos 2ϑα,aϕ̇α,a − sin2 ϑα,a

)
+ iε(χ′α,a + cos 2ϑα,aϕ

′
α,a) +O

(
ε2
)]
,

(18)

where the dot denotes the derivative with respect to tα, while the prime is the derivative

with respect to xa = aε. The integrand in (18) may be regarded as the formal product of

two Volterra continuous products when ∆t, ε→ 0 once the short distance cut-off 1/∆t, or

equivalently 1/ε, is introduced [24, 25]. Therefore, in the continuum limit we can write

Z =

∫
[dµ] eiS , (19)

where [dµ] denotes the path integral measure and

S = −1

ε

∫ T

0
dt

∫ R

0
dx

[
χ̇− k

2π
χ′ + cos 2ϑ

(
ϕ̇− k

2π
ϕ′
)
− sin2 ϑ

]
. (20)

The path integral extends over configurations subject to the periodicity condition ~n(t, x) =

~n(t, x + R) that satisfy the boundary conditions ~n(0, x) = ~n0(x) and ~n(T, x) = ~nN (x),

where ~n0(x) and ~nN (x) are, respectively, the continuous counterparts of ~n0,a and ~nN,a. It

is worth to emphasize that we could have proceeded by expressing equation (12) as

Z =

∫
dµ1 ... dµN

N−1∏
α=0

exp (−iTE) 〈~nα+1,a| |~nα,a〉 , (21)

which leads to the same action as (20) once the expression of its associated Hamiltonian is

considered. Nevertheless, if we had taken directly this path, some steps that are necessary

in the attainment of equation (20) would have been obscured.

The Landau-Lifshitz limit can also be applied at the level of the classical string action.

It is obtained as the perturbative expansion with respect to
√
λ/L of the Lagrangian

density in the statically gauge fixed T-dual sigma model [10]. In particular, the Wess-

Zumino term involving first order time derivatives appears at zeroth order, whereas the
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n-th order contribution consists in terms with n spatial derivatives. Such an expansion can

be achieved in the action above by means of the change of variables t 7→ t/k, which enables

us to compare (20) with the result obtained from the classical non-linear sigma model. If

we introduce this change of scale together with x 7→ x/2π, the leading order action in the

semiclassical limit reads

S = − 1

2πε

∫ ∞
0

dt

∫ 2πR

0
dx
[
χ̇+ cos 2ϑ ϕ̇−

(
χ′ + cos 2ϑϕ′

)]
. (22)

If we choose now R = 1, we can replace ε by 1/L in front of the action, hence obtaining the

NS-NS limit of the Landau-Lifshitz model found in [22]. The field accounting for the U(1)

gauge freedom in the choice of the B-field is mapped to the variable χ that realizes the

continuous counterpart of global phases of coherent states. Here its presence is required to

match the classical result, as opposed to the analogous scenario in the AdS5/CFT4 corre-

spondence, where the B-field plays no role. In order to fix the gauge arbitrariness we may

require, for instance, finiteness of the classical action evaluated over dyonic giant magnon

solutions, which leads to the constraint χ = ϕ [22]. This condition is imposed because such

configurations represent, in the spin chain picture, a bound state of a macroscopic amount

of magnons over the spin chain vacuum. It is worth to stress that such gauge fixed action

is invariant under the operation interchanging ϕ and χ, and hence it describes both the

left- and right-handed SU(2) Landau-Lifshitz models.

The action (22) is the zeroth order in
√
λ/L of the Landau-Lifshitz model. In principle,

it should be corrected by subleading terms in the long wavelength limit [7, 10]. However,

these corrections are suppressed by additional powers of 1/
√
λ for the model at issue. We

can show this by considering the most general possible term in (18), involving A time

derivatives, B spatial derivatives and none derivatives in a factor φC accounting for the

contribution of M . The contribution to the action of this term, ∆tA+CεBφ̇Aφ′BφC , after

the change of variables t 7→ t/k and x 7→ x/2π is made (and R = 1 is set), reads

(2π)A+B+C−1

kA+B+2C−1

(
k

L

)A+B+C−1 L

2π

∫ ∞
0

dt

∫ 2π

0
dx φ̇Aφ′BφC . (23)

Therefore terms with either A > 1, B > 1 or C > 0 carry additional powers of 1/
√
λ be-

sides the factor L(
√
λ/L)A+B+C−1, and thus cannot be obtained from the Landau-Lifshitz

expansion of the classical non-linear sigma model.3

There are some natural extensions to the derivation in this letter. The most immediate

question concerns the emergence of the classical Landau-Lifshitz model from other sectors

of the worldsheet spin chain, such as the left-handed and right-handed SL(2,R) sectors, or

those which include fermions.
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