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1 Introduction

The discovery of a Higgs boson [1, 2] at CERN’s Large Hadron Collider (LHC) repre-

sents the most significant result in high energy physics in recent history. Over the next

couple of decades continued measurements of the properties of the Higgs will result in

increasingly-stringent tests of the predictions from the Standard Model (SM). These stud-

ies will continue to take place at the LHC (including the future high-luminosity upgrade)

and putative future colliders, which are currently in the early design phases [3–5]. From

a Higgs precision viewpoint, one strongly-motivated future accelerator is a lepton collider,

capable of producing a large data set with small experimental uncertainties and thus allow-

ing precision studies of the Higgs boson akin to what was successfully performed at LEP

for the Z boson. In order to achieve these goals, it is vital for the theoretical community to

provide precise predictions for Higgs-related observables with accuracies at the few-percent

to per-mille level.

For the 125-GeV Higgs boson the predominant decay mode is to a pair of bottom quarks

(bb), whose partial width accounts for around 60% of the total. An accurate measurement of

H → bb is therefore crucial, since the Higgs-bottom Yukawa coupling (yb) enters every LHC

Higgs measurement through the total width. In a hadronic environment the measurement

of H → bb is particularly challenging due to the presence of large QCD backgrounds.

In order to overcome these obstacles, experimental analyses typically focus on associated

(V H) production modes, which have more manageable backgrounds [6, 7]. However, using

jet-substructure techniques it is also possible to access H → bb through the gluon-fusion

production mode (at high transverse momenta) [8].
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Given its importance to Higgs physics, the H → bb decay has been studied in the

literature for many years [9–15]. Currently, higher-order corrections from QCD are known

up to N4LO (i.e. up to order O(α4
s)) [16]. Additionally, the electroweak (EW) correc-

tions have been known for some time [17, 18], as well as the mixed QCD×EW corrections

(O(ααs)) [18, 19].1 It is thus fair to say that the theoretical knowledge of the inclusive

partial decay width for H → bb is at an advanced level, with accuracies in the desired

per-mille range. In order to study the Higgs in a collider setting it is also desirable to have

theoretically- precise differential predictions, which allow for the application of experimen-

tal phase-space cuts for arbitrary infrared-safe observables. In this case our knowledge is

not as advanced as at the inclusive level. Fully-differential predictions at NNLO in QCD

were computed several years ago [21–23], while more recent studies [24, 25] have focused

on interfacing the decay at this order to V H production, which is also known at NNLO in

QCD [26–28]. The principal aim of this paper is to extend the knowledge of the H → bb

decay differentially to N3LO accuracy.

Significant progress has been made over the past five years in regards to the computa-

tion of differential predictions at NNLO accuracy in QCD. For most 2 → 2 LHC processes

NNLO predictions have been computed, and currently the frontier lies in the computation

of the challenging 2 → 3 two-loop corrections. A crucial aspect of this advancement has

come from an increased ability to deal with the infrared (IR) divergences which affect the

component parts of a NNLO calculation (but cancel upon summation in an IR-safe observ-

able). A novel way of dealing with IR divergences at NNLO was presented in ref. [29] and

is now known as the Projection-to-Born (P2B) method. This method, initially applied to

vector boson fusion (VBF), uses the knowledge of the inclusive cross section of the pro-

cess under consideration and of the exclusive cross section of the process with one extra

final-state jet to construct local counter-terms for the matrix elements, projected onto a

LO phase space. At NNLO this method has since been applied to VBF production of

two Higgs bosons [30]. An alternate approach to pursuing NNLO calculations is to uti-

lize physical observables and factorization theorems to construct non-local counter-terms.

One such approach, known as N -jettiness slicing [31, 32], uses the N -jettiness [33] variable

together with a factorization theorem derived from Soft Collinear Effective Field Theory

(SCET) [34–37] to perform NNLO calculations.

Compared to NNLO, very few processes are known differentially at N3LO accuracy,

although significant progress has been made over the last year. One of the flagship LHC

processes, Higgs production, has recently been computed differentially at this order [38]

(using a non-local qT -based subtraction method [39]) and analytic results for the pseudo-

rapidity distribution have also been computed [40, 41]. These results are built upon our

knowledge of the inclusive Higgs-production cross section at this order [42, 43].2 The P2B

method has also been deployed at N3LO, specifically for jet production in deep inelastic

scattering [45, 46] and, for certain differential distributions, VBF and VBF di-Higgs [47, 48].

1Very recently, two-loop master integrals for the mixed QCD×EW corrections for the Higgs-top Yukawa

coupling contributions to H → bb have also been computed [20].
2Similar techniques have also been used recently to compute Higgs production through bottom quark

fusion at this order [44].
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Figure 1. Representative Feynman diagrams that enter our calculation of H → bb at O(α3
s)

accuracy.

The aim of this paper is to provide, for the first time, fully-differential predictions for

the H → bb decay at N3LO accuracy. Herein we focus on the contributions with the most

challenging infrared structure, namely those that are proportional to y2b . We will deploy the

P2B method mentioned above and present a first application of this method in conjunction

with a non-local subtraction mechanism (N -jettiness slicing in our case) at both NNLO

and N3LO. Our paper is constructed as follows. In section 2 we present a discussion of the

general framework for our calculation. We detail the P2B+SCET method in section 3 and

first validate our results using the H → bb process at NNLO. We use our calculation to

make predictions for a variety of physical observables at N3LO accuracy in section 4 and

draw our conclusions in section 5.

2 Overview of the calculation

A general overview of our theoretical setup is included in our companion paper on the

calculation of H → bbj at NNLO accuracy [49]. Here we provide a short summary for

completeness. Representative Feynman diagrams included in our calculation of H → bb at

N3LO are shown in figure 1. At this order there are four phase-space configurations that

contribute. The two-body phase space includes terms of up to three loops (which have

been computed in refs. [50, 51]), while the remaining phase spaces correspond to those

with three or more partons in the final state and are the component pieces needed for

the calculation of H → bbj at NNLO. In our calculation we will set the b-quark mass to

zero kinematically, but retain it in the Yukawa coupling. A comparison of the radiative

corrections at NLO with or without the b-mass phase-space effects was first performed

nearly forty years ago [9]. It was shown that the sizable differences between the full and

“massless” theories arising from the b-mass terms can be compensated by running the b-

mass to the Higgs scale (and thus recapturing some of the missing logarithms of the form

log (m2
b/m

2
H)). Dropping the b-quark mass kinematically results in dramatic simplifications

in the calculation of the inclusive partial width, which in the case of H → bb is known up

to O(α4
s) in the massless theory.

In this work our primary interest lies in computing the H → bb process differentially

at N3LO. At this order, the partial width can be written as follows:

ΓN3LO
H→bb = y2bAb + αsy

2
bBb + α2

s

(
y2bCb + ybytCbt

)
+ α3

s

(
y2bDb + ybytDbt + y2tDt

)
+O(α4

s) , (2.1)
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where we have explicitly expanded in terms of both αs and the Yukawa couplings to the

bottom and top quark yb and yt respectively. The dependence on the top-quark mass

first comes in at NNLO and corresponds to diagrams in which the Higgs boson couples

to a closed loop of top quarks. These diagrams can then interfere with the LO diagram

to create a mixed ybyt term at O(α2
s). In our theoretical framework this interference is

exactly zero due to the requirement of a helicity flip between the massless bottom quarks

(since the bottom quarks couple to a spin-1 gluon in the yt term and to the scalar Higgs

in the yb term). Such an interference term mandates a mass inclusion kinematically to

be non-vanishing and is therefore not present in our calculation. In other words, the

interference terms are suppressed by a power of mb/mH . However, since the ratio yt/yb is

large, this mixed ybyt term is phenomenologically relevant. It is IR finite, and a commonly-

used approximation is to integrate out the top-quark loop and thus work in an effective

theory in which there is a clear hierarchy of scales mb � mH � mt [12, 14]. In this

approximation the mixed term accounts for around 30% of the NNLO correction. Given

that mH is not dramatically lighter than mt, one may also worry about missing terms

that are formally of order (mH/mt)
4 and could therefore result in a significant correction.

Such a study was recently undertaken [52] keeping the exact dependence on mb, mt, and

mH , and found that the difference with respect to the exact form of the NNLO partial

width are indeed small and can be neglected at the inclusive and differential level to good

accuracy. At O(α3
s) a second class of diagrams enters. This contribution corresponds to

diagrams in which the Higgs does not couple to the final-state b quarks at all, but instead

is proportional to the closed loop squared, thus creating a term proportional to y2t at this

order in eq. (2.1). Additionally, the interference term which arose at NNLO now receives

corrections and develops a more intricate IR structure. The y2t term has particularly

troublesome IR behavior since it does not factor onto the tree-level H → bb, but instead

factors onto H → gg. For this term there is also no helicity suppression and therefore

this contribution is large and relevant for phenomenology. The Higgs coupling to partons

through a top-quark loop, integrated out via an EFT approach, has been well studied in

the literature [53–55] and is not the principal aim of this paper (where we focus on the y2b
term which has a more complicated IR structure at N3LO). However, we note that these

terms should be included before a full phenomenological study at N3LO can be completed.

We leave this work to a future study, stressing that the terms that we neglect are at most

NLO (for ybyt) and therefore readily amenable using existing tools to implementation in a

future Monte Carlo generator.

3 Regulation of infrared divergences at N3LO

In this section we discuss the methods we utilize to regulate the IR singularities present

in our N3LO calculation. We primarily focus on the P2B method, since the N -jettiness

slicing method is discussed in more detail in our companion paper [49]. Firstly, we recap

the inclusive partial width, which is a prerequisite for the P2B method we use here.

– 4 –
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3.1 The inclusive partial width

An ingredient for our calculation is the inclusive decay width for H → bb at N3LO. This was

originally computed over two decades ago [15] and is now known up to N4LO accuracy [16].

At O(α3
s) the inclusive partial width ΓH→bb can be written as follows

ΓN3LO
H→bb = ΓLO

H→bb + ∆ΓNLO
H→bb + ∆ΓNNLO

H→bb + ∆ΓN3LO
H→bb +O(α4

s) . (3.1)

The LO partial width is defined as

ΓLO
H→bb =

y2bmHNc

8π
(3.2)

with yb ≡ yb(µ) the bottom Yukawa coupling at the renormalization scale µ, mH the Higgs

mass, and Nc the number of colors, while the corrections at each order can be written as

∆ΓNnLO
H→bb = ΓLO

H→bb

(αs
π

)n
Γ
(n)

H→bb (3.3)

with αs ≡ αs(µ). The coefficients Γ
(n)

H→bb up to n = 3 are:

Γ
(1)

H→bb = s1 + 2γ0mL (3.4)

Γ
(2)

H→bb = s2 + L
(
s1β0 + 2s1γ

0
m + 2γ1m

)
+ L2

(
β0γ

0
m + 2(γ0m)2

)
(3.5)

Γ
(3)

H→bb = s3 + L
(
2s2β0 + s1β1 + 2s2γ

0
m + 2s1γ

1
m + 2γ2m

)
+ L2

(
s1β

2
0 + 3s1β0γ

0
m + β1γ

0
m + 2s1(γ

0
m)2 + 2β0γ

1
m + 4γ0mγ

1
m

)
+ L3

(
2

3
β20γ

0
m + 2β0(γ

0
m)2 +

4

3
(γ0m)3

)
(3.6)

where L = log (µ2/m2
H) and the explicit expressions for si, βi and γim are presented in

appendix A. For reference, at µ = mH the inclusive partial width numerically evaluates to

ΓN3LO
H→bb(µ = mH) = ΓLO

H→bb

[
1 + 5.66667

(αs
π

)
+ 29.1467

(αs
π

)2
+ 41.7576

(αs
π

)3]
. (3.7)

Finally, we will employ the following definition of the N3LO coefficient for the inclu-

sive width, which reinstates the dependence on the LO phase space (evaluated in d = 4

dimensions):

∆ΓN3LO
H→bb =

(αs
π

)3 ∫
8π ΓLO

H→bbΓ
(3)

H→bb dΦ2 (3.8)

=

∫
∆Γ̂N3LO

H→bb dΦ2 . (3.9)

3.2 Projection to Born at N3LO

The H → bb differential decay width at N3LO is constructed as follows

d∆ΓN3LO
H→bb

dOm
=

∫
dΓV V V

H→bbF
m
2 (Φ2)dΦ2 +

∫
dΓRV V

H→bbF
m
3 (Φ3)dΦ3

+

∫
dΓRRV

H→bbF
m
4 (Φ4)dΦ4 +

∫
dΓRRR

H→bbF
m
5 (Φ5)dΦ5 , (3.10)
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where dΓV V V
H→bb represents the triple-virtual contribution to the decay width, dΓRV V

H→bb the

real double-virtual contribution, dΓRRV
H→bb the double-real virtual contribution, and dΓRRR

H→bb
the triple-real contribution. Each parton-level contribution belongs to a different phase

space Φi (with i = 2, . . . , 5 respectively) over which it is integrated. The measurement

function Fmi (Φi) uses an IR-safe jet algorithm to cluster the i final-state partons onto

m final-state jets and thus defines the observable Om. The triple-virtual contribution

contains explicit poles in the dimensional regularization parameter ε = (4 − d)/2 (with d

the number of space-time dimensions), whereas the triple-real term contains only implicit

poles that become manifest as at least one and at most three particles become unresolved.

The RVV and RRV contributions consist of mixtures of explicit ε poles and implicit phase-

space singularities. The triple-virtual piece can be obtained from the results presented in

ref. [50], and real double-virtual in refs. [49, 56], while the calculation of H → bbj at NNLO

accuracy is discussed (including the double-real virtual and triple real) in our companion

paper [49]. This means that all the individual terms in eq. (3.10) are known, but need IR

regulation to be combined in a physically-meaningful way.

We define the Born-projected inclusive partial width as follows,

d∆ΓN3LO, inc

H→bb
dOBm

=

∫
∆Γ̂N3LO

H→bbF
m
2 (ΦB)dΦB (3.11)

where ΦB = Φ2 corresponds to the LO phase space and OBm represents the observable Om
evaluated for LO kinematics. We note the insertion of the two-body measurement function

Fm2 (ΦB) into the integrand in relation to eq. (3.9). We can write the Born-projected

inclusive width in an alternate form which explicitly references the different phase spaces

which make up the total,

d∆ΓN3LO, inc

H→bb
dOBm

=

∫
dΓV V V

H→bbF
m
2 (ΦB)dΦ2 +

∫
dΓRV V

H→bbF
m
2 (ΦB)dΦ3

+

∫
dΓRRV

H→bbF
m
2 (ΦB)dΦ4 +

∫
dΓRRR

H→bbF
m
2 (ΦB)dΦ5 . (3.12)

The fully-differential N3LO coefficient can then be written as

d∆ΓN3LO
H→bb

dOm
=
d∆ΓN3LO, inc

H→bb
dOBm

−
d∆ΓNNLO

H→bbj
dOBm

+
d∆ΓNNLO

H→bbj
dOm

(3.13)

where explicitly

d∆ΓNNLO
H→bbj

dOm
=

∫
dΓRV V

H→bbF
m
3 (Φ3)dΦ3 +

∫
dΓRRV

H→bbF
m
4 (Φ4)dΦ4

+

∫
dΓRRR

H→bbF
m
5 (Φ5)dΦ5 (3.14)

and

d∆ΓNNLO
H→bbj

dOBm
=

∫
dΓRV V

H→bbF
m
2 (ΦB)dΦ3 +

∫
dΓRRV

H→bbF
m
2 (ΦB)dΦ4

+

∫
dΓRRR

H→bbF
m
2 (ΦB)dΦ5 . (3.15)

– 6 –
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Eq. (3.13) represents the master equation for the Projection-to-Born technique [29, 45] and

is equivalent to eq. (3.10) by explicitly substituting eqs. (3.12), (3.14), and (3.15). It can

finally be rearranged as follows

d∆ΓN3LO
H→bb

dOm
=

∫
∆Γ̂N3LO

H→bbF
m
2 (ΦB)dΦB

+

∫
dΓRV V

H→bb [Fm3 (Φ3)− Fm2 (ΦB)] dΦ3

+

∫
dΓRRV

H→bb [Fm4 (Φ4)− Fm2 (ΦB)] dΦ4

+

∫
dΓRRR

H→bb [Fm5 (Φ5)− Fm2 (ΦB)] dΦ5 . (3.16)

Inspection of the above formula reveals that the P2B subtraction regularizes singularities

which cancel when an implicit pole turns to an explicit one via phase-space integration,

i.e. this subtraction accounts for the “last emission”. Based on the above equation, the

full N3LO H → bb coefficient can be readily computed provided that the NNLO H → bbj

differential partial width is available in a suitable format. More specifically, since the P2B

method above regulates the singularities associated with the last emission, all the other

IR divergences present in the last three lines of eq. (3.16) (namely in the construction

of the differential cross section of the process with one extra final-state jet) have to be

previously regulated and canceled by means of a different subtraction scheme. Thus far,

applications of the P2B method have utilized Catani-Seymour dipoles [57] (for applications

at NNLO) and antenna subtraction [58] (for applications at N3LO) for this purpose. Both

these regulators are clearly a good fit for the method, since neither explicitly requires a

jet in the construction of the local counter-terms. Thus far no method that employs a

jet-based physical observable to regulate divergences at NNLO has been applied to P2B.

We address this in the subsequent section.

3.3 P2B with N-jettiness slicing

At first inspection the application of eq. (3.16) with N -jettiness slicing seems problematic,

since the application of N -jettiness slicing requires the definition of a jet observable (in

this case 3-jettiness) in order to operate. Here we address this issue, starting with a brief

summary of the method which is by now well established for NNLO calculations.

The central idea of any slicing-based method is to consider an observable which allows

one to separate the computation into two parts. At NNLO, the first part will contain all of

the doubly-unresolved regions of the phase space and will be computed using a simplifying

approximation (typically a factorization theorem). The second region will capture all of

the singly-unresolved and fully-resolved regions of phase space and thus corresponds to a

NLO calculation with one additional parton in the final state. In N -jettiness slicing, the

separating variable is the N -jettiness variable τN [33]. For an n-parton event it is defined as

τN =
∑

j=1,...,n

min
i=1,2,...,N

{
2qi · pj
Qi

}
(3.17)

– 7 –
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where pj represent the momenta of the n partons, while qi represent the momenta of the N

most energetic jets (for our application N = 3) clustered with any IR-safe jet algorithm (in

our case the Durham jet algorithm [59, 60]). Qi are the hard scales in the process, which

we take as Qi = 2Ei with Ei the energy of the i-th jet. In order to separate the phase

space into two regions, we introduce a variable τ cutN . In the region τN > τ cutN at least one

of the n partons is resolved (so that the term 2qi · pj in eq. (3.17) is non-vanishing). The

NNLO decay width for a generic H → Nj process can be then computed in this region

as the NLO calculation of the H → (N + 1)j process. On the other hand, in the region

τN < τ cutN no parton is resolved and the NNLO decay width can be approximated with the

following convolution, derived from SCET [33, 61]:

ΓNNLO
H→Nj

(
τN < τ cutN

)
≈
∫ N∏

i=1

Ji ⊗ S ⊗H +O(τ cutN ) . (3.18)

In the above equation the terms Ji represent the jet functions [62, 63], S denotes the soft

function for N colored partons, and H is the process-specific hard function. In our applica-

tion of N -jettiness slicing we consider N = 3 and therefore we need the NNLO 1-jettiness

soft function with arbitrary kinematics [64]3 and the hard function computed in our com-

panion paper [49]. We also note that eq. (3.18) is accurate up to terms of O(τ cutN ), which

formally vanish in the limit τ cutN → 0. One should therefore set τ cutN as small as possible to

ensure the validity of the factorization formula.

In order to apply N -jettiness slicing in conjunction with eq. (3.16), let us consider

the types of partonic configurations that can occur in our calculation. As an example,

let us focus on the five-parton phase space (the triple-real contribution in eq. (3.16)). In

the Higgs rest frame, after jet clustering each phase-space event will belong to one of four

possible topologies: a two-, three-, four-, or five-jet topology. We assume now that we are

calculating an observable that requires the complete N3LO technology and thus we fix the

measurement function to demand exactly m = 2 jets (any observable with three or more

jets requires at most a NNLO calculation). In the triple-real contribution to eq. (3.16) there

are two measurement functions: F 2
5 (Φ5) and F 2

2 (ΦB). The latter will always produce two

jets (in the rest frame) since it acts on the LO phase space ΦB. It is therefore unaffected

by the number of jets obtained upon clustering of the five-parton phase space (assuming

for now that no pT or rapidity cuts are applied to the LO phase space). On the other

hand, F 2
5 (Φ5) will pick out the various jet topologies given an input jet algorithm, in this

case vetoing any event with more than two jets (since we fixed m = 2). This means

that upon generation of a phase-space event there are two possibilities: a) the five-parton

event corresponds to a ≥ 3-jet topology, is vetoed by F 2
5 (Φ5) and therefore only the P2B

subtraction term is non-zero, or b) the parton-level event produces two jets. In the latter

case both terms in the last line of eq. (3.16) survive, producing events with exactly-opposite

weights, with the measurement functions applied on different phase spaces (which match

in the triple-unresolved limit producing the desired subtraction).

3See also refs. [32, 65].

– 8 –



J
H
E
P
0
6
(
2
0
1
9
)
0
7
9

For events belonging to category a) it is straightforward to compute the 3-jettiness

variable τ3 and apply the cut τ cut3 since there are (at least) three jets in the event (this

is indeed simply a rephrasing of the existing NNLO methodology). Attention must be

given to category b) two-jet events for which it is in principle unclear how a 3-jettiness cut

can be constructed. In other words, in this case we must extract a three-jet observable

from events with a two-jet topology. In order to achieve this, we first decluster the jets

(in a similar spirit to the ideas behind jet-substructure techniques [66]). For our input jet

algorithm (Durham), we reverse the last stage of the clustering algorithm, which would have

previously clustered two sub-jets with yij < ycut together into a combined object. Since

the end point always contains two physical jets (by construction) a single declustering step

will always produce three sub-jets. The sub-jets are made up of partons which have been

previously clustered together in the initial stages of the jet algorithm. We then apply

“N -subjettiness” slicing, taking the momenta of the three sub-jets as the momenta qi in

eq. (3.17). Crucial to the success of this approach is the lack of explicit dependence on

the jet algorithm in the factorization formula of eq. (3.18). Furthermore, since events in

category b) have zero weight as explained above, the total two-jet rate at N3LO inherits the

overall τ cutN -dependence of the parent NNLO calculation. In this regard, we do not expect

significant worsening of the power corrections when applied to our N3LO calculation relative

to our NNLO application. We investigate this behavior more carefully in the next section.

Finally, we note that the same line of reasoning can be applied to the double-real virtual

and double-virtual real contributions.

We conclude this section by defining the Born phase-space events that enter the P2B

subtraction terms. For each event we simply define the following Born phase-space point:

ΦB = {p1, p2}, p1 =
mH

2
(1,nj), p2 =

mH

2
(1,−nj) (3.19)

where nj is the three-dimensional unit vector pointing in the direction of the leading jet

(defined as the jet with the largest energy component).

3.4 Validation at NNLO

In order to validate our implementation of the P2B method at NNLO we have imple-

mented an independent calculation at this order using the N -jettiness slicing approach.

As discussed in previous sections, this method uses the predictions of SCET to establish

a factorization theorem which can be used at small values of the physical N -jettiness ob-

servable τN (which in this instance corresponds to a 2-jettiness cut, τ2). One therefore

must ensure that the τ cut2 variable is taken to small enough values that the missing power

corrections in eq. (3.18) are negligible. Our parameter choices are as follows. We take the

mass of the Higgs boson to be mH = 125 GeV. As input we take the mass of the b-quark

to be mb = 4.7 GeV, which enters into the Yukawa coupling yb (and is set to zero kine-

matically). In order to compensate for higher-order effects arising from the b-quark mass

we run the mass to the Higgs scale. At NNLO we use the three-loop running, resulting in

an effective b-quark mass of mb(mH) = 2.94 GeV. Our remaining electroweak inputs are

GF = 0.116639 × 10−4 GeV−2 and mW = 80.385 GeV. We take αs(mZ) = 0.118 and we
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Figure 2. The dependence of the H → bb NNLO coefficient for the two-jet partial width on

the N -jettiness slicing parameter τ cut2 . The physical jet cut is set to ycut = 0.1. The coefficient

is normalized to the prediction obtained from the difference of the inclusive result and the NLO

(inclusive) three-jet rate.

evolve the coupling using three-loop running. For our subsequent predictions at N3LO we

keep the three-loop running of αs and mb for simplicity (the difference between three-loop

and four-loop running is very small [67]). All of the results for partial widths in this paper

are in units of MeV. Our results presented herein have been produced using a fully-flexible

Monte Carlo code, for which we have extensively used the existing structure of MCFM

8.0 where applicable (specifically for phase-space generation, Catani-Seymour dipoles [68],

N -jettiness slicing [69], and OMP and MPI compatibility [70]). Our subsequent extended

Monte Carlo is thus in a suitable format to be interfaced with MCFM and be released

publicly in the future.

As a first check on the correctness of our results we compute the NNLO coefficient

for the two-jet rate for jets clustered with the Durham algorithm [59, 60] with ycut = 0.1.

This algorithm starts from a parton-level phase-space point and computes the following

quantity yij for all pairs of objects i and j:

yij =
2 min(E2

i , E
2
j )(1− cos θij)

Q2
, (3.20)

where Ei is the energy of particle i, θij is the angle between particles i and j, and Q is the

hard scale of the process, which in our case is Q = mH . If yij < ycut, the two objects are

combined into a new one with four momentum pµi + pµj . The procedure is then iterated

until no more clustering is possible and the final objects are classified as jets. In addition

to the independence on the slicing parameter, a further check of our implementation of the

N -jettiness slicing calculation of the NNLO two-jet rate can be constructed by taking the

difference between the NNLO total inclusive rate and the inclusive three-jet rate at NLO.

We compare this prediction to our results obtained with N -jettiness slicing in figure 2

observing excellent agreement in the asymptotic region τ cut2 < 0.1 GeV. In order to ensure

that the dependence on τ cut2 in the differential distributions is also small we present the

differential ratio for two different choices of τ cut2 for the Emax/mH observable in figure 3.

Again, we observe excellent agreement for different choices of τ cut2 . We use the prediction

with τ cut2 = 0.05 GeV for our subsequent comparisons with the P2B method.
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Figure 3. The dependence of the differential distribution for the maximum jet energy in the NNLO

two-jet rate on the N -jettiness slicing parameter τ cut2 . The physical jet cut is set to ycut = 0.1.
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Figure 4. Comparison of three different methodologies for computing the differential NNLO par-

tial width. Shown are results obtained using Projection-to-Born with Catani-Seymour dipoles

(P2B+CS), Projection-to-Born with N -jettiness slicing (P2B+SCET), and N -jettiness slicing

(SCET). Results are normalized to those obtained using P2B+CS. The left-hand plot shows

the pseudo-rapidity, while the right-hand plot shows the transverse momentum of the jet.

We now compare the predictions from N -jettiness slicing to our implementation of P2B

at NNLO. We have implemented the P2B method at NNLO using two different subtraction

methods for the NLO part of the calculation: one with Catani-Seymour dipoles, and a

second one using N -(sub)jettiness slicing. In the Higgs rest frame the most physically-

relevant observables are delta functions at LO (for example the jet energy or the jet mass).

In general, there is no special direction in momentum space with which to construct more

elaborate observables. In order to fully test the cancellation of IR singularities it is most

useful to construct an observable which has a non-trivial distribution at LO. In this

paper we therefore introduce the following two quantities: the transverse momentum of

the leading jet (the jet with highest energy) pmax
T,j and the pseudo-rapidity of the jet |ηmax

j |.
These two jet observables are measured with respect to the “z”-axis which we take to be

a fictitious beam axis (i.e. we imagine that the Higgs was formed in a µ+µ− collision with

an operating energy
√
s = mH).

The calculation of these observables at NNLO is presented in figure 4. We set µ = mH

for these predictions and maintain the same parameter choices as before. We choose a value

of τ cut2 = 0.05 GeV for both of the calculations which require N -jettiness slicing. We ob-

serve excellent agreement within the sub-percentage Monte Carlo uncertainties for all three

predictions. Our proposed method of P2B+N -jettiness slicing is thus validated at NNLO

and we proceed to use this method to obtain results at N3LO accuracy in the next section.
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Figure 5. Jet fractions at orders αs, α
2
s, and α3

s. Each prediction is normalized to the total partial

width at that order.

4 Results

The results presented in this section are obtained using the same parameter choices as

discussed in section 3. We begin by computing jet rates at O(α3
s). At this order, possible

topologies consist of two-, three-, four-, or five-jet events, which are accurate respectively

to N3LO, NNLO, NLO, and LO in perturbation theory. Since the inclusive partial width is

known at N3LO, the two-jet rate can be inferred directly from the knowledge of the other

components at their respective orders. Therefore, we can use the NNLO three-jet results

taken from our companion paper [49], compute the exclusive NLO four-jet and LO five-jet

rates as a function of the ycut parameter, and obtain the two-jet rate at N3LO.

Our results are presented in figure 5, where we present the fractional jet rate at different

orders in O(αs), each prediction being normalized to the total partial width at that order.

As it may be expected, the characteristics are broadly the same as similar calculations

for e+e− → Z → jets computed at the same order [71, 72]. For Z → jets, copious data

from LEP is available for a comparison between theory and data. A future lepton collider

should therefore be able to make the same sort of plot and compare to our predictions here.

Expecting similarities with the Z data, as the order in perturbation theory increases the

agreement with data for the jet rate is expected to improve. At smaller ycut the two-jet

rate turns negative at each order in perturbation theory (beyond LO). However, for O(α3
s)

the fractional rate is very small and negative for the smallest values of ycut considered here.

Specifically, at ycut = 10−4 the two-jet fractional rate at NNLO is −24%, whereas at N3LO

the rate is only −4%. One may therefore optimistically hope that at N4LO the two-jet rate

will remain physical to even very small values of the jet-clustering parameter. The change

in slope for small values of the jet-clustering parameter is clearly visible when comparing

the NNLO plot (middle plot, red line) to the N3LO one (right-hand plot, purple line).

For the remainder of this section we will turn our attention to N3LO predictions

which cannot simply be inferred from the NNLO three-jet inclusive rate. We will focus
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Figure 6. The dependence of the N3LO coefficient (in units of the inclusive N3LO coefficient

∆ΓN3LO
H→bb

) on the parameter τ cut3 .

on the choice ycut ∼ 0.1, since a) this is the value for which perturbation theory should

do a good job at describing collider data, and b) this value corresponds to jets that are

somewhat similar to LHC anti-kT jets (assuming transverse momentum scaling of the form

pT ∼
√
ycutm2

H). Before proceeding further we first quantify the residual dependence of

our N3LO predictions on the 3-(sub)jettiness slicing parameter τ cut3 . We present the τ cut3 -

dependence of the N3LO coefficient for ycut = 0.1 in figure 6. We have normalized the

coefficient to the total inclusive correction ∆ΓN3LO
H→bb at this order. To illustrate the size of

the power corrections we additionally show the function −2.35–0.00289 τ cut3 ln3 (τ cut3 /mH)

in the plot. We observe that the τ cut3 -dependence for this jet clustering is not dramatic,

only changing 10% over the range [0.02–0.3] GeV. The dependence between τ cut3 ∼ 0.02–

0.05 GeV is around one percent. Our differential predictions obtained at this order have

MC uncertainties around a few percent (on the N3LO coefficient) and therefore our results

are insensitive to τ cut3 when τ cut3 ≤ 0.03 GeV. We predominately use τ cut3 = 0.02 GeV

for the subsequent differential predictions in this section (supplemented by additional runs

with τ cut3 = 0.03 GeV to improve MC uncertainties in some distributions). The two-jet rate

is around a factor of −2 times the inclusive correction at this order, illustrating that there

is a large cancellation at this order across jet bins and reminding us that, when exclusive

jet quantities are considered, the smallness of an inclusive correction does not necessarily

transfer to all distributions and all regions of phase space.

Our final state consists of two jets clustered with the Durham jet algorithm. We

distinguish the two jets based upon which has the largest energy component (and refer

to them as the max and min jets hereafter). As discussed previously, the dynamics of

the rest-frame observables is somewhat limited, since physically-relevant distributions such

as the energy of the jet and the mass of the jet are delta functions at LO. Therefore,

higher-order corrections factorize onto corrections to LO observables OLO which contain

contributions from every phase-space region and to observables O 6= OLO which contain (at

most) corrections from one order lower and lack of the two-body phase space. This restricts

the ability to study the delicate cancellations that must occur at N3LO. To overcome this,

we reintroduce the fictitious collision axis of section 3, and assume that the z-direction is
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Figure 7. The (mH -scaled) transverse momentum and pseudo-rapidity of the maximum-energy

jet in the Higgs rest frame at NLO, NNLO, and N3LO.

special and corresponds to a beam axis. We then measure the transverse momentum pT
and pseudo-rapidity η with respect to this axis. This defines non-trivial observables at LO,

allowing us to test our predictions more stringently. These predictions also confirm that

we can compute jet observables relevant for LHC physics (i.e. if desired we could impose

phase-space cuts on these observables).

Our results for |ηmax
j | and pmax

T,j /mH are shown in figure 7. We present the NLO,

NNLO, and N3LO predictions (suppressing LO for clarity). In each case the upper panel

presents the differential distribution, while the middle panel illustrates the ratio to the NLO

prediction and the lower panel the ratio to the NNLO prediction. Since a scalar particle

at rest decays isotropically, the rapidity distribution is sculpted only by the phase-space

integration of the final-state jets. For this reason the higher-order corrections are flat and

do not noticeably alter the shape of the distribution. As the order in perturbation theory

increases, the scale variation drops considerably (we vary the scale between mH/2 ≤ µ ≤
2mH). This observable inherits the scale variation from the total jet rate and is similar

to the scale variation presented in appendix A for the total width. At NLO the scale

variation is around {+3.5,−5}% across the entire distribution. For NNLO and N3LO the

rate obtained with the scale choice µ = mH is close to the maximum rate (again as in the

inclusive rate in appendix A), and as such the scale variation band is set by µ = mH and

µ = mH/2. At NNLO the variation is around −1.2% and at N3LO it drops by a factor

of two to around −0.7%. The pT distribution is more dynamic, especially in the region
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pT ∼ mH/2. Here the kinematics of the region is sensitive to the emission of additional

soft radiation and thus experiences sizable corrections in the perturbative expansion. At

NLO for pT ∼ mH/2 an artificial cancellation of the scale dependence occurs, resulting

in essentially no scale dependence in this bin at this order. As the order increases to

NNLO and N3LO the corrections are around −10% and −15% compared to NLO. Across

the remaining phase space the corrections are positive and between 5% in the softest bin

increasing to around 15% in the penultimate bin. Comparing N3LO to NNLO in the lower

panel we see that the N3LO corrections reside at the very edge of the scale variation band

at NNLO, which corresponds to around a 2% to 5% correction to the NNLO rate in the

bulk region and −8% correction in the pT ∼ mH/2 bin. This bin has the largest scale

variation at N3LO corresponding to around ±4%. Away from this bin the scale variation

at N3LO is much smaller, around 1%.

We now turn our attention to the more physically-relevant observables that do not

require the introduction of an arbitrary reference direction, namely the energy and invariant

mass of the maximum-energy jet. Our results for the (mH -rescaled) energy distribution

are presented in figure 8. This observable can broadly be classified into three regions: the

δ-component defined by the LO phase space at Emax
j = mH/2, the “bulk” region defined

by 0.5 < Emax
j /mH < 0.6, and the “tail” defined by Emax

j > 0.6mH . We discuss the

δ-component first, which corresponds to the first bin of our histogram. As can be seen

from the middle and lower panels, there is a large (negative) correction in going from NLO

to NNLO (∼ −30%), while the correction in going from NNLO to N3LO is much smaller

(around −2%), indicating a good convergence of the perturbation series here. The major

change in this region at N3LO is the dramatic reduction in scale variation compared to

NNLO, which has gone from ±15% to +3%. In the bulk region the observable is one order

lower in the perturbation theory, i.e. NLO behaves like LO etc. In our case the N3LO

correction acts like a NNLO calculation, with the scale variation growing as a function of

Emax
j from a few percent at the softer end to around 10–15% at the more energetic range of

the region. The tail region corresponds to a region of phase space which is inaccessible to

two- and three-parton phase-space configurations. Therefore in this region the observable

behaves like a calculation two orders lower in perturbation theory. As such, the NNLO

calculation becomes LO-like (the scale variation in the tail at NNLO is flat since we are

merely comparing the overall factor m2
b(µi)α

2
s(µi) with µi = {1/2, 1, 2}mH). Since the

observable is “LO”, we see large corrections > 2 and large scale dependence in going from

NNLO to N3LO. We note that there exists a “super-tail” region not shown in the figure

in which Emax
j > 0.65mH . In this region only the five-parton phase space contributes and

therefore the N3LO prediction behaves like a LO prediction.

We present the invariant mass of the jet (with the largest energy) mj
max, divided by the

Higgs mass, in figure 9. At LO all jets are made of single partons and therefore have zero

mass.4 The region near the LO boundary is highly sensitive to soft and collinear radiation,

and this observable should be resummed (for instance in a parton-shower prescription)

4In the massless approximation. They would have mj/mH ∼ 0.02 had we retained the b-quark mass

kinematically.
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Figure 8. The energy component of the four-vector for the jet with maximum energy rescaled by

the Higgs mass in the Higgs rest frame at NLO, NNLO, and N3LO.

to fully capture the physics. In this region of phase space one demands that the most

energetic jet be almost massless, which pushes the calculation into the region of phase

space in which the two jets are almost-massless partons scattering back to back. In order

to obtain a physically-sensible prediction at fixed order one must ensure that the bin

near mj = 0 is inclusive enough to carry out an adequate cancellation of IR singularities

into an IR-safe observable. In other words, if the prediction is binned too finely, the

perturbation theory breaks down and undesirable effects (such as a negative differential

cross section) can occur. We therefore combine the first four bins into one larger bin in our

differential prediction shown in figure 9. This is actually insufficient to ensure a physically-

reliable prediction for all scale choices at NNLO, but is sufficient at N3LO (in which we are

primarily interested here). To ensure a positive-definite prediction at NNLO the first five

bins need to be combined. We note in passing that at NLO no combination is necessary

since the prediction consists only of a three-body phase space (which diverges to +∞ at

δ(mmax
j /mH)) and of the two-body phase space (which diverges to −∞ at δ(mmax

j /mH))).

Given the poor convergence of the perturbation series in this region, both higher-order

corrections, and the subsequent scale variations, are large. Away from the troublesome δ-
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Figure 9. The mass of the jet (divided by mH) for the jet with maximum energy in the Higgs rest

frame at NLO, NNLO, and N3LO.

region the observable behaves much in the same fashion as the Emax
j observable discussed

previously. Specifically, we observe a bulk region in which the observable is NNLO and the

corrections are (reasonably) small and a tail region in which the three-body phase space is

not present and the observable becomes NLO, resulting in large corrections at N3LO.

5 Conclusions

In this paper we have presented N3LO predictions for the H → bb decay process. We

focused on the piece with the most intricate infrared structure, corresponding to diagrams

in which the Higgs boson couples directly to the final-state bb pair. In order to regulate

the IR divergences present at this order we used the Projection-to-Born (P2B) method,

employed for the first time with N -jettiness slicing as the IR regulator for the NNLO+j

contribution. We developed a method of dealing with the requirement of observing a

jet direction in the N -jettiness slicing approach, namely effectively declustering the last

stage of the jet algorithm and using the substructure of the jets to produce three (sub)jet

directions. We validated our method at NNLO using three different methods to regulate

the IR divergences.
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We used our calculation to present jet rates at O(α3
s) and differential distributions for

several physical observables using the Durham jet algorithm with ycut = 0.1. The method

discussed in this paper is readily applicable to more complicated Higgs processes, such as

associated production of a Higgs boson with a vector boson at the LHC or future collider.

We demonstrated this by computing jet observables with respect to an artificial collision

axis. Our calculation can also be used outside of the Higgs rest frame. Indeed, since the

Higgs is a scalar particle, there is no correlation between decay and production mechanisms.

One can therefore always boost any event into the Higgs rest frame, perform the N -jettiness

regulation (which need not match exactly the requirement of the measurement function,

i.e. one could still employ Durham clustering if desired), then boost back to the laboratory

frame and impose additional selection criteria. We leave this study, together with the

inclusion of the remaining top-induced contribution to the H → bb process at O(α3
s), to

future work.
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A The inclusive H → bb decay width

We present the explicit expressions for the coefficients si, βi and γim of eqs. (3.4)–(3.6)

following the notation of ref. [15]. The coefficients si read:

s1 =
17

4
CF (A.1)

s2 =
1

16

[
C2
F

(
691

4
− 36ζ2 − 36ζ3

)
+ CACF

(
893

4
− 22ζ2 − 62ζ3

)
− CFNf

(
65

2
− 4ζ2 − 8ζ3

)]
(A.2)

s3 =
1

64

[
C3
F

(
23443

12
− 648ζ2 − 956ζ3 + 360ζ5

)
+ CAC

2
F

(
13153

3
− 1532ζ2 − 2178ζ3 + 580ζ5

)
+ C2

ACF

(
3894493

972
− 6860

9
ζ2 −

4658

3
ζ3 +

100

3
ζ5

)
− CACFNf

(
267800

243
− 2284

9
ζ2 −

704

3
ζ3 +

48

5
ζ22 −

80

3
ζ5

)
− C2

FNf

(
2816

3
− 260ζ2 − 520ζ3 −

48

5
ζ22 + 160ζ5

)
+ CFN

2
f

(
15511

243
− 176

9
ζ2 − 16ζ3

)]
(A.3)
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Figure 10. Dependence on the renormalization scale µ of the inclusive H → bb decay width up to

N3LO accuracy (rescaled by the LO width at µ = mH).

with CA = Nc, CF = N2
c−1
2Nc

, and Nf the number of quark flavors. The coefficients of the

QCD β function explicitly read:

β0 =
1

4

[
11

3
CA −

4

3
TRNf

]
(A.4)

β1 =
1

16

[
34

3
C2
A −

20

3
CATRNf − 4CFTRNf

]
(A.5)

with TR= 1
2 . The coefficients γim are taken from eq. (12) of ref. [73] and their expressions are:

γ0m =
3

4
CF (A.6)

γ1m =
1

16

[
3

2
C2
F +

97

6
CFCA −

10

3
CFTRNf

]
γ2m =

1

64

[
129

2
C3
F −

129

4
C2
FCA +

11413

108
CFC

2
A

+ C2
FTRNf (−46 + 48ζ3) + CFCATRNf

(
−556

27
− 48ζ3

)
− 140

27
CFT

2
RN

2
f

]
. (A.7)

Finally, it is instructive to show the renormalization scale variation of the inclusive

H → bb decay width up to O(α3
s). The inclusive decay width depends on the renormaliza-

tion scale µ through the bottom Yukawa coupling yb(µ), the strong coupling constant αs(µ),

and the coefficients Γ
(n)

H→bb of eqs. (3.4)–(3.6). We plot the ratios ΓNnLO
H→bb(µ)/ΓLO

H→bb(µ = mH)

with n = 0, . . . , 3 as µ/mH is varied in the range {1/8, 8} in figure 10. The values of αs
and yb at different scales are obtained using the Mathematica package RunDec [67]. As ex-

pected, the inclusion of higher-order corrections stabilizes the inclusive decay width, which

shows very small scale dependence at N3LO in the primary region of interest {1/2, 2}mH .
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