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1 Introduction

The physics of chiral fermions has attracted enormous attention recently. It has been

realized that chiral anomaly can play a key role in the dynamics. The manifestation of

chiral anomaly in a chiral fermion medium reveals novel transports such as chiral mag-

netic effect [1–3], chiral separation effect [4, 5] and chiral vortical effect etc. [6–10]. There

have been promising experimental signatures of these effects in systems of quark-gluon

plasma [11–14] and Weyl semi-metal [15, 16].

In fact the above mentioned effects are the most common anomalous transports dis-

cussed in the literature. More general anomalous transports have been discussed in two

complimentary frameworks. One is anomalous hydrodynamics [8, 17], whose basic degrees

of freedom are fluid velocity, local energy density and charge density. The chiral effects

appears as the anomalous transports to leading order in gradient. The anomalous hy-

drodynamics is ideal for strongly coupled system. The opposite limit is weakly coupled

system. This is the regime where the other framework chiral kinetic theory (CKT) is

most suitable [18–30]. Here the basic degree of freedom is distribution function of quasi-

particles of fermions. It allows us to study system far from equilibrium. In CKT, chiral

effects can in fact be obtained as linear response of the system to external magnetic field
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and vorticity field. Nonlinear response to external fields have also been obtained in CKT

framework [31–33].

The chiral kinetic equation (CKE) has been derived in different ways. They can

be categorized into two approaches. One approach is field theory or equivalently Dirac

equation [19, 21–30]. The other approach is effective field theory (EFT), which includes

high density EFT by Son and Yamamoto (SY) [20] and on-shell EFT by Carignano, Manuel

and Torres-Rincon (CMTR) [34]. The EFT Lagrangian is defined with a cutoff. It is found

by CMTR that the resulting chiral kinetic equation (CKE) differs from the counterpart

obtained from field theory in higher order terms in expansion in the cutoff. We revisit the

approach by SY and find agreement with CMTR. The key to understand the difference lie

in the reparametrization properties of EFT. As we shall show, while the action and equation

of motion is invariant under reparametrization. The Wigner function and operators acting

on it are NOT. This leads to an ambiguity in formulating CKE. We fix the ambiguity

with a simple scheme. More importantly, the reparamatrization properties dictate that a

difference in CKE is actually expected: the difference can be attributed to the difference in

the degree of freedom chosen by the two approaches. Nevertheless, both can give correct

description of dynamics of chiral fermions.

The paper is organized as follows: in section 2, we start with high density EFT and

use it to derive Wigner function and its equation of motion. Section 3 is devoted to a

discussion of reparametrization invariance of the action as well as the equation of motion

in EFT approach. In section 4, we elaborate on the ambiguity in formulating CKE and

present a CKE with a simple scheme. In section 5, we show that CKE from EFT approach

is equivalent to CKE from field theory despite their apparent difference. We summarize

and discuss possible extension to this framework in section 6.

2 High density effective theory and chiral kinetic theory

High density effective theory (HDET) [35–37] is very useful in describing low energy dy-

namics. It is constructed in a simple manner by identifying the heavy degrees of freedom

and integrating them out from the theory as irrelevant modes. This process generates a

non-local effective Lagrangian, which can be expanded in terms of large momentum. By

construction, HDET is valid for excitations near Fermi surface. The total momentum of a

particle can be decomposed as: pµ = µvµ + lµ with vµ = (1,v) where v is a unit velocity

vector (v2 = 1) denoting a point on Fermi surface. In this division, particle energy and

momentum can be simply given by p0 = µ+ l0 and p = µv + l, with large Fermi momen-

tum µv and small residual momentum l. We mention here that the choice of momentum

decomposition is not unique and there is an ambiguity present in the parameter v, which

is connected to the reparametrization transformation in the theory. The reparametrization

transformation and its implications will be discussed in a great detail in the next sections.

The kinetic theory can be obtained from the high density effective Lagrangian by using the

equations of motion for the gauge invariant Wigner function.

In the first subsection, we derive HDET Lagrangian for massless fermions valid in the

vicinity of Fermi surface. This is not new but is included for completeness. Our second
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subsection is devoted to the derivation of Wigner function and its equation of motion,

which eventually leads to dispersion relation and transport equation.

2.1 High density effective theory

We start with the Lagrangian for right-handed chiral fermions with finite density µ and

zero temperature

L0 = ψ̄(iγµDµ)ψ + µψ̄γ0ψ, (2.1)

with Dµ = ∂µ + iAµ as a covariant derivative. Here we consider the Weyl representation

for massless fermions in which, ψ(x) is a two component spinor with γµ = (1, σ). The

energy spectrum for the above Lagrangian is given by the corresponding Hamiltonian as

(σ · p− µ)ψ± = E±ψ±, (2.2)

with E± representing the energy of particles and anti-particles: E± = −µ ± |p|. At low

energy, particles near the Fermi surface with E+ ∼ 0 are the relevant degrees of freedom

while anti-particles with E− ∼ −2µ are identified as heavy modes and integrated out from

the theory. In integrating out the heavy mode, we decompose the energy and momentum

of fermions as p0 = µ+ l0 and p = µv + l with l0, l ≪ µ. The decomposition of large and

small momenta is done by taking the Fourier transform as

ψ(x) =
∑

v

eiµv·x
[

ψ+v(x) + ψ−v(x)
]

. (2.3)

The fermion field is represented as a sum over different patches of Fermi surface, with

large Fermi momentum factored out in the transformation, leaving ψ±v(x) as the velocity

dependent fields carrying the residual momentum l. Further, we define the projection

operators for massless fermions: P± = (1±σ ·v)/2, with the properties P± ψ±v = ψ±v and

P± ψ∓v = 0. They will be used to project the positive and negative energy states ψ±v(x)

from state ψ(x), respectively.

For the particle near Fermi surface, Lagrangian (2.1), in terms of the new variables,

can be expressed as

L1 = ψ†
+viv ·Dψ+v + ψ†

−v(2µ+ iv̄ ·D)ψ−v + ψ†
+vi /D⊥ψ−v + ψ†

−vi /D⊥ψ+v, (2.4)

with /D⊥ = σµ
⊥Dµ with σµ

⊥ = (0,σ − v(v · σ)). In the limit l/µ → 0, irrelevant degrees

of freedom or heavy mode (ψ−v) can be integrated out by using the classical equation of

motion (EOM)

(2µ+ iv̄ ·D)ψ−v + i /D⊥ψ+v = 0,

ψ−v =
1

2µ

∑

n

(−iv̄ ·D
2µ

)n

(−i /D⊥ψ+v). (2.5)

Putting the expression of ψ−v in (2.4) and collecting all the terms up to O(1/µ2), we get

the effective Lagrangian, which depends only on ψ+v field, as:

Leff = ψ†
+v

∑

n

D(n)ψ+v = ψ†
+v

[

iv ·D +
/D
2
⊥

2µ
+

/D⊥(−iv̄ ·D) /D⊥

4µ2

]

ψ+v, (2.6)
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2.2 Wigner function and equation of motion

We are interested in deriving the chiral kinetic theory and higher order corrections to

the dispersion relation for the Weyl fermion. Thus, we construct the two-point function

Gv(x, y) = 〈ψv(x)ψ
†
v(y)〉 corresponding to the effective field. For homogeneous system in

thermal equilibrium, two-point function Gv(x, y) depends only on the relative coordinates.

For inhomogeneous system, it is convenient to work with relative and central coordinates

sµ = xµ − yµ and Xµ = (xµ + yµ)/2, respectively. For the derivation of dispersion relation

and transport equation, we use the Wigner function formalism [38–41]. We define the

Fourier transform of the two-point function with respect to relative variable sµ:

Gv(X, l) =

∫

d4s eil·s Gv(x, y) ≡
∫

s
eil·s Gv(x, y), (2.7)

where lµ denotes the residual momentum. It is to be mentioned here that the Wigner

function has similar hermiticity property as the two-point function but it is not gauge

invariant. Thus, in the presence of gauge field, it is difficult to make the physical inter-

pretation of Wigner function as a quantum analogue of distribution function. To maintain

gauge invariance, Wigner transform is multiplied by the linking operator as follows

G̃v(X, l) =

∫

s
eil·s Gv(X + s/2, X − s/2)U(X − s/2, X + s/2). (2.8)

In the above U(y, x) is the Wilson line given by

U(y, x) = P exp

[

− i

∫ y

x
dzµAµ(z)

]

, (2.9)

with path ordering P from y to x. EOM emerging from the effective Lagrangian is satisfied

by the bare two-point function as

DxGv(x, y) = 0, Gv(x, y)D†
y = 0, (2.10)

here operator D is given by D = D(0) +D(1) +D(2). We also note that function Gv(x, y)

satisfies the properties: P−Gv(x, y) = 0, Gv(x, y)P− = 0, which are known as the pro-

jection conditions. Considering the above, we can construct the following expressions by

summing and subtracting the two terms in eq. (2.10)

I
(n)
± =

∫

s
eil·s

(

DxGv(x, y)±Gv(x, y)D†
y

)

. (2.11)

We will express (2.11) by gauge invariant Wigner function in the following. To proceed,

we consider system with small inhomogeneity, the above equation can then be simplified

by using the gradient expansion and rewriting the derivatives as ∂x = ∂s +
1
2∂X , ∂x =

−∂s+
1
2 ∂X with gauge field Aµ(X±s/2) ≈ Aµ(X)± 1

2 (s ·∂X)Aµ(X)+O(∂2
X). We perform

the gradient expansion by neglecting the terms which involves higher order derivatives ∂X
to obtain

U(y, x) = eis
µAµ(X), (2.12)
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We assume the following hierarchy of scales: ∂X ≪ l, spacetime disturbance is much slower

than momentum so that we can ignore higher order terms in ∂X ; l ≪ µ, this is needed to

justify HDET, which describes low energy dynamics. Finally, making (2.11) gauge invariant

and collecting the contributions from Wilson line, we obtain the following results:

I
(0)
+ = 2v · l̄ G̃v, I

(0)
− = ivµ∆µG̃v,

I
(1)
+ =

1

µ

[

− l̄2⊥ +B · v
]

G̃v, I
(1)
− =

i

µ
l̄µ⊥∆µG̃v,

I
(2)
+ =

1

4µ2

[

4l̄‖ l̄
2
⊥ − 4l̄‖(B · v) + 2B · l̄⊥ + 2(E× l̄) · v

]

G̃v ,

I
(2)
− = − i

4µ2

[(

4l̄‖ l̄
µ
⊥ − v̄µ(l̄2⊥ −B · v)

)

∆µ −
(

εijkvkv̄µF
iµ
)

∆j

]

G̃v, (2.13)

where we have defined ∆µ = ∂µ − Fµν
∂
∂lν

. l̄µ = lµ − Aµ is the kinetic momentum of

particle. In the following, we will suppress the bar for notational simplicity. Details of

the calculation is collected in appendix. From the I
(n)
+ terms, together with the projection

conditions, we deduce the following form of G̃v

G̃v = 2π P+ δ

(

l0− l‖−
1

2µ
[l2⊥−B ·v]+ 1

2µ2
[l‖(l

2
⊥−B ·v)]+ 1

4µ2
[B · l⊥+(E× l) ·v]

)

nv(X, l),

(2.14)

where P+ and nv(X, l) are the projection operators and distribution function, respectively.

We point out that (2.13) agrees with SY [20] up to order O(1/µ). At order 1/µ2, we

get different coefficients in last two terms of both I
(2)
+ and I

(2)
− , which is consistent with

CMTR [34] upon identifying the cutoffs in the two effective theories. As we shall show

below, the difference is crucial for understanding the kinetic equation.

The delta function in (2.14) is usually interpreted as dispersion relation, which naively

should be invariant under reparametrization. In other words, the dispersion should not

depend on v when converting to original momentum p0 and p. A quick exercise shows that

this is not the case, which hints an ambiguity in the resulting CKE! We postpone writing

down CKE, but investigate the reparametrization transformation more closely in the next

section. The results will guide us to write down unambiguously CKE in EFT approach.

In addition, it provides a resolution to the discrepancy between CKE from EFT approach

and field theory approach.

3 Reparametrization invariance and degree of freedom

Reparametrization is a redundancy in a theory which manifests that the physical im-

plications do not change upon choosing a slightly different parameter. Reparametriza-

tion invariance (RI) has been discussed extensively in the heavy quark effective theory

(HQET) [42–46] as well as soft collinear effective theory [47–50]. The symmetry greatly

constrains the form of the Lagrangian for the effective theories, which is particularly use-

ful for higher order terms. Here we closely follow the discussion of HQET, in which the

field describing the particles are velocity dependent. HQET is constructed by dividing the

particle momentum into small and large momentum part pµ = mvµ + lµ, where m and

– 5 –
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lµ are the heavy quark mass and small residual momentum with v2 = 1. However, it is

to be noted that this decomposition is not unique. We can have a different momentum

decomposition by making an infinitesimal change in parameter vµ as

vµ −→ vµ
′

= vµ + δvµ, lµ −→ lµ
′

= lµ −mδvµ, (3.1)

with a constraint v · δv = 0 emerging from the condition v2 = 1. The HQET is invariant

under the above reparametrization. HDET is also reparametrization invariant. In HDET,

we have a large chemical potential µ in place of mass parameter m and the decomposition

of total momentum in large and small parts has condition v2 = 0 with vµ = (1,v).

3.1 Reparametrization of classical action

In this subsection, we show the reparametrization invariance of the Lagrangian for massless

fermions with finite density. For this purpose, let us start with effective Lagrangian, which

is non-local due to the presence of operators in the denominator

L = ψ†
viv ·Dψv + ψ†

v /D⊥
1

2µ+ iv̄ ·D
/D⊥ψv. (3.2)

This Lagrangian is essentially (2.6), but we keep terms to all order in O(1/µ) expansion

and replace ψ+v with ψv. It is important to mention here that the introduction of variable

vµ breaks the Lorentz invariance of the Lagrangian. Under the reparametrization v →
v′ = v + δv, the original spinor field ψ(x) does not change, but the field ψv(x) does. The

transformation of ψv can be worked out using the following representation

ψ′
v(x) = e−iµv′·xP ′

+ψ(x). (3.3)

Noting that ψ(x) can be expressed in terms of ψv(x) by using classical EOM of ψ−v(x) (2.5),

we obtain upto O(1/µ)

ψ(x) = eiµv·x (ψv(x) + ψ−v(x)) = eiµv·x
(

1 +
1

2µ
(−i /D⊥)

)

ψv(x), (3.4)

with P ′
+ defined in terms of v′ and plugging (3.4) into (3.3), we obtain

ψv −→ ψ′
v = ψv + iµδv · x−

/δv

2

(

1− 1

2µ+ iv̄ ·Di /D⊥

)

ψv, (3.5)

ψ†
v −→ ψ†′

v = ψ† − iµδv · xψ†
v − ψ†

v

(

1 + i /D
†
⊥

1

2µ− iv̄ ·D†

)

/δv

2

= ψ† − iµδv · xψ†
v − ψ†

v

(

1− i /D⊥
1

2µ+ iv̄ ·D

)

/δv

2
.

Note the sign flip from δv ·x = −δv·x with δv = (0, δv). The last equality holds in the sense

that integration by part is used. Each term in the transformation of ψv can be understood as

follows: the second term in (3.5) arises due to a change in the Fermi momentum appearing

in the Fourier decomposition. The term 1 in the bracket follows from the change of Dirac

structure in the projection operator. The last term in the bracket is reminiscent of the

– 6 –
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anti-particle contribution, because the way of integrating out anti-particle field depends on

choice of v. We will loosely refer to this as anti-particle contribution. We also point out

that the reparametrization transformation connects terms at different orders in the O(1/µ)

expansion of the Lagrangian (3.2). We will see in showing the RI, we get some mixed terms

at different orders which ultimately cancel each other.

Now let us focus on RI of Lagrangian and denote A = iv · D + /D⊥
1

2µ+iv̄·D
/D⊥. The

variation of Lagrangian under reparametrization is given as

δL = δψ†
v Aψv + ψ†

v δAψv + ψ†
v Aδψv, (3.6)

it is to be noted that the operator A has a velocity dependence thus, its transformation is

the following:

δA = iδv ·D+ δ /D⊥
1

2µ+ iv̄ ·D
/D⊥+ /D⊥

1

2µ+ iv̄ ·Dδ /D⊥+ /D⊥δ

(

1

2µ+ iv̄ ·D

)

/D⊥, (3.7)

with δ /D⊥ = −δv · D(v · σ) + ṽ · D /δv and ṽµ = (0,v). We mention here that due to the

Dirac structure and property of projection operators P+σ⊥P+ = 0, variation δA gives

ψ†
v δAψv = ψ†

v

[

iδv ·D + ṽ ·D 1

2µ+ iv̄ ·D
/δv /D⊥ + /D⊥ /δv

1

2µ+ iv̄ ·Dṽ ·D

+ /D⊥
1

2µ+ iv̄ ·Dṽ ·D 1

2µ+ iv̄ ·D
/D⊥

]

ψv. (3.8)

On the other hand, from the transformation of the other part of Lagrangian we get

δψ†
v Aψv + ψ†

v Aδψv = ψ†

[

iµ /δv /D⊥
1

2µ+ iv̄ ·D + iµ
1

2µ+ iv̄ ·D
/D⊥ /δv

−
/δv

2
/D⊥

1

2µ+ iv̄ ·D
/D⊥ − /D⊥

1

2µ+ iv̄ ·D
/D⊥

/δv

2

+i /D⊥

/δv

2

1

2µ+ iv̄ ·D
/D⊥iv ·D + iv ·D 1

2µ+ iv̄ ·D
/δv

2
i /D⊥

+i /D⊥
1

2µ+ iv̄ ·D
/δv

2
/D⊥

1

2µ+ iv̄ ·D
/D⊥

+i /D⊥
1

2µ+ iv̄ ·D
/D⊥

/δv

2

1

2µ+ iv̄ ·D
/D⊥

]

ψv, (3.9)

in the above, we have used the constraint v · δv = 0. Using P−σP− = 0, /δv
2
/D⊥ + /D⊥

/δv
2 =

−δv ·D from properties of Dirac structure and eqs. (3.8) and (3.9) we finally get

δL = ψ†
v

[

iδv ·D +
i

2
( /D⊥ /δv + /δv /D⊥)

]

ψv = 0. (3.10)

Thus, the classical action remains invariant under the reparametrization to all order in

1/µ.
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3.2 Reparametrization of EOM

In the present subsection, we concentrate on showing the RI of EOMs, from which disper-

sion relation, together with transport equation for chiral fermions, emerge from the finite

density effective Lagrangian. Following the previous reparametrization, we can write the

transformation for ψv, ψ
†
v up to order O(1/µ) as follows

δψv = iµδv · xψv −
/δv

2

(

1− i

2µ
/D⊥

)

ψv,

δψ†
v = −iµδv · xψ†

v − ψ†
v

(

1 +
i

2µ
/D⊥

)

/δv

2
. (3.11)

It follows that the two-point function Gv(x, y) = 〈ψv(x)ψ
†
v(y)〉 transforms as

δGv(x, y) = i µ δv · (x− y)Gv(x, y)−
/δv

2
Gv(x, y)−Gv(x, y)

/δv

2

+
1

2µ

/δv

2
i /D⊥xGv(x, y)−

1

2µ
Gv(x, y) i /D

†
⊥y

/δv

2
. (3.12)

We are interested in the reparametrization transformation of gauge invariant Wigner func-

tion which is defined as given below

G̃v(X, l) =

∫

s
eil·sGv(x, y)U(y, x). (3.13)

It is to be noted that the gauge link U(y, x) is invariant whereas, the residual momentum

lµ changes as lµ′ = lµ − µ δvµ. Thus, together with (3.12) we have

δG̃v(X, l) =

∫

s
eil·s

[

1

2µ

/δv

2
i /D⊥xGv(x, y)−

/δv

2
Gv(x, y)

− 1

2µ
Gv(x, y) i /D

†
⊥y

/δv

2
−Gv(x, y)

/δv

2

]

U(y, x). (3.14)

Now, representing the variation δG̃v(x, y) by the central and relative coordinates, we use

the gradient expansion to obtain the following

δG̃v(X, l) =

∫

s

[

−
/δv

2
G̃v(X, l)− G̃v(X, l)

/δv

2
− 1

4µ
εjik δvj ∆iσ

k G̃v(X, l)

+
1

2µ
δvj lj ∆ij G̃v(X, l)

]

, (3.15)

with definition ∆ij = δij − vi vj . According to (2.14), the distribution function can be

obtained by taking the trace of G̃v(X, l). Note that the first two terms in (3.15) simply

vanishes, giving rise to the following

trδG̃v(X, l) =
1

4µ
δvj∆iv

kεijktrG̃v(X, l) +
1

2µ
δvjli∆ijtrG̃v(X, l). (3.16)

Note that from (3.16), RT of gauge invariant Wigner function comes entirely from the

anti-particle contribution.
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Let us focus on RI of summed and subtracted parts of equations of motion, from which

dispersion relation and transport equation emerge. These terms are the following

I
(n)
± =

∫

s
eil·s(D(n)

x Gv(x, y)±Gv(x, y)D(n)
y ), (3.17)

where n = 0, 1, 2, . . . For the notational simplicity, let us denote D± = Dx ± D†
y. The

transformation of EOM yields the following

δ

∫

s
eil·sD±Gv(x, y) =

∫

s
eil·s

[

(−iµδv · s)D±Gv(x, y) + δD±Gv(x, y)

+D±

(

i µ δv · sGv(x, y)−
/δv

2
Gv(x, y)−Gv(x, y)

/δv

2

+
i

2µ

/δv

2
/D⊥xGv(x, y)−

i

2µ
Gv(x, y) /D

†
⊥y

/δv

2

)]

, (3.18)

it can be easily seen that the terms in the above come from variation of lµ,D± and Gv(x, y)

under reparametrization.

Let us first consider the plus EOM and use the gradient expansion for different O(1/µ)

orders . At O(µ), we have the following commutator from (3.18)
∫

s
eil·s[D

(0)
+ , iµδv · s]Gv(x, y) =

∫

s
eil·s [2 i v · ∂s, iµδv · s]Gv(X, s) = 0, (3.19)

it is very easy to observe that the above commutator vanishes due to the constraint v·δv = 0.

We have the following terms coming from O(1) which cancel with each other
∫

s
eil·s

(

[D
(1)
+ , iµδv · s] + δD

(0)
+

)

Gv(X, s) = 0, (3.20)

moreover, there is one more term at this order as:
∫

s
eil·sD(0)

+

(

−
/δv

2
Gv(x, y)−Gv(x, y)

/δv

2

)

=

∫

s
eil·s

[

2v ·l
(

−
/δv

2
Gv(X, s)−Gv(X, s)

/δv

2

)]

.

(3.21)

It vanishes upon taking the trace. Now, at O(1/µ), all the terms in (3.18) contribute. The

first three terms of (3.18) are given as
∫

s
eil·s

(

[

D
(2)
+ , iµδv · s

]

+ δD
(1)
+

)

Gv(x, y) =

[

1

2µ

(

− 4l‖liδvj∆ij − εijmFiνδvjv
mv̄ν

)

+
1

µ

(

lilj
)(

viδvj + vjδvi + iεjkmviδvkv
m

+i εikm vj δvk v
m
)

]

G̃v(X, l), (3.22)

In the above, we have already taken the trace by substituting σm → vm and dropped the

vanishing terms from the equation. The fourth and fifth terms of (3.18) arise due to change

in Dirac structure, with their contribution given as:
∫

s
eil·sD

(1)
+

(

−
/δv

2
Gv(x, y)−Gv(x, y)

/δv

2

)

=
1

µ

[

li lj (iεjkm vi vk δv
m − iεjkm vj vk δv

m)

+Bi δvi

]

G̃v(X, l). (3.23)
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The last two terms of (3.18) at O(1/µ) from the anti-particle contribution are given as

follows

∫

s
eil·sD

(0)
+

(

1

2µ

/δv

2
iD⊥xGv(x,y)−

1

2µ
Gv(x,y) iD

†
⊥y

/δv

2

)

=

∫

s
eil·s

1

2µ
iv ·∂s

(

−εijkδvi∆jv
k

+2iδvj ∂is∆ij

)

G̃v(X,s), (3.24)

if we naively substitute ∂sµ → −ilµ, we would conclude that this contribution is of higher

order, since vµlµ = l0 − l‖ = O(1/µ). However, we note that ∆i = ∂i + isνFiν , thus the

term from ∂s acting on ∆j should be kept:

∫

s
eil·s

(

− 1

2µ
εijk δvj v

m Fmi v
k

)

G̃(X, s). (3.25)

in the above, upon taking the trace, some of the terms vanish and we do not consider those

terms. Finally, combining all the contributions from (3.23), (3.24) and (3.25), we get

1

2µ

(

εijm Fiν δvj v
m v̄ν − εijk Fνi δvj v

ν vk + 2Bi δvi

)

G̃v(X, l)

=
1

µ

[

εmin εijk δvj v
m vk Bn +Bi δvi

]

G̃v(X, l) = 0. (3.26)

where in the above equation, ν = 0 is allowed. Thus, we have shown that the plus equations

are invariant under the reparametrization transformation.

Now, let us concentrate on the minus equations. At order O(µ) , we have

∫

s
eil·s [D

(0)
− , iµδv · s] Gv(x, y) =

∫

s
eil·s [i v · ∂s, i µ δv · s] Gv(X, s) = 0, (3.27)

which vanishes upon applying the constraint v · δv = 0, similar to the earlier plus equation

case. At O(1), we have the following terms

∫

s
eil·s

(

[D
(1)
− , i µ δv · s] + δD

(0)
−

)

Gv(x, y) =

∫

s
eil·s(i∆i δvj ∆ij + iδvµ∆µ) G̃v(X, s) = 0,

(3.28)

which cancel each other. Further, there is one more term at O(1) which is: D
(0)
−

(

−
/δv
2 Gv(x, y)−Gv(x, y)

/δv
2

)

= 0, upon taking the trace.

We have all terms contributing at O(1/µ). The first three terms of (3.18) are given as

∫

s
eil·s

(

[

D
(2)
− , iµδv ·s

]

+δD
(1)
−

)

Gv(x,y) =
1

µ

[

1

4

(

− lνδvj∆i− lνδvi∆j (3.29)

−∆ν (ljδvi+ liδvj)
)

∆ij v̄
ν+ i∆i lj

(

viδvj+vjδvi

+iεjkmviδv
kvm− iεikmvjδv

kvm
)

]

G̃v(X,l),

in the above, trace over the sigma matrices has been taken and we have dropped vanishing

terms. Moreover, we should note that the index ν = 0 is also allowed. The fourth and fifth
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terms of (3.18) at this order are given as

∫

s
eil·sD

(1)
−

(

−
/δv

2
Gv(x, y)−Gv(x, y)

/δv

2

)

=
1

µ

[

−εjkm∆iljv
ivkδvm − εjkm∆jliv

ivkδvm
]

G̃v(X, l). (3.30)

The remaining last two terms at O(1/µ) is from the anti-particle contribution, which are

given as

∫

s
eil·sD

(0)
−

(

i

2µ

/δv

2
D⊥xGv(x,y)−

i

2µ
Gv(x,y)D

†
⊥y

/δv

2

)

= iv ·∆
(

− 1

4µ
εijk δvi∆j v

k

+
1

µ
δvj li∆ij

)

G̃v(X,l), (3.31)

the first term is ignored because ∆2 is of higher order. Now, sum of terms (3.29), (3.30)

and (3.31) vanish at O(1/µ) by using l · v̄ = l0 + l‖ = 2l‖ + O(1/µ). Thus, the minus

equation is also invariant under reparametrization transformation. In summary, we have

shown explicitly that the action is invariant under reparametrization to all order in 1/µ

and the EOM is invariant to order O(1/µ). Viewing reparametrization invariance as a

symmetry in action, we expect the EOM to be manifestly invariant to all order in 1/µ.

Before closing this section, we elaborate on the connection of reparametrization trans-

formation and side-jump effect [24, 51–53]. As already pointed out in CMTR, the

reparametrization transformation of the Wigner function (distribution function) in fact

gives rise to side-jump effect [34]. The origin of side-jump in CKT for EFT is clear from

our above discussion: it comes from the dependence of effective degree of freedom on ve-

locity vµ. In case of HDET, the effective degree of freedom is particle ψv dressed with

anti-particle ψ−v, with the dressing from integrating out the anti-particle contribution in

HDET. Under variation of vµ, the anti-particle contribution changes accordingly, leading

to transformation of distribution function. While formally it is similar to side-jump effect,

there is a subtle difference. Our choice of velocity v appears in single particle momentum

decomposition and it uniquely fixes the dressed particle. It is not the same as a Lorentz

boost in side-jump effect. In particular, the choice of v leaves coordinate invariant in con-

trast to Lorentz boost. Furthermore, the Fermi sphere is not affected by choice of v because

the decomposition does not change the original momentum.

4 Chiral kinetic theory from effective field theory

4.1 Transport equation

As we show in the previous section, the Wigner function and differential operator acting

on it vary separately under reparametrization. The variations cancel each other leaving

the EOM invariant under reparametrization. In deriving dispersion relation and transport

equation in Wigner function formalism, we use the plus equation to determine dispersion

relation, and the minus equation to determine the transport equation. Now we face a

puzzle: both the dispersion relation and the transport equation would be dependent on

– 11 –
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the choice of parameter. This is expected as we explained in the previous section that the

degree of freedom corresponding to the Wigner function is a dressed one: particle dressed

with anti-particle. The latter contribution is dependent on choice of v. This is analogous

to renormalization scheme dependence in field theory. There is natural choice of scheme:

l ‖ v, or equivalently l‖ = l, l⊥ = 0. This scheme has been used in [54].

Within this scheme, the plus and minus equations (2.13) simplify considerably as:

I
(0)
+ = 2v · lG̃v,

I
(0)
− = ivµ∆µG̃v,

I
(1)
+ =

B · v
µ

G̃v,

I
(1)
− = 0,

I
(2)
+ = −B · vl

µ2
G̃v,

I
(2)
− =

1

4µ2

[

− iv̄µB · v∆µ + iv̄νǫijmvmFiν∆j

]

G̃v. (4.1)

We can combine the plus equations as

I
(0)
+ + I

(1)
+ + I

(2)
+ =

[

2(l0 − l) +
B · v
µ

− B · vl
µ2

]

G̃v. (4.2)

This gives the dispersion relation l0 = l − B·v
2µ + B·vl

2µ2 . The simple scheme we choose

allows us to write it in terms of original momentum p0 = p − B·p̂
2p . This is formally the

same as dispersion of particle in magnetic field. However we stress that the dispersion

relation is not a physical observable. Had we chosen a different v, the dispersion would

change accordingly. Noting that the Wigner function satisfies P+G̃v = G̃vP+ = G̃v, we

can parametrize G̃v as

G̃v = 2πδ

(

l0 − l +
B · v
2µ

− B · vl
2µ2

)

nv(X, l)P+. (4.3)

Here nv is the distribution function, which depends on coordinateX and spatial momentum

l. The dependence on l0 is entirely in the delta function. The transport equation follows

from the minus equations. With the parametrization, it is easy to see the differential

operators pass through the delta function. Thus we obtain

− i
(

I
(0)
− + I

(1)
− + I

(2)
−

)

=

[

∆0 + vi
(

1 +
B · v
2µ2

)

∆i +
v̄νǫijmvmFiν∆j

4µ2

]

nv(X, l) = 0. (4.4)

The structure of transport equation is simpler if we write in terms of full momentum

p = µv + l:

[

∆0 + p̂i

(

1 +
B · p̂
2p2

)

∆i −
ǫijkp̂jEk +Bi

⊥

4p2
∆i

]

nv(X, l) = 0. (4.5)
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We stress again the particular form holds within our scheme. It is in agreement with CMTR.

However, field theory approach gives a slightly different form of transport equation [24]:

[

∆0 + p̂i

(

1 +
B · p̂
2p2

)

∆i −
ǫijkp̂jEk

2p2
∆i

]

n(X, l) = 0. (4.6)

The difference in the transport equations is in fact expected. In (4.6), the distribution

function n corresponds to particle with positive energy, while in (4.5), the distribution

function nv is somewhat unconventional. It is clear from our derivation that it corresponds

to an effective degree of freedom: particle dressed with anti-particle. Since the difference

comes from suppressed anti-particle contribution, it is not surprising that the difference

only shows up in high order terms in 1/µ expansion. We will show in the next section that

they indeed give equivalent description of the same dynamics as expected.

4.2 Constitutive equation

Let us now express physical quantities in terms of the effective distribution function nv.

We restrict ourselves to vector current only: jµ = ψ†σµψ. We wish to express it in terms

of ψv. Using (3.4), we obtain

jµ = ψ†
v

(

1 + i /D
†
⊥

1

2µ− iv̄ ·D†

)

σµ

(

1− 1

2µ+ iv̄ ·Di /D⊥

)

ψv

= jµ(0) + jµ(1) + jµ(2) + · · · , (4.7)

where the first three orders are given by

jµ(0) = ψ†
vσ

µψv,

jµ(1) =
1

2µ

(

ψ†
vi /D

†
⊥σ

µψv − ψ†
vσ

µi /D⊥ψv

)

,

jµ(2) =
1

4µ2

(

ψ†
v /D

†
⊥σ

µ /D⊥ψv − ψ†
v /D

†
⊥v̄ ·D†σµψv − ψ†

vσ
µv̄ ·D /D⊥ψv

)

. (4.8)

We proceed order by order in the evaluation of the current. At zeroth order, we simply

have

jµ(0) = ψ†
vσ

µψv = tr
[

σµG̃v(x, y)
]

|x→y

=
1

(2π)4

∫

l

∫

s
eil·strvµG̃v(X, s) =

1

(2π)4

∫

l
tr
[

vµG̃v(X, l)
]

, (4.9)

where we have made the substitution σµ → vµ because G̃v ∝ P+. At first order, time com-

ponent of the current vanishes by the trace property trσiP+ = 0. For spatial components,

we first substitute σ by σ⊥ by the trace property P+σ
i
⊥σ

jP+ = P+σ
i
⊥σ

j
⊥P+:

ji(1) =
1

2µ
tr
[

− iσi
⊥ /D⊥xψv(x)ψv(y)

† + iσi
⊥ψv(x)ψ

†
v(y) /D

†
⊥y

]

|x→y. (4.10)
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The limit needs to be taken carefully. We use the following identities

/D⊥xψv(x)ψv(y)
†|x→y = σj

⊥Dxj

[

U(x, y)G̃v(x, y)
]

U(y, x)|x→y

= σj
⊥

(

1

2
∂Xj + ∂sj +

i

2
slFlj

)

G̃v(X, s)|s→0,

ψv(x)ψv(y)
† /D

†
⊥y|x→y =

[

U(x, y)G̃v(x, y)
]

σj
⊥D

†
yjU(y, x)|x→y

= G̃v(X, s)

(

1

2
∂†
Xj − ∂†

sj +
i

2
slFlj

)

σj
⊥|s→0. (4.11)

Using σi
⊥σ

j
⊥ = δij − vivj + iεijkvk, which holds in taking trace with G̃v, we obtain

ji(1) =
1

2µ
tr
[ (

∆jv
kεijk − 2i∂sj∆

ij
)

G̃v(X, s)
]

|s→0

=
1

2µ

1

(2π)4

∫

l
εijk∆jv

ktrG̃v(X, l), (4.12)

where we have used the scheme condition l⊥ = 0 to simplify the expression. The second

order is more complicated. For time component, only one term contributes

n(2) =
1

4µ2
ψ†
v /D

†
⊥ /D⊥ψv

=
1

4µ2
U(y, x)tr

[

/D⊥xG̃v(x, y)U(x, y) /D
†
⊥y

]

|x→y. (4.13)

We use the trick in (4.11) to evaluate /D⊥xG̃v(x, y)U(x, y) /D
†
⊥y. Dropping O(∂2

X) terms, we

obtain

n(2) =
1

4µ2
tr
[

i∂Xi∂sjε
ijkvk − ∂si∂sj(∆

ij − Fmnε
mnkvk)

]

trG̃v(X, s)|s→0

=
1

(2π)4

∫

l

1

2µ2

[

B · vtrG̃v(X, l)
]

. (4.14)

Spatial components of second order current contain contributions from all three terms

in (4.8). The evaluation of the first term can be simplified by the identity

P+σ
i
⊥σ

kσj
⊥P+ = P+σ

i
⊥P−σ

kP−σ
j
⊥P+ = −P+σ

i
⊥v

kσj
⊥P+. (4.15)

This amounts to the replacement σk → −vk, making the evaluation parallels the case of

n(2). It follows that

ji(2)a =
1

(2π)4

∫

l

1

2µ2

[

B · v(−vi)trG̃v(X, l)
]

. (4.16)

The other two terms can be written as

j
i(2)
b =

1

4µ2
U(y, x)DxνDxjtr

[ (

−σi
⊥σ

j
⊥v̄

ν
)

U(x, y)G̃v(x, y)
]

|x→y

+
1

4µ2
U(y, x)tr

[ (

−σj
⊥σ

i
⊥v̄

ν
)

U(x, y)G̃v(x, y)
]

D†
yjD

†
yν |x→y. (4.17)
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After lengthy algebra, we end up with

j
i(2)
b =

1

4µ2

[

(∂Xν∂sj + ∂Xj∂sν) iε
ijmvm(−v̄ν)

+ 2∂sν∂sj∆
ij(−v̄ν)− Fνjε

ijmvm(−v̄ν)
]

trG̃v(X, s)|s→0

=
1

(2π4)

∫

l

1

4µ2

[

− ∂Xjlν v̄
νεijmvm + Fνj v̄

νεijmvm
]

trG̃v(X, l). (4.18)

The total current is the sum of (4.16) and (4.18):

ji(2) =
1

(2π)4

∫

l

1

4µ2

[

− ∂Xjlνε
ijmvmv̄ν − 2B · vvi + Fνj v̄

νvmεijm
]

trG̃v(X, l). (4.19)

We have used the scheme condition l ‖ v to simplify the expression. We have verified that

our constitutive equation agrees with CMTR upon identifying cutoffs of the two effecitve

theories.

5 Equivalence of chiral kinetic theories

To show the equivalence of (4.5) and (4.6), we try to express n in terms of nv. Note that

n and nv are nothing but the coefficient of delta functions in G̃ and G̃v, which are defined

by

G̃ =

∫

s
eip·sψ(x)ψ†(y)U(y, x), (5.1)

G̃v =

∫

s
eil·sψv(x)ψ

†
v(y)U(y, x). (5.2)

Using the representation of ψ in terms of ψv in (3.4), we obtain

ψ(x)ψ†(y)= eiµv·s
(

1− 1

2µ+ iv̄ ·Dx
i /D⊥x

)

ψv(x)ψ
†
v(y)

(

1+ i /D
†
⊥y

1

2µ− iv̄ ·D†
y

)

= eiµv·s
[

ψv(x)ψ
†
v(y)+

1

2µ

(

−i /D⊥xψv(x)ψ
†
v(y)+ψv(x)ψ

†
v(y)i /D

†
⊥y

)

+
1

4µ2

(

/D⊥xψv(x)ψ
†
v(y) /D

†
⊥y− v̄ ·Dx /D⊥xψv(x)ψ

†
v(y)+ψv(x)ψ

†
v(y) /D

†
⊥yv̄ ·D†

y

)

+O

(

1

µ3

)]

. (5.3)

Plugging (5.3) into (5.1) and taking the trace for extracting distribution function, we obtain

trG̃(X, l) =

∫

s
eil·s

[

trψv(x)ψ
†
v(y) +

1

4µ2
tr /D⊥xψv(x)ψ

†
v(y) /D

†
⊥y

]

U(y, x). (5.4)

The rest of the terms vanish by the identity trσi
⊥P+ = 0. The first term in the bracket

is simply trG̃v(X, l). The second term is the higher order correction, which precisely

compensate the difference in differential operator in transport equations as we shall see.
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Let us evaluate the second term using the following trick

∫

s
eil·str /D⊥xψv(x)ψ

†
v(y) /D

†
⊥yU(y, x)

=

∫

s
eil·str /D⊥xG̃v(X, s)U(x, y) /D

†
⊥yU(y, x)

=

∫

s
eil·str

(

1

2
∆i + ∂si

)

σi
⊥G̃v(X, s)σj

⊥

(

1

2
∆†

j − ∂†
sj

)

=

∫

s
eil·s

(

1

2
∆i − ili

)

G̃v(X, s)

(

1

2
∆†

j + ilj

)

trσi
⊥P+σ

j
⊥. (5.5)

The trace can be evaluated as

trσi
⊥P+σ

j
⊥ = trP+

(

δij − vivj + iεijkvk
)

. (5.6)

Plugging this into (5.5), we find the symmetric terms are either O(∆2) thus are neglected

or O(l2⊥), which vanishes by our scheme condition. Keeping the anti-symmetric term, we

end up with

trG̃ = trG̃v −
1

4µ2
li∆jtrG̃vε

ijmvm ⇒ n = nv −
1

4µ2
li∆jnvε

ijmvm. (5.7)

Plugging (5.7) into (4.6), we find the correction give rise to two additional terms upto

O( 1
µ2 ), which are from ∆0 + vi∆i acting on the correction. To see them more explicitly,

we expand

∆0 + vi∆i = ∂0 − Ei ∂

∂li
+ vi

(

∂i + εijkBk ∂

∂lj

)

. (5.8)

The l-derivative terms give rise to

− 1

4µ2

(

−Ei ∂

∂li
+ viεijmBm ∂

∂lj

)

lk∆lnvε
klnvn

=
1

4µ2

(

Ei∆jv
kεijk −Bi

⊥∆i

)

nv. (5.9)

The generated terms precisely match the difference between (4.5) and (4.6). Therefore

we have shown the equivalence of CKE from field theory and CKE from EFT within our

simple scheme. Combining with the reparametruization invariance of EOM, which is just

the transformation of CKE under change of scheme, we can conclude that the equivalence

holds for arbitrary schemes as well.

6 Summary

We revisit the high density effective theory approach to CKT. We find the resulting CKE

differs from the counterpart from field theory approach in high order terms in the 1/µ

expansion. Our CKE from high density effective theory is formally the same as the coun-

terpart obtained from on-shell effective field theory upon identifying the expansion param-

eters in the two theories. We further show that despite different forms of kinetic equations
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obtained from field theory approach and effective theory approach, the two equations are

equivalent, with the difference being in the choice of degree of freedoms. CKE from field

theory uses particle as degree of freedom, while CKE from effective field theory uses dressed

particle as degree of freedom, which follows from integrating out anti-particle contribution.

The way of integrating out the anti-particle contribution depends on the choice of a

parameter in the EFT. In high density effective theory, this parameter is the Fermi velocity

v. Both distribution function and CKE transform under reparametrization of v. Making

a specific choice of v ‖ l leads to our CKE. Similar reparametrization transformation

also exists in on-shell effective theory. The transformation of distribution function upon

change of v is formally the same as the side-jump effect, which is the transformation of

distribution function under Lorentz boost. However, there is a subtle difference between

the two: unlike Lorentz boost, the reparametrization of v affects neither the coordinate

nor the Fermi sphere. It would be interesting to explore further possible connection with

side jump. We leave it for future work.

It is worth noting that our current study does not include a collision term for fermions,

therefore we do not have a mechanism for relaxation. The collision term for fermions can

be included by making external gauge field dynamical. This would also introduce gauge

field degree of freedom into the CKE.

Finally it is interesting to speculate possible extensions with effective theory approach

to CKT. Field theory approach essentially assumes an ~ expansion in deriving CKE. It is

complicated to go to higher order term in ~ expansion [53]. Effective field theory assumes

a different expansion in the cutoff of the EFT. In the absence of collision term, the CKE

we obtain also stops at order O(~). In principle it is possible to go to higher order term in

~ with effective field theory. It would be interesting to further investigate this point.
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A Evaluation of I
(n)
± (with n = 0, 1, 2) using the gradient expansion

In the appendix, we explicitly show the derivation of I
(n)
± terms at different orders of 1/µ.

As we mentioned before, form of the terms I
(n)
± is following

I
(n)
± =

∫

s
eil·s

(

D(n)
x Gv(x, y)±Gv(x, y)D(n)†

y

)

, (A.1)

with D(n) = D(0)+D(1)+D(2). Considering the central and relative coordinates (Xµ, sµ),

with definition of derivative and gauge field: ∂x = 1
2∂X+∂s, ∂y = 1

2∂X−∂s and Aµ(X± s
2) =
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Aµ(X)± 1
2s · ∂XAµ(X), we write covariant derivatives as

Dµ(x) =
1

2
∂Xµ + ∂sµ + iAµ(X) +

i

2
s · ∂XAµ(X),

D†
µ(y) =

1

2
∂†
Xµ − ∂†

sµ − iAµ(X) +
i

2
s · ∂XAµ(X). (A.2)

Using the above form of covariant derivatives and expressing Gv(x, y) = U(x, y)G̃v(x, y) =

e−is·AG̃v(x, y), we can write terms in I
(0)
± as

ivµDxµ

(

G̃ e−is·A
)

= ivµ
[

1

2
∂Xµ + ∂sµ + i Aµ +

i

2
s · ∂XAµ

]

(

e−is·AG̃v

)

= e−is·A

(

1

2
∂µx + ∂µs +

1

2
sνFµν

)

G̃v,

i
(

G̃ e−is·A
)

D†
yµv

µ = ivµ
[

1

2
∂Xµ − ∂sµ − i Aµ +

i

2
s · ∂XAµ

]

(

e−is·A G̃v

)

= e−is·A

(

1

2
∂µx − ∂µs +

1

2
sνFµν

)

G̃v, (A.3)

sum of above terms gives us

I
(0)
+ =

∫

s
ei(l−A)·s 2 i vµ ∂µs G̃v(x, y) =

∫

s
eil̄·s 2 i vµ (−i l̄µ) G̃v(x, y)

= 2 (l̄0 − l̄‖) G̃v(X, l), (A.4)

in the above, we have used kinetic momentum l̄µ = lµ − Aµ. Similarly, difference of the

two terms gives

∫

s
ei(l−A)·s i

(

∂µX + i sνFνµ

)

G̃v(x, y) = i vµ
(

∂Xµ − Fµν
∂

∂lν

)

G̃v(X, l). (A.5)

At the order O(1/µ), we have D(1) = /D
2

2µ , from which D
(1)
x = 1

2µ DxiDxj σ⊥i σ⊥j and

D
(1)†
y = 1

2µ D†
yiD

†
yj σ⊥i σ⊥j lead to

DxiDxj

(

eis·A G̃v

)

= eis·A
[

1

4
∂Xi∂Xj+

1

2
∂Xi∂sj+

1

2
∂si∂Xj+∂si∂sj+

i

2
Fij

+
i

2
smFmi

(

1

2
∂Xj+∂sj

)

+
i

2
smFmi

(

1

2
∂Xi+∂si

)]

G̃v,

D†
yjD

†
yi

(

eis·A G̃v

)

= eis·A
[

1

4
∂Xi∂Xj−

1

2
∂Xi∂sj−

1

2
∂si∂Xj+∂si∂sj+

i

2
Fij

+
i

2
smFmi

(

1

2
∂Xj−∂sj

)

+
i

2
smFmi

(

1

2
∂Xi−∂si

)]

G̃v, (A.6)

it is to be mentioned that the product σ⊥i σ⊥j = δij−vi vj−i εjkm vi vk σm−iεikm vj vk σm+

i εijk σk. We note that G̃v ∝ P+ for right handed fermions and to obtain the physical

interpretations, we have to take the trace by replacing σk → vk. Thus, the product yields
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the following: σ⊥i σ⊥j = ∆ij+i εijk v
k with ∆ij = δij−vi vj . Finally, the sum and difference

of EOM at order O(1/µ) are

I
(1)
+ =

∫

s
ei(l−A)·s 1

2µ

[(

1

2
∂Xi∂Xj + 2∂si∂sj +

i

2
smFmi∂Xj +

i

2
smFmj∂Xi

)

∆ij

−εijkFijvk

]

G̃v =
1

µ

[

− l̄2⊥ +B · v
]

G̃v(X, l),

I
(1)
− =

∫

s
ei(l−A)·s 1

2µ

[(

∂Xi∂sj + ∂Xj∂si + i smFmi∂sj + i smFmj∂si

)

∆ij ] G̃v

=
i

µ
l̄µ⊥

(

∂µ − Fµν
∂

∂lν

)

G̃v(X, l), (A.7)

in the above higher order terms ∂Xi∂Xj and Fmi∂Xj have been ignored. Now, the I
(2)
±

terms at order O(1/µ2) can be simplified in the similar manner to result into the following:

I
(2)
+ =

∫

s
ei(l−A)·s 1

4µ2

[

iFij∂sµ+ iFiµ∂sj+ iFµj∂sj+2∂si∂sj ∂sµ

]

σ⊥iσ⊥j (−i v̄µ)G̃v(x,y),

I
(2)
− =

∫

s
ei(l−A)·s 1

4µ2

[

i

2
Fij∆µ+

i

2
Fiµ∆j+

i

2
Fµj∆i

]

σ⊥iσ⊥j (−i v̄µ)G̃v(x,y), (A.8)

where we have kept terms to the lowest order in O(∂X) and O(l). It should be noted that

in the above equation index µ = 0, 1, 2, 3 with v̄µ = (1,−v). We take the trace over the

sigma matrices and simplify the above equation which yields

I
(2)
+ =

1

4µ2

[

4l‖

(

l2⊥ −B · v
)

+ 2B · l⊥ + 2(E× l) · v
]

G̃v(X, l),

I
(2)
− = − i

4µ2

[(

4l‖ l
µ − v̄µ (l2⊥ −B · v)

)

∆µ −
(

εijkvkv̄µF
iµ
)

∆j

]

G̃v(X, l). (A.9)

From the above equation, at order O(1/µ2), we can clearly see the difference by a numerical

factor in I
(2)
± with SY.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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