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bDepartment of Astronomy and Theoretical Physics, Lund University,

Solvegatan 14A, SE-223 62 Lund, Sweden
cNuclear Physics Institute ASCR,
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1 Introduction

The origin of various strong hierarchies in the fermion spectra of the Standard Model (SM)

still remains a major unsolved problem of contemporary Particle Physics. A symmetry-

based understanding of such hierarchies, in the framework of a single universal mechanism,

consistent with the current phenomenological bounds on New Physics models, poses a

challenging problem for the model-building community. In fact, a number of different

potentially realizable mechanisms have been proposed so far, typically with certain limi-

tations and deficiencies, and usually treating the quark, lepton and neutrino hierarchies

on a separate footing. The most promising scenarios rely on the existence of horizontal

(family) symmetries acting in the space of fermion generations and offering most times a

more universal approach to the “fermion hierarchy problem” than other methods.

It seems natural and attractive to consider the viable prospect of a high-scale sponta-

neous discrete symmetry breaking, triggering the radiative generation of new mass oper-

ators in the corresponding low-energy effective field theory (EFT) [1–23]. This way, one

arrives at the possible sequential generation (in general, due to a few sequential symmetry

breakings at the high-energy scales) of the relevant mass (or SM Higgs Yukawa) terms in

the SM, whose values are matched to zero or to a universal non-zero value in the high-scale
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limit of a more symmetric, and hence more fundamental theory. The search for such ultravi-

olet (UV) completions, possessing a low-energy SM-like EFT, and explorations of their vast

potential for explaining the origin of the SM structure have only began recently [24, 25].

A model of radiatively generated fermion masses in the SM via sequential loop suppres-

sion has been proposed in ref. [24]. In this model, the top quark mass is generated at tree

level, while the bottom, tau and muon lepton masses arise at one-loop level. Meanwhile,

the smaller up, down and strange quark and electron masses are generated at two-loop

level, while the light active neutrinos acquire their masses at four-loop level. However,

such a natural sequential generation of fermion masses at various orders of the Perturba-

tion Theory comes with a price. Namely, this model, based on the SM gauge symmetry,

supplemented with the S3 × Z2 discrete group, has a quite low cut-off, since it incorpo-

rates non-renormalizable Yukawa terms. In addition, it has another drawback in that the

S3×Z2 discrete group is softly broken, yielding an unknown UV completion of the theory.

This situation may indicate the need for horizontal continuous symmetries for a consistent

description of hierarchies in the matter sectors in a fully renormalizable way.

As a follow up to this study, in the later work of ref. [25], we proposed such a renormal-

izable model based on the SU3C×SU3L×U1X×U1L×Z(1)
2 ×Z

(2)
2 symmetry, which generates

the SM fermion mass hierarchies with an emergent sequential loop suppression mechanism.

However, that model still retains some drawbacks of the previous formulation. Namely, the

Z
(1)
2 × Z(2)

2 symmetry is softly broken, and the scalar and fermion sectors are excessively

large, making it very difficult to perform a reliable phenomenological analysis. In addition,

that model does not explain the RK and RK∗ anomalies, recently observed by the LHCb

experiment [30–32], since it treats the first and second lepton families in the same footing.

Furthermore, in the model of ref. [25], the masses for the light active neutrinos appear at

two-loop level, as well as the masses for the electron and for the light up, down and strange

quarks. Thus the smallness of the light active neutrino masses with respect to the electron

mass does not receive a natural explanation in the model. As a natural step forward, it

would be instructive to find a new analogous formulation that enables us to generate the

SM charged fermion mass hierarchies via a sequential loop suppression mechanism and to

generate three-loop level light active neutrino masses without the inclusion of soft breaking

mass terms. It would also be relevant to further explore the potential of such formulations

for explaining the LHCb anomalies.

In the current work, we propose a first renormalizable model, an extended variant of the

Inert Higgs Doublet model (IDM) [26], that enables to generate strong fermion hierarchies

via another sequential loop suppression pattern, not yet discussed in the literature, without

introducing any soft family symmetry breaking mass terms. Similarly to the previous

formulations, in the current model the top quark and exotic fermions do acquire tree

level masses, whereas the masses of the remaining SM fermions are radiatively generated.

Namely, the masses for the bottom, strange and charm quarks, tau and muon leptons are

generated at one-loop level, whereas the masses for the up and down quarks, as well as

the electron mass, arise at two-loop level. In variance to the previous version in ref. [24],

the light active neutrinos acquire masses via radiative seesaw mechanisms at three-loop

level, whereas in the former the light active neutrino masses were induced at two-loop
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level. Finally, the minimal field content of the model is not as complicated as in the

previous formulations, enabling us to explore several key phenomenological implications of

this model, which is the main subject of a follow up study.

The current article is organized as follows. In section 2 we discuss generic conditions for

a sequential loop suppression mechanism, providing a motivation for the proposed model.

In section 3, we set up the formalism for the extended IDM, containing the basic details

about the symmetries, particle content, Yukawa interactions and scalar potential crucial

for the implementation of the sequential loop suppression mechanism. The scalar mass

spectrum is discussed in detail in section 4. In section 5 we discuss the implications of our

model for the radiative generation of the quark mass and mixing hierarchies. The charged

lepton and neutrino mass spectra and the corresponding mixing patterns are discussed in

section 6. Finally, our conclusions are briefly stated in section 7.

2 Sequential loop suppression mechanism

Before describing our model in detail, let us first explain the reasoning behind introducing

the additional scalar and fermion degrees of freedom and the symmetries that are required

for a consistent implementation of the sequential loop suppression mechanism for generating

the SM fermion hierarchies.

2.1 Quark sector

First of all, it is worth noticing that the top quark mass can be generated at tree level

by means of a renormalizable Yukawa operator, with the corresponding coupling of order

one, i.e.

q3Lφ̃1ujR, j = 1, 2, 3, (2.1)

where φ1 is a SU2L scalar doublet. To generate the charm quark mass at one loop level, it

is necessary to forbid the operator:

qnLφ̃1ujR, n = 1, 2, j = 1, 2, 3, (2.2)

at tree level and to allow other operators instead, which are described in what follows.

Obviously, in this case the charm quark mass is not generated in the same way as the top

quark mass, i.e., from a renormalizable Yukawa term, since this would imply setting the

corresponding tree-level Yukawa coupling unnaturally small.

In order to generate a small charm quark mass at one-loop level, we will use the

following operators:

qnLφ̃2TR, TLη
∗umR, n,m = 1, 2,

TLσ1TR, σ∗2ρ
∗
2σ1ρ

∗
3, ηρ2σ1,

(
φ†1 · φ2

)
σ2 . (2.3)

For this to happen, we need to extend the SM gauge symmetry by adding the U1X×Z(1)
2 ×

Z
(2)
2 symmetry, where the U1X and Z

(1)
2 are spontaneously broken gauge and discrete

symmetries, respectively, and Z
(2)
2 is a preserved (exact) discrete symmetry under which
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the extra φ2 scalar doublet, the σ2, ρ2, η electrically neutral scalar singlets, and the qjL,

ujR (j = 1, 2, 3) quark fields are nontrivially charged. It is worth mentioning that the fields

unR (n = 1, 2), ρ2, ρ3 and η are charged under the spontaneously broken Z
(1)
2 symmetry,

whereas the remaining fields previously introduced are neutral under this symmetry. As we

will be shown below, the σ2, ρ2, η electrically neutral scalar singlets will also mediate the

one and two level radiative seesaw mechanisms that give masses to the second and third

family of SM down type quarks and charged leptons as well as to the first family of SM

charged fermions. Some of these scalars singlets will also participate in the three loop level

radiative seesaw mechanism that produces the light active neutrino masses. Furthermore,

the SU2L singlet heavy quarks TL, TR with electric charges equal to 2/3 have to be added

to the fermion spectrum in order to implement the one-loop radiative seesaw mechanism

that gives rise to the charm quark mass. Besides, an electrically neutral weak-singlet scalar

σ1 is needed in the scalar spectrum to provide a tree-level mass for the exotic T quark and

to close the one-loop Feynman diagram that generates the charm quark mass. Let us note

that σ1 and ρ3 are the only scalars neutral under the unbroken Z
(2)
2 symmetry, and thus

they conveniently acquire vacuum expectation values (VEVs) that break the U1X gauge

symmetry and the Z
(1)
2 discrete symmetry, respectively.

In addition, we assume that the qnL (n = 1, 2) fields have U1X charges that are different

from the charge of q3L, while the SU2L scalar doublets φ1 and φ2 have different U1X charges

as well. Thus, the third row of the up-type quark mass matrix is generated at tree level,

whereas the first and second row emerge at one-loop level. Note that, since there is only one

heavy exotic T quark mediating the one-loop radiative seesaw mechanism that generates

the first and second row of the up-type quark mass matrix, the determinant of this matrix

is equal to zero. Therefore, the up quark is massless at one-loop level, and in order to

generate an up quark mass at two-loop level, the following operators are required:

qnLφ2B3R, B4Lϕ
−
1 unR, B3Lσ

∗
2B4R, mBk

BkLBkR, n = 1, 2,

σ1σ2σ
∗
3ρ3, εab

(
φ†1

)a (
φ†2

)b
ϕ+

1 σ3, a, b = 1, 2 , , k = 3, 4, (2.4)

where the extra SU2L singlet heavy quarks B3L, B3R, B4L, B4R have electric charges

equal to −1/3, and σ3 and ϕ−1 are electrically neutral and charged weak-singlet scalars,

respectively. The scalar fields σ3 and ϕ−1 are charged under the spontaneously broken Z
(1)
2

symmetry. The operators given above enable to generate the two-loop contributions to the

first and second rows of the up-type quark mass matrix, and these contributions yield a

nonvanishing determinant for the up-type quark mass matrix, giving rise to a suppressed

two-loop up quark mass. It is worth mentioning that the nonvanishing parts of the SM up

type quark mass matrix top quark are the (3, 3) entry, which appears at tree level and the

upper left 2× 2 block which receive one and two loop level contributions. Let us note that

in order that the two loop contribution to the upper left 2 × 2 block of the SM up type

quark mass matrix gives a nonvanishing two loop level up quark mass, the one and two

loop level contributions should not have common vertices. If they have a common vertex,

the two loop level contribution can be treated as an effective 1-loop one having the same

the left and (or) right handed fermionic field in the internal line as in the former one loop
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level contribution. Thus, the net result of the sum of both contributions will correspond to

one loop level diagram having in the fermionic line a seesaw mediator, which will be linear

combination of the fermionic mediators in both contributions, thus leading to a vanishing

up quark mass. Another reason for avoiding a common vertex in the one and two loop

level contributions to the upper left 2 × 2 block of the SM up type quark mass matrix,

is to prevent a proportionality between row and columns that will result in a vanishing

eigenvalue. Because of the aforementioned reason, we have employed exotic down type

quarks and electrically charged scalars in the two loop level contribution of the upper left

2 × 2 block of the SM up type quark mass matrix, thus giving rise to a up quark mass

at two loop level. As it will be shown below, the two loop level contributions to the SM

charged fermion mass matrices, will be generated by electrically charged scalars and exotic

fermions running in the internal lines of the loop, thus yielding two loop level masses for

the first generation of SM charged fermions.

Turning now to a possible bottom quark mass generation at one-loop level, the following

operators should be forbidden

q3Lφ1djR , j = 1, 2, 3 , (2.5)

by means of, for example, the U1X gauge symmetry. The fermion spectrum has to be

extended by including the additional SU2L-singlet heavy quarks BnL, BnR (n = 1, 2) with

electric charges equal to −1/3, so that the mass for the bottom quark is generated with

the help of the following operators:

q3Lφ2BnR, BnLηdjR, n = 1, 2, n,m = 1, 2, j = 1, 2, 3,

BnLσ
∗
1BmR, σ2ρ2 (σ∗1) ρ3, η∗ρ∗2σ

∗
1,

(
φ1 · φ†2

)
σ∗2 . (2.6)

Note that we have added two SU2L-singlet heavy quarks Bn (n = 1, 2) instead of one, in

order to fulfill the anomaly cancellation conditions discussed below.

In addition, in order to generate the first and second rows of the down-type quark

mass matrix at one-loop level via a radiative seesaw mechanism, we need the following set

of operators:

qnLφ2B3R, B3Lη
∗djR, n = 1, 2, j = 1, 2, 3,

mB3B3LB3R, η
(
φ1 · φ†2

)
ρ3. (2.7)

Furthermore, in order to avoid tree-level masses for the down and strange quarks one

has to forbid the terms

qnLφ1djR, n = 1, 2, j = 1, 2, 3 . (2.8)

The latter can be excluded by assigning qnL (n = 1, 2) to be even, while djR (j = 1, 2, 3)

to be odd under the aforementioned spontaneously broken Z
(1)
2 symmetry.

Since there is only one fermionic seesaw mediator, i.e., the SU2L singlet heavy quark T

needed to generate the first and second rows of the down-type quark mass matrix at one-

loop level, a nonvanishing one-loop strange quark mass emerges, whereas the down quark
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remains massless at this point. Consequently, similarly to the up-type quark sector, the

two-loop contributions to the first and second rows of the down-type quark mass matrix

need to be generated in order to give rise to a down-type quark mass at two-loop level. For

that purpose, the following operators are required:

qnLφ̃2TR, T̃Lϕ
+
2 djR, m

T̃
T̃LT̃R, n = 1, 2, j = 1, 2, 3, (2.9)

TLσ1TR, TLρ2T̃R, σ1σ
∗
2ρ2ρ3, εab (φ1)a (φ2)b ϕ−2 σ2, a, b = 1, 2 ,

where an extra electrically charged weak-singlet scalar, ϕ+
2 has been added to the scalar

spectrum. Furthermore, the fermion spectrum has been extended by means of extra SU2L-

singlet heavy quarks T̃L, T̃R with electric charges equal to 2/3. The two-loop contributions

to the first and second rows of the down-type quark mass matrix provide its nonvanishing

determinant, giving rise to a two-loop down quark mass.

2.2 Charged lepton sector

Now, consider the sequential loop suppression mechanism capable of explaining the ob-

served hierarchy between the SM charged lepton masses. In what follows, let us discuss a

possible way of generating the one-loop tau and muon masses as well as a two-loop electron

mass. First of all, the following operators have to be forbidden

liLφ1ljR, i, j = 1, 2, 3.

by using the U1X gauge symmetry, so that the SM charged lepton mass matrix is generated

at one-loop level by means of the terms

lkLφ2E3R, E3Lρ1lnR,
(
φ1 · φ†2

)
σ∗2, ρ1σ2σ

∗
1, n = 1, 3,

l2Lφ2E2R, E2Lρ1l2R, EjLσ
∗
1EjR, j = 2, 3 , (2.10)

where weak-singlet charged leptons EjL, EjR (j = 2, 3) have been included in the fermion

spectrum. Let us note that these fields mediate the one-loop radiative seesaw mechanism

that generates the (1, 1), (2, 2), (3, 3), (1, 3) and (3, 1) entries of the charged lepton mass

matrix. Consequently, at this point the determinant of the charged lepton mass matrix is

equal to zero and thus only the tau and muon leptons appear to be massive at one-loop

level, whereas the electron remains massless. Two-loop corrections to the (1, 1), (3, 3),

(1, 3) and (3, 1) entries are needed in order to induce a non-zero electron mass at two-loop

level, and extra weak-singlet charged E1 and neutral νmR (m = 1, 3), leptons ΨR as well

as the electrically charged scalar singlets ϕ±1 , ϕ±k (k = 3, 4, 5) would be required for this

purpose. Let us note that the neutral gauge singlet leptons νmR (m = 1, 3), leptons ΨR

will also participate in the three loop leval radiative seesaw mechanism that produces the

small light active neutrino masses. To obtain the two-loop corrections of the SM charged

lepton mass matrix that generate a two loop level electron mass, the following operators

should be considered

lkLφ̃2νnR, ΨC
Rϕ

+
3 lkR, ϕ−4 ϕ

+
5 σ1, ϕ+

1 ϕ
−
5 σ

2
1, k, n = 1, 3, (2.11)

E1Lσ
∗
1E1R, E1Lϕ

−
1 νkR, ΨC

Rϕ
+
4 E1R, εab (φ1)a (φ2)b ϕ−3 , a, b = 1, 2,

– 6 –
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As soon as the two-loop corrections generated by the above operators are included, the

determinant of the charged lepton mass matrix becomes nonzero, thus giving rise to a

two-loop electron mass, as expected.

Let us note that in this setup there is a mixing between the SM charged leptons of

the first and third generations, but they do not mix with the second generation, which is

a consequence of their U1X assignments, as will be shown below. The second generation

left-handed lepton SU2L-doublet has a nonvanishing U1X charge, whereas the first and

third generations are not charged under U1X . In addition, the first and third generations

of SM right-handed charged leptons should have the same U1X charge, which is different

from the corresponding charge of the second generation.

2.3 Light active neutrino sector

Turning to the neutrino sector, in order to generate the SM light active neutrino masses at

three-loop level as well as a realistic lepton mixing, a few operators have to be forbidden,

namely,

liLφ1νjR, (mN )ij νiRν
C
jR, νiRσ1νCjR, νiRσ

∗
1ν

C
jR mΩΩC

RΩR, i, j = 1, 2, 3 , (2.12)

while the following operators are required

lkLφ̃2νnR, l2Lφ̃2ν2R, ΩC
1Rη

∗νkR, ΩC
1Rσ

∗
3ν2R, k, n = 1, 3 .

ΩC
1RηΨR, ΩC

2Rη
∗ΨR, ΩC

1Rσ
∗
2Ω2R, mΨΨC

RΨR , (2.13)

where νiR (i = 1, 2, 3), ΩR and ΨR are the SM-singlet right-handed Majorana neutrinos,

and η, σ3 and ρ2 are the extra SM-singlet scalars. The latter fields have to be added in

order to ensure three-loop level generation of the SM light active neutrino masses, as well

as the lepton mixing parameters sin2 θ23 and sin2 θ12.

As was mentioned above, the charged lepton mass matrix has a mixing only in the

(1,3)-plane such that the lepton mixing parameters sin2 θ23 and sin2 θ12 emerge from the

neutrino sector. Let us note that the U1X gauge symmetry prevents the light active neutrino

masses to be generated at tree level, whereas the Z
(1)
2 symmetry, together with the U1X

gauge symmetry, forbid the mixing terms between the right-handed Majorana neutrinos

νkR (k = 1, 3) and ν2R. This enables us to avoid the appearance of light neutrino masses

at one- and two-loop levels. Note also that the Z
(1)
2 symmetry, as well as the U1X gauge

symmetry, are crucial to forbid the terms ν2Rσ1νCkR and ν2Rρ3νCkR (k = 1, 3) that could

result in the appearance of SM neutrino masses at one loop.

3 The extended IDM model

In this section, we will summarize the main features of the first renormalizable model, an

extended variant of the Inert Higgs Doublet model (IDM), that includes a sequential loop

suppression mechanism for the generation of the SM fermion mass hierarchies, without the

inclusion of soft breaking mass terms and, at the same time, allowing for an explanation of

the RK and RK∗ anomalies, thanks to the non-universal U1X assignments of the fermionic
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fields that yield non-universal Z ′ couplings to fermions. In a forthcoming work, we will

show in detail how our model can fit the RK and RK∗ anomalies. As previously stated in

Introduction, we emphasize that our model, apart from having all the means for explaining

the RK and RK∗ anomalies not previously addressed in the model of ref. [24], has a more

natural explanation for the smallness of the light active neutrino masses than the one

provided in ref. [24], since in the former the masses for the light active neutrinos are

generated at three-loop level, whereas in the latter they appear at two loops. Furthermore,

unlike the model of ref. [24], our current model does not include soft breaking mass terms.

Let us summarize the structure of a minimal model where the sequential loop suppres-

sion mechanism capable of radiative generation of the mass and mixing hierarchies in the

SM fermion sectors is realized. The reasons for choosing a particular field content and sym-

metries have been outlined in the previous section, and will be further substantiated below.

3.1 Particle content and charges

With the necessary ingredients introduced above, in fact, we arrive at an extension of the

inert 2HDM where the SM gauge symmetry is supplemented by the exact unbroken Z
(2)
2

discrete group and spontaneously broken Z
(1)
2 discrete and U1X gauge symmetry groups.

The unbroken Z
(2)
2 and continuous local U1X (horizontal) family symmetries are crucial

for the implementation of radiative seesaw mechanism of sequential loop suppression.

Besides the SM-like Higgs doublet φ1, the implementation of this mechanism re-

quires an additional inert scalar SU2L-doublet, φ2, seven electrically neutral, i.e., σj , ρj
(j = 1, 2, 3), η, and five electrically charged ϕ+

k (k = 1, 2, 3, 4, 5), SU2L-singlet scalars. The

scalar sector of the considering model has the following SU3c × SU2L ×U1Y ×U1X charge

assignments

φ1 ∼
(
1,2,

1

2
, 1

)
, φ2 ∼

(
1,2,

1

2
, 2

)
, φ3 ∼

(
1,2,

1

2
, 2

)
, σ1 ∼ (1,1, 0,−1) ,

σ2 ∼ (1,1, 0,−1) , σ3 ∼ (1,1, 0,−2) , ρ1 ∼ (1,1, 0, 0) , ρ2 ∼ (1,1, 0, 0) ,

ρ3 ∼ (1,1, 0, 1) , η ∼ (1,1, 0, 1) , ϕ+
1 ∼ (1,1, 1, 5) , ϕ+

2 ∼ (1,1, 1, 2) ,

ϕ+
3 ∼ (1,1, 1, 3) , ϕ+

4 ∼ (1,1, 1, 2) , ϕ+
5 ∼ (1,1, 1, 3) . (3.1)

As it will be shown in the next subsection, we provide a detailed analysis of the scalar

potential showing that the only massless scalar fields are those ones corresponding to the

SM Goldstone bosons and the Goldstone boson associated to the longitudinal component

of the Z ′ gauge boson.

The corresponding Z
(1)
2 × Z(2)

2 charges of the scalar fields are given by

φ1 ∼ (1, 1) , φ2 ∼ (1,−1) , σ1 ∼ (1, 1) , σ2 ∼ (1,−1) , σ3 ∼ (−1,−1) ,

ρ1 ∼ (1,−1) , ρ2 ∼ (−1,−1) , ρ3 ∼ (−1, 1) , η ∼ (−1,−1) ,

ϕ+
1 ∼ (−1, 1) , ϕ+

2 ∼ (1, 1) , ϕ+
3 ∼ (1,−1) , ϕ+

4 ∼ (−1, 1) , ϕ+
5 ∼ (−1, 1) . (3.2)

It is worth noticing that the model does not contain a weak-singlet scalar field with the

following simultaneous three features: charged under the Z
(1)
2 discrete symmetry, neutral

under the unbroken Z
(2)
2 symmetry with U1X charge equal to ±1.

– 8 –
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Let us note that the SM-type Higgs doublet, i.e., φ1, as well as the electroweak-singlet

scalars σ1 and ρ3 are the only scalar fields neutral under the exact Z
(2)
2 discrete symmetry.

Since the Z
(2)
2 symmetry is preserved, the Higgs doublet φ1 and the singlets σ1 and ρ3

are the only scalar fields that acquire nonvanishing VEVs. The VEV in σ1 is required to

spontaneously break the U1X local symmetry, whereas the ρ3 VEV spontaneously breaks

the Z
(1)
2 discrete symmetry, due to its nontrivial Z

(1)
2 charge.

Note that the exact Z
(2)
2 discrete symmetry guarantees the presence of several stable

scalar dark matter candidates in our model. These are represented by the neutral compo-

nents of the inert SU2L scalar doublet φ2, as well as by the real and imaginary parts of

the SM-singlet scalars σ2, σ3, ρ1, ρ2 and η. Furthermore, the model can have a fermionic

DM candidate, which is the only SM-singlet Majorana neutrino Ω1R with a non-trivial

Z
(2)
2 charge.

The set of SU2L-singlet heavy quarks TL, TR, BiL, BiR (i = 1, 2, 3) represents the

minimal amount of exotic quark degrees of freedom needed to implement the one-loop ra-

diative seesaw mechanism that gives rise to the charm, bottom and strange quark masses.

Furthermore, in order to ensure the radiative seesaw mechanism responsible for the gener-

ation of the up and down quark masses at two-loop level, the SU2L singlet heavy quarks

T̃L, T̃R, B4L, B4R, as well as the electrically neutral, σ3, ρ2, and electrically charged, ϕ+
1 ,

ϕ+
2 scalar SU2L-singlets should also be present in the particle spectrum.

To summarize, the SM fermion sector of the considered model includes a total of

six electrically charged weak-singlet leptons EjL and EjR (j = 1, 2, 3), four right-handed

neutrinos νjR (j = 1, 2, 3), ΩR, and twelve SU2L-singlet heavy quarks TL, TR, T̃L,T̃R, BkL,

BkR (k = 1, 2, 3, 4). It is assumed that the heavy exotic T , T̃ and Bk quarks have electric

charges equal to 2/3 and −1/3, respectively.

More specifically, the quark sector of the extended IDM under consideration has the

following SU3c × SU2L ×U1Y ×U1X charges

qnL ∼
(
3,2,

1

6
, 0

)
, q3L ∼

(
3,2,

1

6
, 1

)
, n = 1, 2,

ujR ∼
(
3,1,

2

3
, 2

)
, djR ∼

(
3,1,−1

3
,−1

)
, j = 1, 2, 3,

TL ∼
(
3,1,

2

3
, 1

)
, TR ∼

(
3,1,

2

3
, 2

)
,

T̃L ∼
(
3,1,

2

3
, 1

)
, T̃R ∼

(
3,1,

2

3
, 1

)
,

BnL ∼
(
3,1,−1

3
, 0

)
, BnR ∼

(
3,1,−1

3
,−1

)
,

B3L ∼
(
3,1,−1

3
,−2

)
, B3R ∼

(
3,1,−1

3
,−2

)
,

B4L ∼
(
3,1,−1

3
,−3

)
, B4R ∼

(
3,1,−1

3
,−3

)
(3.3)
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Field φ1 φ2 σ1 σ2 σ3 ρ1 ρ2 ρ3 η ϕ+
1 ϕ+

2 ϕ+
3 ϕ+

4 ϕ+
5

SU3c 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU2L 2 2 1 1 1 1 1 1 1 1 1 1 1 1

U1Y
1
2

1
2 0 0 0 0 0 0 0 1 1 1 1 1

U1X 1 2 −1 −1 −2 0 0 0 1 5 2 3 2 3

Z
(1)
2 1 1 1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1

Z
(2)
2 1 −1 1 −1 −1 −1 −1 1 −1 1 1 −1 1 1

Table 1. Scalars assignments under the SU3c × SU2L ×U1Y ×U1X × Z(1)
2 × Z(2)

2 symmetry.

Field q1L q2L q3L u1R u2R u3R d1R d2R d3R TL TR T̃L T̃R B1L B1R B2L B2R B3L B3R B4L B4R

SU3c 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

SU2L 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

U1Y
1
6

1
6

1
6

2
3

2
3

2
3 −1

3 −
1
3 −

1
3

2
3

2
3

2
3

2
3 −1

3 −
1
3 −

1
3 −

1
3 −

1
3 −

1
3 −

1
3 −

1
3

U1X 0 0 1 2 2 2 −1 −1 −1 1 2 1 1 0 −1 0 −1 −2 −2 −3 −3

Z
(1)
2 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 1 1 1 1 1

Z
(2)
2 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 1 1 −1 −1

Table 2. Quark assignments under the SU3c × SU2L ×U1Y ×U1X × Z(1)
2 × Z(2)

2 symmetry.

Field l1L l2L l3L l1R l2R l3R E1L E1R E2L E2R E3L E3R ν1R ν2R ν3R Ω1R Ω2R ΨR

SU3c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU2L 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

U1Y −1
2 −

1
2 −

1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

U1X 0 −3 0 −3 −6 −3 −3 −2 −6 −5 −3 −2 2 −1 2 −1 1 0

Z
(1)
2 1 −1 1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 −1 1

Z
(2)
2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 −1 1 1

Table 3. Lepton charge assignments under the SU3c×SU2L×U1Y ×U1X ×Z(1)
2 ×Z

(2)
2 symmetry.

while their Z
(1)
2 × Z(2)

2 charge assignments read

qnL∼ (1,−1) , q3L∼ (1,−1) , unR∼ (−1,−1) , u3R∼ (1,−1) , djR∼ (−1,−1) ,

TL∼ (1,1) , TR∼ (1,1) , T̃L∼ (−1,−1) , T̃R∼ (−1,−1) , n= 1,2, j= 1,2,3,

BjL∼ (1,1) , BjR∼ (1,1) , B4L∼ (1,−1) , B4R∼ (1,−1) . (3.4)

A summary of all the field assignments with respect to the model symmetry is given in

tables 1, 2, 3.
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The radiative seesaw mechanism that generates the charged lepton mass hierarchy is

similar to the one that produces the SM down-type quark mass hierarchy. The generation of

one-loop tau and muon masses is mediated by the electrically charged weak-singlet leptons

ErL and ErR (r = 2, 3), by the inert scalar SU2L-doublet, φ2, and by the SU2L-singlets σ2,

ρ1. On the other hand, the radiative seesaw mechanism that give rises to a two loop level

electron mass is mediated by electrically charged scalars as well as by the right-handed

Majorana neutrinos Ψ, νkR (k = 1, 3) and the weak-singlet electrically charged leptons E1L

and E1R.

Moreover, the three-loop radiative seesaw mechanism responsible for the generation of

the light active neutrino masses is mediated by the right-handed neutrinos νjR (j = 1, 2, 3),

ΩR, as well as by the inert scalar SU2L doublet φ2 and the SU2L-singlet σ2. To avoid tree-

level mixing between the right-handed Majorana neutrinos νkR (k = 1, 3) and ν2R triggered

by Yukawa interactions with σ1, we need to impose a nontrivial Z
(1)
2 charge of ν2R while

keeping νkR (k = 1, 3) Z
(1)
2 -neutral.

In particular, the SU3c×SU2L×U1Y ×U1X charges of the leptonic and neutrino fields

of the model are defined as follows

lkL ∼
(
1,2,−1

2
, 0

)
, l2L ∼

(
1,2,−1

2
,−3

)
, k = 1, 3,

lkR ∼ (1,1,−1,−3) , l2R ∼ (1,1,−1,−6) ,

E1L ∼ (1,1,−1,−3) , E1R ∼ (1,1,−1,−2) ,

E2L ∼ (1,1,−1,−6) , E2R ∼ (1,1,−1,−5) ,

E3L ∼ (1,1,−1,−3) , E3R ∼ (1,1,−1,−2) ,

νkR ∼ (1,1, 0, 2) , ν2R ∼ (1,1, 0,−1) ,

Ω1R ∼ (1,1, 0,−1) , Ω2R ∼ (1,1, 0, 1) , ΨR ∼ (1,1, 0, 0) , (3.5)

whereas the corresponding Z
(1)
2 × Z(2)

2 charges are given by

lkL∼ (1,−1) , l2L∼ (−1,−1) , lkR∼ (1,−1) , l2R∼ (−1,−1) , k= 1,3,

E1L∼ (−1,1) , E1R∼ (−1,1) , E2L∼ (−1,1) , E2R∼ (−1,1) , E3L∼ (1,1) , E3R∼ (1,1) ,

νkR∼ (1,1) , ν2R∼ (−1,1) , Ω1R∼ (−1,−1) , Ω2R∼ (−1,1) , ΨR∼ (1,1) , k= 1,3 .

(3.6)

The U1X × Z(1)
2 × Z(2)

2 symmetry and the particular assignments listed above are crucial

for avoiding the appearance of SM light active neutrino masses at one- and two-loop levels.

Let us note that the left-handed quark SU2L doublets of the first and second generations

are distinguished from the third generation by means of the U1X charge assignments. In

addition, the local U1X family symmetry distinguishes the second generation left-handed

lepton SU2L doublet from the first and third generation ones. Such non-universal U1X

charge assignments in the fermion sector are crucial for implementing the sequential loop

suppression mechanism and, hence, for the induced strong hierarchies in the SM fermion

mass spectrum. Besides, as will be explicitly demonstrated in a forthcoming paper, such

assignments are also relevant for explaining the RK and RK∗ anomalies.
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With the above assignments, we have numerically checked that the gauge anomaly

cancellation conditions

A[SU3c]2U1X
=
∑
Q

XQL
−
∑
Q

XQR
, A[SU2L]2U1X

=
∑
L

XLL
+ 3

∑
Q

XQL
,

A[U1Y ]2U1X
=
∑
L,Q

(
Y 2
LL
XLL

+ 3Y 2
QL
XQL

)
−
∑
L,Q

(
Y 2
LR
XLR

+ 3Y 2
QR
XQR

)
,

A[U1X ]2U1Y
=
∑
L,Q

(
YLL

X2
LL

+ 3YQL
X2
QL

)
−
∑
L,Q

(
YLR

X2
LR

+ 3YQR
X2
QR

)
,

A[U1X ]3 =
∑
L,Q

(
X3
LL

+ 3X3
QL

)
−
∑
L,Q

(
X3
LR

+X3
NR

+ 3X3
QR

)
,

A[Gravity]2U1X
=
∑
L,Q

(XLL
+ 3XQL

)−
∑
L,Q,N

(XLR
+XNR

+ 3XQR
) (3.7)

are satisfied in our model. Let us note that in the expression for A[SU2L]2U1X
the sum is

performed only over the SU2L doublets of left handed fermionic fields. On the other hand, in

the expression for A[Gravity]2U1X
, the sum is performed over all left handed fermionic fields.

3.2 Yukawa interactions

With the above specified particle content and charge assignments, the most general renor-

malizable Lagrangian of Yukawa interactions and the exotic fermion mass terms, invariant

under the SU3c × SU2L ×U1Y ×U1X × Z(1)
2 × Z(2)

2 symmetry, takes the following form

LF = y
(u)
3j q3Lφ̃1u3R+

2∑
n=1

x(u)
n qnLφ̃2TR+

2∑
n=1

z
(u)
j TLη

∗unR+yTTLσ1TR+mT̃ T̃LT̃R+x(T )TLρ2T̃R

+

2∑
n=1

x(d)
n q3Lφ2BnR+

2∑
n=1

3∑
j=1

y
(d)
nj BnLηdjR+

3∑
j=1

z
(d)
j B3Lη

∗djR+

2∑
n=1

w(u)
n B4Lϕ

−
1 unR

+

4∑
k=3

mBkBkLBkR+

2∑
n=1

x(d)
n qnLφ2B3R+

2∑
n=1

2∑
m=1

y(B)
nmBnLσ

∗
1BmR+z(B)B3Lσ

∗
2B4R

+

3∑
j=1

w
(d)
j T̃Lϕ

+
2 djR+

∑
k=1,3

x
(l)
k3 lkLφ2E3R+

∑
k=1,3

y
(l)
3kE3Lρ1lkR+x

(l)
22 l2Lφ2E2R+y

(l)
22E2Lρ1l2R

+

3∑
i=1

y
(E)
i EiLσ

∗
1EiR+x

(ν)
2 l2Lφ̃2ν2R+

∑
k=1,3

z
(l)
k ΨC

Rϕ
+
3 lkR+

∑
k=1,3

z
(ν)
k E1Lϕ

−
1 νkR+z(E)ΨC

Rϕ
+
4 E1R

+
∑
k=1,3

∑
n=1,3

x
(ν)
kn lkLφ̃2νnR+

∑
k=1,3

y
(Ω)
k ΩC1Rη

∗νkR+y(Ω)ΩC1Rσ
∗
3ν2R

+x
(Ψ)
1 ΩC1RηΨR+x

(Ψ)
2 ΩC2Rη

∗ΨR+zΩΩC1Rσ
∗
2Ω2R+mΨΨC

RΨR+h.c. , (3.8)

where the Yukawa couplings are O(1) parameters. From the quark Yukawa terms it follows

that the top quark mass emerges due to an interaction involving the SM-like Higgs doublet

φ1 only. After spontaneous breaking of the electroweak symmetry, the observed hierarchies

of SM fermion masses arise by means of a sequential loop suppression, according to the fol-

lowing pattern: tree-level top quark mass; one-loop bottom, strange, charm, tau and muon
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masses; two-loop masses for the up, down quarks as well as for the electron. Furthermore,

the SM light active neutrinos get their masses by means of a three-loop radiative seesaw

mechanism.

A few comments on the phenomenological implications of the Lagrangian (3.8) are

in order. Notice that the neutrino Yukawa coupling to, e.g. SM lepton and φ2 doublets

x
(ν)
kn , is generally not suppressed. On the other hand it can be constrained by Z-boson

decays. However, we do not expect this constraint to be very strong provided that φ2

boson is heavy. Indeed, the corresponding one-loop amplitude of Z-boson decay would be

suppressed by a large mass of φ2 scalar in the propagators. Therefore, such an amplitude

is, in any case, expected to be small.

It is also worth mentioning that the Yukawa interactions E2Lρ1l2R and l2Lφ2E2R pre-

sented in the 4th line of eq. (3.8) as well as the trilinear scalar interaction ρ2

(
φ1 · φ†2

)
σ∗1

generate a one loop level scalar contribution to the muon anomalous magnetic moment

g − 2. The exchange with the heavy Z ′ gauge boson also yields a contribution to this

observable. The possibility of explanation of the observed deviation of the g − 2 from the

SM value will be studied in the forthcoming publication.

Let us also note that from the term lkLφ̃2νnR in eq. (3.8), it follows that the charged

lepton flavor violating decay τ → eγ is induced at one loop level by electrically charged

scalar φ+
2 (arising from the SU2L inert doublet φ) and right handed Majorana neutrinos νsR

(s = 1, 3) (whose masses are generated at two loop level) appearing in the internal lines of

the loop. This decay also receives a one loop level contribution arising from the Z ′ exchange.

Due to the fact that electron is charged under U1X the LEP measurements of e+e− →
µ+µ− set a stringent limit [33] on the ratio

MZ′

gX
> 12 TeV . (3.9)

Our model contains two electroweak doublet Higgs scalars φ1,2. As such we should take

special care of Flavor Changing Neutral Currents (FCNCs). Our model automatically

implements the alignment limit for the lightest 125 GeV Higgs boson, since all other scalar

states appear to be decoupled in the mass spectrum and, hence, are very heavy by default.

This means the SM-like Higgs boson state does not have tree-level FCNCs while such

contributions from the heavier scalars are strongly suppressed by their large mass scale.

While a detailed study of the FCNC constraints goes beyond the scope of the current work,

we can make a generic statement about nonexistence of FCNCs in our model based upon

the Glashow-Weinberg-Paschos theorem [34, 35]. This theorem states that there will be

no tree-level FCNC coming from the scalar sector, if all right-handed fermions of a given

electric charge couple to only one of the doublets. As seen from eq. (3.8) this condition

is satisfied in our model. So, despite of an obvious mass suppression, any possible FCNC

corrections would emerge at a loop level only, yielding the model safe with respect to

the corresponding phenomenological constraints. Finally, any possible FCNC from the Z ′

mediation would, for sure, be very much suppressed by its large mass scale compared to

the EW one, i.e. mZ′ > 12 TeV (for gX = 1), according to the LEP constraint.
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3.3 Scalar potential

The most general renormalizable scalar potential invariant under the gauge and discrete

symmetries of our model is given by

V =

2∑
i=1

(
µ2
pi |φi|

2
+λpi |φi|4

)
+

3∑
j=1

(
µ2
sj |σj |

2
+λsj |σj |4

)
+

3∑
j=1

(
µ2
rj |ρj |

2
+λrj |ρj |4

)
+µ2

e |η|
2
+λe |η|4

+

5∑
i=1

(
µ2
fiϕ

+
i ϕ
−
i +λfi

(
ϕ+
i ϕ
−
i

)2)
+

2∑
i=1

3∑
j=1

αij |φi|2 |σj |2+

2∑
i=1

3∑
j=1

βij |φi|2 |ρj |2+

2∑
i=1

κpi |φi|2 |η|2

+κ1 |φ1|2 |φ2|2+κ2

(
φ1φ

†
2

)(
φ2φ

†
1

)
+κ3

[
εabεcd (φ1)

a
(φ2)

b
(
φ†1

)c(
φ†2

)d
+h.c.

]
+

3∑
i=1

3∑
j=1

γij |σi|2 |ρj |2+

3∑
i=1

αei |η|2 |σi|2+

3∑
j=1

βej |η|2 |ρj |2+

5∑
i=1

5∑
j=1

κij
(
ϕ+
i ϕ
−
i

)(
ϕ+
j ϕ
−
j

)
+

5∑
i=1

2∑
j=1

λij
(
ϕ+
i ϕ
−
i

)
|φj |2+

5∑
i=1

3∑
j=1

ςij
(
ϕ+
i ϕ
−
i

)
|σj |2+

5∑
i=1

3∑
j=1

%ij
(
ϕ+
i ϕ
−
i

)
|ρj |2+

5∑
i=1

κi
(
ϕ+
i ϕ
−
i

)
|η|2

+A1

[(
φ†1 ·φ2

)
σ2+h.c.

]
+A2

[
εab (φ1)

a
(φ2)

b
ϕ−3 +h.c.

]
+A3

(
ϕ−4 ϕ

+
5 σ1+h.c.

)
+A4 (ρ1σ2σ

∗
1 +h.c.)

+A5 (ησ2ρ3+h.c)+A6 (ρ1ρ2ρ3+h.c.)+A7 (ρ2ησ1+h.c.)+A8 (σ3σ
∗
1η+h.c.)+A9

(
ϕ−2 ϕ

+
4 ρ3+h.c.

)
+A10

(
ϕ−1 ϕ

+
3 σ
∗
3 +h.c.

)
+A11

(
ϕ−2 ϕ

+
3 σ2+h.c.

)
+A11

(
ϕ−3 ϕ

+
4 η+h.c.

)
+A12

(
ϕ−3 ϕ

+
5 ρ2+h.c.

)
+ζ1

[
η
(
φ1 ·φ†2

)
ρ3+h.c.

]
+ζ2

[
εab (φ1)

a
(φ2)

b
ϕ−2 σ2+h.c.

]
+ζ3

[
εab (φ1)

a
(φ2)

b
ϕ−1 σ

∗
3 +h.c.

]
+ζ4

(
ϕ+

1 ϕ
−
5 σ

2
1 +h.c.

)
+ζ5 (σ1σ2σ

∗
3ρ3+h.c.)+ζ6 (σ1σ

∗
2ρ2ρ3+h.c.)+ζ7 (σ∗1σ2ρ2ρ3+h.c.)

+ζ8

[
σ2

1 (σ∗2)
2
+h.c.

]
+ζ9

[
σ3ρ2 (σ∗1)

2
+h.c.

]
+ζ10 (ρ1ηρ3σ1+h.c.)+ζ11

[
ρ1

(
φ1 ·φ†2

)
σ∗1 +h.c.

]
+ζ12

[
ρ∗1

(
φ1 ·φ†2

)
σ∗1 +h.c.

]
+ζ13

(
ϕ−2 ϕ

+
5 σ1ρ3+h.c.

)
. (3.10)

From the minimization conditions for this potential, we find the following simple relations

µ2
p1 =

1

2

(
−2v2λp1 − β13v

2
ρ − α11v

2
σ

)
,

µ2
s1 =

1

2

(
−γ13v

2
ρ − 2v2

σλs1 − α11v
2
)
,

µ2
r5 =

1

2

(
−2λr3v

2
ρ − γ13v

2
σ − β13v

2
)
, (3.11)

that will be used below in a discussion of the scalar mass spectrum of the model.

4 Scalar mass spectrum

Considering the scalar potential given above, we find that the squared mass matrices for

the CP-even neutral scalar sector are have the following form

MCPeven =

(
M

(1)
CPeven 03×8

08×3 M
(2)
CPeven

)
, (4.1)

where M
(1)
CPeven and M

(2)
CPeven are the squared mass matrices for the Z

(2)
2 -neutral and Z

(2)
2 -

charged scalars, respectively. The matrix M
(1)
CPeven in the basis

(
Re
(
φ0

1

)
, Re (σ1) , ρ3

)
(re-
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mind, ρ3 is a real SM-singlet scalar), takes the form:

M
(1)
CPeven =

 v2λp1
1
2vvσα11

1
2vvρβ13

1
2vvσα11 v2

σλs1
1
2vρvσγ13

1
2vvρβ13

1
2vρvσγ13 v2

ρλr3

 . (4.2)

The second mass form M
(2)
CPeven in the basis (Re(σ2), Re(σ3), Re(ρ1), Re(ρ2), Re(η), Re(φ0

2))

reads

M
(2)
CPeven =

(
C1 C2

CT2 C3

)
,

C1 =


1
2

(
α12v

2

2 +µ2
s2+ 1

2v
2
ργ23+v2

σζ8

)
0 A4vσ

2
√

2

0 1
4

(
α13v

2+2µ2
s3+v2

ργ33

)
0

A4vσ
2
√

2
0 1

4

(
β12v

2+2µ2
r2+v2

σγ11

)
 ,

C2 =


1
4vρvσ (ζ6+ζ7)

√
2

4 vρA5
vA1

2
√

2
1
4v

2
σζ9

A8vσ
2
√

2
0

A6vρ
2
√

2
1
4vρvσζ10

1
4vvσ (ζ11+ζ12)

 , (4.3)

C3 =


1
4

(
β14v

2+2µ2
r4+v2

σγ12

)
A7vσ
2
√

2
0

A7vσ
2
√

2
1
4

(
κp1v

2+2µ2
e+v2

σαe1+v2
ρβe3

)
0

0 0 1
4

(
κ1v

2+κ2v
2+2µ2

p2+v2
σα21+v2

ρβ23

)
.

Since the 126 GeV SM-like Higgs boson is found in the squared mass matrix M
(1)
CPeven,

and considering the fact that the scalar potential has a very large number of parameters, in

this first study it is sufficient to diagonalize only M
(1)
CPeven in the scalar sector. In addition,

since this matrix cannot be diagonalized in analytically closed form, and for the sake of

simplicity, here we focus on a particular scenario with vσ = vρ. In this scenario, the matrix

M
(1)
CPeven can be diagonalized as follows

(
R

(1)
CPeven

)T
M

(1)
CPevenR

(1)
CPeven'

 8
11λv

2 0 0

0 1
2

(
4−
√

5
)
λv2

σ 0

0 0 1
2

(
4+
√

5
)
λv2

σ

 , (4.4)

R
(1)
CPeven'


−1+ 13

121x
2 − 1

11

√
13+ 19√

5
x 1

11

√
13− 19√

5
x

5x
11 −

√
1
2 + 1√

5

√
1
2−

1√
5

x
11

1√
10+4

√
5

√
1
2 + 1√

5

 , x=
v

vσ
.

Consequently, the physical scalar states contained in the matrix M
(1)
CPeven are given by:

 h

χ1

χ2

 '


−1 + 13
121x

2 5
11x

1
11x

− 1
11x
√

19
5

√
5 + 13 −

√
1
5

√
5 + 1

2
1
2

√
2√

2
√

5+5

1
11x
√

13− 19
5

√
5

√
1
2 −

1
5

√
5
√

1
5

√
5 + 1

2


 φ0

1R

σ1R

ρ3

 ,

φ0
1R = Re

(
φ0

1

)
, σ1R = Re (σ1) , (4.5)
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where h is the 126 GeV SM-like Higgs boson, whereas χ1 and χ2 are the physical heavy

scalar fields, which acquire masses at the scale of U1X breaking. The squared masses of

these fields are given by

m2
h '

8

11
λv2, m2

χ1
' 1

2

(
4−
√

5
)
λv2

σ, m2
χ2
' 1

2

(
4 +
√

5
)
λv2

σ . (4.6)

Furthermore, we find that the SM-like Higgs boson h has the couplings that are very close

to the SM expectation, with small deviations of the order of ∼ v2/v2
σ.

Considering the CP-odd neutral scalar sector, we find that the squared mass matri-

ces for the electrically neutral CP-odd scalars in the basis, are (Im(φ0
1), Im(σ1), Im(σ2),

Im(σ3), Im(ρ2), Im(ρ4), Im(η), Im(φ0
2), Im(ρ1), Im(ρ3)) are given by

MCPodd =

(
M

(1)
CPodd 02×8

08×2 M
(2)
CPodd

)
, M

(1)
CPodd = 02×2, M

(2)
CPodd =

(
D1 D2

DT
2 D3

)
,

D1 =


1
2

(
α12v

2

2 +µ2
s2+ 1

2v
2
ργ23−v2

σζ8

)
0 −A4vσ

2
√

2

0 1
4

(
α13v

2+2µ2
s3+v2

ργ33

)
0

−A4vσ
2
√

2
0 1

4

(
β12v

2+2µ2
r2+v2

σγ11

)
 ,

D2 =


1
4vρvσ (ζ6−ζ7) −

√
2

4 vρA5 − vA1

2
√

2

− 1
4v

2
σζ9 −A8vσ

2
√

2
0

−A6vρ
2
√

2
− 1

4vρvσζ10
1
4vvσ (ζ11−ζ12)

 , (4.7)

D3 =


1
4

(
β14v

2+2µ2
r4+v2

σγ12

)
−A7vσ

2
√

2
0

−A7vσ
2
√

2
1
4

(
κp1v

2+2µ2
e+v2

σαe1+v2
ρβe3

)
0

0 0 1
4

(
κ1v

2+κ2v
2+2µ2

p2+v2
σα21+v2

ρβ23

)
,

where M
(1)
CPodd and M

(2)
CPodd are the squared mass matrices for the CP-odd scalars, neutral

and charged under Z4, respectively. Note that the squared mass matrix M
(1)
CPodd (which

is written in the basis
(
Im
(
φ0

1

)
, Im (σ1)

)
) is exactly zero, since Im

(
φ0

1

)
and Im (σ1) are

the Goldstone bosons associated with the longitudinal components of the Z and Z ′ gauge

bosons, respectively.

Finally, the squared mass matrix for the charged scalar fields in the basis (φ+
1 , φ

+
2 , ϕ

+
3 ,

ϕ+
1 , ϕ

+
2 , ϕ

+
4 , ϕ

+
5 ) reads

MC =

 0 01×2 01×4

02×1 M
(1)
C 02×4

04×1 04×2 M
(2)
C

 , M
(2)
C =

 M
(2a)
C M

(2b)
C(

M
(2b)
C

)T
M

(2c)
C

 ,
M

(1)
C =

(
1
2

(
κ1v

2+2κ3v
2+2µ2

p2+v2
σα21+v2

ρβ23

)
vA2√

2
vA2√

2
1
2

(
λ31v

2+2µ2
f3+%33v

2
ρ+ς31v

2
σ

)) ,

M
(2a)
C =

 1
2

(
λ11v

2+2µ2
f1+%13v

2
ρ+ς11v

2
σ

)
0

0 1
2

(
λ21v

2+2µ2
f2+%23v

2
ρ+ς21v

2
σ

) , (4.8)

M
(2b)
C =

(
0

ζ4v
2
σ

2
A9vρ√

2

ζ13vσvρ
2

)
, M

(2c)
C =

1
2

(
λ41v

2+2µ2
f4+%43v

2
ρ+ς41v

2
σ

)
A3vσ√

2

A3vσ√
2

1
2

(
λ51v

2+2µ2
f5+%53v

2
ρ+ς51v

2
σ

),
such that φ±1 are the electrically charged massless scalar states corresponding to the Gold-

stone bosons associated with the longitudinal components of the W± gauge bosons.
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5 Radiatively generated quark mass and mixing hierarchies

The quark Yukawa interactions determined by eq. (3.8) give rise to the following up and

down mass matrices for the SM quarks, respectively,

MU =

 ε
(u)
11 +ε̃

(u)
11 ε

(u)
12 +ε̃

(u)
12 0

ε
(u)
21 +ε̃

(u)
21 ε

(u)
22 +ε̃

(u)
22 0

0 0 y
(u)
33

 v√
2
, MD =

 ε
(d)
11 +ε̃

(d)
11 ε

(d)
12 +ε̃

(d)
12 ε

(d)
13 +ε̃

(d)
13

ε
(d)
21 +ε̃

(d)
21 ε

(d)
22 +ε̃

(d)
22 ε

(d)
23 +ε̃

(d)
23

ε
(d)
31 ε

(d)
32 ε

(d)
33

 v√
2
,

(5.1)

where the dimensionless parameters ε
(u)
nm (n,m = 1, 2) and ε

(d)
ij (i, j = 1, 2, 3) are generated

at one-loop level, whereas ε̃
(d)
nj and ε̃

(d)
ij arise at two-loop level. The characteristic Feyn-

man loop diagrams contributing to the entries of the SM quark mass matrices are shown

in figure 1.

In what follows, we demonstrate that the mass matrices for SM quarks given above

incorporate the observed hierarchies in the SM quark mass spectrum and the Cabibbo-

Kobayashi-Maskawa (CKM) mixing matrix. To this end, we proceed with a parametriza-

tion of the SM quark mass matrices in the following form

MU =


(
a

(u)
11

)2
l
(
a

(u)
12

)2
l 0(

a
(u)
21

)2
l
(
a

(u)
22

)2
l 0

0 0 y
(u)
33

 v√
2
, MD =


(
a

(d)
11

)2
l
(
a

(d)
12

)2
l
(
a

(d)
13

)2
l(

a
(d)
21

)2
l
(
a

(d)
22

)2
l
(
a

(d)
23

)2
l(

a
(d)
31

)2
l
(
a

(d)
32

)2
l
(
a

(d)
33

)2
l

 v√
2
,

(5.2)

where l ≈ (1/4π)2 ≈ 2.0×λ4 is the loop suppression factor, and λ = 0.225 is the Wolfenstein

parameter. As a consequence, we expect that a
(u)
nm, a

(d)
ij (n,m = 1, 2 and i, j = 1, 2, 3) be

O(1) parameters.

We remark that the Feynman diagrams contributing to the entries of the SM fermion

mass matrices contain a large number of uncorrelated parameters that belong to the fermion

and scalar sectors of our model. Nevertheless, these parameters can be absorbed into a

limited number of effective parameters ε
(u)
nm, ε̃

(d)
nj , ε

(d)
ij , ε̃

(d)
ij (n,m = 1, 2 and i, j = 1, 2, 3),

which can be used to reproduce the experimental values of the physical observables in the

quark sector1

mu(MeV) = 1.45+0.56
−0.45, md(MeV) = 2.9+0.5

−0.4, ms(MeV) = 57.7+16.8
−15.7,

mc(MeV) = 635±86, mt(GeV) = 172.1±0.6±0.9, mb(GeV) = 2.82+0.09
−0.04,

sinθ12 = 0.2254, sinθ23 = 0.0414, sinθ13 = 0.00355,

J = 2.96+0.20
−0.16×10−5 . (5.3)

Here, mt,u,c,d,s,b are the SM quark masses, θ12, θ23, θ13 are the mixing angles, and J is the

Jarlskog parameter.

1We use the experimental values of the quark masses at the MZ scale known from ref. [27], which are

similar to those in ref. [28]. The experimental values of the CKM parameters are taken from ref. [29].
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ūnL unRTR T̄L

×
vσ

×vρ

×
v

φ̃0
2R, φ̃

0
2I

ρ2R, ρ2I

ηR, ηI

×vσ

σ2R, σ2I

×
vσ

ūnL unRB3R

×

B̄3L B̄4L

×

B4R

φ+

2 σ3R, σ3I

×vσ×vρ

σ2R, σ2I

ϕ−

1

×
v

d̄3L djRBmR B̄nL

×
vσ

×vρ

×
v

φ0
2R, φ

0
2I

σ2R, σ2I

×
vσ

ρ2R, ρ2I

ηR, ηI

×vσ

d̄nL djRTR

×

T̄L
¯̃
TLT̃R

×
vσ

φ−

2 ϕ+

2

×
v

σ2R, σ2I

×vσ×vρ

ρ2R, ρ2I

d̄nL djRB3R B̄3L

×

φ0
2R, φ

0
2I

ηR, ηI

×
v
×

vρ

Figure 1. One- and two-loop Feynman diagrams contributing to the entries of the SM quark mass

matrices. Here, n,m = 1, 2 and j = 1, 2, 3.
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While our model does not predict the exact values of the physical observables, it offers

a natural explanation of the observed (strong) hierarchies. As was previously mentioned,

it only pretends to reproduce the existing pattern of quark masses and mixing caused

by a sequential loop suppression predicted by the model. To this end, for the SM quark

mass matrices given above, we look for the eigenvalue problem solutions reproducing the

experimental values of the quark masses and the CKM parameters given by eq. (5.3),

requiring that a(u,d), b(u,d) are all of the same order of one. The standard procedure renders

the following solution

a
(u)
11 ' 0.708, a

(u)
12 = a

(u)
21 ' 0.567, a

(u)
22 ' 0.456, y

(u)
33 = 0.989,

a
(d)
11 ' 0.191, a

(d)
12 = a

(d)
21 ' 0.182, a

(d)
13 = a

(d)
31 ' 0.325 + 0.009i,

a
(d)
23 = a

(d)
32 ' 0.269− 0.016i, a

(d)
22 ' 0.190, a

(d)
33 ' 1.771 . (5.4)

The above O(1) values exactly reproduce the measured central values of the SM quark

masses and CKM parameters given in eq. (5.3). Hence, our model is consistent with and

successfully reproduces the existing pattern of SM quark masses caused by the sequential

loop suppression mechanism, with different quark flavors getting mass at different orders

in Perturbation Theory as discussed above.

6 Radiatively generated lepton masses and mixings

The lepton and neutrino Yukawa interactions and mass terms given in eq. (3.8) give rise

to the characteristic Feynman loop diagrams illustrated in figures 2 and 3 that necessarily

generate the following SM charged lepton and light active neutrino mass forms:

Ml =

 ε
(l)
11 + ε̃

(l)
11 0 ε

(l)
13 + ε̃

(l)
13

0 ε
(l)
22 0

ε
(l)
31 + ε̃

(l)
31 0 ε

(l)
33 + ε̃

(l)
33

 v√
2
, Mν =

 a
(ν)
11 a

(ν)
12 a

(ν)
13

a
(ν)
21 a

(ν)
22 a

(ν)
23

a
(ν)
31 a

(ν)
32 a

(ν)
33

 , (6.1)

where ε
(l)
ii , ε

(l)
13 , ε

(l)
31 are the dimensionless parameters generated at one-loop level, whereas

the parameters ε̃
(d)
ii , ε̃

(d)
13 and ε̃

(d)
31 appear at two-loop level. In what follows, we show that

the lepton mass matrices given above can accommodate the experimental data on the SM

lepton masses and mixing. For this purpose, following the same strategy as for the quark

mass forms discussed in the previous section, we parametrize the SM charged lepton mass

matrix as follows:

Ml =


(
a

(l)
11

)2
l 0

(
a

(l)
13

)2
l

0
(
a

(l)
22

)2
l 0(

a
(l)
31

)2
l 0

(
a

(l)
33

)2
l

 v√
2
. (6.2)
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l̄kL lnRE3R Ē3L

×
vσ

×
v

φ0
2R, φ

0
2I

×
vσ

ρ1R, ρ1I

σ2R, σ2I

l̄2L l2RE2R Ē2L

×
v

φ0
2R, φ

0
2I

×
vσ

ρ1R, ρ1I

σ2R, σ2I

×
v

×
vσ

l̄2L l2RE2R Ē2L

×
vσ

φ0
2R, φ

0
2I

ρ1R, ρ1I

×
v
×

vσ

l̄kL lnRνmR ΨC

R
Ē1L E1R

×

vσ

φ−

2 ϕ+

3

×
v

ϕ+

4

××

vσ vσ

×
vσ

ϕ−

1

ϕ+

5

Figure 2. One- and two-loop Feynman diagrams contributing to the entries of the SM charged

lepton mass matrix. Here, k,m, n = 1, 3.

In order to fit the measured values of the charged lepton masses, as well as the neutrino

mass squared differences and lepton mixing parameters [37], we proceed by solving the

eigenvalue problem for the SM lepton and light neutrino mass matrices. The following

solution has been found:

a
(l)
11 = a

(l)
33 ' 0.491, a

(l)
13 = a

(l)
31 ' 0.4905, a

(l)
22 ' 0.340, (6.3)

Mν =




0.0473664−0.00675494i 0.00904226−0.0045673i 0.00544117 +0.000841261i

0.00904226−0.0045673i 0.0528446 +0.000500202i 0.0066006 +0.00515561i

0.00544117 +0.000841261i 0.0066006 +0.00515561i 0.04306 +0.00575822i

eV for NH,


0.0573349−0.0100651i −0.00894313−0.00802622i −0.00466139−0.000301301i

−0.00894313−0.00802622i 0.0495729−0.000243999i −0.00936421+0.00765498i

−0.00466139−0.000301301i −0.00936421+0.00765498i 0.0560537 +0.0101163i

eV for IH.

(6.4)
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×
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×
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ηR, ηI ηR, ηI
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vσ vσ

ν2 ν2ν2R ν2R

×
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×
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×

Ψ ΨΩ1 Ω1

×
v

×
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φ̃0

2R, φ̃
0

2I φ̃0

2R, φ̃
0

2I

σ2R, σ2I σ2R, σ2I

×
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×

vσ

ηR, ηI ηR, ηI

σ3R, σ3I σ3R, σ3I

×vσ ×vσ

××

vσ vσ

×
vσ

×
vσ

ρ2R, ρ2I ρ2R, ρ2I

νn ν2νkR ν2R

×
vσ
×

vσ

×

Ψ ΨΩ1 Ω1

×
v

×
v

φ̃0

2R, φ̃
0

2I φ̃0

2R, φ̃
0

2I

σ2R, σ2I σ2R, σ2I

ηR, ηI

σ2R, σ2I

×

vσ
×

vσ

ηR, ηI ηR, ηI

vρ

××

vσ vρ

ρ2R, ρ2I

σ3R, σ3I

×vσ

×
vσ

νkR ΨC

R
Ē1L E1R

×

vσ

×

ΨR
νlR

ϕ+

4

ϕ+

5

ϕ−

1

×
vσ

E1R Ē1L

×vσ

×
vσ

×
vσ

ϕ+

4

××

vσ vσ

×
vσ

ϕ−

1

ϕ+

5

φ̃0
2R, φ̃

0
2I

σ2R, σ2I

φ̃0
2R, φ̃

0
2I

σ2R, σ2I

×
v

×
v

×
vσ

×
vσ

νn νm

Figure 3. Three-loop Feynman diagrams contributing to the entries of the neutrino mass matrix.

Here, k, l, n,m = 1, 3.

Thus we find that with O(1) values for the a
(l)
nm (n,m = 1, 3), a

(l)
22 parameters and the

above specified entries of the neutrino mass matrix satisfying O(10−3) eV.
∣∣∣(Mν)ij

∣∣∣ .
O(10−2) eV (i, j = 1, 2, 3), the experimental values for the physical observables of the lep-

ton sector, i.e., the three charged lepton masses, the two neutrino mass squared splittings,

the three leptonic mixing parameters and the leptonic Dirac CP violating phase can be

successfully reproduced. Consequently, our model is consistent with and successfully re-

produces the existing pattern of SM charged lepton masses generated by the sequential

loop suppression mechanism.
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7 Discussions and conclusions

We have constructed a first renormalizable extension of the Inert Doublet Model that en-

ables an implementation of a sequential loop suppression mechanism, capable of explaining

the observed SM fermion mass hierarchy without invoking soft breaking mass terms. In our

model, the SM gauge symmetry is supplemented by the U1X×Z(1)
2 ×Z

(2)
2 family symmetry,

where the gauge U1X and discrete Z
(1)
2 symmetries are spontaneously broken, whereas the

Z
(2)
2 symmetry is preserved.

Our model is consistent with the observed SM fermion mass spectrum and fermionic

mixing parameters and allows for an explanation of the recently observed RK and RK∗

anomalies, thanks to the non-universal Z ′ couplings to fermions. Let us point out that in the

case of the studied sequential loop mechanism these anomalies cannot be explained by the

Yukawa couplings. Indeed, as follows from eq. (3.8), there are no terms of the form f iLSfjR
(i,j=1,2,3), where S is a scalar and fi denote the SM fermions. Consequently, at tree level

there is no scalar exchange contribution to the RK,K∗ anomalies. This contribution appears

only at two loop level given that interactions of the form bLσsR, eLσeR and µLσµR are

generated at one loop level as seen from the one loop diagrams for the down type quark and

the charged leptons masses shown in figures 1 and 2. Thus, the Yukawa contributions to

the RK,K∗ anomalies are very much suppressed by the loop factors and the heavy particles

in the loops.

We focused on an extension of the Inert Higgs Doublet model (IDM) that allows

the implementation of the sequential loop suppression mechanism for the generation of

SM fermion masses instead of an extension of the inert 3-3-1 model (model based on the

SU3C × SU3L × U1X gauge symmetry). As previously mentioned, the extension of the

inert 3-3-1 model of ref. [25] does not explain the RK and RK∗ anomalies and the light

active neutrino masses appear at two-loop level like the masses of the light SM charged

fermions. Addressing the RK and RK∗ anomalies in the framework of a 3-3-1 model would

require to consider five families of SU(3)L leptonic triplets as done in ref. [36], in order to

have different U(1)X charge assignments for the first and second lepton families, without

spoiling the anomaly cancellation conditions. Thus, modifying the inert 3-3-1 model of

ref. [25] to account for the RK and RK∗ anomalies, and to generate the hierarchy of SM

fermion masses by sequential loop suppression mechanism, with the light active neutrino

masses appearing at three-loop level, will require a much larger particle content than the

one adopted in the framework of an extended IDM.

In our model only the top quark and exotic fermions acquire tree-level masses, whereas

the masses of the remaining SM fermions emerge from a radiative seesaw-like mechanism:

the masses for the bottom, strange and charm quarks, tau and muon leptons are generated

at one-loop level, whereas the masses for the up and down quarks as well as the electron

mass appear at two-loop level. Furthermore, light active neutrino acquire masses by means

of a radiative seesaw mechanism at three-loop level.

Due to an unbroken Z
(2)
2 discrete symmetry, our model has several stable scalar dark

matter candidates, which can be the neutral components of the inert SU2L scalar dou-

blet φ2 as well as the real and imaginary parts of the SM scalar singlets σ2, σ3, ρ1, ρ2

– 22 –



J
H
E
P
0
6
(
2
0
1
9
)
0
5
6

and η. Furthermore, the model can have a fermionic dark matter candidate which is the

only SM-singlet Majorana neutrino Ω1R with a non-trivial Z
(2)
2 charge. A study of the

phenomenological implications of our model goes beyond the scope of the present paper

and will be performed in a forthcoming work.
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