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1 Introduction

Two dimensional supersymmetric gauge theories have rich dynamics and exhibit IR dual-

ities similar to their cousins in higher dimensions. In fact, there is a web of connections

between the various dualities that goes all the way to six dimensions upon compactification.

Deciphering this underlying structure is a long standing goal. A common theme is to use

localization techniques to verify and solidify geometric intuition coming from string theory

and M-theory realizations. Based on such a string theory realization, we have recently

conjectured a set of dualities relating two dimensional N = (4, 4) supersymmetric gauge

theories with orthogonal and symplectic gauge groups [1], generalizing a conjecture relating

unitary gauge theories made by Brodie in [2]. In this work, we implement the elliptic genus

machinery of [3, 4] to further study these dualities.

Gauge theories in two dimensions based on the so(k) algebra are particularly interesting

and subtle for two reasons. First there are several possibilities for the global structure of

the group, including SO(k), O(k)±, Spin(k) and Pin±(k), which give rise to distinct gauge

theories, with a distinct spectrum of local and line operators [5, 6].1 Second, except for

Spin(k), the theories may possess multiple topological sectors that contribute in the path

integral. For example an SO(k) theory (with k > 2) on S2 has two topological sectors

1The O(k)± theories correspond to Z2 orbifolds of the SO(k) theory by charge conjugation and by charge

conjugation combined with (−1)F , respectively [7].
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corresponding to monopole number n ∈ {0, 1}, weighted by a phase given by exp inθ,

where θ is a discrete analog of a theta parameter taking values in {0, π}. Investigating

these theories therefore requires one to classify the different gauge bundles on the given

spacetime manifold.

Orthogonal gauge theories with N = (2, 2) supersymmetry and fundamental chiral

multiplets have been argued to satisfy a set of Seiberg-like dualities given by [7]

SO(k) +Qi ←→ O(N − k + 1)+ + qi + Sij (1.1)

O(k)+ +Qi ←→ SO(N − k + 1) + qi + Sij (1.2)

O(k)− +Qi ←→ O(N − k + 1)− + qi + Sij , (1.3)

where i = 1, . . . , N , and the theory on the r.h.s. also has a gauge singlet S in the symmetric

representation of the flavor U(N) symmetry, and a superpotential W = qSq. The value of

the discrete theta parameter θ is fixed in each case such that the Coulomb branch is lifted.

These dualities were further tested by [8, 9]. In particular the T 2 partition functions, or

elliptic genus, of the dual theories for k ≤ 4 were computed, and found to agree, in [9]. A

brane realization of these dualities in M theory was subsequently provided in [1].

Interestingly, a very similar brane construction suggested an analogous set of dualities

for N = (4, 4) theories with fundamental hypermultiplets given roughly by

(S)O(k) +Qi ←→ (S)O(2n− k + 1) + qi , (1.4)

where i = 1, . . . , n. There are no extra singlets in this case, and θ = π on both sides. The

brane construction does not seem to differentiate O(k) from SO(k), or O(k)+ from O(k)−,

so we were not able to make a more refined set of conjectures as in the N = (2, 2) case.

More concretely, the N = (4, 4) duality is the statement that the two gauge theories flow

to the same superconformal theory on the Higgs branch. This is supported in part by the

fact that the central charges of the “magnetic” and “electric” Higgs branch SCFT’s agree:

ĉm = (2n− k + 1)n− 1

2
(2n− k + 1)(2n− k) = kn− 1

2
k(k − 1) = ĉe . (1.5)

The aim of this work is to provide further evidence for, and to make more precise, the

N = (4, 4) dualities of orthogonal theories via the elliptic genus.

In section 2 we recall the structure of flat O(k) bundles on the torus, and classify

them according to whether or not they admit Pin+ structure, which is relevant for the

dependence on the discrete theta parameter. Then in section 3 we test the N = (4, 4)

dualities for orthogonal gauge theories by comparing the elliptic genera for some low rank

cases. We also test a twisted generalization of the dualities and show that the three pairs

of dualities are connected by gauging of a global Z2 symmetry. In the appendix we briefly

review the elliptic genus formulas and then analytically compare the elliptic genera of the

lower rank dualities using the known identities of the Jacobi-theta functions.

2 Flat O(k) connections on T 2

Flat O(k) connections on T 2 were classified in [10]. There are eight sectors in general given

by the following pairs of Wilson lines along the temporal and spatial circles of the torus,
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(U1, U2). For O(2p) with p ≥ 2:

(U1, U2)+
ab =


(diag(eiu1iσ2), diag(eiu2iσ2))

(diag(eiu1iσ2 , 1, 1), diag(eiu2iσ2 , 1,−1))

(diag(eiu1iσ2 , 1,−1), diag(eiu2iσ2 , 1, 1))

(diag(eiu1iσ2 , 1,−1), diag(eiu2iσ2 , 1,−1))

(2.1)

(U1, U2)−ab =


(diag(eiu1iσ2 , 1,−1,−1, 1), diag(eiu2iσ2 , 1, 1,−1,−1))

(diag(eiu1iσ2 ,−1,−1), diag(eiu2iσ2 , 1,−1))

(diag(eiu1iσ2 , 1,−1), diag(eiu2iσ2 ,−1,−1))

(diag(eiu1iσ2 , 1,−1), diag(eiu2iσ2 ,−1, 1)) ,

(2.2)

where (a, b) = (0, 0), (0, 1), (1, 0) and (1, 1), respectively, and for O(2p+ 1) with p ≥ 1:

(U1, U2)+
ab =


(diag(eiu1iσ2 , 1), diag(eiu2iσ2 , 1))

(diag(eiu1iσ2 , 1), diag(eiu2iσ2 ,−1))

(diag(eiu1iσ2 ,−1), diag(eiu2iσ2 , 1))

(diag(eiu1iσ2 ,−1), diag(eiu2iσ2 ,−1))

(2.3)

(U1, U2)−ab =


(diag(eiu1iσ2 ,−1,−1, 1), diag(eiu2iσ2 , 1,−1,−1))

(diag(eiu1iσ2 ,−1,−1, 1), diag(eiu2iσ2 , 1,−1, 1))

(diag(eiu1iσ2 , 1,−1, 1), diag(eiu2iσ2 ,−1,−1, 1))

(diag(eiu1iσ2 , 1, 1,−1), diag(eiu2iσ2 , 1,−1, 1)) .

(2.4)

For O(1) there are only the four sectors in (2.3),

(U1, U2)+
ab = (1, 1), (1,−1), (−1, 1), (−1,−1) , (2.5)

and for O(2) the first sector in (2.2) is absent, leaving only seven sectors,

(U1, U2)+
ab = (eiu1σ2 , eiu2σ2), (1, σ3), (σ3,1), (σ3, σ3) (2.6)

(U1, U2)−01,10,11 = (−1, σ3), (σ3,−1), (σ3,−σ3) .

2.1 Pin structure

An O(k) bundle over X lifts to a Pin±(k) bundle over X provided that w2 = 0 and

w2 + w2
1 = 0, respectively, where w1 and w2 are the first and second Stiefel-Whitney

classes of the O(k) bundle. We are specifically interested in bundles over T 2 with a flat

connection. The corresponding sector in the path integral is accompanied by a phase eiθw2 ,

where θ ∈ {0, π} is the discrete theta parameter. We therefore concentrate on the case

of Pin+(k). Namely we would like to classify flat O(k) connections on T 2 according to

whether they lift to flat Pin+(k) connections on T 2.

A closely related problem was considered in the context of the toroidal compactification

of Type I string theory by Witten in [11]. Since the precise gauge symmetry of Type I string
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theory is Spin(32)/Z2, one can consider a compactification on T 2 with a flat connection

that does not lift to a flat Spin(32) connection. This was called “toroidal compactification

without vector structure”. The condition for the existence of vector structure is w̃2 = 0,

where w̃2 is defined in an analogous manner to w2. A flat Spin(32)/Z2 connection on

T 2 is given by a pair U1, U2 satisfying U1U2 = U2U1. The lift to Spin(32) then satisfies

U1U2 = (−1)w̃2U2U1. For our case, flat O(k) connections on T 2 lift to Pin+(k) connections

satisfying U1U2 = (−1)w2U2U1.

We will show that the flat O(k) connections (U1, U2)+ correspond to bundles with

Pin+ structure, namely w2 = 0, whereas (U1, U2)− correspond to bundles without Pin+

structure, namely w2 6= 0. The latter will therefore contribute to the T 2 partition function

with a phase eiθ.

Let us recall the definition of Pin(k) [12]. The group Pin(k) is a double cover of the

group O(k), in the same way that Spin(k) is a double cover of SO(k). There is a two-to-

one map ρ : Pin(k)→ O(k) that takes an element Λ ∈ Pin(k) into the element R ∈ O(k)

given by

Rij = ±1

k
Tr(ΛγiΛ

†γj) , (2.7)

where the sign depends on whether Λ consists of an even or odd number of gamma matrices.

More explicitly Pin±(k) is generated by Sij = 1
2 [γi, γj ], together with a parity operator P

that satisfies det(ρ(P )) = −1, and P 2 = ±1. For Pin+(k) we can take P = γi for some i

for even k, and P =
∏k
i=1 γi for odd k. In these cases ρ(P ) = diag(+1, . . . ,−1, . . . ,+1) for

even k and ρ(P ) = diag(−1, . . . ,−1) for odd k.

Let us first consider the k = 2, 3, 4 cases explicitly, and then generalize to all k. For

k = 2 we can choose γ1 = σ1, γ2 = σ2, and P = γ1 = σ1. The map Pin+(2)→ O(2) takes

the form

Λ(φ) = ei
φ
2
S =

(
ei
φ
2 0

0 e−i
φ
2

)
7→ ρ(Λ) = R(φ) =

(
cos(φ) sin(φ)

− sin(φ) cos(φ)

)
(2.8)

P = σ1 7→ ρ(P ) =

(
−1 0

0 1

)
. (2.9)

Using these relations one can easily find lifts to Pin+(2) of the commuting flat O(2) con-

nections in (2.6). For (U1, U2)+ we have

(Λ(u1),Λ(u2)) 7→ (eiu1σ2 , eiu2σ2)

(1, PΛ(π)) 7→ (1, σ3)

(PΛ(π),1)) 7→ (σ3,1) (2.10)

(PΛ(π), PΛ(π)) 7→ (σ3, σ3) .

The Pin+(2) holonomy pairs on the l.h.s. all commute and so correspond to w2 = 0. For
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(U1, U2)− on the other hand we find

(Λ(π), PΛ(π)) 7→ (−1, σ3)

(PΛ(π),Λ(π)) 7→ (σ3,−1)

(PΛ(π), P ) 7→ (σ3,−σ3) , (2.11)

which anti-commute in Pin+(2) and therefore correspond to w2 6= 0. For k = 3 we can

take γ1 = σ1 ⊗ 1, γ2 = σ3 ⊗ 1, γ3 = σ2 ⊗ σ2, and P = γ1γ2γ3 = 1 ⊗ σ2. In this case

ρ(P ) = diag(−1,−1,−1). The lifts to Pin+(3), up to signs, of the (U1, U2)+ holonomies

in (2.3) are given by the commuting pairs

(Λ12(u1), Λ12(u2)), (Λ12(u1), PΛ12(u2)), (PΛ12(u1),Λ12(u2)), (PΛ12(u1), PΛ12(u2)) ,

(2.12)

and the lifts of (U1, U2)− are given by the anti-commuting pairs

(Λ12(π),Λ23(π)), (Λ12(π), PΛ31(π)), (PΛ31(π),Λ12(π)), (PΛ12(π), PΛ31(π)) . (2.13)

As before, the former correspond to w2 = 0 and the latter to w2 6= 0. For k = 4 we can take

γ1 = iσ2 ⊗ iσ2 ⊗ 1, γ2 = iσ2 ⊗ σ1 ⊗ iσ2, γ3 = iσ2 ⊗ σ3 ⊗ iσ2, γ4 = σ3 ⊗ 1⊗ 1, and P = γ4.

In this case ρ(P ) = diag(1, 1, 1,−1). The O(4) pairs (U1, U2)+ lift to the commuting pairs

(Λ12(u11)Λ34(u12),Λ12(u21)Λ34(u22)), (Λ12(u11), PΛ12(u21)), (2.14)

(PΛ12(u11),Λ12(u21)), (PΛ12(u11), PΛ12(u21)) , (2.15)

and the pairs (U1, U2)− lift to the anti-commuting pairs

(Λ23(π),Λ34(π)), (Λ12(u1)Λ34(π), PΛ12(u2)), (2.16)

(PΛ12(u1),Λ12(u2)Λ34(π)), (PΛ12(u1), PΛ12(u2)Λ34(π)) . (2.17)

The generalization to higher k is straightforward. In (2.1)–(2.4) we see that the O(2p)

and O(2p + 1) bundles decompose into a direct sum of commuting flat connections of

SO(2)p−1 and those of O(4) and O(3), respectively. The first part lifts trivially to a flat

Spin(2)p−1 bundle, since Spin(2) = SO(2). To conclude, the pairs (U1, U2)+ define flat

O(k) bundles on T 2 with trivial w2, while the pairs (U1, U2)− define flat O(k) bundles on

T 2 with non-trivial w2.

3 N = (4, 4) theories

Two dimensional gauge theories with N = (4, 4) supersymmetry have a moduli space of

vacua that generically has two branches, a Coulomb branch and a Higgs branch. The two

branches decouple in the IR and the theory flows to two independent superconformal field

theories with an SU(2) × SU(2) R-symmetry [13]. In some cases the Coulomb branch is

lifted and one is left with just the Higgs branch SCFT. In particular this is the case for

O(k) or SO(k) with any number N of fundamental hypermultiplets and with θ = π [1].

This is somewhat surprising given the fact that in theories with eight supersymmetries in
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higher dimensions the Coulomb branch cannot be lifted. It is in fact very similar to what

happens in N = (2, 2) supersymmetric gauge theories [7], and is due partly to an effective

linear twisted superpotential on the Coulomb branch.2 We will also see that it is consistent

with the results we will present below: the Witten index is a finite integer, as it should be

for a regular theory.

As stated in the introduction, the brane construction of [1] suggests a duality between

the O(k) (or SO(k)) theory with n fundamental hypermultiplets and the O(2n− k+ 1) (or

SO(2n−k+1) theory with n fundamental hypermultiplets. We will provide more evidence

for this conjecture by comparing the elliptic genera. Our analysis shows that, as in the

N = (2, 2) theories, there are three3 dualities between N = (4, 4) theories:

SO(k) +Qi ←→ O(2n− k + 1)+ + qi (3.1)

O(k)+ +Qi ←→ SO(2n− k + 1) + qi (3.2)

O(k)− +Qi ←→ O(2n− k + 1)− + qi , (3.3)

where θ = π in all cases.

To compute the elliptic genus of the N = (4, 4) theories we use the results of [3, 4]

for the N = (2, 2) theories, add the contribution of the adjoint chiral superfield, and take

into account the condition on the global symmetry and R-symmetry charges imposed by

the superpotential W = QΦQ. This was actually done for the U(k) theory in [4], so we

will follow their notation convention. We denote the holonomies of the global symmetry

Sp(n)×U(1)Φ by ξα, and λ, and that of the left-moving U(1) R-symmetry by z. As in [4]

we assign R-charge 0 to all fields but include the holonomy λ. The superpotential will

impose the constraint λ = z.

It will also be useful to label the flat connections (U1, U2)± by their exponents u± =

(u±1 , · · · , u
±
k ). In the 2×2 blocks eiu1iσ2 , eiu2iσ2 with continuous elements, the two associated

u parameters are given by the two eigenvalues ±(u1i + τu2i). In the blocks with discrete

numbers, we assign ui = 0 for an eigenvalue pair (1, 1), ui = 1
2 for an eigenvalue pair

(−1, 1), ui = τ
2 for (1,−1), and ui = 1+τ

2 for (−1,−1). We therefore have

u+
ab =



(±u1, . . . ,±up)

(±u1, . . . ,±up−1, 0,
τ
2 )

(±u1, . . . ,±up−1, 0,
1
2)

(±u1, . . . ,±up−1, 0,
1+τ

2 )

u−ab =



(±u1, . . . ,±up−2, 0,
1
2 ,

1+τ
2 , τ2 )

(±u1, . . . ,±up−1,
1
2 ,

1+τ
2 )

(±u1, . . . ,±up−1,
τ
2 ,

1+τ
2 )

(±u1, . . . ,±up−1,
1
2 ,

τ
2 )

(3.4)

2The twisted superpotential lifts the part of the Coulomb branch corresponding to the scalar in the

N = (2, 2) vector multiplet. Presumably a linear superpotential is also generated for the adjoint chiral

multiplet, though this has not been demonstrated yet.
3Note that since there are no mesons involved the SO(k)↔ O(2n−k+1)+ and O(k)+ ↔ SO(2n−k+1)

dualities are simply related by exchanging k ↔ 2n − k + 1, so there are actually just two dualities. We

will however distinguish the two in order to clarify the similar structure these (4,4) dualities share with the

(2, 2) dualities.
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for O(2p), and

u+
ab =



(±u1, . . . ,±up, 0)

(±u1, . . . ,±up, τ2 )

(±u1, . . . ,±up, 1
2)

(±u1, . . . ,±up, 1+τ
2 )

u−ab =



(±u1, . . . ,±up−1,
1
2 ,

1+τ
2 , τ2 )

(±u1, . . . ,±up−1,
1
2 ,

1+τ
2 , 0)

(±u1, . . . ,±up−1,
τ
2 ,

1+τ
2 , 0)

(±u1, . . . ,±up−1,
1
2 ,

τ
2 , 0)

(3.5)

for O(2p+ 1).

3.1 O(1) + n

In this case there is only the contribution of the matter fields:

Z
O(1),n
ab =

1

2

n∏
α=1

θ1(−z ± ξα + a+bτ
2 )

θ1(± ξα + a+bτ
2 )

, (3.6)

where the Jacobi’s theta function definitions and the elliptic genus formulas are given in

the appendix and we have also introduced the shorthand θ1

(
A±B

)
≡ θ1

(
A+B

)
θ1

(
A−B

)
3.2 O(2) + n

The continuous sector is given by

Z
O(2),n
00 = −1

2

iη(q)3

θ1(−z)

θ1(λ− z)

θ1(λ)

∮
u∗

du
n∏

α=1

θ1(u− z ± ξα)

θ1(u± ξα)

θ1(−u− z ± ξα)

θ1(−u± ξα)

=

n∑
β=1

θ1(2ξβ ± z)

θ1(2ξβ)2

n∏
α 6=β

θ1(ξβ ± ξα − z)

θ1(ξβ ± ξα)

θ1(−ξβ ± ξα − z)

θ1(−ξβ ± ξα)

where we have picked up 2n residues at u∗ = ±ξβ and imposed the constraint λ = z.

In particular the θ1(0) factor in the denominator cancels with the θ1(λ − z) factor in the

numerator. The six discrete sectors are

Z
O(2),n
ab± =

1

4

θ1(u±1ab + u±2ab)

θ1(−z + u±1ab + u±2ab)

θ1(λ− z + u±1ab + u±2ab)

θ1(λ+ u±1ab + u±2ab)

n∏
α=1

2∏
i=1

θ1(u±iab − z ± ξα)

θ1(u±iab ± ξα)

=
1

4

θ1(u±1ab + u±2ab)
2

θ1(±z + u±1ab + u±2ab)

n∏
α=1

2∏
i=1

θ1(u±iab − z ± ξα)

θ1(u±iab ± ξα)
(3.7)

with (a, b) = (0, 1), (1, 0) and (1, 1), where u±iab are given in (3.4).

3.3 O(3) + n

There are four continuous sectors given by

Z
O(3),n
ab+ = −1

4

iη(q)3

θ1(−z)

∮
u∗

du

(
θ1(u+ a+bτ

2 )

θ1(u− z + a+bτ
2 )

θ1(−u+ a+bτ
2 )

θ1(−u− z + a+bτ
2 )

(3.8)

×
θ1(u+ λ− z + a+bτ

2 )

θ1(u+ λ+ a+bτ
2 )

θ1(−u+ λ− z + a+bτ
2 )

θ1(−u+ λ+ a+bτ
2 )

θ1(λ− z + a+bτ
2 )

θ1(λ+ a+bτ
2 )

×
n∏
i=α

θ1(u− z ± ξα)

θ1(u± ξα)

θ1(−u− z ± ξα)

θ1(−u± ξα)

θ1(−z ± ξα + a+bτ
2 )

θ1(±ξα + a+bτ
2 )

)
.
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The JK poles are at u∗ =
{
z − a+bτ

2 ,−λ− a+bτ
2 ,±ξβ

}
. Evaluating the residues is straight-

forward but cumbersome, so we will not show it here. The four discrete sectors are given by

Z
O(3),n
ab− =

1

8

3∏
i 6=j

θ1

(
u−iab + u−jab

)
θ1

(
− z + u−iab + u−jab

) θ1(λ− z + u−iab + u−jab)

θ1(λ+ u−iab + u−jab)

n∏
α=1

3∏
i=1

θ1(−z + u−iab ± ξα)

θ1(u−iab ± ξα)

=
1

8

3∏
i 6=j

θ1

(
u−iab + u−jab

)2
θ1

(
± z + u−iab + u−jab

) n∏
α=1

3∏
i=1

θ1(−z + u−iab ± ξα)

θ1(u−iab ± ξα)
(3.9)

where uiab− are given in (3.5).

3.4 N = (4, 4) duality

Before we compare the partitions functions let us comment on their orbifold structure.

Being a special case of the (2, 2)-orthogonal theories, the (4, 4) − O(k)± theories can also

be obtained by gauging a Z2 global symmetry in the SO(k) theory. This symmetry is

either charge conjugation, or charge conjugation combined with (−1)Fs . The former is the

so-called standard orbifold, and the latter, non-standard orbifold. In terms of the torus

partition function this means

ZT 2/Z2 =
1

2
(Z00 + Z10 + Z01 + Z11), (3.10)

ZT 2/Z2(−1)Fs =
1

2
(−Z00 + Z10 + Z01 + Z11). (3.11)

In [7], the O(k)± theories where then defined according to the parity of N+k such that the

three dualities always hold in the same form. For the (4, 4) theories since matter comes in

hypermultiplets, we define (for any k) the O(k)+ theory as the standard orbifold of SO(k)

and the O(k)− theory as the non-standard orbifold of SO(k) (up to an overall sign).

The elliptic genus is then given by

Z
SO(k),n
T 2 = 2(Z

O(k),n
00+ + y−2neiθZ

O(k),n
00− ), (3.12)

Z
O(k)+,n
T 2 =

∑
a,b

(y−nbZ
O(k),n
ab+ + yn(b−2)eiθZ

O(k),n
ab− ) (3.13)

Z
O(k)−,n
T 2 =

∑
a,b

(−1)ab+a+b+k(y−nbZ
O(k),n
ab+ + yn(b−2)eiθZ

O(k),n
ab− ) (3.14)

where the factors of y = e2πiz are required for modular invariance. Setting θ = π for

the regular theories, we have analytically showen (see appendix B) that the following

equalities hold

Z
SO(2),1
T 2 = Z

O(1)+,1
T 2 , (3.15)

Z
O(2)+,1
T 2 = Z

SO(1),1
T 2 , (3.16)

Z
O(2)−,1
T 2 = Z

O(1)−,1
T 2 . (3.17)
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For the higher rank dualities we have checked numerically (up to order q5, where q = e2πiτ )

that the following partition functions agree

Z
SO(3),2
T 2 = Z

O(2)+,2
T 2 , (3.18)

Z
O(3)+,2
T 2 = Z

SO(2),2
T 2 , (3.19)

Z
O(3)−,2
T 2 = Z

O(2)−,2
T 2 , (3.20)

confirming the proposed dualities in these cases.

In the limit z → 0 we obtain the Witten index, which is given by

I
SO(1),n
W = I

O(1)−,n
W = 1 , I

O(1)+,n
W = 2 , (3.21)

I
O(2)+,n
W = I

O(2)−,n
W = n , I

SO(2),n
W = 2n , (3.22)

and

I
SO(3),n
W = I

O(3)−,n
W = n , I

O(3)+,n
W = 2n . (3.23)

3.5 Twisting

As mentioned in the previous section4 the O(k)± theories are obtained by gauging the SO(k)

theory by a Z2 subgroup of its global symmetry that acts as charge conjugation. Their

elliptic genera are therefore given by twisting the SO(k) partition function and summing

over the twists. The twisted SO(k) elliptic genus is

Z
SO(k),n
T 2(α,β)

= 2(Z
O(k),n
αβ+ + y−2neiθZ

O(k),n
αβ− ) (3.24)

and the sums are given by (3.13)–(3.14).

The resulting orbifold theories O(k)± posses in turn a quantum Ẑ2 - global symmetry

which acts non-trivially on the twisted(untwisted) sectors for the standard(non-standard)

orbifolds. Their twisted partition function is therefore given by

Z
O(k)+,n
T 2(α,β)

=
∑
a,b

(y−nbZ
O(k),n
ab+ + yn(b−2)eiθZ

O(k),n
ab− )(−1)αb+βa, (3.25)

Z
O(k)−,n
T 2(α,β)

= (−1)kαβ
∑
a,b

(−1)ab+a+b+k(y−nbZ
O(k),n
ab+ +yn(b−2)eiθZ

O(k),n
ab− )(−1)α(b+1)+β(a+1)

(3.26)

where (−1)kαβ is a background term.

Setting θ = π we can now write a twisted generalization of the (4, 4)-dualities

Z
SO(k),n
T 2(α,β)

= Z
O(2n−k+1)+,n
T 2(α,β)

, (3.27)

Z
O(k)+,n
T 2(α,β)

= Z
SO(2n−k+1),n
T 2(α,β)

, (3.28)

Z
O(k)−,n
T 2(α,β)

= Z
O(2n−k+1)−,n
T 2(α,β)

. (3.29)

4The following discussion is parallel for the (2,2) orthogonal theories defined in [7].
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As a consistency check let us gauge the Z2 symmetry by summing over the twists. For

example, for k = n = 1 we find

1/2
∑
αβ

Z
SO(1),1
T 2(α,β)

= Z
O(1)+,1
(0,0) , (3.30)

1/2
∑
αβ

(−1)αβ+α+β+1Z
SO(1),1
T 2(α,β)

= Z
O(1)−,1
(0,0) , (3.31)

1/2
∑
αβ

Z
O(1)+,1
T 2(α,β)

= Z
SO(1),1
(0,0) , (3.32)

1/2
∑
αβ

(−1)αβ+α+βZ
O(1)+,1
T 2(α,β)

= Z
O(1)−,1
(0,0) , (3.33)

1/2
∑
αβ

(−1)αβ+α+βZ
O(1)−,1
T 2(α,β)

= Z
O(1)+,1
(0,0) , (3.34)

1/2
∑
αβ

(−1)αβ+α+β+1Z
O(1)−,1
T 2(α,β)

= Z
SO(1),1
(0,0) , (3.35)

and for k = 2, n = 1

1/2
∑
αβ

Z
SO(2),1
T 2(α,β)

= Z
O(2)+,1
(0,0) , (3.36)

1/2
∑
αβ

(−1)αβ+α+βZ
SO(2),1
T 2(α,β)

= Z
O(2)−,1
(0,0) , (3.37)

1/2
∑
αβ

Z
O(2)+,1
T 2(α,β)

= Z
SO(2),1
(0,0) , (3.38)

1/2
∑
αβ

(−1)αβ+α+β+1Z
O(2)+,1
T 2(α,β)

= Z
O(2)−,1
(0,0) , (3.39)

1/2
∑
αβ

(−1)αβ+α+β+1Z
O(2)−,1
T 2(α,β)

= Z
O(2)+,1
(0,0) , (3.40)

1/2
∑
αβ

Z
O(2)−,1
T 2(α,β)

= Z
SO(2),1
(0,0) . (3.41)

Denoting the gauging operations 1/2
∑

αβ and 1/2
∑

αβ(−1)αβ+α+β+1 by Z2 and

Z2(−1)Fs ≡ Z′2 respectively and an overall sign by additional “-”, we can summarize these

relations with the following diagram

SO(1)
;;

Z2

$$

OO

Z′2
��

ks +3 O(2)+OO

Z′2
��

dd

Z2

{{

O(1)− ks +3

Z2

��

O(2)−

Z2

��
O(1)+

−Z′2

OO

ks +3 SO(2)

−Z′2

OO

(3.42)

This is similar to Hori’s (2, 2)-orthogonal dualities [7], where starting from any duality the

other two follow by the two gauging procedures.
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4 Conclusions

Using the elliptic genus machinery we investigated the brane based duality conjuncture of

2d (4,4)-orthogonal gauge theories. Successfully testing the O(1) ↔ O(2) and O(2)↔ O(3)

cases. Our analysis reveals a similar structure to the (2,2)-dualities found in [7] where

there are three theories and three pairs of dualities, all connected by gauging a global

Z2 symmetry.

On the way we have classified the O(k) flat connections on the torus. This has im-

portant application for any elliptic genus computation of orthogonal theories when the θ

parameter of the theory is non-trivial.

These theories deserve further investigation, in particular it would be interesting to

understand the mechanism that lifts the part of coulomb branch associated (in the (2,2)

language) with the additional adjoint scalar.
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A Rank one elliptic genus formula

The elliptic genus of a gauge theory with gauge group G of rank one is given by [3]

ZT 2 = − 1

|W |
∑

uj∈M+
sing

∮
u=uj

iη(q)3

θ1(−z)

∏
α∈G

θ1(αu)

θ1(αu− z)

∏
Φi

∏
ρ∈Ri

θ1

(
(Ri2 − 1)z + ρu+ ξi

)
θ1

(
Ri
2 z + ρu+ ξi

) (A.1)

where |W | is the order of the Weyl group, η(q) is the Dedekind eta function

η(q) = q1/24
∞∏
n=1

(1− qn) (A.2)

and θ1 is the Jacobi theta function

θ1(τ |z) = −iq
1
8 y

1
2

∞∏
k=1

(1− qk)(1− yqk)(1− y−1qk−1) (A.3)

with q ≡ e2πiτ and y ≡ e2πiz. The first two terms of the integrand are the contribution

of gauge multiplet and the double product comes from the matter fields. The integral

is evaluated using the Jeffrey-Kirwan pole prescription which for rank one gauge group

amounts to taking the poles that are inside the unit circle consistently e.g if u = z− a+bτ
2 ∈

M+
sing then u = −z + a+bτ

2 does not.
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B Playing with Jacobi theta functions

In this appendix we derive the first three dualities Z
S/O(2)±,1
T 2 = Z

S/O(1)±,1
T 2 using the known

identities for the Jacobi theta functions.

The Jacobi theta functions are defined as follows

θ1(τ |z) = −iq
1
8 y

1
2

∞∏
k=1

(1− qk)(1− yqk)(1− y−1qk−1), (B.1)

θ2(τ |z) = q
1
8 y

1
2

∞∏
k=1

(1− qk)(1 + yqk)(1 + y−1qk−1), (B.2)

θ3(τ |z) =

∞∏
k=1

(1− qk)(1 + yqk)(1 + y−1qk−1), (B.3)

θ4(τ |z) =

∞∏
k=1

(1− qk)(1− yqk)(1− y−1qk−1), (B.4)

they are known to satisfy many relations, we list here the ones that we need (we will use

the shorthand θi(τ |z) ≡ θi(z), θi(τ |0) ≡ θi).

• Shift symmetries:

θ1(−z) = −θ1(z), (B.5)

θ1(z + a+ bτ) = (−1)a+be−2πibz−πib2τθ1(z). (B.6)

θ1

(
z +

1

2

)
= θ2(z), θ4

(
z +

1

2

)
= θ3(z),

θ1

(
z +

1 + τ

2

)
= q−

1
8 y−

1
2 θ3(z), θ4

(
z +

1 + τ

2

)
= q−

1
8 y−

1
2 θ2(z), (B.7)

θ1

(
z +

τ

2

)
= iq−

1
8 y−

1
2 θ4(z), θ4

(
z +

τ

2

)
= iq−

1
8 y−

1
2 θ1(z).

• Addition rules:

θ1(x± z) =
1

θ2
4

(θ1(x)2θ4(z)2 − θ4(x)2θ1(z)2), (B.8)

θ2(x± z) =
1

θ2
4

(θ2(x)2θ4(z)2 − θ3(x)2θ1(z)2), (B.9)

θ3(x± z) =
1

θ2
4

(θ3(x)2θ4(z)2 − θ2(x)2θ1(z)2), (B.10)

θ4(x± z) =
1

θ2
4

(θ4(x)2θ4(z)2 − θ1(x)2θ1(z)2). (B.11)

• Duplication formulas:

θ1(2x) =
2θ1(x)θ2(x)θ3(x)θ4(x)

θ2θ3θ4
, (B.12)

θ4(2x) =
1

θ3
4

(θ4(x)4 − θ1(x)4) =
1

θ3
4

(θ3(x)4 − θ2(x)4). (B.13)
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• Square identities:

θ1(x)2θ2
4 = θ3(x)2θ2

2 − θ2(x)2θ2
3, (B.14)

θ2(x)2θ2
4 = θ4(x)2θ2

2 − θ1(x)2θ2
3, (B.15)

θ3(x)2θ2
4 = θ4(x)2θ2

3 − θ1(x)2θ2
2, (B.16)

θ4(x)2θ2
4 = θ3(x)2θ2

3 − θ2(x)2θ2
2. (B.17)

We can now derive the proposed dualities. Starting with Z
SO(2),1
T 2 = Z

O(1)+,1
T 2 we need

to show that

1

4

1∑
a,b=0

θ1(ξ + a+bτ
2 ± z)

θ1(ξ + a+bτ
2 )2

− θ1(2ξ ± z)

θ1(2ξ)2
= 0. (B.18)

Using identity (B.8) we get

1

4

1∑
a,b=0

(
θ4(z)2

θ2
4

−
θ1(z)2θ4(ξ + a+bτ

2 )2

θ2
4θ1(ξ + a+bτ

2 )2

)
−
(
θ4(z)2

θ2
4

− θ1(z)2θ4(2ξ)2

θ2
4θ1(2ξ)2

)
= 0, (B.19)

so it is left to show that

1

4

1∑
a,b=0

θ4(ξ + a+bτ
2 )2

θ1(ξ + a+bτ
2 )2

− θ4(2ξ)2

θ1(2ξ)2
= 0. (B.20)

Using the relations (B.6)–(B.7) on the first term and (B.12)–(B.13) on the second we get

1

4

(
θ4(ξ)2

θ1(ξ)2
+
θ1(ξ)2

θ4(ξ)2
+
θ3(ξ)2

θ2(ξ)2
+
θ2(ξ)2

θ3(ξ)2

)
− θ2

2θ
2
3

4θ4
4

(θ4(ξ)4 − θ1(ξ)4)2

θ1(ξ)2θ2(ξ)2θ3(ξ)2θ4(ξ)2
= 0 (B.21)

or

(θ4(ξ)4 + θ1(ξ)4)θ2(ξ)2θ3(ξ)2 + (θ2(ξ)4 + θ3(ξ)4)θ1(ξ)2θ4(ξ)2

−θ
2
2θ

2
3

θ4
4

(θ4(ξ)4 − θ1(ξ)4)2 = 0, (B.22)

finally using (B.14)–(B.17) we get an equality.

Next we show that Z
O(2)+,1
T 2 = Z

SO(1),1
T 2 . Starting with the l.h.s. , we have the continu-

ous sector

Z
O(2),1
00 =

θ1(2ξ ± z)

θ(2ξ)2
(B.23)

and the six discrete sectors which can be written in the following form

Z
O(2),1
ab+ =

1

4

θ1(ξ ± z)θ1(a+bτ
2 )2θ1(ξ ± z + a+bτ

2 )

θ1(ξ)2θ1(z + a+bτ
2 )2θ1(ξ + a+bτ

2 )2
(B.24)

Z
O(2),1
ab− =

1

4
y(a+1)(1−b) θ1(a+bτ

2 )2θ1(ξ ± z + 1−ab+τ
2 )θ1(ξ ± z + b+a(1−b)τ

2 )

θ1(z + a+bτ
2 )2θ1(ξ + 1−ab+τ)

2 )2θ1(ξ + b+a(1−b)τ
2 )2

(B.25)
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placing in (3.13) and expanding the theta functions such that each contains only one

fugacity (using identities (B.8)–(B.13)) we end up with

Z
O(2)+,1
T 2 =

θ4(z)2

θ2
4

− θ2
2θ

2
3θ1(z)2(θ4(ξ)4 − θ1(ξ)4)2

4θ6
4θ1(ξ)2θ2(ξ)2θ3(ξ)2θ4(ξ)2

(B.26)

+
θ2

2

(
θ1(ξ)2θ4(z)2 − θ4(ξ)2θ1(z)2

)(
θ2(ξ)2θ4(z)2 − θ3(x)2θ1(z)2

)
4θ4

4θ1(ξ)2θ2(ξ)2θ2(z)2

−
θ2

2

(
θ4(ξ)2θ4(z)2 − θ1(ξ)2θ1(z)2

)(
θ3(ξ)2θ4(z)2 − θ2(ξ)2θ1(z)2

)
4θ4

4θ3(ξ)2θ4(ξ)2θ2(z)2

+
θ2

3

(
θ1(ξ)2θ4(z)2 − θ4(ξ)2θ1(z)2

)(
θ3(ξ)2θ4(z)2 − θ2(ξ)2θ1(z)2

)
4θ4

4θ1(ξ)2θ3(ξ)2θ3(z)2

−
θ2

3

(
θ4(ξ)2θ4(z)2 − θ1(ξ)2θ1(z)2

)(
θ2(ξ)2θ4(z)2 − θ3(ξ)2θ1(z)2

)
4θ4

4θ2(ξ)2θ4(ξ)2θ3(z)2

+

(
θ1(ξ)2θ4(z)2 − θ4(ξ)2θ1(z)2

)(
θ4(ξ)2θ4(z)2 − θ1(ξ)2θ1(z)2

)
4θ2

4θ1(ξ)2θ4(ξ)2θ4(z)2

−
(
θ2(ξ)2θ4(z)2 − θ3(ξ)2θ1(z)2

)(
θ3(ξ)2θ4(z)2 − θ2(ξ)2θ1(z)2

)
4θ2

4θ2(ξ)2θ3(ξ)2θ4(z)2

For the last step, comparing with the dual side

Z
SO(1),1
T 2 =

θ4(z)2

θ2
4

− θ4(x)2θ1(z)2

θ2
4θ1(x)2

(B.27)

we use Mathematica to simplify the expression (B.26) minus (B.27) with the assumptions

of identities (B.14)–(B.17), resulting with the expected zero.

The third duality Z
O(2)−,1
T 2 = Z

O(1)−,1
T 2 is also easy to prove following the same steps.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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