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1 Introduction

Renewed interest in Newton-Cartan (NC) gravity has appeared during last few years as it
was shown that it plays crucial role in the context of non-relativistic holography [1-6]. NC
gravity is covariant formulation of non-relativistic gravity with one-dimensional foliation of
space-time corresponding to the absolute time direction which is longitudinal to the world-
line of particle [7]. Recently an interesting generalization of this concept to the case of the
two dimensional objects (strings) was proposed in [8] when one dimensional foliation of
space-time is replaced by two dimensional (time-like and spatial) foliation directions that
are longitudinal to the world-sheet of string. This proposal was further elaborated in [9-15,
24]. Even more importantly, it was shown in [12] that T-duality along longitudinal spatial
direction maps non-relativistic string to relativistic one in the background with compact
light like isometry. In other words, non-relativistic string with isometry along longitudinal
spatial direction can be used for the definition of Discrete light cone quantization (DLCQ)
of relativistic string. This is intriguing result since (DLCQ) is very important for the
definition of matrix theory which is quantum description of M-theory, at least in some
particular background [16-19].

Since the suggested relation between non-relativistic string in stringy NC background
and non-perturbative definition of M-theory is very interesting it is natural to study the
relation between M-theory and Newton-Cartan geometry further. For example, it was
originally suggested in [8] that it is possible to define different p-brane Newton-Cartan
background when we consider p-brane as natural probe (p- means number of spatial di-
mension of p+ 1 dimensional object) of gravity. Then we split D—dimensional dimensions



into p + 1-longitudinal directions and D — (p+ 1) transverse directions and take an appro-
priate limit that leads to p + 1-dimensional non-relativistic p-brane theory. In M-theory,
which is 11—dimensional theory, there is such a natural probe: M2-brane. This is 2 + 1
dimensional object that couples to three form C' that, together with the metric is bosonic
part of 11—dimensional supergravity. Then in order to find non-relativistic M2-brane ac-
tion we generalize limiting procedure introduced in [20] to the three dimensional object in
the same way as we used this procedure in case of the fundamental string [13]. This pro-
cedure is natural generalization of the approach [20] that was used in case of point particle
probe of gravity to the higher dimensional objects. We implement this procedure to the
case of M2-brane and we find finite and well defined action for non-relativistic M2-brane in
M-brane Newton-Cartan background. As the next step we find its Hamiltonian formulation
of this non-relativistic M2-brane and we determine all constraints of the theory.

Having found non-relativistic M2-brane it is natural to ask the question whether it has
similar properties as relativistic one when we perform dimensional reduction of M-theory.!
It turns out that this is straightforward procedure in case of the dimensional reduction
along spatial circle that lies in transverse direction of M2-brane NC gravity. In fact, in
this case we can identify Kaluza-Klein ansatz for general M2-brane NC background since
component of the spatial metric along compactified direction can be related to the dilaton
field of lower dimensional theory. As a result we find an action for non-relativistic D2-brane
in 2-brane NC background that is characterized by three longitudinal directions and nine
transverse ones. On the other hand the situation is more involved in case of dimensional re-
duction along longitudinal spatial direction since in this case it is not known how to perform
dimensional reduction in full generality. For that reason we use adapted coordinates along
longitudinal directions that simplify analysis considerably. In this case we also find that
non-relativistic M2-brane should wraps this compact dimension. As a result M2-brane low-
ers its dimensionality and the resulting object can be identified with non-relativistic string.
It is however important to stress that we were able to do this in adapted coordinates only.

Similar situation occurs in case when we try to analyze T-duality properties of non-

relativistic D2-brane. As in relativistic case?

we analyze T-duality of D-brane when it
wraps compact dimension. This means that we particularly fix the gauge when one spatial
world-volume coordinate coincides with the target space coordinate. We further presume
an isometry along this direction so that all world-volume modes do not depend on this
coordinate. In case of non-relativistic D2-brane the situation is more involved since its
action does not have the form of Dirac-Born-Infeld action that is crucial for the covariance
o D-branes under T-duality transformations [23]. As a result we again have to switch
to adapted coordinates. Then we find that the only possibility is that non-relativistic
D2-brane wraps longitudinal spatial direction since in case when D2-brane wraps spatial
direction along transverse direction the matrix a,g = 0q2#7,,032" is singular. Then in
case when D2-brane wraps longitudinal spatial direction we find that D2-brane maps to
D1-brane in T-dual theory. This is again very nice consistency check.

'For review, see for example [22].
*For review, see for example [23].



This paper is organized as follows. In the next section 2 we find an action for non-
relativistic M2-brane action in M-brane NC background. In section 3 we find Hamiltonian
form of non-relativistic M2-brane. Section 4 is devoted to the dimensional reduction of
non-relativistic M2-brane. Finally in section 5 we study T-duality properties on non-
relativistic D2-brane action. Finally in conclusion 6 we outline our result and suggest
possible extension of this work.

2 Non-relativistic M2-brane

In this section we introduce an action for non-relativistic M2—brane in eleven dimensional
background following limiting procedure [20]. Starting point is an action for M2-brane in
general background

S = —TMg/d?’ﬁ\/—detga5+TM2/C, (2.1)

where T o 18 M2—brane tension and where C' is a pull-back of eleven-dimensional three

form to the world-volume of M2-brane
1 1
C = §CM1M2M3d:L‘M1 A d.CL‘Mz A dl‘M?’ — ?6a1a2a3CM1M2M3aa1xM18a2xM2aa3xM3 ) (2'2)

Further, 2™ (¢), M, N = 0,1,..., 10 are world-sheet fields that parameterize an embedding
of M2-brane in target space-time with the metric Gy so that 3x3 matrix g,z has the form

Jop = GrunOax™ogz™ 2.3
B B

where 0, = % where €%, a, 8 = 0, 1,2 parameterize three dimensional world-volume of
M2-brane.

Let us now take non-relativistic limit of this action when we generalize an approach
introduced in [20] to the case M-brane Newton-Cartan gravity. To do this we introduce
vielbein £ ]\‘44 so that

Gun = Ex}EPnap, EGEN =64, EMEZ® =6V, (2.4)

where A = 0,1,...,10 and where n*® = diag(—1,1,...,1). Then we split target-space

indices A into A = (a,a’) where now a = 0,1,2 and o’ = 3,...,10. We further introduce
7, so that we write

TMN = T30\ Ny, a,b = 0,1,2. (2.5)
In the same way we introduce vielbein e ]\%’, a = 3,...,10 and also introduce gauge field

m,y. T,f can be interpreted as the gauge fields of the longitudinal translations while e ]\‘}’
as the gauge fields of the transverse translations [8]. We further introduce their inverses
with respect to their longitudinal and transverse translations

/ / ’ /
ey =60, e, =0l — N, AMpb=gt M d—0 %M =0.(26)

a =
Finally we introduce parameterization of relativistic vielbein in the similar way as in [20)]

1 ! !
Eyf =wn+omiy, By = e, (2.7)
w



where w is free parameter that we take to infinity when we define non-relativistic limit.
Then with the help of (2.7) we obtain following form of the metric

GMN = E]\?E]\I;’I’]ab + E]\;,E]\I;/(Sa/b/ =
= w TN + han + 102 MG ab (2.8)
where we defined ) )
ilMN = hyn + iT]\/([lm]\l;nab + imﬁn\;’nab. (2.9)

The object 7,* = 7,%0,2™ is 3 x 3 matrix that in adapted coordinates is equal to 7,% =
diag(1,1,1). Hence it is natural to presume that the matrix 7,% is non-singular so that
a,3 = TaaTBbﬁab is non-singular too. As a result we can introduce inverse a%? that obeys

a,5a"7 = 4] (2.10)

With the help of this matrix we can write

“ 1
vV —detgag = \/— det(w?ang + hapg + mmaamﬂbnab) =

1 5 1
— 3 = 5 by ) —
=w \/— det aqs det(d5 + 2 a“Vhyg + e a%rm.fmgnae) =

1 .
= w3/~ deta,s(1+ fﬂéaﬁh@ﬁ) + 0w, (2.11)

where in the last step we performed expansion of the square root for large w. We see that
the first term in (2.11) diverges as w® in the limit w — co. Then in order to cancel this
divergence we should introduce an appropriate form of the background three form Cysnp.
We studied this problem in more details in case of non-relativistic string [13, 14] when we
proposed such a form of NSNS two form that leads to finite action for non-relativistic string
in stringy NC background. Clearly this approach can be generalized to higher dimensional
objects and hence it is natural to presume that Cy;nyp has the form

1 1 1
Cunp = (wTpf — %m]\‘j)(wn\f? - %m]\l})(WTPC - ﬂmpc)ﬁabc twennp =
= A]\%A]\?Algﬁabcﬁ-waNp, (212)

where ¢y p is an arbitrary background three form and we multiplied it with w for reason
that will be clear below. With such a form of the background three form we find that

1
C = e PAL AL AL e +we=det A +c= (2.13)
= det(wr,’ (0§ — ﬁﬂ)mf) +we =w3det 7,% — g det Taa’i"ém,yb + we,
where we defined )
c = §5QBVCMNP8Q.TM8/3$N87$P . (2.14)



Collecting all results together we find the action in the form
_ 1 .
S = _TM2 / dgfwg vV —det a(l + ﬁéaﬁhaﬁ) +
w

+Tor / d3¢(w? det T, — % det TaaT’Zme) + Tapaw / c

Fao [ A N
= _MTZW /ddf\/m(éaﬁhag +éaﬁ7—6bmaanba) +TMQW/C (2.15)

using the fact that v/— det a = det 7,* and also a%” Tﬂbnba = 79. In order to have non-trivial
world-sheet theory we now demand following scaling of M2-brane tension

Tarow = Tiga - (2.16)
Finally using the fact that
~aB - 0B 1. ~aB7
a% hog + aaﬁTﬁbmaanab = a%has + §aa5(Tﬁbmaanab + Tabmﬁanab) =a%h.s, (2.17)
we obtain final form of non-relativistic M2-brane action

T _
ﬁm:—éf/ﬁacwmf%w+ﬂn/a (2.18)

where we defined metric hyy as
T o M N7 T _ a b a_b
hag = 0ax™ Oz hyn, AN = AN + TafmNTab + MmN Nab - (2.19)

The action (2.18) is the main result of this section. Clearly such an analysis can be
generalized for any p-brane with appropriate background p + 1 form. However M-theory
is exceptional since here M2-brane naturally emerges as fundamental object and M-theory
is also closely related to string theories. We will discuss relation between M2-brane and
non-relativistic D-branes below. Before we proceed to this problem we turn our attention
to the Hamiltonian formulation of non-relativistic M2-brane.

3 Hamiltonian formalism

In this section we would like to find Hamiltonian for the non-relativistic M2-brane action
given in (2.18). To begin with we note that a,3 = TaaTanab and hence we can write
v —deta = det7,*. Then we can rewrite the action (2.18) into the form

T —
S = _7;42 /d3£ det 7“7 hapn™ + Tar /C= (3.1)

where
7,914 =8¢, 1,978 =48, (3.2)
From (3.1) we determine conjugate momenta

oL T
P = 5@0cM) — T 2
B

+T'aro det Ta“TOanabT bT]\jTO,‘:l_"Lag — Tyyo det Taa?LMNaﬁl‘NTOﬁ + Thiocar

7'1\27'01) det Taaéaﬁﬁaﬂ + (3.3)



where ¢ is defined as

1 .
M. M
cy = chMQMSGZQ”&;Qa: 20,070 (3.4)

and where we used the fact that

Odet7,*
(™)

Then with the help of (3.3) we find that the bare Hamiltonian is zero

=70 det 7%, ——haps = —2T0a7]ab7'i71\/c[7°éi_za5 : (3.5)

Hy = [ de(paona - £)=0 (3.6)

as it should be for diffeomorphism invariant object. Further, from the definition of the

conjugate momenta given in (3.3) we easily find following two primary constraints
H; = pMaixM ~0. (3.7)

To proceed further we define I1y; as Iy = pasr — Taracas. Then with the help of (3.3) we
find
T hMN Ty = T2(det 7,%)28% 002 618 e Dga™N a% (3.8)

where we introduced following objects

P M N

b ~a a’ a N ¢c'a _ b
a MNTba,  €xr = €pr + M€ 0" Tariba (3.9)

with following useful relations
e =0, hun =eé5fdaeny — TPy | (3.10)
where @, is matrix valued Newton potential defined as
®ap = T4 M — Nacf g™ + NaemaGh™M N mtng, (3.11)

To proceed further we combine (3.3) together with (3.9) and we obtain
T - _
Iy = —% det 77,8 hog + Tapo det Ta% 7% hog + Tapo det 775727 . (3.12)

We multiply this result with following expression

T2

) .
5 N g bye, ;T EY (3.13)

J

abc

where €€ is totally antisymmetric symbol in three dimensions while € is totally antisym-

metric tensor in two dimensions. Then, after some calculations, we obtain

1 . _ g
§TM2 det TaOBTCZhagT]aal €arbrer T bl’Tj C1etd

1 b g
+ 5T]%42 det T@adTBdTﬁoﬁaeTﬁTwal €a1bicy Ti L Tj € EZ] =

— Ty hMNTI . (3.14)



To proceed further we introduce explicit form of the inverse matrix a®?

deta ’ deta ’
i ~ det a;; Y o deta;; ,
a'' = —a’ay, A a’ =a¥ + — " akaagal (3.15)
det a deta

where a” is 2 x 2 matrix inverse to a;; so that
a’ay; = 0! . (3.16)
Then after some calculations we finally obtain Hamiltonian constraint in the form

HT = HMhMNHN — TMQHM’f']\glnala6abCTi ijcﬁij + (317)

+T]%/[2 det aijaklﬁkl + Tfﬁ det aijalek“nabq)bcnchl d_ Tfn det al-j@ab??ab ~0.

Observe that this Hamiltonian constraint has the same structure as the Hamiltonian con-
straint for non-relativistic string that was derived in [13]. Further, this Hamiltonian con-
straint is the generalization of the Hamiltonian constraint found in [14] to the case of
non-zero gauge field m,; which is again nice consistency check.

In the next section we will discuss another important aspect of non-relativistic M2-
brane which is its dimensional reduction.

4 Dimensional reduction of non-relativistic M2-brane

In this section we analyze dimensional reduction of M2-brane Newton-Cartan background
with non-relativistic M2-brane as natural probe. As we know, dimensional reduction is
possible when the background has an isometry direction with Killing vector k.3 We start
our analysis with the case when isometry direction corresponds to the transverse direction
in M-brane NC gravity. It is convenient to label this direction with y and split coordinates

M=

as x x# y), where p,v =0,1,2,...,9 and write 11—dimensional bosonic fields as [22]

ds® = e’g‘}(:’:)dw“dw”guy(m) + e%q)(x)(dy + dztC,)?,
1 1
c= gdx“ Ndz” N dzPCyp(x) + gdx“ Ndx” N dyBu,(x), (4.1)

where now ® is dilaton field. For our purposes it is useful to know Kaluza-Klein ansatz for

hA o 29
EM(E . Cu), (42)

the vielbein

0 es®
where A = (0,1,2,...,9).
The previous form of the Kaluza-Klein ansatz was defined for relativistic background.
On the other hand we would like to know how to perform dimensional reduction for M-
brane NC background which is defined by 7,7, e J\‘}[/ and m ;7. We can deduce their form in
dimensional reduction as follows. From (4.2) we see that

2
E =e3®. (4.3)

3For review, see for example [22].



a

M " we see that the same expansion should

. 1 ’
Further, since E,* = wT#‘i —l— 3om, and B =e
be performed in case of EHA as well so that

/

. 1 A
a__  ~a ~Aa a _ ~ra
B =w?,+ o Er=¢, (4.4)
and hence we have following correspondence
1 1 / 1 /
T, = 675‘1’@“, m,' = 6754)7%;, e, = e*§q>é#a , (4.5)
where now o', b = 3,...,9. Further, we can also write
2
29
EY=e3"Cy, (4.6)
where C), is ten dimensional vector field. Collecting these facts together we finally obtain
2. . A~
Tpy = € 3‘1)7—;11/ ) Tuy = #aTybnabv
_ 2z A 4 — 4 — 4
hyw =€ 3%y, +e3%C,C, hyy = e3? hyp = e3%C,, (4.7)

where now ?LW/ = iLw, + ﬂﬂ’fnybnab + T?Lua?,,bnab. Having identified relations between eleven
dimensional fields that define M-brane NC background and ten dimensional ones we can
proceed to the analysis of dimensional reduction of M2-brane. Let us start with situation
when M2-brane wraps compact dimension so that we can write

0=y =¢2. (4.8)

Now let us analyze the matrix a,g. It is easy to see that the matrix a,g is singular
and hence such a configuration cannot be realized. In other words we cannot consider non-
relativistic M2-brane wrapped compactified circle in transverse spatial direction of M-brane
NC geometry. For that reason we rather consider situation when M2-brane is transverse
to this circle. Then we have

2
—2d 4 A A v
ang =€ 3 ay3, ang = Ona!' 7, 07",

hag =€ 3%hag +€3%Y, Y, Yo = 0,Y + Cl. (4.9)
Note that by definition we have following identity
8a(Y5 — Cﬁ) — 65(Ya —Cy) =0. (4.10)

We can consider Y as an independent field when we add to the action term proportional

to

%TMQ / P,V — ). (4.11)

To see this note that the variation of (4.11) with respect to Vg gives precisely (4.10). Let
us now also discuss the pullback of three form ¢ to the world-volume of M2-brane

1 N
c= —eaﬁvaam“aﬂm”awxﬂcw +

3!
1
—%—geaﬁv(aam“@gx”Y,wa — 002" Y g0ya" By + Y o 02t 0ya" B,,) —
1
—geaﬁv(aax“aﬂx”C.yBW — 02! Cg0yx” B,y + Co 02t 02" By) - (4.12)



Collecting these terms together we obtain an action for non-relativistic M2-brane in the

form
+% /d?’ieo‘ﬁ”&ax”@ﬁx” L Cp + % /dg&am[]:aﬁYw = FasCil,
where

fag = Fag + B,Waax“agl’u , Fag = 8aV5 — 85‘/@ , (4.14)

and where a®? is matrix inverse to a,3. Finally we eliminate Y, with the help of its
equation of motion that reads

~ 1
— V= detae®a*’y; + 566“75;75 =0 (4.15)

that can be solved as

Y. Anpe” 0 Fls . (4.16)

@
© 2y/—deta

Inserting this result back to the action (4.13) we obtain final form of the action

T ~ nA 1 -~ -
S = —% / d*re” V= deta[a hap + 5 Fasa™a Foyl
T
+% / Pz [Copy — FapCl) (4.17)

which is an action for non-relativistic D2-brane in D2-brane Newton-Cartan background
which follows from the fact that ten dimensional theory still has three longitudinal direc-
tions. Note that this action has not been derived before and hence it is again important
result of this paper.

4.1 Dimensional reduction of non-relativistic M2-brane along spatial longitu-
dinal direction

It is natural to ask the question whether it is possible to perform dimensional reduction of
M2-brane NC geometry along longitudinal spatial direction. However now the situation is
much more complicated since it is not clear whether we can use correspondence between
Kaluza-Klein ansatz and ansatz that defines Newton-Cartan background. For example,
if we presume that we perform dimensional reduction along x> = y we should have that
Ey2 — ¢3®. On the other hand when we define M-brane NC geometry we presume that
this vielbein component is equal to Ey2 = wTy2 + imyZ. Then it is not clear how to relate
Ty2 and my2 to the dilaton ®. For that reason we leave detailed analysis of this problem
on future research.

Despite of the comments given above we now show that it is possible to perform
dimensional reduction along spatial longitudinal direction when we use adapted coordinates
in longitudinal space. In adapted coordinates 7,7 is equal to

T =064 ,0,6=0,1,2, 7,°=0 (4.18)

7



and hence

™=, ), i=3,...,10. (4.19)
In these coordinates the condition Tﬁe]\g, =7Me ]\“4/ = 0 implies
e, =0, el =607 e, (4.20)
so that components of the vielbein e A‘}[, are
ey = (=0t e, e;”). (4.21)
The vielbein e]\g, has following components
M, =(0,¢,), (4.22)

. . ; PR /
where in adapted coordinates €, is inverse to e, so that

i b b i La _ i
e we; =0q, €ye* =0;. (4.23)

Using these results we obtain
alda/blejb/ s hai = —(Saa’i—jahji s haﬁ = Taihz‘j’]'ﬁj . (424)

hij = €;

Let us now consider non-relativistic M2-brane in this background and perform dimensional
reduction along y = 22 direction. In other words we presume that non-relativistic M2-brane
wraps this direction so that

y=¢&=p. (4.25)
In what follows we label world-volume coordinates with bared indexes:

& a,=0,1,2. (4.26)

We further presume that all remaining world-volume fields do not depend on £2. Then we
obtain

agp=1, a,=0, ag ;= Bax® 6 0x® . o =01, & =01 (4.27)

B
and hence ) A
a%haz = a"hgs + hyp (4.28)
where
hop = T'yhiTl, +2m,7 (4.29)
B&B = %:U“%axg/@/éxﬁ/ + 6dgco‘li_za/133xi + 8&:16%2-5/83905, + 8dxiﬁij83xj ,

and where 2% is matrix inverse to a,s. From (4.28) we see that dimensionally reduced
action contains scalar contribution proportional to h,,. Since the reduced action should
correspond to non-relativistic string in stringy-NC gravity we have to demand that following
components of the background fields vanish:

=0, m?=0. (4.30)

,10,



Then we can perform dimensional reduction in the kinetic term of non-relativistic M2-brane

action and we obtain

(4.31)
The previous action corresponds to non-relativistic string action in stringy NC gravity
when we perform identification

27 R
Tng = Tare / dp = Th2(27R) | (4.32)
0

where R is the radius of compactified y direction and Ty g is the tension of non-relativistic
string. Recall that this is the same result as in relativistic case [22]. However it is important
to stress that the identification between dimensional reduced M2-brane and non-relativistic
string is valid for general M-theory background while in our case we had to use adapted co-
ordinates and we also had to impose the condition on the background fields given in (4.30).

Finally we analyze WZ term. Since non-relativistic M2-brane wraps y— direction the
only non-zero contribution is the second one in (4.1) and we obtain

TMQ/C = TNR/dzfedﬁa&x“%x”BW (4.33)

which is correct coupling of non-relativistic string to the background NSNS two form.

5 T-duality of non-relativistic D2-brane

In this section we return to the non-relativistic D2-brane action that was derived in previous
section and analyze its properties under T-duality. As is well known from relativistic string
theory, T-duality is symmetry of string theory when the background possesses an isometry
in one direction and we label this direction with coordinate y. It is also well known that
under T-duality Dp-brane that wraps this compact dimension, is mapped into D(p — 1)-
brane in T-dual theory [23] which is mainly due to the remarkable properties of DBI form
of Dp-brane action. Then it is clear that the situation is more complicated in case of non-
relativistic D2-brane due to the fact that there are preferred longitudinal directions and
it is important whether D2-brane wraps either longitudinal or transverse spatial direction.
Further, due to the fact that non-relativistic D2-brane action is different from DBI action
it is not possible to perform T-duality for general NC background. As in previous section
we switch to adapted coordinates along longitudinal directions where we have

ﬁﬁzéaa, a,f=0,1,2, 7,9=0 (5.1)
and hence
o= (0%,7%),i=3,...,9. (5.2)
Further, components of the vielbein é/f/ and é" o are
e = (~0atle e"), &y = (0,8 ), (53)

— 11 —



where again €', and €', are inverse

. , , . .
et et =4Y e et =40t

) a’ > [} 7 (54)

Now we proceed to the action for D2-brane in this background. In order to perform T-
duality we presume an isometry at 22 = y direction. We presume that D2-brane wraps
this direction so that

y=p,p=¢ (5.5)

and all world-volume fields depend on €%, & = 0, 1. In this case we obtain

fpp=1, 8,=0, &= aAa;a’aa,B,anﬁ’ .o/, 8 =01 (5.6)
so that
a%hag =a"hs+ hyp, (5.7)
where
hpp = 7 hig#l, + 2,7 (5.8)
Bdﬁ = a@l'a/]_la//glaélﬂl + 8dxa/ﬁa/i851:i + 8@:3%2-,3/8@905/ + 6&xiﬁij68xj .

We see again that due to the non-relativistic kinetic term T-dual action now contains scalar
field proportional to Epp. Then in order to preserve covariance of non-relativistic D-brane
action under T-duality we have to impose that

#o=0, m2=0. (5.9)

These are similar conditions as in case of dimensional reduction of M2-brane studied in
previous section. On the other hand non-relativistic D2-brane action also contains contri-
bution from the gauge field that has the form

1 Xav X B8 1 24 %8 X4
SFapat1a Fos = D F atTal OF s+ Fapa®P Fsp =
1 ~AA~AA PO
= 5 Fagd AP0 F s+ 05V, + 052t Bp)a® 03V, + 0" Byy) . (5.10)

55‘Bﬁd5 + 7]:0—[555"72:155]:—5 = 55“5[8&xa'(3a/5/ + Ba/pBﬁlp)aéxﬁl +
+6@ma'Ba/p85Vp + adeBﬁ/paBCL"BI + 6@Vijpa/3/.Tj + 6d$iBipaBVp +
+0a" (hij + BipBjp)0p27 + 0aV,03V, +

+053 BuryOpra? Bjy + 053" Bip Bary 052" ] + ]—" AP E (5.11)

0 -

We see that it is natural to interpret V, as the world-sheet field that labels position of
D1-brane in transverse direction y. This is result that it is in agreement with relativistic
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case. Further, the transformation rules for the background fields have the form

~

Mg = hargr + BaryBgry
Dy = Bary » hig = Bary,  hy; = Bjy, hiy, = Biy ,

B;j = hij + BiyBjy , hyy =1, hl; = BayBjy hig = BiyBgy,  (5.12)

which resembles Buscher’s rules if we take into account that we perform T-duality along
direction with diagonal metric equal to one and where off-diagonal components equal to
zero due to the choice of adapted coordinates.

Finally we should consider WZ term for non-relativistic D2-brane. However since it
has the same form as in relativistic case the analysis is completely the same and we will
not repeat it here, for more details we recommend [23]. The result of this analysis is that
this term maps under T-duality to the WZ term for non-relativistic D1-brane when the
Ramond Ramond fields transform in the same way as in relativistic case.

5.1 Transverse reduction

Now we would like to ask the question whether we can perform T-duality transformation

along transverse spatial direction. In other words we presume that D2-brane wraps z° = z
direction so that

z2=&=p. (5.13)

However in this case we immediately find that this is singular situation since a,, =
0p27,%%, 1450,z = 0 since 7,% = 0. In other words, we can obtain T-duality transformation
only in case when T-duality is performed along longitudinal direction and Dp-brane wraps
this direction.

6 Conclusion

Let us outline our result and suggest possible extensions of this work. We find non-
relativistic M2-brane in M-brane NC background. We also find its Hamiltonian form.
Then we analyze its properties under dimensional reduction and we find that it reduces
to non-relativistic D2-brane when we perform dimensional reduction along transverse di-
rection. We also find non-relativistic fundamental string when we dimensionally reduce
along longitudinal spatial direction when however we restrict to the adapted coordinates
along longitudinal direction and perform restriction on background fields. We also study
T-duality of non-relativistic D2-brane and we find that performing T-duality along lon-
gitudinal spatial direction D2-brane maps to non-relativistic D1-brane when we perform
this T-duality in adapted coordinates. It is important to stress that T-duality can be
performed along longitudinal spatial direction only since non-relativistic D2-brane cannot
wrap transverse spatial direction.

This work can be extended in many directions. The first natural step is to general-
ize this analysis to the case of supermembrane. At present it is not clear to us how to
consistently generalize procedure used for this paper to the case of supermebrane that is
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invariant under target space supersymmetry and world-sheet kappa symmetry. We expect
that we should generalize an analysis performed in [25] to the case of general background
but this is very difficult problem since we should deal with supervierbens.

It would be also very interesting to analyze further the question of dimensional re-
duction of M-brane NC geometry along longitudinal spatial direction. It would be also
interesting to analyze M-brane Newton-Cartan equations of motion and its dimensional
reductions. We hope to return to these questions in future.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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